
Forecasting Hate Intensity of Reply
Threads on Twitter

by
Snehil

Under the Supervision of
Dr. Tanmoy Chakraborty

and
Dr. Md. Shad Akhtar

Indraprastha Institute of Information Technology
Delhi

July, 2021

©Indraprastha Institute of Information Technology (IIITD),
New Delhi, 2021

Forecasting Hate Intensity of Reply
Threads on Twitter

by
Snehil

Submitted
in partial fulfillment of the requirements for the

degree of
Master of Technology

to

Indraprastha Institute of Information Technology
Delhi

July, 2021

iv

Certificate

This is to certify that the thesis titled “Forecasting Hate Intensity of Reply Threads
on Twitter” being submitted by Snehil to the Indraprastha Institute of Informa-
tion Technology Delhi, for the award of the Master of Technology, an original re-
search work carried out by her under our supervision. In our opinion, the thesis has
reached the standards fulfilling the requirements of the regulations relating to the
degree.

The results contained in this thesis have not been submitted in part or full to any
other university or institute for the award of any degree/diploma.

July, 2021 Dr. Tanmoy Chakraborty
Department of Computer Science & Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110020

Dr. Md. Shad Akhtar
Department of Computer Science & Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110020

v

Abstract

Curbing hate speech is undoubtedly a major challenge for online microblogging
platforms like Twitter. While there have been studies around hate speech detec-
tion, it is not clear how hate speech finds its way into an online discussion.
In this thesis, we define a novel problem – given a source tweet and a few of its initial
replies, the task is to forecast the hate intensity of upcoming replies. To this end, we curate
a novel dataset comprising the entire reply chains of a∼ 4.5k root tweets catalogued
into four controversial topics. Our preliminary analysis confirms that the evolution
patterns along time of hate intensity among reply chains have highly diverse pat-
terns, and there is no significant correlation between the hate intensity of the source
tweets and that of their reply chains. We notice a handful of such cases where de-
spite the root tweets being non-hateful, the succeeding replies inject an enormous
amount of toxicity into the discussions. We employ several state-of-the-art dynamic
models and show that they fail to forecast the hate intensity.
We then propose DESSERT a novel deep state-space model trained in real time. The
model leverages the function approximation capability of deep neural networks
with the capacity to quantify the uncertainty of statistical signal processing models.
We observe that the DESSERT outperforms all the baselines across four evaluation
metrics (both correlation-based and error-based). This model achieves 0.67 Pear-
son’s r and 31.08 Mean Absolute Percentage Error (MAPE), which is significantly
better than the best baseline (r=0.557, MAPE=43.47).
In addition to this, we also address this problem through a deep stratified learn-
ing framework DRAGNETİt groups hate intensity profiles of reply chains into clusters
used to formulate prior knowledge, which is employed to predict hate intensity of
upcoming replies for a new reply chain. The DRAGNET turns out to be highly effective,
significantly outperforming six baselines. It beats the best baseline with an increase
of 9.4% in the Pearson correlation coefficient and a decrease of 19% in Root Mean
Square Error.
Further, both the models’ deployment in an advanced AI platform designed to mon-
itor real-world problematic hateful content has improved the aggregated insights
extracted for countering the spread of online harms.

vi

Acknowledgements

I express my profound gratitude to my advisor Dr. Tanmoy Chakraborty without
whom my thesis would not have been possible. I am thankful to him for provid-
ing guidance and opportunity to work on real world problem. His expertise in the
fields of Natural Language Processing and Network Science was invaluable in for-
mulating the research methodology. His constant encouragement, suggestions and
unconditional support was a major driving force to bring my thesis to a higher level.
I would also like to thank Dr. Md. Shad Akhtar for his continuous guidance and
suggestions.
I feel very pleased to have been able to collaborate with Shalini Sharma and Dr. Ang-
shul Majumdar on Deep State Space Modelling. I would also like to acknowledge
the support of Logically in making it possible to deploy this thesis work in real work
scenario.
Many thanks to Dhruv Sahnan and Vasu Goel for working along side me on this
research problem. Their continuous efforts and enthusiasm has been very inspiring.
Special thanks to Sarah Masud for her constant support and sparing time for brain
storming sessions with me. It is an immense pleasure to express my thanks to all the
members of Laboratory for Computational Social Systems for their motivation and
patient support.
To conclude I would like to dedicate this thesis to my family who have been the cor-
nerstone of strength during my weak moments. I would like to thank them for their
constant encouragement, support and belief in me. I would also like to thank my
friends and college mates for motivating and supporting me.

Snehil

vii

Contents

Certificate iv

Abstract v

Acknowledgements vi

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Observations for the Thesis 1

1.2.1 Benign Posts can Manifest Hate Speech 1
1.2.2 Hate Intensity Profiles of Reply Threads are Diverse 3
1.2.3 Limitations of State-of-the-Art Methods 3

1.3 Our Proposed Approaches . 4
1.3.1 DRAGNET . 4
1.3.2 DESSERT . 4

1.4 Related Work . 5
1.4.1 Studies on Hate Speech . 5
1.4.2 Time-series models . 5

2 Dataset and Baselines 7
2.1 Input Corpus . 7
2.2 Baseline Methods . 9

3 Deep Stratified Learning Based Model 11
3.1 Preliminaries . 11
3.2 Our Proposed Model: DRAGNET . 12

3.2.1 Time-Series Representative Learning 14
3.2.2 Proposed Autoencoder . 14
3.2.3 Fuzzy Associations . 15
3.2.4 Boosting Prediction with Prior Knowledge 16
3.2.5 Estimating Latent Representation of Upcoming Reply Threads 16
3.2.6 Decoding Latent Representation 17
3.2.7 Implementation Details . 17

3.3 Experimental Results and Analysis . 17
3.3.1 Experiment Setup . 17
3.3.2 Results and Analysis . 18

Comparative Analysis . 18
Detailed Introspection . 18

3.3.3 Ablation Study . 19
3.4 Real-world Deployment . 20

viii

4 On the Fly Model Training 22
4.1 Proposed Model: DESSERT . 22

4.1.1 Preliminaries . 22
4.1.2 Basis Architecture . 23
4.1.3 State Update . 23
4.1.4 Parameter Updates . 25
4.1.5 On the Fly Training . 26
4.1.6 Forecasting . 27
4.1.7 Model Confidence . 27
4.1.8 Time Complexity . 28

4.2 Experimental Results and Analysis . 28
4.2.1 Experiment Setup . 28
4.2.2 Overall Performance . 30
4.2.3 Detailed Analysis . 30
4.2.4 Ablation Study . 31

4.3 Real-world Deployment . 31

5 Conclusion 33

6 Publications 34

A Appendix 35
A.1 Additional Results . 35
A.2 Expectation-Minimization . 35

Bibliography 39

ix

List of Figures

1.1 (a) An example reply thread with the hate intensity per reply (within
brackets). (b) Hate intensity profile of three example reply threads,
one of which is (a). We observe that that the hate intensity of reply
threads does not follow any particular pattern. (c) Scatter plot of hate
intensity of the source tweets and their corresponding reply threads,
indicating they are uncorrelated (Pearson’s r =0.11). 2

1.2 Temporal change of hate intensity score in the reply threads related
to two topics – Joe Biden’s campaign and Donald Trump’s COVID
crisis. Solid lines (shaded regions) signify the average (confidence)
over related reply threads. 4

2.1 Distributions of the length of the reply threads and the number of
unique users per reply thread (a) in the complete dataset and (b-e)
across topics. 8

2.2 Lifetime of reply threads. We show how much time a thread takes to
grow upon the posting of the root tweet. 9

2.3 Violin distribution for the pairwise DTW distances of reply threads. . . 10

3.1 Schematic diagram of the data transformation module. Ss(1,n) is the se-
quence of cosine similarity values (calculated between the sentiment
embedding of root tweet ϕ and its corresponding sequence of replies)
for all reply threads in the dataset, and Rs(1,n) is the set of all hate in-
tensity profiles. 12

3.2 Overall architecture of DRAGNET. After training the autoencoder, the
concatenated history and future latent representations are clustered
using a fuzzy clustering algorithm. For a new reply thread, the future
hate intensity profile is predicted using (i) the history latent represen-
tation, (ii) the sentiment similarity sequence of the history, and (iii)
the prior knowledge vector extracted from PR(.). 12

3.3 Comparison in performance of DRAGNET and TFT using the Pearson
correlation w.r.t (a) hate speech detection model used, (b) weight w
in the hate intensity function, (c) demography of the root tweet, (d)
topics, (e) type of root tweet, and (f) type of source user. 20

3.4 Performance of DRAGNET and TFT w.r.t the change in (a) window size,
and (b) history. We also show the performance of DRAGNET with the
change in (c) the number of clusters, and (d) the clustering method. . . 21

3.5 Visual workflow of the application of DRAGNET in an advanced AI Plat-
form for hate intensity profiling and ranking of narratives (aggregated
semantic content analysis). 21

x

4.1 Schematic diagram of DESSERT where xk represents the input (ordered
sequence of vectors), zk−1 represents the hidden state-space vector
(i.e. feature) for previous timestamp. A0, A1, A2, H0, H1, H2 are the
learnable parameters, and zk represents the hidden state-space vector
for current timestamp. 24

4.2 Performance (MAPE) of DESSERT and ForGAN w.r.t (a) demography,
(b) types of source tweets, (c) types of source users, (d) length of reply
threads, (e) foreseeability, (f) hate speech classifiers ([16] and [8]), (g)
weight w, and (h) chunk size ∆. See the Appendix for the correlation-
based (Pearson’s r) performance. 29

4.3 Model ablation w.r.t. (a) α and (b) training size. 31

A.1 Heat map showing the hate intensity per quarter of the reply threads
(sorted by the hate intensity of the source tweets). We divide each
reply thread into four equal quarters and measure hate intensity per
quarter. It indicates that there is no single quarter which is always
more hateful than the others across reply threads. 36

A.2 Distribution of (a) the length of reply threads and (b) the number of
unique users involved in reply threads. 36

A.3 Performance (Pearson’s r) of and ForGAN w.r.t (a) demography, (b)
types of source tweets, (c) types of source users, (d) length of reply
threads, (e) foreseeability, (f) hate speech classifiers (? and ?), (g)
weight w, and (h) chunk size ∆. 37

A.4 Model ablation w.r.t. (a) α and (b) training size. 38

xi

List of Tables

2.1 List of hashtags and keywords used to curate the threads by location. . 7

3.1 Notations and denotations. 13
3.2 Overall performance (↓: lower value is better). Second last row indi-

cates the performace of DRAGNET without the sentiment feature. The
best baseline is italicized. 18

4.1 Overall performance (↓: lower value is better). 28

1

Chapter 1

Introduction

1.1 Background

Online discussion forums such as Twitter, and Reddit, provide users with the oppor-
tunity to express their opinion freely and that too, anonymously. Although freedom
of speech enables users to seek, express and impart information about ideas and
opinions, its misuse often leads to social instability both online and offline, result-
ing in cyber-crimes such as hate speech and cyberbullying. Hate crimes around the
world have intensified owing to the rampant onslaught of provocative content; there
have been violent incidents ranging from lynchings [28] to even ethnic cleansing.
While a handful of corporate firms are continuously attempting to reconfigure the
terms and conduction of social media usage, they are also constrained by domestic
laws on censorship.

Hate speech is highly subjective – its nature varies across demography; its effect
varies across religion, identity and social groups. Therefore, most of the hate speech
detection models which leverage hand-crafted lexicons in one form or the other,
often struggle to generalize. The urgent need to combat hate speech has been recog-
nized, resulting in a handful of methods to detect online hate speech [38]. Attempts
have also been made to study how hate speech breeds on social media [31] – how to
mathematically model hate speech propagation [30], who is likely to engage in hate
speech [41], and so on. However, as Liu et al. [26] highlighted, the aforementioned
methods consider a reactive strategy – given an online post, these methods attempt
to detect whether it is hate speech or not; sometimes, they also classify a hateful post
into a fine-grained category (offensive, provocative, aggressive, etc.). One may think
of developing methods for the early detection of hate speech; however, it is unknown
how expeditiously its adverse effects manoeuvre and manipulate online users upon
exposition. The promptness and the extent of damage that an online post can cause
is hard to quantify and predict.

1.2 Motivation and Observations for the Thesis

1.2.1 Benign Posts can Manifest Hate Speech

Although hate speech detection is highly pertinent towards the broader goal of sani-
tizing online content, it is often observed that a non-hate (benign) post, over the time,
evolves as a source of provocative discussion, fostering the generation of hateful or
offensive posts. For example, Figure 1.1(a) shows a (partial) reply threads along
with the hate intensity (defined in Section 3.1) of each reply. As observed, although
the source tweet is less hate intensive and is not detected as hate speech by the hate
speech classifier, the replies generated under this tweet are highly hateful. Figure

Chapter 1. Introduction 2

FIGURE 1.1: (a) An example reply thread with the hate intensity per
reply (within brackets). (b) Hate intensity profile of three example
reply threads, one of which is (a). We observe that that the hate inten-
sity of reply threads does not follow any particular pattern. (c) Scatter
plot of hate intensity of the source tweets and their corresponding re-

ply threads, indicating they are uncorrelated (Pearson’s r =0.11).

1.1(b) shows the hate intensity profile of the entire reply thread of the previous ex-
ample – it does not follow any particular pattern. None of the hate speech detection
models would be able to predict that such a benign online post would ever invoke
hatred in near future.

The retrospective nature of the state-of-the-art hate speech detection models has
been a major bottleneck for the content moderators to intervene before the online
hate crime takes place. A better strategy would be to proactively prevent the hate
crime from happening, in place of letting it materialize and then detecting it.A con-
versation around a benign post often bypasses the lens of the content moderators,
and therefore receives ample opportunity for inviting hate speech perpetrators to

Chapter 1. Introduction 3

adversely act upon it. Figure 1.2 shows the hate intensity (defined in Section 3.1) of
the reply thread of tweets related to ‘Donald Trump’s COVID crisis’ and ‘Joe Biden’s
campaign’. Two perceptible observations are as follows: (i) The root tweets and their
initial replies are not very hate intensive; however, as the discussions progress, the
hate intensity score rises. (ii) There is no consistent pattern across the hate intensity
profiles of reply threads from two topics. The former observation confirms why a
proactive (prevention) strategy is a requisite, while the latter shows the non-triviality
of the hate intensity prediction problem. Furthermore, we believe that combating
online hate speech is not as simple as a binary classification problem (hate vs not-
hate); rather, it is about the intensity of hatred that a post can exhibit. Predicting the
intensity of hatred that stems from the root tweet and its reply thread is crucial for a
content moderator to prioritize which reply thread needs greater manual inspection
and further intervention.

This calls for an early prediction model to forecast whether a tweet will invoke
hate speech.

1.2.2 Hate Intensity Profiles of Reply Threads are Diverse

In this thesis, we solve a novel problem – given a root tweet and a few of its initial
replies, can we predict the hate intensity of the upcoming replies of the tweet? We begin
by suitably quantifying the hate intensity of a tweet (and a reply thread) and then
converting a reply thread into a sequence of hate intensities.. To this end, we curate
entire reply threads of ∼ 4.5k tweets; the average length of a thread is ∼ 200. We
quantify the hate intensity of a reply thread by leveraging a hate speech classifier
and a benchmark hate lexicon. We observe that the hate intensity profiles of reply
threads are non-uniform, exhibiting diverse patterns (c.f. Figure 1.1(b)). Moreover,
the hate intensity of reply threads is not correlated with that of the source tweet (c.f.
Figure 1.1(c)), indicating that identifying hateful source tweet may not be enough to
predict the upcoming toxicity of a reply thread. It is also uncertain which quarter of
reply threads is more prone to hate speech (c.f. Figure A.1 in the Appendix).

1.2.3 Limitations of State-of-the-Art Methods

One can readily map this into a dynamical modeling problem – given an ordered se-
quence of data points representing hate intensity of current reply thread of a source
tweet, the aim is to predict the hate intensity of the upcoming replies. One can
borrow two off-the-shelf approaches to address this problem. First is the classical
signal processing models like auto-regressive moving average (ARMA) and its vari-
ants (ARIMA, ARIMAX, etc.) or its state-space counterparts. The problem with such
models is that one needs to apriori specify the underlying dynamical function; this
is not possible for the current problem. The second approach is to use deep learning
models such as recurrent neural networks (such as LSTM and GRU) and generative
adversarial network (GAN). These techniques do not require specification of the un-
derlying function; they can learn it from the data. However, the problem with them
is that they cannot quantify the uncertainty about the prediction - which the signal
processing models can.

Chapter 1. Introduction 4

FIGURE 1.2: Temporal change of hate intensity score in the reply
threads related to two topics – Joe Biden’s campaign and Donald
Trump’s COVID crisis. Solid lines (shaded regions) signify the av-

erage (confidence) over related reply threads.

1.3 Our Proposed Approaches

1.3.1 DRAGNET

We then propose a novel model, called DRAGNET. It works underneath a stratified
learning framework which aims to capture the heterogeneity amongst the hate in-
tensity profiles of reply threads and to categorize them into homogeneous clus-
ters/strata. We train DRAGNET to predict the weights representing the cluster rep-
resentative probabilities. The prior knowledge vector formulated by unifying the
cluster information and the predicted weights, is used in cohesion with the new
reply thread to predict the hate intensity of upcoming replies. Experimental re-
sults.We then present a detailed comparative analysis of DRAGNET against six base-
lines (adopted to the current setting). DRAGNET proves to be the best model, outper-
forming the strongest baseline with a 9.4% higher Pearson correlation, a 19% lower
Root Mean Square Error (RMSE) and a 6.6% lower Mean Forecast Error (MFE) (for
latter two metrics, lower value is better). Further analysis on the implication in the
change of model parameters and various ablation studies help us diagnose DRAGNET.
in terms of efficiency, consistency and robustness.

1.3.2 DESSERT

In this work, we propose to keep the best of both worlds mentioned above – the
function approximation ability of neural networks and the uncertainty quantifica-
tion capability of state-space models. We propose 1, a deep blind state-space model.
Here ‘blind’ means that we do not need to specify the underlying dynamical model
/ function; we learn it from the data. However, learning one operator for the state-
evolution and one operator for the observation limits the function approximation
capability of the blind state-space model. Moreover, by making the model deep, we
aim to better capture the non-linearity dynamics of online interactions.

Experimental results. We perform an exhaustive evaluation of DESSERT with
seven state-of-the-art baselines (borrowed from both classical signal processing and
deep learning domains) on our curated dataset. We observe that DESSERT outper-
forms all the baselines across four evaluation metrics (both correlation-based and

1DEep State-SpacE model for hate intensity prediction of Reply Threads.

Chapter 1. Introduction 5

error-based). DESSERT achieves 0.67 Pearson’s r and 31.08 Mean Absolute Percent-
age Error (MAPE), which is significantly better than the best baseline [23] (r = 0.557,
MAPE=43.47). We also present a detailed ablation study of DESSERT. We further
dig deeper into the results to explain how the models respond to reply threads –
(i) whose source tweets are originated from across demography, (ii) whose source
tweets are posted by different types of users, (iii) whose source tweets are of differ-
ent types (hate, fake, controversial and others), and (iv) with different thread length.
Unlike other baselines, DESSERT also outputs a confidence score with each predic-
tion, which a content moderator may use to prioritize the tweets that need constant
inspection.

1.4 Related Work

Summary. We discuss the literature survey into three parts - hate speech detection, other
studies related to hate speech, and some of the studies on time-series modeling which are
pertinent to our paper. We also present how our method is different from existing studies.

1.4.1 Studies on Hate Speech

Plethora of techniques have been proposed for the detection of online hate speech
in various languages [2, 3, 18, 27, 36, 37]. An overview is provided in [10]. These
methods cover lexicon-based logistic regression [9, 50] and multi-modality by cap-
turing different aspects of hate [22]. While deep learning based models have shown
efficacy of detection [1, 16], recent studies are now focusing on building explainable
systems [21]. Overcoming the use of static hate-lexicon by prototypical learning has
also been explored [39]. Note that the objective of our research is not to propose a
new hate detection model; however, this work depends on a hate detection model
(Section 4.2.3). Readers are encouraged to go through [15] for a detailed survey on
hate detection models. Mathew et al. [31] performed an exploratory analysis of Gab
[56], and established the presence of strong ties (cohesiveness) among users partici-
pating in hateful content. This behaviour has since been independently verified for
other platforms as well [49]. Masud et al. [30] further proposed a predictive model
to determine the followers who are more likely to retweet a hateful post. Another
aspect of user interaction is the reply thread. Our analysis of reply thread on Twit-
ter uncovered a nuanced and fluctuating sentiment of hate and non-hate, which we
explore in this work.

1.4.2 Time-series models

Since the hate intensity of a reply thread can be mapped as a time series, we con-
sider several time-series forecasting (TSF) models as baselines. The conventional
methods for TSF such as ARMA [42], including exponential smoothing and lin-
ear space models, achieved superlative performance. In many applications, these
models are used to estimate one-step-ahead prediction.These modelling strategies
manouvre the structural assumptions of temporal data of being linear ,sesonal and
stationary which do not hold true for real-world time series which are very volatile
in nature i.e. have unanticipated distribution changes. Deep learning based models
such as CNNs, RNNs and LSTMs have become popular for TSF because they do not
assume prior structure of data. RNNs [51] are capable of retaining information of
preceding results; however, their performance degrades with the increasing length

Chapter 1. Introduction 6

of the sequence. LSTM [11] overcomes the long-term dependency problem to a cer-
tain extent. Some of the recent studies used sequence-to-sequence (Seq2Seq) models
which align with our interest of multi-step forecasting [13, 29]. New architectures
were proposed for the same in [24, 46] to remit the error buildup in multi-step fore-
casting. Transformer-based models like N-Beats [35] have also been successful for
time-series data.

To handle uncertainty in real-world time-series data, many probabilistic forecast-
ing models were proposed, one of them being DeepAR [44]. Deep learning based
state space models have also been in certain applications because of there proba-
bilistic construct. Some studies leverage Generative Adversarial Network (GAN) to
estimate prediction distributions using cVAEs [24], cGANs [55] and ForGAN [23].
However, they fail to encode the multiplicity in time series. In this study, we con-
sider most of the models discussed above as baselines.

7

Chapter 2

Dataset and Baselines

2.1 Input Corpus

To the best of our knowledge, there is no existing dataset that contains complete re-
ply threads on Twitter. Since the Twitter API does not furnish to fetch the entire
reply thread for a particular tweet, we opt for an alternative method. We manually
identify tweets corresponding to various real-world events; we essentially perform
a hashtag-based search related to the 2020 US presidential election, the Brexit refer-
endum in the UK and various other political issues particularly in the US, the UK
and India. The dataset comprises ∼ 4500 root tweets (with their reply threads), a
total of ∼ 1.1 million tweets and ∼ 950k unique users across all threads. Table 2.1
shows that our curated dataset consists of tweets from various geographical loca-
tions spanning multiple topics over which mass discussions took place during and
before our collection process.

We further map the extracted reply threads to the following major topics: (i) Don-
ald Trump’s COVID crisis: root tweets posted as official statements from the Trump
administration, public reactions of Donald Trump’s handling of COVID-19 and con-
troversial claims of Twitter users about the situation in the USA; (ii) Joe Biden’s cam-
paign: root tweets posted during the 2020 US presidential campaign, particularly
with Joe Biden as the person of interest, consisting of controversial claims about
Biden’s history, rumours about his campaign’s claims and some official statements
from his campaign team; (iii) Brexit referendum: root tweets posted by the people of
the UK expressing their opinions about the Brexit situation, some about the mistrust
in Boris Johnson’s administration and the Conservative (Tory) party; (iv) COVID-19
impelled xenophobia - specifically Sinophobia: this subset contains the Twitter mentions
of COVID-19, from across the world, as the “China virus", wherein the reply threads
hold the Chinese community responsible for the global pandemic.

Length of the reply thread. Figure 2.1 shows that the reply threads are of differ-
ent length, with an average (maximum) length close to 200 (566) replies in the entire
dataset. These numbers are quite similar for the four topics.

Number of unique users per reply thread. Figure 2.1 also illustrates that the
distribution of the number of unique users in the reply threads appears to be very

Geolocation Hashtag / Keyword
United States of
America

#TrumpVirus, #CreepyJoe, #MAGA, MAGA terrorist,
biden not my president

United Kingdom brexit, #BrexitShambles, tory, #RejoinEU, boris, #Tories
India #NRC, #CAA, Sushant Singh Rajput
Other china virus, chinese virus, covid crisis, #COVID19

TABLE 2.1: List of hashtags and keywords used to curate the threads
by location.

Chapter 2. Dataset and Baselines 8

FIGURE 2.1: Distributions of the length of the reply threads and the
number of unique users per reply thread (a) in the complete dataset

and (b-e) across topics.

similar to the distribution of lengths of the reply threads for the overall dataset and
across topics. This indicates that there is a high percentage of unique users in a reply
thread (on an average, 88% of replies in a reply thread originate from unique users),
i.e., a single user avoids taking part in the same reply thread multiple times.

Distribution of the lifetime of threads. Figure 2.2 highlights the correlation
between the percentage of tweets per thread and the amount of time it takes to cover
them. We see that 72% of the threads attract 90% of their total replies within the
first 24 hours (1 day). It jumps up to 90% when we account for 72 hours (3 days).
Interestingly, only 60% of the threads terminate within the first week, while more

Chapter 2. Dataset and Baselines 9

FIGURE 2.2: Lifetime of reply threads. We show how much time a
thread takes to grow upon the posting of the root tweet.

than 20% of the threads do not reach full length even after the first month of the
root tweet being posted. Therefore, a large fraction of the activity in reply threads is
observed within just the first 3 days.

Dissimilarity in the hate intensity profiles. As explained in Section 3.1, we in-
troduce the concept of “windowing” to smoothen the hate intensity profile by intro-
ducing a rolling average on the hate intensity profile of the reply thread. Figure 2.3
illustrates the distribution of the pairwise Dynamic Time Warping (DTW)1 distances
over the dataset. We observe that the pairwise DTW distance distribution has a huge
range and a high variance; the median value lies close to 5 which is quite high given
that the range of values in the hate intensity profiles is [0− 1]. This further indicates
that there is no coherent pattern across hate intensity profiles, neither in the com-
plete dataset nor within the topic-specific datasets, indicating the non-triviality of
the problem under study.

2.2 Baseline Methods

To our knowledge, there is no prior work on forecasting hate intensity of reply
threads on Twitter. Since this problem is readily mapped to a time series predic-
tion model, we therefore, adopt both classical and deep learning based time-series
forecasting and temporal pattern modeling approaches.

• ARIMA: It is a statistical time-series prediction model that captures different stan-
dard temporal structures in time series data using auto regressive integrated mov-
ing average.

• LSTM: We use a stacked LSTM with 2-layers of 50 cells each. Finally, we use a
dense layer with ReLU activation to obtain predictions [11].

• CNN: We use 1-dimensional CNN architecture followed by a fully-connected
layer with ReLU activation. For the convolutional layer we use 64 filters and a
kernel size of 2 [32].
1See [34] for the formulation of DTW.

Chapter 2. Dataset and Baselines 10

FIGURE 2.3: Violin distribution for the pairwise DTW distances of
reply threads.

• N-Beats: It is a deep learning based model used for univariate time-series fore-
casting. It relies on forward and backward residual links. [35].

• DeepAR: It is an auto-regressive recurrent network primarily used for time-series
forecasting [44].

• TFT: It is deep neural network architecture for multi-horizon forecasting using
self-attention [25].

• ForGAN: It is a conditional GAN based model designed to learn data distribution
with modules for feature selection. It is used for probabilistic time-series forecast-
ing. [23].

11

Chapter 3

Deep Stratified Learning Based
Model

3.1 Preliminaries

Table 3.1 summarizes the denotations of the important notations. Let an ordered
sequence of first t replies to a root tweet ϕ be T ϕ

1,t = 〈c
ϕ
1 , cϕ

2 , . . . , cϕ
t 〉, where cϕ

i denotes
the ith reply to the tweet. (Note that t denotes an integer index associated to tth reply
in the sequence, not the actual/continuous time.) For each reply c, we quantify its
hate intensity usingH(.) which is a weighted sum of two measures,

H(c) = wHc(c) + (1− w)Hl(c) (3.1)

where w (0 ≤ w ≤ 1) is a hyper-parameter. Hc refers to the probability that the
reply is hateful as indexed by a state-of-the-art hate speech detection model1 (Section
3.3.1). Hl is defined as the average score for all words in a reply from a model-
independent hate lexicon that comprises 2, 895 words (scores are normalised using
min-max scaling) as proposed in [52]. Since, 0 ≤ Hc(c) ≤ 1 and 0 ≤ Hl(c) ≤ 1,
therefore, 0 ≤ H(c) ≤ 1. Each reply thread T ϕ

1,t can be mapped to a sequence of hate
intensities,H

(
T ϕ

1,t
)
= {H(cϕ

1), · · · ,H(cϕ
t)}.

We further smooth each such sequence H
(
T ϕ

1,t
)

using a rolling average operation
with window size δ. A window is a set of δ consecutive replies to a root tweet ϕ.
The hate intensity of a window consisting of a sequence of replies T ϕ

k,k+δ for a tweet
ϕ is measured as,

H
(
T ϕ

k,k+δ

)
= ∑

c∈T τ
k,k+δ

H(c)

= w ∑
c∈T ϕ

k,k+δ

Hc(c) + (1− w) ∑
c∈T ϕ

k,k+δ

Hl(c).
(3.2)

Note that 0 ≤ H
(
T ϕ

k,k+δ

)
≤ δ.

Sentiment features: To capture sentimental context flow in a new reply thread
w.r.t. the initial tweet, we calculate the cosine similarity between the sentiment
embedding of the root tweet ϕ and its corresponding replies, cϕ

1 , cϕ
2 , . . ., CS(cϕ

i) =
CosineSim(Embed(cϕ

i), Embed(ϕ)). The sentiment embedding is the second last fully-
connected layer from the pre-trained XLNet model [54] for sentiment classification.
We apply the same rolling average operation to CS

(
T ϕ

1,t
)

with the same window size

1We use the Davidson model [9] as the default hate speech classifier. However, we also show the
results with other hate speech classifiers in Section 3.3.2.

Chapter 3. Deep Stratified Learning Based Model 12

FIGURE 3.1: Schematic diagram of the data transformation module.
Ss(1,n) is the sequence of cosine similarity values (calculated between
the sentiment embedding of root tweet ϕ and its corresponding se-
quence of replies) for all reply threads in the dataset, andRs(1,n) is the

set of all hate intensity profiles.

FIGURE 3.2: Overall architecture of DRAGNET. After training the au-
toencoder, the concatenated history and future latent representations
are clustered using a fuzzy clustering algorithm. For a new reply
thread, the future hate intensity profile is predicted using (i) the his-
tory latent representation, (ii) the sentiment similarity sequence of the

history, and (iii) the prior knowledge vector extracted from PR(.).

δ as performed on H
(
T ϕ

1,t
)
. Figure 3.1 illustrates the complete data preprocessing

pipeline.
Problem definition: Given a new tweet ϕ and the last th replies in its reply thread

T ϕ
1,th

(used as a training set or history), we aim to predict the hate intensity of the up-
coming replies cϕ

t′ (where t′ > th). However, instead of predicting the hate intensity
per reply, we consider each window of δ future replies and predict the hate intensity
per window,H

(
T ϕ

t′,t′+δ

)
.

3.2 Our Proposed Model: DRAGNET

In this section, we explain our proposed method, DRAGNET2 for hate intensity predic-
tion. DRAGNET is a deep stratified learning [20] approach, which first divides the het-
erogeneous data points (reply threads in our case) into homogeneous clusters/strata
and then trains a deep regressor on each strata to predict the hate intensity. The
schematic diagram of DRAGNET is shown in Figure 3.2.

2Deep stRatified leArninG for hate iNtensity of rEply threads on Twitter

Chapter 3. Deep Stratified Learning Based Model 13

Symbol Description
ϕ A tweet
cϕ

i ith reply to the tweet
Rp,q pth datapoint where q denotes the length

of its hate intensity profile
R∗p,q The recreated pth datapoint of the dataset

from the autoencoder with q denoting the
length of its hate intensity profile

Ss(1,n) Sequence of cosine similarity values
Rs(1,n) Set of all hate intensity profiles

j Number of clusters
δ Window size
th Number of replies in history
t f Index of the last reply in the reply thread
n Maximum length of the reply thread
s Total number of reply threads

NXh Size of encoded history latent vector
NX f Size of encoded future latent vector
Xh Encoded history latent vector
X f Encoded future latent vector
X ∗ f Predicted future latent vector
X Latent vector ofRp,q
X ∗ Latent vector ofR∗p,q
Cc List of cluster centres
P(Cci) Likelihood of belongingness to ith cluster

identified with Cci
X c Prior knowledge

P∗(Cci) Predicted weight for ith cluster centre Cci
to calculate X c

Xd Pre-processed prior vector
Xhc Intermediate prediction vector
GM(.) Clustering model
PR(.) Classification model
FP(.) Prediction model
FPd(.) 1st segment of prediction model
FP p(.) 2nd Prediction model
D(.) Decoder model

TABLE 3.1: Notations and denotations.

The training set is formed by the two dimensional vector of window-wise hate
intensity profile and sentiment context value sequences,

Rs(1,n) = {Rp,q : 1 ≤ p ≤ s, 1 ≤ q ≤ n}

Rp,q = {H
(
T ϕp

k,k+δ

)
: 1 ≤ k ≤ q− δ}

Ss(1,n) = {Sp,q : 1 ≤ p ≤ s, 1 ≤ q ≤ n}

Sp,q = {CS
(
T ϕp

k,k+δ

)
: 1 ≤ k ≤ q− δ}

(3.3)

where s is the total number of reply threads, and n is the maximum length of the
reply thread. The elements Rp,q ∈ Rs(1,n) and Sp,q ∈ Ss(1,n) are the pth data point,
whose reply thread is of length q (ϕp represents the pth root tweet). DRAGNET starts
by first learning low-dimensional latent representations for the hate intensity profile
of reply threads (of irregular lengths) using an autoencoder. In this setting, we learn
two separate latent representations – Xh, the initial few replies which are treated as

Chapter 3. Deep Stratified Learning Based Model 14

the history, and X f , the future hate trend for the rest of the replies. We then employ
a fuzzy clustering approach in an unsupervised setting to assign cluster member-
ship probabilities P(Cc1, Cc2, .., Ccj) and cluster centres (Cc1, Cc2, .., Ccj) to each reply
thread, where j is a hyper-parameter indicating the number of clusters. Following
this, we train a novel deep neural network unit that predicts the cluster member-
ship probabilities, given Xh and Ss(1,th)

, which assigns cluster centres for a new reply
thread. Finally, a novel deep regressor predicts the latent representation of the fu-
ture hate trend X f using Xh and P(Cc1, Cc2, .., Ccj), which, when combined with Xh,
is converted to the complete hate trend by the decoder trained during the autoen-
coder phase.

3.2.1 Time-Series Representative Learning

The reply thread vector Rs(1,n) can be treated as a collection of time series (window-
wise hate intensity profiles) with irregular lengths. State-of-the-art methods on clus-
tering irregular time series involve the use of the Dynamic Time Warping (DTW)
distance metric and its variants to group similar trends together [34]. Even with fa-
vorable outcomes in terms of precision by DTW to map time series similarity, the
noisy and volatile nature of the data points in the current study does not allow it to
show high efficiency in clustering similar hate trends into a single stratum. To cap-
ture a more suitable representation of the time series, we propose an autoencoder
to map each reply thread Rp,q in Rs1,n to a low-dimensional latent representation.
Additionally, instead of a single encoder-decoder architecture, we propose a multi-
encoder approach as proposed in [48]

3.2.2 Proposed Autoencoder

We propose an autoencoder using the Inception-Time module [14] for the initial
transformation stage. The autoencoder consists of dual encoders to make up the
latent space and a single decoder to recreate the complete hate intensity profile from
the latent representation.

Encoder. Many studies proposed models for both uni-variate and multivariate
time series [14, 53]. Time-series modeling involves a transformation stage. Instead
of manually engineering it, we use the Inception-Time module, denoted as Et(.) [14].
It provides a multivariate transformation, which is the concatenation of various uni-
variate time series created by using different kernel sizes along the original time
series. We represent it as,

Xm = Et(Rs(1,n)) (3.4)

where Xm ∈ Rs×n×4 is the intermediate multivariate representation of Rs(1,n) . The
intermediate representation Xm is subjected to the F latten(.) operator that converts
Xm to a one-dimensional vector X f lat. It is followed by layers of linear transforma-
tions which are trained to learn the best representative transformation from X f lat
and correspondingly produce the final representation ofRs(1,n) in the latent space. If
Elt denotes the layers of linear transformations, we can write,

X f lat = F latten(Xm)

Xo = Elt(X f lat)
(3.5)

Here, Xo is the final latent space representation of the original time seriesRs1,n .

Chapter 3. Deep Stratified Learning Based Model 15

Using Equations 3.4 and 3.5, we define two encoders Eh(.) and E f (.). We encode
two segments of each reply thread, Rs(1,th)

and Rs(th+1,t f)
that are termed as history

and future representations respectively, as follows:

Xh = Eh(Rs(1,th)
)

X f = E f (Rs(th+1,t f)
)

(3.6)

Here, Xh and X f form the history and future latent representations, which we
will use finally to decode to the complete hate trend. Note Xh ∈ Rs×NXh and Xh ∈
R

s×NX f , where NXh and NX f represent the length of low dimensional vectors Xh and
X f respectively.

Decoder. Although we use dual encoders to convert the hate intensity of each
reply thread into two latent representations, Xh andX f , we use a single decoderD(.)
to convert the latent representation back to the original input. For this, we concate-
nate the two latent representations and train the decoder to recreate the original hate
intensity profile per reply thread. The functioning of the decoder can be denoted as
follows:

R∗s(1,n) = D(X
∗) (3.7)

We measure the precision of predictions from the decoder by comparing R∗s(1,n) to
Rs(1,n) .

3.2.3 Fuzzy Associations

As stated in Section 3.2.1, the hate intensity profiles of reply threads in our dataset
are noisy and volatile in nature, and have no evident pattern. Our objective is to
use low dimensional latent representations of the data procured via autoencoder (as
discussed in Section 3.2.2) to group similar profiles together. Recent research that
align with this approach are an attestation to the validity of performance of the deep
learning based models in learning hidden features from time-series data for differ-
ent tasks [6, 57]. We use a clustering approach over the latent representations to
group heterogeneous hate intensity profiles into (near-)homogeneous clusters. In
this unsupervised setting, the task of finding meaningful associations in data is un-
fairly dependent on the number of clusters j and the cluster centres. Therefore, we
adopt a fuzzy clustering approach and use the membership probabilities as a feature
embedding, rather than confining each profile to a single cluster.

We define the combined latent space X as,

X = Xh ⊕X f (3.8)

Now, in place of employing a hard clustering approach, i.e., fixing the association
of each profile to the closest cluster, we make use of cluster membership probabilities
from a fuzzy clustering. The membership probability vector represents the associa-
tive probabilities of each cluster with the given thread, denoted by P(Cc1, Cc2, .., Ccj),
where Cci denotes the cluster centre of the ith cluster.

Fuzzy Clustering. Since our objective is to find associations of each hate intensity
profile to the homogeneous clusters, we perform clustering on the combined latent
representation X . We adopt a state-of-the-art fuzzy clustering model [40], denoted

Chapter 3. Deep Stratified Learning Based Model 16

by GM(.) to detect the clusters Cc which is the set of cluster centres as follows:

Cc = GM(X) = (Cc1, Cc2, .., Ccj) (3.9)

where j is the pre-defined number of clusters, and Cci is the cluster centre of the ith

cluster.

3.2.4 Boosting Prediction with Prior Knowledge

The task of predicting the hate intensity of upcoming replies, provided limited his-
tory Rs(1,th)

, is strenuous even for state-of-the-art deep learning models due to the
noisy, volatile and heterogeneous nature of the time-series hate intensity profiles. To
address this, we introduce the notion of prior knowledge to the prediction compo-
nent of our pipeline as the weighted sum of the cluster centres, where the weights
correspond to the cluster membership probabilities for the new thread, denoted by
P∗(Cc1, Cc2, .., Ccj). We define prior knowledge as follows:

X c = ∑
i∈(0≤i≤j)

Cci · P∗(Cci) (3.10)

Note that Cc is calculated over X , i.e., the combined latent representation. Therefore,
to calculate the complete membership probability vector for a new thread, we cannot
use the fuzzy clustering model GM(.) directly. Rather, we construct a prior model
PR(.) with the aim of predicting the membership probabilities for new threads us-
ing only the latent representation of the history Xh and sentiment feature Ss(1,th).

PR
(
Eh(Rs(1,th)

),Ss(1,th)

)
= P∗(Cc1, Cc2, .., Ccj) (3.11)

The precision of the predictions by the prior regression model is measured by com-
paring P∗(Cc1, Cc2, .., Ccj) against P(Cc1, Cc2, .., Ccj).

3.2.5 Estimating Latent Representation of Upcoming Reply Threads

Since our ultimate objective is to predict the complete hate intensity profile trend
given the history Rs(1,th)

, we need to estimate the latent representation of upcoming
future hate intensity profile X ∗ f . This will finally be fed into the decoder along with
the latent representation of the history. For this, we utilize the prior knowledge (as
explained in Section 3.2.4), and the latent representation of the history X c.

To avoid the estimation task from being overly governed by the prior knowl-
edge, we design the predictor in two stages. The first stage involves the creation
of vector i.e., X c

h that constitutes the information required to predict X ∗ f . Since we
are only given Xh, we measure the deviation of the prior from the expected only in
the latent space where we encode the initial history of hate diffusion, i.e., Rs(1,th).
We calculate deviation by first applying the difference operator on the expected (Xh)
and the estimated (X c

h) priors of the reply thread history. We employ a single-layer
perceptron, FPd(.) to formulate a vector that encodes the dissimilarity between the
prior knowledge from history X c

h and Xh, which is denoted as Xd.

Xs = Xh �X c
h ; Xd = FPd(Xs) (3.12)

We finally obtain the Xhc vector by concatenating the provided input Xh, the
pre-processed prior Xd and X c

f as, Xhc = Xh ⊕Xd ⊕X c
f .

Chapter 3. Deep Stratified Learning Based Model 17

The second stage is the deep linear transformation model FP p(.) that predicts
the upcoming hate intensity in the latent space X ∗f as follows:

X ∗f = FP p(Xhc) (3.13)

3.2.6 Decoding Latent Representation

As mentioned in Section 3.2.5, X ∗f is the upcoming hate intensity in the latent space.
We regress this low-dimensional representation to hate intensity profiles of length n,
i.e.,R∗s(1,n) . To serve this purpose, we concatenate the primal versions of the history
Xh and the predicted future X ∗f of reply threads.

X ∗ = Xh ⊕X ∗f (3.14)

where X ∗ is the predicted hate intensity profile of the upcoming reply thread in the
latent space.

We contrive the decoder as a mirror of the encoder. We define the decoder as,

R∗s(1,n) = D(X
∗) (3.15)

where R∗s(1,n) is the final predicted hate intensity profile of the reply thread. We
measure the accuracy of the prediction with respect toR∗s(1,n) .

3.2.7 Implementation Details

We train our proposed autoencoder by backpropagating L2 loss to learn low-dimensional
representations for the hate intensity profiles. Note that the decoderD(.) has a trans-
pose architecture w.r.t. the encoder Eh(.), which is why the decoder also takes special
indices as input for the decoding process. These special indices returned by the In-
ception module of the encoder are used for the unmax-pooling operation. We apply
the Gaussian Mixture model for fuzzy clustering on the concatenated latent repre-
sentations.
PR(.) is a 3-layered deep neural network unit, where the last layer employs

Sigmoid activation. We consider the output of PR(.) to be the estimated weights
P∗(Cc1, Cc2, .., Ccj), as explained in detail in Section 3.2.4. FP p(.) is another 3-layered
feed forward neural network that performs linear transformation and estimates the
future latent space X ∗f .

3.3 Experimental Results and Analysis

3.3.1 Experiment Setup

We consider the following hyper-parameters as default: w = 0.6, δ = 10, th = 35, t f =
284, n = 300, j = 15, NXh = 32, NX f = 128 and DRAGNET with Inception-Time module
[14] in the autoencoder for transformation step with kernel sizes [5, 7, 9]. Davidson’s
model [9] is considered as the default hate speech detection model (see Section 3.1).
A Gaussian Mixture model with covariance type full is used for fuzzy clustering.
We use 80-20 split for training and testing. In Section 3.3.2, we will show how the
model responds to the change in the major hyper-parameters.

Chapter 3. Deep Stratified Learning Based Model 18

Model r RMSE ↓ MFE ↓
LSTM 0.145 0.611 0.500
CNN 0.105 0.644 0.509

DeepAR 0.310 0.484 0.065
TFT 0.469 0.437 0.076

N-Beats 0.380 0.544 0.085
ForGAN 0.240 0.603 0.360

DRAGNET w/o Sentiment 0.515 0.286 0.018
DRAGNET 0.563 0.247 0.010

TABLE 3.2: Overall performance (↓: lower value is better). Second
last row indicates the performace of DRAGNET without the sentiment

feature. The best baseline is italicized.

For the purpose of evaluation, we use three metrics - Pearson Correlation coef-
ficient (r), Root Mean Square Error (RMSE) and Mean Forecast Error (MFE)3. For
the former metric, higher value is better, whereas for the latter two, lower value is
better.

3.3.2 Results and Analysis

In this section, we perform a detailed comparative analysis of the performance of the
competing models. We also show how DRAGNET and the best baseline respond with
respect to changes in the – hate detection model used to measure the hate intensity,
demography and topic of the root tweet, types of users, etc. In addition to this, we
also show how DRAGNET reacts to changes in the model parameters.

Comparative Analysis

Table 4.1 shows the overall performance. In general, DRAGNET outperforms all the
baselines by a significant margin4 across all three comparison metrics. TFT ends up
as the best performing baseline. However, DRAGNET beats TFT by 0.094 points in r,
0.190 points in RMSE and 0.066 points in MFE. Among other baselines, LSTM and
CNN turn out to be the worst baselines, while DeepAR and N-Beats have perfor-
mances comparable to TFT. Surprisingly, ForGAN also seems to be one of the worst
performers. This may be due to the extreme dissimilarity in the hate intensity pro-
files present in our dataset. We also show that DRAGNET abetted with the sentiment
feature is more effective than the other baselines. However, with sentiment as an
additional feature, the performance of DRAGNET improves further.

Detailed Introspection

We further dig deeper into the performance of DRAGNET to better understand its su-
periority and limitations. Throughout this study, we compare DRAGNET with TFT, the
best baseline.

• Hate speech classifier. As explained in Section 3.1, we use a hate speech detection
model to measure the hate intensity score. We are curious to know how the model
performs if we change the hate speech classifier. To this end, we consider the
following hate speech detection models – Davidson et al. [9] (default), Founta

3Given two sequences a and b of length n, MFE(a, b) = ∑n
i=0(a[i]−b[i])

n .
4All results are significant with p < 0.001.

Chapter 3. Deep Stratified Learning Based Model 19

et al.[16] and Waseem et al.[50]. Figure 3.3(a) shows a consistent precedence of
DRAGNET over TFT across all three hate detection models.

• Weight w in the hate intensity score. In Section 3.1, our hate intensity score uses
w to facilitate the trade-off between hate detection model and the hate lexicon
component. As shown in Figure 3.3(b), DRAGNET clearly outperforms TFT for all
three values of w (i.e., 0.45, 0.6, 0.75).

• Demography of root tweet. Our curated dataset consists of reply threads with
root tweets originating in various countries – the US, the UK and India & others
(Brazil, Australia, Argentina). DRAGNET shows consistency across all these geo-
graphical locations as illustrated in Figure 3.3(c).

• Topic-wise data. Figure 3.3(d) illustrates the performance of both DRAGNET and
TFT across four topics (detailed in Section 2.1). DRAGNET beats TFT across all topics.

• Type of root tweet. We randomly select a set of 1830 root tweets and manually la-
bel them as ‘controversial’, ‘fake’, ‘hate’ and ’others’. Figure 3.3(e) again illustrates
that DRAGNET shows consistency across these labels.

• Type of root users. We also analyse whether the popularity of the user who posted
the root tweet affects the performance of the models. To check this, we consider
the follower count of a user as a proxy to popularity. We then divide the root
tweets equally into various bins based on the follower count of root users and
measure the performance across bins as shown in Figure 3.3(f) – Bin 1 (Bin 4) rep-
resents the set of the least (most) popular root users. DRAGNET once again remains
consistent across bins, indicating its stable performance irrespective of the popu-
larity of the root users.

3.3.3 Ablation Study

Furthermore, we study how various model parameters affect the performance of
DRAGNET and TFT.

• Change in δ. The hyper-parameter δ represents the window size in the hate in-
tensity profiles. Figure 3.4(a) shows that both DRAGNET and TFT improve in per-
formance with an increase in the value of δ.

• Change in th. th represents the size of the initial history that it requires to predict
the complete hate intensity profile for a new reply thread. As expected, Figure
3.4(b) illustrates that the prediction accuracy of DRAGNET and TFT increases as th
increases.

• Varying the number of clusters. One of the crucial hyper-parameters of DRAGNET
is the number of clusters, j in the fuzzy clustering step. Figure 3.4(c) illustrates
that DRAGNET’s performance is the best for j = 15 (which is the default value).

• Varying the clustering algorithm. We use Gaussian Mixture (GM) model as the
default clustering method. We further check the performance of DRAGNET with
other clustering methods – C-Means (a hard clustering method) and Bayesian
Gaussian Mixture (BGM, a variant GM). Figure 3.4(d) confirms that GM performs
the best out of the three, with BGM showing comparable results, This also sup-
ports our decision of choosing a fuzzy clustering approach.

Chapter 3. Deep Stratified Learning Based Model 20

FIGURE 3.3: Comparison in performance of DRAGNET and TFT using
the Pearson correlation w.r.t (a) hate speech detection model used, (b)
weight w in the hate intensity function, (c) demography of the root

tweet, (d) topics, (e) type of root tweet, and (f) type of source user.

3.4 Real-world Deployment

DRAGNET was deployed by a fact-checking startup in its advanced AI platform to
monitor real-world harmful content in heterogeneous social media data. It was
tested by being integrated into a proprietary pipeline that ranks and scores indi-
vidual content pieces as well as aggregated semantic content clusters (narratives)
for insights about misinformation and deleterious content. In particular, DRAGNET
was used as an alternative way to profile dynamic streams of content and their ag-
gregated equivalents. The aim here was to use DRAGNET to model the hate profile of
narratives and also to link different narratives with similar profiles. The hate profile
information of narratives is used along with other proprietary metrics to come up
with insights about the potential risk and damage posed by a harmful narrative. The
workflow of the application of DRAGNET in the AI Platform is illustrated in Figure 3.5.

Chapter 3. Deep Stratified Learning Based Model 21

FIGURE 3.4: Performance of DRAGNET and TFT w.r.t the change in
(a) window size, and (b) history. We also show the performance of
DRAGNET with the change in (c) the number of clusters, and (d) the

clustering method.

FIGURE 3.5: Visual workflow of the application of DRAGNET in an ad-
vanced AI Platform for hate intensity profiling and ranking of narra-

tives (aggregated semantic content analysis).

We observe that DRAGNET offers complementary insights and has significant po-
tential to improve the overall accuracy of the pipelines in profiling and ranking con-
tent for hate speech and real-world online harmfulness. In particular, the hate in-
tensity scores from DRAGNET offer additional knowledge to the proprietary pipelines
for ranking and prioritization of high-risk online malevolence for enforcement of
countermeasures to minimize their impact and damage.

We plan to further test DRAGNET extensively on multiple heterogeneous social
media data streams ingested by the platform to comprehend DRAGNET’s abilities to
generalise accurately and to reliably detecting hate speech patterns.

22

Chapter 4

On the Fly Model Training

4.1 Proposed Model: DESSERT

Our objective is to predict the hate intensity of a reply thread for a given source
tweet. We formulate this problem as a dynamical modeling problem. Off-the-shelf
approaches to address such problems like ARMA, its variants, and state-space mod-
els, are proposed either in classical signal processing or in machine learning, Mode-
lOnely RNN and its variants like LSTM and GRU. The disadvantage of signal pro-
cessing approaches is that the underlying dynamical evolution function needs to be
specified. This may be inappropriate in a typical scenario such as ours as the under-
lying evolution function is non-stationary and highly volatile in nature. On the other
hand, machine learning approaches learn the underlying function from the data [19].
However, the shortcoming of off-the-shelf RNNs is that unlike state-space models,
they cannot predict the confidence score around the estimate. The confidence score
is highly relevant to our problem as based on this, the online content moderators
may decide which thread to inspect manually.

To overcome the limitations of both, we propose DESSERT, a Deep State-Space
(DSS) model. DESSERT is built on the advantages of both schools of methods. First,
unlike the standard state-space model where the state evolution and the observation
operators are supposed to be known apriori, we will learn it from the data. Second,
in order to handle non-linearity, we introduce multiple layers of learnable param-
eters for both the observation and the state evolution. DESSERT keeps the ability of
function approximation of neural networks (since it learns the parameters from the
data) and the capacity to model uncertainty from classical state-space models. The
schematic diagram of DESSERT is shown in Figure 4.1

4.1.1 Preliminaries

In this chapter we follow the same definition of hate intensity as in Section 3.1.Since
the underline model uses sliding window for training on the fly we define window
as defined in Section 3.1 to be chunk, further define chunk size as ∆ previously de-
noted as δ to avoid confusion. In the training set, from a given chunk T ϕ

k,k+∆, we
measure the hate intensity score of its constituent replies, i.e., H

(
cϕ

k), H
(
cϕ

k+1), . . .,
H
(
cϕ

k+∆). From this, we extract five quantities, namely:
(i) sum of hate intensities,H

(
T ϕ

k,k+∆

)
,

(ii) hate intensity of the first reply for the chunk,H
(
cϕ

k

)
,

(iii) hate intensity of the last reply for the chunk,H
(
cϕ

k+∆

)
,

(iv) max hate intensity, H
(
T ϕ

k,k+∆

)
max

= maxc∈T ϕ
k,k+∆
H(c),

(v) min hate intensity, H
(
T ϕ

k,i+∆

)
min

= minc∈T ϕ
k,k+∆
H(c).

Chapter 4. On the Fly Model Training 23

This results in a 5-dimensional observed feature vector associated to T ϕ
k,k+∆:

xk =
[
H
(
T ϕ

k,k+∆

)
,H
(
cϕ

k
)
,H
(
cϕ

k+∆

)
,H
(
T ϕ

k,i+∆

)
max

,H
(
T ϕ

k,i+∆

)
min

]
.

4.1.2 Basis Architecture

We consider (xk)1≤k≤K the observed time-ordered sequence vector of size Nx, (zk)1≤k≤K
is the latent state-space vector of size Nz that we want to infer, and (vk)1≤k≤K mod-
els the noise. As explained in Section , we consider Nx = 5 features. Moreover, we
consider the possibility of a multivariate hidden feature space, i.e., Nz can be greater
than 1. The original linear state-space model is given by,{

zk = Azk−1 + v1,k,
xk = Hzk + v2,k,

(4.1)

where the matrices, A and H, are the learnable parameters. When A and H are
known, the solution is the celebrated Kalman filter. When the parameters are un-
known, the solution to the blind Kalman filtering problem has been recently investi-
gated in [47]. A limitation of this aforementioned work is that it cannot handle non-
linearity in the dynamical system. In this present study, we propose to account for
the non-linearity by introducing multiple layers (3 layers in our case) in the model.
The DSS model is given as follows. For every k ∈ {1, . . . , K},{

zk = A0A1A2zk−1 + v1,k,
xk = H0H1H2zk + v2,k,

(4.2)

where A0, A1, A2 and H0, H1, H2 can be understood as latent factors for the state ma-
trix A and the observation matrix H, respectively. Process noise (v1,k)1≤k≤K is zero-
mean Gaussian with covariance matrix Q, and the observation noise (v2,k)1≤k≤K is
zero-mean Gaussian with covariance matrix R. Then Equation 4.2 describes a first-
order Markovian multi-linear Gaussian model, where (zk)1≤k≤K is the sequence of
K unknown states, which can be seen as learned features for describing the data.
The goal is the joint inference from the observed sequence (xk)1≤k≤K of the factors
A0 ∈ RNz×Nz , A1 ∈ RNz×Nz , A2 ∈ TNz×Nz , H0 ∈ RNx×Nz , H1 ∈ RNz×Nz , H2 ∈ RNz×Nz

and of the hidden state sequence (zk)1≤k≤K.
This problem can be considered as blind filtering inference where both the es-

timated series and model parameters are unknown initially, and will be learnt and
estimated from the data. The model is expected to understand trends and update its
parameters for every chunk from the data. This can be done following an expectation-
majorization algorithm [45]. The problem is solved in an alternating manner where
we alternate between (i) the estimation of the state, considering operators A0, A1, A2,
H0, H1, H2 being fixed, and (ii) the update of the parameters, assuming fixed state.
Both steps are elaborated below.

4.1.3 State Update

This is the first step where we consider the parameters A0, A1, A2, H0, H1, H2 to
be fixed and known, and the goal is to infer the latent state. Assume that the initial
state follows z0 ∼ N (z̄0, P0), where P0 is a symmetric definite positive matrix of

Chapter 4. On the Fly Model Training 24

FIGURE 4.1: Schematic diagram of DESSERT where xk represents
the input (ordered sequence of vectors), zk−1 represents the hid-
den state-space vector (i.e. feature) for previous timestamp.
A0, A1, A2, H0, H1, H2 are the learnable parameters, and zk represents

the hidden state-space vector for current timestamp.

RNz×Nz and z̄0 ∈ R. Then, Equation 4.2 reads as a first-order Markovian multi-
linear Gaussian model, where (zk)1≤k≤K is the sequence of K unknown states. The
Kalman filter provides a probabilistic estimate of the hidden state at each time step
k, conditioned to all available data up to time k, through the filtering distribution:

p(zk|x1:k) = N (zk; z̄k, Pk). (4.3)

where z̄k ∈ RNz and Pk ∈ RNz×Nz are the mean and covariance, respectively, of the
filtering distribution. For every k ∈ {1, . . . , K}, z̄k and Pk can be computed by means
of the Kalman filter recursions as follows: For k = 1, . . . , K
Predict state: {

z−k = A0A1A2z̄k−1,
P−k = A0A1A2Pk−1(A0A1A2)

> + Q.
(4.4)

Update state:
yk = xk −H0H1H2z−k , Sk = H0H1H2P−k (H0H1H2)> + R,
Kk = P−k (H0H1H2)>S−1

k ,
z̄k = z−k + Kkyk,
Pk = P−k −KkSkK>k .

(4.5)

The Rauch-Tung-Striebel (RTS) smoother [45] makes a backward recursion on
the data which makes use of the filtering distributions computed by the Kalman
filter to obtain the smoothing distribution p(zk|x1...K). Below, we summarize the
RTS recursions:
For k = K, . . . , 1
Backward Recursion (Bayesian Smoothing):

z−k+1 = A0A1A2z̄k, P−k+1 = A0A1A2Pk(A0A1A2)
> + Q,

Gk = Pk(A0A1A2)
>(P−k+1)

−1,
zs

k = zk + Gk[zs
k+1 − z−k+1],

Ps
k = Pk + Gk(Ps

k+1 − P−k+1)G
>
k .

(4.6)

As a result, the smoothing distribution at each time k is a multivariate Gaussian with
closed-form given by, p(zk|x1...K) = N (zk; zs

k, Ps
k).

Chapter 4. On the Fly Model Training 25

4.1.4 Parameter Updates

The training procedure of DESSERT requires an alternating iteration of Kalman fil-
ter/smoother, considering parameters to be known and fixed initially (E-step), fol-
lowed by the model/state parameters estimation assuming latent states to be fixed
(M-step) [45]. It starts with an initialization stage A[0]

0 , A[0]
1 , A[0]

2 and H[0]
0 , H[0]

1 , H[0]
2 .

For every iteration i, it runs the RTS scheme, presented in Section 4.1.3, then com-
putes the updates A[i+1]

0 , A[i+1]
1 , A[i+1]

2 and H[i+1]
0 , H[i+1]

1 , H[i+1]
2 , given their estimates

at previous EM iteration, i.e., A[i]
0 , A[i]

1 , A[i]
2 and H[i]

0 , H[i]
1 , H[i]

2 . This amounts to max-
imizing this lower bound, so as to increase the marginal log-likelihood of these six
deep latent factors, given the observed data. Let us introduce some useful quantities,
defined from the RTS recursion:

Σ[i] =
1
K

K

∑
k=1

Ps
k + zs

k(z
s
k)
>; Φ[i] =

1
K

K

∑
k=1

Ps
k−1 + zs

k−1(z
s
k−1)

>,

B[i] =
1
K

K

∑
k=1

xk(z
s
k)
>; D[i] =

1
K

K

∑
k=1

Ps
kG>k−1 + zs

k(z
s
k−1)

>, (4.7)

Γ[i] =
1
K

K

∑
k=1

xkx>k .

Then, the computation of A[i+1]
0 , A[i+1]

1 , A[i+1]
2 and H[i+1]

0 , H[i+1]
1 , H[i+1]

2 amounts to
solving the following subproblems (see Appendix A.2 for detailed derivations):

A[i+1]
0 = argminA0

(
K
2

tr
(

Q−1Σ[i] −D[i](A0A[i]
1 A[i]

2)>

−A0A[i]
1 A[i]

2 (D[i])> + A0A[i]
1 A[i]

2 Φ[i](A0A[i]
1 A[i]

2)>
))

,

A[i+1]
1 = argminA1

(
K
2

tr
(

Q−1Σ[i] −D[i](A[i+1]
0 A1A[i]

2)>

−A[i+1]
0 A1A[i]

2 (D[i])> + A[i+1]
0 A1A[i]

2 Φ[i](A[i+1]
0 A1A[i]

2)>
))

,

A[i+1]
2 = argminA2

(
K
2

tr
(

Q−1Σ[i] −D[i](A[i+1]
0 A[i+1]

1 A2)
>

−A[i+1]
0 A[i+1]

1 A2(D[i])> + A[i+1]
0 A[i+1]

1 A2Φ[i](A[i+1]
0 A[i+1]

1 A2)
>
))

.

And,

H[i+1]
0 = argminH0

(
K
2

tr
(

R−1Γ[i] − B[i](H0H[i]
1 H[i]

2)>

−H0H[i]
1 H[i]

2 (B[i])> + H0H[i]
1 H[i]

2 Σ[i](H0H[i]
1 H[i]

2)>
))

,

H[i+1]
1 = argminH1

(
K
2

tr
(

R−1Γ[i] − B[i](H[i+1]
0 H1H[i]

2)>

−H[i+1]
0 H1H[i]

2 (B[i])> + H[i+1]
0 H1H[i]

2 Σ[i](H[i+1]
0 H1H[i]

2)>
))

,

H[i+1]
2 = argminH2

(
K
2

tr
(

R−1(Γ[i] − B[i](H[i+1]
0 H[i+1]

1 H2)
>

−H[i+1]
0 H[i+1]

1 H2(B[i])> + H[i+1]
0 H[i+1]

1 H2Σ[i](H[i+1]
0 H[i+1]

1 H2)
>
))

.

Chapter 4. On the Fly Model Training 26

where tr(·) denotes the trace operator, Q is covariance matrix for the process noise,
and R is the covariance matrix for the observation noise.

Due to the quadratic form of the above problems, the update of each deep factor
takes a closed form:

A[i+1]
0 = D[i](A[i]

2)>(A[i]
1)>

(
A[i]

1 A[i]
2 Φ[i](A[i]

2)>(A[i]
1)>

)−1
,

A[i+1]
1 =

(
(A[i+1]

0)>Q−1A[i+1]
0

)−1
(A[i+1]

0)>Q−1D[i](A[i]
2)>(

A[i]
2 Φ[i](A[i]

2)>
)−1

,

A[i+1]
2 =

(
(A[i+1]

1)>(A[i+1]
0)>Q−1A[i+1]

0 A[i+1]
1

)−1
(A[i+1]

1)>

(A[i+1]
0)>Q−1D[i](Φ[i])−1.

And,

H[i+1]
0 = B[i](H[i]

2)>
(

H[i]
1)>(H[i]

1 H[i]
2 Σ[i](H[i]

2)>(H[i]
1)>

)−1
,

H[i+1]
1 =

(
(H[i+1]

0)>R−1H[i+1]
0

)−1
(H[i+1]

0)>R−1B[i](H[i]
2)>(

H[i]
2 Σ[i](H[i]

2)>
)−1

,

H[i+1]
2 =

(
(H[i+1]

1)>(H[i+1]
0)>R−1H[i+1]

0 H[i+1]
1

)−1
(H[i+1]

1)>

(H[i+1]
0)>R−1B[i](Σ[i]])−1.

4.1.5 On the Fly Training

A limitation of the EM strategy is that it requires reprocessing the full dataset to com-
pute the updates for the state and observation model parameters. On top of be-
ing computationally cumbersome, this strategy implicitly assumes the static values
of these parameters over time during the processing of the whole sequence which
may not be a well-suited practice due to the lack of stationarity in the data. Indeed,
tweeter trends are expected to evolve over time. Moreover, in real-time applications,
users may want rapid feedback on the hate intensity evolution. We thus propose
here a strategy to make DESSERT suitable for online training, reminiscent of recent
implementations of stochastic majorization-minimization algorithms [5]. We set a
window (or mini-batch) size α ≥ 1. At each time step k, the static parameters are
estimated using the last α observations contained in the set Xk = {xj}k

j=k−α+1. In
particular, we run RTS only on the recent α observed data; then we update the pa-
rameters using the smoothing results. This sliding-window strategy presents two
advantages. First, introducing α leads to faster processing. Second, it also allows
better modeling of piece-wise linear processes that vary faster. The price to pay is
that a smaller number of observations also limits the estimation capabilities. For
initializing the RTS iterations, we use a warm start strategy. We set the parameters
to their last updated values for the next timestamp. We initialize the mean and co-
variance of the state at k− α + 1 using the smoothing results from the last update of
the parameters in this window. Note that if α = K, the algorithm goes back to the
original offline version.

Chapter 4. On the Fly Model Training 27

4.1.6 Forecasting

As explained in Section 4.1.2, we proceed in a sliding window fashion. For each
particular observed window Xk, the training of DESSERT allows to extract features
and finds the update for parameters by iterating alternatively EM steps. After sta-
bilization of the EM iterations (for this task, 10 iterations were sufficient for the EM
to reach convergence), we can then use the output to predict the hate intensity of
upcoming chunk of replies. More precisely, for every k ∈ {0, . . . , K − α}, we apply
DESSERT on {xj}k

k≤j≤k+α which provides the estimate,

x̂k+α+1 = H0H1H2z−k+α, (4.8)

associated with a covariance matrix Sk+α, for the immediate next reply chunk in-
dexed by k + α + 1. Note that although DESSERT will perform the prediction on the
whole 5-dimensional vector, we will particularly be interested in the ability of our
model to perform prediction on a single entry of the vector of interest, i.e., the overall
hate intensity of the chunkH

(
T ϕ

k,k+∆

)
.

4.1.7 Model Confidence

Due to the probabilistic approach in Kalman filter, our DESSERT model can estimate
the confidence score associated with the prediction. DESSERT indeed provides distri-
bution of the next observation conditioned to the previously seen data, which is also
called predictive distribution of the observation. Such probabilistic validation allows
to quantify how much the model is (un)certain while predicting the next chunk hate
intensity. Let us express, for every chunk index k, the distribution of the forecasted
x̂k given the past observations:

p(x̂k|x1:k−1) = N
(
x̂k; H0H1H2z−k , Sk

)
, (4.9)

where Sk = H0H1H2((A1A2A3)Pk−1(A1A2A3)> + Q) + R, and z−k , Pk are byprod-
ucts of the Kalman filter, defined in Section 4.1.3 (see [12] for more details about the
predictive distribution of the observations). In our case, we would like to quantify
our confidence score about the prediction given by the model for the hate intensity.
More precisely, we focus on forecasting the sum of hate intensity, as defined in Sec-
tion 3.3, for the next chunk of replies, i.e., predicting the first entry of x̂k, denoted
by x̂k[0]. The value of the first row/column of Sk, denoted by Sk[0, 0], gives us the
uncertainty quantification about such prediction. Unless otherwise stated, DESSERT
puts 95% of confidence on x̂k[0] to belong to the interval [H0H1H2z−k][0]± Sk[0, 0].
We can even go further in the analysis. For instance, we can define the confidence
score about an increase of the hate intensity as:

p̂k =
∫ +∞

x̂k [0]
N
(
y;
[
H0H1H2z−k

]
[0], Sk[0, 0]

)
dy (4.10)

= 1−CDF(x̂k[0]|
[
H0H1H2z−k

]
[0], Sk[0, 0]), (4.11)

where CDF denotes the cumulative distribution function for the multivariate Gaus-
sian model. Equation 4.10 quantifies the probability that the hate intensity will grow
in the next time step. Once we have determined p̂k for every chunk index k, we can

Chapter 4. On the Fly Model Training 28

Model r RMSE ↓ MAPE (%) ↓ SMAPE (%) ↓
ARIMA 0.138 0.584 70.17 54.73
LSTM 0.331 0.515 76.53 46.34
CNN 0.251 0.454 54.68 43.40
N-Beats 0.322 0.388 47.25 39.94
DeepAR 0.308 0.386 48.95 38.56
TFT 0.511 0.413 45.88 40.39
ForGAN 0.557 0.397 43.47 38.58
DESSERT (1 layer) 0.671 0.342 32.28 35.28
DESSERT (2 layers) 0.665 0.394 32.69 35.66
DESSERT (3 layers) 0.670 0.332 31.08 34.01

TABLE 4.1: Overall performance (↓: lower value is better).

validate the method by using the standard cross-entropy loss as:

log-loss =
1
K

K

∑
k=1
− (Lk[i] log(p̂k)) , (4.12)

where Lk ∈ {0, 1} represents the ground-truth at time k for increase (i.e., Lk = 1)
/decrease (i.e., Lk = 0) of xk[0] from k− 1 to k.

4.1.8 Time Complexity

� Training. Let us express the complexity for training DESSERT in a given window
of length α. To this aim, we rely on the complexity analysis for Kalman-based ap-
proaches available in [33], which leads to a complexity of O(αN2.376

z). � Testing.
The testing phase just amounts to evaluating the multi-linear equation (Equation
4.8). This has complexity of O(Nx N2

z) for each chunk. It can be reduced to O(N2
z) if

we want to forecast only one feature (which is the case in our setting, i.e., only the
overall hate intensity).

4.2 Experimental Results and Analysis

For comparison, we use one correlation-based metric (higher is better) – Pearson
correlation coefficient (r), and three metrics for error calculation (lower is better)
– Root mean square error (RMSE), Mean Absolute Percentage Error (MAPE) and
Symmetric Mean Absolute Percentage Error (SMAPE).

4.2.1 Experiment Setup

Default setup. Unless otherwise mentioned, we consider the following setup as
default: w = 0.5, ∆ = 10, α = 20, Nz= 5, Nx=5 and DESSERT with 3 layers, and hy-
perparameters Q = σ2

QI, R = σ2
RI, P0 = σ2

PI, with (σQ, σR, σP) = (10−5, 10−1, 10−1),
z0 = 0 (I : identity matrix), and the hate speech classifier C by [16]. DESSERT. Thanks
to our warm start strategy, the initialisation of hyper-parameters A[0]

0 , A[0]
1 , A[0]

2 and
H[0]

0 , H[0]
1 , H[0]

2 is only required for the very first chunk of the training set, i.e., for k =

t = 0. In practice, we initialized A[0]
0 , A[0]

1 , A[0]
2 with identity matrix, and H[0]

0 , H[0]
1 , H[0]

2
with uniform independent entries in [0, 1]. All results are averaged over a set of four
random initializations. Moreover, we empirically tuned hyper-parameters σQ, σR,
σP, Nz, Nx and window size α to 10−5, 10−1, 10−1, 5, 5, 20 respectively.

Chapter 4. On the Fly Model Training 29

FIGURE 4.2: Performance (MAPE) of DESSERT and ForGAN w.r.t (a)
demography, (b) types of source tweets, (c) types of source users, (d)
length of reply threads, (e) foreseeability, (f) hate speech classifiers
([16] and [8]), (g) weight w, and (h) chunk size ∆. See the Appendix

for the correlation-based (Pearson’s r) performance.

Chapter 4. On the Fly Model Training 30

4.2.2 Overall Performance

Table 4.1 shows the performance of the competing models. Clearly, DESSERT outper-
forms all the baselines with a significant margin. DESSERT (3 layers) achieves 0.113
points gain in Pearson’s r, 0.065 points drop in RMSE, and 12.39% and 4.57% drop in
MAPE and SMAPE respectively compared to ForGAN (the best baseline). Among
the baselines, ARIMA and LSTM/CNN perform the worst.

An advantage of DESSERT over other deep learning based baselines is that it esti-
mates a confidence score along with the prediction (which statistical signal process-
ing models also produce). As discussed earlier in Section 4.1.7, DESSERT helps to
estimate the probabilistic validation. One can estimate the (un)certainty of the pre-
diction of an increase/decrease of the hate intensity, from the log-loss value (Equa-
tion 4.12). Smaller is the loss, more accurate is the model for its prediction of an
increase/decrease of hate intensity. This information helps the practitioners to un-
derstand the impact, in terms of hate causality, for a given thread. For instance,
in our dataset, the log-loss associated to a thread (i.e., ‘Hate’ category, c.f. Section
4.2.3) is 2.51, meaning that the consequences of this category of thread is highly pre-
dictable. It is expected as ‘Hate’ content will tend to generate more hateful reactions.
In contrast, the broader category ‘Others’, corresponding to another thread, seems
more difficult to assess, having a log-loss of 5.38.

4.2.3 Detailed Analysis

Further, we delve deeper into the results of DESSERT and the best baseline (ForGAN)
to understand how they generalize.
Results across demography. Figure 4.2(a) shows how DESSERT and ForGAN per-
form on the reply threads of the source tweets originated from different countries
– the US, the UK, and others (India, Brazil, Australia). DESSERT is consistent across
geographic locations.
Types of Source tweets. The content moderation team at Logically further anno-
tated 1830 randomly selected source tweets into ‘fake’ (518), ‘hate’ (582), ‘controver-
sial’ (550) and ‘others’ (180). We aim to understand how the models perform for
different types of source tweets. Once again, DESSERT shows steady performance
across different types (c.f. Figure 4.2(b)).
Types of source users. One may wonder if the prestige of online users drives the
toxicity of the reply thread. To check this, we divide the reply threads into five equal
bins based on the follower count of the users who posted the source tweets. Figure
4.2(c) shows that unlike ForGAN, DESSERT is agnostic to types of the source users.
Length of reply threads. One may wonder how the forecasting varies with the over-
all length of the reply threads. Here, we divide the reply threads into five equal bins
based on the length of the threads. Figure 4.2(d) shows that although ForGAN im-
proves with the increase of length, DESSERT remains highly consistent.
Foreseeability & early prediction. So far, we have considered reply tweets till t
and reported the prediction for the immediate reply thread, i.e., T ϕ

t,t+∆. Here, we are
interested to check that with the same training data, how far the models can predict.
We further allow the models to predict for T ϕ

t+(n−1)∆,t+n∆, with n = 1, 3, 5, 7. Also,
it captures how early our model can predict. Figure 4.2(e) shows that DESSERT does
not deteriorate much even at n = 7.
Hate speech classifier. To compute hate intensity, we have used a hate speech clas-
sifier C in Equation 3.1. Here, we check how the models respond if we change C. We

Chapter 4. On the Fly Model Training 31

FIGURE 4.3: Model ablation w.r.t. (a) α and (b) training size.

replace our default C [17] by the hate speech detection method proposed by ? and
observe that DESSERT still outperforms ForGAN (Figure 4.2(f)).
Varying w. In Eq. 3.1, the weight w balances the effect of the hate speech classi-
fier and the lexicon to measure hate intensity. Figure 4.2(g) shows that DESSERT’s
accuracy does not depend much on w.
Varying ∆. Figure 4.2(h) shows that with the increase of chunk size ∆, both ForGAN
and DESSERT improve.

4.2.4 Ablation Study

Varying layers. Table 4.1 shows that DESSERT performs the best with three layers.
Varying α. In DESSERT, the parameter α indicated how much historical data we con-
sider for prediction. As expected, Figure 4.3(a) shows that increasing α results in
better prediction.
Changing training size. We experiment with three different sizes of the training
set – 50%, 60% and 70%. Fig. 4.3(b) shows that unlike ForGAN, DESSERT remains
effective with varying training size.

4.3 Real-world Deployment

Logically’s advanced AI platform is a real-world system that can ingest and analyse
data from millions of media sources as well as social media posts. Proprietary mod-
els and custom pipelines in the platform harness state-of-the-art machine learning
and NLP to identify and analyse online problematic harmful content at-scale. Built
on cutting-edge, secure and highly scalable cloud infrastructure, the platform brings
together Logically’s capabilities in granular analysis, classification and detection of
damaging harmful content, its origins and impact. It also provides access to a di-
verse set of stakeholders in different market segments, a suite of countermeasures
to tackle identified problematic content by leveraging in-house expert analysts in
fact-checking and OSINT research.

The technology side of the platform is uniquely developed by implementing
state-of-the-art in AI research and industry best practices in software architecture
and engineering. In order to achieve high-quality analytical throughput on large
volumes of data, the platform leverages cutting-edge cloud technologies such as
Kubernetes, which works with a range of container tools including Docker to make

Chapter 4. On the Fly Model Training 32

software applications highly scalable. On the other hand, the platform applies state-
of-the-art AI research to customise and iteratively evolve its methodologies for ef-
fective modelling of heterogeneous (articles, social media posts, multimedia) data
sources to build reliable AI models that can augment its expert intelligence network
of editors, fact checkers, content moderators and OSINT analysts.

Deployment of multiple AI models is possible in the platform as it implements
micro services architecture to empower a range of products built by Logically with
AI-based insights through an ensemble of REST based machine learning services.
This feature of the platform offered the flexibility to integrate as a REST micro-
service to evaluate its hate speech intensity annotations alongside the company’s
proprietary models and custom pipelines for problematic hateful content analy-
sis. Further, the evaluation revealed that the intensity scores from offer additional
knowledge to the proprietary models for ranking and prioritization of high risk on-
line harms for enforcement of countermeasures to minimize their impact and dam-
age. We plan to further test extensively on multiple heterogeneous social media
data streams ingested by the platform to understand its abilities to generalise in
accurately and reliably detecting hate speech patterns. Also we intend to evaluate
and its future enhanced versions in the AI platform to extract insights to better detect
custom online harms across domains such as health, finance and geopolitics.

33

Chapter 5

Conclusion

In this work, we studied a novel problem - hate intensity prediction of Twitter re-
ply threads. We started off with curating a large-scale dataset of ∼ 4.5k complete
reply threads related to four controversial topics from Twitter. We then proposed
DRAGNET, a novel deep stratified learning model to address the problem. DRAGNET is
highly efficient, outperforming six baselines.In addition, DRAGNET has been deployed
in an advanced AI platform for monitoring detrimental content on the web to pro-
file and ranking content clusters in order to track the high risk threats and thereby
to recommend countermeasures to minimise their reach and to reduce the damage.
We further proposed model that is an online model catering to the volatile nature of
twitter i.e. DESSERT, a deep state-space model that significantly outperforms all the
baselines. Detailed study further brought out how DESSERT generalizes w.r.t. sev-
eral decision choices. DESSERT has also been deployed in Logically’s advanced AI
platform for monitoring online problematic hateful content and recommend coun-
termeasures to minimise its reach and reduce the damage (see Appendix). In future,
we intend to capture user metadata and graph-level signals to enhance the accuracy.

34

Chapter 6

Publications

• Dahiya, Snehil, Shalini Sharma, Dhruv Sahnan, Vasu Goel, Emilie Chouzenoux,
Víctor Elvira, Angshul Majumdar, Anil Bandhakavi, and Tanmoy Chakraborty.
"Would your tweet invoke hate on the fly? forecasting hate intensity of reply
threads on twitter." In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery Data Mining, pp. 2732-2742. 2021. [7]

• Sahnan, Dhruv, Snehil Dahiya, Vasu Goel, Anil Bandhakavi, and Tanmoy Chakraborty.
"Better Prevent than React: Deep Stratified Learning to Predict Hate Intensity
of Twitter Reply Chains." In 2021 IEEE International Conference on Data Min-
ing (ICDM), pp. 549-558. IEEE, 2021. [43]

35

Appendix A

Appendix

A.1 Additional Results

Figure A.2 shows the distribution of the reply thread length and the number of
unique users per reply thread. Figure A.1 shows that there is not single quarter
of the threads which is most hateful across all the threads. This indicates that the
forecasting is not straightforward, and there is no underlying function which mod-
els the hate intensity pattern. Figure A.3 shows the detailed analysis of the results in
terms of Pearson’s r. Figure A.4 shows the ablation results in terms of Pearson’s r.

A.2 Expectation-Minimization

The training of requires the estimation of the matrices A0, A1, A2 and H0, H1, H2
jointly with the state. This problem can be solved efficiently using an expectation-
maximization (EM) algorithm [45], that alternates classic Kalman filtering/smoothing
and the update of matrix parameters, with the aim of reaching the maximum likeli-
hood (ML) estimator of those parameters. With the proposed model in Eq. 4.2, the
EM consists in searching for A0, A1, A2 and H0, H1, H2 maximizing p(A0, A1, A2, H0,
H1, H2|x1:K) or, equivalently, maximizing ϕK(A0, A1, A2, H0, H1, H2)
= log p(x1:K|A0, A1, A2, H0, H1, H2). The EM algorithm is a type of majorization-
minimization [5] approach. It allows to compute a lower bound Q of the marginal
likelihood, satisfying that, for any A0, A1, A2, and H0, H1, H2, ϕK(A0, A1, A2, H0, H1, H2)
≥ Q(A0, A1, A2, H0, H1, H2; Θ[i]), where Θ[i] gathers the outputs of the RTS smoother
at previous EM iterate i, listed in Equation 4.7. The application of [45, Theo.12.4] to
our model in Equation 4.2 and the cancellation of constant terms, leads to the func-
tion

Q(A0, A1, A2, H0, H1, H2, Θ[i]) =

− K
2

tr
(

Q−1Σ[i] −D[i](A0A1A2)
> −A0A1A2(D[i])>

+A0A1A2Φ[i](A0A1A2)
>
)

− K
2

tr
(

R−1Γ[i] − B[i](H0H1H2)
> −H0H1H2(B[i])>

+H0H1H2Σ[i](H0H1H2)
>
)

.

Appendix A. Appendix 36

FIGURE A.1: Heat map showing the hate intensity per quarter of the
reply threads (sorted by the hate intensity of the source tweets). We
divide each reply thread into four equal quarters and measure hate
intensity per quarter. It indicates that there is no single quarter which

is always more hateful than the others across reply threads.

FIGURE A.2: Distribution of (a) the length of reply threads and (b) the
number of unique users involved in reply threads.

Appendix A. Appendix 37

FIGURE A.3: Performance (Pearson’s r) of and ForGAN w.r.t (a) de-
mography, (b) types of source tweets, (c) types of source users, (d)
length of reply threads, (e) foreseeability, (f) hate speech classifiers (?

and ?), (g) weight w, and (h) chunk size ∆.

The proposed update in Section 4.1.4 amounts to maximizing Q(·, Θ[i]), for i =
1, 2, . . ., using a coordinate descent algorithm, i.e.,

A[i+1]
0 = argminA0

−Q(A0, A[i]
1 , A[i]

2 , H[i]
0 , H[i]

1 , H[i]
2 , Θ[i])

A[i+1]
1 = argminA1

−Q(A[i+1]
0 , A1, A[i]

2 , H[i]
0 , H[i]

1 , H[i]
2 , Θ[i])

A[i+1]
2 = argminA2

−Q(A[i+1]
0 , A[i+1]

1 , A2, H[i]
0 , H[i]

1 , H[i]
2 , Θ[i])

H[i+1]
0 = argminH0

−Q(A[i+1]
0 , A[i+1]

1 , A[i+1]
2 , H0, H[i]

1 , H[i]
2 , Θ[i])

H[i+1]
1 = argminH1

−Q(A[i+1]
0 , A[i+1]

1 , A[i+1]
2 , H[i+1]

0 , H1, H[i]
2 , Θ[i])

H[i+1]
2 = argminH2

−Q(A[i+1]
0 , A[i+1]

1 , A[i+1]
2 , H[i+1]

0 , H[i+1]
1 , H2, Θ[i]),

Appendix A. Appendix 38

FIGURE A.4: Model ablation w.r.t. (a) α and (b) training size.

which leads to the six sub-problems provided in Section 4.1.4. This procedure is the-
oretically sound (see [4, 45] for more details). In particular, it is guaranteed to yield
a monotonic increase of the marginal log-likelihood function ϕK and convergence to
a stationary point of it.

39

Bibliography

[1] Pinkesh Badjatiya et al. “Deep Learning for Hate Speech Detection in Tweets”.
In: WWW. 2017, 759–760.

[2] Mohit Bhardwaj et al. “Hostility detection dataset in Hindi”. In: arXiv preprint
arXiv:2011.03588 (2020).

[3] Tanmoy Chakraborty et al. Combating Online Hostile Posts in Regional Languages
During Emergency Situation: First International Workshop, CONSTRAINT 2021,
Collocated with AAAI 2021, Virtual Event, February 8, 2021, Revised Selected Pa-
pers. Vol. 1402. Springer Nature, 2021.

[4] Emilie Chouzenoux and Víctor Elvira. “GraphEM: EM algorithm for blind
Kalman filtering under graphical sparsity constraints”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). IEEE. 2020,
pp. 5840–5844.

[5] Emilie Chouzenoux and Jean-Christophe Pesquet. “A Stochastic Majorize-Minimize
Subspace Algorithm for Online Penalized Least Squares Estimation”. In: IEEE
Transactions on Signal Processing 65.18 (2017), pp. 4770–4783.

[6] Zhicheng Cui, Wenlin Chen, and Yixin Chen. “Multi-scale convolutional neu-
ral networks for time series classification”. In: arXiv preprint arXiv:1603.06995
(2016).

[7] Snehil Dahiya et al. “Would your tweet invoke hate on the fly? forecasting hate
intensity of reply threads on twitter”. In: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 2021, pp. 2732–2742.

[8] Thomas Davidson et al. “Automated Hate Speech Detection and the Problem
of Offensive Language”. In: ICWSM. 2017, pp. 512–515.

[9] Thomas Davidson et al. “Automated hate speech detection and the problem
of offensive language”. In: ICWSM. Vol. 11. 1. 2017.

[10] P Deepak, Tanmoy Chakraborty, Cheng Long, et al. Data Science for Fake News:
Surveys and Perspectives. Vol. 42. Springer Nature, 2021.

[11] Steven Elsworth and Stefan Güttel. “Time series forecasting using LSTM net-
works: A symbolic approach”. In: arXiv preprint arXiv:2003.05672 (2020).

[12] V. Elvira, J. Míguez, and P. .M. Djurić. “Adapting the Number of Particles in
Sequential Monte Carlo Methods through an Online Scheme for Convergence
Assessment”. In: IEEE Transactions on Signal Processing 65.7 (2017), pp. 1781–
1794.

[13] Chenyou Fan et al. “Multi-horizon time series forecasting with temporal atten-
tion learning”. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pp. 2527–2535.

[14] Hassan Ismail Fawaz et al. “Inceptiontime: Finding alexnet for time series clas-
sification”. In: Data Mining and Knowledge Discovery 34.6 (2020), pp. 1936–1962.

Bibliography 40

[15] Paula Fortuna and Sérgio Nunes. “A survey on automatic detection of hate
speech in text”. In: ACM Computing Surveys 51.4 (2018), pp. 1–30.

[16] Antigoni Maria Founta et al. “A Unified Deep Learning Architecture for Abuse
Detection”. In: WebSci. 2019, 105–114.

[17] Antigoni-Maria Founta et al. “Large Scale Crowdsourcing and Characteriza-
tion of Twitter Abusive Behavior”. In: ICWSM. 2018, pp. 491–500.

[18] Arijit Ghosh Chowdhury et al. “ARHNet - Leveraging Community Interaction
for Detection of Religious Hate Speech in Arabic”. In: ACL Student Research
Workshop. Florence, Italy, July 2019, pp. 273–280.

[19] Barbara Hammer. “On the approximation capability of recurrent neural net-
works”. In: Neurocomputing 31.1-4 (2000), pp. 107–123.

[20] Peter Hastings et al. “Stratified learning for reducing training set size”. In:
International Conference on Intelligent Tutoring Systems. Springer. 2016, pp. 341–
346.

[21] Md. Rezaul Karim, Sumon Dey, and Bharathi Raja Chakravarthi. “DeepHa-
teExplainer: Explainable Hate Speech Detection in Under-resourced Bengali
Language”. In: ArXiv abs/2012.14353 (2020).

[22] Douwe Kiela et al. “The Hateful Memes Challenge: Detecting Hate Speech in
Multimodal Memes”. In: NIPS. 2020, pp. 1–14.

[23] Alireza Koochali et al. “Probabilistic forecasting of sensory data with genera-
tive adversarial networks–forgan”. In: IEEE Access 7 (2019), pp. 63868–63880.

[24] Shiyang Li et al. “Enhancing the locality and breaking the memory bottleneck
of transformer on time series forecasting”. In: arXiv preprint arXiv:1907.00235
(2019).

[25] Bryan Lim et al. “Temporal Fusion Transformers for Interpretable Multi-horizon
Time Series Forecasting”. In: CoRR abs/1912.09363 (2019). arXiv: 1912.09363.

[26] Ping Liu et al. “Forecasting the presence and intensity of hostility on Instagram
using linguistic and social features”. In: ICWSM. Vol. 12. 1. 2018.

[27] Son T Luu, Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen. “A Large-scale
Dataset for Hate Speech Detection on Vietnamese Social Media Texts”. In:
arXiv preprint arXiv:2103.11528 (2021).

[28] Srishti Rai2 Manoj Kumar Pathak1. “Mob Lynching: A New Form of Hate
Crime”. In: Medico Legal Update 20.3 (2020), pp. 122–128.

[29] Zelda Mariet and Vitaly Kuznetsov. “Foundations of sequence-to-sequence
modeling for time series”. In: AISTATS. 2019, pp. 408–417.

[30] Sarah Masud et al. “Hate is the New Infodemic: A Topic-aware Modeling of
Hate Speech Diffusion on Twitter”. In: arXiv preprint arXiv:2010.04377 (2020).

[31] Binny Mathew et al. “Spread of Hate Speech in Online Social Media”. In: Web-
Sci. 2019, 173–182.

[32] Sidra Mehtab, Jaydip Sen, and Subhasis Dasgupta. “Robust Analysis of Stock
Price Time Series Using CNN and LSTM-Based Deep Learning Models”. In:
ICECA. 2020, pp. 1481–1486.

[33] Corey Montella. The Kalman filter and related algorithms: A literature review. Tech.
rep. https://www.researchgate.net/publication/236897001_The_Kalman_
Filter_and_Related_Algorithms_A_Literature_Review. 2011.

https://arxiv.org/abs/1912.09363
https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review
https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review

Bibliography 41

[34] Vit Niennattrakul and Chotirat Ann Ratanamahatana. “On Clustering Mul-
timedia Time Series Data Using K-Means and Dynamic Time Warping”. In:
MUE. 2007, pp. 733–738. DOI: 10.1109/MUE.2007.165.

[35] Boris N Oreshkin et al. “N-BEATS: Neural basis expansion analysis for inter-
pretable time series forecasting”. In: arXiv preprint arXiv:1905.10437 (2019).

[36] Parth Patwa et al. “Fighting an infodemic: Covid-19 fake news dataset”. In:
International Workshop on Combating Online Hostile Posts in Regional Languages
during Emergency Situation. Springer. 2021, pp. 21–29.

[37] Parth Patwa et al. “Overview of CONSTRAINT 2021 Shared Tasks: Detecting
English COVID-19 Fake News and Hindi Hostile Posts”. In: Combating Online
Hostile Posts in Regional Languages during Emergency Situation. Ed. by Tanmoy
Chakraborty et al. Cham: Springer International Publishing, 2021, pp. 42–53.
ISBN: 978-3-030-73696-5.

[38] Fabio Poletto et al. “Resources and benchmark corpora for hate speech detec-
tion: a systematic review”. In: Lang Resources & Evaluation (2020) (2020).

[39] Jing Qian et al. “Lifelong Learning of Hate Speech Classification on Social Me-
dia”. In: NAACL. 2021, pp. 2304–2314.

[40] Douglas Reynolds. “Gaussian Mixture Models”. In: Encyclopedia of Biometrics.
Ed. by Stan Z. Li and Anil Jain. Boston, MA: Springer US, 2009, pp. 659–663.
ISBN: 978-0-387-73003-5. DOI: 10.1007/978-0-387-73003-5_196. URL: https:
//doi.org/10.1007/978-0-387-73003-5_196.

[41] Manoel Ribeiro et al. “"Like Sheep Among Wolves": Characterizing Hateful
Users on Twitter”. In: MIS2 Workshop at WSDM’2018. Dec. 2017.

[42] Ignacio Rojas et al. “Soft-computing techniques and ARMA model for time
series prediction”. In: Neurocomputing 71.4-6 (2008), pp. 519–537.

[43] Dhruv Sahnan et al. “Better Prevent than React: Deep Stratified Learning to
Predict Hate Intensity of Twitter Reply Chains”. In: 2021 IEEE International
Conference on Data Mining (ICDM). IEEE. 2021, pp. 549–558.

[44] David Salinas et al. “DeepAR: Probabilistic forecasting with autoregressive re-
current networks”. In: International Journal of Forecasting 36.3 (2020), pp. 1181–
1191.

[45] Simo Särkkä. Bayesian filtering and smoothing. 3. Cambridge University Press,
2013.

[46] Rajat Sen, Hsiang-Fu Yu, and Inderjit Dhillon. “Think globally, act locally: A
deep neural network approach to high-dimensional time series forecasting”.
In: arXiv preprint arXiv:1905.03806 (2019).

[47] Shalini Sharma et al. “Blind Kalman Filtering for Short-term Load Forecast-
ing”. In: IEEE Transactions on Power Systems 35.6 (2020), pp. 4916–4919.

[48] Jianhua Sun et al. “Three Steps to Multimodal Trajectory Prediction: Modality
Clustering, Classification and Synthesis”. In: arXiv preprint arXiv:2103.07854
(2021).

[49] Milo Trujillo et al. “What is BitChute? Characterizing the "Free Speech" Alter-
native to YouTube”. In: ACM Hypertext. New York, NY, USA: Association for
Computing Machinery, 2020, 139–140. ISBN: 9781450370981.

https://doi.org/10.1109/MUE.2007.165
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196

Bibliography 42

[50] Zeerak Waseem and Dirk Hovy. “Hateful symbols or hateful people? predic-
tive features for hate speech detection on twitter”. In: NAACL student research
workshop. 2016, pp. 88–93.

[51] Xin Wei et al. “Machine learning for pore-water pressure time-series predic-
tion: application of recurrent neural networks”. In: Geoscience Frontiers 12.1
(2021), pp. 453–467.

[52] Michael Wiegand et al. “Inducing a Lexicon of Abusive Words – a Feature-
Based Approach”. In: NAACL. 2018, pp. 1046–1056.

[53] Cuili Yang et al. “Design of polynomial echo state networks for time series
prediction”. In: Neurocomputing 290 (2018), pp. 148–160.

[54] Zhilin Yang et al. “Xlnet: Generalized autoregressive pretraining for language
understanding”. In: arXiv preprint arXiv:1906.08237 (2019).

[55] Ye Yuan and Kris Kitani. “Diverse trajectory forecasting with determinantal
point processes”. In: arXiv preprint arXiv:1907.04967 (2019).

[56] Savvas Zannettou et al. “What is Gab: A Bastion of Free Speech or an Alt-Right
Echo Chamber”. In: WWW. 2018, 1007–1014.

[57] Ali Ziat et al. “Spatio-temporal neural networks for space-time series forecast-
ing and relations discovery”. In: ICDE. IEEE. 2017, pp. 705–714.

	Certificate
	Abstract
	Acknowledgements
	Introduction
	Background
	Motivation and Observations for the Thesis
	Benign Posts can Manifest Hate Speech
	Hate Intensity Profiles of Reply Threads are Diverse
	Limitations of State-of-the-Art Methods

	Our Proposed Approaches
	DRAGNET
	DESSERT

	Related Work
	Studies on Hate Speech
	Time-series models

	Dataset and Baselines
	Input Corpus
	Baseline Methods

	Deep Stratified Learning Based Model
	Preliminaries
	Our Proposed Model: DRAGNET
	Time-Series Representative Learning
	Proposed Autoencoder
	Fuzzy Associations
	Boosting Prediction with Prior Knowledge
	Estimating Latent Representation of Upcoming Reply Threads
	Decoding Latent Representation
	Implementation Details

	Experimental Results and Analysis
	Experiment Setup
	Results and Analysis
	Comparative Analysis
	Detailed Introspection

	Ablation Study

	Real-world Deployment

	On the Fly Model Training
	Proposed Model: DESSERT
	Preliminaries
	Basis Architecture
	State Update
	Parameter Updates
	On the Fly Training
	Forecasting
	Model Confidence
	Time Complexity

	Experimental Results and Analysis
	Experiment Setup
	Overall Performance
	Detailed Analysis
	Ablation Study

	Real-world Deployment

	Conclusion
	Publications
	Appendix
	Additional Results
	Expectation-Minimization

	Bibliography

