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Abstract

Privacy of the message and authenticity of the sender in a secure communication is a challenging
concern. Tradionally these two aims were achieved by using different cryptographic primitives:
by using encryption for privacy and using MAC’s for authenticity. Authenticated Encryption
(AE) is a mechanism to provides both the privacy of data as well as authenticity of the sender
by a single cryptographic construction. Usually, AE schemes have been constructed as mode of
operation of a block cipher providing both confidentiality and authenticity.

Bellare and Namprempre [1] introduced the idea of AE and showed different compositions of
Encryption and MAC schemes to construct AE schemes, along with the security proof for each
construction. In their work, Bellare and Namprempre also highlighted the subtle issues which
can lead to insecurity in some combinations of encryption and MAC schemes.

Many modes of AE have been developed after the pioneering work of Bellare et al. in 2000. Jutla
developed the IAPM [7] mode in 2001. Around the same time, Rogaway et al. proposed the
OCB mode [15]. OCB is one of the most efficient AE modes. Other efficient modes are CCM [16]
and CWC [9]. All of these AE modes are based on block ciphers. The SpongeWrap [4] is the
only known AE scheme based on a permutation, while there is no known AE mode which is
based on a random function. Near lack of non-block cipher based designs for AE motivated us
to study new AE designs. In this work, we propose two new AE modes. The first one, which we
name FWPAE is based on random function and the second one, which we call FPAE, is based
on permutation. Our proposed permutation based mode FPAE promises to have better security
compared to SpongeWrap.
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Chapter 1

Introduction

1.1 Basic Setting of Cryptography

Secrecy of exchanged messages between communicating parties has been a desired feature for

some since time immemorial. In the older times, only the governments and armies had a need

for this. However, with the advent of digital world, it has become a requirement for a common

person. Both the privacy of the communication as well its authenticity are required for anyone

who, for example, accesses his mails stored on the servers of the servide providers, or one

who accesses his bank details online. Traditional cryptography, which was the only type of

cryptography ussed till the 80’s, was concerned about designing tools which make it “difficult”

for the attacker to make sense of ciphered data. Modern cryptography takes the notion of

security to a different plane, by first rigorously defining what is meant by the security of the

scheme and then concretely quantifying the security [8].

The basic setting of cryptography is explained better with few characters depicting the real

world scenario. Consider a two-party communication over an open channel (here open means the

vulnerability to leakage of data). A sender, S, who sends information over an open channel and

a receiver, R, who receives the information from the sender over this channel. The vulnerability

here means the possibility of data being read and/or modified and this scenario is depicted by

a new character Adversary, A. The power of the adversary can be modeled ranging from only

reading the data (passive adversary) to modifying the information in the open channel (active

adversary).

Since the passive adversary can read the data in the open channel, there must be some encoding,

decoding functions with some secret information so that the adversary cannot find the actual

information being transfered. This secret information is called the ‘Key’, the encoding and

decoding functions are called ‘Encryption’ and ‘Decryption’ algorithms, respectively. This basic

setting is depicted in the figure:1.1. The ‘Key’ plays an important role in cryptography. Based

on the type of key sharing between the two legitimate parties, cryptography can be divided

into the following two main branches, a) Symmetric Key Cryptography, b) Asymmetric Key

Cryptography.
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Figure 1.1: Basic cryptographic setting

1.2 Symmetric Key Cryptography

The Key used by S and R are the same. All the symmetric Cryptography schemes and protocols

are developed based on some assumptions such as a) The shared secret key is already present

between sender and receiver; b) Adversary cannot get the key from sender or receiver by any

means. In the symmetric key setting, privacy of a message is provided by an Encryption scheme

and Message authenticity by Message Authentication Code (MAC). These two are the basic

properties which need to be satisfied for communication to take place in a open channel. We

will see these two briefly.

1.2.1 Privacy : Encryption Scheme

An encryption scheme in symmetric setting is defined as consisting of 3 tuples Π
′

= (K′ , E ′ ,D′)
where the notation is defined ahead shortly. The information which is desired to be sent by the

sender is called plaintext, and the encoded data is called ciphertext. The encoding function is

called Encryption algorithm and is represented by E ′ . This algorithm takes plaintext and the

shared key as input and outputs the ciphertext. In the same way, the decoding function is called

the Decryption algorithm and is denoted by D′ . This algorithm takes the ciphertext received

through the open channel and the shared key as input and outputs the plaintext. The algorithm

K′ is called the key generation algorithm. The purpose of this algorithm is to produce a shared

key which is used by both E ′ ,D′ . Usually, this algorithm is defined as one which produces a

random string of the required key length.

The goal of an encryption algorithm is to make sure that the adversary cannot gain any infor-

mation about the plaintext from the ciphertext (other than the length of the plaintext). We

exclude the lenngth information, since the length of plaintext can usually be calculated from

the length of ciphertext.

From computational point of view, the security of a scheme is defined in terms of the probability

to break some security notion relating to the scheme. As mentioned before, only the key is kept

secret from the adversary. If the encryption scheme has a key length of n bits, then with

probability 2−n, the adversary can find the correct key in a single attempt. Once the key is

2



known, then the adversary can decrypt the ciphertext as if he was the legitimate receipient.

1.2.2 Authenticity : Message Authentication Code

Since the transmission channel is assumed to be insecure, the receiver must be able to identify

whether the data it received is from the correct sender and not modified by any adversary in

the channel.

Message Authentication Code (MAC) is used to provide authenticity. MAC scheme is a 3-tuple

of algorithms denoted by Π
′′

= (K′′ , T ,V). Algorithm T is a function which takes a message and

the shared key as input and outputs a small string called Tag (σ) which is then transmitted to

the receiver as an authenticator. This tag cannot be calculated without knowing the key. Once

the tag is received, the receiver uses the algorithm V using the key and the message to verify

that the received tag is correct. If the algorithm returns 1, then the message is authenticate

otherwise, the message has been tampered with.

3



Chapter 2

Authenticated Encryption

2.1 What is Authenticated Encryption

Privacy and authenticity are the two separate basic security goals and there are many schemes

which provide both separately. There are many applications which require both features to be

present in a scheme. It is not so difficult to see that for any message which is sent through open

channel both the privacy as well as authenticity are required in a single scheme. Bellare et. al

defined a notion for this type of scheme as Authenticated Encryption(referred to as AE at many

places from now on) in [1]. AE provides both privacy as well as authenticity.

There could be a scenario where the data sent passes through many different channels. Thus

some part of the data, say header in a mail message, must be in plaintext for proper delivery of

the data. But even in this case, the scheme must make sure that the whole data including the

header is not modified. In cryptography, this scenario can be said as a partial encryption and

complete authentication of data and we use the term Authenticated Encryption with Associated

Data, shortly AEAD, for it.

2.2 Definition of Authenticated Encryption

Authenticated Encryption has been informally introduced in the previous section. Now we

formally define AE. An AE scheme is defined as Π = (K, E ,D). K is the key generating algorithm.

Usually a random string, K of key length is produced as its output. E is called encryption

algorithm which takes K and plaintext, optionally a nonce as input, and outputs ciphertext and

tag. Decryption algorithm, D, using K, ciphertext and given tag, decrypts the ciphertext to

plaintext and verifies whether the given tag matches. If it matches then it outputs the plaintext

otherwise it outputs a special symbol (say INVALID or ⊥) to signify that the authentication

failed.

Normally, nonce is used in AE schemes to make the encryption scheme probabilistic and to avoid

forgery. If nonce is used by the encryption scheme then we assume that the adversary doesn’t

4



re-use the nonce for encryption.

2.3 Modes of Authenticated Encryption

2.3.1 Basic combinations

When Authenticated Encryption was introduced in [1], the first thought towards AE was to com-

bine Encryption and Authentication in different combinations and there are three ways namely,

a) Encrypt-and-Authenticate; b) Authenticate-then-Encrypt and c) Encrypt-then-Authenticate.

Schemes which don’t depend on a particular primitives are known as modes. These three modes

are explained along with its security.

An efficient Encryption scheme Πe(Ke, Eke ,Dke) and an efficient MAC scheme Πt(Kt, Tkt ,Vkt) is

chosen. By efficient scheme, we mean a scheme which runs in time polynomial to the length of

its input.

Encrypt-and-Authenticate

Let Πeaa(Keaa, Eeaa,Deaa) be the described mode. Keaa generates two independent random keys

ke, kt. Eeaa is encryption algorithm which is described below

Ēeaa(ke||kt,M) = Eke(M)||Tkt(M) = C||T
In this mode, both the encryption and authentication is done independently on the plaintext.

Decryption is analogous and easy to understand.

Figure 2.1: Encrypt-and-Authenticate

This mode of AE is not secure. An example showing the insecurity of this mode is available

in [1].

Authenticate-then-Encrypt

Let Πate(Kate, Eate,Date) be the described mode. Kate generates two independent random keys

ke, kt. Eate is encryption algorithm which is described below

Ēate(ke||kt,M) = Eke(M ||Tkt(M)) = C

In this mode, first the message M is authenticated then the tag T is concatenated with the

5



plaintext M and then entire string M ||T is encrypted. For Decryption, first the ciphertext C is

decrypted to get M ||T , then Tag T is extracted and validated using algorithm V

Figure 2.2: Authenticate-then-Encrypt

This mode of AE is also not secure. An example showning the weakness of this mode is available

in [1].

Encrypt-then-Authenticate

Let Πeta(Keta, Eeta,Deta) be the described mode. Keta generates two independent random keys

ke, kt. Eeta is encryption algorithm which is described below

Ēeta(ke||kt,M) = C||Tkt(C) where C = Eke(M)

In this mode, first the plaintext M is encrypted to get ciphertext C and this ciphertext is used as

input to create the tag. For Decryption, first the ciphertext is verified and then it is decrypted

to get the plaintext.

Figure 2.3: Encrypt-then-Authenticate

This mode of AE is proven secure in [1]. Since E is secure, the ciphertext cannot be manipulated

and this ciphertext is given as input to T .

2.3.2 Integrity Aware Parallelizable Mode

IAPM mode [7] developed by Jutla is a single pass fully parallelizable AE scheme. The underlying

primitive used in IAPM is a block cipher. It requires m + 1 block cipher calls on plaintext of

length m blocks. This is the first concrete AE mode after the introduction of AE notion by

Bellare et. al and it is also provably secure. That is, if the underlying block cipher is secure then

IAPM is secure; or in other words, if IAPM can be broken, then the underlying block cipher

can also be broken.

6



The main drawback of this scheme is that it needs 2 keys and it is patented. IAPM doesn’t

support AEAD. Many of these drawbacks are overcome in the OCB mode described below.

Figure 2.4: IAPM Mode

2.3.3 Offset CodeBook Mode

Offset CodeBook Mode (OCB) [15] developed by Rogaway et. al is one of the efficient AE mode

both in software as well as hardware. It is inspired from the IAPM mode. OCB mode is based

on block ciphers and it requires m+ 2 block cipher invocation on plaintext of length m blocks.

It is provably secure and it also supports AEAD.

Figure 2.5: OCB Mode

The only drawback of OCB mode is that it is patented. Even though OCB mode is free to

be used in open source projects but still there are few clauses which makes in not suitable for

commercial purposes and other uses which are not mentioned in the license.

2.3.4 SpongeWrap

SpongeWrap [4] mode is based on the Sponge construction and developed by Bertoni et. al.

This is the first AE mode which is based on permutation. The security of this construction is

based on the security of Sponge construction which is provably secure, thus making SpongeWrap

7



a secure AE mode. It supports AEAD and it can also give intermediate tag for the plaintext if

required. Further, variable length tag is also possible in this scheme. It requires m permutation

calls for an m block plaintext, including associated Data. SpongeWrap can be used for key

wrapping (sending the cryptographic keys through open channel).

Figure 2.6: SpongeWrap
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Chapter 3

Preliminaries

3.1 Provable Security

The modern notion of provable security of cryptographic schemes was first introduced by Gold-

wasser and Micali in [6]. Before describing provable security, we provide a brief explanation for

the terms ‘protocols’ and ‘primitives’. Primitives are building blocks in cryptography. They

cannot perform useful task alone. They must be well utilized to perform a useful task and this

is called protocol. For example block ciphers, hash function, random permutation are primitives

and authenticated encryption, key exchange etc. are protocols.

Reduction proofs as utilized in the area of provable security provide a proof for the protocol’s

security based on the assumption that the underlying primitive is secure. Thus the security of

the protocol is reduced to the security of the underlying primitive. The reason to follow this

approach is that, there are many very good primitives like AES, SHA-2, RSA but there are many

protocols which has been developed based on these have been broken because these protocols

where not properly designed. Thus provable security comes handy by providing a reduction

proof.

The basic method to apply the provable security paradigm is as follows. First we define the

adversary model and what events lead to the success of the adversary. We also define the

limitations of the adversary. Once these are defined, we try to apply these settings to the

protocol and prove that if the protocol is broken then the underlying primitive can also be

broken.

3.2 Adversary Models

Security proof of any protocols starts with defining the adversary model under which the protocol

is secure. The assumptions of underlying primitives, the adversary’s power and its limitation are

defined in these models. There are three main models available. a) Standard Model; b) Random

Oracle Model and c) Ideal Cipher Model.
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3.2.1 Standard Model

This is the most commonly used model. In standard model the assumptions are based on well

studied problems like factoring the product of two large primes, discrete logarithmic problem etc.

The adversary can do anything within polynomial time of the length of its input. It is almost

impossible to give a computational lower bound for the underlying primitives, thus it makes

hard to prove many protocols under Standard Model. Since it is difficult to find suitable bound

on the primitive, there is an alternate approach to solve this issue and this lead to Random

Oracle Model.

3.2.2 Random Oracle Model

Bellare and Rogaway formally introduced Random Oracle Model in [2]. It is a widely used model

to prove the security of the protocols. In this model, there is a public random function which

takes {0, 1}∗ and outputs n bits and this output is uniform and independent of other outputs.

The public function is called Random Oracle, which we formmally define in Section 3.3 later.

This model separates the primitive from the protocol for proving the security. The primitives

are considered secure and then the protocols are analyzed.

3.2.3 Ideal Cipher Model

Block ciphers are widely used primitives for many protocols. Here we assume that the given

block cipher is a Pseudo-Random Permutation (PRP). That is an n-bit block cipher under a

chosen secret key is indistinguishable from a randomly chosen n-bit permutation.

The ideal cipher model is similar to random oracle model with certain excetpions: [5]

1. Ideal cipher need to be PRP where as a random oracle is a random function.

2. Adversaries interacting in Ideal Cipher Model have access to the cipher and its inverse

whereas in Random Oracle Model adversary doesn’t get access to the inverse of the random

function.

3. Ideal cipher can take n bit input only whereas random oracle can take infinite bits as

input.

3.3 Random Oracle

A Random Oracle (simply RO) is a public, randomly-chosen function R which takes an input x

of infinite length and outputs R(x) of a fixed length. The operation of getting the output from

RO is called “querying the oracle” where x is the query. Since the oracle is public, anybody can

query it but nobody can evaluate the function R(·) without querying it. RO is consistent, that
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is, for a given x it will always produce the same output R(x) even if x is repeated any number

of times.

RO is written as R : {0, 1}∗ → {0, 1}n. Let this RO be queried for inputs X1, X2, . . . . One of

the key properties of an RO is that the output to the ith query is independent of the answers

it has produced for earlier queries. That is, for Yk ∈ {0, 1}n for any k and Xi 6= Xj : j < i, we

have that

Pr[(R(Xi) = Yi)|(R(X1) = Y1) ∧ (R(X2) = Y2) ∧ . . . ∧ (R(Xi−1) = Yi−1)] = 2−n.

There are two main types of Random Oracles: Fixed-Input-Length (FIL) random oracle, whose

input size is fixed and Variable-Input-Length (VIL) random oracle whose input size is not fixed.

3.4 Ideal Permutation

An ideal cipher can also be said as an ideal permutation. An ideal permutation π is a bijective

function on a finite domain D and finite range R, both of which are equal sets and are chosen

uniformly at random from all the available permutations. Let D and R be {0, 1}2n, then π
$←−

Perm(D,D), where Perm(D,D) is the collection of all permutations on D.

Mathematically, π : D → D is a permutation, if for every y ∈ D there is one and only one x ∈ D
such that π(x) = y.

3.5 Security Notions for Authenticated Encryption

The two main security notions of the AE is privacy and authenticity of ciphertext and tag.

These are the basic requirement for any AE schemes.

3.5.1 Privacy

The privacy of the encryption scheme can be proved by showing the proposed scheme is indis-

tinguishable from a Random Oracle. The security proof is given based on the advantage of an

adversary to distinguish between the Encryption oracle and the Random Oracle. This kind of

proof was introduced in [15]. Consider an adversary A who is made to interact with either the

real encryption oracle EK(N,M) or an ideal function $(N,M).

If the underlying primitive is ideal random function, say ro, then ro is made available to the

adversary A in both the cases.

If the underlying primitive is ideal permutation, then in either of these two exclusive cases, an

ideal permutation π and its inverse permutation π−1 is available to A.

The advantage of the adversary is the ability to identify with which it is interacting. This

11



Figure 3.1: Privacy:Indistinguishability. Adversary has to find out whether it is interacting with AE
scheme or a random oracle.

For ideal permutation, AdvprivΠ (A) = Pr[AEK(.,.),π,π−1
= 1]− Pr[A$(.,.),π,π−1

= 1]

For ideal random function, AdvprivΠ (A) = Pr[AEK(.,.),ro = 1]− Pr[A$(.,.),ro = 1]

If the scheme uses Nonce, then the adversary A is nonce-respecting, i.e. it is not allowed to

repeat the nonce. That is, if A asks the oracle query(N,M) then it will never ask the oracle

with another query(N,M
′
) where M 6= M ′.

3.5.2 Authenticity

The authenticity of an AE scheme is defined in terms of the ability of an adversary who can

produce a valid (N,C, T ) pair without querying the oracle for that corresponding M .

The following experiment ExpauthΠ (A) is carried out to provide a bound for authenticity. The

forging adversary A is given complete access to encryption oracle EK(·, ·), decryption oracle

DK(·, ·, ·),either ro or (π and π−1). Further, A can query these oracles for some fixed number of

times. A must be nonce-respecting with encryption queries. Finally, it must output (N,C, T ).

We say A forges the AE scheme if for the given (N,C, T ), the decryption algorithm outputs a

valid M and the tuple (N,C, T ) has not already been output by EK().

The advantage of the Adversary A in forging the scheme Π is represented as

AdvauthΠ (A) = Pr[ExpauthΠ (A) = 1].
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Figure 3.2: Authenticity:forgery. Adversary has to forge ciphertext, tag pair. Adversary has access to
encryption, decryption and primitive oracles to forge.

3.6 Frameworks

Privacy and authenticity is proved using certain tools or in other words it is called Framework. In

our work we used Game Playing Framework to prove the privacy of the scheme and authenticity

is proved using Indiiferentaiblity Framework.

3.6.1 Game Playing Framework

Game playing framework is a technique proposed in [3]. The main purpose of this framework

is to find out the ability of an adversary to distinguish an encryption scheme and a random

function. Using this framework, we start with the definition of the proposed scheme and modify

the scheme little by little till the scheme uses a random function. While modifying the games,

the probability difference between the two games are calculated and finally all the probabilities

are summed up to give the advantage of the adversary to distinguish the proposed scheme and

the random function.

AdvprivΠ (A) = |Pr[AInitial Game = 1]− Pr[AFinal Game = 1]|

Games are like a program. It follows pseudo code language. A game consist of three procedures

a) Initialize; b) Finalize and c) Named Oracles (each one a procedure). The adversary can

make a call to all the oracles. All the variables in the games are global and not visible to

the adversary. All the variables used by adversary is local. For detailed understanding of this

framework, refer [3].
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3.6.2 Indifferentiability Framework

The framework was proposed by Maurer et al. in 2004 [10]. Indifferentiability is one way to

show that the given scheme is secure in the hash domain.

Under an indifferentiability framework, a given scheme (say Π) with access to an ideal primitive

F is (tA, tS , q, σ, ε)-indifferentiable from an ideal primitive G if there exists a simulator S such

that for any distinguisher A the following equation is satisfied:

AdvindΠ (A) = |Pr[AΠ,F = 1]− Pr[AG,S = 1]| ≤ ε.

The simulator S is an interactive algorithm which has oracle access to G and runs at most tS

times. The distinguisher A runs at most tA times and makes at most q queries. The total

message blocks queried by A is at most σ.
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Chapter 4

FWPAE

4.1 Description

FWPAE is an Authenticated Encryption mode based of Fast Wide Pipe developed by M.Nandi

and S.Paul [13]. To the best of the knowledge this is the first AE mode based on random

function. FWPAE is nonce based AE scheme and it supports AEAD. FWPAE adds an extra

functionality for FWP hash mode, thus making FWP a versatile mode of operation.

FWPAE can be used for messages of length up to 264 bits. Fixed input length (FIL) random

oracle (ro) is used as a primitive. The padding rule pad(M) is defined as: append t zero bits

and a 64-bit encoding of |M | to the message M where t is the least possible integer such that

|M |+ t+ n+ 64 = 0 mod 3n
2 . This is same as FWP mode’s padding rule.

4.2 FWP Mode

Fast Wide Pipe (FWP) is a new hash mode of operation. The main advantage of FWP is

the speed of the operation. It has higher throughput compared to the Wide-Pipe mode or

Sponge mode of operation. FWP uses a fixed input length random oracle which takes (m+ 2n)

input bits and output 2n bits. FWP is faster because (m + n) messages bits and n chaining

input bits are used instead of m message bits and 2n chaining input bits. FWP resists Joux’s

multi-collision attacks. FWP mode is collision-resistance-preserving and indifferentiable from a

random oracle. Security of FWP had been given to be 2n
3 bit, that is FWP is secured beyond

birthday bound [12]. If the proof is correct then FWP has higher security bound compared to

Sponge construction. Performance wise FWP will be much better than Sponge construction for

the given security bound. Thus, FWP proves to be a promising mode of operation.
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4.3 Notations

Symbol Description

� data is split into two equal halves

EroΠ FWPAE Encryption Algorithm

Dro
Π FWPAE Decryption Algorithm

VIL Variable Input Length

Table 4.1: Notations used

4.4 Structure

The FWPAE encryption is shown in Figure 4.1 below. The symbol � means that the data is

split into two equal halves. That is if the data size is n bits, then once the data passes through

�, then two n/2 bits are produced. We assume that the size of the data passed through � is a

multiple of 2.

roro ro
roro⊕

⊕
⊕⊕
⊕

⊕
⊕

IV1

IV2

y0−1

y1−1

w0||u0

u0||v0

y00 = w0

NK

y10 = u0||v0
u0x−1

M1 MnM0
C0 C1 Cn

x0

y01 = w1

u1

w1||u1

y0n = wn

un

y1n = un||vny11 = u1||v1 un||vnu1||v1 x1
xn

y01y0−1

y00

y0n+1 = Z

Figure 4.1: FWPAE:The symbol � represents splitting of bits into two equal parts. The explanation and
the size of other symbol is given in Table 4.2

Description Key Nonce Initial Vector 1 Initial Vector 2 Plain text Plain text Cipher text

Symbol K N IV1 IV2 m0, ..,mn−1 mn c0, .., cn−1

Size 3n
2

3n
2 n n 3n

2
n
2

3n
2

Description Cipher text RO output - 1st part RO output - 2nd part RO input - 2nd part y1-part 1 y1–part 2 y0

Symbol cn yi0 yi1 xi ui vi wi

Size n
2 n n n n

2
n
2 n

Table 4.2: Description and size of symbols used in Fig 4.1. RO stands for random oracle.

4.5 Encryption Algorithm

The algorithm for encryption,EroΠ (, , ) is defined in Algorithm 1. The algorithm uses ro and pad,

where pad is the padding rule as defined earlier. The input to the algorithm is the secret key

K of size 3n
2 , nonce N of size 3n

2 and message M of size at most 264. We use two initialization

vectors IV1 and IV2 each of which is initialized to 0n. The second initialization vector IV2 is

used for chaining.
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First of all, the message M is padded using pad(M). The padded message is then divided into

l(M) blocks. All the blocks except the last one are of size 3n
2 and the last block is of size n

2 . The

string K||IV1 is given as input to ro and the output is y0
−1||y1

−1. Then IV2 is XORed with y1
−1

to form x−1. The next input to the ro is N ||x−1 and we get y0
0||y1

0 as the output. At this stage,

we are ready for encryption of pad(M).

Let y1
0 = w0 and y1

0 is split into two equal halves say u0‖v0. Then w0‖u0 is XORed with M0 to

give C0 and y1
0 is XORed with y0

−1 to form x0. Now M0‖x0 becomes the input and the process

continues till l(M)−1 block. The final block is of size n
2 . Note that Cl(M) is formed by XORing

Ml(M) with ul(M). The last input to the ro is Ml(M)||y0
l(M)||xl(M) and output is y0

l(M)+1||y1
l(M)+1.

Ciphertext of the padded message is produced as C = C0||C1||...||Cl(M) and the tag produced is

T = y0
l(M)+1. The output of EroΠ (, , ) = (C, T ).

Algorithm 1: EroΠ (K,N,M)

Input: Key K,Nonce N , Message M
Output: CipherText C, Tag T

1 Initialize: IV1 = IV
′

2 = 0n.
2 pad(M) = M0||M1||...||Ml(M) where |Mi| = 3n

2 , 0 ≤ i < l(M), |Ml(M)| = n
2 ; where l(M)

is total number of blocks of padded message.
3 (y0

−1, y
1
−1) = ro(K ⊕ IV1)

4 x−1 = y1
−1 ⊕ IV2

5 (y0
0, y

1
0) = ro(N ||x−1)

6 for i = 0 to l(M)− 1 do
7 y0

i = wi
8 y1

i = ui||vi
9 ci = Mi ⊕ (w0||u0)

10 xi = y0
i ⊕ y0

i−1

11 (y0
i+1, y

1
i+1) = ro(Mi||xi)

12 y0
l(M) = wl(M)

13 y1
l(M) = ul(M)||vl(M)

14 cl(M) = Ml(M) ⊕ ul(M)

15 xl(M) = y1
l(M) ⊕ y1

l(M)−1

16 (y0
l(M)+1, y

1
l(M)+1) = ro(Ml(M)||y0

l(M)||xl(M))

17 C = C0||C1||...||Cl(M)

18 T = yl(M)+1

19 return (C, T )

4.6 Decryption Algorithm

The algorithm for decryption,Dro
Π (, , , ) is defined in Algorithm 2. The decryption process is

similar to the encryption. All the steps are same except for XORing with the message. The only

difference is that rather than XORing with Mi (which is not available), we XOR with Ci to get

Mi. Once the message block Mi is evaluated we use that as input just like in the encryption.
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Finally M,T
′

is evaluated and as defined, Dro
Π (K,N,C, T ) = (M,T

′
). Once the message M

and tag T
′

become available, the given tag T is compared with the tag T
′
. If T

′
= T then the

algorithm outputs M else it output ⊥ (INVALID) and discards the message M .

Algorithm 2: Dro
Π (K,N,C, T )

Input: Key K, Nonce N , CipherText C, Tag T
Output: Message M if T is valid, otherwise INVALID

1 Initialize: IV1 = IV2 = 0n

2 C = C0||C1||...||Cl(M) where |Ci| = 3n
2 , 0 ≤ i < l(M). |Cl(M)| = n

2

3 (y0
−1, y

1
−1) = ro(K ⊕ IV1)

4 x−1 = y1
−1 ⊕ IV2

5 (y0
0, y

1
0) = ro(N ||x−1)

6 for i = 0 to l(M)-1 do
7 y0

i = wi
8 y1

i = ui||vi
9 Mi = Ci ⊕ (w0||u0)

10 xi = y0
i ⊕ y0

i−1

11 (y0
i+1, y

1
i+1) = ro(Mi||xi)

12 y0
l(M) = wl(M)

13 y1
l(M) = ul(M)||vl(M)

14 Ml(M) = Cl(M) ⊕ ul(M)

15 xl(M) = y1
l(M) ⊕ y1

l(M)−1

16 (y0
l(M)+1, y

1
l(M)+1) = ro(Ml(M)||y0

l(M)||xl(M))

17 M = M0||M1||...||Ml(M)

18 T
′

= yl(M)+1

19 if T
′

= T then
20 return (M)

21 else
22 return ⊥

4.7 Security Proofs

In FWPAE, we use nonce, and the adversary has the power to choose the nonce by himself but

he is not allowed to repeat the nonce (we took the adversary to be nonce respecting). This

restriction of not repeating the nonce is only for the encryption queries. This type of scheme is

called nonce-using symmetric encryption scheme.

4.7.1 Privacy

Theorem 1. Let FWPAE be the proposed Authenticated Encryption scheme with the defined

padding rule (pad) and a fixed input length random oracle (ro) which takes 3n
2 bits as input and

outputs 2n bits. The advantage of the adversary A to differentiate EroΠ (, , ) from an ideal function
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$() is given by

Adv
priv
FWPAE(A) = Pr[AEK(.,.),ro = 1]− Pr[A$(.,.),ro = 1] ≤ σ(σ + 1)

2
n
2

+1
,

where n is the bit size of tag, σ is the maximum number of queries to ro.

Proof. We have to find out the advantage of the adversary in differentiating between the outputs

of EK and random strings.

To find out the probability difference between the proposed scheme and the VIL random oracle,

we use game playing framework proposed by Bellare in [3]. Using this technique we define eight

games and the probability difference between two consecutive games are found. Game G0 is

same as our scheme and G7 is the same as the VIL random oracle. In order to keep the proof

compact, we describe these games in details after this proof.

AdvprivFWPAE(A) = Pr[AEro
Π ,ro = 1]− Pr[A$(,.,),ro = 1]

= Pr[AG0 = 1]− Pr[AG7 = 1]

= (Pr[AG0 = 1]− Pr[AG1 = 1]) + (Pr[AG1 = 1]− Pr[AG2 = 1])

+(Pr[AG2 = 1]− Pr[AG3 = 1]) + (Pr[AG3 = 1]− Pr[AG4 = 1])

+(Pr[AG4 = 1]− Pr[AG5 = 1]) + (Pr[AG5 = 1]− Pr[AG6 = 1])

+(Pr[AG6 = 1]− Pr[AG7 = 1])

≤ 0 +
σ2

2
n
2

+1
+

σ

2
3n
2

+
σ

2
3n
2

+
σ

22n
+ 0 + 0 + 0

≤ σ2

2
n
2

+1
+

σ

2
3n
2
−1

+
σ

22n

≤ σ(σ + 1)

2
n
2

+1
.

This completes the proof of Theorem 1.

G0 perfectly simulates (EroΠ ,ro). EroΠ is defined in O1 oracle and ro is defined in O2 oracle.

First let us explain O2 oracle and then O1 oracle. In O2, for a query m, it first checks whether

that message is already queried. If yes, then it returns the corresponding output else it randomly

outputs 2n bits (say y0
i ||y1

i ) and adds the (message, output) pair to the set X. Query to oracle

O1 uses the oracle O2. Key, nonce and message are given as input to O1. The working of O1 is

same as EroΠ and it outputs ciphertext and tag for the given (message, nonce). Thus,

Pr[AEro
Π ,ro = 1] = Pr[AG0 = 1].

Game G1: Game G0 is identical to G1 from adversary point of view. There is no difference in
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the output.

Pr[AG0 = 1] = Pr[AG1 = 1]

Game G2: Game G2 is identical to G1 until bad. The event ‘bad’ is defined later. Oracle O1 of

Game G2 uses oracle O2. The input to a query to O2 is message concatenated with the XORed

value of y0
i−1 and y1

i . Now we wish to have a random ciphertext. To make the ciphertext random,

the input to the ro must always be different so that the output is always random because if

the input is repeated then the output is also repeated (due to oracle O2). From the output

of ro, only n
2 bits are unknown by the adversary, remaining 3n

2 bits can be seen or guessed if

the adversary has some plaintext-ciphertext pairs. So, the game can control only n
2 bits. Thus

in the game we make sure that n
2 bits are always different so that the output is random. If

the n
2 bits have already occurred then we say that the event ‘bad’ has occurred and we set the

variable ‘bad’ as true. To make these n
2 bits different, we change the previous output of ro and

store the changed (message,output) pairs in a set W . The adversary is allowed to query O2

oracle separately. If the adversary by chance queries the modified (message, output) pair then

he can distinguish the oracle. When this event occurs, ‘bad’ is set to true. Set W stores the

message-output pairs which have been modified. The adversary can also distinguish G1 and

G2 if he/she guessses the key correctly. Supppose the adversary guesses the key correctly and

using O2 gets the ciphertext and then if he asks the same message to O1, he will get a different

ciphertext. Thus, he/she can distinguish both.

Pr[AG2 = 1]− Pr[AG1 = 1] = Pr[bad← true] + Pr[correct key guess].

The probability of ‘bad’ to occur is based on collision in the last n
2 bits. So, to calculate the

probability of ‘bad’, we must calculate the probability of all the collision events in various queries.

Let us consider colli means no collision happens up to i−1 queries and the ith query produces a

collision. It is clear that the probability of collision events is the union of all colli. Let σO1 , σO2

stand for the total number of queries to O1, O2, respectively. Then σ = σO1 + σO2

Pr[correct key guess] ≤ σ

2
3n
2

Pr[bad← true] = Pr[coll = 1]

= Pr[coll1 ∨ coll2 ∨ . . . ∨ collσ]

≤ Pr[coll1] + Pr[coll2] + . . .+ Pr[collσ]

=
1

2n/2
+

2

2n/2
+ . . .+

σ − 1

2n/2

=
σ(σ − 1)

2
n
2

+1

≤ σ2

2
n
2

+1
.

=⇒ Pr[AG1 = 1]− Pr[AG2 = 1] ≤ σ2

2
n
2

+1
+

σ

2
3n
2

.
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Game G3: Game G2 and G3 are identical from adversary point of view until the adversary

doesn’t know the key. In G2 we were made sure that the random string is given as output

from O2. In G3 random string is assigned directly as output. If the adversary guesses the key

correctly then he can differentiate G2 and G3 because, G2 depends on O2 but G3 is independent

of O2. Therfore, the probability difference between the two games depends on the key guess.

Let σ be the maximum number of queries to O1 and O2.

Pr[AG2 = 1]− Pr[AG3 = 1] = Pr[correct key guess] ≤ σ

2
3n
2

.

Game G4: Games G3 and G4 are identical until ‘bad’. Event ‘bad’ is defined as the event

when adversary queries O2 with any of the messages which have earlier been used in querying

O1. Those messages are collected in set Z.

Pr[AG3 = 1]− Pr[AG4 = 1] ≤ σ

22n
.

Game G5: Games G5 and G4 are identical from the point of view of the adversary. Since

random strings and XOR operations are used in them, both games are identical.

Pr[AG5 = 1] = Pr[AG4 = 1].

Game G6: In Game G6, the message is divided into blocks and for each message block we

choose random strings. In G5, from the 2n random bits, only 3n/2 bits are XORed with the

message and that makes the ciphertext random. Thus the ciphertext in both the games are

random from the point of view of the adversary.

Pr[AG6 = 1] = Pr[AG5 = 1].

G7 perfectly simulates $(, ., ), ro: Game G7 is the ideal case. Message is taken as input

and is padded so that the output cannot be trivially distinguished based on the length of the

ciphertext. After padding, a random string of length |pad(M)| is assigned as ciphertext and n

bit random string for tag. Oracles O1 and O2 are independent of each other. Therefore G7 and

G6 are identical from the point of view of the adversary.

Pr[AG7 = 1] = Pr[AG6 = 1] = Pr[A$(,.,),ro = 1].

4.7.2 Authenticity

The authenticity of FWPAE can be proved using the indifferentiability of FWP. Suppose we

have a nonce-respecting adversary A who can forge FWPAE, then we will create a differen-

tiable adversary BA to differentiate FWP. Adversary BA will have access to either (FWP, ro)

or (RO,S). Similarly adversary A needs oracles EroΠ , Dro
Π , ro to forge. Since BA will try to
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differentiate FWP using A, thus BA must simulate the responses for A’s queries, i.e it must

simulate EroΠ ,D
ro
Π , ro oracles.

We say that A forges FWPAE if ExpauthFWPAE(A) = 1.

Theorem 2 (Authenticity). FWPAE is forgeable with the probability

Pr[ExpauthFWPAE(A) = 1] ≤ σ2 + q

2n−1
,

where, σ is the maximum number of padded message blocks queries by A, q is the maximum

number of queries to FIL ro.

Proof. Let us assume we are given a nonce-respecting adversary A who can forge FWPAE. We

will create an indifferentiability adversary BA who can differentiate (FWP, ro) from (RO,S)

where S is the simulator defined in Algorithm 3.

Next we explain how BA utilizes A to distinguish FWP.

BO1,O2

A uses O1 and O2 to simulate oracles EroΠ ,D
ro
Π and ro.

Initialize: BO1,O2

A selects a key K ← {0, 1} 3n
2 , where n is the tag size. Once K is chosen,

it is used in EroΠ and Dro
Π queries. It creates a set Q which stores all the (Nonce-Ciphertext-

Tag) tuples that it sends to A.

1. Call the adversary A.

2. If A asks for EroΠ query by sending N,M to BO1,O2

A .

• BO1,O2

A has K,N,M . It follows the algorithm EroΠ with a minor change. Instead

of ro, the adversary BO1,O2

A uses oracle O2 and forms the ciphertext C. Here,

the last innovation of oracle ro in algorithm EroΠ is ignored. For the creation

of tag T , adversary BO1,O2

A sends the full message after padding to oracle O1.

Adversary BO1,O2

A returns (C, T ) to A and adds N,C, T to the set Q. That is

(Q = Q ∪ {N,C, T}).
3. If A asks for Dro

Π query by sending N,C, T to BO1,O2

A .

• BO1,O2

A has K,N,C, T .

• It follows the algorithm EroΠ with a minor change. Instead of ro, BO1,O2

A uses

oracle O2 and obtains plaintext M . Here, the last innovation of ro oracle in Dro
Π

algorithm is ignored. Adversary BO1,O2

A sends the formed plaintext M to oracle

O1 and gets tag T
′
.

• If T = T
′

and {N,C, T} /∈ Q, then BO1,O2

A returns M to A and 1 to the called

function and stops, else it returns ⊥ to A.

4. If A asks for ro query by sending m to BO1,O2

A .

• BO1,O2

A send m to O2 and sends the reply back to A.

5. Step 2, 3, 4 can be repeated qe, qd, qA times respectively.
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6. If A aborts then BO1,O2

A returns 0 and stops.

Claim 1. According to the experiment described above, the probability of the adversary distin-

guishing FWP from random oracle is same as the probability of the adversary forging FWPAE.

Pr[BFWP,ro
A = 1] = Pr[ExpauthFWPAE(A) = 1].

Before finding out the advantage of BO1,O2

A we first define the simulator S.

Simulator S [13]

FWP scheme uses a fixed input length random oracle, say, ro. To prove the indistinguishabil-

ity of FWP algorithm from the distinguisher, the author created simulator S which simulates

the ro used by the scheme. S takes (m + n) bits of input and outputs 2n bits. Ashort is

an array used by the simulator and it stores all the (input-response) pairs of queries given

to S or ro. The queries to S or ro are called short queries. x is a short query. MsgRe-

con() takes Ashort and x and it tries to reconstruct the possible messages in which the last

block of the message is x. If MsgRecon() returns any message M then it means x is the last

block of that message, so the simulator sends the whole message M to VIL random oracle RO

and returns the reply received from RO, if MSgCon() doesn’t return any message then ro
′

is used to get the response, where ro
′

is a function which takes (m + n) bits as input, and

outputs 2n uniformly random bits. S implements ro
′
. The algorithm of S is given below.

Algorithm 3: The Simulator S(.), described in [13]

Input: x: short query of length m+ n, where m is message block size, n is tag size

Output: v: 2n bits string

1 Z = MsgRecon(Ashort, x), where Z is a set of possible messages which has x as the last

block.

2 if |Z| = 1 then

3 return v = RO(M) /* Z = {M}*/

4 else

5 return v = ro
′
(x)

Now, let us find the advantage of the adversary BA.

AdvindFWP (BA) = Pr[BFWP,ro
A = 1]− Pr[BRO,S

A = 1]

= Pr[ExpauthFWPAE(A) = 1]− Pr[BRO,S
A = 1] by Claim 1.

From Lemma 1 and Lemma 2, we can substitute as given below.

Pr[ExpauthFWPAE(A) = 1] = AdvindFWP (BA) + Pr[BRO,S
A = 1] ≤ σ2

2n−1
+

q

2n−1
≤ σ2 + q

2n−1
.
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Thus, proving Theorem 2.

Lemma 1. [13]: The FWP hash is (tA, tS , q, σ,
σ2

2n−1 )-indifferentiable in the random oracle

model for the compression function, for any tA, with tS = l.O(q2), where tA, tS are the time

taken by the adversary A and the simulator S, [Algorithm 6]. l is the size of message block,

q and σ are the maximum number of queries and blocks used by adversary, ro is FIL random

oracle, FWP is FWP mode of operation and RO is VIL random oracle.

AdvindFWP (A) = Pr[AFWP,ro = 1]− Pr[ARO,S = 1] ≤ σ2

2n−1

Lemma 1. The detailed proof is given in [13].

Lemma 2. The probability of any distinguishable adversary BA to output 1 depends completely

on whether the forgery adversary A forges FWPAE. Suppose BA is interacting with VIL random

oracle RO, simulator S and A forges FWPAE, then

Pr[BRO,S
A = 1] ≤ q

2n−1
,

where q is the maximum number of queries to FIL ro, qe is the maximum number of queries to

ro from encryption oracle, qd is the maximum number of queries to ro from decryption oracle,

qA is the maximum number of queries to ro from the forging adversary A and q = qe + qd + qA.

Lemma 2. Since BA uses A to distinguish FWP, the only way to output 1 is that, A must forge

FWPAE. That is A must output a valid tuple (N,C, T ). Since BA is interacting with RO,S,

the only way A can output the valid tuple is either it can guess the tag or it can guess the key

used by BA.

Pr[BRO,S
A = 1] = Pr[Tag guess is correct] + Pr[Key guess is correct]

To guess the Tag correctly, the only way is to query decryption oracle. Since, BA is interacting

with RO,S, the output will always be random. Therefore, the only way to guess the Tag

correctly is to query the decryption oracle. Similarly the only way to guess the key correctly, is

to either query encryption oracle or the decryption oracle or S.

Let q be the maximum number of queries to FIL ro, qe be the maximum number of queries to

ro from encryption oracle, qd be the maximum number of queries to ro from decryption oracle,

qA be the maximum number of queries to ro from the forging adversary A and q = qe + qd + qA.

Pr[Correct Tag guess] ≤ qd
2n
≤ q

2n
, and Pr[Correct Key guess] ≤ q

23n/2
.

=⇒ Pr[BRO,S
A = 1] ≤ q

2n
+

q

23n/2
≤ q

2n−1
.

Thus Lemma 2 is proved.

24



4.8 Games

Game G0

1000 Initialize:

1001 X = ∅,K $←− {0, 1} 3n
2

1002 IV1 = IV
′

2 = 0n

1003 (y0
−1, y

1
−1) = O2(K||IV1)

1004 x−1 = y1
−1 ⊕ IV2

1005 On O1 − query {N.M},
1006 pad(M) = M0||M1||...||Mσ where |Mi| = 3n

2 0 ≤ i < σ and |Mσ| = n
2

1007 (y0
0, y

1
0) = O2(N ||x−1)

1008 for i = 0 to σ − 1
1009 y0

i = pi||qi
1010 y1

i = ri||si
1011 Ci = Mi ⊕ (y0

i ||ri)
1012 xi = y0

i−1 ⊕ y1
i

1013 wi = Mi||xi
1014 (y0

i+1, y
1
i+1) = O2(wi)

1015 y0
σ = pσ||qσ

1016 y1
σ = rσ||sσ

1017 cσ = Mσ ⊕ y0
n

1018 xσ = y1
σ ⊕ y1

σ−1

1019 wσ = Mσ||y0
σ||xσ

1020 (y0
σ+1, y

1
σ+1) = O2(wσ)

1021 C = c0||c1||...||cσ
1022 T = yσ+1

1023 return (C, T )
1024 On O2-query m,
1025 if (m, v) ∈ X, then return v

1026 v
$←− {0, 1}2n

1027 X = X ∪ {(m, v)}
1028 return v

Table 4.3: FWPAE: Game G0
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Game G1 G2

2000 Initialize:

2001 X = ∅, Y = ∅,W = ∅,K $←− {0, 1} 3n
2

2002 IV1 = IV
′

2 = 0n

2003 (y0
−1, y

1
−1) = O2(K||IV1)

2004 x−1 = y1
−1 ⊕ IV2

2005 On O1 − query {N,M},
2006 pad(M) = M0||M1||...||Mσ where |Mi| = 3n

2 0 ≤ i < σ |Mσ| = n
2

2007 (y0
0, y

1
0) = O2(N ||x−1)

2008 for i = 0 to σ − 1
2009 y0

i = pi||qi, where |pi|=3n/2 and |qi| = n/2
2010 y1

i = ri||si
2011 Ci = Mi ⊕ (y0

i ||ri)
2012 ti = qi−1 ⊕ si
2013 if ti ∈ Y ,then bad ← true

2014 t
′
i

$←− {0, 1}n/2 \ Y and Y = Y ∪ t′i
2015 y1

i = ri||s′i such that s
′
i = t

′
i ⊕ qi−1

2016 W = W ∪ (mi−1||xi−1, v) where v = y0
i ||y1

i

2017 else Y = Y ∪ ti
2018 xi = y0

i−1 ⊕ y1
i

2019 (y0
i+1, y

1
i+1) = O2(Mi||xi)

2020 y0
σ = pσ||qσ

2021 y1
σ = rσ||sσ

2022 cσ = Mσ ⊕ y0
σ

2023 tσ = qσ−1 ⊕ sσ
2024 if tσ ∈ Y ,then bad ← true

2025 t
′
σ

$←− {0, 1}n/2 \ Y and Y = Y ∪ t′σ
2026 y1

σ = rσ||s′σ such that s
′
σ = t

′
σ ⊕ qσ−1

2027 W = W ∪ (mσ−1||xσ−1, v) where v = y0
σ||y1

σ

2028 else Y = Y ∪ tσ
2029 xσ = y0

σ−1 ⊕ y1
σ

2030 (y0
σ+1, y

1
σ+1) = O2(Mσ||xσ)

2031 C = C0||C1||...||Cσ
2032 T = yσ+1

2033 return (C, T )
2034 On O2-query m,

2035 if (m, v) ∈W , then bad ← true // v is not random for m

2036 if (m, v) ∈ X, then return v

2037 v
$←− {0, 1}2n

2038 X = X ∪ {(m, v)}
2039 return v

Table 4.4: FWPAE: Game G1 & G2
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Game G3 G4

3000 Initialize:
3001 X = ∅, Y = ∅, Z = ∅
3002 IV1 = IV

′
2 = 0n

3003 (y0
−1, y

1
−1)

$←− {0, 1}2n
3004 x−1 = y1

−1 ⊕ IV2

3005 On O1 − query {N,M},
3006 pad(M) = M0||M1||...||Mσ where |Mi| = 3n

2 0 ≤ i < σ |Mσ| = n
2

3007 (y0
0, y

1
0)

$←− {0, 1}2n
3008 for i = 0 to σ − 1
3009 y0

i = pi||qi, where |pi|=3n/2 and |qi| = n/2
3010 y1

i = ri||si
3011 Ci = Mi ⊕ (y0

i ||ri)
3012 xi = y0

i−1 ⊕ y1
i

3013 (y0
i+1, y

1
i+1)

$←− {0, 1}2n
3014 X = X ∪ (Mi||xi, y0

i+1, y
1
i+1) and Z = Z ∪ (Mi||xi)

3015 y0
σ = pσ||qσ

3016 y1
σ = rσ||sσ

3017 cσ = Mσ ⊕ y0
σ

3018 tσ = qσ−1 ⊕ sσ
3019 xσ = y0

σ−1 ⊕ y1
σ

3020 (y0
σ+1, y

1
σ+1)

$←− {0, 1}2n
3021 X = X ∪ (Mi||xi, y0

i+1, y
1
i+1) and Z = Z ∪ (Mσ||xσ)

3022 C = C0||C1||...||Cσ
3023 T = yσ+1

3024 return (C, T )
3025 On O2-query m,

3026 if m ∈ Z, then bad← true

3027 if (m, v) ∈ X, then
3028 return v

3029 v
$←− {0, 1}2n

3030 X = X ∪ {(m, v)}
3031 return v

Table 4.5: FWPAE: Game G3 & G4
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Game G5

5000 Initialize:X = ∅, Y = ∅
5001 On O1 − query {N,M},
5002 pad(M) = M0||M1||...||Mσ where |Mi| = 3n

2 0 ≤ i < σ |Mσ| = n
2

5003 (y0
0, y

1
0)

$←− {0, 1}2n
5004 for i = 0 to σ − 1
5005 y0

i = pi||qi, where |pi|=3n/2 and |qi| = n/2
5006 y1

i = ri||si
5007 Ci = Mi ⊕ (y0

i ||ri)
5008 (y0

i+1, y
1
i+1)

$←− {0, 1}2n
5009 y0

σ = pσ||qσ
5010 y1

σ = rσ||sσ
5011 cσ = Mσ ⊕ r0

σ

5012 (y0
σ+1, y

1
σ+1)

$←− {0, 1}2n
5013 C = C0||C1||...||Cσ
5014 T = yσ+1

5015 return (C, T )
5016 On O2-query m,
5017 if (m, v) ∈ X, then return v

5018 v
$←− {0, 1}2n

5019 X = X ∪ {(m, v)}
5020 return v

Table 4.6: FWPAE: Game G5

Game G6

6000 Initialize:X = ∅, Y = ∅
6001 On O1 − query {N,M},
6002 pad(M) = M0||M1||...||Mσ where |Mσ| = 3n

2 0 ≤ i < σ |Mσ| = n
2

6003 for i = 0 to σ − 1

6004 Cσ
$←− {0, 1} 3n

2

6005 Cn
$←− {0, 1}n

2

6006 C = C0||C1||...||Cσ
6007 T

$←− {0, 1}n
6008 return (C, T )
6009 On O2-query m,
6010 if (m, v) ∈ X, then return v

6011 v
$←− {0, 1}2n

6012 X = X ∪ {(m, v)}
6013 return v

Table 4.7: FWPAE: Game G6
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Game G7

7000 Initialize:X = ∅, Y = ∅
7001 On O1 − query {N,M},
7002 pad(M) = M0||M1||...||Mσ where |Mσ| = 3n

2 0 ≤ i < σ |Mσ| = n
2

7003 C
$←− {0, 1}|pad(M)|

7004 T
$←− {0, 1}n

7005 return (C, T )
7006 On O2-query m,
7007 if (m, v) ∈ X, then return v

7008 v
$←− {0, 1}2n

7009 X = X ∪ {(m, v)}
7010 return v

Table 4.8: FWPAE: Game G7
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Chapter 5

FPAE

5.1 Description

FPAE is permutation based AE mode. It is developed from FP [14] hash mode of operation.

FPAE is nonce based AE scheme which supports AEAD. The privacy and authenticity of FPAE

shows that it has a better security comparable to SpongeWrap.

5.2 FP Mode

FP is a permutation based hash mode of operation. The design of FP mode is derived from

FWP mode of operation created by M. Nandi et al. [13]. The FP mode uses an easy-to-invert

permutation instead of hard-to-invert function as in the FWP. This makes the FP mode efficient,

easy to implement and fast. In [13], it is shown that the FP mode is indifferentiable from a

random oracle up to 2n/2 queries. Hence this mode resists all generic attacks including multi-

collision attack, 2nd pre-image attack and herding attack. The permutation used in this mode is

based on only one assumption: that there is no structural weakness. In the paper, the authors

claim that it is possible to extend the security bound of indifferentiablility with a random oracle

to a value close to n bits. If this is indeed proven then the FP mode of operation will have

better security compared to the Sponge construction which provides only n/2 bit security.

5.3 Structure

The encryption of FPAE is shown in Fig. 5.1 next. FPAE is a permutation based Authenticated

Encryption scheme and this permutation is represented by π. Key K is of size n bits. Nonce N

is public and is n bits long. M1 . . .Mp is a padded message where ∀i |Mi| = n bits. Similarly

C = C1 . . . Cp is a ciphertext of size which is a multiple of n bits. Finally, Tag T is also of size

n bits.
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π π π π π π

K N M1

C1 C2

M2 Mp

Cp

T

IV2

IV1

Figure 5.1: The proposed authenticated encryption scheme FPAE. Symbols used in the figure are de-
scribed in Table 5.1.

Symbol K N IV1 IV2 M0, . . . ,Mp C0, . . . , Cp T

Meaning Key nonce IV IV padded message ciphertext tag

Size (bits) n n n n n n n

Table 5.1: Description and size of symbols used in Fig 4.1. RO stands for random oracle.

5.4 Encryption Algorithm

The encryption algorithm of FPAE, referred to as FPAE-E in the rest of this work, is defined

in Algorithm 4. The encryption algorithm has access to a permutation π and a Pad() function

which produces padded message.

First let us describe the Pad() function and then π. In FPAE, we use the same Pad() function

as used in the FP mode. Pad(M) = M‖1‖0t is the padding rule used by FP mode where,

Pad(M) = M1‖M2‖ . . . ‖Mp, such that |Mi| = n for 1 ≤ i ≤ p. Here t is the smallest non-

negative integer such that |M |+ 1 + t = 0 mod n.

The permutation π used in FPAE takes a string of 2n bits (say x‖x′) as input and produces a

2n bit string as output (say y‖y′). Now we are ready to describe the encryption algorithm.

The FPAE-E algorithm takes Key K, nonce N and the message M as input and produces

ciphertext C and Tag T as the output for the given N,M . FPAE uses a 2n bit IV, which is split

into two halves, called IV1 and IV2, each n bits long. Both these IV
′
s are initialized to all zero

strings 0n. Algorithm 4 along with Fig. 5.1 provides the complete description of the encryption

operation. The algorithm returns the cipheretxt and tag pair C, T .

5.5 Decryption Algorithm

The decryption algorithm FPAE-D is defined in algorithm 5. The decryption algorithm has

access to the same π which was used in the encryption algorithm. The algorithm takes Key K,

nonce N , Ciphertext C and tag T
′

as input and decrypts the ciphertext to get message M and

tag T . If T = T
′

then it outputs M else it outputs ⊥. The algorithm is described next.
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Algorithm 4: FPAE-Eπ,Pad(K,N,M)

Input: Key K, Nonce N , Message M
Output: CipherText C, Tag T

1 Initialize: IV1 = IV2 = 0n.
2 Pad(M) = M1||M1||...||Mp where ∀i : |Mi| = n
3 x−1 = IV1, x

′
−1 = K

4 y0‖y′0 = π(x−1‖x′−1)
5 x0 = y0 ⊕ IV2

6 x′0 = N
7 y1‖y′1 = π(x0‖x′0)
8 for i = 1 to p do
9 Ci = y′i ⊕Mi

10 xi = yi ⊕ y′i−1

11 x′i = Mi

12 yi+1‖y′i+1 = π(xi‖x′i)
13 xp+1 = yp+1 ⊕ y′p
14 x′p+1 = y′p+1

15 yp+2‖y′p+2 = π(xp+1‖x′p+1)

16 C = C1‖C1‖ . . . ‖Cp
17 T = y′p+2

18 return (C, T )

5.6 Security Proofs

In FPAE, we use nonce, and the adversary has the power to choose the nonce by himself but

he is not allowed to repeat the nonce (we took the adversary to be nonce respecting). This

restriction of not repeating the nonce is only for the encryption queries. This type of scheme is

called nonce-using symmetric encryption scheme.

5.6.1 Privacy

Theorem 3. Let FPAEπ,Pad be the proposed Authenticated Encryption scheme with the defined

padding rule (Pad) and ideal permutation (π) which operates on 2n bits. The adversary A is

given acces to π, π−1 and the advantage of A to differentiate FPAE-Eπ,Pad from an ideal function

$() is given by

Adv
priv
FPAE(A) = Pr[AEK ,π,π

−1
= 1]− Pr[A$(.,.),π,π−1

= 1]

≤ q(2σ + 1)

2n
+

5σ(σ − 1)

22n+1
,

where EK represents FPAE-Eπ,Pad, n is the size of the tag, σ is the total number of queries to

π, π−1 by FPAE-Eπ,Pad,FPAE-Dπ−1
. The maximum number of queries to FPAE-Eπ,Pad, π and

π−1 by A are q1, q2 and q3, respectively. Finally, q = q1 + q2 + q3.
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Algorithm 5: FPAE-Dπ(K,N,C, T
′
)

Input: Key K, Nonce N , CipherText C, Tag T
′

Output: Message M or ⊥
1 Initialize: IV1 = IV2 = 0n.
2 C = C1||C1||...||Cp where ∀i : |Ci| = n
3 x−1 = IV1, x

′
−1 = K

4 y0‖y′0 = π(x−1‖x′−1)
5 x0 = y0 ⊕ IV2

6 x′0 = N
7 y1‖y′1 = π(x0‖x′0)
8 for i = 1 to p do
9 Mi = y′i ⊕ Ci

10 xi = yi ⊕ y′i−1

11 x′i = Mi

12 yi+1‖y′i+1 = π(xi‖x′i)
13 xp+1 = yp+1 ⊕ y′p
14 x′p+1 = y′p+1

15 yp+2‖y′p+2 = π(xp+1‖x′p+1)

16 M = M1‖M1‖ . . . ‖Mp

17 T = y′p+2

18 if T ′ = T then
19 return M

20 else
21 return ⊥

Proof. The advantage of the adversary is the ability to differentiate the proposed scheme from

a random oracle. We use game playing framework proposed by Bellare et al. in [3] to compute

the probability difference. We define a sequence of eight games and compute the probability

differences between consecutive games. Game G0 represents our proposed scheme and Game G8

represent Variable Input Length (VIL) random oracle (RO). In order to keep the proof compact,

we describe these games in details later in the appendix.

Using the equations (5.1), (5.2), (5.6), (5.7), (5.10), (5.11), (5.15), (5.16) and (5.17), we find the
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advantage of the adversary, as follows.

AdvprivFPAE(A) = Pr[AEK ,π,π
−1

= 1]

−Pr[A$(,.,),π,π−1
= 1]

= Pr[AG0 = 1]− Pr[AG8 = 1]

= (Pr[AG0 = 1]− Pr[AG1 = 1])

+(Pr[AG1 = 1]− Pr[AG2 = 1])

+(Pr[AG2 = 1]− Pr[AG3 = 1])

+(Pr[AG3 = 1]− Pr[AG4 = 1])

+(Pr[AG4 = 1]− Pr[AG5 = 1])

+(Pr[AG5 = 1]− Pr[AG6 = 1])

+(Pr[AG6 = 1]− Pr[AG7 = 1])

+(Pr[AG7 = 1]− Pr[AG8 = 1])

≤ 0 +
σ(σ − 1)

22n
+ 0 +

σ(σ − 1)

22n+1

+
q

2n
+
σ(σ − 1)

22n
+

qσ

2n−1

+0 + 0

≤ qσ

2n−1
+

q

2n
+

5σ(σ − 1)

22n+1

≤ q(2σ + 1)

2n
+

5σ(σ − 1)

22n+1
.

This completes the proof of Theorem 3.

G0 perfectly simulates (FPAE,π, π−1): Oracles O2 and O3 perfectly simulate an ideal per-

mutation π and its inverse π−1. Oracle O1 uniformly selects a random key K and simulates

FPAE-Eπ,Pad(K, ., .) using O2 as π. Set X stores all the input-output pairs of oracle O2. G0 is

defined in Table 5.2.

Pr[AEK ,π,π
−1

= 1] = Pr[AG0 = 1]. (5.1)

Game G1: Game G0 is identical to G1. This is clear from the definitions of games G0 and G1

(defined in Table 5.3).

Pr[AG0 = 1] = Pr[AG1 = 1]. (5.2)

Game G2: Game G1 and G2 are identical until bad. Thus the adversary can differentiate G1

and G2 only when bad occurs.

Pr[AG1 = 1]− Pr[AG2 = 1] = Pr[bad← true] (5.3)

Bad occurs when the input received by O2 and O3 collides with the elements in the set X. Let

Pr[coll = 1] be the probability of occurrence of bad in O2 and O3. Since, the set X is used by
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both the oracles, the probability is same for both.

Pr[bad← true] = 2Pr[coll = 1]. (5.4)

Let Pr[colli] means that there is no collision till i − 1 queries and collision occurs in the ith

query. Thus, Pr[coll = 1] is given by:

Pr[coll = 1]

= Pr[coll1 ∨ coll2 ∨ . . . ∨ collσ]

≤ Pr[coll1] + Pr[coll2] + . . .+ Pr[collσ]

≤ 1

22n
+

2

22n
+ . . .+

σ − 1

22n

≤ σ(σ − 1)

22n+1
.

(5.5)

Thus from equations (5.3), (5.4) and (5.5) the probability difference between G1 and G2 is:

Pr[AG1 = 1]− Pr[AG2 = 1] ≤ σ(σ − 1)

22n
. (5.6)

Game G3: Games G2 and G3 are identical. In G3, oracle O1 is independent of oracle O2, but

from the adversarial point of view, both the games are identical.

Pr[AG2 = 1] = Pr[AG3 = 1]. (5.7)

Game G4: Games G3 and G4 can be differentiated by bad events and by key guessing.

Pr[AG3 = 1]− Pr[AG4 = 1]

= Pr[bad events] + Pr[correct key guess].

We first discuss about the bad events. The bad events are collision events as discussed earlier.

Thus the probability calculations are similar to the previous games.

Pr[bad events] ≤ σ(σ − 1)

22n+1
. (5.8)

Key guessing can also distinguish between games G3 and G4. Suppose the adversary guesses

the key and runs oracle O2 on (N,M) and re-runs with the same data on O1. Then the output

can be differentiated.

Pr[correct key guess] ≤ q

2n
. (5.9)

From equations (5.8) and (5.9) the probability difference between G3 and G4 is:

Pr[AG3 = 1]− Pr[AG4 = 1] ≤ σ(σ − 1)

22n+1
+

q

2n
. (5.10)
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Game G5: Game G4 and G5 are identical in oracle O1 queries but both the games can be

differentiated by oracles O2 and/or O3 queries. In G4, oracles O2 and O3 implement ideal

random functions, whereas in G5 both the oracles implements ideal permutation. Thus both

these games are identical as long as there is no collision in queries to O2 and O3. The probability

calculation is therefore similar to the one in game G2.

Pr[AG4 = 1]− Pr[AG5 = 1] ≤ σ(σ − 1)

22n
. (5.11)

Game G6: Adversary can differentiate games G5 and G6 based on the occurrence of bad event.

Pr[AG5 = 1]− Pr[AG6 = 1] = Pr[bad event]

Let the sets W and Y store all the 2n bit inputs and 2n bit outputs for oracle O1 respectively.

According to the game definition [Table 5.5], the 2n bit output is randomly selected. Out of these

2n bits, adversary knows n bits using message, ciphertext and tag. Hence, only the remaining

n bits are random and secret. The bad event occurs when the adversary queries O2 with ’m’

which is already present in the set W or the adversary queries O3 with ’v’ which is present in

Y . Set W and Y can have at most σ elements. An element of W is represented as Wi and an

element of Y by Yj where 1 ≤ i ≤ σ and 1 ≤ j ≤ σ. The adversary can query O2 and O3 at

most q2 and q3 times, respectively.

Therefore if we have Mi = Wj (where 1 ≤ i ≤ q2 and 1 ≤ j ≤ σ) then it is a bad event. Similarly,

if we have Vi = Yj (where 1 ≤ i ≤ q3 and 1 ≤ j ≤ σ), then it is a bad event.

Pr[bad event] =

q2∑
i=1

σ∑
j=1

Pr[mi = Wj ] +

q3∑
i=1

σ∑
j=1

Pr[vi = Yj ]. (5.12)

The summation of probability is the maximum number of collisions within the sets W and Y

respectively.

q2∑
i=1

σ∑
j=1

Pr[mi = Wj ] ≤
q2σ

2n
≤ qσ

2n
. (5.13)

q3∑
i=1

σ∑
j=1

Pr[vi = Yj ] ≤
q3σ

2n
≤ qσ

2n
. (5.14)

Thus from equations (5.12), (5.13) and (5.14), the probability difference between G5 and G6 is:

Pr[AG5 = 1]− Pr[AG6 = 1] ≤ qσ

2n−1
. (5.15)

Game G7: G6 and G7 are identical from adversarial point of view. In G6, we made sure that

no input-output pairs are queried by the adversary to O2 and O3, thus making O1 independent

of other oracles as in G7.

Pr[AG6 = 1] = Pr[AG7 = 1]. (5.16)
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Game G8: G7 and G8 are identical from adversarial point of view. In G7, for each message

block, a random string is assigned as the ciphertext, and another random string is assigned as

the tag. On the other hand, random strings are assigned as ciphertext and tag for the complete

(padded) message. G8 perfectly simulates $(), π, π−1.

Pr[AG7 = 1] = Pr[AG8 = 1] = Pr[A$(,.,),π,π−1
= 1]. (5.17)

5.6.2 Authenticity

The authenticity of an AE scheme is defined in terms of the ability of an adversary who can

produce a valid (N,C, T ) pair. The forging adversary A can query π, π−1,FPAE-Eπ,Pad(K, ., .),

FPAE-Dπ(K, ., ., .) oracles at most q1, q2, qe, qd times, respectively. A must be nonce-respecting

with encryption queries. Finally, A outputs (N,C, T ). We say A forges the AE scheme if the

decryption algorithm outputs M and the corresponding (N,C, T ) tuple has not been output by

the encryption oracle.

Let ExpauthFPAE,π,π−1(A) be the forging experiment which is defined as follows:

1. A can query π, π−1, FPAE-Eπ,Pad(K, ., .) and FPAE-Dπ(K, ., ., .) at most q1, q2, qe and qd

times, respectively.

2. All the query responses of FPAE-Eπ,Pad(K, ., .) are stored in a set, say Z. Set Z has

elements of the type (Ni, Ci, Ti).

3. Let M be a valid message. If FPAE-Dπ(N,C, T ) = M and (N,C, T ) /∈ Z then output 1.

4. After all the queries, output 0.

We say that A forges the scheme if Expauthπ,π−1(A) = 1.

The advantage of the Adversary A in forging the scheme is represented as

AdvauthFPAE(A) = Pr[ExpauthFPAE,π,π−1(A) = 1].

Theorem 4 (Authenticity). FPAE is forgeable with the probability

Pr[ExpauthFPAE,π,π−1(A) = 1] ≤ 28σ2

2n
+

q

2n−1
,

where, σ is the maximum number of queries to π, π−1 by A through FPAE-Eπ,Pad(K, ., .) and

FPAE-Dπ(K, ., ., .), q is the maximum number of queries to π, π−1/S, S−1 by FPAE-Eπ,Pad(K, ., .),

FPAE-Dπ(K, ., ., .) together. q1, q2, qe, qd is the maximum queries to π, π−1,FPAE-Eπ,Pad(K, ., .),

FPAE-Dπ(K, ., ., .) directly by A. Let, q = q1 + q2 + qe + qd.

Proof: (Authenticity). We will upper bound the following probability

Pr[ExpauthFPAE,π,π−1(A) = 1]
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by reducing the forging experiment to indifferentiability of FPAE.

Suppose we have a forging adversary A who can forge FPAE, then we will create another

differentiable adversary BA who can differentiate FP from a random oracle RO.

Adversary A need access to oracles (FPAE,π, π−1). BA has access to oracles (O1, O2, O3) which

can either be (FP, π, π−1) or (RO,S, S−1), where S, S−1 are defined in Algorithms 6 and 7

respectively. Now BA will use its own oracle to simulate (FPAE, π, π−1) for A.

Let us show how BO1,O2,O3

A differentiates FP from random oracle using the forging adversary A
for FPAE.

Initialize: BO1,O2,O3

A selects a key K ← {0, 1}n. Once K is chosen, it is used in FPAE-E

and FPAE-D queries. It creates a set Q which stores all the (Nonce-Ciphertext-Tag) tuples

that it sends to A.

1. Call the adversary A.

2. If A asks for FPAE-Eπ,Pad query by sending N,M to BO1,O2,O3

A .

• BO1,O2,O3

A has K,N,M .

• It follows the algorithm FPAE-Eπ,Pad with a minor change. Instead of π, the

adversary BO1,O2,O3

A uses oracle O2 and forms the ciphertext C. Here, the last

invocation of oracle π in algorithm FWPAE-Eπ,Pad is ignored. For the creation

of tag T , adversary BO1,O2,O3

A sends the padded message to oracle O1. Adversary

BO1,O2,O3

A returns (C, T ) to A and adds N,C, T to the set Q. That is Q ←
Q ∪ {N,C, T}.

3. If A asks for FPAE-Dπ query by sending N,C, T to BO1,O2,O3

A .

• BO1,O2,O3

A has K,N,C, T .

• It follows the algorithm FPAE-Dπ with a minor change. Instead of π, BO1,O2,O3

A

uses oracle O2 and obtains plaintext M . Here, the last innovation of ro oracle

in FWPAE-Dπ algorithm is ignored. Adversary BO1,O2,O3

A sends the formed

plaintext M to oracle O1 and gets tag T
′
.

• If T = T
′

and {N,C, T} /∈ Q, then BO1,O2,O3

A returns M to A and 1 to the called

function and stops, else it returns ⊥ to A.

4. If A asks for π query by sending m to BO1,O2,O3

A .

• BO1,O2,O3

A sends m to O2 and sends the reply back to A.

5. If A asks for π−1 query by sending v to BO1,O2,O3

A .

• BO1,O2,O3

A sends v to O3 and sends the reply back to A.

6. Steps 2, 3, 4 and 5 can be queried at most qe, qd, q1, q2 times, respectively.

7. If either A aborts or all the allowed queries made by A have been exhausted (i.e. those

corresponding to encryption, decryption, pi and pi−1 oracles), then BO1,O2,O3

A returns

0 and stops.
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Claim 2. According to the experiment described above, the probability of the adversary distin-

guishing FP from random oracle is same as the probability of the adversary forging FPAE.

Pr[BFP,π,π−1

A = 1] = Pr[ExpauthFPAE,π,π−1(A) = 1].

Before computing the advantage of BO1,O2,O3

A , we first define the simulator S, S−1.

Simulator pair S, S−1 [14]

To prove the indifferentiability of FP mode, [14] created a simulator pair so that the adversary

cannot differentiate FP mode from a random oracle.

Before describing the simulator, lets give a brief description of the data structure and functions

used by the simulator pair. Set Ds contains all the query-response pairs of S, S−1. M is

reconstructible message from the set Ds, that is Ds contains all the query-response pair required

to compute FP (M). Ts is a graph which stores all the reconstructible messages from root to

leaves. FullGraph(Ds) function is used to create Ts from Ds. The function MsgRecon(x, Ts)

returns all the messages M such that the final input to S is x.

We describe the simulator S next. S takes a string x of 2n bits as input and outputs r of 2n

bits. First, the string r is selected randomly. Then with the given input x and Ts, we check

for the existence of a valid reconstructible message M . If the function MsgRecon() returns a

message M , then we query RO(M) and modify the last n bits of r with the output received

from RO and return this modified value of r. On the other hand, if MsgRecon() returns an

empty set, then update the set Ds, recreate Ts by calling FullGraph(Ds) and return r.

Algorithm 6: The Simulator S(.), described in [14]

Input: x: short query of length 2n
Output: r: 2n bits string

1 r
$←− {0, 1}2n

2 if r ∈ Ds then
3 Abort

4 M = MsgRecon(x, Ts)
5 if |M | = 1 then
6 return r[n, 2n− 1] = RO(M)

7 Ds[x] = r
8 FullGraph(Ds)
9 return r

Simulator S−1 receives 2n bit string r and outputs x. The simulator selects 2n bit string

randomly and assign that to x. If this x is alredy present in the domain of Ds, then it aborts

the process else it updates Ds and recreates Ts. Finally it returns the x.
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Algorithm 7: The Simulator S−1(.), described in [14]

Input: r: 2n bit string
Output: x: 2n bits string

1 x
$←− {0, 1}2n

2 if x ∈ Ds then
3 Abort

4 Ds[x] = r
5 FullGraph(Ds)
6 return x

Now, let us find the advantage of the adversary BA.

AdvindFP (BA)

= Pr[BFP,π,π−1

A = 1]− Pr[BRO,S,S−1

A = 1]

= Pr[ExpauthFPAE,π,π−1(A) = 1]− Pr[BRO,S,S−1

A = 1]

-by Claim 2.

From Lemma 3 and Lemma 4, we can substitute as given below.

Pr[ExpauthFPAE,π,π−1(A) = 1]

= AdvindFP (BA) + Pr[BRO,S,S−1

A = 1]

≤ 28σ2

2n
+

q

2n−1

Thus, proving Theorem 4.

Lemma 3. [14]: The FP hash is (tA, tS , σ,
28σ2

2n )-indifferentiable from a random oracle, where

tA = ∞, tS = O(σ5) and σ ≤ K2n/2, where K is a fixed constant derived from ε, tA, tS are the

time taken by the adversary A and the simulator S, S−1, [Algorithm 6, 7]. σ is the maximum

number of queries to π, π−1 by A through FPAE-Eπ,Pad(K, ., .) and FPAE-Dπ(K, ., ., .), π, π−1

is fixed permutation and its inverse, respectively, FP is FP mode of operation and RO is VIL

random oracle.1

AdvindFP (BA) = Pr[BFP,π,π−1

A = 1]− Pr[BRO,S,S−1

A = 1]

≤ 28σ2

2n
.

Proof: The detailed proof is given in [14].

Lemma 4. The probability of any differentiable adversary BA to output 1 depends completely

on whether the forgery adversary A forges FPAE. Suppose BA is interacting with VIL random

1In [14] the authors have not considered the maximum block length of each query to FP.
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oracle RO, simulators S, S−1 and A forges FPAE, then

Pr[BRO,S,S−1

A = 1] ≤ q

2n−1
,

Proof: Since BA uses A to distinguish FP, the only way to output 1 is that, A must forge FPAE.

That is A must output a valid tuple (N,C, T ). Since BA is interacting with RO,S, S−1, the

only way A can output the valid tuple is either by guessing the tag or by guessing the key used

by BA.

Pr[BRO,S,S−1

A = 1] = Pr[Correct Tag ∧ Wrong Key]

+Pr[Correct Tag ∧ Correct Key].

Since BA is interacting with RO,S, S−1, the output will always be random. Therefore, the only

way to get the Tag correct with wrong key is to guess the tag.

Pr[Correct Tag ∧ Wrong Key] ≤ q

2n
.

Similarly the only way to get the key correctly is to guess it. Adversary can use any oracle to

find the key.

Pr[Correct Tag ∧ Correct Key] ≤ q

2n

=⇒ Pr[BRO,S
A = 1] ≤ q

2n−1
.

Thus Lemma 4 is proved.

5.7 Games
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Game G0

100 Initiaze:

101 X = ∅,K $←− {0, 1}n
102 IV1 = IV2 = 0n

103 x−1 = IV1, x
′
−1 = K

104 y0‖y0
′ = O2(x−1‖x′−1)

105 On O1 − query {N,M},
106 pad(M) = M1||M1||...||Mp, where ∀i : |Mi| = n
107 x0 = y0 ⊕ IV2, x0

′ = N

108 y1‖y1
′ = O2(x0‖x′0)

109 for i = 1 to p
110 Ci = yi

′ ⊕Mi

111 xi = yi ⊕ y′i−1, x
′
i = Mi

112 yi+1‖yi+1
′ = O2(xi‖x′i)

113 xp+1 = yp+1 ⊕ y′p, xp+1
′ = yp+1

′

114 yp+2‖yp+2
′ = O2(xp+1‖x′p+1)

115 C = C1‖C2‖ . . . ‖Cp and T = yp+2
′

116 Return (C, T )
117 On O2-query m,
118 if (m, v) ∈ X, then return v

119 v
$←− {0, 1}2n

120 if ∃(m′, v′) ∈ X s.t v′ = v then

121 v
$←− {0, 1}2n \ {v′ : (m′, v′) ∈ X}

122 X = X ∪ {(m, v)}
123 return v
123 On O3-query v, /*Inverse query.*/
124 if (m, v) ∈ X, then return m

125 m
$←− {0, 1}2n

126 if ∃(m′, v′) ∈ X s.t m′ = m then

127 m
$←− {0, 1}2n \ {m′ : (m

′
, v
′
) ∈ X}

128 X = X ∪ {(m, v)}
129 return m

Table 5.2: FPAE: Game G0
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Game G1 G2

200 Initiaze:

201 X = ∅,K $←− {0, 1}n
202 IV1 = IV2 = 0n

203 x−1 = IV1, x
′
−1 = K

204 y0‖y0
′ = O2(x−1‖x′−1)

205 On O1 − query {N,M},
206 pad(M) = M1||M1||...||Mp, where ∀i : |Mi| = n
207 x0 = y0 ⊕ IV2, x0

′ = N

208 y1‖y1
′ = O2(x0‖x′0)

209 for i = 1 to p
210 Ci = yi

′ ⊕Mi

211 xi = yi ⊕ y′i−1, x
′
i = Mi

212 yi+1‖yi+1
′ = O2(xi‖x′i)

213 xp+1 = yp+1 ⊕ y′p, xp+1
′ = yp+1

′

214 yp+2‖yp+2
′ = O2(xp+1‖x′p+1)

215 C = C1‖C2‖ . . . ‖Cp and T = yp+2
′

216 Return (C, T )
217 On O2-query m,
218 if (m, v) ∈ X, then return v

219 v
$←− {0, 1}2n

220 if ∃(m′, v′) ∈ X s.t v′ = v then bad ← true

221 v
$←− {0, 1}2n \ {v′ : (m

′
, v
′
) ∈ X}

222 X = X ∪ {(m, v)}
223 return v
223 On O3-query v, /*Inverse query.*/
224 if (m, v) ∈ X, then return m

225 m
$←− {0, 1}2n

226 if ∃(m′, v′) ∈ X s.t m′ = m then bad← true

227 m
$←− {0, 1}2n \ {m′ : (m′, v′) ∈ X}

228 X = X ∪ {(m, v)}
229 return m

Table 5.3: FPAE: Game G1 & G2
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Game G3 G4

300 Initiaze:

301 X = ∅,K $←− {0, 1}n, IV1 = IV2 = 0n

302 x−1 = IV1, x
′
−1 = K

303 y0‖y0
′ $←− {0, 1}2n

304 X = X ∪ {(x−1‖x′−1, y0‖y0
′)}

305 On O1-query {N,M},
306 pad(M) = M1||M1||...||Mp,∀i : |Mi| = n
307 x0 = y0 ⊕ IV2, x0

′ = N

308 if (x0‖x′0, v) ∈ X then bad← true

309 y1‖y1
′ = v

310 else

311 y1‖y1
′ $←− {0, 1}2n

312 X = X ∪ {(x0‖x′0, y1‖y1
′)}

313 end if
314 for i = 1 to p
315 Ci = yi

′ ⊕Mi

316 xi = yi ⊕ y′i−1, x
′
i = Mi

317 if (xi‖x′i, v) ∈ X then bad← true,

318 yi+1‖yi+1
′ = v

319 else

320 yi+1‖yi+1
′ $←− {0, 1}2n

321 X = X ∪ {(xi‖x′i, yi+1‖yi+1
′)}

322 end if
323 end for

324 xp+1 = yp+1 ⊕ y′p, xp+1
′ = yp+1

′

325 if (xp+1‖x′p+1, v) ∈ X then bad← true,

326 yp+2‖yp+2
′ = v

327 else

328 yp+2‖yp+2
′ $←− {0, 1}2n

329 X = X ∪ {(xp+1‖x′p+1, yp+2‖yp+2
′)}

330 end if
331 C = C1‖C2‖ . . . ‖Cp and T = yp+2

′

332 Return (C, T )
333 On O2-query m,
334 if (m, v) ∈ X, then return v

335 v
$←− {0, 1}2n, X = X ∪ {m, v}

336 return v
336 On O3-query v, /*Inverse query.*/
337 if (m, v) ∈ X, then return m

338 m
$←− {0, 1}2n, X = X ∪ {m, v}

339 return m

Table 5.4: FPAE: Game G3 & G4
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Game G5 G6

500 Initiaze:

501 X = Y = W = ∅,K $←− {0, 1}n
502 IV1 = IV2 = 0n

503 x−1 = IV1, x
′
−1 = K

504 y0‖y0
′ $←− {0, 1}2n

505 X = X ∪ {(x−1‖x′−1, y0‖y0
′)}

506 Y = Y ∪ {(y0‖y0
′)},W = W ∪ {(x−1‖x′−1)}

507 On O1 − query {N,M},
508 pad(M) = M1||M1||...||Mp, ∀i : |Mi| = n
509 x0 = y0 ⊕ IV2, x0

′ = N

510 y1‖y1
′ $←− {0, 1}2n

511 X = X ∪ {(x0‖x′0, y1‖y1
′)}

512 Y = Y ∪ {(y1‖y1
′)},W = W ∪ {(x0‖x′0)}

513 for i = 1 to p
514 Ci = yi

′ ⊕Mi

515 xi = yi ⊕ y′i−1, x
′
i = Mi

516 yi+1‖yi+1
′ $←− {0, 1}2n

517 X = X ∪ {(xi‖x′i, yi+1‖yi+1
′)}

518 Y = Y ∪ {(yi+1‖yi+1
′)},W = W ∪ {(xi‖x′i)}

519 end for

520 xp+1 = yp+1 ⊕ y′p, xp+1
′ = yp+1

′

521 yp+2‖yp+2
′ $←− {0, 1}2n

522 X = X ∪ {(xp+1‖x′p+1, yp+2‖yp+2
′)}

523 Y = Y ∪ {(yp+2‖yp+2
′)}

524 W = W ∪ {(xp+1‖x′p+1)}
525 C = C1‖C2‖ . . . ‖Cp and T = yp+2

′

526 Return (C, T )
527 On O2-query m,

528 if (m) ∈W , then bad ← true ABORT

529 if (m, v) ∈ X, then return v

530 v
$←− {0, 1}2n

531 if ∃(m′, v′) ∈ X s.t v′ = v then

532 v
$←− {0, 1}2n \ {v′ : (m′, v′) ∈ X}

533 X = X ∪ {(m, v)}
534 return v
534 On O3-query v, /*Inverse query.*/

535 if (v) ∈ Y , then bad ← true ABORT

536 if (m, v) ∈ X, then return m

537 m
$←− {0, 1}2n

538 if ∃(m′, v′) ∈ X s.t m′ = m then

539 m
$←− {0, 1}2n \ {m′ : (m

′
, v
′
) ∈ X}

540 X = X ∪ {(m, v)}
541 return m

Table 5.5: FPAE: Game G5 & G6
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Game G7

700 Initiaze:
701 X = ∅
702 On O1 − query {N,M},
703 pad(M) = M1||M1||...||Mp, ∀i : |Mi| = n
704 for i = 1 to p

705 Ci
$←− {0, 1}2n

706 end for

707 T
$←− {0, 1}n

708 C = C1‖C2‖ . . . ‖Cp
709 Return (C, T )
710 On O2-query m,
711 if (m, v) ∈ X, then return v

712 v
$←− {0, 1}2n

713 if ∃{m′, v′} ∈ X s.t v′ = v then

714 v
$←− {0, 1}2n \ {v′ : (m′, v′) ∈ X}

715 X = X ∪ {(m, v)}
716 return v
716 On O3-query v, /*Inverse query.*/
717 if (m, v) ∈ X, then return m

718 m
$←− {0, 1}2n

719 if ∃(m′, v′) ∈ X s.t m′ = m then

720 m
$←− {0, 1}2n \ {m′ : (m

′
, v
′
) ∈ X}

721 X = X ∪ {(m, v)}
722 return m

Table 5.6: FPAE: Game G7
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Game G8

800 Initiaze:
801 X = ∅
802 On O1 − query {N,M},
803 pad(M) = M1||M1||...||Mp, ∀i : |Mi| = n

804 C
$←− {0, 1}|pad(M)|

805 T
$←− {0, 1}n

806 Return (C, T )
807 On O2-query m,
808 if (m, v) ∈ X, then return v

809 v
$←− {0, 1}2n

810 if ∃{m′, v′} ∈ X s.t v′ = v then

811 v
$←− {0, 1}2n \ {v′ : (m′, v′) ∈ X}

812 X = X ∪ {(m, v)}
813 return v
813 On O3-query v, /*Inverse query.*/
814 if (m, v) ∈ X, then return m

815 m
$←− {0, 1}2n

816 if ∃(m′, v′) ∈ X s.t m′ = m then

817 m
$←− {0, 1}2n \ {m′ : (m

′
, v
′
) ∈ X}

818 X = X ∪ {(m, v)}
819 return m

Table 5.7: FPAE: Game G8
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Chapter 6

Conclusion

In this thesis, we designed FWPAE and FPAE modes for authenticated encrytion and provided

the proofs for privacy and authenticity of the two modes. FWPAE is the first AE mode based

on random function to the best of our knowledge. FWPAE and FPAE are showing a promising

security bounds, thus making these two efficient AE modes. Further, in the recently concluded

SHA-3 competition, one of the selection criteria of the hash function was that the underlying

primitive must support many features. Thus in this work, Authenticared Encryption has been

developed based on FWP and FP hash mode and making these a more versatile hash modes. We

hope that this work will generate more intetest in the community to develop modes for special

purposes using different underlying primitives.
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Chapter 7

Future Work

The next thing that can be done is to develop online Authenticated Encryption modes from

FWPAE and FPAE. Online here we mean that the hardware which does the cryptographic task

has limited memory. Hence online helps is encrypting in real time. Here the main concern is

the decryption. Normally, in decryption, complete ciphertext is required to authenticate the

data but this contradicts the purpose of online. Here the trick is to make the decryption sort of

online. One direction of research can be to make the decryption sort of online.

FWPAE and FPAE are modes of operation. The next thing that can be done is to instantiate

the random permutation and random function and get the exact implementation results and

compare with other AE schemes. This will give us the practical efficiency of our modes. We

can use different ciphers to instantiate random function and random permutation and have a

comparitive study.
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