
Protecting Android Devices Following BYOD Policy

Against Data Security and Privacy Attacks

Student Name: Arun Kumar Jindal

IIIT-D-MTech-CS-IS-13-MT11003
July 10, 2013

Indraprastha Institute of Information Technology
New Delhi

Thesis Committee
Dr. Vinayak Naik (Chair)

Dr. Gaurav Gupta
Dr. Sandip Bapat

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

c©2013 IIIT-D-MTech-CS-IS-13-MT11003
All rights reserved

This research was partially funded by Mobile and Ubiquitous Computing Group at Indraprastha
Institute of Information Technology, Delhi.

Keywords: Bring Your Own Device (BYOD), Android, Mobile Devices, Security, Malware,
Operating System (OS), Mobile Device Management (MDM), Network Access Control (NAC)
and Rooting

Certificate

This is to certify that the thesis titled “Protecting Android Devices Following BYOD
Policy Against Data Security and Privacy Attacks” submitted by Arun Kumar Jindal
for the partial fulfillment of the requirements for the degree of Master of Technology in Computer
Science & Engineering with specialization in Information Security is a record of the bonafide
work carried out by him under my guidance and supervision in the Security and Privacy group
at Indraprastha Institute of Information Technology, Delhi. This work has not been submitted
anywhere else for the reward of any other degree.

Professor Vinayak Naik
Indraprastha Institute of Information Technology, New Delhi

Abstract

Bring Your Own Device (BYOD) is an IT policy being adopted by corporate organizations
worldwide. It permits the employees to bring their own devices like smartphones, tablets, etc
to their place of work and use them to access the privileged corporate information while being
both inside and outside their place of work. Therefore, employees use the same device for their
personal and office work. Such a corporate policy brings in a number of advantages like increased
employee productivity, improved employee satisfaction, and reduction in corporate expenses.
However, one of the major concerns in implementing such a policy is data security and privacy.
Permitting employees to access the privileged corporate information on their personal device
can lead to pertinent corporate data being compromised. On the other hand, employees are
apprehensive that the corporate organizations may spy or track their personal cyber activities.
Existing solutions for BYOD can be categorized into Mobile Device Management (MDM)-based
and Network Access Control (NAC)-based. MDM-based solutions are comprised of a client
software, which runs on the users’ mobile devices 24/7 monitoring, securing, and managing the
mobile device from a corporate-based server. Such a solution could lead to breach of employees’
privacy and extensive battery drainage. NAC-based solutions assumes the use of corporate
network. Such a solution is not full proof because the corporate data is at a security risk, when
the device is not connected to the corporate network.

In this study, we formulate a generic BYOD policy from a corporate data security perspective,
study the possible security breaches on that policy from Android devices’ perspective, and
propose ways to defend against them. We propose a solution architecture for Android-based
mobile devices. Our approach, unlike the existing BYOD solutions, provides data security,
preserves privacy, and consumes less energy. Our approach successfully detects (a) root status
of the device and (b) malicious apps, which steal information or subvert information. Our
detection is 70 % accurate when tested on real malicious applications. Finally, we present
limitations of our approach.

Acknowledgements

First and foremost I would like to express my sincere gratitude to my advisor Dr. Vinayak Naik
for giving me an opportunity to pursue my thesis work under his expert guidance. This thesis
work would not have materialized without your support and guidance. I respect and admire
your research driven style of working which inculcated the research orientation in me. Your
patience, faith and confidence in me gave me the liberty to learn and explore all dimensions
of this particular research area without the fear of failure. I would like to thank my esteemed
committee members Dr. Gaurav Gupta and Dr. Sandip Bapat for agreeing to evaluate my
thesis work.

Heartfelt thanks to my seniors, batch mates, juniors and friends for their everlasting support
throughout the thesis work. Special thanks to Vidushi Chaudhary for her support and motiva-
tion throughout the thesis work.

I would further like to thank Indraprastha Institute of Information Technology, Delhi for pro-
viding an excellent research oriented environment, world class faculty, administration and state
of the art facilities. I feel lucky and proud to be a part of one of the best research led institute
in the world.

Special thanks to my parents and my sister for their continuous support and motivation.

i

Contents

1 Research Motivation and Aim 1

1.0.1 Bring Your Own Device . 2

1.0.2 Android OS . 4

1.1 Research Motivation . 5

1.2 Research Aim . 6

1.2.1 Advantages . 7

2 Related Work and Research Contributions 8

2.1 Related Work . 8

2.1.1 Security implications of BYOD and existing solutions 8

2.1.2 Detecting the root status of the Android based mobile devices 9

2.1.3 Android malware detection . 10

2.2 Research Contributions . 11

3 Proposed Solution Approach 13

3.1 Comprehensive sample BYOD policy . 13

3.2 Data security threats w.r.t. formulated BYOD policy 14

3.3 Detection of threats to corporate data security 15

3.3.1 Detecting the root status of the Android based mobile device 15

3.3.2 Detecting malicious application in Android based mobile device 19

3.3.3 Detecting the installation and uninstallation of applications on the An-
droid based mobile device . 25

3.3.4 Detecting corporate email security breaches 27

3.3.5 Detecting the downloaded corporate e-mail attachments and corporate
documents on the device . 28

3.3.6 Detecting the event of backup of corporate documents to external device
or cloud . 30

3.4 Architecture of proposed solution . 31

4 Results and Discussion 33

ii

4.1 Root status of the Android based mobile device 33

4.2 Analysis of malicious Android applications . 34

4.2.1 Static analysis to detect malicious Android applications 34

4.2.2 Dynamic analysis to detect malicious Android applications 36

4.3 Installation and uninstallation of Android applications 36

4.4 Incoming and outgoing mail server settings of email client 37

4.5 Downloaded corporate e-mail attachments . 37

4.6 Backup of corporate documents . 37

4.7 Deficiencies in proposed solution architecture . 37

5 Conclusion 39

6 Future Work 40

iii

List of Figures

1.1 Android OS architecture: Layers in the Android stack 4

3.1 Superuser application in a rooted Android device 16

3.2 Screenshot showing the superuser binary su file in the /system/bin/ directory in
adb shell of a rooted Android device . 17

3.3 Screenshot showing the Superuser.apk file in the /system/app/ directory in adb
shell of a rooted Android device . 18

3.4 Bootloader mode in HTC Explorer A310e . 18

3.5 Most common permissions requested by Android malware applications 22

3.6 Working of email and protocols . 28

3.7 Screenshot of screen permitting the configuration of incoming server settings for
e-mail . 29

3.8 Screenshot of screen permitting the configuration of outgoing server settings for
e-mail . 29

3.9 Screenshot of the entries in the accounts table of the mail.db database of htc mail
application . 30

3.10 BYOD solution architecture . 31

iv

List of Tables

1.1 Mobile Operating Systems launched by popular companies 2

1.2 Worldwide Smartphone Sales to End Users by Operating System in 1Q13 6

3.1 List of top 25 most commonly used permissions by Android malware and their
description . 21

3.2 Rules and Signtaure patterns for detection of malicious Android applications using
dynamic analysis . 25

3.3 Important system calls description . 26

3.4 Signtaure patterns for application installation . 27

3.5 Signtaure patterns for application uninstallation 27

4.1 Results of different methods for detecting root status of Android based mobile
devices . 34

4.2 Discriminatory features or permissions in the order of decreasing weight to identify
malicious applications . 35

v

vi

Chapter 1

Research Motivation and Aim

In 1990’s IT computing infrastructure in corporate organisations used client server computing.

The computing infrastructure was mostly limited to desktop or PC only connected to the servers

via Local Area Network (LAN). The employees were expected to come to their workplace and

perform their duties from their respective desktops or PC’s. In the later part of the decade

the technological advancements led to the popularity of portable computers known as laptops.

The IT computing infrastructure in corporate organisations now used client server computing

comprised of PC’s and Laptops connected to the servers via LAN or Wireless Local Area Net-

work (WLAN) or Virtual Private Network (VPN). The IT department ensured the security and

privacy of corporate data via network based operating systems and firewalls which monitored all

the data going into and out of the corporate organisation. The task of corporate data security

and privacy was relatively easy then because IT department in the corporate organisation had

to worry only about standard Windows based desktops or laptops all using the same operating

system.

Enterprise computing went mobile after Blackberry introduced smartphones in the year 1999.

Blackberry smartphones supported push email, mobile telephone, text messaging, Internet fax-

ing, Web browsing and other wireless information services [34]. A smartphone is a mobile phone

with a mobile operating system having more advanced capability than a feature phone [36].

Year 2000 onwards corporate organisations started giving their managerial employees the black-

berry devices to facilitate their global business operations. This improved the employee pro-

ductivity too since the employees were available round the clock. The corporate data security

and privacy was ensured by the administrative tool set and integral security features of Black-

berry devices like built in encryption, remote wipe, Blackberry server that ties into Microsoft

Exchange etc. All this enabled the IT department in the corporate organisations to manage

their employee smartphones.

In the last few years, unlike the past, the computing devices being used by corporate organisa-

1

tions and those used by consumers are converging giving rise to a new phenomenon known as

consumerization of IT. It refers to the trend of information technology first emerging in consumer

market and then spreading to business and government organisations. The rapid proliferation of

smartphones and tablets from companies like Google, Apple, Nokia, Samsung and many more

has fuelled this phenomenon of IT consumerization immensely. Table 1.1 shows the popular

companies and the mobile operating systems launched by them.

Company Mobile OS Type

Google Inc., Open Handset Al-
liance

Android Free and Open Source

Apple Inc. iOS Closed source, proprietary, on top of open
source Darwin core OS

Microsoft Windows Closed source, proprietary

Research In Motion Limited,
trading as Blackberry

Blackberry Closed source, proprietary

Samsung Electronics Bada OS Closed source, proprietary

Accenture on behalf of Nokia Symbian OS Closed source, proprietary

Table 1.1: Mobile Operating Systems launched by popular companies

The user friendly and appealing features like tocuhscreen, application stores etc of smartphones

and tablets attracted the corporate employees to personally own these devices. Slowly it was

observed that managerial level corporate employees who had the corporate blackberry device

had started keeping personal smartphone too for their personal use. The rapid proliferation of

smartphones made the feature phones almost obsolete amongst the corporate employees. Cor-

porate organisations realized this trend and came up with a corporate policy popularly known

as Bring Your Own Device (BYOD) towards the end of the year 2009 [35].

1.0.1 Bring Your Own Device

Bring Your Own Device (BYOD) is a policy, adopted by corporate organisations worldwide,

which allows the employees to bring their personal devices to their workplace and use them to

access the privileged company information and applications while being both inside and outside

the workplace [35]. BYOD is also known as Bring Your Own Technology (BYOT), Bring Your

Own PC (BYOPC), Bring Your Own Phone (BYOP).

The important advantages of the BYOD policy in corporate organisations are as follows:

1. Increased employee productivity: BYOD policy enables the employees to be available

round the clock thus increasing employee productivity. The familiarity and proficiency

of the employees with their own devices and software contribute to increased employee

productivity.

2

2. Improved employee satisfaction: BYOD policy enables the employees to work on the

devices of their choice and use the softwares they like thus improving employee satisfaction.

Earlier it was mandatory for the employees to use the devices provided by the corporate

organisation to do their work irrespective of their likes and dislikes for that device. This

was one of the primary reasons because of which employees starting keeping different

devices for work and personal use.

3. Reduced costs: BYOD policy reduces the corporate expenditure since the corporate

organisations now don’t need to provide their employees with workstations and reimburse

the cost of the mobile device. According to analysts by 2017 more than 30 % companies

expect to stop providing devices to their employees [28]. The corporate organisations

not only save the cost of the device itself but also save the ongoing costs associated with

hardware upgrades, software upgrades and installation of new software.

4. Attractiveness to job seekers: An organization BYOD policy attracts the employees

thus leading to lower attrition rates and attracting better talent to the organization from

outside.

5. Increased flexibility: A BYOD policy enables it’s employees to work remotely without

requiring to carry multiple devices to satisfy their personal and work needs because they

will have everything they need in one device itself.

6. Newer Technology: Employees tend to keep themselves updated with the latest technol-

ogy related to the mobile device or software whereas the corporate organisations hardware

and software updates are subject to the up gradation cycle in the IT policy. Thus corporate

organisations adopting BYOD policy can reap the benefits of the latest technology.

The main challenges in implementing the BYOD policy in corporate organisations are as follows:

1. Corporate data security: Corporate data security is one of the biggest concerns of the

corporate organisations in implementing a BYOD policy. Permitting employees to access

the privileged corporate information and applications on their device can lead to pertinent

corporate data being compromised [22]. The problem of corporate data security becomes

even more important in cases when the employees lose their personal device or leave the

company.

2. Employee privacy: The employees are apprehensive that the corporate organisations

may spy or track their activities and may have access to their personal passwords, websites

and information on their personal device if used for both work and personal use [8].

3. Manual provisioning of devices: In large corporate organisations it is almost impos-

sible for the IT department to scale to thousands of employees with dozens of different

device types, operating system platforms and Wi-Fi drivers [22] [21].

3

Figure 1.1: Android OS architecture: Layers in the Android stack

[32]

4. Troubleshooting: The IT department in corporate organisations will face a tough task

to quickly analyse problems associated with diverse devices on the network [22] [21].

1.0.2 Android OS

Android is a mobile operating system developed by Open Handset Alliance (OHA). OHA is a

group of 84 hardware, software and telecommunication companies who aim to develop and ad-

vance open standards in for mobile devices [1]. Android OS was first released in 2007. Android

is open source and google releases the code under Apache License.

Android is a Linux based OS and consists of a kernel based on Linux kernel version 2.6. Android

4.0 and further releases are based on Linux kernel 3.x [32]. Android OS architecture, as shown

in Figure 1.1 is composed of 4 layers:

4

1. Linux Kernel: It is the bottom most layer of the Android stack and provides the following

functions:

• Memory management

• Power management

• Hardware drivers

• Network stack

• Support for shared libraries

• Security settings

2. Libraries and Android Runtime: Above the Linux kernel layer is the set of libraries

written in C/C++ which provides the core functionality needed by the developers and

device owners. The core libraries are then bundled with a customized Java virtual machine

known as Dalvik Virtual Machine to provide the Android run time environment, which

is where applications run [14]. Each Android application runs in its own Dalvik Virtual

Machine (VM). Dalvik VM runs in its own virtual machine. Android applications are

compiled into .dex files which are run by the Dalvik VM.

3. Application Framework: It exposes Java API for application developers thus allowing

the developers to build applications that take full advantage of the device hardware. De-

velopers are given full access to the framework API used by the core applications, which

is designed to simplify the reuse of components.

4. Applications: It is the topmost layer of the Android stack and this is where our appli-

cations fit. This layer includes several standard applications that come preinstalled with

any Android device such Dialer, Web browser, Contact manager etc.

1.1 Research Motivation

BYOD is the indispensable future of IT in corporate organisation because of the immense ben-

efits (as stated earlier in section 1.0.1) it brings along with itself. Testimony to this fact is the

Gartners [11] recent prediction that by 2017, half of the employers will require the employees to

use their own devices for work purpose.

BYOD typically spans smartphones and tablets and Android is the leader in mobile OS. Year

2013 Q1 figures for handset sales released by Gartner [12] reveals that almost 75 % of all

smartphones sold in Q1 were Android based (as shown in Table 1.2) bearing testimony to the

fact that Android is the leader in mobile OS.

The security problem in BYOD is centered around the end point device since it is used to access

pertinent corporate information. Android, unlike iOS, Windows, Blackberry etc, being a free

and open source mobile OS platform is more susceptible to security breaches. According to a

5

Operating Sys-
tem

1Q13 Units (in
Thousands)

1Q13
Market
Share (in
%)

1Q12 Units (in
Thousands)

1Q12
Market
Share (in
%)

Android 156,186.0 74.4 83,684.4 56.9

iOS 38,331.8 18.2 33,120.5 22.5

Blackberry 6,218.6 3.0 9,939.3 6.8

Windows 5,989.2 2.9 2,722.5 1.9

Bada 1,370.8 0.7 3,843.7 2.6

Symbian 1,349.4 0.6 12,466.9 8.5

Others 600.3 0.3 1,242.9 0.8

Total 210,046.1 100 147,020.2 100

Table 1.2: Worldwide Smartphone Sales to End Users by Operating System in 1Q13

[12]

report from Kaspersky labs [17] about 99 % of all mobile threats are targeted towards Android

devices. Malicious applications is one of the major sources of mobile threats in Android. Android

application capabilities are restricted by application permissions which the application declares

at the time of installation and cannot be changed at later point of time. A user can either choose

to grant all requested permissions or do not install the application at all. Permissions allow

applications to access specific data and capabilities on a device, including location, contacts,

SMS messaging, identity information, and the ability to access the Internet. However it is

difficult for end-users to evaluate the ill-effects of the permissions requested at the time of

application installation. Further Android follows an open application distribution model which

allows the users to download applications from various places such as Googles Android Market,

Amazons Appstore for Android etc. Google’s Android market performs some security checks

when the applications are submitted but expects that community will participate in identifying

malicious applications.

Therefore it becomes imperative to study the security implications of allowing Android based

mobile devices as a part of BYOD policy. Gartners [13] survey also shows that BYOD is top

concern for enterprise mobile security.

1.2 Research Aim

In this work we formulate a generic BYOD policy, from a corporate data security perspective,

which every organisation would like to implement. Keeping in view the framed BYOD policy we

study the possible security breaches and come up with techniques to detect the security breaches

if such a BYOD policy is adopted for Android based mobile devices. Further we propose a BYOD

solution architecture which can be adopted by corporate organisations.

6

1.2.1 Advantages

The work presented in this report has several advantages:

• Corporate data security accomplished to some extent.

• Employee privacy preserved.

• Minimal battery drainage.

7

Chapter 2

Related Work and Research

Contributions

2.1 Related Work

The work presented in this report is related to the area of security breach detection in Android

based mobile devices being used in corporate organisations as a part of the BYOD policy. In this

section, we discuss some closely related work and present novel research contributions in context

to existing work. We categorize the related work into 3 categories namely security implications

of BYOD policy and existing solutions, detecting the root status of the Android based mobile

devices and Android malware detection.

2.1.1 Security implications of BYOD and existing solutions

There has not been much of publishable research regarding security implications of BYOD, to

the best of our knowledge. Scarfo [26] discusses two security models around BYOD namely

Access Control and Device Control. In the access control model IT is a service and IT resources

are provided as cloud services by application and desktop virtualization. Virtual desktop and

virtual applications are managed and secured centrally, end users just work on the image of the

environment in the datacenter. On the other hand Device control model is based on the Mobile

Device Management (MDM) technology based on the full control of mobile devices. Scarfo fur-

ther suggests that the future is possibly the integration of hands off approach 1 and some key

features of MDM. He further states that BYOD adoption style should be simple and friendly

and the necessary constraints should be enforced only in critical situations by considering the

right kind of roles and tasks giving the employees the liberty to choose their devices. Wei et

al. [31] identify the undesirable activities of malicious android application in the enterprise and

identify some solutions to secure the data and mitigate the security risks.

1Hands off approach refers to providing IT resources as cloud services: Desktop virtualization, application
virtualization, application stores in private and public cloud style [26].

8

Existing BYOD solutions include Mobile Device Management (MDM) [35] and Network Access

Control (NAC) [29] solutions which are either used independently or in combination. Typical

MDM solutions are client server based solutions where employees mobile device is a client and

the corporate server represents the server end. This solution operates in a 24*7 mode and is used

by companies to fully control the employee mobile device. The primary disadvantages of this

type of solution is employee privacy breach and heavy battery drainage due to it’s continuous

mode of operation. Typical NAC solutions ensure end point security i.e. corporate server hold-

ing privileged company information. These solutions typically examine the security status of the

mobile device trying to connect to the corporate network and if the device meets the security

compliance criteria then it authenticates the users logging into the network and determine what

they can see and do. The primary disadvantage of NAC solution is that it fails to provide any

security for the corporate data residing on the employee mobile device when the device is not

connected to the corporate network.

Recently Samsung has released a comprehensive enterprise mobile solution named Samsung

Knox [24] for Android based mobile devices to be used as part of the BYOD policy. Three

key features of Samsung Knox include platform security, application security and mobile device

management. In order to ensure platform security, secure boot procedure is used which prevents

unauthorized operating systems and software’s from loading during the start up process. Secure

Boot requires the device boot loader, kernel, and system software to be cryptographically signed

by a key verified by the hardware. Samsungs TrustZone-based Integrity Measurement Architec-

ture (TIMA) makes use of ARM trust zone hardware providing continuous integrity monitoring

of the linux kernel. TIMA detects malicious attacks, which tend to attack the kernel and boot

strap processes, and notifies the corporate IT department via MDM. Application level security

is ensured using the application containers, on device encryption and virtual private network

support. Application containers separate Android environment within the mobile device, com-

pleted with its own home screen, launcher, applications, and widget. Applications outside the

container cannot use Android Inter Process Communication (IPC) with applications inside the

container thus preventing data leakage. Finally the MDM solution enables the corporate IT

department to monitor, control and administer all deployed mobile devices.

2.1.2 Detecting the root status of the Android based mobile devices

Jang et al. [16] proposed three methods to detect rooting attacks on Android based smart-

phones namely Inter Process Communication (IPC) monitoring based rooting attack detection,

signature based rooting attack detection and activity based rooting attack detection. IPC based

method detects the processes suspicious of rooting attack by analysing the number of occurrence

of IPC pipe messages related with the attempt to carry out the rooting attack. Signature based

method detects applications suspicious of rooting by decompiling the application and finding

whether the application contains a cross-compiled file and extracting the file characteristics. An

application may be a rooting module if the ELF character strings are present in the executing

9

code. Activity based method monitors the number of packets being transmitted outside the de-

vice, number and characteristics of processes in progress and the events occurring in the system

through CPU consumption rate, Wi-Fi and 3G network. All three methods are for detecting

whether a particular application or process is trying to root the Android based mobile device.

They do not provide information on the root status of the device after the rooting attack has

completed.

2.1.3 Android malware detection

There has been an extensive research in the area of Android malware detection. Techniques

used to detect Android malwares can be classified into 2 types namely:

• Static analysis: Analysis of the Android applications without actually executing the

application on the Android based device.

• Dynamic analysis: Evaluation of the Android applications by actually executing the

applications on the Android based device.

Android malware detection using static analysis

Zhou et al. [40] detect malicious Android applications on popular Android markets using per-

mission based behavioural footprinting scheme and heuristics based filtering scheme. Permission

based behavioural footprinting scheme is used to detect new samples of known Android mal-

wares. The manifest file of each known malware application is processed to study the permissions

requested by the malware and succinctly summarizes the wrongdoings into a so called permission

based behavioural footprint. This footprint is used to detect new samples of known Android

malwares. Heuristics based filtering scheme is used to detect malwares that have been not

reported before. It recognizes suspicious behaviours from possibly malicious applications and

detects certain Android features that may be misused. These features help to identify new un-

known malware applications. Kim et al. [19] and Zhou et al. [40] also consider API calls in their

respective works while detecting malicious applications. Dicerbo et al. [7] also detect malicious

applications by using Android security permissions. Wu et al. [37] developed a system named

DroidMat which detects malicious Android applications by analysing the requested permissions,

intent message passing etc from each applications manifest file and regards components such as

activity, service, receiver as entry points for tracing API calls related to permissions. Different

clustering algorithms are used to infer different intentions of Android malware followed by the

use of Singular Value Decomposition (SVD) method to decide the number of clusters. The

system finally uses kNN algorithm to classify Android applications benign or malicious. Sanz

et al. [25] also use machine learning techniques to detect malicious applications by extracted

permissions from the application itself. Egners et al. [9] identify attacks to user’s device us-

ing applications requesting non-suspicious permissions providing insights about the permissions

10

which can be misused by malicious applications. Li et al. [20] analyze the behaviour of malicious

applications in Android using the permissions seeked by the application.

Android malware detection using dynamic analysis

Isohara et al. [15] detect malicious Android applications by logging all the system calls and

filtering events made by an application. The logs are further analysed and searched for signatures

described by regular expressions to detect a malicious activity. Kefei et al. [18] design and

implement a network packet collection tool for Android platform. It does real time capturing

of packets moving in and out of the Android network equipment by using Libpcap. Filtering

rules can be applied further to detect malicious Android applications sending out sensitive data.

Zhao et al. [38] proposed AntiMalDroid to detect malicious Android applications. The proposed

framework uses logged behaviour sequence as a feature to detect Android malware effectively in

runtime. They also extend the malware characteristics database dynamically. Burguera et al. [4]

propose Crowdroid to detect Android malware by tracing system call behaviour and converting

then into feature vectors followed by the application of k-means algorithm for detecting malware.

Enck et al. [10] propose TaintDroid which tracks the flow of information in Android providing

real-time privacy monitoring in smartphones. Information flow is tracked by using variable level

tracking (provided by VM interpreter) within untrusted application code, message level tracking

between applications, method level tracking for system provided native libraries and file level

tracking to ensure that the information retains its taint markings. Blasing et al. [2] execute

applications in an isolated environment and log system level interactions to identify malicious

applications.

2.2 Research Contributions

In context to closely related work, this report makes the following novel contributions:

1. The work presented in this report is the first step in the direction of studying and detecting

security breaches in Android based mobile devices from BYOD perspective. Although

there has been some work done in the area of Android malware detection but the detection

of security breaches in Android based mobile devices from BYOD perspective is the novel

research contribution of this work.

2. We use one class classifier approach using permissions as discriminatory features to identify

malicious applications.

3. We use system call logging for Android malware detection. These system call logs gener-

ated by an application are checked for signature patterns. The signature patters are made

by studying and analysing the system call logs of known Android malware families.

4. We propose a BYOD solution architecture for Android based mobile devices using our

11

own detection mechanisms. This solution architecture preserves employee privacy, reduces

battery drainage and provides corporate data security to some extent.

12

Chapter 3

Proposed Solution Approach

We formulate a generic and comprehensive sample BYOD policy1 (Section 3.1) from corporate

data security perspective for a corporate organisation. We thereafter identify some of the promi-

nent threats (Section 3.2) to corporate data security w.r.t. formulated policy. In Section 3.3 we

find methods and techniques to detect the threats and attacks identified in section 3.2. In the

end we propose a BYOD solution architecture (Section 3.4) using the techniques found in the

Section 3.3.

3.1 Comprehensive sample BYOD policy

1. The personal mobile device which the employee intends to use for corporate work, as a

part of the BYOD policy, needs to be registered with the corporate IT department.

2. It is mandatory for the employees to use the original device operating system and keep

the device updated with security patches and updates as released by the manufacturer.

3. Employees will not root or jailbreak their device. Rooted or jail broken devices will be

prohibited from accessing the corporate data and network.

4. It is mandatory for the employees to install and run a BYOD Security Suite application

which monitors the security status of the mobile device. This application can be down-

loaded from the corporate network. Attempts to uninstall this application without prior

approval from corporate IT department may lead to un-registering of the device from the

corporate BYOD program with immediate effect.

5. It is mandatory for the employees to use the corporate e-mail client application named

BYOD E-Mail on their mobile devices. This client application can be downloaded from

the corporate network.

1Some of the points of this BYOD policy have been adopted from the BYOD tool kit released by the Digital
Services Advisory Group and Federal Chief Information Officers Council [30], Govt. of USA

13

6. It is mandatory for the employees to use the corporate calendar client application named

BYOD Calendar on their mobile devices. This client application can be downloaded from

the corporate network.

7. It is mandatory for the employees to use the corporate Virtual Private Network (VPN)

client software named BYOD VPN to access corporate network services.This client soft-

ware can be downloaded from corporate network.

8. Employees must comply with the password policies of the organisation (for BYOD email,

calendar and VPN client applications), password expiration (45 days) and password history

(15).

9. Employees will not download or transfer any kind of corporate data to their personal

devices.

10. Employees are prohibited from backing up the corporate data to any other device or third

party cloud services like Dropbox etc.

11. Employees are required to password protect their personal devices.

12. Employees agree not to share the device with other individuals due to the business use of

the device.

13. Employees resolve to delete sensitive2 and confidential corporate data that may have been

unintentionally downloaded and stored on the device while viewing e-mail attachments.

14. In case the mobile device is lost or stolen the employee is obligated to inform the corporate

IT department immediately after it comes to his/her notice. The corporate organisation

reserves the right to delete the corporate client applications on the mobile device, without

any prior notice, in all such incidents.

15. The corporate organisation reserves all rights to perform manual and automated scanning

of the mobile device, any time, without any prior notice, for anomalies and limit the

computing privileges of the mobile device registered for BYOD program and take other

administrative or legal action in case of failure to comply with the above mentioned rules

of the policy.

3.2 Data security threats w.r.t. formulated BYOD policy

In corporate organisations, the threats to corporate data can be categorized as follows:

• Inside Threats: Threats to corporate data from the employees itself.

2Sensitive corporate data is the proprietary information which if compromised can cause serious harm to the
organisation owning it.

14

• Outside Threats: Threats to corporate data from the outside world including malware

applications etc.

The prominent security breaches w.r.t. the formulated comprehensive sample BYOD policy are

as follows:

1. The employee, intentionally or unintentionally, roots or jailbreaks his/her device after

registering the device with the corporate IT department under BYOD policy.

2. The employee, intentionally or unintentionally, uses applications on the device which are

malicious in nature.

3. The employee, intentionally or unintentionally, installs and uninstalls malicious applica-

tions on the device.

4. The employee, intentionally or unintentionally, changes the incoming and outgoing server

and port settings of the corporate email client application named BYOD E-Mail.

5. The employee, intentionally or unintentionally, downloads the corporate e-mail attach-

ments to the mobile device and does not delete them.

6. The employee, intentionally or unintentionally, makes a backup of corporate documents

to other external device or third party cloud services like Dropbox etc.

The threats to corporate data security listed above is not an exhaustive list but represents few

prominent possible security breaches.

3.3 Detection of threats to corporate data security

We find some methods and techniques in order to detect the threats to corporate data security

(as discussed in section 3.2).

3.3.1 Detecting the root status of the Android based mobile device

Rooting of an Android device refers to the process of getting unrestricted access or superuser

permissions to the Android OS. Only unrooted mobile devices are allowed in the BYOD policy

since the root access circumvents the security restrictions put in place by the Android OS and

there is no real effective way to tell what the application intends to do with superuser permissions.

Some of the undesirable consequences of using applications with root permissions are as follows:

• Replace the corporate and personal email client applications with a modified one.

• Delete corporate as well as personal files such as applications and application data.

15

Figure 3.1: Superuser application in a rooted Android device

• Steal corporate as well as personal data.

• Download and install other applications which makes calls and SMS to premium numbers

costing the employees heavily.

• Download and attempt to install a different modified ROM.

• Replace the keyboard with the version that logs keystrokes.

Rooting is mainly required for advanced and potentially dangerous operations like modifying or

deleting system files, uninstalling manufacturer installed applications and to get low level access

to hardware itself [33]. Therefore it becomes very important to detect the rooting status of the

Android based device.

The process of rooting varies from device to device. Usually it involves the exploitation of a

security bug in Android [16] and thereafter copying the su binary to a location in the current

process’s PATH (e.g. /system/xbin/su) and granting it executable permissions with the chmod

command [33]. Typically during the process of rooting the Android based device a superuser

application is also installed, as shown in Figure 3.1, which supervises applications that are

granted root or superuser rights.

16

Figure 3.2: Screenshot showing the superuser binary su file in the /system/bin/ directory in adb shell of
a rooted Android device

We use 5 methods to detect whether an Android device is rooted. Method 1,2 and 3 are

automated whereas Methods 4 and 5 are manual in nature and are specific to HTC devices.

Method 1

We observe that in rooted Android devices the superuser binary su file is present in one of the

following three directories:

• /system/bin/

• /system/sbin/

• /system/xbin/

Figure 3.2 shows that the superuser binary su file is present in the /system/bin/ directory.

Therefore in order to detect the root status of the Android device we check for the superuser

binary file existence. If the superuser binary file exists the device is said to be rooted else it is

unrooted.

Method 2

We observe that in rooted Android devices Superuser.apk file is present in the /system/app/ di-

rectory as shown in Figure 3.3. Therefore in order to detect the root status of the Android device

we check whether the Superuser.apk file is present on the device. If the superuser application

apk file is present the device is said to be rooted else it is unrooted.

Method 3

In rooted Android devices the superuser command successfully executes. Therefore we detect

the root status of the Android device by executing superuser command from the code. If the

superuser command executes successfully the device is said to be rooted else it is unrooted.

17

Figure 3.3: Screenshot showing the Superuser.apk file in the /system/app/ directory in adb shell of a
rooted Android device

Figure 3.4: Bootloader mode in HTC Explorer A310e

18

Method 4

Checking for the S-ON and S-OFF status by booting into HBOOT (as shown in Figure 3.4) in

the HTC device. S-OFF means that the NAND portion of the device is unlocked and can be

written to. The default status of HTC devices is S-ON which means that neither can you access

certain areas of the system nor can you guarantee a permanent root. S-OFF status does not

necessarily imply that the device is rooted. Similarly S-ON status does not necessarily imply

that the device is unrooted. It may or may not be rooted in case the status is S-ON. Figure 3.4

shows the bootloader screen of a rooted Android device with S-ON status. However if the status

is S-OFF the probability of the HTC device being rooted is more. This method is manual in

nature and is applicable for only HTC based Android devices.

Method 5

Checking whether the bootloader is locked or unlocked. In order to root HTC Android devices

the bootloader has to be unlocked. However a unlocked bootloader (as shown in Figure 3.4) does

not necessarily imply that the device is rooted, but there is a high probability of a device being

rooted in case the bootloader is unlocked. Reason being that most people from non technical

background unlock their bootloaders for rooting purpose only. It is important to note here that

the bootloader can be relocked too by using the key provided by HTC during the bootloader

unlocking process. This method is manual in nature and is applicable for only HTC based

Android devices.

If the mobile device is found to be rooted then it is immediately unregistered from the BYOD

policy followed by revoking of the access to the corporate server. In case the mobile device is

not rooted then we identify the malicious applications installed on the device.

3.3.2 Detecting malicious application in Android based mobile device

In BYOD since the same device is being used for personal and corporate use therefore it becomes

important to ensure that no data is being stolen from the device in any form. This ensures not

only corporate data security but employee privacy too. Apart from the data theft there should be

no malicious application installed on the device which makes calls or SMS to premium numbers

without the knowledge of the employee. In Android based mobile devices, applications are

the biggest source of stealing data from the device. We use both static and dynamic analysis

techniques to identify the potential malware applications on the employees device.

Detecting malicious Android applications using static analysis

We use one class classification approach to detect malicious applications statically. One class

classification is also known as unary classification. It tries to distinguish one class of objects

from all other possible objects by learning from a positive class training dataset. Traditional

19

classification problems try to distinguish between two or more classes with the training set con-

taining objects from all other classes. One class classification is based on similarity computation

where we find the similarity of the new object (here android application) with the existing /

training dataset. The use of one class classification is justified here since our problem is to detect

whether an application is malicious or not and we are not interested in the further classification

or category in which the malicious application falls. One class classification consists of four steps

which are as follows:

1. Positive class training dataset

2. Characterization and training of the classifier

3. One class classification

4. Performance evaluation of the classifier

We use a positive class training dataset of 200 malicious applications from the dataset provided

by the Android malware genome project3 [39].

In order to characterize the classifier we use android permissions as discriminatory features. The

use of android permissions as discriminatory features is justified since every Android application

has to explicitly declare the permissions it requires in it’s manifest file. This requirement of

declaring permissions in the central design point of Android security architecture so that by

default no application has permission to perform any operation that would adversely impact

other applications, the operating system, or the user [6]. Since Android follows the sandboxing

approach, sandboxing applications from each other, applications must explicitly share resources

and data which they do by declaring permissions needed for additional capabilities not provided

by basic sandbox [6]. The permissions are declared statically by the Android applications and

the user is prompted for consent at the time of application installation. Android OS does not

provide any mechanism for granting permissions dynamically. Therefore in order to detect ma-

licious Android applications we use permissions as discriminatory features in one class classifier.

In order to study and identify the set of discriminatory features (here permissions) we analyse

200 Android malware applications. We identify 25 most commonly used permissions by the

Android malware applications. Table 3.1 shows the list of permissions most commonly used

by Android malware applications and the description of each permission. Figure 3.5 shows

the mapping between the top 25 permissions sought by Android malware applications and the

percentage of malware applications requesting that particular permission.

The second step of the classification algorithm is to define a set of discriminatory features which

can be used to identify malicious applications. We use only the top 16 permissions, which are

3Thanks to Yajin Zhou and Xuxian Jiang for sharing the Android malware application dataset.

20

Permission Description

INTERNET Allows applications to open network sockets

READ PHONE STATE Allows read only access to phone state

ACCESS NETWORK STATE Allows applications to access information about networks

WRITE EXTERNAL STORAGE Allows an application to write to external storage

SEND SMS Allows an application to send SMS messages

RECEIVE BOOT COMPLETED Allows an application to receive the AC-
TION BOOT COMPLETED that is broadcast after
the system finishes booting

RECEIVE SMS Allows an application to monitor incoming SMS messages,
to record or perform processing on them

ACCESS WIFI STATE Allows applications to access information about Wi-Fi net-
works

READ SMS Allows an application to read SMS messages

WRITE SMS Allows an application to write SMS messages

WAKE LOCK Allows using PowerManager Wake Locks to keep processor
from sleeping or screen from dimming

READ CONTACTS Allows an application to read the user’s contacts data

CALL PHONE Allows an application to initiate a phone call without going
through the Dialer user interface for the user to confirm the
call being placed

VIBRATE Allows access to the vibrator

WRITE APN SETTINGS Allows applications to write the apn settings

ACCESS COARSE LOCATION Allows an app to access approximate location derived from
network location sources such as cell towers and Wi-Fi

ACCESS FINE LOCATION Allows an app to access precise location from location
sources such as GPS, cell towers, and Wi-Fi

WRITE CONTACTS Allows an application to write (but not read) the user’s
contacts data

CHANGE WIFI STATE Allows applications to change Wi-Fi connectivity state

MOUNT UNMOUNT FILESYSTEMS Allows mounting and unmounting file systems for remov-
able storage

READ LOGS Allows an application to read the low-level system log files

READ HISTORY BOOKMARK Allows an application to read (but not write) the user’s
browsing history and bookmarks

CHANGE NETWORK STATE Allows applications to change network connectivity state

GET TASKS Allows an application to get information about the cur-
rently or recently running tasks

PROCESS OUTGOING CALLS Allows an application to monitor, modify, or abort outgoing
calls

Table 3.1: List of top 25 most commonly used permissions by Android malware and their description

21

Figure 3.5: Most common permissions requested by Android malware applications

used by more than 20 % malware applications, as discriminatory features to identify malicious

applications. In order to train and develop the one class classifier we use the Chaudhary et al. [5]

algorithm for weight and score computation 4 of each feature or permission as shown below.

Classifier feature or permission set X is:

X= (x1, x2,x3, xn),where n = Number of features or permissions. In our case n=16

for identifying malicious applications.

Let Wi = Weight of the discriminatory feature or permission i s.t.

n∑
i=1

Wi = 1 (3.1)

Algorithm 1 [5] shows the approach of calculating the weight of each feature or permission where

the whole process is repeated until the accuracy is optimal. The result of the algorithm shows the

contribution of each feature or permission in identifying or detecting the malicious applications.

Therefore higher the weight the more important is the permission in identifying the malicious

application.

One class classification approach used here is based on similarity computation. Score [5] of

the feature or permission is a unique value which represents that feature in comparison to the

4This algorithm for weight computation of each feature has been adopted from Chaudhary et al. [5] work on
Contextual Feature Based One-Class Classifier Approach for Detecting Video Response Spam on YouTube

22

Input: A list L of features or permissions.
Result: Weight of each feature or permission.
initialization;
Assign equal weight to each feature (or permission) s.t

n∑
i=1

Wi = 1 (3.2)

Run the classifier and calculate the accuracy of the system, say accuracy1.
for each feature (or permission) f in L do

Remove feature (or permission) j from L;
Adjust weights of rest of the features (or permissions) s.t.∑

∀i 6=j

Wi = 1 (3.3)

Run the classifier and check the accuracy of the system, let accuracy2;
Let

∆ = percentage change in accuracy / 100 (3.4)

if ((Significant change in accuracy)) then
Removed feature (or permission) is an important feature/permission and weight
corresponding to this feature/permission should be high;

featureweighti = featureweighti + µ (3.5)

else
Removed feature (or permission) is not an important feature/permission and weight
corresponding to this feature/permission should be low;

featureweighti = featureweighti − µ (3.6)

end

end

Algorithm 1: Algorithm for Weight computation [5] of each feature or permission.

23

training dataset. Si = Score of the permission or feature i s.t.

0 ≤ Si ≤ 1 (3.7)

Score of the feature or permission in our case here is taken as the percentage of malicious

applications using that permission.

Let y = Percentage of malicious applications requiring a permission i.

Scorei = (y/100) (3.8)

Based on weight and score of each permission, we compute the final value of the permission

which is the product of it’s score and weight. Finally we compute the Cvalue which represents

the similarity or resemblance of the application with the target class and recognizes the malicious

nature of the application.

cvalue =
n∑

i=0

Wi ∗ Si (3.9)

If the computed Cvalue is greater than a threshold value then the application is considered to be

malicious else it is considered to be of unknown category i.e. it may or may not be malicious. In

this way the one class classifier is developed. Finally we evaluate performance of the classifier

on a testing dataset in Chapter 4.

Detecting malicious Android applications using dynamic analysis

It has been observed that there are applications which request for minimal set of permissions

and appear to be legitimate but they are actually malicious. On the other hand there are a

number of applications which ask for more permissions than required. Such applications however

do not misuse those privileges. There are also many legitimate applications which use the same

permissions as used by malicious applications. Static analysis method fails in these type of

situations. Detecting malicious applications using static analysis fails to capture the actual

intent of the application accurately. Therefore in order to overcome the shortcomings of static

analysis method it becomes necessary to detect malicious applications using dynamic analysis

technique.

We use 50 malicious applications from the Android malware genome project [39] as the training

dataset. We log the application activities occurring at the operating system level. We use the

strace utility to log all the system calls (List of important system calls and their description is

given in Table 3.3) made by an application. Further we analyse the log to find the footprints

or signatures of the malicious activity of the application. Thereafter we derive some rules and

signatures described by regular expressions, as shown in Table 3.2, to detect the malicious

24

applications.

Type of threat Rule/Signature Pattern

Information Leakage .*recv.*www.*famaz0n-cloud.*

Information Leakage .*write.*Vodafone.*

Information Leakage .*read.*Processor.*ARM.*

Information Leakage .*connect.*family.*addr.*

Information Leakage .*socket.*

Information Leakage .*bind.*inet addr.*

Information Leakage .*read.*Hardware.*

Information Leakage .*read.*CPU.*

Information Leakage .*read.*MIPS.*

Abuse of root .*system/bin/su.*

Abuse of root .*system/xbin/su.*

Abuse of root .*system/sbin/su.*

Abuse of root .*execve.*/busybox.*

Rooting attempt .*(execve|read).*/asroot.*

Rooting attempt A process forking or cloning more than 30 processes

Table 3.2: Rules and Signtaure patterns for detection of malicious Android applications using dynamic
analysis

3.3.3 Detecting the installation and uninstallation of applications on the An-

droid based mobile device

An employee can install and uninstall applications of his/her choice on the mobile device reg-

istered under the BYOD policy. It may so happen that the employee, intentionally or uninten-

tionally, installs a malicious application on the device and uninstalls the same after some time.

Such an application can also steal corporate data as well as personal data from the mobile de-

vice. It becomes important to detect and log events of application installation and uninstallation

because of the following reasons:

• It reduces the unnecessary drainage of battery which is a critical resource since the module

or service to detect whether the application installed is malicious or not is triggered only

when a new application is installed after the initial scanning of the device.

• It is important to know the security status of the mobile device and keep the log updated.

This is helpful in situations when a malicious application is installed and uninstalled after

some time because the mobile device now need not to be rescanned but only the log needs

to be updated.

In order to detect and log such events of application installation and uninstallation we use log-

cat, which is an audit framework on the Dalvik Virtual Machine to monitor the application

behaviour. Even though logcat dumps limited events but we successfully find system generated

log lines which captures the application installation and uninstallation event. We use 50 different

25

System Call Description

read() Reads from file descriptor

write() Writes to a file descriptor

fork() and clone() Creates a child process

exit() Terminate the current process

open() Open a file or device

close() Close a file descriptor

link() Make a new name for a file

unlink() Delete a name and possibly the
file it refers to

execve() Execute program

chmod() Change permissions of a file

stat() Get file status

lseek() Reposition read/write file offset

getpid() Get process identification

getuid() Get real user id

access() Check user’s permission for a file

mkdir() Create a directory

rmdir() Remove a directory

pipe() Create an interprocess channel

brk() Change the amount of space al-
located for the calling process’s
data segment

ioctl() Control input/output devices

fcntl() File control

dup() Duplicate a file descriptor

getppid() Get parent process ID

gettimeofday() Get the date and time

lstat() Get file status

munmap() Unmap pages of memory

statfs() Get file system statistics

socketcall() Socket system calls

mprotect() Set protection of memory map-
ping

sigprocmask() POSIX signal handling functions

readv() Read data into multiple buffers

writev() Write data into multiple buffers

sysctl() Read/write system parameters

mlock() Lock pages in memory

munlock() Unlock pages in memory

poll() Wait for some event on a file de-
scriptor

semget() Returns the semaphore indenti-
fier associated with the given key

semop() Used in semaphore operations
such as signalling and waiting

recv() Receive a message from a socket

msgget() Creates or return results from a
message queue

Table 3.3: Important system calls description

26

applications to analyse and derive the application installation and uninstallation signature pat-

terns. Table 3.4 and 3.5 show the application installation and uninstallation signature patterns

derived from logcat.

S.No. Signature patterns

1 ˆD/SM:PackageReceiver.*package added:*

2 Î/RegisterService.*android.intent.action.PACKAGE ADDED*

3 ˆD/PackageManager.*.embedded.*New package installed in*

4 ˆD/installd.*DexInv:.*success*

Table 3.4: Signtaure patterns for application installation

S.No. Signature patterns

1 Î/UninstallAppProgress.*Finished uninstalling pkg:*

2 Î/installd.*unlink /data/dalvik-cache/data@app@*

3 ˆD/SM:PackageReceiver.*package removed:*

4 Î/PackageManager.*Removing non-system package:*

Table 3.5: Signtaure patterns for application uninstallation

3.3.4 Detecting corporate email security breaches

E-Mail communication is an integral part of every enterprise and therefore plays a vital role in

the company’s BYOD policy. It is one of the mediums via which the corporate data security can

be breached easily. All the inbound emails must be routed through the corporate mail server

which filters spam emails, phishing mails etc. Similarly all outbound emails must be routed

through the corporate SMTP server so that the corporate data cannot be sent out from the

corporate email id via a fake SMTP server to the rival companies.

Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail (e-mail) trans-

mission across Internet Protocol (IP) networks. Electronic mail servers and other mail transfer

agents use SMTP to send and receive mail messages, user-level client mail applications typically

use SMTP only for sending messages to a mail server for relaying. For receiving messages, client

applications usually use either the Post Office Protocol (POP) or the Internet Message Access

Protocol (IMAP).

Whenever an e-mail is sent, the mobile e-mail client application interacts with the SMTP server

or mail server (as shown in Figure 3.6) to handle the sending [3]. The host SMTP server may

have conversations with other SMTP servers to deliver the e-mail. In corporate organisations

the SMTP severs are programmed specifically to monitor all outgoing emails so that no privilege

company information is leaked by any employee. We observe that mobile email client applications

permit the user to configure the incoming and outgoing server settings (as shown in Figure 3.7

and Figure 3.8). We analyse the working of the com.htc.android.mail application in the HTC

27

Figure 3.6: Working of email and protocols

Explorer A310e handset.

Therefore it is possible that the employees may configure fake SMTP server settings on their

mobile device for the corporate e-mail and send out privilege corporate information via emails

bypassing the corporate SMTP server or mail server. This is serious kind of threat which needs

to be overcome.

We further observe that all the incoming and outgoing mail server settings for an email account

are stored in mail.db database and the accounts table in it, as shown in Figure 3.9, created by

the com.htc.android.mail application.

In order to detect and overcome threats arising from the changes in incoming and outgoing mail

server settings, we propose the use of a customized corporate e-mail client application where all

such incoming and outgoing server settings are hard coded or any changes to such settings are

monitored. As a proof of concept we show the use of trigger on a sqlite database which generates

a message every time the changes are made to the accounts table. This method can be used by

corporate email client application to detect the instances of tampering with the incoming and

outgoing mail server settings in the corporate e-mail client application.

We do not recommend the use of the same email client application for personal and corporate

use since in that case the employee privacy is breached if the mail.db database and the accounts

table is monitored by the corporate organisation.

3.3.5 Detecting the downloaded corporate e-mail attachments and corporate

documents on the device

The problem of detecting the downloaded corporate e-mail attachments and corporate docu-

ments is a hard problem since once the document is downloaded to the device it is difficult to

distinguish between the employees personal document and the corporate document. Monitoring

28

Figure 3.7: Screenshot of screen permitting the configuration of incoming server settings for e-mail

Figure 3.8: Screenshot of screen permitting the configuration of outgoing server settings for e-mail

29

Figure 3.9: Screenshot of the entries in the accounts table of the mail.db database of htc mail application

all the documents on the device is not a feasible solution since it leads severe employee privacy

breach. Differentiating personal and corporate documents by using distinct naming conventions

for corporate document is not a good solution since the employee themselves can rename the

corporate documents once downloaded to the device. The partitioning of the mobile device

memory into two parts (i.e. one for corporate use and one for personal use) so that the down-

loaded corporate documents are directed to the corporate partition may not be acceptable to the

employees. This remains an open problem. We propose the use of customized corporate e-mail

client application for mobile devices which either disables the download link in the corporate

e-mail or opens up the documents in the web based office suite similar to google docs eliminating

the need and choice of downloading the document at all.

3.3.6 Detecting the event of backup of corporate documents to external de-

vice or cloud

The problem of detecting the event of backup of corporate documents to external device or cloud

is again a hard problem due to same reasons as mentioned in section 3.3.5. The inability to

differentiate between corporate and personal documents makes it impossible to detect the event

of backup of corporate documents to external device or cloud. Monitoring all the documents on

the device is not a feasible solution since it leads to severe employee privacy breach. Similar to

section 3.3.5 we propose that the corporate documents should not be allowed to be downloaded

or transferred to mobile device in any way. This remains an open problem.

30

Figure 3.10: BYOD solution architecture

3.4 Architecture of proposed solution

In this section we propose a BYOD solution architecture (as shown in Figure 3.10) which utilizes

the methods or techniques to detect security breaches (as mentioned in Section 3.3).

The BYOD solution will work as follows:

1. Every mobile device, registered under the BYOD policy, will run the following applications

provided by the corporate IT department:

• BYOD E-Mail which is a corporate email client application for Android based mobile

devices.

• BYOD Calendar which is corporate calendar client application for Android based

mobile devices.

• BYOD VPN which is a corporate VPN client application for Android based mobile

devices.

• BYOD Security Suite which is a corporate application to monitor the security status

of the Android based mobile device.

31

2. BYOD Security Suite applications performs the following functions:

(a) It monitors and logs the root status of the mobile device periodically using the tech-

nique mentioned in section 3.3.1.

(b) It detects malware Android applications on the mobile device using static and dy-

namic analysis techniques mentioned in Section 3.3.2. Further it alerts the employee

about the same and logs details of such applications.

(c) It monitors, detects and logs the installation and uninstallation of applications in-

cluding corporate applications namely BYOD E-Mail, BYOD Calendar, BYOD VPN

using the technique mentioned in Section 3.3.3.

(d) It monitors,detects and logs instances of tampering with the BYOD E-Mail database

and tables containing the incoming and outgoing server settings.

3. The log file generated by the BYOD Security Suite application on each mobile device is

sent to the corporate server.

4. The log file generated by each mobile device is analysed for anomalies at the corporate

server. Such a mechanism saves device battery since all the processing is performed at the

server end.

5. In case some anomalies are found in the log file, the corresponding mobile device is denied

access to the corporate server and his/her mail access is blocked (as shown in Figure 3.7

for Employee 2 Smartphone).

6. In case no anomalies are found in the log file the corresponding mobile device continues

to have access to the corporate server and the the relevant information.

32

Chapter 4

Results and Discussion

4.1 Root status of the Android based mobile device

We use 5 methods to detect the root status of the Android based mobile device. The methods

are as follows:

1. Method 1 Checking for the superuser binary file existence. If the superuser binary file

exists the device is said to be rooted else it is unrooted.

2. Method 2 Checking whether the superuser application apk file is present on the device.

If the superuser application apk file is present the device is said to be rooted else it is

unrooted.

3. Method 3 Checking by executing superuser command from the code. If the superuser

command executes successfully the device is said to be rooted else it is unrooted.

4. Method 4 Checking for the S-ON and S-OFF status by booting into HBOOT in the HTC

mobile device. This method is HTC specific and manual in nature.

5. Method 5 Checking whether the bootloader is locked or unlocked.This method is HTC

specific and manual in nature.

We test the above 5 methods on different devices, selected randomly, and get the results which

are summarized in Table 4.1.

We observe that the Methods 1,2 and 3 accurately detect the root status of the device. Method

3 can fail in situations when the user is prompted to grant or deny the super user privileges on

execution of super user command from the code and the user denies the super user privileges.

We observe in Method 4 that even if the HTC device status is S-ON, the device can be rooted

(as is the case with the device with IMEI No: 359918041010851. S-OFF status also does not

necessarily imply that the device is rooted, it may or may not be. In Method 5 we clearly know

that if the bootloader is locked the device is unrooted since in HTC devices the rooting process

33

IMEI Method 1 Method 2 Method 3 Method 4 Method 5

359918041010851 Rooted Rooted Rooted S-ON Unlocked

352264051538128 Unrooted Unrooted Unrooted Non HTC
device

Non HTC
device

353346054349980 Unrooted Unrooted Unrooted Non HTC
device

Non HTC
device

359462045267837 Rooted Rooted Rooted Non HTC
device

Non HTC
device

359462049208464 Unrooted Unrooted Unrooted Non HTC
device

Non HTC
device

Table 4.1: Results of different methods for detecting root status of Android based mobile devices

involves the unlocking of the bootloader as the first step. However if the bootloader is unlocked

then it cannot be said surely, on the basis of the results of the method 5 only, that the device is

rooted or unrooted since after unlocking the device it may or may not have been rooted.

4.2 Analysis of malicious Android applications

4.2.1 Static analysis to detect malicious Android applications

We use a testing dataset of 200 applications to evaluate the effectiveness of one class classifier,

using permissions as discriminatory features, to identify malicious Android applications. We get

an accuracy of 73.5 % in detecting malicious Android applications. The reason for not getting

cent percent accuracy can be attributed to the fact that there is a lot of permission overlapping

between malicious and non malicious Android applications. We further find out that permissions

like INTERNET, READ PHONE STATE, ACCESS NETWORK STATE cannot be used as

discriminatory features with heavy weight in the one class classifier since these permissions are

also used by non malicious applications heavily. Therefore the permission based filtering method

is not able to specifically detect those malicious applications which access and steal the device

information like IMEI, IMSI number etc.

Table 4.2 shows the set of permissions, used as discriminatory features to identify malicious

applications in the decreasing order of their weights. The table also provides the possible reason

due to which the malicious applications use that particular permission thereby making it a

discriminatory feature. Only the top 16 permissions out of 25 permissions identified in Table

3.1 are used in the discriminatory feature set since the remaining permissions do not contribute

significantly to the accuracy. We find that the threshold Cvalue comes out to be 0.065 and

maximum Cvalue is 0.400816. All applications having a Cvalue or similarity score lower than the

threshold value are considered non malicious and the applications having Cvalue or similarity

score greater than the threshold value are considered malicious.

34

Permission Weight Remarks

SEND SMS 0.2500 Granting this permission to applications costs money to
the users, therefore heavily used by malicious applica-
tions which automatically send send SMS to premium
numbers.

CALL PHONE 0.1800 Granting this permission to malicious applications costs
money to the users. However this permission is not as
heavily used as the SEND SMS permission.

RECEIVE BOOT COMPLETED 0.1200 Granting this permission to applications enables them
to restart automatically after the mobile device boots
up and malicious applications need this permission to
carry on with their malicious activities.

READ SMS 0.0850 This permission enables the malicious applications to
read the users SMS and gain information about them
leading to privacy breach.

WRITE APN SETTINGS 0.0800 Allows applications to write the apn settings

RECEIVE SMS 0.0650 This permission enables the malicious applications to
monitor incoming SMS messages, to record or perform
processing on them.

WRITE SMS 0.0500 This permission enables the malicious applications to
write SMS messages automatically costing money to the
users.

READ CONTACTS 0.0450 This permission enables the malicious application to
read the user’s contacts data thus leading to privacy
breach.

ACCESS WIFI STATE 0.0320 This permission enables the malicious applications to
determine if the mobile device is connected to Wi-Fi
network.

WRITE EXTERNAL STORAGE 0.0290 Allows an application to write to external storage.

WAKE LOCK 0.0280 Allows using PowerManager Wake Locks to keep pro-
cessor from sleeping or screen from dimming.

ACCESS COARSE LOCATION 0.0092 This permission is used by malicious applications to ac-
cess approximate location derived from network location
sources such as cell towers and Wi-Fi leading to privacy
breach.

ACCESS FINE LOCATION 0.0068 This permission is used by malicious applications to ac-
cess precise location from location sources such as GPS,
cell towers, and Wi-Fi leading to privacy breach.

ACCESS NETWORK STATE 0.0067 This permission is needed by malicious applications to
determine whether the internet connectivity is available
or not.

READ PHONE STATE 0.0018 This permission enables the malicious applications to
get the device details like IMEI no., IMSI etc.

INTERNET 0.0015 This permission is used by malicious applications to ac-
cess the internet and send and receive data.

Table 4.2: Discriminatory features or permissions in the order of decreasing weight to identify malicious
applications

35

4.2.2 Dynamic analysis to detect malicious Android applications

In order to evaluate the effectiveness of our system call logging and analysis method to detect

malicious applications we use a testing dataset of 50 applications. We collect the system call

logs of the 50 applications and search for signature patterns in the log. To our surprise we get

an accuracy of just 46 % in detecting malicious Android applications. After the introspection of

the results we find that the reason for low accuracy is the incomplete capturing of the Android

Inter Process Communication (IPC) in the system call logs.

Android binder is used for IPC communication in Android. Android binder is a lightweight

Remote Procedure Communication (RPC) Mechanism. Each Android application is composed

of 4 different components namely activity, service, content provider and broadcast receiver. Data

exchange between different components is realized through IPC, if the specific components belong

to different processes (applications). This communication works with so called Intents. A content

provider can also be queried by an activity via IPC and returns the result.The Binder framework

communication is a client server model. A client will initiate a communication and wait for

response from a server. The Binder framework uses a client-side proxy for communication. On

the server side, a thread pool exists for working on requests. The Binder kernel driver is the

heart of the Binder framework. The Binder kernel driver supports the file operations open,

mmap, release, poll and the system call ioctl [27]. So even though the system call logs were

capturing the ioctl system calls but the call logs do not reveal the binder transactions and binder

transaction data hidden in the ioctl system call. Binder transactions cause transition of data

from one transits data from one binder interface to another binder interface.

4.3 Installation and uninstallation of Android applications

In order to detect the events of application installation and uninstallation we use logcat which

is an audit framework on the Dalvik Virtual Machine to monitor the application behaviour. We

analyse the logcat while applications are installed and uninstalled on the device and identify the

signature patterns (as described in Section 3.3.3) capturing such events. We use these signature

patterns to detect the events of application installation and uninstallation.

In order to test the accuracy of the signature patterns we take a set of 50 Android applications

and install them on the Android device and capture the logcat log in a file. Thereafter we search

the log file for signature patterns. Every time we were able to accurately identify the application

installed for all the 50 applications.

Similarly we randomly choose any application to uninstall on the device and capture the logcat

log in a file. On searching the log file for signature patterns we were able to accurately identify

the application uninstalled for all the 50 applications.

The above tests establish the correctness and accuracy of our signature patterns for application

installation and uninstallation.

36

4.4 Incoming and outgoing mail server settings of email client

We propose a customized corporate email client application for corporate use where either the

incoming and outgoing corporate mail server settings are hard coded or the sqlite database

and the table in it containing the server setting information is monitored using triggers. As a

proof of concept we implement a trigger on a table named accounts in the mail.db database of

a custom application. We observe that the trigger successfully records any kind of changes or

tampering done with the accounts table in the mail.db database. The proposed BYOD solution

architecture can make use of this technique to detect any kind of tampering done with the

corporate email client application database and the table containing the incoming and outgoing

mail server settings.

4.5 Downloaded corporate e-mail attachments

The problem of detecting the downloaded corporate e-mail attachments is hard and remains

open. Once the corporate e-mail attachment is downloaded to the mobile device it is hard

to distinguish between corporate document and the personal document on the mobile device.

Monitoring all the documents on the mobile device is not a solution since it will lead to severe

employee privacy breach. Distinct naming conventions for corporate e-mail attachments too fail

to differentiate between corporate and personal documents since the employee can rename the

corporate documents once downloaded to the device.

4.6 Backup of corporate documents

The problem of detecting the process or event of backup of corporate documents is again a

hard problem and remains open because of the same reason as mentioned in section 4.5. It is

difficult to distinguish between personal and corporate documents on the mobile device therefore

it becomes hard to detect which document is being backed up on external device or cloud.

4.7 Deficiencies in proposed solution architecture

The proposed solution architecture addresses some of the important challenges in detecting

security breaches in Android based mobile devices being used in byod policy for corporate

organisations. However we observe some deficiencies or limitations of the proposed solution

architecture which are as follows:

1. It fails to address the problem of distinguishing between corporate documents and personal

documents on the mobile device.

37

2. The solution fails to provide remote installation of corporate applications and uninstal-

lation of malware applications on the mobile device. In order to remotely install and

uninstall applications the device should be rooted for it and as part of BYOD policy we

do not permit rooted devices due to security concerns.

3. Presently the corporate applications and security suite application on the mobile device

is being installed as user applications. However the effectiveness of the proposed solution

architecture can increase considerably if the corporate applications are installed as sys-

tem applications since then the corporate applications would have been able to receive

commands remotely and uninstall malware applications installed a user applications.

4. The proposed solution is applicable for only the unrooted Android based mobile devices.

5. The solution architecture also fails to capture the scenarios or events where if the corporate

e-mail attachment is accidentally downloaded to the mobile device and thereafter deleted

by the employee according to the BYOD policy, but forensically it is possible to extract

the document since a simple delete does not actually remove the downloaded document

from the device memory, provided it is not overwritten [23]. Therefore even after deleting

the downloaded document the employee can possibly retrieve it.

38

Chapter 5

Conclusion

In this work we formulate a Bring Your Own Device (BYOD) policy for corporate organisations

from the corporate data security perspective. We further study the possible security breaches

if such a BYOD policy is employed by the corporate organisations for Android based mobile

devices. We find and implement methods and techniques to detect some of the possible security

breaches which could have a major impact on the corporate data security. We find that our

method to detect the root status of the Android based mobile device is successful for all the

devices used for testing purpose. The one class classifier using permissions as discriminatory

features to detect malicious Android applications has an accuracy of more than 70 %. However

the dynamic analysis method to detect malicious Android applications has low accuracy since

it fails to capture the interprocess communication in Android. The trigger based method to

detect the changes in the incoming and outgoing mail server settings successfully detects all

such attempts to tamper with the mail settings of the corporate email client application. We

further identify the limitations of our proposed solution approach. Unlike MDM and NAC the

methods used to detect security breaches in Android based mobile devices reduce the battery

drainage, provide corporate data security and conserve employee privacy by monitoring minimal

set of activities on the employee mobile device.

We also propose a BYOD solution architecture which utilizes the methods and techniques to

detect the security breaches in Android based mobile devices registered under BYOD policy of

the corporate organisation.

39

Chapter 6

Future Work

The work presented in this thesis report addresses some of the challenges related to detecting

security breaches in Android based mobile devices being used in Bring Your Own Device (BYOD)

policy for corporate organisations. The future work includes addressing other security challenges

like differentiating between corporate and personal mail attachments and documents on the

mobile device if the BYOD policy permits the downloading of email attachments on the mobile

device. The other extension of this work is the development of the kernel based module which

captures the Android interprocess communication along with other system calls. Such a kernel

module will be able to detect malware Android applications accurately and precisely along with

the information the malware applications are accessing and sending out.

40

Bibliography

[1] Alliance, O. H. Industry leaders announce open platform for mobile devices. http:

//www.openhandsetalliance.com/press_110507.html.

[2] Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., and Albayrak, S.

An android application sandbox system for suspicious software detection. In Malicious

and Unwanted Software (MALWARE), 2010 5th International Conference (2010), IEEE,

pp. 55–62.

[3] Brain, M., and Crosby, T. How e-mail works. http://computer.howstuffworks.com/

e-mail-messaging/email3.htm.

[4] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid: behavior-based

malware detection system for android. In Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices (2011), ACM, pp. 15–26.

[5] Chaudhary, V., and Sureka, A. Contextual feature based one-class classifier approach

for detecting video response spam on youtube. In Privacy, Security and Trust (PST), 2013

11th International Conference (2013), IEEE.

[6] Developer, A. Application permissions. http://developer.android.com/guide/

topics/security/permissions.html.

[7] Di Cerbo, F., Girardello, A., Michahelles, F., and Voronkova, S. Detection of

malicious applications on android os. In Computational Forensics. Springer, 2011, pp. 138–

149.

[8] Digital, C. A. Byod deluge. http://www.cadincweb.com/wp-content/uploads/2012/

04/CAD_BRAD_Managing_the_BYOD_Deluge_with_a_BYOD_Blueprint.pdf.

[9] Egners, A., Meyer, U., and Marschollek, B. Messing with android’s permission

model. In Trust, Security and Privacy in Computing and Communications (TrustCom),

2012 IEEE 11th International Conference (2012), IEEE, pp. 505–514.

[10] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., and

Sheth, A. N. Taintdroid: an information-flow tracking system for realtime privacy moni-

toring on smartphones. In Proceedings of the 9th USENIX conference on Operating systems

design and implementation (2010), pp. 1–6.

41

http://www.openhandsetalliance.com/press_110507.html
http://www.openhandsetalliance.com/press_110507.html
http://computer.howstuffworks.com/e-mail-messaging/email3.htm
http://computer.howstuffworks.com/e-mail-messaging/email3.htm
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://www.cadincweb.com/wp-content/uploads/2012/04/CAD_BRAD_Managing_the_BYOD_Deluge_with_a_BYOD_Blueprint.pdf
http://www.cadincweb.com/wp-content/uploads/2012/04/CAD_BRAD_Managing_the_BYOD_Deluge_with_a_BYOD_Blueprint.pdf

[11] Gartner. Gartner predicts by 2017, half of employers will require employees to supply

their own device for work purposes. http://www.gartner.com/newsroom/id/2466615.

[12] Gartner. Gartner says asia/pacific led worldwide mobile phone sales to growth in first

quarter of 2013. http://www.gartner.com/newsroom/id/2482816.

[13] Gartner. Gartner survey shows byod is top concern for enterprise mobile security. http:

//www.gartner.com/newsroom/id/2048617.

[14] Hoog, A. Android software development kit and android debug storage, 1st ed. Syngress,

2011.

[15] Isohara, T., Takemori, K., and Kubota, A. Kernel-based behavior analysis for an-

droid malware detection. In Computational Intelligence and Security (CIS), 2011 Seventh

International Conference (2011), IEEE, pp. 1011–1015.

[16] Jang, W.-J., Cho, S.-W., Lee, H.-W., ill Ju, H., and Kim, J.-N. Rooting attack

detection method on the android-based smart phone. In Computer Science and Network

Technology (ICCSNT), 2011 International Conference (2011), vol. 1, pp. 477–481.

[17] Kaspersky. 99 http://www.kaspersky.com/about/news/virus/2013/99_of_all_

mobile_threats_target_Android_devices.

[18] Kefei, C., and Yanglei, C. Design and implementation of network packets collection

tools based on the android platform. In Fuzzy Systems and Knowledge Discovery (FSKD),

2012 9th International Conference (2012), IEEE, pp. 2166–2169.

[19] Kim, S., Cho, J. I., Myeong, H. W., and Lee, D. H. A study on static analysis

model of mobile application for privacy protection. In Computer Science and Convergence.

Springer, 2012, pp. 529–540.

[20] Li, J., Gu, D., and Luo, Y. Android malware forensics: Reconstruction of malicious

events. In Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International

Conference (2012), IEEE, pp. 552–558.

[21] Networks, A. Conquering todays bring your own device challenges. http://www.

arubanetworks.com/pdf/technology/whitepapers/WP_BYOD.pdf.

[22] Networks, M. Byod best practices - requirements and chal-

lenges. http://www.merunetworks.com/collateral/white-papers/

2012-wp-byod-implementation-whitepaper-for-wlan-security.pdf.pdf.

[23] Robin Verma, Anuradha Gupta, A. S., and Gupta, G. Forensically important arti-

facts resulting from usage of cloud client services. http://www.acsac.org/2012/program/

case/Gupta.pdf?OPENCONF=5ee217b66d1070adf9361cc65b890df2.

42

http://www.gartner.com/newsroom/id/2466615
http://www.gartner.com/newsroom/id/2482816
http://www.gartner.com/newsroom/id/2048617
http://www.gartner.com/newsroom/id/2048617
http://www.kaspersky.com/about/news/virus/2013/99_of_all_mobile_threats_target_Android_devices
http://www.kaspersky.com/about/news/virus/2013/99_of_all_mobile_threats_target_Android_devices
http://www.arubanetworks.com/pdf/technology/whitepapers/WP_BYOD.pdf
http://www.arubanetworks.com/pdf/technology/whitepapers/WP_BYOD.pdf
http://www.merunetworks.com/collateral/white-papers/2012-wp-byod-implementation-whitepaper-for-wlan-security.pdf.pdf
http://www.merunetworks.com/collateral/white-papers/2012-wp-byod-implementation-whitepaper-for-wlan-security.pdf.pdf
http://www.acsac.org/2012/program/case/Gupta.pdf?OPENCONF=5ee217b66d1070adf9361cc65b890df2
http://www.acsac.org/2012/program/case/Gupta.pdf?OPENCONF=5ee217b66d1070adf9361cc65b890df2

[24] Samsung. Samsung knox. https://www.samsung.com/global/business/

business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_

June-0.pdf.

[25] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P., and lvarez,

G. Puma: Permission usage to detect malware in android. In International Joint Conference

CISIS12-ICEUTE12-SOCO12 Special Sessions. Springer Berlin Heidelberg, 2013, pp. 289–

298.

[26] Scarfo, A. New security perspectives around byod. In Broadband, Wireless Comput-

ing, Communication and Applications (BWCCA), 2012 Seventh International Conference

(2012), IEEE, pp. 446–451.

[27] Schreiber, T. Android binder - android interprocess communication. http://www.nds.

rub.de/media/attachments/files/2012/03/binder.pdf.

[28] Singh, S. By 2017, companies will expect workers to get their own device to

work. http://articles.economictimes.indiatimes.com/2013-05-04/news/39027006_

1_byod-own-device-distinguished-analyst.

[29] Synder, J. M. Network access control : A whirlwind tour through the basics. http:

//www.networkworld.com/podcasts/itr/2008/PM4-NAC-JoelSnyder.pdf.

[30] USA, D. G. Bring your own device. http://www.whitehouse.gov/digitalgov/

bring-your-own-device#sample2.

[31] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M. Malicious android applications

in the enterprise: What do they do and how do we fix it? In Data Engineering Workshops

(ICDEW), 2012 IEEE 28th International Conference (2012), IEEE, pp. 251–254.

[32] Wikipedia. Android (operating system). https://en.wikipedia.org/wiki/Android_

%28operating_system%29.

[33] Wikipedia. Android rooting. http://en.wikipedia.org/wiki/Android_rooting.

[34] Wikipedia. Blackberry. https://en.wikipedia.org/wiki/BlackBerry.

[35] Wikipedia. Bring your own device. http://en.wikipedia.org/wiki/Bring_your_own_

device.

[36] Wikipedia. Smartphone. http://en.wikipedia.org/wiki/Smartphone.

[37] Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu, K.-P. Droidmat: Android

malware detection through manifest and api calls tracing. In Information Security (Asia

JCIS), 2012 Seventh Asia Joint Conference (2012), pp. 62–69.

43

https://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
https://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
https://www.samsung.com/global/business/business-images/resource/white-paper/2013/06/Samsung_KNOX_whitepaper_June-0.pdf
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
http://articles.economictimes.indiatimes.com/2013-05-04/news/39027006_1_byod-own-device-distinguished-analyst
http://articles.economictimes.indiatimes.com/2013-05-04/news/39027006_1_byod-own-device-distinguished-analyst
http://www.networkworld.com/podcasts/itr/2008/PM4-NAC-JoelSnyder.pdf
http://www.networkworld.com/podcasts/itr/2008/PM4-NAC-JoelSnyder.pdf
http://www.whitehouse.gov/digitalgov/bring-your-own-device#sample2
http://www.whitehouse.gov/digitalgov/bring-your-own-device#sample2
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Android_rooting
https://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/Bring_your_own_device
http://en.wikipedia.org/wiki/Bring_your_own_device
http://en.wikipedia.org/wiki/Smartphone

[38] Zhao, M., Ge, F., Zhang, T., and Yuan, Z. Antimaldroid: An efficient svm-based

malware detection framework for android. In Information Computing and Applications.

Springer, 2011, pp. 158–166.

[39] Zhou, Y., and Jiang, X. Dissecting android malware: Characterization and evolution.

In Security and Privacy (SP), 2012 IEEE Symposium (2012), pp. 95–109.

[40] Zhou, Yajin, Z. W. W. Z., and Jiang, X. Hey, you, get off of my market: Detecting

malicious apps in official and alternative android markets. In 19th Annual Network and

Distributed System Security Symposium, 2012 (2012), vol. 1.

44

	Research Motivation and Aim
	Bring Your Own Device
	Android OS

	Research Motivation
	Research Aim
	Advantages

	Related Work and Research Contributions
	Related Work
	Security implications of BYOD and existing solutions
	Detecting the root status of the Android based mobile devices
	Android malware detection

	Research Contributions

	Proposed Solution Approach
	Comprehensive sample BYOD policy
	Data security threats w.r.t. formulated BYOD policy
	Detection of threats to corporate data security
	Detecting the root status of the Android based mobile device
	Detecting malicious application in Android based mobile device
	Detecting the installation and uninstallation of applications on the Android based mobile device
	Detecting corporate email security breaches
	Detecting the downloaded corporate e-mail attachments and corporate documents on the device
	Detecting the event of backup of corporate documents to external device or cloud

	Architecture of proposed solution

	Results and Discussion
	Root status of the Android based mobile device
	Analysis of malicious Android applications
	Static analysis to detect malicious Android applications
	Dynamic analysis to detect malicious Android applications

	Installation and uninstallation of Android applications
	Incoming and outgoing mail server settings of email client
	Downloaded corporate e-mail attachments
	Backup of corporate documents
	Deficiencies in proposed solution architecture

	Conclusion
	Future Work

