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Abstract

Non-Intrusive Load Monitoring (NILM), also known as Energy Disaggregation,
1s the process of segregating a building’s total electricity consumption into its
appliances by appliance consumption from the smart meter data. In developed
countries, Smart meters are currently being rolled out on a large scale, mainly
due to the two most important benefits of energy disaggregation: 1)helps con-
sumers understand their energy usage by providing itemized bills; 2)helps grids
with capacity planning. These benefits ultimately lead to energy saving and
cost-cutting.

Existing algorithms for NILM consist of a training phase in which sub-metered
appliance data is used to build models of the appliances. In the test phase, these
models are used to disaggregate the total electrical energy consumption. To col-
lect the appliance-level data, we need to put sensors on appliances present in the
building. This makes the training phase intrusive. Due to this, such methods do
not provide a scalable solution for NILM.

This thesis has three main objectives: 1)To propose more accurate algorithms
for NILM than state of the art; 2)To propose the methods which make the train-
ing phase completely non-intrusive, i.e., to dodge the requirement of the sub-
metered data ; 3)To propose an algorithm that can work with compressed energy
signals in order to save the bandwidth and avoid network congestion.

First, we propose a dictionary-learning based algorithm called Deep Sparse
Coding for NILM. The usual technique is to learn a dictionary for every device
and use the learned dictionaries as a basis for blind source separation during dis-
aggregation. Prior studies in this area are shallow learning techniques, i.e., they
learn a single layer of dictionary for every device. In this work, we learn mul-
tiple layers of dictionaries for each device. These multi-level dictionaries are
used as a basis for source separation during disaggregation. We show that this
algorithm outperforms the benchmark techniques like Factorial Hidden Markov



Model and Discriminative Disaggregating Sparse Coding.

Second, we follow the multi-label classification based paradigm for NILM
and determine the state(On/Off) of the appliances present in the building. For
this, we propose several algorithms that adapted Transform Learning, Sparse
Representation Classifier, Restricted Boltzmann Machine and Long Short Term
Memory to perform multi-label classification and subsequently disaggregating
the appliance-level load.

Third, we propose a compressed sampling(CS) approach. The high-frequency
power signal from a smart meter is encoded (by a random matrix) to very few
samples making the signal suitable for WAN transmission without choking net-
work bandwidth. CS guarantees the recovery of the high-frequency signal from
the few transmitted samples under certain conditions. This work shows how to
recover the signal and simultaneously disaggregate it.

The motive of the work presented in this thesis is to propose NILM algo-
rithms independent of the sub-metered data and make advancements in state-of-
the-art in the field of energy disaggregation.

i



Dedication

To,
My loving grandparents

iii



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr Angshul
Majumdar for his constant support, patience and motivation in my research jour-
ney so far. His guidance helped me throughout the time of my PhD and writing
of this dissertation. I would like to thank him for providing outstanding research
environment and facilities.

I would like to thank my committee members Dr Shobha Sundar Ram and Dr P.
B. Sujit. for their insightful comments. I am grateful to the Indraprastha Insti-
tute of Information Technology for providing an excellent infrastructure.

I thank my labmates, namely Vanika Singhal, Megha Gupta Gaur, Jyoti Maggu,
Aanchal Mongia, Shalini Sharma, Pooja Gupta and Anurag Goel, for their com-
panionship and never-ending tea-time stories. I gratefully acknowledge their
help and support.

I would like to thank my family, especially my father and mother, for always
believing in me, for their continuous love and support throughout my life. I owe
a special thanks to my husband, Alok Singh, for his care, patience, encourage-
ment and unwavering support throughout this journey.

v



Contents

Abstract i
Dedication iii
Acknowledgements iv
List of Tables viii
List of Figures 1
1 Introduction 2
1.1 Problem Statement . . . ... ... ............... 3

1.2 Background . . .. ... ... ... 4
1.2.1  Event-based Methods . . . . ... .. ... ...... 5

1.2.2  Finite State Machines . . . ... ... ... ...... 6

1.23 SparseCoding . . .. ... ... ... ......... 7

1.2.4  Discriminative Disaggregating Sparse Coding . . . . . 9

1.2.5 Neural Networks . . . .. ... ... ... ...... 11

1.2.6  Multi-Label Classification Based Approaches . . . . . 12

1.3 Datasets . . . . . . . . . . e e 13
1.3.1 Reference Energy Disaggregating Dataset . . . . . . . . 13



1.3.2 Pecan Street Dataset . . . . . . .. ... ... ..... 14

1.4 Research Contributions . . . . . . . . . . . . . . . ... .... 14

Deep Sparse Coding and Analysis Co-Sparse Coding for Non-Intrusive

Load Monitoring 16
2.1 Literature Review . . . . . . . . ... ... ... ... 17
2.1.1  Synthesis Sparse Coding . . . ... ... ........ 17
2.1.2  Analysis Co-Sparse Coding . . . .. ... .. ..... 18
2.2 Proposed Formulation for Deep Sparse Coding . . . . . .. .. 20
2.2.1 Greedy Solution . . ... ... .. ... .. 23
2.2.2 ExactSolution . . .. ... .. ... ... ... 25
2.2.3 Energy Disaggregation . . . . ... ... ........ 27
2.3 Proposed Formulation for Analysis Co-Sparse Coding . . . . . . 28
2.3.1 Simple Co-Sparse Coding . . . . . ... ... ..... 29
2.3.2 Distinctive Dictionaries . . . . . . . . . ... ... ... 34
2.3.3 Disaggregating Dictionaries . . . . . . .. .. ... .. 35
2.4 Experimental Evaluation . . .. .. .. ... .......... 38
2.4.1 Results with Deep Sparse Coding . . . ... ... ... 40
2.4.2  Results with Analysis Co-Sparse Coding . . . . . . .. 49
25 DisCcusSIOn . . . . ... Lo e e e e e e 53
Non-Intrusive Load Monitoring via Multi-Label Classification 55
3.1 Literature Review . . . . . . . . .. ... ... ... .. 56
3.2 Proposed Formulations . . . . . . ... ... ... ....... 58

3.2.1 Multi-Label Sparse Representation-Based Classification 58
3.2.2 Multi-Label Restricted Boltzmann Machine . . . . . . . 59

3.2.3  Multi-Label Deep Convolutional Transform Learning . . 63

vi



3.3 Experimental Evaluation

3.4

4.1

4.2

4.3
4.4
4.5
4.6

.................

3.3.1 Results- Multi-Label Sparse Representation-Based Clas-

sification

3.3.2 Results- Multi-Label Restricted Boltzmann Machine . .

3.3.3  Multi-Label Deep Convolutional Transform Learning

3.3.4 Classification
3.3.5 Regression

Discussion

Literature Review

------------

........

-----------------

Blind Compressed Sensing for Non-Intrusive Load Monitoring

.................

4.1.1 Blind Compressed Sensing . . . . . ... ........

Proposed Formulation for Blind compressed NILM . . . . . . .

4.2.1 Training
4.2.2 Testing

Proposed formulation for Deep Blind Compressed NILM . . . .

Experimental Evaluation of BCS

-----------------

Experimental Evaluation of Multi-Label BCS . . . . . ... ..

Discussion

5 Conclusion

5.1

5.2 Future Work

Summary of Contribution

5.2.1 Domain Adaptation

------------

o e e e

.................

.................

5.2.2  Training-less Non-Intrusive Load Monitoring . . . . . .

References

vii

69
71
71
72
73

75
76
77
81
81
83
85
87
88
92

93
93
04
95
95

96



List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Disaggregation Accuracieson REDD . . . . ... ... ... 39
Variation of Accuracy withDepth . . . . . . ... ... ... 39
Disaggregation Accuracies on Pecan Street . . . . . . . . .. 43
Energy Error For Common Devices . . . . .. .. ... ... 44
Variation of Error withDepth . . . . . . . ... ... ... .. 44
Description of Devices . . . . . . . ... ... ......... 45
Energy Error for Common Devices . . . .. ... ... ... 45
TRAINING MODE DISAGGREGATION ACCURACY (MEAN

OF4TESTHOUSES) . . . . .. .. ... ... .. ...... 50
TESTING MODE DISAGGREGATION ACCURACY ... 51
SRC: Classification Resultson REDD . . . . . ... ... .. 63
SRC: Classification Results on Pecan Street . . . . . . . . .. 63
ML-SRC: Appliance-Level Evaluation on REDD . . . . .. 68
ML-SRC: Appliance-Level Evaluation on Pecan Street . . . 68
MLC-RBM: Appliance-Level Evaluation on REDD . . . . . 70

MLC-RBM: Appliance-Level Evaluation on Pecan Street . . 70

MLC-RBM: Performance Evaluation on REDD . . . . . .. 70
MLC-RBM: Performance Evaluation on Pecan Street . . . . 71
Deep-CTL: Classification Resultson REDD . . . . . . . . .. 72

3.10 Deep-CTL: Classification Results on Pecan Street . . . . . . 72

viii



4.1

4.2
43
4.4
45
4.6

cNILM: Disaggregation Performance Evaluation (Using Pre-

cision/Recall) . . . . . ... ... ... .. ... . ..., 87
Deep-cNILM: Classification Resultson REDD . . . . . . .. 88
Deep-cNILM: Classification Results on Pecan Street . . . . . 89
Comparison of Runtimes in Seconds . . . . . . ... .. ... 90
Deep-cNILM: Classification Results on Pecan Street . . . . . 90

Comparison of Reconstruction . . . . . . ... ... ... .. 90

ix



List of Figures

2.1
2.2
2.3

2.4
2.5

3.1

3.2

Dictionary Learning . . . . . . . . . .. .. ... ... ...
Deep Dictionary Learning . . . . . . ... ... ... .....

Energy Disaggregation : Qualitative Look. Left — DDSC [8];
Right — Proposed Greedy Method. . . . . . . .. .. ... ...

Comparison of Disaggregation Accuracy . . . . . . . ... ...
Comparison of Normalized Error for (left to right) - AC, Refrig-
eratorand Washer. . . . . . . . . ... oo
Proposed architecture for NILM using multi-label classification

RBM. . .

Training reconstruction errors of MLC-RBM. . . . . .. .. ..

40

69



Chapter 1

Introduction

Over the past decade, numerous research studies [!, 2] about the impact of
energy demands on global warming and public health have cropped up. Ac-
cording to the United State Energy Information Administration, U.S. commer-
cial and residential buildings consume about 40% of energy produced in the
U.S. [3]. This considerable energy demand has raised the concern about imple-
menting better utility systems which can provide effective energy-saving and
cost-cutting schemes. It has been reported in various studies like [4] that deliv-
ering significant granular information to the users about their energy consump-
tion leads up to 15% of energy saving. Currently, the only data (other than
monetary) provided to users is total energy consumed in their buildings. The
actionable feedbacks, in the form of appliance-level consumption, comparison
with previous energy bills, should be delivered to the consumers. It will help
the consumers to take required actions for achieving better energy-savings. The
requirement of a feedback based demand management system has magnified

the relevance of non-intrusive load monitoring [5] in buildings.



The utilities should be equipped with systems that can process the load mea-
surements in buildings to provide significant information to the users. This pro-
cessing will also help the utilities to float schemes that can scatter the peak-hour
demands. A utility should not entirely rely on consumer’s endeavours to make
plans favourable. Instead, it should cater automated energy management system
in buildings, which requires the minimal attention of consumers and may retain
their interest in demand reduction strategies, especially during peak hours of
demand. Integration of NILM with the Internet of Things (IoT) can provide a
platform to consumers to connect with utilities as well as with the appliances
operating in their buildings. Consumers can check the state (ON/OFF) of ap-
pliances operating in their buildings and take the required action, even in their
absence. Similarly, utilities can inform consumers about various schemes based
on their demand-response analysis. With increasing acceptance of 10T, it would

be easy to engage consumers in energy-saving and cost-cutting activities.

1.1 Problem Statement

The research problem addressed in this thesis is concerned with the task of seg-
regating the combined energy signal of a building into the energy consumption
of individual appliances. The aim is to make consumers more informed about
their energy consumption through budget-friendly methods with minimal intru-

sion.

Currently, residential and commercial buildings account for 40 % of total



energy consumption [6], and studies have estimated that 20% of this consump-
tion could be avoided with improvement in user behavior [7]. Disaggregation
presents a way in which consumption patterns of individuals can be learned by
the utility company. This information would allow utility to provide feedback
to the consumer, with the goal of increasing consumer awareness about energy
usage. Studies have shown that this is sufficient to improve consumption pat-

terns [3].

1.2 Background

The earliest NILM techniques were based on using real and reactive power mea-
sured by residential smart meters. The appliances’ power consumption patterns
were modelled as finite state machines [5]. These techniques were successful for
disaggregating simple two state and multistate appliances, but they performed
poorly in the case of time-varying appliances which do not show a marked step
increase in the power. Even in recent times, there are techniques that primarily

disaggregate based on jumps and drops in the power signature [9, 10].

More recent techniques, based on stochastic finite state machines (Hidden
Markov Models) [ 1], have improved upon the prior approach. Perhaps the
most modern approach is based on learning a basis for individual appliances.
Sparse coding and dictionary learning based approaches like [ 1 2] fall under this
category. Another study introduced the powerlet technique to learn energy sig-

natures [ | 3]; this combines dictionary learning with prior assumption regarding



the time.

Most of the prior load disaggregation techniques are learning-based approaches
where a disaggregating model is trained using appliance-level consumption and
then load segregation is carried out. So the first stage of this processing has
to be appliance-level data collection which itself is an intrusive and expensive
procedure as this requires installing a sensor on each device operating in the
building. Some recent studies [14], [15] propose methods that can circumvent
the necessity of appliance-level load measurements. They frame NILM as a
multi-label classification(MLC) problem for simultaneous identification of ac-
tive appliances given only the aggregated load measurements and corresponding
labels. The label contains information about the state of appliances at any given
time instance, i.e. which all appliances are ON or OFF. This way, the training
phase becomes non-intrusive, as only labelled aggregated load is sufficient for
training the model. In most of the commercial buildings, appliances are manu-
ally controlled with a specific usage pattern. In such buildings, data acquisition

for an MLC task can be easily accomplished.

We discuss some of the benchmark techniques and their shortcomings in

detail in the coming subsections.

1.2.1 Event-based Methods

Conventional techniques of NILM [5] has typically three stages, namely; 1.

Data acquisition 2. Feature extraction, and 3. Load identification. Based on



the transmission rate of sensors employed for data acquisition, NILM can be
divided into two categories. One that works with high-frequency data, typically
collected at a transmission frequency higher than 1 Hz whereas the other cate-

gory handles low transmission frequency (less than 1 Hz).

Papers [16], [17] are example of techniques that work with high frequency
data. These techniques are based on the assumption that, in a small time interval,
only two or three appliances may change their state and the key idea is to detect
the transition events. This assumption is correct only for the residential sector
but not for commercial buildings. Moreover, devices have overlapping steady-
state characteristics, so segregation of the events resulting from two different

devices may be highly difficult even if they occur at different time instances.

Event detection based NILM techniques can sustain only with high-frequency
data as it is easy and decisive to locate events in data which has lesser interleav-

ing samples. However, the acquisition of high-frequency data is very expensive.

1.2.2 Finite State Machines

These days most of the appliances (like light, fan, A.C., washer) have marked
different states, so it is fair to model them as HMMs. The study [| 1] models
aggregated load as an outcome of the interaction of a finite number of indepen-
dent Hidden Markov processes. Firstly, the number of hidden states in which
devices may be present is determined by using a transition probability matrix

where the current state of each device is dependent on the previous state (Marko-



vian Property). The sequence of aggregated loads is considered as an observed
variable whereas appliance-level load gives an idea about the hidden states/state

transitions responsible for the given observation sequence.

While training the model, probability distributions of each observed variable,
as well as state transitions, are computed. Given a trained model, the probability
of observation sequence/aggregated load is maximised to estimate appliance-
level load. Usually, the Viterbi Algorithm is used to find out the optimum path
of hidden states that may be responsible for new observations given the trained

model.

Most of the modern appliances such as printers, computers, inverters do not
have marked states. They are continuously varying. In such situations, the
HMM assumption fails; this, in turn, leads to poor disaggregation performance.
Some other HMM-based techniques [ 18], [ 1 9] are also proposed, but these mod-
els have shortcomings like susceptibility to local optima and drop in accuracy

with an increase in the number of appliances.

1.2.3 Sparse Coding

Sparse Coding is a dictionary learning technique that allows us to learn a sparse
representation of a data matrix along with its reconstruction bases. The appli-
cation of dictionary learning in NILM was introduced by Kolter et al. [12]. It
makes the standard assumption that there is training data collected over time,

where the smart meter logs only consumption from a single device only. This



can be expressed as X’ where i is the index for an appliance, the columns of X*
are the readings over a period of time. For each appliance, a dictionary is learnt
i.e., Non-negative Sparse Coding objective function is given by:

min || X'=D'Z|5+A) (Z7), s.tldla< 15 =1,2,....n (L)

Di>0,7i>0
Dyq

where D' is the reconstruction bases and Z* contains the activations of these
bases, d’@ indicates j'" column of the dictionary for i"* appliance and n is the
total number of vectors in the bases. Since energy is a non-negative quantity,
non-negativity constraint is enforced on dictionaries as well as the coefficients.
After minimizing the objective over D’ and Z' alternatively for each class i =

1,2, ..., k, we can disaggregate signal by solving the following optimization

problem
_ , :
78 = in | X —[DY]......|DY 2D |12 1.2
—arg min X = (D' DY | L [ FHAY1IZ (2)
- i,p,q
ZN
\ = ;v - J/
F(;Xle:N’ZI:N)

Then predicted energy usage by ' device is given by

X'=D'Z (1.3)



and the disaggregation error is given by

N N
E(XLN,DLN) = Z_l: HXZ—DZZZH%W s.t. Zl:N = arg ZEHJ&IZIOF(Z; X,DLN, Zl:N)

(1.4)

One of the disadvantages of using Sparse Coding for energy disaggregation
is that the bases are not learned to minimize the disaggregation error [12]. It
is assumed that the bases are distinct enough to produce small disaggregation

error, which is not the case always.

1.2.4 Discriminative Disaggregating Sparse Coding

Kolter et al. [12] also proposed an extension of sparse coding to improve its
performance. This algorithm is known as Discriminative Disaggregating Sparse
Coding (DDSC). In case of DDSC, reconstruction bases (learned from sparse
coding) are discriminatively optimized to produce sparse set of activations that

can produce low disaggregation error.

The regularized disaggregation error objective for DDSC becomes

N
B4 D55, D) = ST = D2 40 Y2
1=1 b,q

Zl:NZO

N
subject to 2"V = arg min F() X, D'V, Z"V) (1.5)
=1

where bases, D' and activations, Z'V are same as those trained from Sparse



Coding while DN are discriminatively optimized bases such that it can pro-
duce activations ZV which are as close as possible to the activations that can

produce minimum disaggregation error.

Activations that can produce minimum disaggregation error is given by

Zl

7% = in || X — [D'.....| DY LENY |17 1.
argg}lZ%H (D[ DET L e+ ZH pall (1.6)
Z’p7q

ZN

The structured perceptron algorithm is used to train the reconstruction bases so
that the activations obtained from optimizing Equation (1.2) may get as close to
71N ag possible.

For structured prediction task X is the input, Z* is the desired output and D are

the model parameters which are initialized with the reconstruction bases. Now,

perceptron update [20] is performed with the step size «,
D < D _OZ(ADLNF(X,DLN,Z*LN) _ADLNF(X,DLN,ZALN)) (1.7)
which becomes

D+ D—-a((X-D2)z" — (X — Dz"z*") (1.8)

Only positive part is kept and the atoms are re-normalized to unit norm.

10



1.2.5 Neural Networks

In paper [21], Srinivasan et al. propose single hidden layer Multilayer Percep-
tron (MLP) to identify multiple loads using current measurements from the in-
coming supply. Harmonic signatures extracted from the current waveforms of
an individual device are used to train the network and segregation is performed
on smart meter current measurements. However, the experiments are performed
on a tiny dataset and require high -frequency data. More recently in [22], Kelly
et al. made adaptations in three deep neural networks to perform load segrega-

tion.

In the first architecture, LSTMs are used to learn features of each of the
appliances from the training samples and then it estimates the appliance-level
load given the aggregated load. The second architecture consists of a dAE,
which extracts an appliance’s load from an aggregated sample, by considering
the consumption of other appliances as the signal’s noise component. The last
architecture is a standard neural network that regresses the start time, end time
and average power demand for each activation of an appliance. A significant
shortcoming of these techniques is that they require appliance-level load for the

training of the models.

We can observe that limited research has been carried out to apply modern
machine learning techniques to NILM. This is because of the fact that MLPs
are data hungry. So in problems such as NILM, where availability of data is an

issue, these techniques are not very successful.

11



1.2.6 Multi-Label Classification Based Approaches

Multi-label classification (MLC) task is a variant of multi-class problem. In
multi-class classification, one sample is mapped to exactly one of the labels
whereas, in MLC, one sample may belong to one or more labels. Hence, in
MLC, each sample is mapped to a binary vector of 0’s and 1’s, assigning 0
or 1 to each label. Various MLC techniques find their application in medical

diagnosis, bioinformatics, and text categorisation.

Since the aggregated load of a building at an instance may be an outcome
of several active appliance’s loads, Tabatabaei et al. [14], and Li et al. [15],
framed NILM as an MLC problem. [14] compared the performance of two
multi-label classifier viz Multi-Label k-nearest neighbours (ML-kNN) and Ran-
dom k-Label Sets (RakEl) using time-domain and wavelet-domain features of
appliances. These algorithms belong to two different group of MLC techniques

namely Problem transformation techniques and Algorithm adaptation techniques

[25].

Problem transformation techniques translate multi-label problem to a multi-
class classification problem. The most appropriate way to do it is to train a
binary classifier for each of the label in the label set, L € [ (similar as in a multi-
class classification problem) using one versus all approach. Final classification
can be done by taking a union of the output of each binary classifier. RakFEl [24]

1s an example of such classifiers.

Algorithm adaptation techniques are adapted version of single-label classi-

12



fication techniques to perform MLC. An adapted version of k-NN [25] which
is a lazy learning technique for binary classification, known as ML-kNN is an

example of such techniques.

Another recent work [26] uses Multi-label Consistent Deep Dictionary Learn-
ing and Multi-label Consistent Deep Transform Learning for simultaneous de-
tection of active appliances from smart meter data. In this work, authors are
jointly learning the representations and a mapping between the labels and learned

representations using Synthesis formulation as well as Transform formulation.

These methods do not directly segregate appliance-level load but first identify
states of appliances and then disaggregated load is obtained by multiplying the
average power consumption of appliance with the number of instances, it was

identified to be in an active state.

1.3 Datasets

1.3.1 Reference Energy Disaggregating Dataset

It [27] 1s a moderate size publicly available dataset for electricity disaggregation.
The dataset consists of power consumption signals from six different houses,
where for each house, the whole electricity consumption as well as electricity

consumptions of about twenty different devices are recorded.

The signals from each house are collected over a period of two weeks with

a high frequency sampling rate of 15kHz. In the standard evaluation protocol,

13



the 5" house is omitted since the data from this one is insufficient.

1.3.2 Pecan Street Dataset

In this thesis, we worked with a subset of Dataport dataset available in non-
intrusive load monitoring toolkit (NILMTK) [28], which contains 1 minute cir-
cuit level and building level electricity data from 240 houses. The data set
contains per minute readings from 18 different devices: air conditioner, kitchen
appliances, electric vehicle, and electric hot tub heater, electric water heating
appliance, dish washer, spin dryer, freezer, furnace, microwave, oven, electric
pool heater, refrigerator, sockets, electric stove, waste disposal unit, security

alarm, washer dryer.

1.4 Research Contributions

This thesis has three main objectives: 1. To propose more accurate algorithms
for NILM than state of the art; 2. To propose an algorithm that can work with
compressed energy signals in order to save the bandwidth; 3. To propose the
methods which make the training phase completely non-intrusive, i.e., to dodge

the requirement of the sub-metered data.

Our contributions towards these objectives are as follows:
We propose Deep Sparse Coding and Analysis Co-Sparse Coding for NILM.
The usual technique is to learn a dictionary for every device and use the learned

dictionaries as a basis for blind source separation during disaggregation. Prior

14



studies in this area are shallow learning techniques, i.e., they learn a single
layer of dictionary for every device. In this work, we learn multiple layers
of dictionaries for each device. These multi-level dictionaries are used as a
basis for source separation during disaggregation. We show that this algorithm
outperforms the benchmark techniques like Factorial Hidden Markov Model

and Discriminative Disaggregating Sparse Coding.

Second, we follow the multi-label classification based paradigm for NILM
and determine the state(On/Off) of the appliances present in the building. For
this, we propose several algorithms that adapt Sparse Representation Classifier,
Restricted Boltzmann Machine and Convolutional Transform Learning to per-
form multi-label classification and subsequently disaggregating the appliance-

level load.

Third, we propose a compressive sampling(CS) approach. The high-frequency
power signal from a smart meter is encoded (by a random matrix) to very few
samples making the signal suitable for WAN transmission without choking net-
work bandwidth. CS guarantees the recovery of the high-frequency signal from
the few transmitted samples under certain conditions. This work shows how to

recover the signal and simultaneously disaggregate it.

15



Chapter 2

Deep Sparse Coding and Analysis
Co-Sparse Coding for Non-Intrusive Load

Monitoring

This chapter presents the concept of Deep Sparse Coding(DSC) and analysis co-
sparse coding for NILM. DSC is a synthesis approach of modelling the devices.
Instead of learning a single level of basis / dictionary we learn multiple layers
— leading to the proposed paradigm of DSC. This gives the ‘depth’ in sparse

coding. The concatenated multi-layered basis is used for energy disaggregation.

Currently deep learning is the de facto standard tool in machine learning
research applied to computer vision, speech processing, information retrieval
(and to certain problems in natural language processing). The reason, why deep
learning is successful is not well understood. There is no theoretical analysis,
but astounding volume of empirical result to justify its use. Motivated by its

success in allied fields, we propose a new deep learning tool- ‘deep sparse cod-

16



ing’. As in other areas, improvement in results justifies the motivation for going

‘deep’.

The other technique i.e., Analysis Co-Sparse Coding is an analysis approach
for modelling the devices. This work follows from the success of analysis dic-
tionary learning [29] over its synthesis counterpart in image processing. The

main advantage of the analysis formulation is that, it is less prone to overfitting.

This would mean that we need less training data from households. Subse-
quently, this would require installing sensors on fewer homes, or installing them
for fewer days on the same home. In either case, this brings down the cost of

sensor deployment drastically.

This chapter is organized as follows. Section 2.1 discusses the existing work.
Proposed algorithms are presented in section 2.2 and section 2.3. The experi-

mental evaluations and results are discussed in section 2.4.

2.1 Literature Review

2.1.1 Synthesis Sparse Coding

Dictionary learning is a synthesis approach. Given the data (X) it learns a single
level dictionary (D) such that the it can regenerate / synthesize the data from

the learnt coefficients (7). This is expressed as,

X =DZ 2.1)
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Equation (2.1) is a typical matrix factorization problem. In sparse coding, the

objective is to have a sparse coefficients matrix Z.

K-SVD [30] is perhaps the most popular algorithm for sparse coding. It

solves a problem of the form —
rBi?HX—DZH%s.t.HZHO <7 (2.2)

We have abused the notation slightly; the /y-norm is defined on the vectorised
version of the coefficient (7). Here 7 defines the sparsity level of the coeffi-

cients.

K-SVD is a good algorithm, but is relatively slow owing to the necessity
of computing SVDs in every iteration and running a slow orthogonal matching
pursuit algorithm for sparse coding. Practical applications of dictionary learning
solve an unconstrained version of Equation (2.2) with an /; -norm for promoting

sparsity.

Dictionary learning has enjoyed immense popularity in the last decade. It has
been the de facto tool for solving many inverse problems in signal and image
processing. Machine learning researchers used supervised variants of dictionary

learning for many computer vision problems.

2.1.2 Analysis Co-Sparse Coding

In co-sparse analysis dictionary learning [29], the signal is analysed to gener-

ate the sparse coefficients. The solution is framed such that the sparse coeffi-
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cients are not obtained; rather a clean version of the data X is obtained so that,
when operated on by the analysis dictionary D, sparse coefficients are produced.
Mathematically the learning is represented as,

~ 112 ~
minHX—XH s.t.HDXH <7 2.3)
DX F 0

Here D is the analysis dictionary; it is different from the synthesis dictionary of
Equation (2.1). There should not be any confusion between the two, since the

context / model is different.

The analysis K-SVD algorithm is not as popular as its synthesis counterpart
1s mainly because it has an inefficient implementation. But it enjoys nice theo-

retical advantage over its synthesis counterpart.

A little analysis shows that for a synthesis dictionary of size m x n, with
sparsity (number of non-zero elements in £) k, the number of sub-spaces is (Z)
for k-dimensional subspaces. For analysis dictionary learning of size p x d, with
co-sparsity [ the number of sub-spaces is (Zl’) for sub-spaces of dimension d — .
If we assume equal redundancy, i.e., p = n = 2d, and equal dimensionality
of the sub-space, i.e., £ = d — [, the number of analysis sub-spaces will be
n where as the number of synthesis sub-spaces are klog2(n/k) (via Stirling’s
approximation); usually n > klog2(n/k). For example with n = 700,1 = 300
and k£ = 50, the number analysis subspaces are 700 whereas the number of

synthesis sub-spaces are only 191. This analysis means that for an analysis

and a synthesis dictionary of same dimensions, an analysis dictionary is able to
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Figure 2.1: Dictionary Learning

capture significantly more variability in the data compared to its synthesis coun-
terpart. In other words, for a fixed training set a smaller sized transform need
to be learned compared to a dictionary. From the machine learning perspective,
given the limited training data, learning fewer parameters for the transform has
less chance of over-fitting than learning a larger number of synthesis dictionary
atoms. Hence, for limited training data, as is the case with most practical prob-
lems, transform learning can be assumed to yield better generalizability (and
hence better results) compared to dictionary learning. This is the motivation

behind our analysis formulation.

Analysis dictionary learning has only seen a handful of applications in the
past [31], [32]. But wherever they have been used (super-resolution [31], MRI
reconstruction [32]), they have surpassed synthesis dictionary learning formula-

tions. Success of such practical studies also motivates this work.

2.2 Proposed Formulation for Deep Sparse Coding

The popular interpretation for dictionary learning is that it learns a basis (D)

along with the coefficients (Z) to represent the data (X) (see Figure 2.1); for
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Z
X =
Q /

4

Figure 2.2: Deep Dictionary Learning

sparse coding, the representation (Z) needs be sparse. The columns of D; are
called ‘atoms’. Till date dictionary learning / sparse coding had been a shallow
architecture. The dictionary (D) is learnt such that the features (Z) synthesize

the data (X) along with the dictionary. This is expressed as,

X=DZ (2.4)

We propose to extend the shallow learning into multiple layers — leading to
deep sparse coding (Equation 2.2). Instead of learning one level of dictionary /
basis, we learn two levels as depicted in the figure above. Mathematically, the

representation at the second layer can be written as:

X =D1DyZ (2.5)

It is not possible to collapse the two dictionaries D)y Dy (Equation (2.5)) into a
single level of dictionary, D; (Equation (2.4)); the two formulations would not
be equivalent. This is because Equation (2.4) is a bi-linear problem (two vari-
ables D; and Z) whereas Equation (2.5) is a tri-linear problem (three variables
Dy, Dy, 7); therefore the features obtained from Equation (2.4) would not be

the same as those of Equation (2.5) even if the dimensions match. In Equation
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(2.5) we show two levels of dictionaries; we can go deeper, to 3 and 4 layers; in

that case deep dictionary learning can be expressed as (for N layers),

X =D1Ds...DnZ (2.6)

There is no theoretical reason for finding deeper representations. However, pro-
ponents of deep matrix factorization [33], [34] argue that by finding deeper
representations one can find more compact and abstract features that aids in the
learning task. Usually there is a trade-off between going deeper and over-fitting.
As one goes deeper, more and more parameters need to be learnt; thus the re-
quirement for training data increases (leads to over-fitting). To prevent this one
needs to find a compromise between abstraction and over-fitting. Usually this is
found empirically. For most moderate size problems, a three-layer architecture

1s used.

There are two ways to solve Equation (2.6). The first one is a greedy ap-
proach. This is easy since the basic building blocks (shallow dictionary learn-
ing) are already available. But the limitation of this technique is that there is
no feedback between the layers, i.e., the information flows from the shallower
to the deeper layers but not vice versa. The second solution (the exact solution)
has not been hitherto solved. In this work we solve it variable splitting followed
by alternating minimization. We will discuss both the solutions in the next two

sub-sections. In the exact solution, information flows across all the layers.

22



2.2.1 Greedy Solution

This is the easier of the two solutions. Here, for the first layer, we express:

Z1 = Do...DnZ ; so that Equation (2.6) can be formulated as,
X =D17; 2.7)

The coefficient Z; in the first layer is not sparse, hence the learning problem can

be phrased as,

: 2
Inin | X — D121 % (2.8)

This 1s solved by alternating minimization.

Zy < min[|X — D1 Zy||3 (2.9a)

Dy ¢+ min || X — AL (2.9b)

Iterations are continued till local convergence. In the second layer, we sub-

stitute Zo = Ds3...DyZ, leading to
Z1 = Dy 7y (2.10)

As before, this is solved via alternating minimization. Substitutions are contin-

ued till the last layer. In the final layer, the formulation turns out to be,

In_1 = DxZ 2.11)
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Here, the coefficient needs to be sparse. Hence the alternating minimization

turns out to be the same as sparse coding (Equation 2.2).

This is an easy approach. The basic building blocks for solving this problem
are well studied. There are theoretical studies on single layer dictionary learn-
ing that prove optimality of alternating minimization regarding convergence (to
local minima) [35], [36]. But the problem with the greedy approach is that,
information flows only in one direction — from shallow to deep; there is no
feedback from latter layers to previous ones. For example one can see that 7
(implicitly D; ) is used for solving D5y and Z5, but Z5 (or D5) does not have any
influence on the solution of Z; and D;. This is what we mean by no feedback

between the layers.

Usually in deep learning, this issue is addressed by fine tuning. However
there is no scope of fine-tuning for our problem since it is an unsupervised prob-
lem — there are no targets / outputs from which one can back-propagate. Besides,
dictionary learning / sparse coding is not a smooth optimization problem (not
differentiable everywhere owing to the /;-norm), hence simple gradient descent
based techniques like back-propagation will not work. The exact solution is

derived in the next sub-section.
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2.2.2 Exact Solution

Our goal is to solve Equation (2.6). We have discussed the greedy approach.
The exact solution is expressed as,

min || X — Dy Dy...DxZ||% + M| Z]||1 (2.12)
D1,Dy..DN.Z

An elegant way to address this problem is to use the Split Bregman approach
[37]; variable splitting is a standard technique in signal processing these days
[38], [39]. We substitute Y7 = D...DyZ and in order to enforce equality at

convergence, introduce the Bregman relaxation variable, B;. This leads to,

min || X — D1Y1H§: + 1 ||Yr — Dy...DNZ — Bl“%“"
D1,D3,D3,2,Y (2.13)

AllZ1h
To simplify Equation (2.13) we substitute, Y5 = Ds...DyZ and introduce an-

other Bregman relaxation variable. This leads to,

min | X — DiYi|[p 4+ ml|Ys — DoYo — By||3+
Dy, Ds....Dn.Z.Y1.Ys (2.14)

pi2||Ya — Da...DNZ — Bsl|7 + M| 2|1
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The process of substitution and introduction of Bregman variables can be con-

tinued till the last level. This leads to the following formulation,

min ||X—D1Y1—B1H%+,LL1HY1—DQYQ—BQH%%—...—F
Dy, Ds...DN Y1 Yo Y 1,7

pn—1||Yn-1 — DnZ |z + M| Z])h

(2.15)

Although this is not exactly a separable problem, we can use the method of al-
ternating directions to break it down to several simpler sub-problems. Showing
it for NV levels is cumbersome, so we do it for three levels without loss of gener-
ality.

P : I%iln | X — D1Yi|)%

b n%i2n Y1 — By — DQYQH%

Py - min || X — DiYi|[F + m|[Yr — Bi — DaoYa|[7

Py :in u|Yy = By — DoYsl[p + pallYe — By — DaZ| |y

Py - Hll)ign Y2 — By — D3Z||%

Py : min ps|[Yy — By = D3 Z|[ + Al | 2]

All the sub-problems, P; — Ps, are linear least squares problems having a closed
form solution. Therefore, solving the sub-problems is straightforward. The last

problem Fj is an /;-minimization problem that can be solved efficiently using

iterative soft thresholding [40].

In every iteration, the Bregman relaxation variable needs to be updated as
follows,

By <Y1 — DyYs — By
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B2<_1/2_D3Z_BQ

There are two stopping criteria for the Split Bregman algorithm. Iterations
continue till the objective function converges (to a local minima). The other
stopping criterion is a limit on the maximum number of iterations. We have

kept it to be 200.

There are certain hyper-parameters that needs specification. In our case, the
w’s refer to the coefficients at each level. Since there is no reason to give higher
importance of one level over another, we use (11 = o = 3 = 1. The parameter
A needs to be set; this parameter arises both for greedy as well as the exact
solution. This was tuned by 10 fold cross-validation; the final value used in the

work is A\ = 0.05.

2.2.3 Energy Disaggregation

In energy disaggregation by sparse coding, a codebook is learnt for every appli-
ance [12]. The codebook learnt in prior studies are shallow. In this work, we
propose to learn deep codebooks for every appliance; instead of Equation (2.7)

we will have for every appliance,
X'=D.D\D\Z (2.16)

The codebook/dictionary for every appliance is learnt using the proposed tech-
nique (greedy or exact). Here we enforce the usual constraints — 1) non-negativity

of sparse coefficients; and i1) normalization of codebook.
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Once the codebook for every appliance is learnt the disaggregation proceeds
as before. The only difference between the previous shallow techniques and
the proposed technique is that the codebook for each appliance is a cascade of

codebooks / dictionaries.

Z1 A
min ||X — [DW[..[DM] | +A| ... (2.17)

Zn Zn
i 1llrp 1

Once the loading coefficients are solved for, the energy consumed by individual
appliances is calculated as before, i.e., multiplying the cascaded codebook with

the corresponding coefficients.

2.3 Proposed Formulation for Analysis Co-Sparse Coding

The basic problem statement remains the same as in the synthesis case. There
is training data available for each device (X;); along the rows it denotes the
time period and along the columns it denotes the days. In this work, we modify
from the synthesis to the analysis formulation. We propose three algorithms for
analysis sparse coding with increasing levels of complexity. We start with the

basic formulation.
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Algorithm 1: Analysis Sparse Coding for NILM

~ 112 N
For every appliance 7 solve: min HXZ - X;ll +A HD,»XZ»
D;,X; F
1: Initialize: X; = X;, B; = 1 and D; randomly

2: Until convergence solve the following sub-problems in every loop

1

R 2
| = DX = Bl
2
X, I 5
P2 : min ! > - ( >X'
X < VI (Z; — By) ViD; ‘Il
R 2
P3 :min ||Z;, — D;X; — B; +A||Zi||1
2 Fo#
3: Return D;

2.3.1 Simple Co-Sparse Coding

Just as in sparse synthesis coding, for each appliance (i), we learn an analysis
dictionary —
(2.18)

~ 112 N
Dy, X; F

1
We use an unconstrained formulation; and employ /;-norm for sparsity in place
of the /p-norm. The changes have been made to solve the problem more effi-

ciently.

We propose a variable splitting technique to solve Equation (2.18). We intro-

duce a proxy Zi = D, X;. With this substitution, Equation 2.18 is expressed as,

2 A

mjn HXz — Xz
D;, X;,2;

Solving the exact Lagrangian for Equation (2.19) 1s not necessary. It enforces
exact equality between the variable and its proxy in each iteration. This is not

required; we only want exact equality during convergence. Therefore, we for-
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mulate the augmented Lagrangian instead.

min HX _ X (2.20)

2 A
| FAZ, +p|| 2 - DX
D;, X, Z; F

2
F

The hyper-parameter 4 controls the degree of equality between the variable
and the proxy. For a small value, the constraint is relaxed and for a high value,

equality is enforced.

Usually a heuristic ‘heating’ technique is followed where one starts with a

small value of 1 and progressive increases it after solving Equation (2.20).

The Split Bregman technique is a better alternative to such heuristic hyper-
parameter heating. It has been used profusely in signal processing literature
in the recent past (e.g. [32]). This technique introduces a Bregman relaxation

variable (B;) in the constraint, leading to the following,

min HX _ X, 2.21)

2 ~
A +MZily + 1| 7 - DX - B
D;. X, Z; r

2
F

Here the relaxation variable is updated in every iteration. Therefore there
is no need to tune the hyper-parameter progressively. The Bregman variable
automatically updates itself to enforce convergence between the variable and its
proxy; one only needs to fix the hyper-parameter ;4 at a moderate value without

much tuning.

The Equation (2.21) can be solved using the alternating direction method of

multipliers [41]. It can be segregated into the following sub-problems —
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2

P1: min,u‘ Z; — DiX; — B;
D; E
12 5 2
P2 : minHXZ-—XZ- +pl||Z; — D X; — B;
X, F F
P
X; \ I .
= min — X
Xi Vi (Zi — Bi) ) VHD; s
. 2
P3:min||Z — D;X; — Bi|| + 2%,
7 F oK

Sub-problems P1 and P2 are simple least squares problems. They can be
solved using closed form (Moore Penrose Pseudoinverse). Sub-problem P3

also has a closed form solution via soft thresholding.

. 5 A
L

The final step is to update the Bregman relaxation variable.
B; + Zi — D;X; — B, (2.23)

This concludes the steps per iteration. We can see that all the steps have efficient
closed form solutions. This makes our solution significantly less time consum-
ing (by several orders of magnitude) compared to the Analysis-KSVD algorithm

proposed in [29]. Our entire algorithm is succinctly given in Algorithm 1.

For disaggregation, we follow the standard model, i.e., the total power is the

sum of the individual powers.

X =) X

1
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As before, the summation is over the N appliances. The goal is to recover the
individual components X;’s given the learnt analysis dictionaries. We formulate

disaggregation as,

mln

(2.24)

ZX

Unlike the training phase, Equation (2.24) is a convex formulation. Using al-

ternating minimization (for each component), iteration 'k’ can be expressed as,

mln Z X )A(Z

F

(2.25)

Here X*) denotes the component corresponding to the 5" appliance that is not

being updated in this sub-problem; they are all constants for this sub-problem.

Equation (2.24) is a typical total variation type minimization problem. How-
ever, such majorization minimization based techniques are inefficient. Today
most studies employ the Split Bregman technique for solving such problems.

We follow the same in this work.

As 1n the training phase, we substitute 7, = D;X;. After introducing the
Bregman relaxation variable in the approximate equality constraint of the aug-
mented Lagrangian formulation, we arrive at the following formulation,

2

min ZX —Xil| +X1Zill,
Xi\Z;
J#i r

(2.26)

Using alternating minimization, the sub-problems are:
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2

P1 : min X—ZXJ@ —XZ- +,uHZi—Din‘—

Xi el I )
> (K
Xi- 3 &P I :
= min JF#i — X;
- VI(Zi — Bi) VD .

P2 : min HZ’ — D;X; — Bi|| + AHZiH1
2 a

2
F

The solution of these two subproblems are already discussed in the training

phase. Both have closed form solutions. As before, the final step is to update

the Bregman relaxation variables.

Note that in the testing phase, Equation (2.25) is for solving the power con-
sumption from only a single appliance. The same need to be repeated for every

appliance within one loop. The complete algorithm for disaggregation is given

in Algorithm 2.

Algorithm 2: Simple Sparse Coding for NILM

1: Initialize: X; (0)

2: Until convergence solve the following sub-problems in every loop

in iteration 'k’

2
For every appliance i solve:min || X — X ](.k) - X;
Xi J#i
. 2
X, — 3 XxW .
P1: = min ' G#i J —(I D-)Xi
i VR (Zi — B;) VD P
P2:min | Z, = DiXi = Bi||_+ 3 Zill;

P3:B+« Z;— D;X; — B;
End iteration 'k’
3: Return D,

+)\HDz’Xi .
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2.3.2 Distinctive Dictionaries

In the second formulation, we want to make the analysis dictionaries distinctive
from each other, i.e., the dictionaries for each appliance should look different

from others. This has not been made explicit in our first formulation.

To achieve this, we draw from literature on incoherent dictionary learning
[42], [43]. Note that for two similar dictionaries (D; and D;) the inner product
between the one and the other D! D; will have high values along the diagonals
and low values in the off diagonal elements. This property has been used in
[39]-[41] to pose || DT D — I||3 as the incoherence penalty. In this work, we
want to minimize the similarities between dictionaries of different appliances.
Therefore, we impose a penalty of the form || D} D; — I||%. Adding this penalty
to the training phase leads to,

2 .
: + )\HDY;Xi
D;'s,X!s F

2
1+nZHD§FDj—JHF (2.27)

J#

Notice that, unlike the previous formulation, where the appliance-wise dictio-
naries were solved separately, the present formulation is coupled and hence all
of them need to be solved simultaneously. Equation (2.27) can also be expressed

as,

~ 1|2 A

PR
Di S,XZ(S

(1D D = Ina|s  (228)

JFi

Here D,c consists of all the dictionaries except the i’ one stacked vertically one

after the other; /1 is simply the identity matrix repeated N — 1 times (where
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N is the number of appliances).

As before, using the same substitutions (Z; = D; X)) of Equation (2.27) and
introducing the relaxation variable, we recast Equation (2.28) in the Split Breg-

man formulation.

/R g 1
D;'s,X/s,Z;'s

2
F+W%M+W§:Wwa—wa§
j#i (2.29)

R 2

F

The updates for X, and Z; can be decoupled and hence remain the same as in
the solution for Equation (2.27); both of them are known to have closed form
updates. The change is in the solution for the dictionaries. For each appliance,

one needs solving,

2
F+77HDZ'TD1'C —[N—1H§; (2.30)

Zi - DX - B

min
D;

This is a simple least squares problem having a closed form solution.
The final step is to update the Bregman relaxation variable; it remains the same

as before. Succinctly, the training algorithm is expressed in Algorithm 3.

Once the dictionaries are learnt during the training phase, there is no change

in the disaggregation stage. It remains exactly the same as before.

2.3.3 Disaggregating Dictionaries

For disaggregation, we want the dictionaries corresponding to one particular

appliance to express the data in a co-sparse fashion; the same dictionary should
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Algorithm 3: Distinctive Analysis Sparse Coding

For every appliance 7 solve: min Y,
Di's,X[s,Zi's i

A~ 2 ~ |12
u’ZZ-—DiXZ-—Bi F+7HD;¢@X¢ .
1: Initialize: X, = X;, B; = 1, and D; randomly
2: Until convergence solve the following sub-problems in every loop for each 7

: 5 2 2
Pl:r%lin Z; — D;X; — B; F—i—nHDZTDiC —IN_1HF

X, I N
P2 : min ! — X;
(G- )~ (U )

3: Return D;

’X,» ~ X

2
FNIZiL 40 S|P Die — Iy |5 +
F j#i

2

F

2
F

not sparsely represent data signals from other appliances. Therefore, we impose
an [{-norm on DiXi but a non-sparse (dense) /s-norm on Din. We impose
these penalties on top of the distinctive penalty introduced in the last sub-section.
Our formulation becomes,

2 R
A + AHDZ-XZ-
D;'s,X!s F

2
F
(2.31)

1 +n HDiTDiC — ]N—lHi; + HDZTon

The notation D;c has already been defined before. The term DZ.TCXZ- promotes

dense coefficients when dictionaries corresponding to other appliances are used.

Using the same proxy Z; = D;X, and relaxing the equality constraint be-
tween the variable and proxy in by a relaxation variable, we arrive at the follow-

ing,

2 2

. + )‘HZZH1 +HZ HD;‘FDZC — ]N_1HF—|—
j#i (2.32)
~ 2 N

! v /
Dy's,X!s,Z;'s

2
F
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Using ADMM, Equation (2.32) can be split into the following sub-problems:

~ 112 R 2 ~ 112
Pl:minHXz-—XZ- +M‘Zi—D7;Xi—BZ- +7HD§FCXZ-
“ 2

P2 :min||Z; — D;X; — Bi|| + 2||Zi]l,

Z; FH

~ 2

P3:min Y0 | DI Die = Ina [+ u || = DX — B

D;'s 7 F

2

_ . T 2 %
= minn || D; Dic—]N_1}|F—|—u’ZZ-—DZ-XZ-—BZ- )

Since for updating X;, the D!s are assumed to be constant, hence we are able
to decouple P1 into individual appliances. The update for the proxy Zs are
always decoupled (P2). For updating D;, all the other dictionaries are assumed
to be fixed and hence we can decouple P3 to its equivalent form. Sub-problem
P1 1s a simple least squares problem. It can be expressed as follows,

2
X; I

~

min 0 — ﬁDZTC X; (2.33)
VI (Z; = B;) VID;

F
It has a closed form solution in the form of Moore-Penrose pseudoinverse. The
solution of sub-problem P2 has already been discussed in the first sub-section.
It requires only one step of soft thresholding. Sub-problem P3 remain the same

as Equation (2.30); it is a least squares problem having a closed form solution.

The last step in every iteration is to update the Bregman relaxation variable.
We have already discussed that. This concludes the training stage. The al-
gorithm is shown succinctly in Algorithm 4. For disaggregation, there is no

change from the first formulation given in Section 2.3.1.
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Algorithm 4: Distinctive Analysis Sparse Coding

For every appliance ¢ solve:

. A2 2 ~ 2
min Y ’Xi — X+ NZl A0S | DT D — In | + ‘ Zi— DiX, — Bil| +
Di's,X!s,Z;'s i F ji F
~ 12
T y.
7 HDzCXZ P

1: Initialize: X'Z- = X;, B; = 1, and D; randomly
2: Until convergence solve the following sub-problems in every loop for each ¢

: B 2 2
PL:min || Z; — DiX; = By|| +n||Df Dic = Ina [
X; I 2
P2:min|l{ 0 - | vaDL | Xi
Xi Vi (Zi — Bi) VED; r
N 2
P3:min ||\Z; — DiX; — Bi|| + %1Zill,
Z; F
3: Return D;

2.4 Experimental Evaluation

Simulations results are carried out on two benchmark datasets — REDD [27]and
Pecan Street [28]. We show that our proposed simple extension achieves better

performance than state-of-the-art shallow architectures.

Each training sample contains power consumed by a particular device in
one day while each testing sample contains total power consumed in one day
in particular house. Two metrics -1) Disaggregation Accuracy and 2) Energy
Error are used to evaluate the performance of the models. The disaggregation

accuracy is defined by [27] as follows,

S o o

22 4%

Accuracy =1 — (2.34)

where ¢ denotes time instant, ¢ denotes the number of devices, y is the actual

power consumption of a device, ¢ is the predicted power consumption of a de-
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Table 2.1: Disaggregation Accuracies on REDD

Home FHMM SC DDSC MLC PED Proposed(Greedy) Proposed(Exact)
1 46.6 57.17 5811 5742 46.0 60.76 64.26
2 50.8 65.42 68.25 6291 492 71.05 74.93
3 333 41.06 4240 32.17 31.7 43.50 48.26
4 52.0 60.25 7376 6229 509 76.75 79.02
6 55.7 58.06 5393 5191 545 61.71 64.19
Aggregate 47.7 56.39 59.29 5334 46.5 62.75 66.13
Table 2.2: Variation of Accuracy with Depth
Home Layer 1 Greedy Layer 2 Exact Layer 2 Greedy Layer 3 Exact Layer 3
1 57.17 57.11 58.42 60.76 64.26
2 65.42 62.25 68.91 71.05 74.93
3 41.06 45.40 46.17 43.50 48.26
4 60.25 67.76 69.29 76.75 79.02
6 58.06 59.93 61.93 61.71 64.19
Aggregate 47.7 58.49 60.94 62.75 66.13

vice and ¥ is the aggregated power consumption; the factor 2 in the denominator

1s to discount the fact that the absolute value will “double count” errors.

The Energy Error is given by the sum of the differences between the esti-

mated energy consumption and actual energy consumption of appliance n in

each time instant ¢, normalised by the appliance’s total energy consumption.

Energy Error =

2.

)

- (2.35)
Zt yt( )
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Figure 2.3: Energy Disaggregation : Qualitative Look. Left — DDSC [8]; Right — Proposed Greedy Method.

2.4.1 Results with Deep Sparse Coding

24.1.1 Results on REDD
To prepare training and testing data, aggregated and sub-metered data are aver-
aged over a time period of 10 minutes.

We compare the performance of the proposed method with the Factorial

HMM (FHMM) based technique [19], Powerlet based Energy Disaggregation
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(PED) [13], sparse coding (SC), Discriminative Disaggregating Sparse Coding
(DDSC) [12] and multi-label classification (MLC) [44]. As outlined by [12] —
there are two protocols for evaluation. In the first one (called ‘training), a por-
tion of the data from every household is used as training samples and rest (from
those households) is used for prediction; this is the easier of the two protocols.
In the second mode, the data from four households are used for training and the
remaining one is used for prediction (called ‘testing’); this is a more challeng-
ing problem. In this work, we carry out experiments on the more challenging

problem, i.e., testing protocol.

The results are shown in Table 2.1. The SC and DDSC yields the best results
for 144 atoms. For our method (both greedy and exact) the number of atoms
are 144-100-80 in three layers. The table shows that our method is considerably

superior compared to other benchmark disaggregation techniques.

The results are as expected. Results from discriminative sparse coding are
slightly better than shallow sparse coding, but are worse compared to the pro-
posed one. The improvement from our greedy technique is decent, but it is not
the best. The results obtained from the proposed exact solution yields the best

results.

In Table 2.2, the intermediate results for Layer 2 are shown. Layer 1 is the
same for both the exact and greedy solution; it is the same as sparse coding.
However results for layer 2 and 3 are different. One can see that from Layer 1

to 2, there is a significant improvement. But from Layer 2 to 3, the improvement
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is nominal for the greedy solution. The exact solution continues to improve in
the Layer 3. However, going beyond Layer 3 did not improve the results either

for the greedy of the exact solution.

2.4.1.2 Results on Pecan Street

The number of atoms for different techniques remain the same as before. The
results are shown in Table 2.3. The conclusion remains the same as before.
Our method outperforms other techniques by a wide margin. The interesting
observation here is that by deep sparse coding, we are able to get significantly
larger improvement on homes where the disaggregation accuracy was previ-

ously lower, e.g., 6-8, 15, 29 etc.

For the Pecan Street dataset, we also study the variation of performance with
respect to different electrical appliances. The metric used here is Energy Er-
ror. The results are shown in Table 2.4. The results show that our proposed
method yields the best disaggregation in terms of normalised error for every
device. FHMM and PED yields significantly worse results. Sparse coding and
Discriminative Disaggregating Sparse Coding yield reasonably good results but

are worse than the proposed Deep Sparse Coding.

We carried out an analysis similar to the previous subsection. In Table 2.5,
variation of with dictionary-depth for major appliances is shown out. The con-
clusions derived remain similar. However, for this dataset, we find that even for

the greedy method, there is significant drop in error from Layer 2 to 3.
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Table 2.3: Disaggregation Accuracies on Pecan Street

Home FHMM SC DDSC MLC PED DSC (Greedy) DSC (Exact)

1 75.55 89.43 90.53 87.94 7596 92.96 94.09
2 4299 6534 6690 63.83 43.57 74.94 79.20
3 64.13 8150 82.02 80.22 66.21 83.64 87.82
4 5156 61.79 71.19 60.31 52.75 74.70 79.62
5 5220 53.49 62.14 52.00 52.69 62.50 70.05
6 10.00 54.62 54.68 53.13 1392 52.92 60.36
7 5375 49.03 54.61 47.60 55.06 60.44 67.84
8 3294 5191 5285 5044 3394 60.66 66.92
9 75.50 7427 7535 72.88 75.06 77.40 80.40
10 46.26 5628 63.34 5479 48.38 67.25 71.06
11 33.05 5359 5930 52.07 33.69 67.37 72.30
12 4412 6579 69.20 6429 4597 71.75 75.21
13 50.25 6297 69.63 61.49 51.11 74.80 77.34
14 70.79 82779 84.67 8130 7252 87.30 90.86
15 5093 60.73 61.21 53.22 50.62 61.98 69.51
16 7445 8551 86.84 84.00 75.82 88.78 90.11
17 90.15 8494 8564 8345 8991 81.12 83.40
18 5793 7528 75.86 73.80 58.90 77.68 81.26
19 4574  55.67 5893 50.20 47.00 61.90 67.89
20 48.06 5940 64.73 5795 4881 69.23 74.37
21 57.87 5658 58.67 55.09 57.03 60.73 66.80
22 35.67 50.70 52.11 49.19 38.60 48.14 56.76
23 68.75 8130 84.28 79.81 71.26 87.69 90.09
24 62.43 7514 7873 73.63 65.99 85.85 89.28
25 3944 4976 5020 45.16 37.59 51.89 58.23
26 3194 4997 5149 48,50 32.60 53.06 59.31
27 42.68 4540 50.54 4390 43.11 55.50 60.75
28 68.07 7739 7831 75.85 69.07 79.63 84.08
29 31.00 55.65 55.65 54.14 31.00 57.11 66.02
30 3575 53.09 5568 52.16 38.85 55.18 63.96
31 38.81 52.09 5292 50.19 40.03 51.44 59.82
32 4724 6395 6730 61.09 59.92 71.79 75.60
33 71.00 66.88 68.69 6291 67.06 67.25 69.22
34 31.37 4847 5037 45.16 33.92 49.74 58.31
35 4536 4895 51.10 52.60 4590 58.74 63.50
36 26.89 4487 4995 50.76 30.13 52.02 58.34
37 30.73  50.68 5451 50.11 38.71 59.42 64.31
38 3828 60.04 6192 5536 41.09 62.85 65.55
39 6395 73779 7691 70.26 64.06 83.15 85.82
40 4732 52.86 5325 53.02 50.09 51.11 61.79
41 4751  46.19 50.76 4492 55.03 53.10 62.06
42 51.10 6191 65.63 60.72 51.85 68.97 72.56
43 60.70 7252 7794 69.26 61.37 84.83 87.24
44 2841 5535 56.89 5093 29.18 58.90 65.32
45 56.53 7847 8179 78.61 58.51 84.66 87.09
46 3516 49.17 5455 45.55 39.06 61.89 69.74
47 41775 7146 73.67 69.93 49.38 72.67 76.77
Aggregate 49.07 62.06 6496 60.29 50.90 67.58 72.72
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Table 2.4: Energy Error For Common Devices

Appliance FHMM SC DDSC MLC PED DSC (Greedy) DSC (Exact)

AC 3.16 0.90 0.70 0.81 2.52 0.89 0.80
Dryer 51.47 16.57 2.04 13.24  35.69 1.11 1.02
Dishwasher 6.48 4.23 1.25 3.19 6.08 0.66 0.62
Microwave 4.96 4.55 0.84 2.80 4.3 0.76 0.70
Furnace 0.89 0.79 0.63 0.66 0.93 0.58 0.55
Fridge 2722.8 916.53 5163 1001.3 986.30 490.56 401.78
Washer 21.80 8.75 0.93 5.59 19.62 0.59 0.55

Table 2.5: Variation of Error with Depth

Appliance Layer 1 Greedy Layer 2 Exact Layer 2 Greedy Layer 3 Exact Layer 3

Ac 0.90 0.90 0.84 0.89 0.80
Dryer 16.57 12.04 10.24 1.11 1.02
Dishwasher 423 2.25 1.19 0.66 0.62
Microwave 4.55 2.84 2.80 0.76 0.70
Furnace 0.79 0.66 0.61 0.58 0.55
Fridge 916.53 516.3 490.3 490.56 401.78
Washer 8.75 2.93 2.59 0.59 0.55

To visually show the disaggregation results for the Pecan Street dataset, some
samples are shown in the Figure 2.3. The red plot shows the actual energy
consumed and the blue plot the predicted energy. One can see that even with our
proposed greedy method, the estimated and the actual values are close, while

results from [8] are considerably off.

2.4.1.3 Results on an Indian Dataset

There is hardly any dataset collected outside the developed countries. This
is one of early endeavours in a developing nation (India) to collect an NILM
datasets [45]. The data was collected in a three storey building in Delhi, India,
spanning 73 days from May-August 2013. The brief description of the dataset

1s given in Table 2.6. For major appliances, electricity consumption was moni-
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Table 2.6: Description of Devices

Appliance Number Power Brief Description of Appliances
Name Ratings
Air 2 1800  Appliances Type: Window, Cooling Capacity:
.. 5050W, Power Consumption(W):1778
Conditioner
90 Not available
Laptop
Television 50 Samsung Television Series 3,
BN68025578
Water 1 40 AMY JP Appliances Water Purifier
Filter
Refrigerator 160 LG Refrigerator, Electricity Consumption:
260 units/year, Volume:230 litres
Washer NA LG 6.5kg Fabri Soak
Washing Machine WP-9515
Table 2.7: Energy Error for Common Devices
Appliance DDSC DSC(Greedy) DSC(Exact Layer)
Air conditioner  0.73 0.46 0.30
Laptop 10.46 431 3.20
Refrigerator 2.17 0.59 0.27
Television 7.10 2.86 1.96
Water Filter 83.28 26.00 19.78
Washer 5.97 3.86 2.08

tored at three levels:

Meter level: Modbus-serial enabled Schneider Electric EM64001 meter was
used to instrument the main power supply. The collected data includes voltage,

current, frequency, phase and power at 1 Hz.

Circuit level: Split-core current transformers (CT), clamped to individual
mini-circuit breakers, are used for monitoring circuit level current. Since no
commercial solution was easily available in India for panel level monitoring,
a custom built solution was used involving low cost microcontroller and Sin-

gle Board Computer (SBC) platform. A total of 8 CTs were used to monitor
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different MCB circuits in the home.

Appliance level: Since no good commercial options were available for plug
level monitors, we worked with our collaborators and used their in-house devel-
oped jPlug (a variant of nplug [46]) for monitoring individual appliance level
power consumption. Ten jPlugs were used to monitor different plugload based
appliances across the home. It measured multiple parameters including voltage,

current, phase and frequency.

Additionally, Current Cost (CC) based CT is used to measure the power con-
sumption for electric motor (used to pump water), which is not a plug-load, but

has a significant power consumption.

Different computing platforms - microcontrollers, SBCs and desktops are
used for data collection. Five raspberry pi’s (RP1) and one Ionics Stratus plug
computer (as SBC) and a 2 GHz Desktop PC running Linux (main local server)
was used. One RPi, connected to EM6400 using RS485-USB converter, col-
lected meter data using a custom program based on pyModbus5 and communi-
cated it to the desktop server. USB output (XML formatted) from CC is col-

lected on another RPi and is communicated to the desktop server.

For disaggregation we used the readings at the meter level and at the appli-
ance level; the data used in this work is aggregated and averaged to 10 minute
resolution. The same three tier architecture has been used for this dataset.
The disaggregation accuracy using FHMM [19] is 53.16%, using sparse cod-

ing [12] is 71.02%, using discriminative sparse coding [12] is 73.20% and us-
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ing PED [13]1s 57.28%. These conclude the baseline techniques. Our proposed
greedy deep sparse coding yields an accuracy of 76.93% and exact deep sparse
coding yields 78.04%. The improvement we get by going deep instead of using
insights into the appliance’s behaviour [12, 13] in a shallow technique yields

significant improvement.

The disaggregation performance (in terms of error) for different devices are
shown in the Table 2.7. We have shown the results for Discriminative sparse
coding (which is the best among existing techniques) and the proposed deep

techniques.

We compare the performance of the proposed method with two baseline tech-
niques - FHMM, and DDSC. The rest are benchmark methods — PED , MLC
, and DSC [47]. FHMM is a standardized technique and the parameters are
known from the non intrusive load monitoring toolkit [28]. For the remaining,

the parameter values have been obtained from the corresponding studies.

For our proposed technique, the value of the sparsity inducing parameter A
has always been kept at 0.1 (for all algorithms). For the incoherence term, the
parameter 7) has been set to 0.2 and for the disaggregating term the value of ~
has been fixed at 0.05. These values were obtained by cross validation on the

training data using the greedy L-curve technique.

It is greedy in the sense, that the value of the common sparsity parameter is
obtained from the first technique. It is kept fixed in the second technique to find

out 7); the values of A\ and 7 have been fixed for the third formulation for fixing
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~ . Our algorithm is not sensitive to the value of the hyperparameter for a wide
range of values (between 0.01 and 0.95) — this is expected since the Bregman
relaxation variable adjusts automatically. The number of atoms we have used

for each device is 3.

2.4.1.4 Results on REDD

As outlined by [27] — there are two protocols for evaluation. In the first one
(called ‘training’), a portion of the data from every household is used as training
samples and rest (from those households) is used for prediction. Usually 80 %
of the data (sequentially) is used for training and the remaining for testing. In
the second mode, the data from four households are used for training and the
remaining one is used for prediction (called ‘testing’). The usual protocol for

the testing mode is to use 4 houses for training the and 5 house for testing.

In this chapter, we have argued that the motivation for using analysis dic-
tionary learning is its generalization ability, one requires lesser training data.
Therefore, we propose more challenging protocols for testing and training modes.
For the testing mode, we will use only one of the houses for training and the
remaining four for testing. In the training mode we use 20% of the data for (for
each house) training and the remainder for testing. The split into training and
testing set has been done randomly and 100 such splits have been made. We
report the mean from all the splits. In the following Table 2.8 we show results
for training mode. The testing mode disaggregation accuracy is shown in Table

2.9. For both the tables ‘Simple’ is the technique proposed in Subsection 2.3.1;
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Disaggregation Accuracy

Figure 2.5: Comparison of Normalized Error for (left to right) - AC, Refrigerator and Washer.

‘Distinctive’ is the technique proposed in Subsection 2.3.2; and ‘Disaggregating’

1s the technique proposed in Subsection 2.3.3.

2.4.2 Results with Analysis Co-Sparse Coding

The results conclusively show that our proposed methods are significantly better
than others. Our baseline ‘Simple’ technique yields more than 5% improvement
over the next best (PED) for the training mode and DSC for the testing. It is
interesting to note that, a benchmark deep learning algorithm like DSC performs
the worst. This is because, deep learning is data hungry; in limited data settings

such as the training, it overfits and performs significantly worse compared to
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Table 2.8: TRAINING MODE DISAGGREGATION ACCURACY (MEAN OF 4 TEST HOUSES)

Home FHMM DDSC PED MLC DSC Simple Distinctive Disaggregating

1 53.6 522 541 564 460  60.2 60.7 62.0
2 57.8 604 643 609 49.2 70.0 70.0 72.0
3 41.3 40.0 404 302 31.7 42.1 42.9 46.5
4 58.0 563 68.7 603 509 75.3 76.2 76.8
6 62.7 541 549 509 545 60.4 61.1 62.7
Aggregate 54.7 52.6 56.5 51.7 465 61.6 62.2 64.0

other shallow techniques.

However in the testing mode, since the data from all houses are aggregated, it
performs better. We see that between the three different proposals of ours, there
is only light difference. The ‘Simple’ method yields good results. It is slightly
improved with the ‘Distinctive’ penalty; the results improve further with the
additional ‘Disaggregating’ penalty. The overall improvement we achieve over

the existing techniques is 7.5%.

For the Training mode, we carried out statistical t-tests between the methods
in order to verify if they are significantly different from each other. At 99%
confidence interval, we found that our ‘simple’ and the ‘distinctive’ techniques
were statistically similar but our final formulation — the ‘disaggregating’ tech-
nique was different (better). All of our proposed techniques were significantly

better than the benchmark techniques.

2.4.2.1 Results on Pecan Street

In this work, we make the evaluation more challenging. We use 10% to 50% of

the houses for training and the remaining for testing. The splitting into training
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Table 2.9: TESTING MODE DISAGGREGATION ACCURACY

Home FHMM DDSC PED MLC DSC Simple Distinctive Disaggregating

1 46.6 46.0 442 438 502  55.0 55.7 58.0
2 50.8 49.2 487 485 534  65.1 65.2 66.8
3 333 31.7 30.1 310 389 37.2 37.6 40.5
4 52.0 509 463 482 56.8 70.5 70.9 71.9
6 55.7 545 504 516 590 552 55.2 57.1
Aggregate 47.7 465 439 446 517 56.6 56.9 58.9

and testing sets is done randomly and 100 such splits have been used in the

experiments. What we report are the average of the 100 splits.

To prepare training and testing data, aggregated and submetered data are
averaged over a time period of 10 minutes. This is the usual protocol to carry out
experiments on the Pecan street dataset. Each training sample contains power
consumed by a particular device in one day while each testing sample contains

total power consumed in one day in particular house.

For the proposed techniques, number of atoms for different appliances re-
main the same as before (i.e., three per appliance). The parametric values also
remain the same as in REDD; we did not tune it any further. The configuration
of the techniques compared against are also obtained from the non-intrusive
load monitoring toolkit as before. The parameter settings for the benchmark

methods are from the corresponding papers.

It is not possible to give the house-wise results like REDD. Therefore we
show the results through two sets of graphs. The graph in Figure (2.4) shows
the overall accuracy of each technique for a given training volume. We clearly

see two distinct classes of techniques. The PED, MLC and FHMM are the
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bottom performing techniques; DDSC, and the proposed ones are better. Of
these, DDSC is the worst. DSC performs worse than analysis co-sparse coding
when the volume of training data is low, but with increase the results continue

to improve and eventually surpasses ours.

The proposed methods yield the same level of accuracy with only 10% train-
ing data as compared to benchmark techniques utilizing 50% training data. This
means that, given the scenario, we only need to instrument 10% of the homes
as compared to 50% (required by existing methods); this is a drastic reduction

in instrumentation and sensing cost.

We refer to this result (five fold reduction in the need for sensing) in the intro-
duction while giving the example. The second set of graphs show the normal-
ized error (a common metric) for common high power consuming appliances
from different techniques. This is shown in Figure 2.5. For this set of graphs
we only show results for best performing methods — DSC and DDSC; this is
because the results from other techniques are so poor that the errors are larger
by an order of magnitude making visual comparison meaningless. The results
show that, for smaller training volume our method performs the best. As the vol-
ume of training data increases deep sparse coding tends to perform better. This
is expected. Deep learning overfits with small training data and hence perform

poorly.

The conclusions drawn before hold in this set of plots as well. Our proposed

method performs at par with the benchmark methods with far fewer training
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data; in practice this leads to far fewer instrumented homes, thus reducing the

costs of sensors.

2.5 Discussion

Sparse coding based techniques have been shown to yield excellent disaggrega-
tion results. However, all prior sparse coding techniques are shallow, 1.e., single
layer of dictionary is learnt for each device. For the first time in this work we
propose the concept of learning deeper levels of dictionaries; we call this — deep
sparse coding. Simulations results on two benchmark datasets and experimental
results on a real dataset show that our proposed method is always better than the

state-of-the-art methods in energy disaggregation.

The shortcoming of our work (and all other studies based on sparse coding
/ dictionary learning) is that, it cannot be used for real-time disaggregation. If
such be the need, HMM based techniques [48] would be more suitable. The
other shortcoming, is that by going deeper, we require learning more parameters.
Therefore when training data is limited, we will overfit and suffer degradation in
testing performance. In the future, we would like to adopt the unsupervised pre-
training followed by fine-tuning paradigm used in deep learning to ameliorate

this issue.

Prior studies [12], [13] have shown that better results can be obtained (for
shallow techniques) when further assumptions regarding the device are made.

In future we would like to incorporate it into our deep learning framework and
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hope to improve the results even further.

One of the general problems in deep learning is the unavailability of su-
pervised data. We have shown that the deep learning framework proposed in
this chapter works for databases of different sizes. But what about extreme
situations where the data is highly parsimonious? In deep learning this is ad-
dressed by the paradigm of unsupervised pre-training followed by supervised
fine-tuning [49]. In the future, it remains to be seen if similar techniques can be

adopted for deep sparse coding based disaggregation as well.

Another new technique for energy disaggregation has been proposed in this
chapter. Itis based on analysis co-sparse coding. Results on benchmark databases
show that the proposed technique performs better than others when the volume
of training data is small. When the volume of training data is large, recently

proposed method of deep sparse coding performs better.

In a practical scenario it would mean that our method will require far fewer
number of instrumented houses, or far fewer days of instrumentation in each
house for reaching the same level of accuracy as the benchmark techniques
today. This means that using our method one can drastically reduce the sensing

cost without losing on disaggregation accuracy.
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Chapter 3

Non-Intrusive Load Monitoring via

Multi-Label Classification

In this chapter, we follow a non-traditional approach of framing NILM as a
multi-label classification problem [14]. As part of this work we have adapted
two existing classification methods (sparse representation based classifier re-
stricted boltzmannn machine), and proposed a novel algorithm (based on con-

volutional transform learning) to perform multi-label classification.

Traditional NILM is not fully non-intrusive; the data collection for the train-
ing stage is highly intrusive requiring installation of sensors at the plug level
to record the consumption of individual appliances over months. This training
data 1s used to train a model, which is then used in the operational/testing stage

to disaggregate the load; the operational stage is non-intrusive.

Owing to the high cost of data collection, financial and privacy-wise, large

scale roll-out of NILM as a service has not be achieved. There is a need to make
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the process completely non-intrusive (at least as far as sensing is concerned).
The recent multi-label classification based framework for NILM is showing
promise [ 4] in this direction. In this approach, the actual power consumption
of the appliances is not required, only the ON/OFF state of the device needs to
be recorded. This can be done by recording logs from individual households
for residential buildings and building managers for commercial ones. Such an
approach reduces both instrumentation costs and mitigates privacy concerns in

one go.

In this chapter, a brief literature review is described in Section 3.1 followed
by proposed methodology in Section 3.2. Then Section 3.3 presents the experi-

ments and results.

3.1 Literature Review

Over time, various approaches have been proposed to address NILM ranging
from combinatorial optimization [5] and stochastic finite state machines [48] to
modern deep learning based techniques [22]. A slightly dated review on this

topic is available in [50], [51].

In the multi-label classification based approach the states of the appliances
are the class label. The recorded smart meter readings serve as the input sam-
ple. Since multiple appliances can be ON at the same time, it turns out to be
a multi-label classification problem. In [14] a thorough comparison of tradi-

tional multi-label classification algorithms like multi-label K nearest neighbour
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(MLKNN) and random K label-sets (RaKEL) for NILM have been performed.
More modern approaches are based on multi-label deep learning [26] and multi-

label graph learning [52] for NILM; these form the state-of-the-art in this area.

In this work we propose a new approach to multi-label classification based
on the sparse representation based classification (SRC) approach [53]. The tech-
nique was originally developed for computer vision, but has been widely used
in various domains since then; the paper has 8000+ citations. The main advan-
tage of SRC over other approaches is its ability to infer from very few samples.
This is a critical criterion for NILM — the smaller the training data required the

better it is.

Compare two scenarios for a domestic household — training data logged for
7-8 months versus data logged for one month. In the first one, it is likely that
the household will refuse to participate for two main reasons:

1. logging the data is tedious

2. household cannot go for vacation in this duration

These issues are not going to arise for the second scenario where they have
to log the data for just a month. This is the reason, we are emphasizing on a

mechanism that can infer from small volume of training data.

Originally SRC was developed for single label classification,i.e., for prob-
lems where the input samples corresponded to only one class label. Here, we
show how SRC can be easily extended to handle multi-label classification prob-

lems.
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3.2 Proposed Formulations
3.2.1 Multi-Label Sparse Representation-Based Classification

SRC assumes that the test sample (vj) can be represented as a linear combi-
nation of training samples from the correct k" class. This is represented as

follows,
Vtest = Q1 Vk1 + Qk2VE2 + oo + Qo Uk, + € = ViQg + €, (3.1)

Here vy, ; represents training samples for the ' class and oy, ; the corresponding
linear weights; V}, is formed by stacking the vy ;’s as columns and o, is formed

by a;.;’s stacked as a vector. The error ¢, 1s assumed to be Normally distributed.

However, the correct class is not known, therefore a better way to represent
the SRC model is to express the test sample as linear combination of all training
samples where the weights corresponding to samples of incorrect class will be

zero. This can be expressed as follows,
Viest = Z Viapy +e=Va—+e (3.2)
k

Here V' represents all the training samples stacked as columns and « is formed

by concatenating the «;’s vertically. The error € is Normally distributed.

According to the SRC' assumption [53], most of the coefficients in o will
be zeroes. Therefore Equation (3.2) is a sparse recovery problem. One can

use [,-norm minimization (0 < p = 1) or any greedy algorithm for solving a.
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Once the sparse « is obtained, the task is to assign vy to the correct class. In
SRC this is done by computing the distance between v;.s; and the class repre-
sentation defined by Viaj. Usually a simple Euclidean distance is computed:
di = ||viest — Viagl|o- Tt is expected that for the correct class this distance will
be the smallest; therefore it is sensible to assign v to the class having the

minimum d.

This concludes the single label SRC technique. In multilabel SRC the input
test sample vy may belong to multiple classes. Therefore instead of assigning
the test sample to only one class by looking at the minimum ., we will con-
sider other classes that have small d;.’s. For multi-label classification we can
consider all classes within the range 7 x min(dy) to be active classes for vy

in this work we have used 7 = 2. The algorithm is expressed succinctly.

3.2.1.1 ML-SRC Algorithm

1. Solve the optimization problem expressed in Equation (3.2).
2. For each class k compute class-wise distance: di = ||viest — Via||%

3. Assign test sample to all classes whose distance is than 2 x min(dy).

3.2.2 Multi-Label Restricted Boltzmann Machine

We propose a new approach to multi-label classification based on the Restricted
Boltzmann Machine (RBM) [54]. RBMs have never been used for multi-label

classification so far. It is a classic example of algorithm adaptation for multi-
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label classification.

RBMs [55] have been effective in learning high-level features and capturing
high-order correlations of the observed variables. A typical RBM has a hid-
den unit in which nodes are conditionally independent given the visible state.
RBMs have good reconstruction accuracy which can be leveraged to generate
individual load information in latent space. We propose that generative property
of RBMs combined with multi-label supervision can be used to perform NILM

via state detection of appliances.

Restricted Boltzmann Machines [55] are one type of undirected graphical
models that use hidden variables to model high-order and non-linear regulari-
ties of the data. A typical RBM is a two-layer bipartite graph with two types
of units, the visible units x and hidden units 4. An RBM represents probabil-
ity distributions over the random variables under an energy-based model. The
energy model of an RBM is given by E(z,h) = —2TWh — bTx — ¢T'h, where
W is the weight to be learned. The joint probability distribution over (z, h) is

expressed as P(x, h) = fexp(—E(x, h)), where Z is the normalization factor.

Learning RBMs is a difficult task due to the tractability involved in comput-
ing normalization factor Z. Several learning algorithms have been proposed
[56-58] to solve the problem above. Contrastive Divergence (CD) method pro-
posed by Hinton et al. [56] 1s an efficient method and is widely used to learn

RBMs.

The generative property of RBM makes it useful for learning latent space
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representation of data where we don’t have information about how data is gen-
erated. RBMs have been used for dimensionality reduction [59], collaborative
filtering [60], anomaly detection [61] and unsupervised feature learning [62].
The classification RBM has been used for various classification tasks in [54,63]

and label consistent collaborative filtering [64].

The joint probability distribution of the proposed multi-label classification

RBM model shown in Figure 3.1 is given by,

ply, z, h) o e W) (3.3)

where y is the label unit. We define the new energy function as follows:

E(y,z,h) = —h"Wax —a'z —b"h - 'y — Uy (3.4)

with parameters © = (W, a, b, c,U). The model is illustrated in figure 3.1.
We find the values of visible and hidden units using (3.5), (3.6) and (3.7) respec-

tively.

p(hy = 1z,y) = o(b; + U + Z Wiix;) 3.5)
k

p(l’z‘h) = O’(CLZ' + Z Wﬂhj) (36)

J
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Dl = 1[h) = P+ 2 Tthy) (3.7)
>y exple + 2, Ushy) '

where o is the logistic sigmoid and [ is the class label out of C' classes. These

formulations capture the predictive information about the input vector as well

as the target class.

Network parameter O is learned using CD [56] algorithm,

dlogp(z,y)

AWij=n S
ij

= 77(< xzyzh >data — < xzyzh >model> (3.8)

where 7 is the learning rate.

For multi-label classification RBM, the above formulation changes as now

we have multi-label information present for each sample. The conditional dis-

tribution of y given h becomes:

plyr = 1h) = o(cr+ Y _ Uphy) (3.9)

This formulation is not tractable since v now has 2 possible values. There-
fore for inference we use mean field (MF) message-passing method for an ap-
proximate inference. The MF approach tries to approximate the joint posterior

p(y, hlz) by a factorial distribution q(y, h) = [T, s (1 — ) [T, 77 (1 —
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Table 3.1: SRC: Classification Results on REDD

Method | Macro F1 | Micro F1 Average
Measure Measure | Energy Error

DL 0.4519 0.4983 0.1433

GL 0.5662 0.5839 0.1349

ELM 0.5191 0.5526 0.8884

Proposed 0.6537 0.6801 0.0445

Table 3.2: SRC: Classification Results on Pecan Street

Method | Macro F1 | Micro F1 Average
Measure | Measure | Energy Error
DL 0.6039 0.6049 0.1236
GL 0.6143 0.6206 0.1162
ELM 0.6020 0.6097 0.8989
Proposed 0.7006 0.7035 0.0338

J
Tj < O'(bj + ZUle + ijzxz) VJ € {1, ,n} (3.11)
b 1
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Tj)l—hj that minimizes the Kullback-Leibler (KL) divergence with the true pos-

terior. Running the following message passing procedure to convergence

Uy U(Cl + ZUlej) Vi € {1, ...,C},

we can reach a saddle point of the KLL divergence, where 1; serves as the

estimate for p(y; = 1|z) and 7; can be used to estimate p(h; = 1|z).

3.2.3 Multi-Label Deep Convolutional Transform Learning

We propose a deeper extension of multi-label convolutional transform learning

with a changed cost for the multi-label consistency term. Our justification for




a deep architecture relies on the key property that the solution X to Equation
(1.1), assuming fixed filters 7', can be reformulated as the simple application of

an element-wise activation function. That is:
argming F(T,X) =®(T *5), (3.12)

with @ being the proximity operator of W Combettes. It is interesting to re-
mark that, if ¥ is the indicator function of the positive orthant, then ® identifies
with the famous rectified linear unit (ReLU) activation function. Many other
examples of mapping between proximity operators and activation functions are
provided in Combettes. Consequently, we propose to compute deep features by
stacking several such layers, leading to X, = ®,(TyxX,_1) with{ =1,... L—1
and Xy, = S.

For both classification and regression tasks, the input remains the same,
namely the power consumption over a period of time. For classification task,
the labels associated to the data S are gathered into a matrix L, where each
column is a binary vector with the n-th element being 0 if the n-th appliance is
off and 1 if the n-th appliance in on. Owing to such binary nature, it is more

appropriate to use a binary cross entropy loss for label consistency, leading to:

2
1
T X WA T 003 4 8) = X+ w(X) + 3 (T Aogdet (1)
/=1
—|—77JBCE(O'(WX>,L),

(3.13)
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Figure 3.1: Proposed architecture for NILM using multi-label classification RBM.

where o 1s the sigmoid function, and Jpcg 1s the binary cross-entropy loss.
Instead of predicting the state of the appliance, if we want to predict the power
consumption, the labels in the matrix L will consist of appliance-wise power
consumption. Since the labels will be real values, we use the Euclidean cost,

which yields:

WE

1
T, X, W | Tox ®(T1 % 8) = X[+ 0(X) + > (w1 Tl — Mogdet ()

~
I

1
WX — L3

(3.14)

Hereabove, we show the formulations for two layers of convolutional trans-
forms (77 and 75), but it can be extended to more in a straightforward way. We

finally propose to solve both Equations (3.13) and (3.14) using backpropagation

with accelerated gradient descent [65].

Figure 3.1 shows the schematic diagram of our proposed method. While it

appears to be similar to that of a convolutional neural network (CNN), the key
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difference of our proposed approach lies in the way the convolutional filters are
learnt. Here, we guarantee uniqueness of the learnt filters, while CNN does not.
The later start with random initialization of each filter and ‘hopes’ that the filters

will be unique.

3.3 Experimental Evaluation

We have carried out experiments on two NILM datasets — REDD and Pecan
Street. To emulate real-life scenario for both the datasets aggregated readings
over 10 minutes have been considered. We only consider the active power as
input and the data for each hour forms the length of the sample. Usually about
70 — 80 percent of the data is used for training the remaining for testing. Our
objective is to reduce the required volume of training data, therefore in this
work we consider only 10% data for training and 90% for testing. Apart from

the ratio of training to test samples, the protocol remains same as [26].

The standard measures for multi-label classification based NILM have been
defined in [14]. The F'1,,4.0 and the F'1,,;.., are based on the popular F'1.,..

defined for single label classification.

B 2x TP
 2XxTP+FN+FP

F1

where T'P is True positive, F'P is false positive and F'N is false negative.
N N N
Fluiero = F1 (Z TP,y FP.) FM)
i=1 i=1 i=1
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N
1
Flygero = = F1 TP“FPZ)FNZ
N; ( )

Here, T'P;, F'P; and F' N, denote the number of true positives, false positive and

false negative for the label 7. /V is the number of labels in the dataset.

These measures show how accurately an algorithm can predict the ON / OFF
state of appliances. It does not provide insight into the actual energy consump-
tion. For this purpose the second metric defined in [14] is the average energy

error (AEE) defined as follows,

N N
| (Z Average_Poweri> — (Z Actual_Power) '
AEE — 1=1 1=1

N
> Actual_Power;

1=1

As mentioned before [26], [52] are the most recent works on multi-label classi-
fication based NILM. Both the techniques surpass results from traditional multi-
label classification algorithm like MLKNN and RAKEL. The work [26] has
shown to improve over other as well as state-of-the-art deep learning techniques
like multi-label stacked autoencoder. Therefore in this work we will not com-
pare against the techniques that have already been outperformed by deep learn-
ing (DL) [26] and graph learning (GL) [52]. We also compare against the newly
developing classification approach of extreme learning machine (ELM); in [66]

it has been used multi-label classification.

67



Table 3.3: ML-SRC: Appliance-Level Evaluation on REDD

Device DL GL ELM Proposed
F1-Score  Error | F1-Score Error | Fl1-Score  Error | F1-Score  Error
Dishwasher 0.6409 0.2902 | 0.6256 0.2516 | 0.5071 0.9667 | 0.7433  0.0264
Kitchen Outlet | 0.5578  0.2716 | 0.5071 0.3671 0.6411 0.3326 | 0.7251 0.9931
Refrigerator 0.5292 03628 | 0.3724 0.5132 | 0.6118  0.2528 0.7165 0.0373
Washer Dryer 0.3903 03122 | 0.2267 0.6990 | 0.4977 0.3149 0.7212 0.0911
Table 3.4: ML-SRC: Appliance-Level Evaluation on Pecan Street
Device MLKNN RAKEL LC-DDL HLM-I layer
F1-Score  Error | F1-Score  Error | F1-Score  Error | F1-Score  Error
Air Conditioner | 0.6391 0.1720 | 0.7321 0.8565 | 0.5882 0.1051 0.7167  0.6785
Dishwasher 0.6546  0.1690 | 0.7328 0.8490 | 0.4871 0.1501 0.7376  0.7025
Furnace 0.6123  0.1341 0.7231 0.8415 | 0.5572 0.0794 | 0.7297 0.6962
Microwave 0.5916  0.0727 | 0.6919 0.7301 0.5533  0.0795 | 0.7189 0.6913

3.3.1 Results- Multi-Label Sparse Representation-Based Classification

We compare with three of the latest known tools in multi-label classification —
DL, GL and ELM. The overall results are shown in Tables 3.2 and 3.2. We
see that for the smaller REDD dataset, DL produces very poor results but for
Pecan Street it performs at par with the other benchmarks we have used. This is
because REDD is a small dataset and 10% of the data is insufficient for DL and
hence it overfits; but Pecan Street is a much larger dataset and 10% of its data
is sufficient for the DL to train. Note that even though ELM performs good in

terms of F'1 measures, the Average Energy Error is very poor.

Of the methods compared against, GL performs the best. It performs reason-
ably in terms of all the metrics. But ML-SRC yields much better results than
GL (and the rest), it is around 10% better in terms of all metrics. For more
granular analysis we present the appliance level results for four popular devices

in Tables 3.3 and 3.4.
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Figure 3.2: Training reconstruction errors of MLC-RBM.

3.3.2 Results- Multi-Label Restricted Boltzmann Machine

Table 3.5 and 3.6 present the F1-Score and correspondingly obtained disaggre-
gation error for each target device in both the datasets. Table 3.7 and 3.8 contain
micro and macro F1-Scores yielded by the state-of-the-art and proposed algo-
rithm on the REDD and Pecan Street dataset respectively. Our proposed model
yields the best results regarding classification measures and gives comparable
disaggregation accuracy. Although best classification accuracy should reflect
the least disaggregation error, here it is not so. This mismatch engenders an

ambiguity in results.

We would like to clarify it with an example. Suppose true labels for two

hours of aggregate consumption of four devicesare 1 00 1 and O 1 1 O whereas
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the predicted labels are 0 1 1 0 and 1 0 O 1 respectively. For the given case
F1-Score would be zero as all the identified states are wrong. For the same case,
disaggregation accuracy would be 100 % as the number of identified active ap-
pliances exactly matches the number of true active appliances. This example
explains why techniques, such as Label-Consistent Deep Dictionary Learning
(LC-DDL) [26], gives the best disaggregation accuracy but worst F1-Scores.
Therefore in such a framework, the performance of an algorithm should be

judged only after looking at both metrics collectively.

Table 3.5: MLC-RBM: Appliance-Level Evaluation on REDD

Devi MLKNN RAKEL LC-DDL MLC-RBM
evice F1-Score  Error F1-Score Error FI1-Score Error Fl1-Score  Error

Lighting 0.6476  0.3718 0.6760  0.8213 0.6216  0.2608 0.6947 0.1762

Kitchen 0.5081 0.4304  0.6108 0.6995 0.6411 0.3326  0.7213  0.1273

Refrigerator 0.5292  0.3628 0.6724 0.5132 0.6118  0.2528  0.7186  0.1644
Washer Dryer  0.3903 03122  0.5267 0.6990 0.4977 03149  0.6983  0.1963

Table 3.6: MLC-RBM: Appliance-Level Evaluation on Pecan Street

MLKNN RAKEL LC-DDL MLC-RBM

Device F1-Score  Error FI1-Score Error FI-Score Error FI1-Score  Error

Air Conditioner  0.6391  0.1720 0.6521  0.8565  0.5882  0.1051  0.7023  0.2334

Dishwasher 0.6546  0.1690 0.6728  0.8490 0.4871  0.1501  0.7269 0.1341
Furnace 0.6123  0.1341  0.6231  0.8415 0.5572 0.0794 0.7113  0.2224
Microwave 0.5916  0.0727 0.6819 0.7301  0.5533  0.0795 0.6981  0.1985

Table 3.7: MLC-RBM: Performance Evaluation on REDD

Method Macro F1-Score  Micro F1-Score

MLKNN 0.6086 0.6143
RAKEL 0.6290 0.6294
LC-DDL 0.5222 0.5262
MLC-RBM 0.7082 0.7157
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Table 3.8: MLC-RBM: Performance Evaluation on Pecan Street

Method Macro F1-Score  Micro F1-Score

MLKNN 0.6183 0.6194
RAKEL 0.5872 0.6019
LC-DDL 0.5214 0.5332
MLC-RBM 0.7080 0.7123

3.3.3 Multi-Label Deep Convolutional Transform Learning

3.3.4 Classification

In the multi-label classification scenario, we have compared with two state-of-
the-art techniques, namely deep learning based NILM with pinball loss (PB-
NILM) [67] and multi-label deep transform learning (MLDTL) [26]. For our
proposed technique the parameters were determined using k-fold cross valida-
tion on the training data. The retained parameters were § = 1, p = 3, A = 1
and 7 = 1. The F'l,,4¢r0 , the F'1,,;.., and the average energy error (AEE) are
presented in Table 3.9 and 3.10.

For both the datasets, we see that our proposed algorithm with two layers
performs the best. Adding further layers on these small datasets results in over-
fitting. We find that PB-NILM works better for Pecan Street (larger dataset)
compared to REDD which may owe to the fact that the technique is over-fitting

for the smaller data.
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Table 3.9: Deep-CTL: Classification Results on REDD

Method Macro F1 | Micro F1 Average
Measure Measure | Energy Error
PB-NILM 0.5515 0.5576 0.3903
ML-DTL 0.5693 0.5642 0.3537
Proposed 1 layer 0.5687 0.5682 0.2926
Proposed 2 layer 0.6018 0.6026 0.2558
Proposed 3 layer 0.5425 0.5419 0.3282

Table 3.10: Deep-CTL: Classification Results on Pecan Street

Method Macro F1 | Micro F1 Average
Measure | Measure | Energy Error
PB-NILM 0.6231 0.6207 0.2582
ML-DTL 0.5552 0.5552 0.4048
Proposed 1 layer 0.6121 0.6119 0.2723
Proposed 2 layer 0.6381 0.6378 0.2316
Proposed 3 layer 0.5983 0.5963 0.2902

3.3.5 Regression

In this scenario, our objective is to predict the energy consumed by different
appliances. We have compared against deep latent generative model (DLGM)
[68] and semi-binary non-negative matrix factorization (SMNNMF) [69]. The
parameters for the existing benchmarks have been obtained from the papers.
The parametric values for our model remain the same as before. For comparing
the accuracies, we compute the normalized energy errors of common appliances
for the two different datasets. The results are shown in Tables 3.7 and 3.8. Here

we are showing the best results from our two layer architecture.
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3.4 Discussion

In recent times, there is a concerted effort towards truly non-intrusive load
monitoring [14, 26,52, 70]. This is required for practical large scale roll-out
of NILM as a service with the larger goal of improving energy sustainabil-
ity. In this respect the multi-label classification framework has been showing
promise [14,26,52]. However, recent deep learning based solutions like [26]
require large volume of labeled training data. In order to reduce that require-
ment we propose a simple solution based on adapting the SRC framework [53]
to solve multilabel classification problems. Our proposed multi-label SRC im-

proves over state-of-the-art techniques by a considerable margin.

The main shortcoming of our approach is that, it is not possible to estimate
different stages of each appliance via our method. Neural network based func-
tion approximation approaches may be better in this respect. SRC is the basic
algorithm. Over the years various modification have been proposed, such as
kernel SRC [71] group SRC [72], dictionary learnt SRC [73] etc. We propose

to adapt all the popular variants to solve multi-label classification problems.

Next, we propose multi-label classification RBM. RBM has good reconstruc-
tion ability and when combined with multi-label supervision also provides good
classification accuracy. We compare the proposed technique with all the prior
works where NILM was transformed as a multi-label classification task. Our
proposed model yields the best results in term of classification accuracy and

comparable results regarding energy disaggregation.
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Last, we propose a new supervised deep learning framework. It is based on
the concept of convolutional transform learning. It can tackle both to classifi-
cation problem for identifying the states of the appliances and to the regression
problem for estimating their energy consumptions. Comparisons with state-of-
the-art techniques show that our proposed method improves over the rest. We
expect that the results can be further improved by adopting post-processing ap-

proaches such as [69].
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Chapter 4

Blind Compressed Sensing for

Non-Intrusive Load Monitoring

Energy disaggregation is a single channel (smart-meter) blind source (appli-
ances) separation problem. This makes the problem highly underdetermined
in nature — one equation (smart-meter consumption) and many variable (appli-

ance consumption). Therefore the problem has infinitely many solutions.

Smart-meters can sample at high frequencies, but higher frequencies mean
generation of more data. Transmitting this data from the building smart-meter
to the cloud at the utilities consumes some bandwidth; higher the sampling fre-
quency higher is the bandwidth consumed. Note that, it is not only one building
that would be transmitting this data, all the buildings would be transmitting it;
in such a scenario it is likely the entire network bandwidth will be consumed
for only transmitting power signals! To keep the network usage at check, the
smart-meter transmits the signal at low-frequencies (even though it is capable

of sampling at high frequencies).
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Typically it is expected that energy disaggregation would be offered as a
service by the utilities. However, since the utilities will have access to only low-
frequency information, the disaggregation accuracy is likely to suffer. To bridge
the gap between high frequency sampling and low-frequency transmission we

propose a compressed sensing / compressive sampling (CS) approach [74-76].

There are two techniques presented in this chapter-1) Blind Compressed
Sensing and 2) Multi-Label Deep Blind Compressed Sensing. The first one
presents a solution to recover the high frequency energy signals from the CS
samples. In the second one, from such CS samples, we propose to detect the
state of the appliance by using a multi-label consistent version of deep blind

compressed sensing.

The chapter is organized into several sections. We will discuss the basics of
CS in the Section 4.1. In Section 4.2, we describe our proposed formulation.
The results will be detailed in Section 4.4. Finally, the conclusions of this work

will be discussed in Section 4.6.

4.1 Literature Review

When the power signal is of sufficiently high frequency, integer programming
based approaches provide a feasible solution [77,78]. Similarly factorial hidden
Markov model (FHMM) is used to disaggregate appliance loads from high fre-
quency samples [19,48]. The performance of such techniques degrades when

the sampling frequency is reduced. Sparse coding approaches yield somewhat
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better results at low-frequencies [12, 13]; however, even with sparse coding,
higher frequencies translate to better results. We project the high frequency sig-
nal to a lower dimension embedding by a random projection matrix. The lower
dimensional signal will emulate a low frequency signal which can be then trans-

mitted.

The random projection can be easily integrated into hardware [79, 80]. Un-
der certain conditions, such a lower dimensional embedding approximately pre-
serves the information of the high frequency signal and can be recovered using
sparsity promoting techniques like /;-minimization [81] or matching pursuits

like algorithms [82].

This work extends the traditional compressed sensing dictates(i.e., recover-
ing the signal) by adding simultaneous disaggregation as part of the recovery
process. Our formulation is based on the dictionary learning approach [83] (the

same technique used in sparse coding [ 12, 13]).

4.1.1 Blind Compressed Sensing

Compressed Sensing (CS) studies the problem of solving an underdetermined
linear system of equations where the solution is known to be sparse. In practical

scenarios, the system is corrupted by noise as well.

YmxnTnx1 + Emx1, MM <n (41)
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The solution z is assumed to be k sparse (kK < m < n). For an under-
determined system, there can be infinitely many solutions. Research shows
that when the solution is sparse, it is necessarily unique [84]; i.e., there can-
not be more than one sparse solution. Further research established that when
the number of equations (m) satisfies the following criterion (Equation (4.2)),

[1-minimization can recover the sparse solution.

n
m = ck log(%) 4.2)
here c is a positive constant. The /;-norm minimization is robust to noise [85].

The recovery is formulated as:
min [ly — Az[; + Allz|l, (4.3)

CS recovery is not possible for any system of equations A; it is only guaranteed
when the so called restricted isometric property (RIP) holds. This condition is

expressed as follows:
(1=0) [lzll5 < [lAz[ls < (1 +0) [|z]l; (4.4)

Here 0 is a small constant. RIP guarantees that the system A behaves as a
near isometry. The value of ¢ dictates how much the system deviates from
ideal Isometry. This property is usually satisfied by random matrices for exam-
ple, restricted Fourier ensembles and matrices drawn from distributions such as

Gaussian, Bernoulli, and Binomial.
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Practical systems/signals are hardly ever sparse. However, most of them
have a sparse representation in some transform domain. For example, images
are sparse in discrete cosine transform (DCT) or wavelet, speech is sparse in
short time Fourier transform, etc. This phenomenon allows expression of the

signal x in terms of transform domain sparse coefficients «,

Analysis : a = Y (4.5a)

Synthesis : © = a (4.5b)

Here v is the sparsifying transform and the relationships (Equation (4.5)) hold

for orthogonal (71 = I = ¢pT) and (T4p = I # T tight-frame systems.

For signals that have a sparse representation in the transform domain, the

recovery is expressed as follows:
: 2
mO}nHy—AszaH2+)\HozH1 (4.6)

Once the sparse coefficients are recovered, the signal is obtained by applying

the synthesis Equation (4.5b).

Following Equation (4.2), note the number of equations/samples needed to
recover a signal is directly dependent on the sparse representation and thereby
on the choice of the transform ). For example, if is an image, the number of
corresponding non-zero DCT coefficients will be higher than the correspond-
ing wavelet coefficients making the choice of transform a crucial step in CS

recovery.
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Fixed transforms like Fourier, DCT and Wavelet have nice mathematical
properties but are not known to produce the sparsest representation. In signal
processing, it is well known that an adaptive basis (learnt from the signal) pro-
duces the sparsest representations. This paved the way for dictionary learning

based solutions; starting with the work on K-SVD [&6].

The idea of blind compressed sensing (BCS) was introduced by Gleichman
and Eldar [87]; it married dictionary learning with compressed sensing. In BCS,
the sparsity basis is learnt from the data (also known as dictionary learning). For
example, if the problem involves an image, the sparsity basis is learnt from the

patches of the image. The recovery is posed as:

. 2
i [ly — Azfl; + ZHP@ Dzil| + Allill, 4.7)

(3
N J/
~~

Dictionary Learning

Here P, representation patch extraction operator; D is the basis that is being
adaptively learnt from the patches and z; are the corresponding sparse repre-
sentations of the patch P;z. In dictionary learning, D replaces the role of ¢ in

CS.

When the basis is learnt adaptively (i.e. in case of BCS) the recovery results
are far better than of classical CS where the sparsifying basis is fixed. There are
many other branches of CS and dictionary learning, but these are not pertinent

to us. The interested reader may peruse [88].

BCS was extended to a deeper formulation [89] by incorporating deep dic-
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tionary learning [90] into the CS.

4.2 Proposed Formulation for Blind compressed NILM

We assume that the smart-meter is sampling at the rate of n samples per unit of
time (say an hour); but is only allowed to transmit m < n samples in that period.
Let x, .1 represent the signal sampled by the smart-meter. Currently a sub-
sampled version of x is transmitted; we propose to embed the high dimensional
signal into a lower dimensional representation ¥,,.; by a random projection

matrix A,,, (satisfying RIP). This is represented by,
y=Ax +e€ (4.8)

It 1s unlikely that the system will be corrupted by noise, but for the sake of
generality, we assume Gaussian noise €. The problem is to disaggregate the
appliance level consumption given the lower dimensional representation y. To

do so, a standard NILM training and testing approach is followed.

4.2.1 Training

In the training phase the individual appliances are metered. For each appliance
7, the samples for the 7' unit of time is represented by ::/;‘27 The complete training

data for the j' appliances is represented by,
r! = [:U{ |:1:J2\|55*}V} (4.9)
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Here we assume NV units of time in the training phase. In our proposition, the
utilities do not have access to X/, but has received a lower dimensional projec-
tion of it, given by:

Y/ = AX7 + F/ (4.10)
where 3/ = {y{\yﬂ\yﬂ and 77 = [e{\eé\\eﬂ
Following the work of sparse coding [1”], each appliance is modelled by a

sparse codebook/dictionary D7, This is expressed as,
X/ =Diz 4.11)

We reiterate that our work assumes that the disaggregation happens at the util-
ities server/cloud. Incorporating this model (Equation (4.11)) to the data re-

ceived at the utilities we get:
Yi=AD'Z) + EY (4.12)

Following the work on sparse coding, the training phase requires solving for the
dictionaries and the sparse codes (not required during testing) for modeling the
appliances. This is expressed as,

. . . . 2 .
min Y7 — AD'Z7 ||, + M| 72|, (4.13)

Equation (4.13) is easily solved using alternating minimization of the codebook
and the sparse codes. During the update for the codebook, the sparse code is

assumed to be constant. The update is given by:
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min[[Y7 — ADIZ| + M| 77|, = D/ = AYI(29)f

where (.)T denotes the Moore-Penrose pseudo inverse. The update for the

sparse codes assumes that the codebook is fixed. The update is expressed as,

min |[Y7 — AD?Z7 || + M| 2| (4.14)

This is a standard /;-minimization problem that can be solved using any itera-
tive thresholding algorithm. Note that the solution to the codebook and sparse
codes automatically reconstructs the original signals acquired by the smart-

meter Equation (4.11).

4.2.2 Testing

In the testing/operation stage, the task is to disaggregate the total load acquired
by the smart-meter. The total load, as recorded by the smart-meter, has a unit of

time. Therefore for all units of time, the data is expressed as,

v! = [z1]29|...|2 0] (4.15)

Equation (4.15) is an aggregate of the loads consumed by individual appli-

ances.

X = Z X7 (4.16)
J

Incorporating the sparse coding model (Equation (4.11)) into (Equation (4.16))
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leads to:

X = ZXJ’ — ZDij 4.17)
J

J

As mentioned before, the sparse codes obtained during the training phase are
not useful later on, only the codebooks are used in Equation (4.17). In the
compressive NILM scenario, the utilities do not have access to the fully sampled
data X, but has received its lower dimensional embedding Y : ¥ = AX + F.

Incorporating Equation (4.17) into the data acquisition model leads to:

Y:AZDijJrE (4.18)

J

During the testing phase, the codebooks are known; the goal is to estimate the

sparse codes Z/. The solution is obtained by minimizing the following,

min
Zi's

Y—AZDij
J

2
+>_ 171, (4.19)
F J

As before, this can be solved using any iterative thresholding algorithm.

Once the sparse codes are solved, the power consumption of individual de-
vices can be obtained using Equation (4.11). Note that our algorithm automat-
ically reconstructs the signal during training and testing phase. If one is inter-
ested in applying some other algorithm, they can run it on the reconstructed data

at the server/cloud.
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4.3 Proposed formulation for Deep Blind Compressed NILM

The model is expressed as —
Y =AD1DyDsZ + N (4.20)

In deep BCS, instead of learning a single layer of dictionary multiple layers —
Dy, D5 and D3, are learnt. The solution to Equation (4.20) was posed as —

b, Anin |1X = D1Dy. . DnZ| |5+ MO _IDillE) + Xal1Z]0 - (421

1
The objective of deep BCS was not signal estimation, but unsupervised feature

extraction (Z) from compressively sampled data (Y).

The unsupervised deep BCS model of [89] was later supervised in [91] by

adding a label consistency term.

o nin [[X = DiDa D2l + MY IDIE) + Al L = W2l 422)

Here L is the one hot encoded label vectors and W the linear classifier that
projects the coefficients / features (Z) onto the space of binary labels L. Note
that in [91] the /;-norm on the coefficients is dropped. It was argued that the
sparsity promoting norm is necessary for solving synthesis problems in CS but
carries no meaning in analysis tasks. Furthermore, as the number of basis ele-
ments are progressively reduced in deep BCS, the coefficient is small; constrain-

ing the coefficients by an /;-norm would hamper its representation ability. The
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training phase is accomplished by solving Equation (4.22).

During testing, assuming that x4 1s the hourly high frequency input data,
the observed low-frequency data is y.s;. Given the observation and the projec-

tion operator A, one can find the representation z;.5; by solving the following,

min Hytest - ADIDQDSZtestl ’% (423)

Ztest

Note that the dictionaries are fixed in Equation (4.23), they are learnt during
the training phase. Once z;.,; has been generated by solving Equation (4.23),

the class label vector is obtained by

ltest - Wztest (424)

The label vector thus obtained is unlikely to be binary; in most cases, it will
contain real values at all the positions. To form the binary vector it needs to be
thresholded. In this work, we have assumed an empirical threshold of 0.5, i.e.
at positions having values greater than 0.5 we are assigning it to be 1, and at
positions where the values are less than or equal to 0.5 we are assigning it to be
0. From the thus thresholded vector of binary values, one can obtain the state

of the appliance during the test hour.

Note that as a by-product of our technique one can get the recovered high-
frequency data at the server from & = DDy D3204. It 1s possible to run third-

party disaggregation algorithms on the recovered data.
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Table 4.1: ¢cNILM: Disaggregation Performance Evaluation (Using Precision/Recall)

Appliance ~ Sub-Sampled Sub-Sampled Blind Compressive Reconstructed

SC FHMM NILM FHMM

Microwave .53/.34 .55/.32 .70/.58 71/.55
Kitcehn Outlet1 .30/.11 .27/.10 .37/.15 .35/.13
Kitchen Outlet 2 33/.11 32/.11 45/.15 40/.14
Furnace .75/.61 .78/.59 .86/.69 .87/.66
Washer/Dryer 13/.54 .74/.53 .82/.64 .85/.62

For this work, we learnt three dictionaries because the results saturated after
this. One can have a fewer or larger number of dictionaries in other applications.
The optimization problems and the corresponding solutions will follow directly

from the treatment shown herein.

4.4 Experimental Evaluation of BCS

Here we report results on the REDD dataset. We assume that the utilities ac-
quire the data once every minute. Given this constraint, we further sub-sample
the data to once every ten minutes (sub-sampled data), from 60 samples per
hour. In the proposed compressive NILM regime, the once per minute data is
projected to a lower dimension of 6 samples in hour using a Bernoulli matrix
(compressively sampled data); using a Bernoulli projection matrix ensures that

our simulations are hardware friendly.

To compare the performance of our proposed approach, we employ FHMM
[19] and sparse coding (SC) [ 2] on the sub-sampled version of the data. These
act as the benchmarks. We use our algorithm to disaggregate from the compres-

sive sampled version of the data. As mentioned before, our proposed method
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Table 4.2: Deep-cNILM: Classification Results on REDD

Type of Sampling Method Macro F1 | Micro F1 Average
Measure Measure | Energy Error

Cs cNILM 0.5593 0.5515 0.1337

Deep-cNILM 0.6110 0.6115 0.1219

SC 0.4754 0.4760 0.0964

TS FHMM 0.4555 0.4572 0.1286

LENILM 0.5508 0.5513 0.1310

reconstructs the high frequency data in the process; on this reconstructed data
we apply FHMM. Note that, there is no point in applying sparse coding on the

reconstructed data, since our proposed approach effectively does the same.

Appliance-level Precision and Recall are used as metrics for evaluating the
performance [26]. While using such a metrics, we tacitly assume that the appli-

ances are binary-state (ON or OFF) while disregard other operational states.

The results shown in Table 4.1 depict the expected trend. Both the techniques
SC and FHMM perform similarly for a given sampling frequency. The perfor-
mance is poor when the sampling is done at regular intervals (sub-sampled data);
but with compressive sampling, the performance improves considerably. Blind
Compressive NILM effectively disaggregates (using SC) and reconstructs simul-
taneously. The FHMM is applied on the thus reconstructed (higher frequency —

once very minute) data.

4.5 Experimental Evaluation of Multi-Label BCS

We have carried out experiments on REDD and Pecan Street dataset. High

frequency data is available for both the datasets. We consider two scenarios —
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Table 4.3: Deep-cNILM: Classification Results on Pecan Street

Type of Sampling Method Macro F1 | Micro F1 Average
Measure Measure | Energy Error
cs cNILM 0.5384 0.5393 0.2559
Deep-cNILM 0.5961 0.5964 0.2262
TS SC 0.5148 0.5148 0.1061
FHMM 0.4827 0.4832 0.1594
LENILM 0.5366 0.5370 0.2495

traditional sampling (TS) vs compressive sampling (CS). In TS, to emulate real-
life scenario for both the datasets aggregated readings over 15 minutes have
been considered; the corresponding play-out rates are 60:15. For CS, we keep
the play-out rate equivalent to that of TS, i.e. once every 15 minutes would
correspond to 60:15. For each house, 60% of the samples are used for training

and the remaining 40% for testing in chronological order.

For the CS scenario we only have two techniques, the BCS NILM and deep-
cNILM. In TS, we compare with two standard benchmarks for NILM, viz. fac-
torial hidden markov model(FHMM) and sparse coding (SC); SC has shown
to yield good results on low frequency measurements empirically even though
it was not specifically meant for this task. We have also compared with a low

frequency NILM (LFNILM) technique [92].

The standard measures for multi-label classification based NILM- the F'1,,,.10,
the F'1,,;.-, and average energy error (AEE) are same as defined in the previous

chapter.

For the REDD dataset two layers of dictionaries are used and for Pecan Street

three layers. This is because REDD is a relatively small dataset and adding
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Table 4.4: Comparison of Runtimes in Seconds

Method | cNILM | Deep-cNILM | SC | FHMM | LENILM
Runtime 406 118 367 411 506

Table 4.5: Deep-cNILM: Classification Results on Pecan Street

REDD | Pecan Street
Measure | Measure | Energy Error
CS cNILM 0.5384 0.5393 0.2559
Deep-cNILM | 0.5961 0.5964 0.2262
TS SC 0.5148 0.5148 0.1061
FHMM 0.4827 0.4832 0.1594
LFNILM 0.5366 0.5370 0.2495

more layers tend to overfit. For the same reason, adding more layers to the
Pecan Street experiments deteriorated the results. For both datasets, we follow

the thumb rule of halving the number of dictionary atoms in subsequent layers.

Our approach requires the specification of two parameters - \; and \3. The
parameter A3 controls the relative importance of the reconstruction and classifi-
cation penalties. Since there is no reason to favor one over the other, we keep
it at unity. The value of A\;=0.05 has been used throughout. We found that the

results are stable between the values 0.01 and 0.1.

We find that Deep-cNILM always performs the best, followed by cNILM
and LFENILM. SC and FHMM yields the worst results (Table 4.2 and 4.5). The

results are at par with existing literature. It is known from Table 4.1 that cNILM

Table 4.6: Comparison of Reconstruction

REDD Pecan Street
Proposed cNILM Proposed cNILM
Train  Test Train  Test Train  Test Train  Test

0.1052 0.1667 0.1286 0.1412 0.1101 0.1713 0.1309 0.1458
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yields somewhat better results than SC and FHMM. The custom LFNILM is

almost at par with cNILM. However, our method yields the best results.

We have shown the run-time comparison on the test data in Table 4.4. All
the algorithms have been run on MATLAB 2019 on a PC having 8GB of RAM
running 64 bit Windows. The average runtimes are shown in seconds for each
house per day — combining REDD and Pecan Street. We see that our proposed
method is the fastest. This is because the problem that needs to be solved dur-
ing runtime, Equation (4.23) and Equation (4.24), are computationally cheap.
Both SC and cNILM require solving relatively complex optimization problems
(l;-minimization) and hence are more time consuming. The standard FHMM
i1s known to take longer than SC. LFNILM is an engineered solution that is

relatively the slowest.

We mentioned that our methods recovers the original signal as a by-product.
To test the quality of recovery, we compute the normalized mean squared error

(NMSE) between the actual and the reconstructed. This is defined as:

Hxactmz - xreconstructedHQ (425)
Hxactual H2

The results for testing and training data are shown in Table ??. We find that
the recovery of training data is considerably better than that of test data for both
the proposed and cNILM techniques. However cNILM results are more bal-
anced than ours. This is because ours is built on deep dictionary learning, and

the multiple dictionaries tend to overfit the train data and loses its generalization
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ability on test data. We could have a more balanced recovery by changing the
parameters of the algorithm, but that would have affected the quality of disag-
gregation. We did not compromise on that end. The existing method cNILM is

shallow and does not overfit as much.

4.6 Discussion

This is the first work (proof-of-concept) on the topic of employing compressed
sensing to balance accuracy and bandwidth for NILM tasks. The results show
that the approach is promising. In the future we would like to extend the work
in two ways. First, we would like to push the extents of the compressive sam-
pling and attempt to disaggregate and reconstruct from more aggressive sam-
pling (compared to 10:1 used in this work). Second, we would like to attempt
some state-of-the-art deep learning models into the CS framework to improve

the disaggregation results.
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Chapter 5

Conclusion

This thesis addressed several bottlenecks (discussed the chapters) in the area of
non-intrusive load monitoring. We have tried to propose solutions to overcome

these bottlenecks to make the process more practical and scalable.

5.1 Summary of Contribution

The thesis contributions are outlined below:

» We propose Deep Sparse Coding (DSC) and Analysis Co-sparse Coding al-
gorithms for NILM. DSC is a deep learning approach—instead of learning
one level of dictionary, we learn multiple layers of dictionaries for each de-
vice. The experiment show that the proposed algorithm beats the existing

benchmark in terms of disaggregation accuracy.

Further, Analysis Co-Sparse Coding requires only 10% of the total data

for training as compared to 50% of the total data required by the bench-
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mark techniques. This method gives at par accuracy with the pre-existing
methods. It means that we can save sensor installment cost and reduce the

duration of intrusiveness during data acquisition phase.

» Next, we follow the approach of multi-label classification for non-intrusive
load monitoring (NILM). We modify the popular sparse representation
based classifier, Restricted Boltzmann Machine, and Deep Convolutional
Transform Learning (developed for single label classification) to solve multi-
label classification problems. Results on benchmark datasets i.e. REDD
and Pecan Street datasets show significant improvement over state-of-the-

art techniques.

* Last, we propose a compressive sampling (CS) approach. The high-frequency
power signal measurements from a smart meter are encoded (by a random
matrix) to a very few samples making the signal suitable for WAN transmis-
sion without choking network bandwidth. CS guarantees the recovery of
the high-frequency signal from the few transmitted samples under certain
conditions (discussed in Chapter 4). The work shows how to simultane-
ously recover the signal and disaggregate it using two approaches- direct

and via multi-label classification approach.

5.2 Future Work

In this section, we discuss the further advancements of the thesis work.
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5.2.1 Domain Adaptation

A common problem with the NILM training phase is that one has to collect the
data whenever disaggregation needs to be performed in a new building. This

significantly increases the overall cost.

To overcome the challenge, we can explore the idea of domain adaptation/
transfer learning in NILM. There are two ways to do it. First, we can further
tune the already learnt weights on one building by using small-sized data from
a new building. Second, we can augment small-sized data from the new build-
ing with another building’s data containing the same devices and then train the

model with the augmented data.

5.2.2 Training-less Non-Intrusive Load Monitoring

We can further look into the training-less NILM owing to its various advantages
[70]. This approach does not require any prior information about the house
or appliances. The performance of this method does not get impacted by the

addition or removal of appliances.

In training-less NILM, first windows of events are figured out. These win-
dows indicate that one or more appliances have changed their states. After ex-
tracting features from these windows, event detection is performed to identify

the participating devices.
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