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ABSTRACT

Correlation Filter based visual trackers have demonstrated tremendous progress in ob-

ject tracking. These trackers primarily use hierarchical features learned from multiple

layers of a deep network. However, issues related to background awareness, determin-

istic aggregation of these features from various layers, difficulties in estimating varia-

tions in scale or rotation of the object being tracked, as well as challenges in effectively

modelling the object’s appearance over long time periods leaves substantial scope to

improve performance. Such issues lead to poor discriminative power and rapidly drift

the tracker away from the target.

We propose ensemble and regularization techniques to achieve a strong discrimina-

tive ability for object trackers. We first obtain an ensemble of weak correlation filters

using an adaptive weighing strategy and an appearance model pool to adapt to large ap-

pearance changes. Further, the target scale and rotation parameters are estimated using

a dedicated affine correlation filter.

Our experiments reveal that each feature channel encodes a different appearance

cue of the target and not all channels are equally important during different tracking

steps. To this end, we propose a graph based adaptive channel weighing strategy that

assigns weight to each channel based on the similarity of encoded appearance infor-

mation. In order to model the channel importance and improve background awareness

simultaneously, we introduce a sparse spatio-temporal regularizer with adaptive channel

weights. We further kernelize the tracker to attain real-time performance. We exten-

sively evaluate the trackers using publicly available datasets — Object Tracking Bench-

mark (OTB100), Visual Object Tracking (VOT) Benchmark 2016, VOT Benchmark

2017, Tracking Dataset, VOT Benchmark 2019, Temple Color 128, UAV123, LaSOT,

and GOT10k.
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CHAPTER 1

Introduction

1.1 Motivation

Visual Object Tracking (VOT) is the task of tracking an object within a video. Typically,

in a single object tracker scenario, the groundtruth bounding box of the target object is

known in the first frame and a VOT algorithm is required to predict the bounding box

in subsequent frames to track the target. An overview of the tracking task is provided

in Figure 1.1.

Visual Object Tracking Algorithm

Input Video Frames

Output Video Frames with Predicted Object Tracking Bounding Boxes

Frame 1 Frame 2 Frame (END-1) Frame (END)

Frame 1 Frame 2 Frame (END-1) Frame (END)

Given GroundTruth 
Bounding Box in

Frame 1

Predicted Bounding
Boxes in the Remaining

Frames

Figure 1.1: Visual Object Tracking: The bounding box is provided to the tracker in the
first frame. The tracking algorithm then seeks to locate the object contained
in the bounding box in subsequent frames.

Broadly, most existing tracking algorithms are based on Kalman filter, particle fil-

ters, end-to-end Convolutional Neural Network (CNN), Correlation Filters (CF) learned

using hand-crafted features, and hybrid approaches. This thesis focuses on CF based

and hybrid approaches. CNN based trackers offer robust tracking due to their rich hi-

erarchical feature representation, but may suffer from heavy computational complexity

due to their high number of parameters. On the other hand, CF based trackers typically

use shallow features that model the target appearance with less discriminative power,



but offer real time tracking due to efficient operations in the frequency domain (Kumar

et al., 2005). To exploit the advantages from both of these tracker classes and suppress

the drawbacks, hybrid trackers often use CFs in conjunction with 3-dimensional deep

features extracted using a pre-trained CNN.

The use of Correlation Filters (CFs) for tracking in conjunction with the deep fea-

tures facilitates target appearance modelling with more generalized and discriminative

features, as compared to using hand-crafted features, along with real time speed due

to fast computations in the Fourier domain (Kumar et al., 2005). Although computa-

tionally inexpensive, learning CFs in the frequency domain incurs many disadvantages.

Negative training samples are generated by circularly shifting the base patch in the

frequency domain (Kumar et al., 2005). All these samples are impaired by boundary

effects and do not represent the actual background as they are merely shifted versions

of the base patch. Training the CF with these imitated and limited negative samples can

result in an over-fitted CF that adapts poorly to rapid visual deformations of the target

object, and drifts easily during challenges like similar object presence, background clut-

ter, occlusion and out-of-plane movements (Danelljan et al., 2015b). To alleviate these

issues, CF trackers with spatial and temporal constraints have been proposed in Danell-

jan et al. (2015b); Kiani Galoogahi et al. (2017); Dai et al. (2019); Li et al. (2018c).

However, these works (Danelljan et al., 2015b; Kiani Galoogahi et al., 2017; Dai et al.,

2019; Li et al., 2018c) do not investigate the contribution of different input feature chan-

nels while learning the CF. Additionally, the spatial and temporal constraints based CF

trackers are not derived in combination with kernel tricks as the constraints may not

allow the straight forward use of the circulant matrix structure (Huang et al., 2020).

This research is a significant step forward towards the development of CF based

trackers that successfully employ spatio-temporal regularizations and kernel tricks to

overcome the shortcoming of the classical CF formulation.

1.2 Research Aims

Visual object tracking is a widely scrutinized research problem in the field of computer

vision and video analytics. Recently, end-to-end deep learning based approaches have

achieved tremendous success in visual object tracking. However, these approaches are

computationally expensive and need huge volumes of training data. Correlation Filters
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(CFs) are an alternate and highly efficient solution for object tracking with no strict

data requirements. CF based object trackers use deep features extracted using a pre-

trained Convolutional Neural Network (CNN). These trackers model the target appear-

ance with generalized and discriminative deep features, whilst achieving real time speed

due to fast computations in the Fourier domain (Kumar et al., 2005). This thesis aims at

developing new CF based tracking methods that successfully employ spatio-temporal

regularizations and kernel tricks. To contribute to this main aim, the goals of this thesis

are recognised by the following four (4) research aims.

Aim 1: To investigate LSTM guided ensemble correlation filter tracking with ap-

pearance model pool

Despite achieving state-of-the-art performance, existing CNN trackers still have some

limitations. Most of these methods only use the output of a single Convolutional Neu-

ral Network (CNN) layer for target location estimation. Compared to such trackers,

multi-layer trackers perform better Qi et al. (2016); Ma et al. (2015a). This is be-

cause features from deeper layers can capture rich category level semantic information,

which is useful for object classification and are not the optimal representation for visual

tracking since spatial details captured by earlier layers are also important for accurately

localizing the targets. On the other hand, as the features in the earlier layers are more

generic rather than discriminative as ones in the later layers, methods based on features

from earlier layers are likely to fail in challenging scenarios. To achieve better track-

ing performance, it is thus imperative to combine features from different layers to best

represent and separate foreground objects from the background clutters. Therefore, we

aim to combine activations from deep layers with those of earlier layers (that capture

more spatial information), to obtain a more reliable prediction. However, the prediction

accuracy of each layer may vary from frame to frame and combining all the predictions

with equal weight may result in inaccurate tracking. Thus, we aim to develop a reliable

mechanism to compute the contribution of each layer when estimating the target’s final

location. To this end, we analyse Long Short Term Memory (LSTM) network based en-

semble CF tracking. CF trackers are combined with an appearance model pool to avoid

faulty filter updates. The tracker performance is further improved by using dedicated

filters to compute the scale and rotation of the target.
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Aim 2: To investigate channel graph regularized correlation filters for tracking

The investigation in Aim 1 led to developing a reliable mechanism to compute the con-

tribution of each Convolutional Neural Network (CNN) layer when estimating the tar-

get’s final location. However, features extracted from each of these CNN layers contain

multiple channels. Training Correlation Filters (CFs) with multi-channel CNN features

is a challenging task. Each CNN feature channel encodes a different attribute of the tar-

get where some channels may offer more informative features for tracking, while others

with less useful information may degrade the tracking and eventually lead to tracker

drift Danelljan et al. (2015b). To address this issue of channel importance, feature se-

lection Xu et al. (2019a), adaptive importance maps Li et al. (2018a) and reliability

learning Sun et al. (2018a) methods have already been proposed which inspires us to

develop a Channel Regularized CF tracker that learns an adaptive channel importance

for each feature channel, such that the feature channels that encode useful appearance

cues should be assigned higher weights and the less important feature channels should

be suppressed through lower weights. However, a detailed analysis revealed that using

the proposed Channel Regularization, the feature channels that produced similar filter

responses were getting assigned dissimilar weights and few feature channels with weak

filter responses were getting assigned higher weights, as shown in Figure 5.2. This

can lead to higher contribution of the poor feature channels and lower contribution of

the stronger feature channels during filter training, resulting in a filter with poor dis-

criminative ability. This is corrected using the proposed Channel-Graph regularization

that monitors the similarity between different feature channels and accordingly assigns

similar weights to similar feature channels and higher weights to rich feature channels.

Hence, preserving the similarity of importance between different feature channels Zhou

et al. (2016) while increasing the contribution of stronger feature channels during the

filter training.

Aim 3: To investigate importance guided sparse spatio-temporal regularized cor-

relation filters for tracking

We further improve the proposed formulation from Aim 2 by introducing an efficient

spatial and temporal regularizations, increasing awareness of previous and spatially ad-

jacent observations. The challenges with spatial regularization based CF trackers are
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that they either have fixed spatial weights (Danelljan et al., 2015b), or learn spatial

weights that are similar to some reference weights (Dai et al., 2019). Likewise, tem-

poral regularization based CF tracker imposes a constraint such that the current learned

filter is similar to the previous filter (Li et al., 2018c). However, due to continuous

temporal and spatial variations in a tracking sequence, the filter and spatial weights in

a tracking step will not be identical to their reference counterparts. This motivates us

to develop a sparse spatially and temporally regularized CF tracker. Using spatial regu-

larization, we aim to suppresses the effects of unfavorable background information and

boundary effects in the learned filter. The temporal regularization aims to help the filter

adapt to appearance changes, preventing drift. We will also model the sparse spatial and

sparse temporal variations to enhance the discriminative ability of the learned filters.

Aim 4: To investigate temporally regularized multi-kernel correlation filters for

tracking

In the recent research, Correlation Filter (CF) trackers with spatial and temporal con-

straints have been proposed (Danelljan et al., 2015b; Kiani Galoogahi et al., 2017;

Dai et al., 2019; Li et al., 2018c), including the trackers investigated in Aims 2 and

3. The limitation of such methods is that they are not used in combination with the

kernel model (Henriques et al., 2014) as the constraints may break the circulant ma-

trix structure, making it computationally expensive. To overcome this limitation, we

aim to introduce the kernel trick to the temporally regularized CF tracker, learned using

multiple kernels. The proposed tracker will capture the non-linearity in the appearance

features while retaining the circulant matrix structure.

1.3 Thesis structure

The remainder of this thesis is organised as follows.

Chapter 2 provides an overview of topics related to correlation filter based visual

object tracking. The strengths and weaknesses of existing methods are discussed in

detail.

Chapter 3 explains all the evaluation metrics and datasets that are used to assess

the object trackers developed in this thesis.
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Chapter 4 introduces a novel LSTM guided ensemble correlation filter based tracker

with an appearance model pool, along with an ablation study for different modules. We

also investigate evaluation of the tracker across multiple standard tracking datasets.

Chapter 5 presents channel graph regularized correlation filters for visual object

tracking. We investigate two different methods of computing the adaptive channel

weights for the features used to train the filters.

Chapter 6 proposes an importance guided sparse spatio-temporally regularized cor-

relation filter tracker. In this chapter, we model the sparse spatial and temporal varia-

tions along with the channel importance during each tracking step.

Chapter 7 investigates a temporally regularized multi-kernel correlation filter for

visual object tracking.

Chapter 8 concludes the thesis by summarizing the key contributions, comparing

the proposed trackers with each other, and discussing avenues for future work.

1.4 Contributions of this research

The overarching innovation of this thesis is the investigation of how classical Corre-

lation Filter (CF) based tracking can be improve with the help of ensemble of CFs,

spatio-temporal constraints and kernel tricks. The use of ensemble of CF trackers helps

in modelling and combining the useful target appearance information encoded by dif-

ferent layers of a pre-trained deep network. On the other hand, the spatio-temporal con-

straint results in background aware CFs that can model the target appearance changes

over a long period of time. The combination of temporal constraint with kernel tricks

will help in modelling the large appearance changes while offering real-time tracking

speed. The detailed investigation of each of the improvements suggested above lead to

the following contributions of this thesis.

1. We analyse LSTM based ensemble Correlation Filter (CF) tracking. CF trackers
are combined with an appearance model pool to avoid faulty filter updates. The
tracker performance is further improved by using dedicated filters to compute the
scale and rotation of the target.

2. The CFs learned in the above work are trained using multi-channel deep fea-
tures. However, each feature channel encodes different appearance information
and these may not be equally important for tracking at different times. This moti-
vates us to introduce a channel regularized CF tracker that learns adaptive channel
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importance for each feature channel. Thus, feature channels that encode useful
appearance cues are assigned higher weights and the less important feature chan-
nels are suppressed through lower weights.

3. To further improve tracking accuracy, we investigate spatially and temporally
regularized CFs. The spatial regularization suppresses the effects of unfavorable
background information and boundary effects in the learned filter. The temporal
regularization helps the filter adapt to appearance changes, preventing drift. We
also model sparse spatial and sparse temporal variations to enhance the discrimi-
native ability of the learned filters.

4. We further introduce the kernel trick to the temporally regularized correlation
filter tracker, learned using multiple kernels. The proposed tracker captures the
non-linearity in the appearance features and retains the circulant matrix structure.
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CHAPTER 2

Related Work

2.1 Introduction

The key contribution of this thesis is the development of algorithms that are capable of

efficiently tracking an object in an input video through various visual challenges. In

order to fulfill the task, we utilise Correlation Filters (CFs), Long Short Term Mem-

ory (LSTM) networks, Spatio-Temporal Constraints, Channel Regularization, Kernel

Tricks and pretrained deep networks that enable the extraction of rich and highly de-

scriptive representational features of the target object. As such, this thesis connects

to the following broad topics: CF based object tracking using deep features, spatio-

temporal constraints, channel regularization and kernel tricks. In this chapter, we first

give a summary of overall development of visual object trackers and then explain the

classical CF formulation followed by an overview of the popular CF based tracking ap-

proaches. We also provide a review of current state-of-the-art developments in each of

the broad topic areas, and summarise their strengths and weaknesses.

(a) Gaussian Shaped Label (y) (b) Target Feature Channel (xk) (c) Correlation Filter Channel (hk)

Figure 2.1: Exemplar Images Showing Different Components of a Classical Correlation
Filter

2.1.1 Evolution of Visual Object Tracking

The early representative methods of single object tracking are optical flow methods

Horn and Schunck (1981); Lucas et al. (1981); Bouguet et al. (2001), filters meth-



ods (Kalman and Particle) Maybeck (1990); La Scala and Bitmead (1996); Julier and

Uhlmann (2004); Nummiaro et al. (2003) and kernel-based methods Comaniciu and

Meer (2002); Bradski (1998). However, complex calculations and low accuracy limited

their further development.

To overcome the shortcoming of previous trackers, many innovative and efficient

Correlation Filter (CF) based trackers were proposed Bolme et al. (2010); Danelljan

et al. (2014b); Li and Zhu (2014); Danelljan et al. (2014a); Bertinetto et al. (2016a);

Ma et al. (2015b); Kiani Galoogahi et al. (2015); Danelljan et al. (2015b,a, 2016c); Ma

et al. (2015a); Danelljan et al. (2016d, 2017a); Bhat et al. (2018); Dai et al. (2019);

Tang and Ling (2019); Lu et al. (2019a); Henriques et al. (2012); Dalal and Triggs

(2005); Henriques et al. (2014).

The basic CF tracker, MOSSE Bolme et al. (2010), tracks an object at 615 FPS, but

had room for improvement in both CFs and feature extraction. This provided the basis

for a series of improvements like target scale estimation, use of hand crafted features

Danelljan et al. (2014b); Li and Zhu (2014); Danelljan et al. (2014a); Bertinetto et al.

(2016a); Ma et al. (2015b); Dong et al. (2016), use of kernel tricks Henriques et al.

(2012); Dalal and Triggs (2005); Henriques et al. (2014); Huang et al. (2020), and

elimination of boundary effects Kiani Galoogahi et al. (2015); Danelljan et al. (2015b,

2016c).

Correlation filters-based tracking methods performed better than traditional meth-

ods, but manual features are difficult to cope with the dynamic environment. Therefore,

to achieve a balance between speed and accuracy, deep learning based trackers gradually

gained popularity. The early deep learning trackers were based on offline training and

online fine-tuning Wang and Yeung (2013); Wang et al. (2015b); Nam and Han (2016);

Wang et al. (2015a); Lu et al. (2018). However, online fine-tuning caused trackers to

run slowly which is difficult to meet real-time requirements. This gave rise to use of

pre-trained Convolutional Neural Network (CNN) for tracking Hong et al. (2015); Held

et al. (2016a); Nam et al. (2016). But, the pre-trained model focused more on extract-

ing semantic features of each image, while object tracking tasks pay more attention to

predicting the location of the labeled object in the video sequence. Therefore, to adjust

the models by tracking datasets, recurrent neural network Cui et al. (2016); Ning et al.

(2017); Redmon et al. (2016); Fan and Ling (2017b), Siamese network based track-

ers Tao et al. (2016); Li et al. (2018b); Wang et al. (2017b); Dong et al. (2020); Shen
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et al. (2020); Dong et al. (2018, 2021); Zhu et al. (2018a); Li et al. (2019a); Valmadre

et al. (2017b); Wang et al. (2017a); Zhu et al. (2018b); Xu et al. (2020); Gao et al.

(2020) and regularized correlation filter based trackers trained using convolutional fea-

tures were proposed Danelljan et al. (2015a); Ma et al. (2015a); Danelljan et al. (2016d,

2017a); Bhat et al. (2018); Dai et al. (2019); Lu et al. (2019b); Liu et al. (2020); Xu

et al. (2019a); Rahman et al. (2020); Li et al. (2020a,c); Fu et al. (2020); Ma et al.

(2020); Kristan et al. (2018, 2019); Javed et al. (2021).

Siamese networks have attracted great attention due to its outstanding performance.

However, most of the Siamese-based methods only differentiate targets from non-semantic

background, which is susceptible to interference from similar objects. Moreover, the

templates of trackers based on the Siamese network cannot be updated which lim-

its tracking accuracy in complex environment (Valmadre et al., 2017a; Kristan et al.,

2016a; Bertinetto et al., 2016b). This is overcome by correlation filter trackers with

dynamic weights and spatio-temporal regularizations that improves the discriminative

ability of the filters and appearance model pool that facilitates easy template update, as

shown in Chapter 4.

2.1.2 Classical Correlation Filter Tracker Formulation

The numerical formulation for a classical correlation filter tracker is given by,

E(h) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ hk

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22, (2.1)

where K is the total number of feature channels, y ∈ RT×1 is the desired Gaussian

shaped correlation filter response. xk ∈ RT×1 is the vectorized feature and hk ∈ RT×1

is the learnable vectorized filter for the kth channel. λ is a regularization parameter and

∗ is the spatial correlation operator. H = [h1,h2, ...,hK ] is the matrix of filters from

all K channels (Bolme et al., 2010). Exemplar images showing the Gaussian shaped

correlation filter response (y), feature channel (xk) and the unknown correlation filter

channel (hk) are shown in Figure 2.1.

Before vectorizing xk and hk, their original dimension is W × H , where W is the

width and H is the height of each channel. To generate the training samples for the

correlation filter, we consider the circularly shifted versions of x along the dimensions
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W and H . Let us denote each shifted sample as xa,b (where (a,b) ∈ {0, 1, ...,W− 1} ×

{0, 1, ...,H− 1}) to which we assign a Gaussian function label y(a,b), given by

y(a,b) = e−
(a−W/2)2+(b−H/2)2

2σ2 , (2.2)

where σ is the kernel width. A correlation filter h, of the same size as x, can be learned

by minimizing Equation 2.1. Following Naresh Boddeti et al. (2013), Equation 2.1 can

be solved using a Fast Fourier Transformation (FFT) for each feature channel. In the

frequency domain, the learned filter for the kth channel can be written as,

ĥk =
ŷ
⊙

conj(x̂k)∑K
k=1 x̂k

⊙
conj(x̂k) + λ

(2.3)

whereˆrepresents the Discrete Fourier Transform (DFT), k ∈ {1, ...,K}, ŷ is the DFT of

y =
{

y(a,b)|(a,b) ∈ {0,1, ...,W−1}×{0,1, ...,H−1}
}

, conj indicates the complex

conjugate,
⊙

is the element-wise product, ĥk is the DFT of kth channel of the learned

correlation filter, and x̂k is the DFT of kth channel of the vectorized features.

At test time, the features extracted from the incoming frame, z, are of sizeW ×H×

K. The Fourier transformed CF response map, r̂, corresponding to z is calculated using

r̂ = F−1
( K∑
k=1

ĥk

⊙
conj(ẑk)

)
, (2.4)

where F−1 is the inverse Fourier transform and ẑ is the Fourier transform of z. The

target location, l = (p1, p2), predicted using the CF is the position where the value of the

corresponding filter response map (of size W ×H) is maximized and is given by

l = (p1, p2) = argmax
x′,y′

r(x′, y′), (2.5)

where p1 and p2 are the x and y-axis coordinates respectively. Following this calculation,

at each new frame these locations are used to predict the target bounding box. This is

followed by target scale estimation.

After predicting the target location and scale in the current frame, the correlation

filters are updated to adapt to target appearance changes and facilitate accurate target

localization in the next frame.
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2.2 Correlation Filter based Object Tracking

Visual Object Tracking (VOT) is an active area of research in the field of computer

vision. Tracking by detection is a popular way to achieve this task, where a binary clas-

sifier is learned to discriminate between the target (foreground) and background. These

classifiers are usually learned online and updated incrementally. Unfortunately, such

trackers are prone to model drift due to sampling ambiguity problems during updates.

Although many improvements are suggested to overcome this issue (Babenko et al.,

2011; Gao et al., 2014; Grabner et al., 2008; Kalal et al., 2012; Zhang et al., 2014a;

Hare et al., 2016; Li et al., 2014), the most popular approach is the Correlation Fil-

ter (CF) (Naresh Boddeti et al., 2013). It alleviates sampling ambiguity by regressing

the training samples to Gaussian labels enabling soft assignment. When learned in the

Fourier domain, correlation filters are also computationally efficient.

Correlation filters have been widely explored to achieve fast visual tracking (Bolme

et al., 2010; Henriques et al., 2012, 2015; Danelljan et al., 2016d,a; Zhang and Sugan-

than, 2017; Wang et al., 2018a) with several advances. In Danelljan et al. (2016d), a

generic framework is proposed for learning discriminative convolution operators in the

continuous spatial domain. This approach enables the integration of multi-resolution

feature maps and is also capable of accurate sub-pixel localization. An improvement

over Danelljan et al. (2016d) is proposed in Danelljan et al. (2016a), which revisits

the core discriminative correlation filter formulation to overcome issues of over-fitting

and computational complexity. They introduce a factorized convolution operator to re-

duce the number of parameters in the model to drastically reduce the memory and time

complexity of learning. These trackers (Danelljan et al., 2016d,a) are also among the

top 5 ranked trackers on the VOT-2017 challenge Kristan2017a. In Bertinetto et al.

(2016a) (staple), a simple combination of a correlation filter (using Histogram of Ori-

ented Gradients (HOG) features) and a global color histogram is proposed, that offers

tracking speed of up to 80 Frames Per Second (FPS). Other recent advances include

clustering based ensemble tracking with a multi-scale kernelized correlation filter as

proposed in Zhu et al. (2016), scale estimation as proposed in Danelljan et al. (2014a),

spatio-temporal context learning proposed in Zhang et al. (2014b) and kernelized corre-

lation filters proposed by Henriques et al. (2012), followed by its extension from single

channel input features to multiple channels in Henriques et al. (2015) and Danelljan
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et al. (2014b). However, these trackers use only one correlation filter learned over hand

crafted features such as color attributes (Danelljan et al., 2014b) and HOG (Dalal and

Triggs, 2005). Such trackers do not maintain accurate object tracking during challenges

like occlusions, object deformation and motion blur. This is because during challenging

sequences, hand crafted features are insufficient for modelling the object’s appearance,

as illustrated in Figure 2.2. To address this issue, researchers have been motivated to ex-

plore deep learning for tracking, which has shown tremendous improvement compared

to other classes of tracker (Li et al., 2016; Qian et al., 2018; Fan et al., 2010; Wang and

Yeung, 2013; Hong et al., 2015; Song et al., 2018).

Besides the above methods, many CF based trackers focus on modeling channel im-

portance as each feature channel can make a dynamic contribution during each track-

ing step. However, these channel importance based CF trackers do not employ spatial

(Danelljan et al., 2015a,b, 2016c; Kiani Galoogahi et al., 2015) or temporal (Dai et al.,

2019; Li et al., 2018c) regularization. To combat the shortcomings of the existing reg-

ularization based (Dai et al., 2019; Li et al., 2018c) and channel importance based (Li

et al., 2018a; Sun et al., 2018a; Zhou et al., 2016) CF trackers, we investigate various

classes of CF based trackers. A discussion of the evolution of correlation filter based

tracking is provided in the subsequent sections.
Input Image HOG Features Deep Features

(a) (b) (c)

Figure 2.2: Comparison of HOG features with features extracted using a pretrained
Convolutional Neural Network: (a) Input image; (b) A HOG feature chan-
nel corresponding to (a); (c) A deep feature channel corresponding to (a)

2.2.1 Deep Feature based Correlation Filter Trackers

To improve their discriminative ability, CFs have evolved from using HOG (Dalal and

Triggs, 2005) features and color names (Danelljan et al., 2014b) to using deep Con-

volutional Neural Network (CNN) features (Ma et al., 2015a; Qi et al., 2016). Ma

et al. (2015a) learns three CFs and Qi et al. (2016) learns six CFs over CNN features

extracted from different convolutional layers of a VGG-Net (Simonyan and Zisserman,
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2014). The target locations, predicted using each CF, are combined to compute one final

location. Many part based (Liu et al., 2016, 2015) and scale adaptive (Danelljan et al.,

2016b; Li et al., 2017a; Li and Zhu, 2014; Danelljan et al., 2014a) trackers have been

proposed to handle challenges such as occlusion and size change. To further improve

the tracking accuracy and robustness, particle filter based approaches (Zuo et al., 2018)

and continuous convolution filters that combine the feature maps with different spatial

resolutions have also been proposed (Danelljan et al., 2016d). Sui et al. (2018) intro-

duces a CF based tracker that adopts joint learning to bridge the gap between circulant

filtering and classical filtering approaches to enhance the discrimination performance

of the filter.

Inspired by Qi et al. (2016) and Ma et al. (2015a), who both propose CNN based

trackers that incorporate CFs, we investigate a deep learning based tracker that learns

multiple CFs over multi-dimensional features extracted from the convolutional layers

of VGG-Net (Simonyan and Zisserman, 2014). In addition to this, we introduce an

appearance model pool to avoid faulty updates to the CFs and Felzenszwalb’s HOG

(FHOG) (Felzenszwalb et al., 2010) based CFs that estimate target scale and rotation

in each frame. We also use an Long Short Term Memory (LSTM) network as it mod-

els the temporal variations and retains information of the past appearance. Since the

appearance of the object being tracked varies with time, an LSTM can inherently take

these variations into account.

2.2.2 Correlation Filters with Spatio-Temporal Constraints

Although computationally efficient, CFs learned in the frequency domain are impacted

by boundary effects that plague the circularly shifted training patches. This leads to

sub-optimal training. Also, the learning is done solely using the shifted patches of the

target, and background information is completely overlooked in the learning process.

This results in an over-fitted CF that is prone to poor discrimination when encountering

background clutter and occlusion (Danelljan et al., 2015b). Several methods have been

proposed to alleviate the aforementioned issues. Danelljan et al. (2015b) introduces a

weighted regularization constraint in the CF formulation to penalize filter coefficients

near the boundary. BACF (Kiani Galoogahi et al., 2017) proposes generating real world

positive and negative training samples by directly multiplying the filter with a binary
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matrix. This results in improving the discriminative ability of the filter.

The above approaches have been used as a basis for many subsequent CF based

trackers (Danelljan et al., 2017a, 2016d; Li et al., 2018c; Sun et al., 2018a). Many

other works propose different spatial constraints and use spatially larger training sam-

ples compared to the trained filter (Danelljan et al., 2015a,b, 2016c; Kiani Galoogahi

et al., 2015). These approaches suppress the background information during training

(Danelljan et al., 2015b) and have demonstrated a significant reduction in boundary

effects (Kiani Galoogahi et al., 2015). Further advancements over SRDCF (Danelljan

et al., 2015b) are made in STRCF (Li et al., 2018c) and ASRCF (Dai et al., 2019). Li

et al. (2018c) employs spatio-temporal constraints that utilize CFs learned in the previ-

ous frame to learn the CFs in the current frame. Dai et al. (2019) introduces an object

aware spatial regularization that attempts to learn spatial weights that are similar to the

reference spatial weights. The regularization terms in Li et al. (2018c) and Dai et al.

(2019) make use of a reference to learn the CFs and spatial weights. However, the target

appearance varies with every frame. Therefore, the spatial weights or CFs learned in

consecutive frames should be constrained to be similar while still adapting to variations.

To combat the shortcomings of the above spatio-temporal regularization based (Dai

et al., 2019; Li et al., 2018c) CF trackers, we investigate an object aware sparse spatial

regularization and a sparse temporal regularization that also incorporates an adaptive

channel importance estimation mechanism that assigns importance weights to each fea-

ture channel.

2.2.3 Correlation Filters with Channel and Graph Regularization

Training the CFs with multi-channel features has obvious advantages, however each

feature channel may make a dynamic contribution during each tracking step. This is

because the target in each sequence is different and its appearance varies throughout the

sequence. Each feature channel encodes a different attribute of the target, and feature

channels that encode useful visual cues may contribute to efficient tracking while chan-

nels that encode less useful information may degrade CF learning, eventually resulting

in tracker drift.

Recently, Xu et al. (2019a) proposed an adaptive spatio-temporal-channel filter

learning method that operates on a low dimensional manifold, with enhanced inter-
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pretability of the learned model. This is achieved by reformulating the appearance

learning model to incorporate group-sparse regularization and a temporal smoothness

constraint. Li et al. (2018a) introduced a feature integration method for correlation fil-

ters, where the filters and importance maps are jointly learned in each frame. In this

approach, an importance map for each feature is shared by all channels to avoid over-

fitting. Sun et al. (2018a) suggests that a CF trained for tracking should consider dis-

crimination as well as reliability information to avoid model degradation, while the prior

literature focuses only on the former. They propose a CF-based optimization method

that jointly models discrimination and reliability information. Zhou et al. (2016) pro-

pose to learn a discriminative and robust dictionary that preserves the locality and simi-

larity of the input to obtain more accurate visual tracking. This is obtained by explicitly

considering the local geometric structure of the data, and results in the representation

varying smoothly along the geodesics of the data manifold.

Besides these, graph theory (Liu et al., 2019, 2020) has shown excellent perfor-

mance in problems such as sparse feature extraction and dimensionality reduction (Lai

et al., 2015). Du et al. (2019) proposes a generic formulation that jointly learns the CFs

and the channel reliability. To ensure high efficiency, the authors prove the upper bound

of the objective function and estimate the channel weights efficiently by reformulating

the objective function with it’s upper bound. Li et al. (2018c) introduces a formula-

tion that learns a robust multi-spectral feature representation for visual tracking. This

formulation is driven by Alternating Direction Method of Multipliers (ADMM) and

collaboratively uses multi-spectral information to learn an adaptive graph according to

the intrinsic relationship between image patches. This allows the method to inherit ad-

vantages of both local and global graph models. However, these works do not learn the

channel weights while preserving the similarity of importance between different feature

channels. Consequently, similar feature channels are assigned dissimilar weights and

feature channels with poor target representation are assigned higher weights, leading to

tracking failure.

To learn adaptive weights for each feature channel and preserve the similarity of

importance between feature channels, we use channel regularization and graph regular-

ization, respectively. The source of inspiration for graph regularization is Zhou et al.

(2016). The channel regularization is motivated by ridge regression wherein feature

selection can be performed. In a similar way, we formulate our framework in a manner
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in which channels important for tracking can be selected. Different works (Xu et al.,

2019a; Li et al., 2018a; Sun et al., 2018a; Zhou et al., 2016) have explored this idea

in different manners. Recently, in an independent work (Lu et al., 2019b), a sparse

regularizer was adopted to assign sparse weights to the channels. Though our channel

regularization is similar in spirit, the overall formulation as channel-graph regulariza-

tion is completely different from Lu et al. (2019b). The authors in Lu et al. (2019b)

propose an L1 channel regularization and use Accelerated Proximal Gradient (Tibshi-

rani, 1996) to learn a sparse weight vector that assigns weights to each feature channel.

The useful feature channels are assigned non-zero weights and the redundant informa-

tion is suppressed by assigning zero weights to remaining channels. We employ L2

channel regularization and channel-graph regularization to learn non-zero weight for

each feature channel, while preserving the similarity of importance between different

feature channels.

2.2.4 Correlation Filter Based Trackers with Kernel Trick

MOSSE (Bolme et al., 2010) is one of the earliest trackers that learns a CF in the

frequency domain using a few samples. It uses a single-channel gray-scale image to

train the CF and offers impressive tracking speed. The limitations of MOSSE (Bolme

et al., 2010) have been addressed by many tracking algorithms proposed afterwards.

To list a few, a multi-channel version of MOSSE (Bolme et al., 2010) is proposed in

Kiani Galoogahi et al. (2013). Henriques et al. (2012) proposed the use of high dimen-

sional features with kernels. This is further improved by using HOG features in the

Kernelized Correlation Filter (KCF) (Henriques et al., 2014). To improve the discrimi-

native ability of the KCFs, Danelljan et al. (2014b) use color attributes to learn adaptive

CFs for tracking and maps the multi-channel features into a Gaussian kernel space.

Scale adaptive KCF trackers are introduced in Li and Zhu (2014) and Bibi and Ghanem

(2015), and an ensemble of KCF tracker is proposed in Uzkent and Seo (2018). A ker-

nel based structured output correlation tracker is proposed in Hare et al. (2015). Zhang

et al. (2016) introduces an output constraint transfer for the KCF. Tang and Feng (2015)

extends KCF (Henriques et al., 2014) to multiple kernels that enhance the model’s dis-

tinguishability with the help of complementary features. A further improvement to this

work is proposed in Tang et al. (2018) by taking advantage of the discriminative power

spectrums of different features.
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Although computationally efficient, KCF based trackers are not derived with spatial

and temporal constraints as the constraints may not allow the straight forward use of

the circulant matrix structure (Huang et al., 2020). To this end, Huang et al. (2020)

introduces a multi-kernel CF with spatial constraints that handles occlusion efficiently.

Inspired by the above trackers, we derive a Temporally Regularized Multi-Kernel CF for

tracking. The temporal constraint helps in obtaining more reliable filter coefficients for

improved tracking and ensures that the tracker adapts to large appearance variations,

preventing drift. Despite the constraints, we can kernelize and exploit the circulant

matrix properties to speed up computations. We also investigate advantages of using

multiple kernels in the proposed formulation as each kernel encodes a different attribute

of the target.

2.3 Baselines Trackers

Section 2.2 and it’s subsections provided an elaborate discussion about various classes

of the Correlation Filter (CF) trackers along with their shortcomings and the improve-

ments proposed in this thesis. To implement and evaluate the proposed improvements,

we used various existing CF based trackers as our baseline. In this section, we pro-

vide an exhaustive list of all the baseline trackers used in this thesis, along with their

numerical formulations.

BACF

The Background Aware Correlation Filter Tracker (BACF) (Kiani Galoogahi et al.,

2017) formulation can be given by,

E(h) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ (PThk)

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22, (2.6)

where K is the total number of feature channels, y ∈ RT×1 is the desired Gaussian

shaped CF response. xk ∈ RT×1 is the vectorized feature and hk ∈ RT×1 is the vec-

torized filter for the kth channel. λ is the regularization parameter and ∗ is the spatial

correlation operator. H = [h1,h2, ...,hK ] is the matrix of filters from all K channels,

P ∈ RT×T represents a binary matrix that crops out the foreground region.
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STRCF

The Spatial-Temporal Regularized Correlation Filters (STRCF) (Li et al., 2018c) for-

mulation can be given by,

E(h,w) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ hk

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

‖w � hk‖22 +
θ

2

∥∥h(t) − h(t−1)∥∥2
2
, (2.7)

where θ is the regularization parameter, w are the spatial weights, θ
2

∥∥h(t) − h(t−1)
∥∥2
2

is

the temporal regularization term, 1
2

∑K
k=1 ‖w � hk‖22 is the spatial regularizer. h(t) and

h(t−1) are the CFs used in the tth and (t− 1)th frames respectively.

ASRCF

The Adaptive Spatially-Regularized Correlation Filters (ASRCF) (Dai et al., 2019) for-

mulation can be given by,

E(h,w) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ (PThk)

∥∥∥∥∥
2

2

+
λ1
2

K∑
k=1

‖w � hk‖22 +
λ2
2
‖w −wr‖

2

2
, (2.8)

where λ1 and λ2 are the regularization parameters, λ1
2

∑K
k=1 ‖w � hk‖22 is the spatial

regularizer. wr is the reference spatial weight and w is spatial weight to be learned.

KCF

The Kernelized Correlation Filters (KCF) (Henriques et al., 2014) formulation is given

by,

E(h) =
1

2

T∑
m=1

∥∥ym − h>xm
∥∥2
2

+
λ

2

K∑
k=1

‖h‖22, (2.9)

where xm ∈ RT×1 is the sample obtained after m cyclic shifts of x, ym is the mth

element of y, and λ is the regularization parameter. The filter h is formulated as the

linear combination of the training samples, h =
∑T

m=1ψiφ(xm). Here φ(.) is a non-

linear transformation. Using the Kernel Trick [16], we obtain,

ψ = (Ω + λI)−1y (2.10)
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where the vector ψ ∈ RT×1 represents the solution of filter h, Ω is the kernel matrix

with its elements defined as Ω(m,n) = φ(xm)>φ(xn). Since Ω is a circulant matrix,

it can be calculated efficiently in the Fourier Domain (Henriques et al., 2014). The

objective function in Equation 2.10 can be equivalently expressed as,

ψ = F−1
(

ŷ
Ω̂1 + λI

)
, (2.11)

whereˆrepresents the Discrete Fourier Transform (DFT), the vector ψ contains all ψm

coefficients and Ω1 represents the first row of Ω. F−1 denotes the inverse discrete

Fourier transfrom. During tracking, the target location for input z in the current frame t

is determined using,

r̂ = (conj ˆ(Ωzxmodel
)� ψ̂), (2.12)

where r̂ is the DFT of CF response, xmodel is the learned target appearance model,

� represents element-wise multiplication, conj indicates the complex-conjugate, and

Ωzxmodel is the first row of the kernel matrix formed using z and xmodel. The location

at which the response map, r̂, shows the maximum value is used to estimate the target

location. The model at frame t is updated using,

x(t)
model = (1− η)x(t−1)

model + ηx(t), (2.13)

ψ̂
(t)

= (1− η)ψ̂
(t−1)
− ηψ̂, (2.14)

where η denotes the online adaptation rate.

2.4 Conclusion

In this chapter, we summarize various classes of Correlation Filter (CF) based trackers

that successfully employ spatio-temporal regularizations and kernel tricks to overcome

the shortcoming of the classical CF formulation. But these formulations can be further

improved by investigating the techniques to avoid the faulty updates of the CFs and

modelling the spatial and temporal variations along with the channel importance. This

motivated us to explore an appearance model based CF formulation that prevents faulty

filter updates and models the temporal variations using an Long Short Term Memory
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(LSTM). We further investigate a channel graph regularization based CF tracker formu-

lation that computes the contribution of different feature channels in tracking besides

modelling the spatio-temporal variations. We also investigate temporally regularized

CF tracker with kernel tricks, which was missing in the existing literature. Though the

scope of this thesis is limited to CF based single object tracking, interested readers may

wish to refer to Jr. and Belangour (2021) and Marvasti-Zadeh et al. (2021) for overview

of end-to-end deep learning based tracking (Jr. and Belangour, 2021) and multi object

tracking (Marvasti-Zadeh et al., 2021).
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CHAPTER 3

Tracker Evaluation Protocols

3.1 Introduction

Assessing the performance of a tracking algorithm with quantitative metrics is a chal-

lenging task. Many factors such as tracking speed, position estimation accuracy, ro-

bustness to a certain type of appearance change, and ease of use can be considered.

Even in a single frame for which the tracking output and the groundtruth object state is

available, there are several metrics to measure accuracy. When an algorithm loses track

of the target object, it may resume tracking after failure using a re-detection module. If

the re-detection module is absent, the tracker may fortuitously locate the target object

again when the target reappears in the vicinity of the tracker’s bounding box. In such

case, simply observing the target bounding box location towards the end of an image

sequence may not be fair since a tracker may have lost the target in the beginning but

could have tracked the target successfully if it were initialized in a object state or frame.

Practically, a fair evaluation metric should provide the average performance of a

tracker by considering its performance over the complete image sequence. Besides

quantitative evaluation metrics, challenging tracking sequences are required to evaluate

whether tracking algorithms perform robustly under different conditions. To accom-

plish this, we evaluate the trackers using several quantitative metrics on various publicly

available tracking datasets that includes multiple visual challenges. In this chapter, we

discuss the performance measures and tracking datasets that are used for evaluating the

tracking algorithms in this thesis.

3.2 Evaluation using OTB Toolkit

The Object Tracking Benchmark (OTB) (Wu et al., 2015) contains 100 fully annotated

tracking sequences. To better analyse the strength and the weakness of the tracking

algorithms, all the sequences are categorized according to 11 attributes: Illumination



Deformation Illumination Variation

Sequence 1

Sequence 2

Motion Blur Background Clutter

Sequence 3

Occlusion Out-Of-View

Sequence 4

Out-Of-Plane Rotation In-Plane Rotation
Sequence 5

Appearance Similarity
Sequence 6

Scale Variation

Figure 3.1: Visual Object Tracking Sequences Illustrating Different Challenges

Variation (IV), Occlusion (OCC), Size Variation (SV), Motion Change (MC), Motion

Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR), Out-of-Plane Rotation (OPR),

Deformation (DEF), Object Out-of-View (OV), Background Clutter (BC), and Low

Resolution (LR). The definition of each attribute is provided in Table 3.1 and the pic-

torial representation is provided in Figure 3.1. To evaluate the trackers on OTB (Wu

et al., 2015), we use the following metrics.

3.2.1 Precision plot

The Center Location Error (CLE) computes the Euclidean distance between the cen-

ter location of the tracked target and the manually labeled groundtruth position in a

frame. A precision plot is used to records the average CLE for all the frames in a se-

quence/dataset. When a tracking algorithm loses track of a target object, the output

location can be random, and thus, the average error value does not measure the tracking

performance correctly [5]. Therefore, the percentage of frames in which the estimated

locations are within a given threshold distance of the groundtruth positions is a better

metric to measure tracking performance [5], [34]. In this thesis, we measure the preci-

sion rate as the value of precision plot at a threshold distance of 20 pixels [5]. However,

the CLE only measures the pixel distance and does not reflect the size and scale of the

target object.
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Table 3.1: List of Visual Challenges in Publicly Available Tracking Datasets

Attributes Abbreviation Attribute Description
Illumination Variation IV Significant illumination change in the target region

Scale Variation SV
The ratio of the bounding boxes of the first frame

and the current frame changes between the range [0.5, 2]
Occlusion OCC The target is partially (POC) or fully occluded (FOC)

Deformation DEF Shape change of the target object
Motion Blur MB The target region is blurred due to the target or camera motion
Fast Motion FM The motion of the target in consecutive frames is larger than 20 pixels

In-Plane Rotation IPR Target rotation in the image plane
Out-of-Plane Rotation OPR Target rotation out of the image plane

Out-of-View OV Target is fully or partially out of the frame
Background Clutter BC The background near the target has texture or color similar to to the target

Low Resolution LR The number of pixels inside the groundtruth bounding box are less than 400
Viewpoint Change VC Change in the point from where the target is being viewed

Aspect Ratio Change ARC The ratio of bounding box aspect ratio is outside the range [0.5, 2]

3.2.2 Success plot

Another commonly used evaluation metric is the Intersection-Over-Union (IOU ) ratio

between the tracked and the groundtruth bounding box [21]. At any frame t, given a

tracked bounding box, bt, and the groundtruth bounding box, b′t, of a target object, the

IOU is defined as IOU = |bt∩b′t|
|bt∪b′t|

, where |.| denotes the number of pixels in a region, ∩

represents the intersection operator, and ∪ represents the union operator. The average

IOU can be used as a performance measure. In addition, the success rate is computed as

the ratio of the number of successfully tracked frames (i.e., IOU between groundtruth

and the tracked bounding box larger than a pre-defined threshold, typically to = 0.5) to

the total number of frames in a sequence. As the threshold varies between 0 and 1, the

success rate changes and the resultant curve is presented as success plot in this work.

3.3 Evaluation using the TC128 Toolkit

The Temple Color-128 (TC128) dataset (Liang et al., 2015) contains 128 color se-

quences, 50 of which are taken from previous studies , and 78 are collected for TC128.

The color sequences collected from the previous studies are insufficient for a thorough

evaluation of color trackers. Therefore, 78 new color sequences are collected from

the internet to increase the diversity and difficulty. Each sequence from TC128 (Liang

et al., 2015) contains the annotation for the groundtruth bounding box. In addition to the

groundtruth bounding boxes, each sequence is also annotated by its challenging factors.

Similar to OTB (Wu et al., 2015), TC128 (Liang et al., 2015) offers 11 visual chal-

lenges including Illumination Variation (IV), Scale Variation (SV), Occlusion (OCC),
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Deformation (DEF), Motion Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR),

Out-of-Plane Rotation (OPR), Out-of-View (OV), Background Clutters (BC), and Low

Resolution (LR). The definition for each attribute is provided in Table 3.1.

Following the protocol in OTB (Wu et al., 2015), the performance evaluation over

TC128 (Liang et al., 2015) is done using the average success rate and precision rate,

which are derived from the success plot and precision plot, respectively.

3.4 Evaluation using the LaSOT Toolkit

The Large-scale Single Object Tracking Benchmark (LaSOT) (Fan et al., 2019) consists

of 85 object classes, which are divided into two parts. The first part contains 1,400

sequences from 70 object categories, most of which are chosen from the 1,000 classes

from ImageNet [22]. The other portion comprises 150 sequences for the remaining 15

object classes. These 15 classes are carefully chosen to lie outside the object categories

in ImageNet [22] and are intended to be non-overlapping with the 70 categories from

the first pprtion. In order to analyze tracker performance, each sequence in LaSOT (Fan

et al., 2019) is annotated with the attributes listed in Table 3.1.

The evaluation on the LaSOT dataset is performed using the 150 test videos. We

measure the tracker performance in terms of precision rate and success rate (as per OTB

(Wu et al., 2015) and TC128 (Liang et al., 2015)). Since precision does not take object

scale into consideration, an additional strategy to normalize the precision according to

scale is adopted [67]. The resultant normalized precision ensures consistency of the

evaluation across different target scales.

3.5 Evaluation on UAV123 Dataset

The Unmanned Aerial Vehicle-123 (UAV123) dataset (Mueller et al., 2016) contains

a total of 123 video sequences and more than 110K frames. In UAV123 (Mueller

et al., 2016), 103 sequences are collected using an off-the-shelf professional-grade UAV

(DJI S1000) that captures different objects from altitudes varying between 5-25 meters.

These sequences were recorded at frame rates between 30 and 96 Frames Per Second

(FPS) and resolutions between 720p and 4K. A set of 12 sequences is captured from
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a boardcam (with no image stabilization) mounted on a small low-cost UAV following

other UAVs. These sequences are of lower quality and resolution and contain a reason-

able amount of noise due to limited video transmission bandwidth. All these sequences

are annotated with upright bounding boxes at 30 FPS. Another set of 8 synthetic se-

quences is captured by UAV simulator that automatically provides annotations at 30

FPS and a full object mask/segmentation.

The evaluation over the UAV123 dataset is done using the success plot, precision

plot, success rate and precision rate, as per OTB (Wu et al., 2015) and TC128 (Liang

et al., 2015).

3.6 Evaluation using GOT-10k Toolkit

The GOT-10k dataset (Huang et al., 2019a) contains 420 test videos with 84 classes of

moving objects and 31 forms of motion. For this dataset, we employ simple metrics

with clear meaning for the evaluation of trackers. We choose the widely used success

rate and Area Under Curve (AUC) of the success plot, which is the average of the

success rates corresponding to the sampled overlap thresholds.

3.7 Evaluation on the Tracking Dataset

The Tracking Dataset, introduced by Tomas Vojir (Vojir et al., 2014), consists of 77

sequences collected from the published literature (Kalal et al., 2012; Babenko et al.,

2011). It includes sequences from the OTB Wu et al. (2015) and various VOT (Kris-

tan et al., 2017b, 2019) datasets. Hence, the Tracking Dataset is full of challenging

sequences at a scale similar to that of OTB and VOT. Sequences in this dataset vary

in length from dozens of frames to thousands and contain diverse object types includ-

ing articulated and rigid objects. It has different scene settings including static/moving

cameras, indoor/outdoor and varied lightning conditions.

To perform evaluations over this dataset, we use success rate, precision rate, aver-

age IOU and average CLE for challenges including Camera Motion (CM), Occlusion

(OCC), Illumination Variation (IV), Low Resolution (LR), Size Change (SC) and Mo-

tion Changes (MC).
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3.8 Evaluation using the VOT-Toolkit

To evaluate a tracker, the VOT toolkit (Kristan et al., 2017b, 2019) applies a reset-based

methodology, where the performance is measured in terms of Accuracy and Robustness

(Čehovin et al., 2016b). In the reset-based methodology, a failure is detected whenever

a tracker predicts a bounding box with zero overlap with the ground truth. As a result,

the tracker is re-initialized five frames after the failure. The average overlap between

the groundtruth and the tracked bounding boxes during successful tracking periods is

captured by the Accuracy measure, and the number of times the tracker loses the target

(fails) during tracking determines the Robustness. To reduce the bias due to resets, the

ten frames directly after re-initialization are ignored in the accuracy measure (Kristan

et al., 2016b). Another evaluation measure is Expected Average Overlap (EAO), which

estimates the average overlap a tracker is expected to attain on a large collection of

short term sequences with the same visual properties in the given dataset. This measure

is used to address the increased variance and bias of the average overlap measure (Wu

et al., 2015), when evaluating over variable sequence lengths. The results are obtained

for the baseline (reset based) and unsupervised (no-reset) experiments (Kristan et al.,

2017b).
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CHAPTER 4

LSTM-AMP: LSTM Guided Ensemble Correlation

Filter Tracking with Appearance Model Pool

4.1 Introduction

In this chapter, we propose a deep learning based tracker that predicts the target location

based on multi-layer convolutional feature aggregation, scale and rotation estimation,

and an appearance model pool. Compared to existing trackers that use the output of a

single Convolutional Neural Network (CNN) layer for target location estimation, multi-

layer trackers perform better (Qi et al., 2016; Ma et al., 2015a). This is because deep

layers in a CNN capture only category-level semantic information, which is best suited

to classification tasks. Tracking requires a feature representation that also contains

spatial information for accurate target localization.
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Figure 4.1: Block Diagram of the LSTM-AMP: To calculate target locations l1, l2 and
l3, the features of conv3-4, conv4-4 and conv5-4 layers act as an input to
Correlation Filters (CFs) 1, 2 and 3 respectively. To calculate the weight of
l1, l2 and l3, an LSTM network is used, followed by target scale and rotation
estimation. Finally, location CFs are updated using appearance model pool

Therefore, we combine activations from deep layers with those of earlier layers (that

capture more spatial information), obtaining a more reliable prediction. However, the



prediction accuracy of each layer may vary from frame to frame and combining all the

predictions with equal weight may result in inaccurate tracking. Thus, a reliable mech-

anism that can compute the contribution of each layer when estimating the target’s final

location is required. To this end, we use a Long Short Term Memory (LSTM) net-

work that computes the prediction accuracy of each layer, and which is used to assign

a weight to each layer. The target’s final location is predicted as the weighted sum of

predictions, using the above mentioned weights from different layers. However, dur-

ing situations like illumination variation, occlusion or appearance change, ambiguous

training samples may lead to a poor Correlation Filter (CF) update.
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Figure 4.2: Target Location Prediction using the Correlation Filter and LSTM

This may result in tracking failure during longer sequences. To overcome this, it is

imperative to introduce a corrective measure that can prevent faulty updates of the CF.

Thus, we introduce an appearance model pool that stores the appearances of the object

that matches most with the reference appearance and provides the CFs with the best

update template during challenging scenarios. This helps prevent tracker drifting during

occlusion and other challenges, resulting in successful long term tracking. Further,
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Figure 4.3: Using LSTM for Estimating Foreground (fg%) and Background (bg%) Per-
centages in the Target Bounding Box. Here, we compute fg and bg present
in the magenta bounding box centered at position lu, predicted using con-
volutional layer u

during the course of tracking, the object can undergo scale and rotation variations. In

order to address these variations, we use a strategy based on Felzenszwalb’s Histogram

of Oriented Gradients (FHOG) features (Felzenszwalb et al., 2010), that estimates target

scale and rotation in each frame.

To summarize, our major technical contributions in this chapter are as follows:

• We introduce an LSTM network that adaptively learns the weights to combine
the target location predicted by each CF. This helps in improving the aggregation
of predictions from different layers.

• We introduce an appearance model based correction module that avoids faulty
updates to the CFs. This promotes efficient long term tracking.

• To further improve the performance, an FHOG feature (Felzenszwalb et al., 2010)
based CF is learned to estimate the target rotation in each frame.
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Table 4.1: Overlap Success (OS) rate and Distance Precision (DP) rate calculated over
the VOT2016 and VOT2017 datasets, for entire dataset and for selected
videos. "Selected Videos" refers to videos with object size of between
200 × 200 and 250 × 250 pixels. The best and second best performance
is shown in red and green color, respectively

.
For VOT2016 Dataset For VOT2017 Dataset

On Entire Dataset On Selected Videos On Entire Dataset On Selected Videos
OS (%) DP (%) OS (%) DP (%) OS (%) DP (%) OS (%) DP (%)

LSTM1-FC1 35.20 50.40 39.40 47.20 29.60 43.60 24.80 31.90
LSTM1-FC2 34.90 50.70 40.40 51.00 28.60 42.50 24.80 32.40
LSTM4-FC1 32.80 46.90 39.80 46.50 27.30 40.40 25.00 31.70
LSTM4-FC2 32.20 45.90 40.00 47.10 26.50 39.30 25.10 32.20
LSTM8-FC1 32.40 46.90 40.00 47.10 26.80 40.40 25.20 32.20
LSTM8-FC2 34.00 48.70 39.80 47.20 28.10 41.90 25.20 32.30

LSTM1-PCA-FC1 32.30 45.50 41.00 47.10 26.50 39.00 25.90 32.90
LSTM1-PCA-FC2 33.10 48.40 39.50 45.90 26.70 40.20 24.80 31.20
LSTM4-PCA-FC1 32.30 46.80 39.90 47.10 26.80 40.10 25.10 32.30
LSTM4-PCA-FC2 32.00 45.30 40.30 47.30 26.40 39.00 25.40 32.40
LSTM8-PCA-FC1 33.50 49.10 40.10 47.10 27.20 41.10 25.20 32.20
LSTM8-PCA-FC2 31.30 44.80 39.00 45.90 25.60 38.10 24.30 31.20

LSTM1-HOG 32.90 48.10 39.40 45.90 27.6 41.7 24.80 31.40
LSTM4-HOG 32.50 46.90 40.00 47.10 26.8 40.4 25.20 32.20

LSTM8-HOG (Proposed) 36.50 53.70 39.90 50.30 28.60 42.80 24.80 31.40
LSTM12-HOG 32.60 46.70 40.00 47.20 27.00 40.20 25.10 32.20

• We perform an extensive quantitative and qualitative analysis of our tracker and
show competitive results on Object Tracking Benchmark (OTB100) (Wu et al.,
2015), Visual Object Tracking (VOT) - 2016 Dataset (Kristan et al., 2016c), VOT-
2017 Dataset (Kristan et al., 2017a), Tracking Dataset (Vojir et al., 2014) and
UAV123 Dataset (Mueller et al., 2016). We also conduct an ablation study to
investigate the contribution of various components of our tracker in the tracking
performance, demonstrating the benefits of the proposed approach.

The rest of this chapter is structured as follows. Section 4.2 describes the proposed

tracker with each module in Figure 4.1 explained in detail. Section 4.3 shows evaluation

of the LSTM component. Section 4.4 shows the experimental results obtained by testing

the tracker on standard video datasets. It also shows the comparative analysis of the

tracker with other recent trackers. Section 4.5 presents an ablation study that shows

the contribution of each module to the overall tracker performance and Section 4.6

concludes the chapter.

4.2 LSTM guided ensemble tracking with appearance

model pool

We propose a Convolutional Neural Network (CNN) feature based tracker that, in paral-

lel, learns multiple Correlation Filters (CFs) over CNN features extracted from the hier-

31



Figure 4.4: Target Scale Prediction using Scale Correlation Filter: Output scaling factor
(scale) is equal to value where filter response is maximum (here scale =
0.98039)

Figure 4.5: Foreground and background patch extraction to train the LSTM

archical convolutional layers of a VGG-Net (Simonyan and Zisserman, 2014). Each CF

response contributes to estimating the position of the target in a frame. In addition, to

estimate the target’s scale and rotation, CFs are learned over Felzenszwalb’s Histogram

of Oriented Gradients (FHOG) features (Felzenszwalb et al., 2010). For target locali-

sation, robust and rich features are required to efficiently handle multiple challenges in

a sequence. Therefore, VGG features are used (Simonyan and Zisserman, 2014). How-

ever, once the target is localised FHOG features are sufficient for scale and rotation

estimation (Ma et al., 2015a; Danelljan et al., 2014a, 2017b), and their use helps re-

duce computational costs. Finally, an appearance model pool based correction module

is added to prevent faulty updates to the CFs. The block diagram in Figure 4.1 shows

how each component of the proposed tracker is combined to form an accurate ensemble

tracker. The function of each component is subsequently explained in the sub-sections

below.
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Figure 4.6: Estimating the weights of predictions corresponding to layer Conv5-4 (col-
umn 1), Conv4-4 (column 2) and Conv3-4 (column 3). Row 1 is frame #5
and Row 2 is frame #26 from Sequence ’bag’. Row 3 is frame #3 and Row
2 is frame #27 from Sequence ’bmx’.

4.2.1 Feature Representation for Target Appearance

As suggested by prior literature, trackers based on hand crafted features such as HOG

(Dalal and Triggs, 2005), SIFT (Lowe, 1999), and color histogram (Tian et al., 2009;

Adam et al., 2006) often fail in sequences with multiple challenges. This is because

such features are inadequate to model the rich appearance of the target. Therefore,

to generate a feature representation that can sustain tracking during multiple simul-

taneous challenging conditions, a robust and rich feature representation of the target

appearance is desirable. To resolve this, the majority of recent trackers are based on

features extracted using CNNs. Amongst a number of CNNs like AlexNet (Krizhevsky

et al., 2012), R-CNN (Girshick et al., 2014), CaffeNet (Jia et al., 2014), and VGG-Net

(Simonyan and Zisserman, 2014) (that are trained for image classification and object
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Figure 4.7: Failure case in computing the weights of predictions corresponding to layer
Conv5-4 (column 1), Conv4-4 (column 2) and Conv3-4 (column 3). Row 1
is frame #14 of Sequence ’bag’ and Row 2 is frame #33 of Sequence ’bmx’

recognition tasks), VGG-Net is the most popular network used by object tracking ap-

proaches to generate features representing the target appearance. This chapter also uses

VGG-Net, whose input at frame t is the image patch cropped by a bounding box that is

twice the size of the bounding box predicted at frame t− 1, the center of both the boxes

being the same (Qi et al., 2016). Before feeding the image to the network, it is resized

to 224× 224.

4.2.2 Correlation Filters

A CF is trained corresponding to each convolutional layer, u, where u ∈ {1, 2, .., n}

and n is the number of layers used for predicting the target’s location. For an input

image patch, each convolutional layer gives a 3-dimensional feature matrix. For a layer

u, let xu be the feature matrix of dimension W × H × K, where W is the width, H

is height and K is the number of channels. To generate the training samples for the

CF, we consider all the circularly shifted versions of xu along the dimensions W and

H . Ignoring the subscript u here, let us denote each shifted sample as xa,b (where

(a,b) ∈ {0, 1, ...,W − 1} × {0, 1, ...,H − 1}) that has a Gaussian function label y(a,b)

given by

y(a,b) = e−
(a−W/2)2+(b−H/2)2

2σ2 , (4.1)
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Figure 4.8: Success and Precision plots obtained over the OTB100 dataset (Wu et al.,
2015) for Object Out-of-View, Out-of-Plane Rotation, Occlusion, Motion
Blur, In-Plane-Rotation, Illumination Variation, Fast Motion prone videos
and overall performance.

where σ is the kernel width. A CF hu corresponding to the layer u, of the same size as

xu, can now be learned by minimizing:

E(hu) =
1

2

∥∥∥∥∥y −
K∑
k=1

xuk ∗ huk

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖huk‖
2
2, (4.2)

where k ∈ {1, ..., K} are the number of feature channels, ‘.’ operator is the inner

product, λ is a regularization parameter and λ ≥ 0. Since the above equation is similar

to training the CF in Naresh Boddeti et al. (2013), it can be solved using a Fast Fourier

Transformation (FFT) for each feature channel. In the frequency domain, the learned
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Figure 4.9: Success and Precision plots obtained over Tracking Dataset (Vojir et al.,
2014) for Occlusion, Illumination Variation, Size Change, Motion Change,
Camera Motion, Low Resolution prone videos and overall performance.

filter for the kth channel can be written as,

ĥ
u
k =

ŷ
⊙

conj(x̂u
k)∑K

k=1 x̂u
k

⊙
conj(x̂u

k) + λ
(4.3)

where ŷ is the Discrete Fourier Transform (DFT) of y =
{

y(a, b)|(a, b) ∈ {0, 1, ...,W−

1} × {0, 1, ...,H − 1}
}

, conj indicates the complex conjugate,
⊙

is the element-wise

product, ĥ
u
k is the DFT of kth channel of the CF learned for layer u, and x̂u

k is the DFT

of kth channel of the CNN features learned from layer u. The calculation shown above

is valid for every convolutional layer. Now, assume for any layer u, features extracted

from the new incoming frame are zu of size W ×H ×K. The Fourier transformed CF

response map, r̂u, for the corresponding layer is calculated using

r̂u = F−1
( K∑
k=1

ĥ
u
k

⊙
conj(ẑu

k)
)
, (4.4)

where F−1 is the inverse Fourier transform and ẑu is the DFT of zu. The target location, lu

= (pu1 , pu2), predicted using this layer is the position where the value of the corresponding
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Figure 4.10: Success and Precision plots obtained over VOT-2016 dataset (Kristan
et al., 2016c) for Occlusion, Motion Change, Illumination Variation prone
videos and overall performance. (Note: Zoom in for better view)

filter response map (of size W ×H) is maximized and is given by

lu = (pu1 , p
u
2) = argmax

x′,y′
ru(x′, y′), (4.5)

where pu1 and pu2 are the x and y-axis coordinates respectively. Following this calcula-

tion, at each new frame, a target location is obtained corresponding to each convolu-

tional layer. This can be seen in Figure 4.2. These locations are used to predict the final

location of the target, the procedure for which is explained in the following sub-section.

4.2.3 Target Position Estimation using LSTM Network

As already discussed, for every frame, features from each convolutional layer u are

used to predict a target location lu = (pu1 , p
u
2). In this work, u ∈ {1, 2, 3}, where

u = 1 denotes layer conv3-4, u = 2 denotes layer conv4-4 and u = 3 denotes layer

conv5-4. However, the predictions corresponding to the CFs operating over the different

convolution layers may not be equally reliable. This is because, at each new frame,

information gathered by the features from only one layer may not sufficiently represent

the target. Therefore, to predict the final location of the target, locations predicted from
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Figure 4.11: Overall success plots (left) and precision plot (right) calculated for
UAV123 Dataset (Mueller et al., 2016). (Note: Zoom in for better view)

all three layers are used. Also, since the information captured by the features from each

layer may vary from frame to frame, the contribution (or weight) of each layer in the

final prediction can not be generalized.

To address this issue, we use an LSTM network. An LSTM is trained that takes an

input of dimension T × κ, where columns denote the feature vector extracted from an

image patch over the past κ consecutive frames. It gives two values as the output: the

percentage of foreground present in the κth column; and the percentage of background

in the same.

At any frame t, three image patches centered at location l1, l2 and l3 are cropped

with the scale same as the scale in frame t− 1. Corresponding to each of these patches,

a feature vector of size T×1 is extracted. The features here can be hand crafted features

or CNN features and T will depend on the type of feature used. In this work, T is a

1764 dimensional HOG feature vector. Let us denote these feature vectors as z1, z2 and

z3 corresponding to position l1, l2 and l3 respectively. Now, let there be a matrix A of

size T×(κ−1). The columns of A contain the features of the past κ−1 bounding boxes

predicted by the tracker at frames {t− 1, t− 2,..., t− (κ− 1)}. To compute the weight

of location lu, zu is column-wise concatenated to the right end of A to form a T × κ

matrix. This matrix is fed to the trained LSTM, which in turn gives us the percentage of

foreground and background present in zu. This can be visualized in Figure 4.3. A higher

percentage of foreground present in zu implies that the majority of the corresponding

bounding box is covering the target and hence it is likely to be an accurate box. Thus, its

contribution in calculating the final position should be high. On the other hand, a lower

percentage of foreground in a box implies that it is not a good prediction and hence its
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Figure 4.12: Success and Precision plots obtained over the VOT-2017 dataset Kristan
et al. (2017b) for Illumination Variation, Size Change, Camera Motion,
Motion Change, Occlusion Change prone videos and overall performance.
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Figure 4.13: Mean Accuracy-Robustness (AR) Plot for experiments on baseline using
the VOT toolkit
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Figure 4.14: Baseline Experiments: (a) Tracker ordering for overlap and (b) Tracker
ordering for failures

contribution should be low.

The benefit of including the features from previous bounding boxes in the input is

that it enables the LSTM to compare the current bounding box with past observations.

This is because the appearance of a target should not change much in κ frames (if

κ is small). If the features of the current box are similar to features of the past κ − 1

boxes, the LSTM interprets the current bounding box as foreground and assigns a higher

percentage to the foreground. On the other hand, if features of the current box do not

match the features of the past κ− 1 bounding boxes, it is likely that the box location is

erroneous and it is capturing the background. In such a case, the LSTM interprets the

current bounding box as background and assigns a higher percentage to the background.

Let the foreground and background percentage present in the bounding boxes be

denoted as fgu and bgu respectively, where u is the layer index and u ∈ {1, 2, 3}. The

weight qu of the location predicted corresponding to layer u can then be calculated as:

qu =
fgu

max(fg1, fg2, fg3)
(4.6)
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Figure 4.15: Baseline Experiments: (a) Expected overlap curves and (b) Expected over-
lap score
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Figure 4.16: Average Overlap Plot for experiments on unsupervised using VOT toolkit

Once the weight of each location is calculated, the final location l = (px, py) can be

given as follows.

l = q1.l1 + q2.l2 + q3.l3 (4.7)

The procedure in Section 4.2.2 and 4.2.3 can be easily visualized using Figure 4.2 and

4.3. Information on training the LSTM is given in Section 4.2.4.

4.2.4 Target Scale Estimation

A CF learned over FHOG features of the target bounding box is used to estimate the

target scale. FHOG features are a variant of HOG features (Dalal and Triggs, 2005) used

by Felzenszwalb et al. (2010). As per the literature, it has shown superior performance

compared to the original HOG features. If there are j orientations, FHOG features

will be 3j + 5 dimensional. There will be 2j contrast sensitive orientation channels, j

contrast insensitive orientation channels, 4 texture channels and 1 all zero channel (used
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Figure 4.17: Overlap ordering for experiments on unsupervised for Camera Motion
(CM), Empty, Illumination Variation (IV), Motion Change (MC), Occlu-
sion (OCC), Size Change (SC) and Average

as a truncation feature). We use a standard value of j = 9 which results in aW×H×32

dimensional feature vector, where W ×H is the dimension of target image patch.

In this work, we learn a 2-dimensional CF filter of size 33× (W ×H × 32), where

the columns represent the dimension of the vectorized FHOG features and the row

represents the number of scaling factors. For each training sample, it has Gaussian

label of size 33 × 1, where the peak of the Gaussian corresponds to the target’s actual

or best scaling factor. The learning procedure remains the same as Equation 4.4.

At frame t, once we calculate the target’s final position l, the target is cropped by a

bounding box centered at (px, py) having scale similar to the scale in frame t − 1. The

cropped patch is scaled by 33 different scaling factors and corresponding to each scaled

patch, FHOG features are extracted and vectorized. These features are concatenated to

form a 33 × (W × H × 32) matrix. For the feature matrix, the response of the scale

correlation filter is computed using Equation 4.4, where z and h are Fourier transforms

of the FHOG feature matrix and scale CF respectively, and k ∈ {1, ...,(W ×H × 32)}.

This results in a 33×1 filter responses, rscale. The scale that corresponds tomax(rscale)

is considered the target’s current scaling factor, scale.

After the scaling factor estimation, the target bounding box can be calculated as

b = {px − (p3 ∗ scale)/2, py − (p4 ∗ scale)/2, p3 ∗ scale, p4 ∗ scale}, where p3 and p4

are the width and height in frame t − 1 respectively. For the remainder of this chapter,

let us denote px − (p3 ∗ scale)/2 , py − (p4 ∗ scale)/2 , p3 ∗ scale, p4 ∗ scale as b1, b2,

b3 and b4, respectively. The procedure in this Section is illustrated by Figure 4.4.
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Figure 4.18: Intermediate Frames Showing Tracker’s Performance During Various
Challenges: Row 1 - Size Change, Row 2 - Object Inclination, Row 3
- Occlusion, Row 4 - Shaking Camera, Row 5 - Illumination Variation.
Proposed tracker is able to the track target during challenges where other
trackers fail.

4.2.5 Target rotation estimation

Similar to the scale CF, we train a rotation CF. It is a 2-dimensional filter of size 9 ×

(W×H×32), where the columns represent the dimension of vectorized FHOG features

and the rows represent the number of rotation factors. For each training sample, it has a

Gaussian label of size 9 × 1, where the peak of the Gaussian corresponds to the factor

by which the target rotates.

The rotation is estimated by cropping a patch using bounding box b and rotating it

by 9 different rotation factors. Corresponding to each rotated patch, FHOG features are

extracted and vectorized. Again, a matrix of 9×(W ×H×32) is formed corresponding

to which, the response of the rotation CF is computed using Equation 4.4. As a result, a

filter response, rrot, of size 9 × 1 is obtained, which is used to infer the target rotation.

The rotation value that corresponds to max(rrot) is considered to be the target’s current

rotation factor, rot. The final target bounding box can then be calculated by rotating the

box b = {b1, b2, b3, b4} by rot degrees.
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Figure 4.19: Intermediate Frames Showing Tracker’s Failure During Various Chal-
lenges: Row 1 - Occlusion by object with similar appearance, Row 2 -
Background Clutter, Row 3 - Tracker stuck on bright yellow flower due to
poor HOG features of the dull colored object, Row 4 - Background Clutter

4.2.6 Appearance Model Pool

In most of the CF based trackers, once the final bounding box is predicted in a frame

(say t), it is used to update the CF so that filter can learn the updated target appearance

and make a suitable prediction in the next frame, (t + 1). This method is likely to fail if

the predicted bounding box is faulty/inaccurate. This is because an inaccurate bounding

box will lead to an erroneous update to the CF. In longer sequences, the error will keep

accumulating, leading to tracking failure.

To avoid this, an appearance model pool is introduced. In this, at frame t, HOG

features for the predicted bounding box b = {b1, b2, b3, b4}, concatenated to the right

end of A are fed to the LSTM trained in Section 4.2.3. Doing this, we obtain the per-

centage of foreground and background present in the predicted box b. If the percentage

of foreground is more than a threshold ζ , it is likely to be a good prediction and hence

a good sample of the target’s latest appearance. Such appearance samples are stored

in the appearance model pool for later use. Since, the target appearance changes with

time, storing older appearance samples in the pool may not be favourable. Therefore, to

avoid computations on the old appearances, only the 7 most recent samples are stored.

In addition, at frame t, if the percentage of foreground in a bounding box is less

than a threshold α, it means that during the most recent update the CF (see Section
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Figure 4.20: Success (left) and Precision (right) plots obtained for Ablation study over
VOT-2016 Dataset. (Note: Zoom in for better view).

4.2.2) have been updated with features extracted from a bounding box that has more

background. To compensate, in the current step t, filters must be trained with rich

features that are extracted from the target’s actual appearance (foreground). In such a

situation, the appearance model pool is used to select a good image of the target in order

to update the filters.

In the pool, the appearance that has the minimum Mahalanobis distance (De Maess-

chalck et al., 2000) to the target predicted at time (t− 1) is used to train the filter at the

current step t. Let, box(t−1) be the vectorized bounding box predicted at frame (t− 1),

appi be the vectorized ith appearance sample in the model pool, where i ∈ {1, ...,7},

and Π be the covariance matrix. Then, the Mahalanobis distance, disti, between the

two can be computed as:

disti =

√
(box(t−1) − appi)>Π−1 (box(t−1) − appi) (4.8)

The appearance sample that corresponds to min(disti), i ∈ {1, ...,7}, is the appearance

selected to update the correlation filters at frame t. This prevents the filter from drifting,

resulting in prolonged and accurate tracking. On the other hand, if the percentage of

foreground in a bounding box is more than the threshold α, the predicted box b itself is

considered for updating the filters, without using the model pool.
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4.2.7 Updating the Correlation Filters

As discussed above, before updating the filters from Section 4.2.2, an appropriate bound-

ing box is selected that contains the recent best appearance of the target. Let, for a par-

ticular layer u, the features extracted from the selected box be xu. To update the filter,

the output error over all tracked results so far should be minimized (Naresh Boddeti

et al., 2013). This requires solving a K × K linear system of equations per location

at (a,b). But since the number of channels in the CNN features is usually large, the

above approach will be computationally expensive. To avoid this, we use the following

approximation (Ma et al., 2015a) to update the filter ĥk in Equation 4.3 (ignoring the

layer index):

m̂
(t)
k = (1− η)m̂

(t−1)
k + ηŷ

⊙
conj(x̂(t)

k ); (4.9)

n̂
(t)
k = (1− η)n̂

(t−1)
k + η

K∑
k=1

x̂
(t)
k

⊙
conj(x̂

(t)
k ); (4.10)

ĥ
(t)
k =

m̂
(t)
k

n̂
(t)
k + λ

(4.11)

where k={1,2,...,K}, t is the frame index and η is the learning rate. A similar method

can be used to update the scale and rotation CFs, by substituting appropriate variables

in Equation 4.9, 4.10 and 4.11.

4.3 Evaluation of the LSTM Component

The Long Short-Term Memory (LSTM) network in Section 4.2.3 can be trained using

either Histogram of Oriented Gradients (HOG) features or Convolutional Neural Net-

work (CNN) features extracted from VGG-19-Net (Simonyan and Zisserman, 2014). In

order to compare the VGG features with HOG features, we perform two experiments.

In the first one, we train the LSTM using VGG features and in the second we train the

LSTM using HOG features. The details of the experiments are given below:

4.3.1 Training Data Generation

A foreground training sample is generated by column-wise concatenation of feature

vectors extracted from κ foreground patches to form a T × κ matrix. Similarly, a back-

ground training sample is generated by column-wise concatenation of feature vectors
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extracted from κ background patches to form a T × κ matrix. By doing so, we get

multiple foreground and background training samples (of size T × κ each), which are

used to train the LSTM. An example of foreground and background patch generation is

shown in Figure 4.5.

At test time, the trained LSTM is used to estimate the weights of the predicted

bounding boxes corresponding to layer conv5-4, conv4-4 and conv3-4. In order to do so,

T ×1 dimensional features are extracted corresponding to each predicted bounding box

and it is column-wise concatenated with the matrix A, that is, features extracted from

the past κ − 1 foreground patches predicted by the tracker. The resultant A ∈ RT×κ

is fed to the trained LSTM, which classifies the κth feature vector as foreground or

background. The procedure is shown in Figure 4.3.

4.3.2 CNN Features

We investigate the effect of size of the history used, and the features extracted from var-

ious fully connected layers of VGG during LSTM training. In this case, the foreground

and background patches are re-sampled to 224× 224 and κ = 4096. The details of each

experiment are given below.

1. LSTM1-FC1: In this version, CNN features are extracted from the 1st fully con-
nected layer and κ = 1, hence, the size of the input to the LSTM is 4096× 1.

2. LSTM1-FC2: This version is similar to version LSTM1-FC1. The only differ-
ence is that CNN features are extracted from the 2nd fully connected layer, instead
of the 1st.

3. LSTM4-FC1: Here, the CNN features are extracted from the 1st fully connected
layer and κ = 4. Therefore, the input, A, to the LSTM is of dimension 4096× 4.

4. LSTM4-FC2: This version is similar to version LSTM4-FC1. The only differ-
ence is that CNN features are extracted from the 2nd fully connected layer, instead
of the 1st.

5. LSTM8-FC1: Here, the CNN features are extracted from the 1st fully connected
layer and κ = 8. Therefore, the input, A, to the LSTM is of dimension 4096× 8.

6. LSTM8-FC2: This version is similar to version LSTM8-FC1. The only differ-
ence is that CNN features are extracted from the 2nd fully connected layer, instead
of the 1st.

7. LSTM1-PCA-FC1: In this version, CNN features are extracted from the 1st fully
connected layer and κ = 1. The dimension of training and testing samples are
reduced to 112 × 1 using Principal Component Analysis (PCA), reconstructing
99% information of the original samples. Therefore, the input to the LSTM is of
dimension 112× 1.
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8. LSTM1-PCA-FC2: In this version, CNN features are extracted from the 2nd

fully connected layer and κ = 1. The dimension of training and testing samples
are reduced to 45× 1 using PCA, reconstructing 99% information of the original
samples. Therefore, the input to the LSTM is of dimension 45× 1.

9. LSTM4-PCA-FC1: Here, the CNN features are extracted from the 1st fully con-
nected layer and κ = 4. The dimension of training and testing samples are reduced
to 112× 4 using PCA. Therefore, the input to the LSTM is of dimension 112× 4.

10. LSTM4-PCA-FC2: Here, the CNN features are extracted from the 2nd fully
connected layer and κ = 4. The dimension of training and testing samples are
reduced to 45 × 4 using PCA. Therefore, the input to the LSTM is of dimension
45× 4.

11. LSTM8-PCA-FC1: In this version, CNN features are extracted from the 1st fully
connected layer and κ = 8. The dimension of training and testing samples are
reduced to 112× 8 using PCA. Therefore, the input to the LSTM is of dimension
112× 8.

12. LSTM8-PCA-FC2: In this version, CNN features are extracted from the 2nd

fully connected layer and κ = 8. The dimension of training and testing samples
are reduced to 45×8 using PCA. Therefore, the input to the LSTM is of dimension
45× 8.

4.3.3 HOG Features

In this case, the foreground and background patches are re-sampled to 32× 32 and κ =

1764. Corresponding to each re-sampled patch, a 1764 × 1 dimensional HOG feature

vector is computed. The experiments are done for different values of κ. Therefore, the

dimension of training samples, testing samples and the LSTM input is equal to 1764×κ.

The details of each experiment are given below.

1. LSTM1-HOG: In this version, κ = 1, hence, size of the input to the LSTM is
1764× 1.

2. LSTM4-HOG: Here, κ = 4. Therefore, the input, A, to the LSTM is of dimension
1764× 4.

3. LSTM8-HOG (Proposed): Here, κ = 8. Therefore, the input, A, to the LSTM is
of dimension 1764× 8.

4. LSTM12-HOG: Here, κ = 12. Therefore, the input, A, to the LSTM is of dimen-
sion 1764× 12.

4.3.4 Training the LSTM

In each of the above cases, output of the LSTM is a two class classification (foreground

or background). The number of units in the LSTM is 8 and the training is done using
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approximately 300,000 samples for 10 epochs with a batch size of 32. The optimizer

used is Adam, with learning rate 0.001, and a softmax loss function. To obtain the

probability of each patch belonging to the foreground, we remove the softmax layer

and used the output of layer just before the softmax layer. Each of the above LSTMs

is used to evaluate the tracker performance on VOT2016 and VOT2017 datasets. Also,

since the VGG network is trained to classify objects of size approximately 224 × 224,

we separately evaluate the tracker on sequences that have objects with a minimum size

200× 200 pixels and maximum size 250× 250 pixels through out the video (we denote

them as Selected Videos). This is done in order to analyze the effect of object scale on

HOG features and the CNN features extracted using the VGG network.

Table 4.1 shows the Overlap Success Rate (OP) and Distance Precision Rate (DP)

for each version of the LSTM over both the datasets. It is observed that when the per-

formance is computed over the entire dataset (VOT2016 or VOT2017), the proposed

tracker out-performs the trackers that use LSTMs trained using CNN features. How-

ever, trackers using a CNN feature based LSTM show better performance compared to

proposed, when the performance is calculated over the selected videos. This is because

VOT2016 and VOT2017 consist of several videos that have objects with size much

smaller than 224× 224. For such videos, due to excessive re-sampling of small objects

to 224×224, the features extracted using VGG may not be suitable to encode the target

appearance. In such cases, HOG features work better. Based on the observations from

Table 4.1, we use HOG features with κ = 8 (version LSTM8-HOG) to train the LSTM

in the proposed tracker.

4.3.5 Weight Estimation using the Trained LSTM

Figure 4.6 shows the weight estimation using the LSTM, version LSTM8-HOG, for

the bounding boxes corresponding to layers conv5-4, conv4-4 and conv3-4. Column

1 shows the bounding box predicted using the features extracted from layer conv5-4

of VGG. Similarly, Column 2 and Column 3 show predictions corresponding to fea-

tures from layers conv4-4 and conv3-4, respectively. Column 4 shows the ground truth

bounding box.

In Figure 4.6, Row 1 shows frame number 5 and Row 2 shows frame number 26

from the Sequence ’bag’. Row 3 shows frame number 3 and Row 4 shows frame num-

ner 27 from the Sequence ’bmx’. Both the sequences are common to the VOT2016 and
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VOT2017 datasets. It is observed that the LSTM successfully assigns the maximum

weight to the predicted bounding box that contains maximum foreground or matches

best with the ground truth. Similarly, the least weight is assigned to the box that matches

least with the ground truth.

Figure 4.7 shows frame number 14 of the Sequence ’bag’ and frame number 33 of

the Sequence ’bmx’, where the LSTM fails to predict the weight of each patch accu-

rately. We can see that in the first case, the LSTM assigns maximum weight to the

bounding box that matches least with the ground truth. In the second case, it assigns

varying weights despite the patches being very visually similar, where ideally we would

expect the patches to be assigned almost identical weights. The probable reason for fail-

ure here is the severe deformation and rotation of the object over the past 7 frames in

the sequence, that results in confusing the LSTM. To avoid tracker drift caused due to

erroneous predictions of the LSTM, we use the appearance model pool, explained in

Section 4.2.6.

4.4 Experiments

The proposed algorithm is tested over challenging videos from the OTB100 Dataset

(Wu et al., 2015), Visual Object Tracking (VOT) - 2016 Dataset (Kristan et al., 2016c),

VOT-2017 Dataset (Kristan et al., 2017a), Tracking Dataset (Vojir et al., 2014) and

UAV123 Dataset (Mueller et al., 2016). Out of over 70 trackers submitted in the VOT-

2016 challenge, the comparison is done against the top ranked trackers (TRACA (Choi

et al., 2018), CCOT (Danelljan et al., 2016d), MLDF (Kristan et al., 2016a), SiamRN

(Kristan et al., 2016a), DNT (Chi et al., 2017), RFD-CF2 (Kristan et al., 2016a), sta-

ple (Bertinetto et al., 2016a), staplep (Kristan et al., 2016a)) and selected other recent

trackers like MDNet (Nam and Han, 2016), ADNet (Yun et al., 2017), ECO (Danell-

jan et al., 2016a), Hedged (Qi et al., 2016), CF2 (Ma et al., 2015a), DSST (Danelljan

et al., 2017b), MEEM (Zhang et al., 2014a), BVT (Yuan et al., 2014), TGPR (Gao

et al., 2014), BACF (Kiani Galoogahi et al., 2017), DCF-CA (Mueller et al., 2017),

MOSSE-CA (Mueller et al., 2017), SAMF-CA (Mueller et al., 2017) and STAPLE-CA

(Mueller et al., 2017). Among these trackers, CCOT (Danelljan et al., 2016d) and ECO

(Danelljan et al., 2016a) are also the top performers of VOT-2017 and TRACA (Choi

et al., 2018) is from VOT-2018. For each dataset, the number of compared trackers vary
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according to the availablity of results and implementations.

Performance of each tracker is evaluated using success plot, precision plot, average

Center Location Error (CLE) and average Intersection Over Union (IOU). We also show

a quantitative comparison of the Distance Precision (DP) rate at 20 pixels, and Overlap

Success (OS) rate at an overlap threshold of 0.5 (Qi et al., 2016).

4.4.1 Implementation Details

In our experiments, we use VGG-Net-19 (Simonyan and Zisserman, 2014), as it has

shown superior performance to ResNet (He et al., 2016) and GoogLeNet (Szegedy

et al., 2015) for object tracking tasks (Li et al., 2017b). For feature extraction, fully

connected layers of VGG-Net-19 are removed and outputs of the conv3-4, conv4-4 and

conv5-4 convolutional layers are used as features. At frame t, if the size of the input

search window is W ′ × H ′ (which is twice the size in frame t − 1), the features from

each convolutional layer are resized to a fixed spatial size of W ′/4 × H ′/4. Since the

tracker needs to retain the spatial resolution of each convolutional layer, outputs of the

pooling layers are not used.

In Equation 4.1, the kernel width used for generating the Gaussian labels of position

correlation filters is 0.1. For all position, scale and rotation correlation filters, the value

of λ in Equation 4.2 is fixed to 10−4 during training. In Equation (4.10) (4.11) and

(4.12), learning rate η is set to 0.01. In Section 4.2.6, the value of ζ is 0 for first

12 frames of each sequence. After 12 frames, it is equal to the average of weight q1

obtained during the 8th to 12th frames. The value of α is fixed to 0.7. Scaling factors

used in Section 4.2.4 are between 0.3 to 1.7, at an uniform interval of 0.043, and the

rotation factors in Section 4.2.5 are [-8◦, -6◦, -4◦, -2◦, 0◦, 2◦, 4◦, 6◦, 8◦]. Additionally,

in order to remove the boundary discontinuities, the channels of the extracted features

of each convolutional layer are weighted by a cosine window (Bolme et al., 2010).

The proposed pipeline uses an LSTM with VGG-19 network. VGG has 140 million

parameters and 15 billion floating-point operations per image during the forward pass.

The LSTM has 4364 parameters and 2.87M floating point operations. All the mod-

ules of the proposed trackers are implemented in MATLAB 2017b. Only the LSTM is

implemented in Keras. The tracking speed is nearly 1 frame per second.
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Table 4.2: Comparisons with recent trackers over the OTB100 Dataset (Wu et al., 2015)
based on distance precision rate at a threshold of 20 pixels and overlap suc-
cess rate at an overlap threshold of 0.5. Here, OV = Out-of-View, OPR =
Our-of-Plane Rotation, OCC = Occlusion, MB = Motion Blur, IPR = In-
Plane-Rotation, IV = Illumination Variation, FM = Fast Motion and OverAll
is the evaluation over entire dataset. The first, second, third, fourth, fifth
and sixth best trackers are highlighted in red, green, blue, cyan, magenta and
purple (if shown) color, respectively. The same notation will be followed in
Table 4.3 - 4.13.

Overlap Success Rate (%) Distance Precision Rate (%)
OV OPR OCC MB IPR IV FM Overall OV OPR OCC MB IPR IV FM Overall

Hedged (Qi et al., 2016) 71.2 85.0 82.5 83.9 88.6 84.9 87.5 89.0 46.3 57.6 58.3 56.0 62.2 65.1 53.5 63.5
CF2 (Ma et al., 2015a) 71.1 84.8 81.5 85.5 89.1 84.8 87.9 87.7 45.0 57.4 57.8 59.1 63.0 64.7 58.1 62.8
Baseline-conv5 (Valmadre et al., 2017a) 60.5 81.5 80.0 70.4 81.9 77.7 80.5 83.9 37.7 57.6 56.2 39.6 56.3 54.6 48.0 62.3
Baseline+CF-conv3 (Valmadre et al., 2017a) 68.6 80.8 77.8 75.0 82.1 77.1 79.1 83.0 41.3 53.5 52.3 46.6 58.1 53.6 43.2 61.6
CFNet-conv5 (Valmadre et al., 2017a) 71.6 81.1 77.7 79.6 85.0 79.7 81.7 82.2 44.1 55.7 51.5 53.0 58.9 59.6 55.5 59.7
CFNet-conv2 (Valmadre et al., 2017a) 61.9 78.1 74.5 75.3 80.8 76.5 79.1 79.8 39.4 51.1 47.2 48.1 56.2 52.2 47.8 55.1
CFNet-conv1 (Valmadre et al., 2017a) 55.4 74.8 70.0 72.4 78.4 73.7 71.4 77.0 22.0 46.2 44.4 43.2 51.2 46.0 33.0 46.8
SiamFC-3s (Valmadre et al., 2017a) 74.3 80.9 78.5 76.8 79.8 77.5 81.1 82.1 50.1 55.1 53.1 49.5 54.1 53.7 53.1 58.5
SRDCF (Danelljan et al., 2015b) 62.9 79.1 78.1 78.3 79.2 80.7 83.5 83.2 38.3 49.6 48.6 44.4 52.3 54.2 46.7 55.2
SAMF (Li and Zhu, 2014) 68.9 79.0 77.7 71.9 76.2 76.4 73.8 79.9 44.4 49.1 48.5 44.0 51.9 42.2 40.1 49.6
staple (Bertinetto et al., 2016a) 70.0 76.4 75.3 72.2 78.7 80.3 74.6 81.1 44.8 48.6 48.4 44.2 52.2 46.9 43.7 51.4
LCT (Ma et al., 2015b) 65.1 77.9 70.7 72.1 81.5 77.7 74.6 79.8 43.7 48.9 46.2 44.1 53.0 45.9 44.5 49.5
TGPR (Gao et al., 2014) 58.5 74.5 68.0 68.6 74.9 68.9 74.3 74.0 30.6 40.0 32.8 32.2 44.4 39.8 42.9 40.3
DSST (Danelljan et al., 2017b) T 51.9 68.7 63.1 61.9 73.6 76.9 62.6 72.3 28.0 26.5 24.3 21.1 43.4 45.8 20.0 21.3
KCF (Henriques et al., 2014) 54.1 71.7 67.5 64.2 73.3 75.2 69.4 74.0 33.4 40.9 40.7 35.4 31.1 34.1 35.7 43.1
BVT (Yuan et al., 2014) 59.5 66.9 68.1 60.6 63.9 57.8 62.3 67.5 33.7 34.7 39.2 25.8 17.1 18.1 28.5 37.5
SAMF-CA (Mueller et al., 2017) 49.9 66.2 65.3 45.9 66.1 64.7 50.9 66.2 33.7 47.3 46..8 36.3 45.5 51.6 36.0 48.9
DCF-CA (Mueller et al., 2017) 41.5 62.6 57.4 48.4 70.3 65.2 52.1 63.6 20.8 21.0 21.3 19.9 37.4 35.4 20.0 21.2
MOSSE-CA (Mueller et al., 2017) 34.6 55.4 51.6 39.3 60.0 52.4 46.4 57.4 11.3 15.3 18.3 21.3 19.2 15.4 20.1 22.5
Proposed 71.8 82.7 79.8 80.3 82.8 78.4 81.1 82.3 46.3 58.3 54.1 53.9 58.2 58.5 50.0 60.7

4.4.2 Quantitative Evaluation

Evaluation on OTB100 Dataset

This section shows the comparison of the proposed tracker with existing trackers Hedged

(Qi et al., 2016), CF2 (Ma et al., 2015a), Baseline-conv5 (Valmadre et al., 2017a),

Baseline+CF-conv3 (Valmadre et al., 2017a), CFNet-conv5 (Valmadre et al., 2017a),

CFNet-conv2 (Valmadre et al., 2017a), CFNet-conv1 (Valmadre et al., 2017a), SiamFC-

3s (Valmadre et al., 2017a), SRDCF (Danelljan et al., 2015b), SAMF (Li and Zhu,

2014), staple (Bertinetto et al., 2016a), LCT (Ma et al., 2015b), TGPR (Gao et al.,

2014), DSST (Danelljan et al., 2017b), KCF (Henriques et al., 2014), BVT (Yuan

et al., 2014), SAMF-CA (Mueller et al., 2017), DCF-CA (Mueller et al., 2017) and

MOSSE-CA (Mueller et al., 2017), for challenges including Object Out-of-View (OV),

Out-of-Plane Rotation (OPR), Occlusion (OCC), Motion Blur (MB), In-Plane-Rotation

(IPR), Illumination Variation (IV), Fast Motion (FM) and Overall performance.

Table 4.2 shows the Overlap Success Rate (OP) and Distance Precision Rate (DP) of

the proposed tracker along with existing trackers, on the OTB100 dataset. It is observed

that the proposed tracker is second best in OV, third best in OPR and MB, fourth in

OCC and IPR, and fifth in FM. We also observe that the proposed tracker outperforms

the CFNet-conv1, CFNet-conv2 and Baseline+CF-conv3 (Valmadre et al., 2017b) in all
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Table 4.3: Comparisons with recent trackers over the OTB100 Dataset (Wu et al., 2015)
based on average Intersection Over Union (IOU) ratio and Center Location
Error (CLE). Following the same notation as Table 4.2.

Average IOU (%) Average CLE (Pixels)
OV OPR OCC MB IPR IV FM Overall OV OPR OCC MB IPR IV FM Overall

Hedged (Qi et al., 2016) 59.06 76.50 77.44 76.60 82.50 80.34 79.95 81.65 59.59 45.12 49.18 44.25 36.57 46.28 42.46 39.64
CF2 (Ma et al., 2015a) 59.04 76.53 76.25 78.30 83.23 80.51 80.41 80.51 54.52 45.70 52.65 41.57 35.95 46.03 41.74 41.82
Baseline-conv5 (Valmadre et al., 2017a) 56.73 74.57 74.99 66.74 77.32 73.54 75.99 78.03 82.57 70.49 74.18 93.74 54.39 56.59 57.51 55.65
Baseline+CF-conv3 (Valmadre et al., 2017a) 62.59 73.67 72.63 70.81 76.90 72.54 74.32 76.70 82.29 54.02 59.27 64.41 50.26 56.35 56.08 46.97
CFNet-conv5 (Valmadre et al., 2017a) 66.10 74.02 72.84 75.44 79.86 75.61 76.99 76.49 67.21 54.53 58.37 48.81 44.38 50.16 47.67 46.84
CFNet-conv2 (Valmadre et al., 2017a) 56.19 71.51 69.91 71.43 75.93 72.95 74.66 74.55 82.40 59.15 62.46 61.10 49.08 54.28 53.25 51.57
CFNet-conv1 (Valmadre et al., 2017a) 49.97 68.06 65.71 69.85 79.86 70.31 67.31 71.79 85.74 62.95 68.69 59.97 49.81 56.16 62.07 55.68
SiamFC-3s (Valmadre et al., 2017a) 67.97 73.62 72.99 72.17 74.63 70.91 76.15 75.82 59.42 49.03 50.18 54.48 45.74 49.22 46.74 43.95
SRDCF (Danelljan et al., 2015b) 53.26 70.88 73.35 71.53 73.66 76.72 75.74 76.77 79.38 56.59 60.50 59.08 54.69 48.20 49.14 48.83
SAMF (Li and Zhu, 2014) 57.53 70.87 72.83 65.20 71.20 72.04 66.84 73.26 62.06 49.45 53.31 57.84 50.33 52.56 58.99 50.02
Staple (Bertinetto et al., 2016a) 59.59 69.15 70.99 66.94 74.05 76.27 69.06 74.98 61.29 49.65 50.22 54.39 43.54 44.19 51.11 42.95
LCT (Ma et al., 2015b) 54.61 69.71 66.23 65.74 76.07 72.62 68.43 73.24 77.63 55.96 67.72 63.49 44.44 55.17 60.39 52.60
TGPR (Gao et al., 2014) 52.51 67.01 63.37 63.55 69.09 64.25 68.76 67.83 85.16 63.25 70.01 61.88 58.38 62.97 56.73 58.48
DSST (Danelljan et al., 2017b) 44.63 61.57 59.88 57.07 69.31 72.78 57.77 66.71 87.09 61.77 72.81 72.20 50.15 50.21 75.92 57.81
KCF (Henriques et al., 2014) 46.23 64.50 63.41 59.31 69.04 70.95 63.95 68.17 77.56 61.55 67.76 72.35 55.09 63.63 64.13 60.58
BVT (Yuan et al., 2014) 53.47 61.62 64.66 54.71 60.24 49.96 57.06 62.51 96.87 88.08 87.25 115.34 92.18 119.49 100.27 91.42
SAMF-CA (Mueller et al., 2017) 48.02 61.07 61.90 44.40 62.74 61.84 48.47 62.05 95.29 77.19 76.04 105.14 78.75 77.13 101.43 75.76
DCF-CA (Mueller et al., 2017) 38.33 57.50 53.41 46.11 66.04 61.99 49.02 59.51 130.04 83.77 91.92 108.02 68.74 84.48 106.84 86.46
MOSSE-CA (Mueller et al., 2017) 33.74 50.80 49.36 38.73 56.46 44.32 44.23 53.35 120.05 88.74 96.53 107.75 73.15 92.78 107.47 86.73
Proposed 59.41 73.75 73.93 72.74 76.38 71.98 73.88 74.95 60.56 49.20 50.20 45.14 44.38 47.81 48.33 47.12

Table 4.4: Comparisons with recent trackers over the Tracking Dataset (Vojir et al.,
2014) based on distance precision rate at a threshold of 20 pixels and overlap
success rate at an overlap threshold of 0.5. Here, CM = Camera Motion,
IV = Illumination Variation, MC = Motion Change, OCC = Occlusion, R =
Low Resolution, SC = Size Change and OverAll is the evaluation over entire
dataset. Following the same notation as Table 4.2.

Overlap Success Rate (%) Distance Precision Rate (%)
CM IV MC OCC R SC OverAll CM IV MC OCC R SC OverAll

ADNet (Yun et al., 2017) 75.2 76.6 67.8 58.3 70.5 68.2 69.8 98.8 98.3 88.9 76.5 88.0 88.5 89.2
CF2 (Ma et al., 2015a) 72.1 78.2 63.0 51.7 67.4 63.1 65.2 97.6 96.8 85.8 70.6 86.0 84.7 85.6

RFD-CF2 (Kristan et al., 2016a) 59.8 77.4 56.6 51.5 62.4 57.4 59.8 97.5 97.0 85.9 71.1 84.2 83.4 84.4
staplep (Kristan et al., 2016a) 67.4 81.6 67.7 59.1 71.5 67.8 69.6 90.3 98.2 87.6 78.9 85.9 85.9 86.8
staple (Bertinetto et al., 2016a) 64.2 81.2 68.7 63.5 72.8 68.2 70.0 89.1 98.0 87.3 78.8 87.7 87.1 87.9

TGPR (Gao et al., 2014) 3.7 5.1 17.3 36.7 11.3 16.1 15.9 9.9 1.4 25.5 49.5 12.8 21.8 20.6
MDNet (Nam and Han, 2016) 6.3 28.8 30.9 62.5 22.6 33.8 31.8 8.6 36.0 40.8 80.7 28.6 43.6 40.9
ECO (Danelljan et al., 2016a) 2.1 28.4 12.7 26.5 14.8 18.2 18.3 6.4 37.1 18.4 36.8 15.2 22.7 21.7

BVT (Yuan et al., 2014) 3.2 6.5 19.3 42.8 16.4 22.0 20.9 6.1 3.3 27.1 56.4 24.0 29.9 28.2
CCOT (Danelljan et al., 2016d) 2.6 26.2 17.4 39.9 16.8 23.4 22.8 3.6 39.2 24.4 55.1 21.0 31.5 30.4

MEEM (Zhang et al., 2014a) 1.4 2.7 14.3 36.4 18.7 19.7 18.8 2.7 1.4 20.5 47.3 23.7 26.7 25.2
DSST (Danelljan et al., 2017b) 9.0 4.6 8.6 18.8 4.3 7.9 8.0 1.8 1.5 9.9 18.6 3.1 7.9 7.6
DCF-CA (Mueller et al., 2017) 52.4 56.2 46.3 28.6 59.2 46.7 49.9 73.6 66.2 68.0 34.7 77.9 65.2 67.3

MOSSE-CA (Mueller et al., 2017) 48.2 56.6 42.4 33.8 55.6 45.6 48.9 67.2 66.3 61.0 37.0 72.4 62.5 64.8
SAMF-CA (Mueller et al., 2017) 61.5 55.1 54.5 32.7 65.1 54.6 57.0 81.2 66.3 73.7 42.4 81.0 71.7 73.5

Proposed 72.8 81.7 64.8 55.6 70.3 63.7 65.7 97.8 98.8 91.2 82.3 90.8 87.2 88.0

the challenges, and outperforms CFNet-conv5 (Valmadre et al., 2017b) in OV, OPR,

OCC, MB and Overall performance. It also outperforms the Baseline-conv5 (Valmadre

et al., 2017b) in OV, OPR, MB, IPR, IV and FM, where Baseline-conv5 is the winner

of the VOT-17 real-time challenge (Kristan et al., 2017a). The proposed tracker also

outperforms Staple (Bertinetto et al., 2016a) in all the challenges in terms OS and DP

rate, except for Illumination Variation (IV) in OS rate.

Table 4.3 shows the Average Intersection Over Union (IOU) and Average Center Lo-

cation Error (CLE) of the proposed tracker along with existing trackers, on the OTB100

dataset. It is observed that the proposed tracker is the best in OPR, second best in

OV, third best in MB, fourth in OCC, IPR and IV, and fifth in FM and overall perfor-

mance. We also observe that in terms of average IOU, the proposed tracker outperforms
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Table 4.5: Comparisons with recent trackers over the Tracking Dataset (Vojir et al.,
2014) based on average Intersection Over Union (IOU) ratio and Center Lo-
cation Error (CLE). Following the same notation as Table 4.2.

Average IOU (%) Average CLE (pixels)
CM IV MC OCC R SC OverAll CM IV MC OCC R SC OverAll

ADNet (Yun et al., 2017) 68.39 77.70 68.71 59.08 71.49 69.20 70.80 13.56 5.33 14.07 26.66 13.01 12.80 12.05
CF2 (Ma et al., 2015a) 65.12 78.96 63.89 52.46 68.21 64.04 66.04 18.38 6.18 29.14 51.37 18.38 22.42 21.05

RFD-CF2 (Kristan et al., 2016a) 58.80 78.12 57.48 52.25 63.24 58.32 60.67 18.91 5.86 25.81 50.68 18.96 22.80 21.41
staplep (Kristan et al., 2016a) 67.63 82.67 68.60 59.88 72.46 68.75 70.53 24.70 4.56 24.51 48.30 24.94 22.35 21.01
staple (Bertinetto et al., 2016a) 68.51 82.26 69.68 64.49 73.82 69.20 70.95 14.56 4.81 12.77 21.18 13.64 13.60 12.81

TGPR (Gao et al., 2014) 14.10 5.35 17.65 37.41 11.66 16.43 16.33 118.45 157.73 122.67 79.42 122.13 116.31 113.53
MDNet (Nam and Han, 2016) 27.35 29.33 31.43 63.41 23.11 34.40 32.37 60.93 64.81 58.62 17.96 67.94 53.49 57.80
ECO (Danelljan et al., 2016a) 13.28 29.07 12.95 26.94 15.27 18.65 18.71 114.75 49.84 125.71 141.21 103.09 105.75 102.99

BVT (Yuan et al., 2014) 20.32 6.96 19.91 43.66 16.94 22.63 21.51 74.78 165.04 84.00 46.21 81.20 75.04 79.54
CCOT (Danelljan et al., 2016d) 19.41 26.72 17.82 40.53 17.31 23.90 23.30 85.53 68.74 99.30 77.25 90.36 80.42 82.70

MEEM (Zhang et al., 2014a) 19.38 3.01 14.59 37.07 19.09 20.08 19.24 90.11 144.76 108.19 69.50 88.29 91.83 91.45
DSST (Danelljan et al., 2017b) 4.76 5.07 8.80 19.31 4.44 8.11 8.25 155.68 119.19 151.19 134.66 151.50 142.98 138.09
DCF-CA (Mueller et al., 2017) 53.20 57.22 47.02 29.02 60.13 47.48 50.76 42.64 33.27 53.42 110.47 38.11 51.11 47.92

MOSSE-CA (Mueller et al., 2017) 49.00 57.62 43.12 34.41 56.53 46.38 49.73 49.52 33.94 55.13 90.81 33.11 50.49 47.34
SAMF-CA (Mueller et al., 2017) 62.40 55.82 55.34 33.22 65.96 55.44 57.81 36.60 34.46 51.43 108.89 38.12 46.02 47.34

Proposed 65.28 82.38 65.76 56.47 71.14 64.63 66.60 15.31 3.99 21.18 40.26 9.80 19.43 18.28

Table 4.6: Comparisons with recent trackers on VOT-2016 (Kristan et al., 2016c) based
on distance precision rate at a threshold of 20 pixels and overlap success rate
at an overlap threshold of 0.5. Following the same notation as Table 4.2

Overlap Success Rate (%) Distance Precision Rate (%)
IV MC OCC OverAll IV MC OCC OverAll

ADNet (Yun et al., 2017) 45.0 34.7 37.7 38.0 64.5 56.4 61.4 61.2
SiamRN (Kristan et al., 2016a) 45.0 36.6 40.1 38.4 55.6 54.4 62.3 57.5

Hedged (Qi et al., 2016) 41.4 35.4 39.1 36.3 57.2 55.8 61.5 57.7
MLDF (Kristan et al., 2016a) 42.2 36.3 36.1 37.6 49.5 55.9 58.8 58.2

CF2 (Ma et al., 2015a) 44.3 36.3 37.0 37.5 55.6 55.8 57.5 57.3
DNT (Chi et al., 2017) 41.2 38.0 34.6 37.7 57.2 58.1 49.6 58.1

RFD-CF2 (Kristan et al., 2016a) 41.2 32.3 37.1 33.4 58.7 51.4 58.6 54.2
staplep (Kristan et al., 2016a) 41.0 34.2 33.8 36.2 52.7 50.1 49.6 52.9
staple (Bertinetto et al., 2016a) 46.0 35.1 31.7 36.2 59.4 53.5 49.2 54.7

TGPR (Gao et al., 2014) 34.8 24.7 28.5 26.1 42.3 33.5 42.0 36.4
ECO (Danelljan et al., 2016a) 47.6 39.3 42.7 40.9 60.0 60.3 64.8 62.1

BVT (Yuan et al., 2014) 23.7 26.5 23.3 26.3 30.5 41.6 35.6 42.1
CCOT (Danelljan et al., 2016d) 42.0 38.1 41.8 39.8 53.7 59.9 65.2 61.7
MEEM (Zhang et al., 2014a) 36.2 29.2 34.4 31.2 49.5 42.9 55.3 46.9
DSST (Danelljan et al., 2017b) 39.5 27.7 29.6 30.4 52.4 40.0 43.2 43.9

BACF (Kiani Galoogahi et al., 2017) 41.7 30.0 30.9 29.3 58.1 47.1 49.1 45.4
DCF-CA (Mueller et al., 2017) 20.6 15.4 17.1 14.7 33.2 25.1 29.2 24.4

MOSSE-CA (Mueller et al., 2017) 19.9 14.9 18.3 15.5 29.7 23.1 26.6 24.8
SAMF-CA (Mueller et al., 2017) 25.0 18.2 24.7 19.3 35.8 29.4 40.1 31.4

STAPLE-CA (Mueller et al., 2017) 41.8 32.6 29.1 32.2 51.0 46.5 43.0 46.0
Proposed 46.9 35.4 38.7 36.5 59.0 52.0 58.9 53.7

CFNet-conv1 in all the challenges, except for IPR. It also outperform CFNet-conv2 in

OV, OPR, OCC, MB, IPR, Overall; CFNet-conv5 in OCC; Baseline+CF-conv3 in OPR,

OCC, MB and Baseline-conv5 in OV and MB. In terms of average CLE, the proposed

tracker outperforms all the versions of Valmadre et al. (2017b) in almost all the chal-

lenges. As compared to Staple, the proposed tracker does better in OPR, OCC, MB,

IPR and FM. In terms of average CLE, it outperforms Staple (Bertinetto et al., 2016a)

in OV, OPR, OCC, MB and FM.

Figure 4.8 shows the Success and Precision plots for the proposed tracker along

with existing trackers, on the OTB100 dataset.
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Table 4.7: Comparisons with recent trackers on VOT-2016 (Kristan et al., 2016c) based
on average Intersection Over Union (IOU) ratio and Center Location Error
(CLE). Following the same notation as Table 4.2

Average IOU (%) Average CLE (pixels)
IV MC OCC OverAll IV MC OCC OverAll

ADNet (Yun et al., 2017) 45.85 35.50 38.50 38.83 56.17 67.26 61.09 60.04
SiamRN (Kristan et al., 2016a) 45.76 37.33 40.86 39.11 66.65 79.27 67.00 73.46

Hedged (Qi et al., 2016) 42.31 36.15 39.87 37.06 53.33 76.38 68.54 73.37
MLDF (Kristan et al., 2016a) 43.11 37.11 36.92 38.45 54.50 60.26 61.64 57.98

CF2 (Ma et al., 2015a) 45.21 37.02 37.70 38.28 59.74 78.45 68.92 74.68
DNT (Chi et al., 2017) 42.10 38.87 35.40 38.47 69.32 61.09 65.68 61.54

RFD-CF2 (Kristan et al., 2016a) 42.03 33.03 37.86 34.14 54.92 78.35 62.83 74.26
staplep (Kristan et al., 2016a) 41.74 34.92 34.44 36.91 90.74 83.79 90.98 82.18
staple (Bertinetto et al., 2016a) 46.86 35.86 32.38 36.89 88.76 96.49 117.77 97.51

TGPR (Gao et al., 2014) 35.63 25.28 29.16 26.76 78.62 117.09 95.03 109.80
ECO (Danelljan et al., 2016a) 48.50 40.10 43.53 41.70 56.10 65.91 65.39 63.76

BVT (Yuan et al., 2014) 24.25 27.18 23.93 27.02 115.83 85.07 109.02 89.65
CCOT (Danelljan et al., 2016d) 42.88 38.94 42.56 40.57 79.45 69.38 56.88 64.74

MEEM (Zhang et al., 2014a) 37.01 29.87 35.12 31.90 69.95 93.91 74.40 86.12
DSST (Danelljan et al., 2017b) 40.31 28.32 30.27 31.06 83.56 122.54 111.28 112.16

BACF (Kiani Galoogahi et al., 2017) 42.50 30.67 31.53 29.92 90.81 103.52 99.57 109.28
DCF-CA (Mueller et al., 2017) 21.01 15.72 17.48 15.02 178.18 176.02 159.71 178.11

MOSSE-CA (Mueller et al., 2017) 20.43 15.30 18.75 15.84 179.35 169.32 149.07 162.20
SAMF-CA (Mueller et al., 2017) 25.51 18.60 25.16 19.69 181.64 168.26 135.99 159.40

STAPLE-CA (Mueller et al., 2017) 42.55 33.23 29.65 32.88 98.48 103.48 103.06 109.84
Proposed 47.81 36.17 39.48 37.19 57.04 86.27 69.77 81.64

Evaluation on Tracking Dataset

Tracking Dataset, introduced by Tomas Vojir (Vojir et al., 2014), consists of 77 se-

quences collected from the published literature (Kalal et al., 2012; Babenko et al.,

2011). It includes video sequences from OTB50, OTB100 and various VOT datasets.

Hence, the Tracking Dataset is full of challenging sequences at a scale similar to that

of OTB and VOT datasets. Sequences in this dataset vary in length from dozens of

frames to thousands and contain diverse object types like articulated and rigid objects.

It also has different scene settings like static/moving cameras, indoor/outdoor and light-

ning conditions. Excluding the sequences used for training the LSTM in Section 4.2.3,

we evaluate our tracker on 16 challenging and comparatively longer sequences (with a

maximum of 2351, minimum of 76 and average of 785 frames) from this dataset. The

performance is compared with 12 trackers including CCOT (Danelljan et al., 2016d),

RFD-CF2 (Kristan et al., 2016a), staple (Bertinetto et al., 2016a), staplep (Kristan et al.,

2016a), MDNet (Nam and Han, 2016), ADNet (Yun et al., 2017), ECO (Danelljan et al.,

2016a), CF2 (Ma et al., 2015a), DSST (Danelljan et al., 2017b), MEEM (Zhang et al.,

2014a), BVT (Yuan et al., 2014), TGPR (Gao et al., 2014), DCF-CA (Mueller et al.,

2017), MOSSE-CA (Mueller et al., 2017) and SAMF-CA (Mueller et al., 2017).

Figure 4.9 shows the success and precision plots obtained for videos with challenges

like camera motion, occlusion, illumination variation, low resolution, size change and

55



Table 4.8: Average OS and DP rate (%) Rate obtained over the Tracking Dataset (Vojir
et al., 2014) and VOT-2016 Dataset (Kristan et al., 2016c). Following the
same notation as Table 4.2

Average Overlap Success Rate (%) Average Distance Precision Rate (%)
IV MC OCC OverAll IV MC OCC OverAll

ADNet (Yun et al., 2017) 56.66 46.92 45.49 49.74 76.98 68.40 66.97 71.53
CF2 (Ma et al., 2015a) 56.81 46.15 42.42 47.72 70.81 66.87 62.33 67.75

RFD-CF2 (Kristan et al., 2016a) 54.56 41.27 42.41 43.14 72.84 64.13 63.21 65.35
staplep (Kristan et al., 2016a) 55.99 46.57 43.14 48.53 69.50 63.94 60.41 65.41
staple (Bertinetto et al., 2016a) 58.99 47.50 43.44 48.68 73.65 65.98 60.13 66.95

TGPR (Gao et al., 2014) 23.83 21.96 31.52 22.33 27.19 30.54 44.76 30.56
ECO (Danelljan et al., 2016a) 40.51 29.47 36.71 32.55 51.54 44.82 54.46 47.18

BVT (Yuan et al., 2014) 17.34 23.84 30.50 24.30 20.45 36.24 43.28 36.96
CCOT (Danelljan et al., 2016d) 36.16 30.45 41.09 33.52 48.34 46.79 61.47 50.14

MEEM (Zhang et al., 2014a) 23.82 23.69 35.13 26.62 31.73 34.62 52.34 38.88
DSST (Danelljan et al., 2017b) 26.61 20.64 25.61 22.12 33.60 28.88 34.11 30.49
DCF-CA (Mueller et al., 2017) 33.74 26.81 21.34 27.69 45.38 41.23 31.23 40.24

MOSSE-CA (Mueller et al., 2017) 33.45 25.05 24.02 27.83 43.21 37.09 30.44 39.57
SAMF-CA (Mueller et al., 2017) 36.11 31.60 27.65 33.22 47.06 45.75 40.94 46.94

Proposed 59.75 46.25 44.94 47.28 73.69 66.47 67.54 66.36

Table 4.9: Comparisons with recent trackers over the UAV123 dataset (Mueller et al.,
2016) based on average IOU in %, average CLE in pixels, DP rate at a thresh-
old of 20 pixels and OS rate at an overlap threshold of 0.5, in %. Following
the same notation as Table 4.2

OS (%) IOU (%) DP (%) CLE
ADNet (Yun et al., 2017) 36.4 37.05 51.6 173.21
Hedged (Qi et al., 2016) 31.7 32.37 47.7 187.45

staplep (Kristan et al., 2016a) 38.6 39.23 55.1 170.31
staple (Bertinetto et al., 2016a) 35.7 36.28 50.8 178.68

TGPR (Gao et al., 2014) 31.2 31.76 45.5 204.78
MDNet (Nam and Han, 2016) 43.0 43.73 59.8 152.90
ECO (Danelljan et al., 2016a) 53.7 54.59 73.2 76.17

BVT (Yuan et al., 2014) 28.7 29.30 44.6 205.95
CCOT (Danelljan et al., 2016d) 19.9 20.26 26.1 321.17

MEEM (Zhang et al., 2014a) 16.1 16,41 24.0 343.80
DSST (Danelljan et al., 2017b) 34.5 35.12 46.8 188.24
DCF-CA (Mueller et al., 2017) 22.5 22.86 34.8 261.47

MOSSE-CA (Mueller et al., 2017) 22.2 22.67 35.8 329.88
SAMF-CA (Mueller et al., 2017) 26.2 26.59 37.8 239.90

Proposed 35.4 36.87 49.4 185.66

motion changes.

Table 4.4 shows the OS rate at an overlap threshold of 0.5 and DP rate of 20 pixels.

In terms of overall DP rate, the proposed tracker performs better than Staple (Bertinetto

et al., 2016a) in all the challenges. It is observed that during challenges like illumi-

nation variation, motion change, occlusion and low resolution, the proposed tracker

outperforms the existing deep learning and correlation filter based trackers. It also

shows second best performance during camera motion and scale change. Here, better

performance during illumination variation, occlusion and low resolution is due to the

appearance model pool that prevents faulty updates to the correlation filter during such

challenges. Good performance during scale changes is due to the scale correlation filter,

and the rotation correlation filter helps in tracking during motion changes.
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Table 4.10: Comparisons with recent trackers over the VOT-2017 dataset (Kristan et al.,
2017a) based on distance precision rate at a threshold of 20 pixels and over-
lap success rate at an overlap threshold of 0.5. Following the same notation
as Table 4.2

Overlap Success Rate (%) Distance Precision Rate (%)
CM IV MC OCC SC OverAll CM IV MC OCC SC OverAll

TRACA (Choi et al., 2018) 26.10 35.50 27.30 28.50 29.60 25.20 39.50 43.80 38.60 41.00 43.40 37.50
CF2 (Ma et al., 2015a) 32.90 38.50 33.70 33.90 34.90 32.20 50.90 44.80 52.40 50.80 54.20 49.80

RFD-CF2 (Kristan et al., 2016a) 30.30 38.90 30.50 33.70 30.10 29.10 48.80 46.80 47.90 52.30 48.90 47.40
staplep (Kristan et al., 2016a) 28.70 32.00 31.90 29.20 29.20 29.30 42.80 38.60 46.90 42.00 43.20 43.40
staple (Bertinetto et al., 2016a) 24.90 38.30 32.30 26.10 29.20 28.50 44.50 46.60 48.60 39.80 43.20 43.00

BACF (Kiani Galoogahi et al., 2017) 27.40 34.50 26.20 26.80 24.10 25.90 42.60 48.80 41.30 41.20 35.50 40.00
ECO (Danelljan et al., 2016a) 34.90 38.10 35.80 35.90 32.80 32.60 53.80 45.00 56.30 55.00 50.40 51.10

CCOT (Danelljan et al., 2016d) 34.90 32.10 35.50 36.10 33.10 32.30 54.60 38.50 56.50 56.20 50.50 51.20
STAPLE-CA (Mueller et al., 2017) 27.90 34.10 31.10 28.10 29.80 29.10 41.30 41.10 45.10 42.30 41.00 42.70

DCF-CA (Mueller et al., 2017) 12.40 16.30 14.80 17.90 15.20 14.60 21.60 25.60 25.10 30.30 25.90 24.80
MOSSE-CA (Mueller et al., 2017) 16.90 15.20 14.70 18.90 16.50 16.50 28.60 21.70 23.20 27.10 24.90 26.70
SAMF-CA (Mueller et al., 2017) 17.80 18.10 17.90 23.80 19.30 19.40 28.10 24.50 29.00 37.90 29.40 30.70

Proposed 31.40 40.00 32.00 30.70 30.80 28.60 47.70 46.40 46.10 45.90 44.20 42.80

Table 4.11: Comparisons with recent trackers over the VOT-2017 dataset (Kristan et al.,
2017a) based on average Intersection Over Union (IOU) ratio and Center
Location Error (CLE). Following the same notation as Table 4.2

Average IOU (%) Average CLE (Pixels)
CM IV MC OCC SC OverAll CM IV MC OCC SC OverAll

TRACA (Choi et al., 2018) 26.67 36.28 27.92 29.06 30.27 25.79 161.48 100.47 125.34 147.12 128.94 160.06
CF2 (Ma et al., 2015a) 33.60 39.31 34.41 34.62 35.69 32.86 108.16 88.86 90.98 107.69 82.51 114.25

RFD-CF2 (Kristan et al., 2016a) 30.92 39.71 31.14 34.40 30.83 29.77 108.45 90.21 91.15 111.37 91.08 118.08
staplep (Kristan et al., 2016a) 29.30 32.66 32.60 29.77 29.81 29.89 149.71 138.19 94.29 138.44 119.33 139.10
staple (Bertinetto et al., 2016a) 30.00 39.04 32.98 26.64 29.85 29.05 157.03 136.23 101.10 160.60 135.63 154.96

BACF (Kiani Galoogahi et al., 2017) 27.98 35.21 26.79 27.37 24.65 26.48 163.20 134.07 121.40 163.26 145.46 166.32
ECO (Danelljan et al., 2016a) 35.57 38.90 36.59 36.65 33.54 33.33 124.35 98.74 77.31 137.97 110.78 133.53

CCOT (Danelljan et al., 2016d) 35.59 32.85 36.24 36.84 33.78 32.96 120.54 122.81 81.08 140.36 119.88 139.50
STAPLE-CA (Mueller et al., 2017) 28.48 34.82 31.77 28.70 30.38 29.69 164.60 142.93 115.01 145.00 132.07 153.03

DCF-CA (Mueller et al., 2017) 12.69 16.65 15.09 18.23 15.58 14.96 217.62 227.18 177.76 203.52 194.79 218.28
MOSSE-CA (Mueller et al., 2017) 17.34 15.64 15.10 19.41 16.89 16.92 171.67 222.40 170.06 174.56 167.30 178.96
SAMF-CA (Mueller et al., 2017) 18.17 18.43 18.22 24.28 19.69 19.74 186.99 236.57 173.13 184.62 189.10 192.67

Proposed 32.00 40.74 32.65 31.29 31.40 29.20 124.50 92.41 111.23 161.87 124.47 149.03

Table 4.5 shows the IOU and CLE averaged over all the test videos. Compared to

Staple, our tracker does better under illumination variation, in terms of average IOU,

and does better during illumination variation and low resolution, in terms of average

CLE. As can be seen in Figure 4.9, Table 4.4 and Table 4.5, the proposed tracker is able

to outperform most of the existing trackers in almost all of the challenges, demonstrat-

ing the robustness of the tracker. It also leads several trackers in overall performance.

Evaluation on VOT-2016 Dataset

The VOT-2016 Dataset (Kristan et al., 2016c) consists of 60 challenging video se-

quences. The proposed tracker is evaluated over this dataset on the basis of success

plots, precision plots, average IOU and average CLE.

Figure 4.10 shows the success and precision plots obtained from videos with differ-

ent challenges (illumination variation, motion change and occlusion). Table 4.6 shows

the OS rate at an overlap threshold of 0.5 and DP rate of 20 pixels. Table 4.7 shows
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Table 4.12: Overlap Score comparisons with trackers submitted in VOT-2017 challenge
for baseline experiments performed using the VOT toolkit on VOT-2017

All
mcct (Wang et al., 2018b) 0.3551
LSART (Sun et al., 2018b) 0.3464

ECO (Danelljan et al., 2016a) 0.3078
CCOT (Danelljan et al., 2016d) 0.3040
Staple (Bertinetto et al., 2016a) 0.2733

MCPF (Zhang et al., 2017b) 0.2732
CRT (Chen and Tao, 2018) 0.2731

RCPF (Kristan et al., 2017b) 0.2453
Proposed 0.2197

KFebT (Senna et al., 2017) 0.2114
ATLAS (Kristan et al., 2017b) 0.2038

SiamFC (Bertinetto et al., 2016b) 0.2030
SAPKLTF (Velasco-Salido and Martınez, 2017) 0.2022

MEEM (Zhang et al., 2014a) 0.1976
KCF (Henriques et al., 2014) 0.1779
ANT (Čehovin et al., 2016a) 0.1765
GMD (Kristan et al., 2017b) 0.1728

SRDCF (Danelljan et al., 2015b) 0.1622
LGT (Cehovin et al., 2012) 0.1549
MIL (Babenko et al., 2010) 0.1407

IVT (Ross et al., 2008) 0.0979
DSST (Danelljan et al., 2017b) 0.0976

L1APG (Bao et al., 2012) 0.0960
FragTrack (Kristan et al., 2017b) 0.0914

the IOU and CLE averaged over all the test videos. As can be seen in Figure 4.10,

Table 4.6 and Table 4.7, performance of the proposed tracker is comparable to the top

ranked trackers from the VOT-2016 challenge (CCOT (Danelljan et al., 2016d), MLDF

(Kristan et al., 2016a), SiamRN (Kristan et al., 2016a), DNT (Chi et al., 2017), RFD-

CF2 (Kristan et al., 2016a), staple (Bertinetto et al., 2016a), staplep (Kristan et al.,

2016a)). It outperforms Staple (Bertinetto et al., 2016a) in terms of OS rate, DP rate,

average IOU and avergae CLE during challenges such as illumination variation, motion

change, occlusion; and overall performance. It also outperforms several recent track-

ers (MDNet (Nam and Han, 2016), ADNet (Yun et al., 2017), ECO (Danelljan et al.,

2016a), Hedged (Qi et al., 2016), CF2 (Ma et al., 2015a), DSST (Danelljan et al.,

2017b), MEEM (Zhang et al., 2014a), BVT (Yuan et al., 2014), TGPR (Gao et al.,

2014), BACF (Kiani Galoogahi et al., 2017), DCF-CA (Mueller et al., 2017), MOSSE-

CA (Mueller et al., 2017), SAMF-CA (Mueller et al., 2017) and STAPLE-CA (Mueller

et al., 2017)) in challenging scenarios as well as overall performance. Note that though

ECO (Danelljan et al., 2016a) performs very well on the VOT-2016 Dataset, the perfor-

mance does not generalize to video sequences in the Tracking Dataset. Similarly, Staple

performs better in terms of OS rate on the Tracking Dataset (Vojir et al., 2014), but the
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Table 4.13: Performance overview showing Overlap, Failures and EAO for baseline ex-
periment and Overlap AUC for unsupervised experiment on the proposed
tracker and trackers submitted in VOT-2017 challenge on VOT-2017.

Baseline Unsupervised
AR Rank EAO Overlap

Overlap Failures EAO AUC
Proposed 0.4521 25.8801 0.2197 0.3168

ANT 0.4669 32.4457 0.1765 0.2493
ATLAS 0.5045 29.6347 0.2038 0.3215
CCOT 0.5059 15.2288 0.3040 0.3304
CRT 0.5084 15.2058 0.2731 0.3459
DSST 0.4005 63.0723 0.0976 0.1511
ECO 0.4979 13.5112 0.3078 0.3430

FragTrack 0.3898 68.2760 0.0914 0.1690
GMD 0.4606 32.4518 0.1728 0.2339
IVT 0.3991 66.2236 0.0979 0.1247
KCF 0.4721 30.1225 0.1779 0.2619

KFebT 0.4563 25.4966 0.2114 0.2744
L1APG 0.4282 81.0559 0.0960 0.1547

LGT 0.4066 32.2648 0.1549 0.1960
LSART 0.5233 10.2036 0.3464 0.3802

mcct 0.5534 9.8882 0.3551 0.4007
MCPF 0.5245 18.9594 0.2732 0.3861
MEEM 0.4765 27.6372 0.1976 0.3001

MIL 0.3922 46.0567 0.1407 0.1674
RCPF 0.5241 17.4621 0.2453 0.3920

SAPKLTF 0.4865 24.5059 0.2022 0.2770
SiamFC 0.5115 24.6681 0.2030 0.3110
SRDCF 0.4867 35.4262 0.1622 0.2320
Staple 0.5406 19.8836 0.2733 0.3159

performance does not generalize to the VOT-2016 dataset. We, therefore, compute a

weighted average of the OS and DP rate of the trackers in both the cases to infer the

combined performances.

Table 4.8 shows weighted average of OS and DP rate obtained over 16 sequences

of the Tracking Dataset and 60 sequences of the VOT-2016 Dataset. We take the

weighted average since number of frames in both the datasets are not equal. Let us

denote weighted average OS rate by AOS and weighted average DP rate by ADP , then

each value in the table is calculated as,

AOS =

(
frames in VOT Dataset

total frames
∗OSV OT−2016

)
+(

frames in Tracking Dataset
total frames

∗OSTracking
)

(4.12)

ADP =

(
frames in VOT Dataset

total frames
∗DPV OT−2016

)
+(

frames in Tracking Dataset
total frames

∗DPTracking
)
, (4.13)

where number of frames in the VOT Dataset are 21,455, number of frames in the
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Tracking Dataset are 12,561, and the total number of frames are 34,016. OSV OT−2016

and DPV OT−2016 are the OS and DP rate over VOT-2016 dataset and OSTracking and

DPTracking are the OS and DP rate over Tracking dataset. It is observed that when con-

sidering the combined performance, the proposed tracker outperforms Staple (Bertinetto

et al., 2016a) during all the challenges, except for motion change in terms of average

OS rate. It outperforms most existing trackers during illumination variation and oc-

clusion (again due to the appearance model pool). It also outperforms many trackers

during motion change (due to rotation correlation filter) and in its overall performance.

Evaluation on UAV123 Dataset

UAV123 (Mueller et al., 2016) is the second largest object tracking dataset after ALOV

300++ (Smeulders et al., 2014), containing sequences captured from an aerial view-

point. It contains 123 sequences (with more than 110K frames), out of which, 20

sequences (UAV20L) are meant for long-term aerial tracking. The sequences in this

dataset contain attributes like aspect ratio changes, background clutter, camera motion,

fast motion, full occlusions, illumination variation, low resolution, out-of-view objects

(i.e. the object of interest leaves the field of view), partial occlusions, similar objects in

the scene, scale variations and viewpoint changes.

Figure 4.11 shows the success and precision plots obtained for this dataset in com-

parison to CCOT (Danelljan et al., 2016d), RFD-CF2 (Kristan et al., 2016a), staple

(Bertinetto et al., 2016a), staplep (Kristan et al., 2016a), MDNet (Nam and Han, 2016),

ADNet (Yun et al., 2017), ECO (Danelljan et al., 2016a), DSST (Danelljan et al.,

2017b), MEEM (Zhang et al., 2014a), BVT (Yuan et al., 2014), TGPR (Gao et al.,

2014), DCF-CA (Mueller et al., 2017), MOSSE-CA (Mueller et al., 2017) and SAMF-

CA (Mueller et al., 2017). We also show average IOU, average CLE, OS rate and DP

rate for the same in Table 4.9. It shows that overall performance of the proposed tracker

is comparable to other recent trackers and top submissions in the VOT-2016 challenge.

A potential reason for under-performance of the proposed tracker is that this dataset

contain videos with high background clutter and small target objects. In the presence

of background clutter, the LSTM in Section 4.2.3 struggles to distinguish between the

foreground and the background and with small target objects, HOG features for the

target are not very expressive since most target information is lost during resizing the

object to 32× 32.
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Evaluation on VOT-2017 Dataset

The VOT-2017 Dataset (Kristan et al., 2017a) consists of 60 challenging video se-

quences. The proposed tracker is evaluated over this dataset on the basis of success

plots, precision plots, OS rate, DP rate, average IOU and average CLE.

Figure 4.12 shows the success and precision plots obtained from videos with dif-

ferent challenges (camera motion, illumination variation, motion change, occlusion and

size change). Table 4.10 shows the OS rate at an overlap threshold of 0.5 and DP rate

at 20 pixels. Table 4.11 shows the IOU and CLE averaged over all the test videos. As

can be seen in Figure 4.12, Table 4.10 and Table 4.11, performance of the proposed

tracker is comparable to the top ranked trackers including the trackers from the VOT

challenges (TRACA (Choi et al., 2018), CCOT (Danelljan et al., 2016d), RFD-CF2

(Kristan et al., 2016a), staple (Bertinetto et al., 2016a), staplep (Kristan et al., 2016a),

ECO (Danelljan et al., 2016a), CF2 (Ma et al., 2015a)).

The proposed tracker performs better than Staple (Bertinetto et al., 2016a) during

all the challenges in terms of OS rate and is better during camera motion, occlusion

and size change in terms of DP rate. It also outperforms Staple during camera motion,

illumination variation, size change and overall performance, in terms of average IOU

and average CLE. It also outperforms several recent trackers (TRACA (Choi et al.,

2018), BACF (Kiani Galoogahi et al., 2017), DCF-CA (Mueller et al., 2017), MOSSE-

CA (Mueller et al., 2017), SAMF-CA (Mueller et al., 2017) and STAPLE-CA (Mueller

et al., 2017)) in challenging scenarios as well as overall performance.

Evaluation on VOT-2017 Dataset using the VOT-Toolkit

To evaluate a tracker, the toolkit applies a reset-based methodology, where the perfor-

mance is measured in terms of Accuracy and Robustness (Čehovin et al., 2016b). In the

reset-based methodology, a failure is detected whenever a tracker predicts a bounding

box with zero overlap with the ground truth. As a result, the tracker is re-initialized five

frames after the failure. The average overlap between the ground truth and the predicted

bounding boxes during successful tracking periods is captured by the Accuracy mea-

sure, and the number of times the tracker loses the target (fails) during tracking deter-

mines the Robustness. To reduce the bias due to resets, ten frames after re-initialization

are ignored in the accuracy measure (Kristan et al., 2016b). Another evaluation mea-

sure is Expected Average Overlap (EAO), which estimates the average overlap a tracker
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is expected to attain on a large collection of short term sequences with the same visual

properties in the given dataset. This measure is used to address the increased variance

and bias of the average overlap measure (Wu et al., 2015), when evaluating over vari-

able sequence lengths.

The results obtained for experiments (Kristan et al., 2017b) on baseline (reset based

experiment) and unsupervised (no-reset experiment) are given as follows.

• The Baseline Experiment:

Table 4.12 shows the overlap score of the proposed tracker compared to the 22
existing trackers, submitted in the VOT-2017 challenge (Kristan et al., 2017b).
Table 4.13 shows the overlap and failures, that are used to calculate the tracker ac-
curacy and robustness, along with the EAO for all the trackers. Figure 4.13 shows
the Mean Accuracy-Robustness (AR) plots for the same. Figure 4.14 shows the
tracker orderings for overlap and failures. The comparison is shown for Cam-
era Motion (CM), Illumination Variation (IV), Motion Change (MC), Occlusion
(OCC), Size Change (SC) and EMPTY tags along with the mean, weighted mean
and pooled performances (in the case of the AR plot). The expected overlap
curves and overlap scores are shown in Figure 4.15.

It is observed that the proposed tracker outperforms trackers KFebT (Senna et al.,
2017), ATLAS (Kristan et al., 2017b), SiamFC (Bertinetto et al., 2016b), SAP-
KLTF (Velasco-Salido and Martınez, 2017), MEEM (Zhang et al., 2014a), KCF
(Henriques et al., 2014), ANT (Čehovin et al., 2016a), GMD (Kristan et al.,
2017b), SRDCF (Danelljan et al., 2015b), LGT (Cehovin et al., 2012), MIL
(Babenko et al., 2010), IVT (Ross et al., 2008), DSST (Danelljan et al., 2017b),
L1APG (Bao et al., 2012) and FragTrack (Kristan et al., 2017b) in most of the
challenges.

• The Unsupervised Experiment:

Figure 4.16 shows the average overlap plot and Table 4.13 shows the Area Under
Curve (AUC) of the average overlap plot for the proposed tracker compared to
the 22 existing trackers, submitted in the VOT-2017 challenge (Kristan et al.,
2017b). The overlap ordering can be seen in Figure 4.17. The comparison is
shown for Camera Motion (CM), Illumination Variation (IV), Motion Change
(MC), Occlusion (OCC), Size Change (SC) and EMPTY tags along with average
performance.

It is observed that the proposed tracker outperforms trackers Staple (Bertinetto
et al., 2016a), KFebT (Senna et al., 2017), SiamFC (Bertinetto et al., 2016b),
SAPKLTF (Velasco-Salido and Martınez, 2017), MEEM (Zhang et al., 2014a),
KCF (Henriques et al., 2014), ANT (Čehovin et al., 2016a), GMD (Kristan et al.,
2017b), SRDCF (Danelljan et al., 2015b), LGT (Cehovin et al., 2012), MIL
(Babenko et al., 2010), IVT (Ross et al., 2008), DSST (Danelljan et al., 2017b),
L1APG (Bao et al., 2012) and FragTrack (Kristan et al., 2017b) in most of the
challenges and overall performance.
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4.4.3 Qualitative Evaluation

Figure 4.18 and 4.19 shows tracking in intermediate frames of the sequences from the

Tracking Dataset (Vojir et al., 2014) and the VOT-2016 (Kristan et al., 2016c) Dataset.

The performance is shown against Hedged (Qi et al., 2016), CF2 (Ma et al., 2015a),

CCOT (Danelljan et al., 2016d) and ECO (Danelljan et al., 2016a) trackers. We include

only few trackers in order to maintain clarity in the figures.

In Figure 4.18, the frames in first row are from the sequence V id_A_ball of the

Tracking Dataset. It shows accurate tracking by the proposed tracker during scale

changes. The second row is from the basketball sequence of the VOT-2016 Dataset

and shows inclination of the bounding box with the change in the object’s inclination.

The third row is from the girl_mov sequence of the Tracking Dataset. It shows the

trackers performance during occlusion. The fourth row is from the shaking_camera

sequence of the same dataset and shows performance during a shaking camera. The

last row is from V id_H_panda sequence of the Tracking Dataset, showing tracking

during illumination variation. These frames show that the proposed tracker is able to

track during challenges where other recent trackers fail. Row 3 and 4 also demonstrate

accurate tracking in long sequences.

Figure 4.19 shows tracking failure during different challenges. The frames in first

row are from the girl_mov sequence of the Tracking Dataset. It shows tracking fail-

ure when the target is occluded by an object with similar appearance. Later, due to

the appearance model pool, the tracking is restored to the actual target. The second

row is from the rabbit sequence of the VOT-2016 Dataset and shows tracking failure

due to background clutter. The third row is from the butterfly sequence of the VOT-

2016 Dataset. It shows tracking failure when HOG features from the background in the

bounding box dominate over HOG features of the foreground in the same bounding box.

The last row is from the soldier sequence of the same dataset and shows failure during

background clutter. The above failures are mainly during scenarios when the back-

ground is similar to the foreground. This confuses the LSTM in Section 4.2.3, making

it hard to distinguish between foreground and background, leading to poor tracking.
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Table 4.14: Table Comparisons of the proposed tracker with its experimental versions
over VOT-2016 Dataset. The table shows average IOU in %, average CLE
in pixels, DP rate at a threshold of 20 pixels and OS rate at an overlap
threshold of 0.5, in %. The best performance is shown by bold numbers.

OS Rate Avg. IOU DP Rate Avg. CLE Success AUC
Versions of Proposed LSTM-AMP

Proposed 36.5 37.19 53.7 81.64 40.3
LSTM-Scale-Rotation-With-HOG 35.4 37.16 54.9 74.66 40.2

LSTM-Scale-With-HOG 35.0 36.73 54.9 74.66 40.2
LSTM-Based-With-HOG 31.9 33.56 53.0 87.75 36.9

LSTM-Based-Without-HOG 30.7 32.41 47.3 92.00 35.6
LSTM-Starting-Layers 29.8 31.50 47.0 91.37 29.1

XQDA-HOG 30.6 31.26 49.6 96.22 35.6
Uniform-HOG 28.5 30.13 42.6 93.59 28.8

Versions of Baseline (Hedged) (Qi et al., 2016) (Using CNN Features)
With dynamic weights 36.3 37.06 57.7 73.37 38.1
With uniform weights 24.1 28.33 40.3 95.51 24.1

4.5 Ablation Study

This section shows how each module in the proposed tracker contributes to the overall

performance. We discuss here the performance of 7 variants of the proposed tracker.

Figure 4.20 shows the success and precision plots, and Table 4.14 shows the average

IOU, average CLE, OS rate and DP rate obtained for each, when evaluated over the

VOT-2016 dataset. Details of each variant are as follows.

• The version Uniform − HOG has the location correlation filters learned over
features extracted from convolutional layers conv2-2, conv3-2 and conv4-2. The
weights qu for the location predicted using each layer u are fixed to 1/3. This
version does not have the LSTM, scale correlation filter, rotation correlation filter
and appearance model pool. As can be seen in Figure 4.20 and Table 4.14, the
tracker shows poor performance when appropriate layers are not used and scale,
rotation and filter updates are overlooked. Similar experiments are conducted
with combination of many other shallow convolutional layers. They show poor
performance as compared to our next method (LSTM − Starting − Layer).

• The LSTM−Starting−Layer is an upgraded version of Uniform−HOG. In
this, instead of keeping the weights fixed at 1/3, adaptive weights are calculated
using an LSTM trained similar to the one in Section 4.2.3. The only difference
is that instead of using HOG features of the image patch, raw image patches are
used in training. These image patches are reshaped to 32 × 32 and vectorized to
1024× 8. In this case, the input to the LSTM will be of size 1024× 8, unlike the
1764× 1 input in Section 4.2.3. It can be observed that adaptive weights improve
the OS rate by 1.3% and the DP rate by 4.4%, as compared to Uniform−HOG.

• A further improved approach is LSTM −Based−Without−HOG, which is
similar to the LSTM − Starting − Layer, except that instead of using layers
conv2-2, conv3-2 and conv4-2, layers conv3-4, conv4-4 and conv5-4 are used.
This further improves the OS rate by 0.9% and DP rate by 0.3%, showing the role
of choosing the right layers for feature learning.
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• The next approach is LSTM − Based − With − HOG, which is similar to
LSTM−Based−Without−HOG, where conv3-4, conv4-4 and conv5-4 layers
are used. Additionally, the LSTM in this tracker is replaced with the LSTM in
Section 4.2.3, which is trained using the HOG features. As can be seen in Figure
4.20 and Table 4.14, the LSTM trained over HOG features can classify the image
patch in to foreground/background more efficiently, resulting in an improved OS
rate by 1.2% and DP rate by 5.7% over LSTM −Based−Without−HOG.

• In the approach LSTM − Scale −With −HOG, the scale correlation filter is
added on top of the last tracker, resulting in 3.1% improvement in OS rate and
1.9% in DP rate over LSTM −Based−With−HOG.

• LSTM−Scale−With−HOG offers further improvement by adding the rotation
correlation filter to the LSTM − Scale−Rotation−With−HOG approach.
Adding this correlation filters results in improved OS rate by 0.4%. In Table 4.14,
it can be seen that these two approaches have the same average CLE and DP rate.
This is because during rotation of the bounding box, the center of the box remains
unchanged.

• Next is the proposed tracker, which also contains an appearance model pool to
prevent the correlation filter from drifting. This slightly compromises the DP
(by 1.2%) but results in a better over all OS by 1.1% as compared to version
LSTM − Scale−Rotation−With−HOG.

• In another version, XQDA−HOG, to compute weights in the proposed tracker,
we use Cross-view Quadratic Discriminant Analysis (XQDA), a metric learning
algorithm proposed by Liao et al. (2015). In our implementation, we simulta-
neously learn a subspace W ∈ Rk×r to project the feature vectors and a metric
to measure the similarity between the projected vectors. We generate the cross-
view training set by dividing the foreground and background data in to two equal
halves (having 150,000 samples each set). Once we learn the XQDA model, dur-
ing the test time, for a given predicted bounding box, we compute its distance
from foreground and background classes. Let at any frame t, b1, b2, b3 be the
estimated bounding boxes corresponding to layers conv5-4, conv4-4 and conv3-4
respectively. And let dist1, dist2 and dist3 be the distance of b1, b2, b3 from the
background class, respectively. Then the weights q1, q2, q3 corresponding to b1,
b2, b3, respectively, can be computed as

qu =
distu

max(dist1, dist2, dist3)
(4.14)

where u ∈ {1, 2, 3}.
This version shows poor performance as compared to the proposed version in
terms of OS rate, DP rate, IOU and CLE by a large difference.

4.6 Chapter summary

The chapter proposes a deep learning based object tracking algorithm with the aim to

improve performance over current deep learning based approaches. The majority of
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these trackers use hierarchical features learned from multiple layers of a deep network

and face several issues related to aggregation of the hierarchical features from vari-

ous layers, difficulties in estimating variations in the scale of the object being tracked,

as well as challenges in effectively modelling the object’s appearance over long time

periods.

In this chapter, we tackle these issues by exploiting the rich CNN features extracted

from three different convolutional layers of VGG-Net. The target location is computed

based on the contribution from each of these layers. For this task, we introduce an

LSTM network that determines the adaptive contribution of each layer in predicting the

target’s location. At every frame, target scale and rotation is computed using correlation

filters learned over FHOG features of the target. To further improve the tracker perfor-

mance, we introduce an appearance model pool based correction module that ensures

accurate updates of the correlation filters learned over CNN features. We evaluate our

tracker with sizeable and challenging datasets including videos captured from an aerial

view-point. Our experimental results on multiple standard datasets show that the pro-

posed tracker outperforms many popular trackers.

In this chapter, we investigated the importance of different CFs learned using the deep

features extracted from various layers. However, deep features extracted from a pre-

trained network contain multiple channels and each feature channel encodes different

appearance information of the target. Therefore, treating all the feature channels equally

may result in a CF with less discriminative power. In the next chapter, we investigate

the importance of each feature channel that is used to train the CF, where each fea-

ture channel is assigned a scalar weight according to the importance of information it

encodes.
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CHAPTER 5

CGRCF: Channel Graph Regularized Correlation

Filters for Visual Object Tracking

5.1 Introduction

Training Correlation Filters (CFs) with multi-channel Convolutional Neural Network

(CNN) features is a challenging task. Each CNN feature channel encodes a different

attribute of the target. Chapter 4 proposed a method that could dynamically weight

individual CFs. While this can help prioritise some information (i.e. semantic or tex-

ture information) over others, all channels with a single CF are treated equality, which

may be sub-optimal as each channel captures different information and the importance

of each channel may change from one tracking step to the next. Furthermore, while

some channels may offer more informative features for tracking, others with less useful

information may degrade the tracking and eventually lead to tracker drift (Danelljan

et al., 2015b). To address this issue of channel importance, feature selection (Xu et al.,

2019a), adaptive importance maps (Li et al., 2018a) and reliability learning (Sun et al.,

2018a) methods have been proposed. At the same time, it is important to learn the CF

whilst preserving the similarity between different inputs that holds similar importance

(Zhou et al., 2016).

This chapter attempts to address the above issues and suggests that learning a weight

for each feature channel and preserving the similarity of importance between different

feature channels results in better tracking performance. For this, we propose a CF for-

mulation which uses channel-graph regularization, where Channel Regularization (CR)

is used to learn the channel weights and graph regularization is used to preserve the

similarity of importance between different feature channels for more accurate and ro-

bust visual tracking. Thus, channels contributing more towards tracking will get similar

higher weights, whereas, channels contributing less will get similar lower weights. We

first demonstrate the effects of the proposed CR formulation on the existing CF based

trackers: BACF (Kiani Galoogahi et al., 2017) and STRCF (Li et al., 2018c); after this

we combine the CR with graph regularization to formulate the proposed channel-graph



regularization, which further improves tracker performance. Figure 5.1 shows a block

diagram that describes the process flow of the proposed Channel-Graph Regularization

based Correlation Filter (CGRCF) formulation for tracking.

Figure 5.2 shows a pictorial representation of the feature channels and the cor-

responding weights obtained using the proposed channel regularization and channel-

graph regularization. Note that each feature channel appear slightly different than

the other, indicating that each feature channel encode a different appearance attribute

Danelljan et al. (2015b). The top two rows show features that produce similar filter

responses, yet are assigned dissimilar weights using channel regularization. This is

corrected using the channel-graph regularization that assigns similar weights to feature

channels that produce similar response. Hence, preserving the similarity of importance

between different feature channels. The third row shows a feature channel with poor

target representation which is assigned a high weight using the channel regularization

and a low weight using the channel-graph regularization. The fourth row shows a fea-

ture channel with rich target representation which is assigned a low weight using the

channel regularization and a high weight using the channel-graph regularization.

The summarized contributions of this chapter are as follows:

1. We propose a Channel-Graph Regularized CF (CGRCF) formulation for track-
ing, where the Channel Regularization (CR) is used to learn channel weights and
the graph regularization is used to preserve the similarity of importance between
different feature channels.

2. We first demonstrate effects of the proposed CR formulation on the existing CF
based trackers: BACF (Kiani Galoogahi et al., 2017) and STRCF (Li et al.,
2018c); in order to show the positive effects of the CR formulation.

3. Next, we combine the CR with graph regularization to formulate the channel-
graph regularization and show further improvement in the the tracker perfor-
mance.

4. We present an extensive evaluation of the proposed tracker formulations on the
publicly available tracking datasets: OTB100 (Wu et al., 2015), TC128 (Liang
et al., 2015), VOT-2017 (Kristan et al., 2017b), VOT-2019 (Kristan et al., 2019),
LaSOT (Fan et al., 2019), UAV123 (Mueller et al., 2016), and GOT-10k (Huang
et al., 2019a) . A comparative analysis shows that the proposed formulations
results in a significant improvement over the baseline trackers and other recent
trackers.

5. We also provide an analysis to show that our proposed channel weighing strategy
is more effective than the Squeeze-and-Excitation Network’s (SE-Net’s) channel
weights (Hu et al., 2018) for object tracking.
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Figure 5.1: A Block diagram for the proposed CGRCF tracker. During training, q and
h are learned via ADMM iterations. During testing, we extract an ensem-
ble of deep and hand-crafted features from the search area. The target is
localized using a response map obtained by the dot product of the Fourier
transformed features and filters. For target scale estimation, we follow Dai
et al. (2019). F and F−1 denotes Fourier and inverse Fourier transform op-
erations respectively

5.2 Proposed Approach

In this section, we detail how the proposed Channel Regularization can be incorpo-

rated into two existing Correlation Filter (CF) based trackers, BACF (Kiani Galoogahi

et al., 2017) (see BACF-Channel Regularized in Section 5.2.1) and STRCF (Li et al.,

2018c) (see STRCF-Channel Regularized in Section 5.2.2). We then detail how channel

regularization can be combined with graph regularization to formulate channel-graph

regularization in Section 5.2.3. This is followed by detailed explanation of target local-

ization.

5.2.1 BACF-Channel Regularized

The baseline Background Aware Correlation Filter Tracker (BACF) (Kiani Galoogahi

et al., 2017) formulation can be given by,

E(h) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ (P>hk)

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22, (5.1)

where K is the total number of feature channels, y ∈ RT×1 is the desired Gaussian

shaped CF response. xk ∈ RT×1 is the vectorized feature and hk ∈ RT×1 is the vec-

torized filter for the kth channel. λ is the regularization parameter and ∗ is the spatial

correlation operator. H = [h1,h2, ...,hK ] is the matrix of filters from all K channels,
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Figure 5.2: Block diagram showing the learned feature channel weights using the
proposed Channel Regularized (CR) and Channel-Graph Regularized CF
(CGRCF) formulations. The top two similar feature channels produces sim-
ilar filter responses, to which different weights are assigned using the CR
formulation and similar weights are assigned using the CGRCF. The third
row shows a feature channel with poor target representation which is as-
signed a high weight using the CR and a low weight using the CGRCF. The
fourth row shows a feature channel with rich target representation which is
assigned a low weight using the CR and a high weight using the CGRCF.

P ∈ RT×T represents a binary matrix that crops out the foreground region.

To learn appropriate weights for each of the K responses, xk ∗ (PThk) in Equation

5.1, we propose the following BACF-Channel Regularized (BACF-CR) formulation,

E(h,q) =
1

2

∥∥∥∥∥y −
K∑
k=1

qk(xk ∗ (P>hk))

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22 +
β

2
‖q‖22, (5.2)

where qk is a scalar weight for response channel k, β is the regularization parameter,

q = {q1, q2, ..., qK}, and β
2
‖q‖22 is a regularization term for channel weights. Inspired by

many previous works to achieve computational efficiency, we use Parseval’s theorem to

express Equation 5.2 in the frequency domain (Dai et al., 2019; Kiani Galoogahi et al.,

2017; Li et al., 2018c; Danelljan et al., 2015b), as follows,

E(Ĝ,H,q) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

(x̂k � ĝk)

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22 +
β

2
‖q‖22
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s.t.,ĝk =
√
TFP>hkqk, andx̂k =

√
TFxk, k = 1, 2, ..., K, (5.3)

whereˆdenotes the Discrete Fourier Transform (DFT) of a signal, such that â =
√
TFa,

a ∈ RT×1, H = [h1,h2, ...,hK ], F is a T × T orthonormal matrix of complex basis

vectors that transforms any T dimensional vectorized signal into the Fourier domain

and Ĝ = [ĝ1, ĝ2, ..., ĝK ] is an auxiliary variable matrix in the Fourier domain.

Using Parseval’s theorem, the energy can equivalently be represented in the time or

frequency domain. Therefore, the last two terms in Equation 5.2 are equivalent to their

Fourier counterparts and since they are used only to obtain the Fourier domain filter

ĝ, we do not convert them to the Fourier domain in Equation 5.3. Further, they can

efficiently be solved in the time domain itself. We introduce an auxiliary variable, G,

to obtain the decomposition of E(H,q) in a form which can be efficiently solved using

Alternating Direction Method of Multipliers (ADMM) iterations (Boyd et al., 2011). It

leads to decoupling between Ĝ,H and q, where Ĝ,H and q can also be solved using

ADMM iterations (Boyd et al., 2011). The augmented Lagrangian form of Equation

5.3 can be written as,

E(Ĝ,H,q, Ŝ) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

‖hk‖22+

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

+
β

2
‖q‖22, (5.4)

where µ is the penalty factor and Ŝ = [ŝ1, ŝ2, ..., ŝK ] ∈ RT×K is the Fourier transform

of the Lagrange multiplier. The above problem can be solved by using ADMM for the

following sub-problems:

Solving for H

Given Ĝ,q and Ŝ in Equation 5.4, the optimal solution for H∗ can be obtained by,

h∗k = argmin
hk

λ

2

K∑
k=1

‖hk‖22 +
µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

. (5.5)
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Computing the partial derivative with respect to hk and equating to zero, we get,

h∗k = (λI + µTPP>q2k)
−1
TqkP(µgk + sk), (5.6)

where I is a T × T identity matrix and the inverse term is obtained by computing the

reciprocal of each element.

Solving for Ĝ

Fixing H, q and Ŝ in Equation 5.4, the optimal Ĝ∗ can be obtained by solving,

Ĝ∗ = argmin
Ĝ

1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

. (5.7)

Due to high computational complexity, it is difficult to optimize Equation 5.7 (Dai

et al., 2019). Therefore, we process pixel-wise for all channels. The reformulated

optimization problem in Equation 5.7 becomes,

V∗j(Ĝ) = argmin
Vj(G)

1

2

∥∥∥ŷj − Vj(X̂)
>
Vj(Ĝ)

∥∥∥2
2

+
µ

2

K∑
k=1

∥∥∥Vj(Ĝ) + Vj(M̂)
∥∥∥2
2
, (5.8)

where X = [x1,x2, ...,xK ] and X̂ = [x̂1, x̂2, ..., x̂K ]. Vj(X̂) = [x̂1j, x̂2j..., x̂Kj]
>

is a K × 1 vector, picking the jth element from each channel of X̂, i.e., V1(X̂) =

[x̂11, x̂21, ..., x̂K1]
> and Vj(Ĝ) = [ĝ1j, ĝ2j, ..., ĝKj]

>. Similarly, we form,

Vj(M̂) = Vj

(
Ŝ

µ

)
− Vj(

√
TFP>Hq), (5.9)

where Vj

(
Ŝ
µ

)
= [

ŝ1j
µ
,
ŝ2j
µ
, ...,

ŝkj
µ

]
>

. Solving Equation 5.9, we get,

V∗j(Ĝ) =
(
µI + Vj(X̂)Vj(X̂)

>)−1(
ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFP>Hq)

)
,

(5.10)

where q = {q1, q2, ..., qK} and H = [h1,h2, ...,hK ]. Equation 5.10 can be efficiently

computed using the Sherman-Morrison formula (Dai et al., 2019) as follows.

V∗j(Ĝ) =
1

µ

(
I− Vj(X̂)Vj(X̂)

>

µ+ Vj(X̂)
>
Vj(X̂)

)
(ŷjVj(X̂)−µVj

(
Ŝ

µ

)
+µVj(

√
TFP>Hq)).

(5.11)
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Solving for qk

If Ĝ, H and Ŝ are fixed in Equation 5.4, qk can be computed as follows,

q∗k = argmin
qk

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

+
β

2
‖q‖22. (5.12)

Solving Equation 5.12, we get,

q∗k =
µ
√
Thk

>Pgk + Thk
>Psk

µ
√
Thk

>PP>hk + β
. (5.13)

5.2.2 STRCF-Channel Regularized

The Spatial-Temporal Regularized Correlation Filters (STRCF) (Li et al., 2018c) for-

mulation can be given by,

E(h,w) =
1

2

∥∥∥∥∥y −
K∑
k=1

xk ∗ hk

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

‖w � hk‖22 +
θ

2

∥∥h(t) − h(t−1)∥∥2
2
, (5.14)

where θ is the regularization parameter, w are the spatial weights, θ
2

∥∥h(t) − h(t−1)
∥∥2
2

is

the temporal regularization term, 1
2

∑K
k=1 ‖w � hk‖22 is the spatial regularizer. h(t) and

h(t−1) are the CFs used in the tth and (t− 1)th frames respectively.

For each of the K responses, (xk ∗ hk) in Equation 5.14, we learn an appropriate

weight using the following STRCF-Channel Regularized (STRCF-CR) formulation,

E(h,q) =
1

2

∥∥∥∥∥y −
K∑
k=1

qk(xk ∗ hk)

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

‖w � hk‖22+

θ

2

K∑
k=1

∥∥∥h(t)
k − h

(t−1)
k

∥∥∥2
2

+
β

2
‖q‖22. (5.15)

Here, w is the spatial regularization matrix (Li et al., 2018c). The augmented La-

grangian form of (14) can be written as,

E(Ĝ,H,q, Ŝ) =
1

2

∥∥∥∥∥ŷ−
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

‖w � hk‖22+
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θ

2

K∑
k=1

∥∥∥h(t)
k −h

(t−1)
k

∥∥∥2
2

+
µ

2

K∑
k=1

∥∥∥∥ĝk −√TFhkqk +
ŝk
µ

∥∥∥∥2
2

+
β

2
‖q‖22. (5.16)

Similar to BACF-CR in Section 5.2.1, the following solution is obtained for Equation

5.16 using ADMM.

h∗k = (λWWT + µTq2kI + θI)−1(Tqk(µgk + sk) + θh(t−1)
k ), (5.17)

where W = diag(w) ∈ RT×T .

V∗j(Ĝ) =
1

µ

(
I− Vj(X̂)Vj(X̂)

>

µ+ Vj(X̂)
>
Vj(X̂)

)
(ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFHq)).

(5.18)

q∗k =
µ
√
Thk

>gk + Thk
>sk

µ
√
Thk

>hk + β
. (5.19)

5.2.3 Channel-Graph Regularized Correlation Filter

The channel regularized CF formulation in the previous sections is further improved

by applying graph regularization. Graph regularization ensures that similar weights are

learnt for feature channels that are associated with each other. This section introduces

the proposed CF formulation that contains the channel-graph regularization. In the

forthcoming sections the proposed Channel-Graph Regularized Correlation Filter will

be denoted as CGRCF.

We define a nearest neighbor graph, G, with K vertices, where each vertex repre-

sents a feature channel. For graph G, let there be a weight matrix, Z, that contains the

distance between features xk and xj. To compute Z, any distance metric such as cosine

distance or an appropriate distance from Minkowski family can be used. In our work,

we use the heat kernel weighing scheme (Belkin and Niyogi, 2002; Zhou et al., 2017)

on the graph G. For every feature channel xk, an edge is placed between xk and the

other channels. The weight Zkj can be given by,

Zkj = e
−
‖xk−xj‖
σkσj , (5.20)

where σk and σj are used to adjust the decay speed of weightZkj . For each xk, its degree
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can be defined as dk =
∑K

j=1 Zkj and the degree matrix is D = diag(d1, d2, ..., dτ ).

To obtain a set of representation coefficients using the weighted graph G, we mini-

mize,
1

2

K∑
k=1

K∑
j=1

(hk − hj)2Zkj = Tr(HLH>), (5.21)

where Tr(.) is trace of a matrix. The Laplacian matrix is defined as L = D − Z. The

Laplacian regularizer in Equation 5.21 can be factorized as,

Tr(HLH>) = Tr

(
K∑

k,j=1

Lkjhkh>j

)
=

K∑
k,j=1

Lkjh>j hk, (5.22)

where Lkj represents the kth row and jth column of L. Similarly, the Laplacian regu-

larizer for q can be obtained as
∑K

k,j=1 Lkjqjqk.

Using the above Laplacian regularizers to encode the association between the dif-

ferent feature channels and the channel regularization from Sections 5.2.1 and 5.2.2, we

propose the channel-graph regularized CF based tracking problem as,

E(h,q) =
1

2

∥∥∥∥∥y −
K∑
k=1

qk(xk ∗ (P>hk))

∥∥∥∥∥
2

2

+α
K∑

k,j=1

Lkjh>j hk+β
K∑

k,j=1

Lkjqjqk, (5.23)

where α is the regularization parameter.

Each filter channel, hk, is updated individually, keeping the other channels {hj}j 6=k
fixed. Thus, the optimization problem in Equation 5.23 can be re-written as,

E(h,q) =
1

2

∥∥∥∥∥y −
K∑
k=1

qk(xk ∗ (P>hk))

∥∥∥∥∥
2

2

+ αLkkh
>
k hk+

2α(hk)
>

K∑
j 6=k

Lkjhj + βLkkq2
k + 2βqk

K∑
j 6=k

Lkjqj. (5.24)

Using Parseval’s theorem, we can express Equation 5.24 in the frequency domain as

follows,

E(Ĝ,H,q) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+ αLkkh
>
k hk+

2α(hk)
>

K∑
j 6=k

Lkjhj + βLkkq2
k + 2βqk

K∑
j 6=k

Lkjqj,
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s.t., ĝk =
√
TFP>hkqk and x̂k =

√
TFxk, k = 1, 2, ..., K. (5.25)

The optimal solution to the model in Equation 5.25 can be obtained using ADMM

(Boyd et al., 2011). The augmented Lagrangian form of Equation 5.25 can be given as,

E(Ĝ,H,q, Ŝ) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

+

αLkkh
>
k hk + 2α(hk)

>
K∑
j 6=k

Lkjhj + βLkkq2
k + 2βqk

K∑
j 6=k

Lkjqj, (5.26)

where Ŝ = [ŝ1, ŝ2, ..., ŝK ] ∈ RT×K is the Fourier transform of the Lagrange multiplier.

The above problem can be solved by using ADMM for the following sub-problems:

Solving for H

Given Ĝ,q and Ŝ in Equation 5.26, the optimal solution for H∗ can be obtained by,

h∗k = argmin
hk

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

+

αLkkh>k hk + 2α(hk)
>

K∑
j 6=k

Lkjhj. (5.27)

Computing the partial derivative with respect to hk and equating to zero, we get,

h∗k = (µTPP>q2k + 2αLkk)
−1

(Tqk(µgk + sk)− 2
K∑
j 6=k

Lkjhj). (5.28)

Solving for Ĝ

Fixing H, q and Ŝ in Equation 5.26, the optimal Ĝ∗ is obtained as per equation Equation

5.27.

Solving for qk

If Ĝ, H and Ŝ are fixed in Equation 5.26, qk can be computed as follows,

q∗k = argmin
qk

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

+ βLkkq
2
k + 2βqk

K∑
j 6=k

Lkjqk. (5.29)
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Solving Equation 5.29, we get,

q∗k =
µ
√
Thk

>Pgk + Thk
>Psk − 2β

∑K
j 6=k Lkjqj

µ
√
Thk

>PP>hk + 2βLkk
. (5.30)

5.2.4 Lagrangian Multiplier Update

The Lagrangian multipliers are updated using,

ŝ∗k = argmin
ŝk

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFP>hkqk +
ŝk
µ

∥∥∥∥2
2

. (5.31)

Computing the partial derivative with respect to ŝk and equating to zero, we get,

ĝk −
√
TFP>hkqk +

ŝk
µ

= 0. (5.32)

Solving Equation 5.32, the Lagrangian variable is obtained as,

ŝ∗k = µ(
√
TFP>hkqk − ĝk). (5.33)

At frame t, the Lagrangian variable is updated using,

Ŝ(t) = Ŝ(t−1) + Ŝ∗, (5.34)

where Ŝ = [ŝ1, ŝ2, ..., ŝK ] ∈ RT×K and Ŝ∗ = [ŝ∗1, ŝ
∗
2, ..., ŝ

∗
K ] ∈ RT×K is the current

solution of Ŝ obtained using ŝ∗k = µ(t)(
√
TFP>h∗kq

∗
k − ĝ∗k). Here h∗k, q∗k and ĝ∗k are the

current solutions of hk, qk and ĝk. The penalty factor µ is updated using,

µ(t) = min(µmax, δµ
(t−1)). (5.35)

The above solution for S is common to all the formulations proposed in Sections 5.2.1,

B and C. In Equation 5.31, the symbol P ∈ RT×T represents a binary matrix that crops

out the foreground region when solving for Section 5.2.1 and 5.2.2. When updating the

Lagrangian multiplier for Section 5.2.2, the matrix P in Equation 5.31 can be replaced

by a T × T identity matrix. The optimal filter H∗ and feature channel weight q∗k can be

obtained by iteratively solving for H, G, qk and S.
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5.2.5 Target Localization

Target location is determined in the Fourier domain using,

r̂ =
K∑
k=1

x̂k � ĝk, (5.36)

whereˆdenotes the DFT of a signal, r̂ is the DFT of filter response map, xk represents

kth feature channel and gk is the kth channel of the auxiliary variable derived using

Equation 5.11 in the case of BACF-Channel Regularized and CGRCF. In the case of

STRCF-Channel Regularized, ĝk is derived using Equation 5.18. The location at which

the inverse Fourier transformed filter response, r, shows a maximum value is used to

estimate the target location. The target scale estimation strategy is adopted from Dai

et al. (2019).

5.2.6 Model Update

To adjust to appearance variation, we use an online adaptive template scheme (Bolme

et al., 2010; Zhang and Suganthan, 2017; Bertinetto et al., 2016a) to update the template

model,

X̂t
model = (1− η)X̂

(t−1)
model + ηX̂t, (5.37)

where η is the online learning rate, X̂t is the current observation (features), X̂
(t−1)
model is the

old template model and X̂t
model is the updated template model. Based on this strategy,

we use X̂t
model instead of X̂ in Equation 5.8 and 5.18. In Equation 5.37, we compute the

current appearance model as a weighted sum of the current appearance observation and

the past appearance model. This is done in order to preserve the past appearance of the

target, so that tracker drift can be prevented during occlusion and target deformation.

5.3 Experiments

We evaluate the following proposed formulations:
• The Proposed (CGRCF) approach of Section 5.2.3 that incorporates channel-

graph regularization, and uses an ensemble of features extracted from Norm1
of VGG-M, Conv4-3 of VGG-16 (Simonyan and Zisserman, 2014) and HOG
features to represent and localize the target. We prefer VGG-Net (Simonyan and
Zisserman, 2014), as it has shown superior performance to ResNet (He et al.,
2016), Squeeze-and-Excitation-ResNet50 (SE-ResNet50) (Hu et al., 2018), and
GoogLeNet (Szegedy et al., 2015) for object tracking tasks (Li et al., 2017b).
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• BACF-CR, the formulation from Section 5.2.1, using the same features as Pro-
posed (CGRCF).

• STRCF-CR, the formulation from Section 5.2.2, using the same features as Pro-
posed (CGRCF).

• BACF-CR-HOG, the formulation from Section 5.2.1 using only HOG features.

• STRCF-CR-HOG, the formulation from Section 5.2.2 using only HOG features.

The final two formulations using only HOG features are included to enable fair

comparison with the baselines BACF (Kiani Galoogahi et al., 2017) and STRCF-HOG

(Li et al., 2018c).

All proposed formulations are implemented using MATLAB2019a with the Mat-

ConvNet toolbox. The regularization parameters λ in Equation 5.2, θ in Equation 5.15

and α in Equation 5.23 are set to 0.001. The parameter β in Equation 5.2, Equation

5.15 and Equation 5.23 is 0.01. The model learning rate, η, in Equation 5.37 is 0.0186.

δ in Equation 5.35 is 10 and µmax is 104. The initial value of the ADMM penalty factor,

µ, is set to 1. The values of η, δ, µmax and µ are common for all the proposed for-

mulations described in Sections 5.2.1, 5.2.2 and 5.2.3. The ADMM steps are repeated

for 3 iterations. All the above parameters are obtained empirically. The evaluation of

the proposed formulations on OTB100 (Wu et al., 2015), TC128 (Liang et al., 2015),

VOT-2017 (Kristan et al., 2017b), VOT-2019 (Kristan et al., 2019), LaSOT (Fan et al.,

2019), UAV123 (Mueller et al., 2016), and GOT-10k (Huang et al., 2019a) datasets is

presented in the subsequent sections.

5.3.1 Comparison with Baselines on OTB100 and TC128

Table 5.1 shows a comparison of the proposed BACF-CR and BACF-CR-HOG formu-

lations with the baseline, BACF (Kiani Galoogahi et al., 2017), in terms of Overlap

Success (OS) rate and Distance Precision (DP) rate. The evaluation is done over 100

sequences from the OTB100 (Wu et al., 2015) dataset including challenges like Size

Change (SC), Out-of-View (OV), Out-of-Plane Rotation (OPR), Occlusion (OCC), Mo-

tion Blur (MB), Low Resolution (LR), In-Plane-Rotation (IPR), Illumination Variation

(IV), Fast Motion (FM), Deformation (DEF) and Background Clutter (BC). In BACF-

CR-HOG, the CFs are trained using only the HOG features, just like BACF (Kiani Ga-

loogahi et al., 2017). BACF-CR-HOG can be obtained by simply adding the proposed

channel reqularization to BACF (Kiani Galoogahi et al., 2017). It is observed that the
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proposed BACF-CR-HOG has improved OS and DP rate as compared to the baseline

for many challenges. The performance further improves when the ensemble of deep

features (from Norm1 of VGG-M and Conv4-3 of VGG-16 (Simonyan and Zisserman,

2014)) and HOG features are used to train the CFs in BACF-CR. Table 5.2 shows a

comparison of the proposed CR trackers with their baseline versions on TC128 (Liang

et al., 2015). The proposed methods outperform their respective baselines in terms of

OS and DP rate and the proposed STRCF-CR-HOG outperforms the baseline STRCF-

HOG in terms of DP rate.

In Table 5.1, it is observed that BACF-CR-HOG does not outperform the baseline

BACF in many challenges in terms of overlap success rate. Where as, in terms of dis-

tance precision rate, BACF-CR-HOG outperforms the baseline BACF in all challenging

scenarios. In Table 5.2, BACF-CR-HOG outperforms BACF in terms of overlap suc-

cess rate and distance precision rate. STRCF-CR-HOG outperforms STRCF-HOG in

terms of overlap success rate. The above analysis shows that the channel regularization

results in performance improvement even when deep features are not used for learning

the filters.

Table 5.1: Comparisons of BACF-Channel Regularized (CR) with the baseline BACF
(Kiani Galoogahi et al., 2017) trackers over the OTB100 dataset (Wu et al.,
2015) based on overlap success rate at an overlap threshold of 0.5 and dis-
tance precision rate at a threshold of 20 pixels. Here SC = Size Change, OV
= Out of View, OPR = Out of Plane Rotation, OCC = Occlusion, MB = Mo-
tion Blur, LR = Low Resolution, IPR = In Plane Rotation, IV = Illumination
Variation, FM = Fast Motion, DEF = Deformation and BC = Background
Clutter. The best performance is shown in bold.

Overlap Success Rate (%)
Features Used SC OV OPR OCC MB LR IPR IV FM DEF BC Overall

BACF (Kiani Galoogahi et al., 2017) HOG 82.9 79.5 82.8 80.1 78.7 78.6 83.6 85.3 86.1 82.4 85.1 86.5
BACF-CR-HOG HOG 82.0 77.2 83.4 79.4 80.4 74.4 82.4 83.4 86.0 82.9 84.1 86.3

BACF-CR HOG + Deep 92.0 82.2 92.3 89.3 85.4 93.3 91.0 91.6 90.4 93.4 88.6 93.0
Distance Precision Rate (%)

BACF (Kiani Galoogahi et al., 2017) HOG 47.9 51.4 54.0 54.3 45.3 65.7 55.7 68.8 51.9 54.8 64.3 62.4
BACF-CR-HOG HOG 55.7 56.1 60.0 61.4 50.8 69.9 59.0 69.9 55.6 58.2 70.9 64.3

BACF-CR HOG + Deep 63.6 58.1 66.4 66.1 52.6 90.0 63.8 70.8 56.4 65.7 71.9 69.5

5.3.2 Evaluation on TC128 Dataset

Figure 5.3 shows the success and precision plots comparing the proposed trackers with

recent trackers: GFSDCF (Xu et al., 2019a), ASRCF (Dai et al., 2019), LDES (Li et al.,

2019b), SCSAtt (Rahman et al., 2020), LADCF (Xu et al., 2019b), ARCF (Huang et al.,

2019b), IBCCF (Li et al., 2017a), AutoTrack (Li et al., 2020a), SSRDCF (Guo et al.,

2019), KAOT (Li et al., 2020c), STRCF (Li et al., 2018c), BACF (Kiani Galoogahi
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Table 5.2: Comparisons of the Baseline trackers with their Channel Regularized (CR)
versions over TC128 (Liang et al., 2015) based on Overlap Success (OS) rate
at an overlap threshold of 0.5 and Distance Precision (DP) rate at a threshold
of 20 pixels. The best performance is shown in red

OS Rate (%) DP Rate (%)
BACF (Kiani Galoogahi et al., 2017) 48.45 63.81

BACF-CR-HOG 48.66 65.54
BACF-CR 57.50 78.29

STRCF-HOG (Li et al., 2018c) 49.24 65.28
STRCF-CR-HOG 49.15 66.45

STRCF (Li et al., 2018c) 50.64 67.58
STRCF-CR 56.91 77.76

et al., 2017), CFWCR (He et al., 2017), HDT (Qi et al., 2016), DRCF (Fu et al., 2020),

SITUP (Ma et al., 2020), EnKCF (Uzkent and Seo, 2018), Struck (Hare et al., 2015),

fDSST (Danelljan et al., 2016b), KCF (Henriques et al., 2014), LCCF (Zhang et al.,

2017a) and SCT4 (Choi et al., 2016).

The proposed Channel Regularized (CR) versions BACF-CR-HOG, STRCF-CR

and KCF-CR-HOG outperforms the baselines BACF (Kiani Galoogahi et al., 2017),

STRCF (Li et al., 2018c) and KCF (Henriques et al., 2014) respectively, in terms of

success and precision. STRCF-CR-HOG outperforms the baseline STRCF-HOG in

terms of precision. It is observed that the proposed BACF-CR ranks second in terms

of precision and success scores, and the proposed STRCF-CR performs third and fifth

best in terms of precision and success, respectively. The Proposed (CGRCF) tracker

performs comparably to the proposed BACF-CR in terms of success score and is fifth

best in terms of precision score.

5.3.3 Evaluation on VOT-2017 Dataset

This section shows a comparison of the proposed trackers with recent existing trackers

using the VOT toolkit. To evaluate a tracker, the toolkit applies a reset-based method-

ology, where the performance is measured in terms of Accuracy (A) and Robustness

(R) (Čehovin et al., 2016b). We evaluate the trackers using an Accuracy-Robustness

(AR) plot in which a tracker is more accurate if it is higher along the vertical axis and

is more robust if it further to the right on the horizontal axis (Čehovin et al., 2014). An

additional measure is Expected Average Overlap (EAO), which estimates the average

81



0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s 

R
at

e

Success Plots for TC128
GFSDCF [0.6049]
BACF-CR [0.5750]
Proposed (CGRCF) [0.5732]
ASRCF [0.5714]
STRCF-CR [0.5691]
LDES [0.5544]
SCSAtt [0.5516]
LADCF [0.5512]
ARCF [0.5327]
IBCCF [0.5221]
AutoTrack [0.5195]
SSRDCF [0.5176]
KAOT [0.5140]
STRCF [0.5064]
STRCF-HOG [0.4924]
STRCF-CR-HOG [0.4915]
BACF-CR-HOG [0.4866]
BACF [0.4845]
CFWCR [0.4785]
HDT [0.4770]
DRCF [0.4703]
SITUP [0.4697]
EnKCF [0.4499]
KCF-CR-HOG [0.4442]
Struck [0.4413]
fDSST [0.4382]
KCF [0.3867]
LCCF [0.3207]
SCT4 [0.0694]

0 20 40 60 80 100

Distance Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Precision Plots for TC128
GFSDCF [0.8314]
BACF-CR [0.7829]
STRCF-CR [0.7776]
ASRCF [0.7690]
Proposed (CGRCF) [0.7508]
KAOT [0.7480]
SCSAtt [0.7441]
ARCF [0.7404]
LDES [0.7401]
LADCF [0.7292]
IBCCF [0.7149]
AutoTrack [0.7032]
SSRDCF [0.7013]
CFWCR [0.6893]
STRCF [0.6758]
HDT [0.6675]
STRCF-CR-HOG [0.6645]
BACF-CR-HOG [0.6554]
STRCF-HOG [0.6528]
BACF [0.6381]
SITUP [0.6291]
DRCF [0.6259]
KCF-CR-HOG [0.6135]
Struck [0.6121]
EnKCF [0.6052]
fDSST [0.5712]
KCF [0.5478]
LCCF [0.4742]

Figure 5.3: Success and Precision plots for TC128 (Liang et al., 2015). The legend
of success plots contains Area-Under-the-Curve scores and the legend of
precision plots contains the precision scores at 20 pixels. The trackers are
arranged in descending order of their performance

overlap a tracker is expected to attain on a large collection of short term sequences with

the same visual properties in the given dataset. This measure is used to address the

increased variance and bias of the average overlap measure (Wu et al., 2015), when

evaluating over variable sequence lengths. The results obtained for the baseline (reset

based) and unsupervised (no-reset) experiments (Kristan et al., 2017b) are as follows.

• The Baseline Experiment:

Table 5.3 shows the EAO, Accuracy (A) and Robustness (R) of the proposed
trackers (Proposed (CGRCF), BACF-CR, BACF-CR-HOG, STRCF-CR and STRCF-
CF-HOG) compared to the existing trackers submitted in the VOT-2017 challenge
(Kristan et al., 2017b) and other recent trackers ARCF (Huang et al., 2019b),
LDES (Li et al., 2019b), ASRCF (Dai et al., 2019), BACF (Kiani Galoogahi
et al., 2017) and STRCF-HOG (Li et al., 2018c). It is observed that the Pro-
posed (CGRCF) tracker is third best in terms of R and EAO and the proposed
BACF-CR is third best in terms of A.

• The Unsupervised Experiment:

Table 5.3 shows the Area Under Curve (AUC) of the average overlap plot and
speed of the proposed trackers compared with existing trackers. It is observed
that the Proposed (CGRCF) tracker ranks fourth in terms of Overlap Curve AUC
and third in terms of normalized speed.

5.3.4 Evaluation on VOT-2019 Dataset

The VOT-2019 evaluation follows the format and metrics of the VOT-2017 evaluation

described in Section 5.3.3. Results for the evaluation are as follows:
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Figure 5.4: Success plots for LaSOT (Fan et al., 2019). The legend of the success plots
contains Area-Under-the-Curve scores. The trackers are arranged in de-
scending order of their performance

• The Baseline Experiment:

Table 5.4 shows the EAO, Accuracy (A) and Robustness (R) of the proposed
trackers (Proposed (CGRCF), BACF-CR, BACF-CR-HOG, STRCF-CR and STRCF-
CF-HOG) compared to trackers submitted to the VOT-2019 challenge and other
recent trackers, ARCF (Huang et al., 2019b), LDES (Li et al., 2019b), ASRCF
(Dai et al., 2019), BACF (Kiani Galoogahi et al., 2017) and STRCF-HOG (Li
et al., 2018c). It is observed that the proposed BACF-CR performs second best
in terms of A and EAO and third best in terms of R. The proposed STRCF-CR
performs second best in terms R and third best in terms of A. The Proposed
(CGRCF) tracker performs best in terms of R and is comparable to the proposed
BACF-CR in terms of EAO.

• The Unsupervised Experiment:

Table 5.4 shows the Area Under Curve (AUC) of the average overlap plots for
the proposed trackers compared with the existing trackers. It is observed that the
Proposed (CGRCF) tracker is best and STRCF-CR is second best in terms of the
overlap.

5.3.5 Evaluation on LaSOT Dataset

Figure 5.4 show the success plots comparing the proposed trackers on LaSOT (Fan

et al., 2019) with recent trackers: STRCF (Li et al., 2018c), ECO_HC (Danelljan et al.,

2017a), CFNet (Valmadre et al., 2017a), SSRDCF (Guo et al., 2019), BACF (Kiani Ga-

loogahi et al., 2017), TRACA (Choi et al., 2018), MEEM (Zhang et al., 2014a), HCFT
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Figure 5.5: Success plots for UAV123 (Mueller et al., 2016). The legend of the success
plots contains Area-Under-the-Curve scores. The trackers are arranged in
descending order of their performance

(Ma et al., 2015a), ARCF (Huang et al., 2019b), SRDCF (Danelljan et al., 2015b),

CSRDCF (Lukezic et al., 2017), KAOT (Li et al., 2020c), Staple (Bertinetto et al.,

2016a), SAMF (Li and Zhu, 2014), Struck (Hare et al., 2015), TLD (Kalal et al., 2011),

DSST (Danelljan et al., 2014a), fDSST (Danelljan et al., 2016b), SCT4 (Choi et al.,

2016), L1APG (Bao et al., 2012) and IVT (Ross et al., 2008). It is observed that the

proposed STRCF-CR ranks first, BACF-CR ranks fourth and the Proposed (CGRCF)

ranks second in terms of success.

5.3.6 Evaluation on UAV123 Dataset

Figure 5.5 show the success plots comparing the proposed trackers on UAV123 (Mueller

et al., 2016) with recent trackers: GFSDCF (Xu et al., 2019a), ASRCF (Dai et al.,

2019), LDES (Li et al., 2019b), SCSAtt (Rahman et al., 2020), ARCF (Huang et al.,

2019b), AutoTrack (Li et al., 2020a), KAOT (Li et al., 2020c), STRCF (Li et al.,

2018c), BACF (Kiani Galoogahi et al., 2017), DRCF (Fu et al., 2020), SITUP (Ma

et al., 2020), EnKCF (Uzkent and Seo, 2018), ECO (Danelljan et al., 2017a) and CCOT

(Danelljan et al., 2016d). It is observed that the proposed STRCF-CR ranks third, the

proposed BACF-CR ranks fifth, and the Proposed (CGRCF) outperforms many recent

trackers but is not comparable to the proposed BACF-CR and STRCF-CR in terms of

success. We argue that the small target size is the reason for the reduced performance,

and this is discussed further in Section 5.3.9.
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Figure 5.6: Success plots for GOT-10k (Huang et al., 2019a). The legend of the success
plots contains Area-Under-the-Curve scores. The trackers are arranged in
descending order of their performance

5.3.7 Evaluation on GOT-10k Dataset

Figure 5.6 show the success plots comparing the proposed trackers on GOT-10k dataset

(Huang et al., 2019a) with recent trackers: SiamFCv2 (Valmadre et al., 2017a), SiamFC

(Bertinetto et al., 2016b), GOTURN (Held et al., 2016b), CCOT (Danelljan et al.,

2016d), ECO (Danelljan et al., 2017a), CF2 (Ma et al., 2015a), MDNet (Nam and Han,

2016), CFNetc2 (Valmadre et al., 2017a), ECOhc (Danelljan et al., 2017a), CFNetc5

(Valmadre et al., 2017a), CFNetc1 (Valmadre et al., 2017a), BACF (Kiani Galoogahi

et al., 2017), MEEM (Zhang et al., 2014a), DAT (Pu et al., 2018), DSST (Danelljan

et al., 2014a), SAMF (Li and Zhu, 2014), Staple (Bertinetto et al., 2016a), SRDCFde-

con (Danelljan et al., 2016c), SRDCF (Danelljan et al., 2015b), fDSST (Danelljan et al.,

2016b), and CSK (Henriques et al., 2012). It is observed that the proposed BACF-CR

ranks fourth, STRCF-CR ranks eighth, and the Proposed (CGRCF) ranks sixth in terms

of success.

5.3.8 Evaluation using VGG-Net, ResNet50 and SE-ResNet50

Table 5.6 shows an evaluation of the proposed trackers (CGRCF, BACF-CR and STRCF-

CR) using VGG-Net (Simonyan and Zisserman, 2014), ResNet50 (He et al., 2016) and

(Squeeze and Excitation) SE-ResNet50 (Hu et al., 2018). In Table 5.6, the post-fix χ in

the experiments represents that the channel weights learned using the proposed regular-
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izations have been removed. This is done to analyze the tracker performance with and

without the channel weights learned using the proposed regularizations and the channel

weighing strategy of SE-Net (Hu et al., 2018).

Our experiments demonstrate that the proposed CGRCF performs best with VGG-

Net in terms of Overlap Success (OS) rate and with ResNet50 in terms of Distance Pre-

cision (DP) rate, outperforming the channel weighted SE-ResNet50. In case of BACF-

CR, best performance is obtained with VGG-Net using the channel weights learned by

the proposed Channel Regularization (CR). STRCF-CR performs best with ResNet50

in terms of OS rate and with VGG-Net in terms of DP rate.

The potential reason for VGG-Net outperforming ResNet-50 in most experiments

can be explained using the analysis provided in Li et al. (2017b) that evaluates the

performance of features extracted from VGG-Net (Simonyan and Zisserman, 2014),

ResNet (He et al., 2016), and GoogLeNet (Szegedy et al., 2015) for visual tracking.

For this evaluation, all settings in the tracker are fixed, except that the feature maps are

replaced with feature maps of VGG-Net (Simonyan and Zisserman, 2014), ResNet (He

et al., 2016) and GoogLeNet (Szegedy et al., 2015). It is observed that the VGG-Net

feature based tracker achieves the best performance and significantly outperforms the

ResNet and GoogLeNet based tracker in terms of Average Overlap Precision, Average

Distance Precision and Average Center Location Error. It is observed that ResNet’s

high-level features and middle-level features are not optimal as general purpose features

for other computer vision tasks (Li et al., 2017b). The probable reason is that ResNet is

an ensemble model and is not as suited to transfer learning because it needs to transfer

several sub-models at the same time (Li et al., 2017b). This may also lead the SE-

ResNet (Hu et al., 2018) to perform sub-optimally in object tracking. Also, SE-ResNet

learns channel weights with respect to classification task which may not show superior

performance compared to weights that are learned for object tracking. This is evident

from the performance of the proposed trackers using Resnet50 (He et al., 2016) and

SE-ResNet50 (Hu et al., 2018). Therefore, we use VGG-Net with the proposed channel

and graph regularization.

5.3.9 Discussion

Section 5.3.1 shows that the proposed CR formulation can be conveniently applied to

the HOG feature as well as deep feature based CF trackers to improve performance.

Section 5.3.2, 5.3.3, 5.3.4, 5.3.5, 5.3.6, and 5.3.7 shows the impact of introducing the
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Table 5.3: VOT toolkit report for VOT-2017 (Kristan et al., 2017b) showing Accuracy
(A), Robustness (R) and Expected Average Overlap (EAO) for baseline ex-
periment, and Overlap AUC and Speed for unsupervised experiment. The
top three trackers are shown in red, blue and green

Baseline Unsupervised
AR-Rank Speed
A R EAO Overlap Normalized

Proposed (CGRCF) 0.47 29.23 0.20 0.36 10.61
BACF-CR 0.48 34.26 0.17 0.34 7.71

STRCF-CR 0.47 31.01 0.18 0.35 4.17
BACF-CR-HOG 0.47 69.72 0.11 0.24 3.75

STRCF-CR-HOG 0.47 60.77 0.11 0.24 2.80
Correlation Filter based and Hybrid Trackers

BACF (Kiani Galoogahi et al., 2017) 0.44 55.77 0.12 0.20 0.18
STRCF-HOG (Li et al., 2018c) 0.45 61.33 0.11 0.30 7.80

ASRCF (Dai et al., 2019) 0.46 30.97 0.18 0.34 2.57
ARCF (Huang et al., 2019b) 0.46 41.41 0.15 0.28 130.45

LDES (Li et al., 2019b) 0.49 39.64 0.18 0.32 12.80
CCOT (Danelljan et al., 2016d) 0.48 20.41 0.26 0.39 0.05
ECO (Danelljan et al., 2017a) 0.47 17.66 0.28 0.40 0.99

SRDCF (Danelljan et al., 2015b) 0.47 64.11 0.11 0.24 1.25
UCT (Kristan et al., 2017b) 0.48 29.79 0.20 0.37 3.08
ANT (Kristan et al., 2017b) 0.45 40.15 0.16 0.27 1.89
BST (Kristan et al., 2017b) 0.26 55.50 0.11 0.14 0.28
CGS (Kristan et al., 2017b) 0.50 53.37 0.14 0.33 0.12

ATLAS (Kristan et al., 2017b) 0.48 37.42 0.19 0.34 2.34
FSTC (Kristan et al., 2017b) 0.47 31.95 0.18 0.33 0.19
GMD (Kristan et al., 2017b) 0.44 54.73 0.12 0.24 2.15

Sequence	Name:	Cup_ce
Challenges:	MB,	IPR,	OPR,	FM
Frame	#:	320Text

Sequences	From	TC128

Sequences	From	VOT-2019

Sequence	Name:	Yo-yos_ce1
Challenges:	MB,	OV,	LR,	FM
Frame	#:	200

Sequence	Name:	Rabbit2
Challenges:	CM,	MC
Frame	#:	100

Sequence	Name:	Polo
Challenges:	CM,	MC
Frame	#:	86

Sequence	Name:	Tiger2
Challenges:	IV,	DEF,	IPR,	OPR,	MB,	OV,	OCC,	FM
Frame	#:	136

Sequence	Name:	Fernando
Challenges:	CM,	IV,	MC,	OCC,	SC
Frame	#:	146

Challenges	present	exclusively	in	VOT-2019Challenges	present	exclusively	in	TC128 Challenges	common	in	VOT-2019	&	TC128

Sequence	Name:	Airport_ce
Challenges:	OCC,	SC
Frame	#:	148

Sequence	Name:	Crabs1
Challenges:	OCC,	SC
Frame	#:	154

Sequence	Name:	zebrafish1
Challenges:	OCC
Frame	#:	224

Sequence	Name:	FaceOcc1
Challenges:	OCC
Frame	#:	518

Figure 5.7: Comparison of the weight matrix (Z) obtained for intermediate frames.
Each plot shows a 31×31 weight matrix computed for 31 channels of HOG
features. Here, the diagonal elements of Z are set to zero for better display.
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Table 5.4: VOT toolkit report for VOT-2019 (Kristan et al., 2019) showing Accuracy
(A), Robustness (R) and Expected Average Overlap (EAO) for baseline ex-
periment and Overlap AUC for unsupervised experiment. The top three
trackers are shown in red, blue and green

Baseline Unsupervised
AR-Rank

EAO A R Overlap
Proposed (CGRCF) 0.1569 0.4698 42.1693 0.3368

BACF-CR 0.1570 0.4828 43.3683 0.3184
STRCF-CR 0.1486 0.4746 43.2568 0.3273

BACF-CR-HOG 0.1071 0.4641 73.4347 0.2445
STRCF-CR-HOG 0.1152 0.4711 68.3897 0.2365

Correlation Filter based and Hybrid Trackers
BACF (Kiani Galoogahi et al., 2017) 0.1162 0.4476 65.7094 0.1959

STRCF-HOG (Li et al., 2018c) 0.1141 0.4523 70.0246 0.2985
ASRCF (Dai et al., 2019) 0.1451 0.4652 44.5818 0.3230

ARCF (Huang et al., 2019b) 0.1351 0.4669 52.7181 0.2690
LDES (Li et al., 2019b) 0.1747 0.4882 50.2721 0.2940

CISRDCF (Kristan et al., 2019) 0.1533 0.4147 48.9861 0.2417
ANT (Kristan et al., 2019) 0.1509 0.4518 53.0936 0.2390
LGT (Kristan et al., 2019) 0.1308 0.3960 54.8683 0.2062

Table 5.5: Comparison of Properties of Various Tracking Benchmarks

Dataset Video Test
Video

Min
Frame

Max
Frame

Total
Frames

Num. of
Attributes

OTB100 (Wu et al., 2015) 100 - 71 3872 59k 11
TC128 (Liang et al., 2015) 128 - 71 3872 55k 11

VOT-2017 (Kristan et al., 2017b) 60 - 41 1500 21k 5
VOT-2019 (Kristan et al., 2019) 60 - 41 1500 20k 5

LaSOT (Fan et al., 2019) 1.4k 280 1k 11397 3.52M 14
UAV123 (Mueller et al., 2016) 123 - 109 3085 113k 12
GOT-10k (Huang et al., 2019a) 10k 180 - - 1.5M 6

proposed graph regularization to the proposed CR formulation presented in Section

5.2.1. It is observed that though the proposed BACF-CR works better compared to

the Proposed (CGRCF) on TC128 (Figure 5.3), and GOT-10k (Figure 5.4), UAV123

dataset (Figure 5.5), a comprehensive review using VOT-2017 (Table 5.3), VOT-2019

(Table 5.4) and LaSOT (Figure 5.4) shows that CGRCF works better for most evaluation

metrics. Table 5.3 shows a comparison of the proposed formulations with existing state-

of-the-art trackers on the VOT-2017 dataset. It is observed that the proposed CGRCF

formulation outperforms the proposed BACF-CR formulation in terms of Robustness

(R) and Expected Average Overlap (EAO) for the baseline experiments and in terms of

overlap and speed for the unsupervised experiments. Table 5.4 shows a comparison of

the proposed formulations with existing state-of-the-art trackers on VOT-2019 dataset.
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Table 5.6: Evaluation of the Proposed Trackers, using VGG-Net (Simonyan and Zisser-
man, 2014), ResNet50 (He et al., 2016) and SE-Resnet50 (Hu et al., 2018),
in terms of Overlap Success (OS) rate at an overlap threshold of 0.5 and Dis-
tance Precision (DP) rate at a threshold of 20 pixels on TC128 (Liang et al.,
2015). χ represents that the channel weights learned using the proposed reg-
ularizations have been removed. The best performance is shown in red.

Network Used OS Rate (%) DP Rate (%)
CGRCF

VGG-Net 57.32 75.08
VGG-Net - χ 33.13 43.91

ResNet50 55.78 77.49
ResNet50 - χ 47.50 62.55

SE-ResNet50 - χ 45.31 60.02
BACF-CR

VGG-Net 57.50 78.29
ResNet50 54.78 75.35

SE-ResNet50 - χ 54.93 75.19
STRCF-CR

VGG-Net 56.91 77.76
ResNet50 57.04 77.37

SE-ResNet50 - χ 55.33 75.31

Bird:	OCC,	FM,	OPR GirlMov:	OCC,	MB,	OPR Coke:	IV,	OPR,	OCC,	FM,	IPR

Football1:	OPR,	IPR,	BC Yo-yos_ce1:	MB,	OV,	LR,	FM TennisBall_ce:	OCC,	MB,	FM,	LR

Successfully	
Tracked	Frames

Tracking	Failures

Figure 5.8: Intermediate Frames of Sequences from TC128 Showing Tracker’s Perfor-
mance During Various Challenges.

It is observed that the proposed CGRCF formulation outperforms the proposed BACF-

CR formulation in terms of R for the baseline experiments and in terms of overlap for

the unsupervised experiments. The performance of CGRCF is comparable to BACF-

CR in terms of EAO for the baseline experiments. Figure 5.3 shows a comparison of the

proposed formulations with the existing state-of-the-art trackers on TC128 dataset. It is

observed that the proposed CGRCF formulation performs comparable to the proposed

BACF-CR formulation in terms overlap success rate. Figure 5.4 shows evaluation on

LaSOT dataset where the proposed CGRCF works better than the proposed BACF-CR.

The computational cost and effect of the proposed graph regularization are discussed

below.
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Computational Complexity

The computational cost of each ADMM sub-problem that solves for hk in Equations

5.6, 5.17 and 5.27 is O(T log T ). The cost of solving for ĝ in Equations 5.11 and 5.18

is O(KT ), and the cost of solving for q using Equations 5.13, 5.19 and 5.30 is also

O(KT ). Section 5.3 shows a comparison of the proposed formulations with recent

HOG and deep feature based CF trackers.

Effect of the Graph Regularization

Figure 5.7 shows a comparison of the weight matrix (Z) for sequences with various

challenges from TC128 and VOT-2019. Each plot shows a 31 × 31 weight matrix

computed for 31 channels of the HOG features. For the sake of clarity, we exclude deep

feature channels. In the first two columns, we compare Z obtained from sequences

that contain challenges that are exclusive to the respective datasets; sequences Cup_ce

and Yo-yos_ce1 from TC128 and sequences Rabbit2 and Polo from VOT-2019. It is

observed that Z for the sequences from TC128 has lower values compared to Z for

sequences from VOT-2019. It should be noted that that Z for the sequence Yo-yos_ce1

from TC128 contains exceptionally low values. This is because Yo-yos_ce1 is a Low

Resolution (LR) sequence with a very small target object, which results in a poor feature

representation that is not sufficient to capture the similarity between the channels.

The third and fourth columns compare the Z obtained from the sequences with com-

mon challenges in both datasets. It is observed that the Z obtained for sequences with

similar challenges are similar. The last column compares one of the most challenging

sequences from each dataset. Since VOT-2019 contains only 5 challenges and TC128

contains 11 challenges, as can be seen in Table 5.5, the most challenging sequences

from TC128 are far more complex than those from VOT-2019. It is observed that in

most cases, the Z obtained from TC128 sequences has lower values compared to those

from VOT-2019 sequences. This is because TC128 is a more complex dataset and con-

tains more challenges with longer sequences as compared to VOT-2019. An overview

of all the tracking benchmarks used in this work is given in Table 5.5.

The lower values in Z implies that different feature channels of TC128 sequences

have very low similarity between each other. Hence, sequences from TC128 do not

benefit from the graph regularization which is meant to preserve similarity between

different feature channels. This is why BACF-CR significantly outperforms CGRCF on
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TC128 in terms of distance precision rate.

To demonstrate the effects of Z learned for different challenges on tracker’s per-

formance, we show intermediate frames of sequences from TC128 in Figure 5.8. The

performance is shown against ECO (Danelljan et al., 2017a) , ARCF (Huang et al.,

2019b), ASRCF (Dai et al., 2019), CCOT (Danelljan et al., 2016d), LDES (Li et al.,

2019b), STRCF (Li et al., 2018c), BACF (Kiani Galoogahi et al., 2017), and the pro-

posed CGRCF, BACF-CR and STRCF-CR trackers. We include only a few trackers in

order to maintain clarity in the figures. It is observed that the proposed CGRCF suc-

cessfully tracks the target during challenges like Occlusion (OCC), Fast Motion (FM),

Out-of-Plane Rotation (OPR), Motion Blur (MB), Illumination Variation (IV), In-Plane

Rotation (IPR) and Background Clutter (BC) where most existing trackers fail. The

proposed trackers, along with the other trackers, fail to track during challenges like

Out-of-View (OV), and Low Resolution (LR) (as can be seen in Figure 5.7). This is the

reason why the proposed tracker delivers mediocre performance on UAV123 (Mueller

et al., 2016) in which most sequences contain a small, low resolution target object. The

potential reason for BACF-CR outperforming the CGRCF on GOT-10k (Huang et al.,

2019a) can be the presence of low-resolution attribute in the dataset.

The analysis across multiple datasets shows that the proposed CGRCF formulation

results in a better performance as compared to using the proposed CR formulation alone.

The CGRCF formulation not only outperform the baseline trackers, but also outperform

many recent CF based trackers. It is observed that performance of most of the trackers

varies across the datasets, yet the CGRCF approach is consistent and performs well in

all evaluation settings.

5.4 Chapter Summary

In this work, we explore channel attention and study regularization components as

methods to advance the performance of baseline trackers. The introduced channel reg-

ularization component enables the CF to suppress features that may have an adverse

affect on tracking. It also enhances the contribution of the feature maps that are most

relevant to the current tracking step. The graph regularization component promotes

learning similar weights for feature channels with high similarity. As a result a more

discriminative and robust CF is trained, that achieves efficient object tracking during
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multiple challenges. We use ADMM to efficiently provide an optimal solution to the

proposed formulations. The positive effects of the proposed formulations are demon-

strated on OTB100 (Wu et al., 2015), TC128 (Liang et al., 2015), VOT-2017 (Kristan

et al., 2017b), VOT-2019 (Kristan et al., 2019), LaSOT (Fan et al., 2019), UAV123

(Mueller et al., 2016), and GOT-10k (Huang et al., 2019a) datasets. A comparative

analysis with recent top ranked tracker reveals that the proposed approach outperforms

the state of the art trackers in most challenges.

In the method proposed in this chapter, the developed STRCF-CR formulation has

fixed spatial weights. The temporal regularization imposes a constraint such that the

current learned filter is similar to the previous filter. Other improved spatio-temporal

regularization based trackers like ASRCF (Dai et al., 2019) learn spatial weights that

are similar to some reference weights. We argue that due to continuous temporal and

spatial variations in a tracking sequence, the filter and spatial weights in a tracking

step will not be identical to their reference counterparts. In the next chapter, along

with assigning dynamic weights to the deep feature channels, we model the spatial

and temporal variations explicitly using an Importance Guided Sparse Spatio-Temporal

constrained optimization framework for tracking.
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CHAPTER 6

IGSSTRCF: Importance Guided Sparse

Spatio-Temporal Regularized Correlation Filters For

Tracking

6.1 Introduction

Multi-channel CNN feature encode different attributes of the target in each channel.

Therefore, the importance of each channel may change from one tracking step to the

next. Some channels may offer more informative features for tracking, while others

with less useful information may degrade the tracking and eventually lead to tracker

drift (Danelljan et al., 2015b). To address this issue of channel importance, feature

selection (Xu et al., 2019a), adaptive importance maps (Li et al., 2018a) and reliability

learning (Sun et al., 2018a) methods have been proposed. Inspired by the above work,

we investigated a channel graph regularization based Correlation Filter (CF) tracker

formulation in Chapter 5. We further improve the proposed formulation from Chapter

5 by introducing an efficient spatial and temporal regularizations, increasing awareness

of previous and spatially adjacent observations.

The challenges with spatial regularization based CF trackers are that they either

have fixed spatial weights (Danelljan et al., 2015b), or learn spatial weights that are

similar to some reference weights (Dai et al., 2019). Likewise, temporal regularization

based CF tracker imposes a constraint such that the current learned filter is similar to

the previous filter (Li et al., 2018c). However, due to continuous temporal and spatial

variations in a tracking sequence, the filter and spatial weights in a tracking step will not

be identical to their reference counterparts. The motivation for our proposed approach

stems from the proposition that the above variations can be explicitly modelled using

a constrained optimization framework. To model the spatial and temporal variations,

we propose an Importance Guided Sparse Spatio-Temporal Regularization based CF

(IGSSTRCF) tracker with following advances:
1. We introduce a Sparse Spatial Regularization (SSR) component that learns the

spatial weights with the help of reference weights, and simultaneously models the
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Figure 6.1: A Block diagram for the proposed IGSSTRCF tracker. During training,
q,Bw,Bh,w and h are learned via ADMM iterations. During testing, we
extract an ensemble of deep and hand-crafted features from the search area.
The target is localized using a response map obtained by the dot product
of the Fourier transformed features and filters. For target scale estimation,
we follow Dai et al. (2019). F and F−1 denotes Fourier and inverse Fourier
transform operations respectively

sparse difference between the reference weights and the learned spatial weights.
The filter coefficients belonging to the background region are assigned higher
penalty weights. This suppresses the effect of unfavorable background informa-
tion and boundary effects in the learned filter.

2. We introduce a Sparse Temporal Regularization (STR) component that learns a
correlation filter by modelling the sparse difference between the previous and
the current filter. As a result, the filter sparsely adapts to appearance changes,
preventing drift.

3. We introduce a Channel Importance (CI) term that assigns higher weights to the
feature channels that encode useful target information, and lowers weights to
the less informative channels. As a result, less informative channels that may
adversely effect training are suppressed.

Recently, in a concurrent work, GFSDCF (Xu et al., 2019a), a group feature se-

lection method for multi-channel image representations, reducing the dimensionality

across both spatial and channel dimensions with a temporal smoothness regularisa-

tion term is introduced. Though our spatial regularization term is similar in spirit, the

temporal regularization and overall formulation as an importance guided sparse spatio-

temporal regularization is completely different from (Xu et al., 2019a); The authors in

(Xu et al., 2019a) propose an L1 channel regularization and does not focus on mod-

eling the sparse temporal variations, Whereas, the proposed IGSSTRCF models the
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sparse spatio-temporal variations and use L2 channel regularization that learns non-zero

weight for each feature channel.

Figure 6.1 shows a block diagram that describes the process flow of the proposed

IGSSTRCF tracker. We evaluate the tracker on the benchmark datasets: TC128 (Liang

et al., 2015), UAV123 (Mueller et al., 2016), VOT-2019 (Kristan et al., 2019) and VOT-

2017 (Kristan et al., 2017b). A comparative analysis shows that the proposed formula-

tion results in a significant improvement over the baselines (Dai et al., 2019; Li et al.,

2018c) and other recent trackers. An ablation study is also presented that demonstrates

the importance of each regularization term for tracker performance.

6.2 Proposed Approach

(Li et al., 2018c) employs spatio-temporal constraints that utilize CFs learned in the

previous frame to learn the CFs in the current frame. (Dai et al., 2019) introduces an

object aware spatial regularization that attempts to learn spatial weights that are similar

to the reference spatial weights. The regularization terms in (Li et al., 2018c) and (Dai

et al., 2019) make use of a reference to learn the CFs and spatial weights. However,

the target appearance varies with every frame. Therefore, the spatial weights or CFs

learned in consecutive frames should be constrained to be similar while still adapting to

variations.

Besides the above methods, many CF based trackers focus on modeling channel im-

portance as each feature channel can make a dynamic contribution during each tracking

step (Ge et al., 2019; Lu et al., 2019b; Li et al., 2018a; Sun et al., 2018a; Zhou et al.,

2016). However, these channel importance based CF trackers do not employ spatial

(Danelljan et al., 2015a,b, 2016c; Kiani Galoogahi et al., 2015) or temporal (Dai et al.,

2019; Li et al., 2018c) regularization.

To combat the shortcomings of the above spatio-temporal regularization based (Dai

et al., 2019; Li et al., 2018c) and channel importance based (Li et al., 2018a; Sun

et al., 2018a; Zhou et al., 2016) CF trackers, we propose an Importance Guided Sparse

Spatio-Temporal Regularization based CF (IGSSTRCF) tracker which is formulated as

follows,

E(h,q,w,Bw,Bh) =
1

2

∥∥∥∥∥y −
K∑
k=1

CI︷︸︸︷
qk (xk ∗ (PThk))

∥∥∥∥∥
2

2

+
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λ1
2

K∑
k=1

‖w � hk‖22 +
λ2
2
‖w −wr −Bw‖

2

2
+ ζ ‖Bw‖1︸ ︷︷ ︸

Sparse Spatial Regularization (SSR)

+

θ

2

∥∥h(t) − h(t−1) −Bh

∥∥2
2

+ η ‖Bh‖1︸ ︷︷ ︸
Sparse Temporal Regularization (STR)

+
β

2
‖q‖22︸ ︷︷ ︸

Channel Importance (CI)

, (6.1)

where qk is a scalar weight for response channel k, q = {q1, q2, ..., qK}, and β
2
‖q‖22 is

a regularization term for the channel weights. λ2
2
‖w −wr −Bw‖22 is the spatial regu-

larization component and Bw is a sparse vector that learns the spatial changes between

the current and reference spatial weights. θ
2

∥∥h(t) − h(t−1) −Bh

∥∥2
2

is the temporal reg-

ularization term and Bh is a sparse vector that learns the temporal changes between the

current and past filter. λ1, λ2, θ, ζ, η and β are the regularization parameters. Using Par-

seval’s theorem to express Equation 6.1 in frequency domain, the equality constrained

optimization form is given by,

E(Ĝ,H,q,w,Bw,Bh) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+

λ1
2

K∑
k=1

‖w � hk‖22 +
λ2
2
‖w −wr −Bw‖

2

2
+ ζ ‖Bw‖1+

θ

2

K∑
k=1

∥∥∥h(t)
k − h

(t−1)
k −Bh

∥∥∥2
2

+ η ‖Bh‖1 +
β

2
‖q‖22,

s.t., ĝk =
√
TFPThkqk, (6.2)

whereˆdenotes the Discrete Fourier Transform (DFT) of a signal, such that â =
√
TFa,

a ∈ RT×1, F is a T × T orthonormal matrix of complex basis vectors that transforms

any T dimensional vectorized signal into the Fourier domain and Ĝ = [ĝ1, ĝ2, ..., ĝK ]

is an auxiliary variable matrix. The local optimal solution to the model in Equation 6.2

can be obtained using ADMM (Boyd et al., 2011). The augmented Lagrangian form of

Equation 6.2 is given by,

E(Ĝ,H,q,w,Bw,Bh) =
1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
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λ1
2

K∑
k=1

‖w � hk‖22 +
λ2
2
‖w −wr −Bw‖

2

2
+ ζ ‖Bw‖1+

θ

2

∥∥h(t) − h(t−1) −Bh

∥∥2
2

+ η ‖Bh‖1+

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFPThkqk +
ŝk
µ

∥∥∥∥2
2

+
β

2
‖q‖22, (6.3)

where µ is the penalty factor and Ŝ = [ŝ1, ŝ2, ..., ŝK ] ∈ RT×K is the Fourier transform

of the Lagrange multiplier. The above problem can be solved by using ADMM for the

following sub-problems:

Solving for H

Given Ĝ,q,w,Bw,Bh in Equation 6.3, the optimal solution for H∗ is obtained by,

h∗k = argmin
hk

λ1
2

K∑
k=1

‖w � hk‖22 +
θ

2

K∑
k=1

∥∥∥h(t)
k − h

(t−1)
k −Bh

∥∥∥2
2

+

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFPThkqk +
ŝk
µ

∥∥∥∥2
2

. (6.4)

Solving Equation 6.4, we get,

h∗k = (λ1WWT + µTq2kI + θI)−1(TqkP(µgk + sk) + θh(t−1)
k + θBh), (6.5)

where W = diag(w) ∈ RT×T and the inverse term can be conveniently obtained by

computing the reciprocal of each element. H∗ can be obtained using H∗ = [h∗1,h
∗
2, ...,h

∗
K ].

Solving for Ĝ

Fixing H,q,w,Bw,Bh in Equation 6.3, the optimal Ĝ∗ can be obtained by solving,

Ĝ∗ = argmin
Ĝ

1

2

∥∥∥∥∥ŷ −
K∑
k=1

x̂k � ĝk

∥∥∥∥∥
2

2

+
µ

2

K∑
k=1

∥∥∥∥ĝk −√TFPThkqk +
ŝk
µ

∥∥∥∥2
2

. (6.6)

However, due to high computational complexity, it is difficult to optimize Equation 6.6

(Dai et al., 2019). Therefore, we proceed pixel-wise for all channels. The reformulated
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optimization problem in Equation 6.6 is given by,

V∗j(Ĝ) = argmin
Vj(G)

1

2

∥∥∥ŷj − Vj(X̂)
T
Vj(Ĝ)

∥∥∥2
2

+
µ

2

∥∥∥Vj(Ĝ) + Vj(M̂)
∥∥∥2
2
, (6.7)

where X = [x1,x2, ...,xK ] and X̂ = [x̂1, x̂2, ..., x̂K ]. Vj(X̂) = [x̂1j, x̂2j..., x̂Kj]
T

is a K × 1 vector, picking the jth element from each channel of X̂, i.e., V1(X̂) =

[x̂11, x̂21, ..., x̂K1]
T and Vj(Ĝ) = [ĝ1j, ĝ2j, ..., ĝKj]

T . Similarly, we form, Vj(M̂) =

Vj

(
Ŝ
µ

)
− Vj(

√
TFPTHq), where Vj

(
Ŝ
µ

)
= [

ŝ1j
µ
,
ŝ2j
µ
, ...,

ŝkj
µ

]
T

. Solving (9), we get,

V∗j(Ĝ) = (µI + Vj(X̂)Vj(X̂)
T

)
−1

(ŷjVj(X̂)−µVj

(
Ŝ

µ

)
+µVj(

√
TFPTHq)). (6.8)

Equation 6.8 can be efficiently computed using the Sherman-Morrison formula (Dai

et al., 2019) as follows.

V∗j(Ĝ) =
1

µ

(
I− Vj(X̂)Vj(X̂)

T

µ+ Vj(X̂)
T
Vj(X̂)

)
(ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFPTHq)).

(6.9)

Solving for q

If Ĝ,H,w,Bw,Bh are fixed in Equation 6.3, qk can be computed as follows,

q∗k = argmin
qk

µ

2

K∑
k=1

∥∥∥∥ĝk −√TFPThkqk +
ŝk
µ

∥∥∥∥2
2

+
β

2
‖q‖22. (6.10)

Solving Equation 6.10, we get,

q∗k =
µ
√
Thk

TPgk + Thk
TPsk

µ
√
Thk

TPPThk + β
. (6.11)

Solving for w

Fixing Ĝ,H,q,Bw and Bh in Equation 6.3, the closed-form solution for w is given by,

w∗ =
λ1
2

K∑
k=1

‖Nkw‖22 +
λ2
2
‖w −wr −Bw‖

2

2
, (6.12)

=

(
λ1

K∑
k=1

NT
k Nk + λ2I

)−1
λ2(wr + Bw), (6.13)
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=
λ2(wr + Bw)

λ1
∑K

k=1 hk
⊙

hk + λ2
, (6.14)

where Nk = diag(hk) ∈ RT×T .

Solving for Bw

In ASRCF (Dai et al., 2019), the authors attempt to learn the spatial weights w by

incorporating the term ‖w −wr‖22 in the CF formulation. This term attempts to make

w similar to a reference weight wr. However, due to constant changes in the target

appearance and background, w will not be exactly similar to wr. To capture the minor

variation between wr and w, we propose to learn a sparse difference vector Bw. Given

Ĝ,H,q,w and Bh, the solution for Bw can be obtained using,

B∗w = argmin
Bw

λ2
2
‖w −wr −Bw‖

2

2
+ ζ‖Bw‖1. (6.15)

The solution for Equation 6.15 can obtained using the Iterative Soft Thresholding algo-

rithm (IST) (Beck and Teboulle, 2009) by

B∗w = S ζ
λ2

(w −wr). (6.16)

Here, Sα(zi) = sign(zi)max(0, |zi| − α), is the soft-thresholding operator for a vector

z. Figure 6.2 shows a pictorial representation of Bw learned for consecutive ADMM

updates from the sequence Mountainbike in the TC128 dataset (Liang et al., 2015). It

can be seen that Bw has low penalty weights for the pixels corresponding to the target.

Thus, when Bw is added to the reference wr, the resultant w has high penalty weights

near the boundary region and low penalty weights near the target.

Solving for Bh

In STRCF (Li et al., 2018c), the temporal regularization term,
∥∥∥h(t)

k − h
(t−1)
k

∥∥∥, is used

to learn a filter h
(t)
k similar to h

(t−1)
k , where t is the frame index and k represents the

feature channel index. However, since the target appearance changes every frame, the

filter h
(t)
k will be similar to h

(t−1)
k , but should also adapt to the variations in the object

appearance between consecutive frames. To capture the variation between h
(t)
k and

h
(t−1)
k , we learn a sparse difference vector Bh. Given Ĝ,H,q,w and Bw, the solution
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Frames

Bh

Bw

3D View 2D View

Figure 6.2: Pictorial representation of Bw and Bh learned for consecutive ADMM up-
dates from the sequence Mountainbike (Frame# 46, 48, 50, 52 and 54) of
the TC128 dataset (Liang et al., 2015). Bh is normalized between [0 1] for
display purpose

for Bh can be obtained using,

B∗h = argmin
Bh

θ

2

∥∥∥h(t)
k − h

(t−1)
k −Bh

∥∥∥2
2

+ η‖Bh‖1. (6.17)

The solution for Equation 6.17 can obtained using IST (Beck and Teboulle, 2009) by

B∗h = S η
θ
(h

(t)
k − h

(t−1)
k ). (6.18)

Here, S is the soft-thresholding operator. Figure 6.2 shows a pictorial representation of

Bh learned for consecutive ADMM updates. It can be seen that Bh is non-zero for the

pixels corresponding to the target and zero for the background. Thus, when Bh is added

to h(t−1), the resultant h(t) contains refined filter coefficients in the target region.

6.2.1 Lagrangian Multiplier Update

The Lagrangian multipliers are updated using,

µ(t+1) = min(µmax, νµ
(t)), (6.19)

Ŝ(t+1) = Ŝ(t) + µ(t+1)(Ĝ(t+1) − Ĥ(t+1)), (6.20)
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λ
(t+1)
2 = ρλ

(t)
2 , (6.21)

θ(t+1) = ρθ(t), (6.22)

where ρ > 1, Ĥ(t+1) and Ĝ(t+1) are the current solutions to Ĥ and Ĝ respectively, and

Ŝ(t) is the Fourier transform of the Lagrangian variable in the previous state. Thus, the

optimal filter H∗, feature channel weight q∗k, spatial weight w∗ and the sparse difference

components, B∗w and B∗h, can be obtained by iteratively solving for H, G, qk, w, Bw and

Bh followed by the Lagrangian update, until convergence.

6.2.2 Target Localization

The target location is determined using,

r̂ =
K∑
k=1

x̂k � ĝk, (6.23)

where r̂ is the response map in the Fourier domain. The location at which r̂ shows the

maximum value is used to estimate the target location. For target scale estimation, we

follow the same strategy as Dai et al. (2019).

6.2.3 Model Update

In order to adjust to target appearance variations, we use an online adaptive template

scheme (Bertinetto et al., 2016a; Bolme et al., 2010; Zhang and Suganthan, 2017) to

update the template model,

X̂
(t)
model = (1− ω)X̂

(t−1)
model + ωX̂(t), (6.24)

where ω is the online learning rate, X̂(t) is the current observation, X̂
(t−1)
model is the old

template model and X̂
(t)
model is the updated template model. To introduce a reasonable

prior for adaptive spatial regularization, the reference spatial weights are updated using

wr ← w∗. In the first frame, wr is initialized with a negative Gaussian shape (Dai et al.,

2019; Danelljan et al., 2015b). The above update schemes ensure our model is adaptive

to target appearance variations during tracking.
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Figure 6.3: Success and Precision plots for TC128 (Liang et al., 2015) ((a) and (b)) and
UAV123 dataset (Mueller et al., 2016) ((c) and (d)), with trackers arranged
in descending order of their performance. The legend of the precision plots
contains the scores at a threshold of 20 pixels and the legend of the success
plots contains Area-Under-the-Curve scores for each tracker
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Figure 6.4: Expected overlap scores for the baseline experiments on VOT-2019 Kristan
et al. (2019), showing the that proposed IGSSTRCF tracker performs the
second best
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Figure 6.5: Expected overlap scores for the baseline experiments on VOT-2017 Kristan
et al. (2017b), showing the that proposed IGSSTRCF tracker outperforms
several state-of-the-art trackers

6.3 Experiments

This section provides implementation details and presents the performance analysis of

the proposed tracker on four benchmark datasets: TC128 (Liang et al., 2015), UAV123

(Mueller et al., 2016), VOT-2019 (Kristan et al., 2019) and VOT-2017 (Kristan et al.,

2017b), in comparison to state-of-the-art trackers. The section ends with an extensive

ablation study examining the contribution of each regularization component of the pro-

posed IGSSTRCF tracker.
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Figure 6.6: Intermediate frames showing examples of successfully tracked frames (left)
and failure cases (right) in different sequences from the TC128 dataset
(Liang et al., 2015)

6.3.1 Implementation Details

All proposed formulations are implemented using MATLAB2019a with the MatCon-

vNet toolbox. We use an ensemble of features extracted from Norm1 of VGG-M,

Conv4-3 of VGG-16 (Simonyan and Zisserman, 2014) and HOG features to represent

and localize the target. In Equation 6.1, the parameters θ and λ2 are 1.2, λ1 and β are

0.01, and η and ζ are 0.001. ρ in Equation 6.21 is 1.5 and the learning rate, ω, in Equa-

tion 6.24 is 0.0186. ν in Equation 6.19 is 10 and µmax is 104. The initial value of the

ADMM penality factor, µ, is set to 1. The ADMM is updated every 2 frames. The value

of each parameter is selected empirically.

6.3.2 Performance Analysis

We present an extensive evaluation of IGSSTRCF on four challenging tracking bench-

marks with a tracking speed of 8 frames per second. For TC128 (Liang et al., 2015) and

UAV123 (Mueller et al., 2016) datasets, we report a one-pass evaluation with distance

precision and overlap success plots. For the VOT datasets (Kristan et al., 2017b, 2019),

we use the benchmark protocol to evaluate the tracker in terms of Expected Average

Overlap (EAO), Accuracy (A) and Robustness (R) for the baseline experiments, and

overlap Area-Under-the-Curve (AUC) for the unsupervised experiments (Kristan et al.,

2017b). For VOT datasets, the expected overlap curves, scores, unsupervised overlap

AUC, and A-R analysis for individual challenges are included in the supplementary

material.

104



Evaluation on TC128 Dataset

The proposed tracker is evaluated on TC128 (Liang et al., 2015). Figure 6.3 (a) and

(b) shows the success and precision plots comparing the proposed IGSSTRCF tracker

with recent trackers: GFSDCF (Xu et al., 2019a), ECO (Danelljan et al., 2016a), AS-

RCF (Dai et al., 2019), IBCCF (Li et al., 2017a), AutoTrack (Li et al., 2020b), CCOT

(Danelljan et al., 2016d), LDES (Li et al., 2019b), ARCF (Huang et al., 2019b), STRCF

(Li et al., 2018c), BACF (Kiani Galoogahi et al., 2017), KAOT (Li et al., 2020c), CF2

(Ma et al., 2015a), HDT (Qi et al., 2016), DRCF (Fu et al., 2020), SITUP (Ma et al.,

2020), SAMF (Li and Zhu, 2014), MEEM (Zhang et al., 2014a), EnKCF (Uzkent and

Seo, 2018), DSST (Danelljan et al., 2014a), KCF (Henriques et al., 2014), ASLA (Jia

et al., 2012), L1APG (Bao et al., 2012), DFT (Sevilla-Lara and Learned-Miller, 2012)

and IVT (Ross et al., 2008). The proposed IGSSTRCF outperforms all the compared

trackers in terms of overlap success and distance precision, except for GFSDCF (Xu

et al., 2019a) and ECO (Danelljan et al., 2016a).

Evaluation on UAV123 Dataset

The proposed tracker is evaluated on UAV123 dataset (Mueller et al., 2016). Figure 6.3

(c) and (d) shows the success and precision plots comparing the proposed IGSSTRCF

tracker with recent trackers: GFSDCF (Xu et al., 2019a), ECO (Danelljan et al., 2016a),

CCOT (Danelljan et al., 2016d), DRCF (Fu et al., 2020), KAOT (Li et al., 2020c),

AutoTrack (Li et al., 2020b), LDES (Li et al., 2019b), STRCF (Li et al., 2018c) ARCF

(Huang et al., 2019b), ASRCF (Dai et al., 2019), SITUP (Ma et al., 2020) and EnKCF

(Uzkent and Seo, 2018). The proposed IGSSTRCF tracker is second best in terms of

precision and third best in terms of success.

Evaluation on VOT-2019 Dataset

The proposed IGSSTRCF tracker is evaluated using the VOT toolkit on VOT-2019

(Kristan et al., 2019). A comparison is shown with the recent state of the art track-

ers: ASRCF (Dai et al., 2019), STRCF (Li et al., 2018c), LDES (Li et al., 2019b),

ARCF (Huang et al., 2019b), BACF (Kiani Galoogahi et al., 2017), CISRDCF (Kris-

tan et al., 2019), ANT (Kristan et al., 2019), LGT (Kristan et al., 2019), FoT (Kristan

et al., 2019), MIL (Kristan et al., 2019), KCF (Kristan et al., 2019), Struck (Kristan

et al., 2019), IVT (Kristan et al., 2019) and, L1APG (Kristan et al., 2019). Table 6.1
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Table 6.1: VOT toolkit report for VOT-2019 showing Accuracy (A), Robustness (R) and
Expected Average Overlap (EAO) for the baseline experiment and Overlap
AUC for the unsupervised experiment. The top three trackers are shown in
red, blue and green

Baseline Unsupervised
EAO A R AUC

IGSSTRCF 0.1559 0.4730 39.0094 0.3286
ASRCF (Dai et al., 2019) 0.1451 0.4652 44.5818 0.3230
STRCF (Li et al., 2018c) 0.1140 0.4520 70.02 0.2980
LDES (Li et al., 2019b) 0.1747 0.4882 50.2721 0.2940

ARCF (Huang et al., 2019b) 0.1351 0.4669 52.7181 0.2690
BACF (Kiani Galoogahi et al., 2017) 0.1162 0.4476 65.7094 0.1959

CISRDCF (Kristan et al., 2019) 0.1533 0.4147 48.9861 0.2417
ANT (Kristan et al., 2019) 0.1509 0.4518 53.0936 0.2390
LGT (Kristan et al., 2019) 0.1308 0.3960 54.8683 0.2062
FoT (Kristan et al., 2019) 0.1290 0.3621 70.4328 0.1354
MIL (Kristan et al., 2019) 0.1179 0.3847 73.6540 0.1664
KCF (Kristan et al., 2019) 0.1103 0.4348 73.0953 0.2059

Struck (Kristan et al., 2019) 0.0944 0.4103 96.3228 0.1743
IVT (Kristan et al., 2019) 0.0869 0.3811 117.7786 0.1095

L1APG (Kristan et al., 2019) 0.0774 0.3901 147.7737 0.1224

shows the accuracy, robustness and EAO for the baseline experiments (Kristan et al.,

2017b). It is observed that IGSSTRCF performs best in terms of robustness, and sec-

ond best in terms of EAO and accuracy. The expected overlap scores for the baseline

experiments are shown in Figure 6.4. For the unsupervised experiments (Kristan et al.,

2017b), Table 6.1 shows the overlap AUC. It is observed that IGSSTRCF performs best

in the overlap criterion.

Evaluation on VOT-2017 Dataset

The proposed tracker is evaluated using the VOT toolkit on VOT-2017 (Kristan et al.,

2017b). A comparison is shown with recent trackers: ASRCF (Dai et al., 2019),

STRCF (Li et al., 2018c), LDES (Li et al., 2019b), ARCF (Huang et al., 2019b), BACF

(Kiani Galoogahi et al., 2017), ECO (Danelljan et al., 2017a), CCOT (Danelljan et al.,

2016d), SRDCF (Danelljan et al., 2015b), ANT (Kristan et al., 2017b), BST (Kristan

et al., 2017b), CGS (Kristan et al., 2017b), ATLAS (Kristan et al., 2017b), and GMD

(Kristan et al., 2017b). Table 6.2 shows the accuracy, robustness and EAO for baseline

experiments (Kristan et al., 2017b). It is observed that IGSSTRCF is third best in terms

of robustness and EAO. The expected overlap scores for the baseline experiments are

shown in Figure 6.5. For the unsupervised experiments, Table 6.2 shows the overlap

AUC. It is observed that the proposed tracker is third best in the overlap criterion.
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Table 6.2: VOT toolkit report for VOT-2017 showing Accuracy (A), Robustness (R) and
Expected Average Overlap (EAO) for the baseline experiment and Overlap
AUC for the unsupervised experiment. The top three trackers are shown in
red, blue and green

Baseline Unsupervised
A R EAO AUC

IGSSTRCF 0.4761 26.2841 0.2040 0.3539
ASRCF (Dai et al., 2019) 0.4654 30.9708 0.1851 0.3411
STRCF (Li et al., 2018c) 0.4510 61.3300 0.1180 0.3000
LDES (Li et al., 2019b) 0.4929 39.6484 0.1875 0.3237

ARCF (Huang et al., 2019b) 0.4615 41.4174 0.1547 0.2824
BACF (Kiani Galoogahi et al., 2017) 0.4476 55.7769 0.1235 0.2083

ECO (Danelljan et al., 2016a) 0.4762 17.6628 0.2809 0.4025
CCOT (Danelljan et al., 2016d) 0.4851 20.4138 0.2674 0.3909

SRDCF (Danelljan et al., 2015b) 0.4767 64.1136 0.1179 0.2445
ANT (Kristan et al., 2017b) 0.4540 40.1593 0.1676 0.2770
BST (Kristan et al., 2017b) 0.2627 55.5033 0.1150 0.1458
CGS (Kristan et al., 2017b) 0.4979 53.3758 0.1406 0.3386

ATLAS (Kristan et al., 2017b) 0.4835 37.4268 0.1969 0.3431
GMD (Kristan et al., 2017b) 0.4422 54.7325 0.1295 0.2492

Table 6.3: Ablation analysis showing contribution of each regularization component of
the proposed IGSSTRCF tracker in terms of Overlap Score (OP), Success
(S) and Precision (P). The best performance is shown in red

VOT-2019 VOT-2017 TC128
OS OS S P

IGSSTRCF 0.155 0.204 57.25 77.71
IGSSTRCF - SSR 0.152 0.195 56.84 77.35
IGSSTRCF - CI 0.127 0.150 55.85 76.04

IGSSTRCF - STR 0.151 0.178 55.78 76.78
IGSSTRCF - SSR - CI 0.152 0.196 56.35 76.51
IGSSTRCF - STR - CI 0.153 0.193 56.68 77.30

IGSSTRCF - STR - SSR 0.149 0.171 54.25 72.74

Discussion and Qualitative Evaluation

Evaluation across multiple tracking datasets shows that the proposed IGSSTRCF tracker

outperforms most of the recent trackers on TC128, UAV123, VOT-2017 and VOT-2019.

It is observed that the proposed IGSSTRCF performs comparable or worse than GFS-

DCF and ECO on TC128 and UAV123. This is because, as explained in Section 5.3.9,

TC128 and UAV123 are complex datasets and contains more challenges with longer se-

quences that includes sequences with a small, low resolution target object as compared

to VOT-2019.

To demonstrate the performance qualitatively, we present examples of success and

failure for some tracking sequences of TC128 dataset (Liang et al., 2015). The proposed
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IGSSTRCF tracker is compared with ECO (Danelljan et al., 2017a), ARCF (Huang

et al., 2019b), ASRCF (Dai et al., 2019), CCOT (Danelljan et al., 2016d), LDES (Li

et al., 2019b), STRCF (Li et al., 2018c) and BACF (Kiani Galoogahi et al., 2017). Fig-

ure 6.6 (left) shows frames from the sequences soccer, Skating2, and Fish_ce2, where

the IGSSTRCF tracks successfully during background clutter, similar object presence,

and multi-object presence, while most other trackers fail. Figure 6.6 (right) shows

frames from the sequences Charger_ce, skating_ce2, and MotorRolling, where most

of the trackers, including IGSSTRCF, fail during scale change, object deformation, and

in-plane-rotation.

6.3.3 Ablation Study

Evaluation of Individual Regularization Component

To demonstrate the contribution of each regularization component of the proposed

IGSSTRCF, we remove the regularization terms from the IGSSTRCF formulation one

at a time, and evaluate the performance. Table 6.3 shows a comparison of the complete

IGSSTRCF formulation with formulations without the regularizations. In Table 6.3,

column 1, “IGSSTRCF - regularization term" denotes the IGSSTRCF tracker without

the stated regularization term. The comparison is shown on VOT-2019 (Kristan et al.,

2019) and VOT-2017 (Kristan et al., 2017b) in terms of overlap score for baseline exper-

iments, and on TC128 (Liang et al., 2015) in terms of success plot AUC and precision

score at a threshold of 20 pixels. It is observed that the proposed IGSSTRCF works

best with the SSR, STR and CI terms all included.

Table 6.4: Ablation analysis on VOT-2019 Kristan et al. (2019), VOT-2017 Kristan
et al. (2017b), TC128 Liang et al. (2015) and UAV123 Mueller et al. (2016)
to demonstrate comparison of the regularized version with its respective
baselines. For VOT datasets, we report overlap score for the baseline ex-
periments. For TC128 and UAV123, we report overlap success plot AUC
and distance precision score at a threshold of 20 pixel. The best performing
method is shown in red color

VOT-2019 VOT-2017 TC128 UAV123
Overlap Score Overlap Score Success Precision Success Precision

BACF Kiani Galoogahi et al. (2017) 0.12 0.12 48.45 63.81 40.01 45.20
BACF Kiani Galoogahi et al. (2017) + CI 0.16 0.18 57.50 78.29 52.38 67.44

STRCF Li et al. (2018c) 0.11 0.12 50.64 67.58 47.88 61.79
STRCF Li et al. (2018c) + STR 0.13 0.15 56.11 76.46 51.30 65.79

ASRCF Dai et al. (2019) 0.14 0.18 57.14 76.90 47.06 60.96
ASRCF Dai et al. (2019) + SSR 0.15 0.19 56.68 77.30 52.05 67.60
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Comparison with the Baselines

To demonstrate the performance of individual regularization terms independently, we

add the regularization to the baseline tracker that is closest to the regularized version.

The details are given as follows.

The Channel importance (CI) term is added to the baseline BACF Kiani Galoogahi

et al. (2017). Equation 6.25 shows the BACF Kiani Galoogahi et al. (2017) with the CI

term (denoted ‘BACF Kiani Galoogahi et al. (2017) + CI’). The black text in Equation

6.25 is the original BACF Kiani Galoogahi et al. (2017) formulation.

E(h) =
1

2

∥∥∥∥∥y −
K∑
k=1

CI︷︸︸︷
qk (xk ∗ (PThk))

∥∥∥∥∥
2

2

+
λ1
2

K∑
k=1

‖hk‖22 +
β

2
‖q‖22︸ ︷︷ ︸
CI

, (6.25)

The Sparse Temporal Regularization (STR) is added to the baseline STRCF Li et al.

(2018c). Equation 6.3.3 shows the STRCF Li et al. (2018c) with the STR term (denoted

‘STRCF Li et al. (2018c) + STR’). The black text in 6.3.3 is the original STRCF Li et al.

(2018c) formulation.

E(h,w) =
1

2

∥∥∥∥∥y −
K∑
k=1

(xk ∗ hk)

∥∥∥∥∥
2

2

+
λ1
2

K∑
k=1

‖w � hk‖22+

θ

2

∥∥h(t) − h(t−1) −Bh

∥∥2
2

+ η ‖Bh‖1︸ ︷︷ ︸
STR

, (6.26)

Similarly, the Sparse Spatial Regularization (SSR) is added to the baseline ASRCF Dai

et al. (2019). Equation shows the ASRCF Dai et al. (2019) with the SSR term (denoted

‘ASRCF Dai et al. (2019) + SSR’). The black text in Equation 6.3.3 is the original

ASRCF Dai et al. (2019) formulation.

E(h,w) =
1

2

∥∥∥∥∥y −
K∑
k=1

(xk ∗ (PThk))

∥∥∥∥∥
2

2

+

λ1
2

K∑
k=1

‖w � hk‖22 +
λ2
2
‖w −wr −Bw‖

2

2
+ ζ ‖Bw‖1︸ ︷︷ ︸

SSR

, (6.27)

Table 6.4 shows comparison of the regularized version with their respective baselines on

VOT-2019 Kristan et al. (2019), VOT-2017 Kristan et al. (2017b), TC128 Liang et al.

(2015) and UAV123 Mueller et al. (2016). It is observed that adding the regularization
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results in improving the baseline performance in all the cases, except for success in

TC128 dataset.

6.4 Chapter Summary

In this work, we propose a novel importance guided sparse spatio-temporal regulariza-

tion based CF tracker. The sparse spatial regularization learns the spatial weights by

modelling the sparse difference between the current spatial weights and the reference

spatial weights. The learned spatial weights are used to penalize the filter coefficients

near the boundary region to prevent boundary effects. The sparse temporal regulariza-

tion models the sparse difference between the current filter and the past reference filter.

The sparse difference term helps filter out irrelevant information from the previous fil-

ter, while learning the current filter. This prevents irrelevant appearance information

from persisting through further tracking steps. We also propose to learn the adaptive

importance weights for each feature channel during training. This helps in suppressing

the contribution of adverse feature channels and enhancing the contribution of useful

feature channels. As a result of the proposed regularizations, a more discriminative and

robust CF is trained, that achieves efficient object tracking during multiple challenges.

We use ADMM to efficiently obtain an optimal solution for the proposed formulation.

The positive effects of the proposed formulation are demonstrated on the TC128 (Liang

et al., 2015), UAV123 (Mueller et al., 2016), VOT-2019 (Kristan et al., 2019) and VOT-

2017 (Kristan et al., 2017b) datasets. A comparative analysis with recent top ranked

trackers reveals that the proposed approach outperforms many state-of-the-art trackers.

In the next chapter, we explore kernel tricks to further improve the tracker per-

formance in terms of speed as well as tracking accuracy. The regularized CF based

trackers introduced in Chapters 5 and 6 are not used in combination with the kernel

model (Henriques et al., 2014) as the constraints may break the circulant matrix struc-

ture, making it computationally expensive. In Chapter 7, we propose the Temporally

Regularized Multi-Kernel Correlation Filter (TRM-KCF) formulation for tracking. We

also explore how different kernels enhance different aspects of the target appearance,

and demonstrate the performance advantages of using multiple-kernels.
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CHAPTER 7

TRM-KCF: Temporally Regularized Multi-Kernel

Correlation Filters For Visual Tracking
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F
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learned with 

Temporal Constraint

F-1
Target

Localization
& Scale

Estimation

Model update

Training Frame

Search Region

Search Region

Multi Channel 
Features (x(t))

Multi Channel 
Features (x(t+1))

Testing Frame (z)

F

h(t-1)

Desired Response

Bounding Box Prediction

Gaussian
Kernel

Polynomial
Kernel

Linear
Kernel

F

F

F-1

F-1

Multi-
Kernels

(h)

CF Response Map (r(z))

Figure 7.1: A block diagram for the proposed TRM-KCF tracker. During training, the
filter h is learned using ADMM iterations (Boyd et al., 2011). During test-
ing, we extract the deep features from the search area. The target is localized
using the average of response maps obtained by multi-kernel filters. For tar-
get scale estimation, we follow Dai et al. (2019). F and F−1 denotes Fourier
and inverse Fourier transform operations respectively

7.1 Introduction

In the recent research, Correlation Filter (CF) trackers with spatial and temporal con-

straints have been proposed (Danelljan et al., 2015b; Kiani Galoogahi et al., 2017; Dai

et al., 2019; Li et al., 2018c), including the trackers investigated in Chapters 5 and 6.

The limitation of such methods is that they are not used in combination with the ker-

nel model (Henriques et al., 2014) as the constraints may break the circulant matrix

structure, making it computationally expensive.

Recently, kernel tricks have gained popularity with correlation filter trackers. Hen-

riques et al. (2012) uses high dimensional features with kernels and act as a baseline



for many kernel based trackers. It is further improved by using HOG features in the

Kernelized Correlation Filter (KCF) (Henriques et al., 2014).To improve the discrimi-

native ability of the KCFs, Danelljan et al. (2014b) use color attributes to learn adaptive

CFs for tracking and maps the multi-channel features into a Gaussian kernel space.

Scale adaptive KCF trackers are introduced in Li and Zhu (2014) (SAMF) and Bibi and

Ghanem (2015) (KCFMSTA), and an ensemble of KCF tracker is proposed in Uzkent

and Seo (2018) (EnKCF). A kernel based structured output correlation tracker is pro-

posed in Hare et al. (2015) (Struck). Zhang et al. (2016) introduces an output constraint

transfer for the KCF (OCT-KCF). Tang and Feng (2015) extends KCF (Henriques et al.,

2014) to multiple kernels that enhance the model’s distinguishability with the help of

complementary features. A further improvement to this work is proposed in Tang et al.

(2018) by taking advantage of the discriminative power spectrums of different features

(MKCFup).

Although computationally efficient, KCF based trackers are not derived with spatial

and temporal constraints as the constraints may not allow the straight forward use of

the circulant matrix structure (Huang et al., 2020) (CMKCF). To this end, Huang et al.

(2020) introduces a multi-kernel CF with spatial constraints that handles occlusion effi-

ciently. Inspired by the above trackers, this chapter extends the KCF (Henriques et al.,

2014) formulation to introduce the Temporally Regularized Multi-Kernel Correlation

Filter (TRM-KCF) formulation for tracking. We argue that different kernels enhance

different aspects of the target appearance, and demonstrate the performance advantages

of using multiple-kernels.

This chapter extends the KCF (Henriques et al., 2014) formulation to introduce

the Temporally Regularized Multi-Kernel Correlation Filter (TRM-KCF) formulation

for tracking. We argue that different kernels enhance different aspects of the target

appearance, and demonstrate the performance advantages of using multiple-kernels.

Figure 7.1 shows a block diagram that describes the process flow of the proposed TRM-

KCF for tracking.

The summarized contributions of the chapter are as follows:

1. We derive a Temporally Regularized Multi-Kernel Correlation Filter (TRM-KCF)
formulation for object tracking.

2. We demonstrate the performance of the proposed CF formulation with multiple
kernels (Gaussian, Polynomial and Linear) as well as a single kernel (TR-KCF)
to show the advantages of using the proposed multi-kernel (TRM-KCF) formula-
tion.
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3. We present an extensive evaluation of the proposed tracker on the publicly avail-
able tracking datasets: OTB100 (Wu et al., 2015), TC128 (Liang et al., 2015),
VOT-2017 (Kristan et al., 2017b), LaSOT (Fan et al., 2019), UAV123 (Mueller
et al., 2016), and GOT-10k (Huang et al., 2019a). A comparative analysis shows
that the proposed formulation results in a significant improvement over the base-
line tracker and other recent trackers.

7.2 Proposed Approach

Although computationally efficient, Kernelized Correlation Filte (KCF) based trackers

are not derived with spatial and temporal constraints as the constraints may not allow

the straight forward use of the circulant matrix structure (Huang et al., 2020). To this

end, Huang et al. (2020) introduces a multi-kernel correlation filter with spatial con-

straints that handles occlusion efficiently. Inspired by the above trackers, we derive

a Temporally Regularized Multi-Kernel Correlation Filter (TRM-KCF) for tracking.

The temporal constraint helps in obtaining more reliable filter coefficients for improved

tracking and ensures that the tracker adapts to large appearance variations, preventing

drift. Despite the constraints, we can kernelize and exploit the circulant matrix proper-

ties to speed up computations. In this section, we detail how temporal regularization can

be incorporated into the KCF (Henriques et al., 2014) formulation. The baseline KCF

formulation is already discussed in Chapter 2, Section 2.3. The proposed TRM-KCF

formulation is given by,

E(h) =
1

2

T∑
m=1

∥∥ym − h>xm
∥∥2
2

+
λ

2
‖h‖22 +

θ

2

∥∥h(t) − h(t−1)∥∥2
2
, (7.1)

where x ∈ RT×1 are the vectorized features, xm ∈ RT×1 is the sample obtained after m

cyclic shifts of x, T denotes the size of the training sample x, y ∈ RT×1 is the desired

Gaussian shaped correlation filter response, yi is the i-th element of y, h ∈ RT×1 is

the vectorized filter, θ
2

∥∥h(t) − h(t−1)
∥∥2
2

is the temporal regularization term, h(t) and

h(t−1) ∈ RT×1 are the vectorized filters at frame t and (t − 1), respectively. λ and

θ are the regularization parameters. We can express each solution of h as the linear

combination of the inputs, h =
∑T

m=1ψmφ(xm). Therefore h>xn can be expressed as,

h>xn =
T∑

m=1

ψmφ(xm)>φ(xn). (7.2)
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Using Equation 7.2, Equation 7.1 can be re-written as,

E(ψ) =
1

2

∥∥∥y −Ωψ(t)
∥∥∥2
2

+
λ

2

∥∥∥∥∥
T∑

m=1

ψ(t)
m φ(x(t)

m )

∥∥∥∥∥
2

2

+

θ

2

∥∥∥∥∥
T∑

m=1

ψ(t)
m φ(x(t)

m )−
T∑

m=1

ψ(t−1)
m φ(x(t−1)

m )

∥∥∥∥∥
2

2

, (7.3)

where Ω is given by,

Ω =



(φ(x1))
>φ(x1) · · · (φ(x1))

>φ(xn)

... . . . ...

(φ(xm))>φ(x1) · · · (φ(xm))>φ(xn)


(7.4)

Equation 7.3 can be expanded as,

E(ψ) =
1

2
(y>y− y>Ωψ(t) − (ψ(t))

>
Ω>y + (ψ(t))

>
Ω>Ω(ψ(t)))+

λ

2
(ψ(t))

>
Ω(ψ(t)) +

θ

2
((ψ(t))

>
Ω(ψ(t))− 2(ψ(t))

>
Ω̃ψ(t−1)+

ψ(t−1)>Ω(t−1)ψ(t−1)), (7.5)

where Ω̃ is the kernel matrix formed using x(t) and x(t−1).
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Figure 7.2: Success and Precision plots for TC128. The legend of the success plots
contains Area-Under-the-Curve scores and the legend of the precision plots
contains the precision scores at 20 pixels. The trackers are arranged in
descending order of their performance
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Figure 7.3: Success and Precision plots for OTB100. The legend of the success plots
contains Area-Under-the-Curve scores and the legend of the precision plots
contains the precision scores at 20 pixels. The trackers are arranged in
descending order of their performance

Differentiating Equation 7.5 with respect to ψ(t) and equating to zero, we obtain,

(Ω>Ωψ(t) −Ω>y) + λΩψ(t) + θ(Ωψ(t) + Ω̃
>
ψ(t−1)) = 0. (7.6)

The solution for ψ(t) can be obtained as,

ψ(t) = (Ω + (λ+ θ)I)−1(y− θΩ−1Ω̃
>
ψ(t−1)). (7.7)

Here, kernel matrices Ω and Ω̃ are circulant, therefore ∆ = (Ω−1Ω̃
>

) is also circulant.

Equation 7.7 can be re-written as,

ψ(t) = (C(Ω1) + (λ+ θ)I)−1(y− θC(∆1)ψ
(t−1)), (7.8)

where C(u) is a circulant matrix generated using circularly shifted samples of u, ∆1

denotes the first row of the circulant matrix ∆, and Ω1 is the first row of Ω. Using the

theorem C(u)v = F−1(F∗(u) ◦ F(v)) (Huang et al., 2020), Equation 7.8 becomes,

ψ(t) = (C(Ω1) + (λ+ θ)I)−1(y− θF−1(F∗(∆1) ◦ F(ψ(t−1))). (7.9)

Equation 7.9 can be re-written as,

ψ(t) = (C(Ω1) + (λ+ θ)I)−1F−1(F(y)− θ(F∗(∆1) ◦ F(ψ(t−1))), (7.10)
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which can be solved by,

ψ(t) = F−1
(

F(y)− θ(F∗(∆1) ◦ F(ψ(t−1)))

F (Ω1) + (λ+ θ)I

)
. (7.11)

The computational cost of solving Equation 7.11 is O(T logT + T ). Using Equation

7.11, we compute ψ for three different kernels ψGaussian, ψPolynomial and ψLinear for

Gaussian, Polynomial and Linear kernels respectively. The filter response map corre-

sponding to each kernel type is obtained using Equation 2.12 (see Chapter 2, Section

2.3) and are denoted rGaussian(z), rPolynomial(z) and rLinear(z). The final response map

for the proposed TRM-KCF is obtained using,

r(z) =
rGaussian(z) + rPolynomial(z) + rLinear(z)

3
. (7.12)

The response map for TR-KCF is obtained using rGaussian(z) only. The location at

which the final response map shows the maximum value is used to estimate the target

location. The model is updated using,

x(t)
model = (1− η)x(t−1)

model + ηx(t), (7.13)

F(ψ
(t)
Gaussian) = (1− η)F(ψ

(t−1)
Gaussian) + ηF(ψGaussian), (7.14)

F(ψ
(t)
Polynomial) = (1− η)F(ψ

(t−1)
Polynomial) + ηF(ψPolynomial), (7.15)

F(ψ
(t)
Linear) = (1− η)F(ψ

(t−1)
Linear) + ηF(ψLinear). (7.16)

7.3 Experiments

The proposed formulation is implemented using MATLAB2019a with the MatConvNet

toolbox. The deep features are extracted from the conv5-4 convolutional layer of VGG-

Net-19 (Simonyan and Zisserman, 2014) and are used to represent and localize the

target. The parameter λ in Equation 7.11 is set to 0.5, and the parameter θ is 0.01. The
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Figure 7.4: Success versus Speed plots for OTB100.

model learning rate, η, is 0.0186. All parameters are obtained empirically. We achieve

the tracking speed of 18 frames per second for TRM-KCF and 22 frames per second

for TR-KCF. The evaluation of the proposed formulations on the TC128 (Liang et al.,

2015), OTB100 (Wu et al., 2015), VOT-2017 (Kristan et al., 2017b), LaSOT (Fan et al.,

2019), UAV123 (Mueller et al., 2016), and GOT-10k (Huang et al., 2019a) datasets are

presented in the subsequent sections.

7.3.1 Evaluation on TC128

Figure 7.2 shows the success and precision plots comparing the proposed trackers with

recent trackers: BACF (Kiani Galoogahi et al., 2017), CFWCR (He et al., 2017), HDT

(Qi et al., 2016), DRCF (Fu et al., 2020), SITUP (Ma et al., 2020), SAMF (Li and Zhu,

2014), MEEM (Zhang et al., 2014a), EnKCF (Uzkent and Seo, 2018), Struck (Hare

et al., 2015), fDSST (Danelljan et al., 2016b), KCFMTSA (Bibi and Ghanem, 2015),

KCF (Henriques et al., 2014), ASLA (Jia et al., 2012), OCT-KCF (Zhang et al., 2016),

LCCF (Zhang et al., 2017a), CSK (Henriques et al., 2012), SCT4 (Choi et al., 2016),

and MKCFup (Tang et al., 2018). Among the compared trackers, TRM-KCF ranks first

in terms of success and precision scores.
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Figure 7.5: Success and Precision plots for LaSOT. The legend of the success plots
contains Area-Under-the-Curve scores and the legend of the precision plots
contains the precision scores at 20 pixels. The trackers are arranged in
descending order of their performance

7.3.2 Evaluation on OTB100

Figure 7.3 shows the success and precision plots comparing the proposed trackers with

recent trackers: AutoTrack (Li et al., 2020a), DRCF (Fu et al., 2020), LCT (Ma et al.,

2015b), SITUP (Ma et al., 2020), SAMF (Li and Zhu, 2014), MEEM (Zhang et al.,

2014a), KAOT (Li et al., 2020c), EnKCF (Uzkent and Seo, 2018), KCFMTSA (Bibi

and Ghanem, 2015), TGPR (Gao et al., 2014), KCF (Henriques et al., 2014), Struck

(Hare et al., 2015), OCT-KCF (Zhang et al., 2016), CSK (Henriques et al., 2012),

LCCF (Zhang et al., 2017a), KSM (Comaniciu et al., 2003), L1 (Bao et al., 2012), and

MKCFup (Tang et al., 2018).

Among the compared trackers, TRM-KCF ranks third in terms of success score

and second in terms of precision score. Figure 7.4 shows a success versus speed plot

where closer the tracker to the the top right corner, the better is its performance. The

comparison between SITUP (Ma et al., 2020), SAMF (Li and Zhu, 2014), MEEM

(Zhang et al., 2014a), KAOT (Li et al., 2020c), KCFMTSA (Bibi and Ghanem, 2015),

TGPR (Gao et al., 2014), KCF (Henriques et al., 2014), Struck (Hare et al., 2015),

LCCF (Zhang et al., 2017a), KSM (Comaniciu et al., 2003), LSK (Liu et al., 2011) and

the proposed tracker shows that TRM-KCF has higher success rate and is faster than

many recent trackers.
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Figure 7.6: Success plots for GOT-10k. The legend of the success plots contains Area-
Under-the-Curve scores. The trackers are arranged in descending order of
their performance

7.3.3 Evaluation on LaSOT

Figure 7.5 shows the success and precision plots comparing the proposed trackers on

LaSOT (Fan et al., 2019) with recent trackers: CFNet (Valmadre et al., 2017a), SS-

RDCF (Guo et al., 2019), EnKCF (Uzkent and Seo, 2018), BACF (Kiani Galoogahi

et al., 2017), TRACA (Choi et al., 2018), MEEM (Zhang et al., 2014a), HCFT (Qi

et al., 2016), PTAV (Fan and Ling, 2017a), ARCF (Huang et al., 2019b), SITUP (Ma

et al., 2020), SRDCF (Danelljan et al., 2015b), CSRDCF (Lukezic et al., 2017), KAOT

(Li et al., 2020c), Staple (Bertinetto et al., 2016a), Staple_CA (Mueller et al., 2017),

SAMF (Li and Zhu, 2014), Struck (Hare et al., 2015), TLD (Kalal et al., 2011), DSST

(Danelljan et al., 2014a), fDSST (Danelljan et al., 2016b), SCT4 (Choi et al., 2016),

L1APG (Bao et al., 2012), STC (Zhang et al., 2014b), IVT (Ross et al., 2008), and

MKCFup (Tang et al., 2018). It is observed that the proposed TRM-KCF ranks first in

terms of success and third in terms of precision score.

7.3.4 Evaluation on GOT-10k

Figure 7.6 shows the success plots comparing the proposed trackers on GOT-10k (Huang

et al., 2019a) with recent trackers: ECO (Danelljan et al., 2017a), CF2 (Ma et al.,

2015a), MDNet (Nam and Han, 2016), CFNet (Valmadre et al., 2017a), ECO_hc (Danell-

jan et al., 2017a), BACF (Kiani Galoogahi et al., 2017), MEEM (Zhang et al., 2014a),
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DAT (Pu et al., 2018), SAMF (Li and Zhu, 2014), DSST (Danelljan et al., 2014a), Sta-

ple (Bertinetto et al., 2016a), SRDCFdecon (Danelljan et al., 2016c), SRDCF (Danell-

jan et al., 2015b), fDSST (Danelljan et al., 2016b), CSK (Henriques et al., 2012), and

KCF(Henriques et al., 2014). The proposed TRM-KCF ranks first in terms of success

score.

7.3.5 Evaluation on UAV123

Figure 7.7 shows the success and precision plots comparing the proposed trackers on

UAV123 (Mueller et al., 2016) with recent trackers: BACF (Kiani Galoogahi et al.,

2017), SITUP (Ma et al., 2020), EnKCF (Uzkent and Seo, 2018), and MKCFup (Tang

et al., 2018). It is observed that the proposed TRM-KCF ranks second in terms of

success and ranks first in terms of precision score.
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Table 7.1: VOT toolkit report for VOT-2017 Kristan et al. (2017b) showing Accuracy
(A), Robustness (R) and Expected Average Overlap (EAO) for baseline ex-
periment, and Overlap AUC for unsupervised experiment. The top three
trackers are shown in red, blue and green

Baseline Unsupervised
AR-Rank
A R EAO Overlap

TRM-KCF 0.43 34.00 0.16 0.31
BACF Kiani Galoogahi et al. (2017) 0.44 55.77 0.12 0.20

STRCF-HOG Li et al. (2018c) 0.45 61.33 0.11 0.30
ASRCF Dai et al. (2019) 0.46 30.97 0.18 0.34

ARCF Huang et al. (2019b) 0.46 41.41 0.15 0.28
LDES Li et al. (2019b) 0.49 39.64 0.18 0.32

SRDCF Danelljan et al. (2015b) 0.47 64.11 0.11 0.24
ANT Kristan et al. (2017b) 0.45 40.15 0.16 0.27
BST Kristan et al. (2017b) 0.26 55.50 0.11 0.14
GMD Kristan et al. (2017b) 0.44 54.73 0.12 0.24
DSST Kristan et al. (2017b) 0.40 63.07 0.10 0.15

FragTrack Kristan et al. (2017b) 0.38 68.27 0.09 0.16
IVT Kristan et al. (2017b) 0.39 66.22 0.10 0.12

L1APG Kristan et al. (2017b) 0.42 81.05 0.10 0.15
MIL Kristan et al. (2017b) 0.39 46.05 0.14 0.16

CMKCF Kristan et al. (2017b) 0.50 23.18 0.24 0.40
DLLSVM Kristan et al. (2017b) 0.37 63.01 0.11 0.14

7.3.6 Evaluation on VOT-2017

In this section we present a comparison of the proposed trackers with recent existing

trackers using the VOT official toolkit. To evaluate a tracker, the toolkit applies a reset-

based methodology, where the performance is measured in terms of Accuracy (A) and

Robustness (R) (Čehovin et al., 2016b). We evaluate the trackers using an Accuracy-

Robustness (AR) plot in which a tracker is more accurate if it is higher along the vertical

axis and is more robust if it is further to the right on the horizontal axis (Čehovin et al.,

2014). An additional evaluation measure is Expected Average Overlap (EAO), which

estimates the average overlap a tracker is expected to attain on a large collection of

short term sequences with the same visual properties in the given dataset. This measure

is used to address the increased variance and bias of the average overlap measure (Wu

et al., 2015), when evaluating over variable sequence lengths.

The results obtained for the baseline (reset based) and unsupervised (no-reset) ex-

periments (Kristan et al., 2017b) are given as follows.

• The Baseline Experiment:

Table 7.1 shows the EAO, Accuracy (A) and Robustness (R) of the proposed
TRM-KCF compared to the existing trackers submitted to the VOT-2017 chal-
lenge (Kristan et al., 2017b) and other recent trackers ARCF (Huang et al., 2019b),
LDES (Li et al., 2019b), ASRCF (Dai et al., 2019), BACF (Kiani Galoogahi et al.,
2017) and STRCF-HOG (Li et al., 2018c). It is observed that the proposed tracker
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Table 7.2: Robustness comparison of the proposed tracker with recent trackers for the
baseline experiment on VOT-2017 dataset. Here CM = Camera Motion, EMP
= Empty Tag, IV= Illumination Variation, MC = Motion Change, OCC =
Occlusion and SV = Size Variation. The top three trackers are shown in red,
blue and green.

CM EMP IV MC OCC SV Mean Weighted Mean Average Pooled
TRM-KCF 53.00 30.00 3.00 29.00 27.00 16.00 26.33 34.00 123.00

BACF (Kiani Galoogahi et al., 2017) 77.00 61.00 6.00 43.00 31.00 33.00 41.83 55.77 189.00
STRCF-HOG (Li et al., 2018c) 85.00 68.00 9.00 46.00 39.00 31.00 46.33 61.33 198.00

ASRCF (Dai et al., 2019) 45.00 26.00 6.00 29.00 23.00 23.00 25.33 30.97 105.00
ARCF (Huang et al., 2019b) 53.00 49.00 8.00 29.00 34.00 20.00 32.16 41.41 141.00

LDES (Li et al., 2019b) 47.00 46.00 10.00 31.00 31.00 27.00 32.00 39.64 133.00
SRDCF (Danelljan et al., 2015b) 76.00 86.00 9.00 49.00 32.00 29.00 46.83 64.11 208.00

ANT (Kristan et al., 2017b) 64.00 26.00 8.00 45.00 27.00 30.00 33.33 40.15 135.00
BST (Kristan et al., 2017b) 74.73 66.93 4.86 41.93 24.66 26.73 39.97 55.50 188.60
GMD (Kristan et al., 2017b) 86.06 50.33 5.40 47.66 30.73 26.20 41.06 54.73 187.46

is second best in terms of R and EAO. Table 7.2 shows the robustness compari-
son for challenges like Camera Motion (CM), Illumination Variation (IV), Motion
Change (MC), Occlusion (OCC) and Scale Variation (SV). It is observed that the
proposed tracker lies in top three for all the challenges. Figure 7.8 shows an ac-
curacy versus robustness versus speed plot where closer the tracker to the the top
right corner, the better is its performance. The size of the of each circle indi-
cates the tracking speed of respective tracker. The comparison between trackers
submitted in the VOT-2017 challenge (Kristan et al., 2017b) and other recent
trackers ECO (Danelljan et al., 2017a), CCOT (Danelljan et al., 2016d), ARCF
(Huang et al., 2019b), LDES (Li et al., 2019b), ASRCF (Dai et al., 2019), BACF
(Kiani Galoogahi et al., 2017), STRCF-HOG (Li et al., 2018c) and the proposed
tracker shows that TRM-KCF is faster and better than many recent trackers.

• The Unsupervised Experiment:

Table 7.1 shows the Area Under Curve (AUC) of the average overlap plot of the
proposed trackers compared with existing trackers. It is observed that the Pro-
posed TRM-KCF tracker ranks third in terms of Overlap Curve AUC. Table 7.3
show overlap comparison for various challenges. It is observed that the proposed
tracker ranks second in CM, IV and OCC, and ranks third in EMP, MC and overall
performance.

7.3.7 Discussion and Qualitative Evaluation

The proposed formulations is evaluated on the TC128 (Liang et al., 2015), OTB100

(Wu et al., 2015), VOT-2017 (Kristan et al., 2017b), LaSOT (Fan et al., 2019), UAV123

(Mueller et al., 2016), and GOT-10k (Huang et al., 2019a) datasets. It is observed that

the proposed TRM-KCF outperforms all the compared trackers on the fairly complex

TC128, LaSOT and GOT-10k datasets. The tracker also demonstrate competitive per-

formance on OTB100, UAV123 and VOT-2017 with tracking speed of 22 frames per

second.
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Figure 7.9: Examples of correlation filter responses obtained corresponding different
type of kernels for intermediate frames of TC128 with various challenges.
Each row shows the responses obtained corresponding to Gaussian, Poly-
nomial and Linear kernel along with the final response obtained using the
mean of all the responses. Here SV = Scale Variation, OCC = Occlusion,
IPR = In Plane Rotation, OPR = Out of Plane Rotation, FM = Fast Motion,
DEF = Deformation, MB = Motion Blur, BC = Background Clutter, and IV
= Illumination Variation.
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Table 7.3: Overlap comparison of the proposed tracker with recent trackers for the un-
supervised experiment on VOT-2017 dataset. Here CM = Camera Motion,
EMP = Empty Tag, IV= Illumination Variation, MC = Motion Change, OCC
= Occlusion and SV = Size Variation. The top three trackers are shown in
red, blue and green.

CM EMP IV MC OCC SV Overall
TRM-KCF 0.3379 0.3249 0.3272 0.2863 0.2295 0.2402 0.3099

BACF (Kiani Galoogahi et al., 2017) 0.2196 0.2204 0.2649 0.2021 0.1809 0.1472 0.2083
STRCF-HOG (Li et al., 2018c) 0.3046 0.3183 0.2971 0.2708 0.1884 0.3142 0.3006

ASRCF (Dai et al., 2019) 0.3583 0.3419 0.3083 0.3452 0.2511 0.3401 0.3411
ARCF (Huang et al., 2019b) 0.3055 0.2735 0.2781 0.2836 0.1989 0.3046 0.2824

LDES (Li et al., 2019b) 0.3302 0.3405 0.3648 0.2988 0.1985 0.2929 0.3237
SRDCF (Danelljan et al., 2015b) 0.2606 0.2230 0.2901 0.2417 0.1990 0.2534 0.2445

ANT (Kristan et al., 2017b) 0.3036 0.2681 0.1910 0.2822 0.2047 0.2909 0.2770
BST (Kristan et al., 2017b) 0.1411 0.1678 0.1720 0.1067 0.1194 0.1391 0.1458
GMD (Kristan et al., 2017b) 0.2707 0.2486 0.1932 0.2262 0.1683 0.2886 0.2492

Table 7.4: Ablation study showing the performance of the proposed tracker with
multiple-kernels (TRM-KCF) and with single kernel (TR-KCF)

TR-KCF TRM-KCF KCF (Henriques et al., 2014)
Success(%) 0.4740 0.4890 0.3867

TC128 Precision(%) 0.6719 0.6782 0.5478
Success(%) 0.5480 0.5597 0.4742

OTB100 Precision(%) 0.6916 0.6984 0.6316
Success(%) 0.3980 0.3971 0.2651

UAV123 Precision(%) 0.5223 0.5198 0.4052
Accuracy 0.45 0.43 0.42

Robustness 41.78 34.00 77.30
EAO 0.14 0.16 0.13

VOT-2017 Overlap 0.32 0.31 0.26

Figure 7.9 shows examples of the correlation filter responses obtained correspond-

ing to different types of kernels for intermediate frames in sequences from TC128

(Liang et al., 2015). Each row shows the responses obtained corresponding to Gaus-

sian, Polynomial and Linear kernels along with the final response obtained using the

mean of all the responses. It is observed that different response maps are obtained for

different types of kernel and individual response maps may also contain high values in

background regions. Such response maps, when used individually may result in tracker

drift during target localization. Therefore, in our proposed multi-kernel approach, we

localize the target using the response map obtained after combining the response maps

from all kernels. Figure 7.10 shows intermediate tracking frames of sequences from

TC128 (Liang et al., 2015). The top two rows show the successfully tracked frames in

the sequences Eagle_ce, Fish_ce1, Toyplane_ce, Skiing, Ball_ce2, Hand_ce1, Micro-

phone_ce1, and Hand_ce2, that contain challenges like Scale Variation (SV), Occlusion
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Figure 7.10: Intermediate Frames of Sequences from TC128 Showing Tracker’s Per-
formance. Here SV = Scale Variation, OCC = Occlusion, IPR = In Plane
Rotation, OPR = Out of Plane Rotation, FM = Fast Motion, DEF = Defor-
mation, MB = Motion Blur, BC = Background Clutter, IV = Illumination
Variation, OV = Out of View, and LR = Low Resolution.

(OCC), In Plane Rotation (IPR), Out of Plane Rotation (OPR), Fast Motion (FM), De-

formation (DEF), Motion Blur (MB), Background Clutter (BC), and Illumination Varia-

tion (IV). Row 3 shows the frames from sequences Yo-yos_ce1, Ball_ce4, and Ball_ce1.

The proposed tracker drifts in Yo-yos_ce1 due to the small target size where the deep

features may not be able to encode all the necessary appearance cues resulting in a less

discriminative filter. This is the potential reason for sub-standard performance of the

proposed TRM-KCF on UAV123 as most sequences in UAV123 contain a small target.

The drift in Ball_ce4 and Ball_ce1 occurs due to a combination of challenges like FM,

OCC, OPR, OV, MB, and IPR.

7.3.8 Ablation Study

In this section, we compare the performance of the proposed tracker using multiple-

kernels (TRM-KCF) with the proposed tracker using a single Gaussian kernel (TR-

KCF). Table 7.4 shows a comparison of the proposed TRM-KCF with TR-KCF and

KCF (Henriques et al., 2014) on TC128, OTB100, UAV123 and VOT-2017. It is ob-

served that use of multiple kernels results in better performance compared to a single
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kernel on TC128 and OTB100. The TRM-KCF outperforms TR-KCF in terms of Ro-

bustness and EAO on VOT-2017. On UAV123, the performance of TRM-KCF is com-

parable to TR-KCF in terms of success score. The analysis across multiple datasets

shows that using multiple kernels results in better performance compared to using a

single kernel. The proposed TRM-KCF formulation not only outperforms the proposed

TR-KCF, but also outperforms many recent CF based trackers. It is observed that the

performance of most trackers varies across the datasets, yet the TRM-KCF approach is

consistent and performs well in all evaluation settings.

7.4 Chapter Summary

In this work, we derive a Temporally Regularized Multi-Kernel Correlation Filter for-

mulation for robust visual tracking. The introduced temporal regularization component

enables the KCF to adapt to large appearance variations that may have an adverse affect

on tracking: While methods proposed in Chapters 5 and 6 also add similar regularisation

methods, they do so outside of the kernelized CF framework, and thus are substantially

slower and less robust. In this chapter, the target localization is done using response

maps obtained corresponding to multiple kernel emphasizes the response in the fore-

ground region. This prevents tracker drift when the response map contains high values

in the background region. As a result a more discriminative and robust KCF is trained,

that achieves efficient object tracking through multiple challenges. The positive effects

of the proposed formulations are demonstrated on OTB100, TC128, VOT-2017, La-

SOT, UAV123, and GOT-10k datasets. A comparative analysis with recent top ranked

tracker reveals that the proposed approach outperforms the state of the art trackers for

most challenges.
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CHAPTER 8

Thesis Summary and Future Directions

8.1 Introduction

From video surveillance to human-computer interaction, visual object tracking is one

of the most fundamental applications within computer vision. Correlation Filter (CF)

based trackers have been widely used for a number of years, in part due to their compu-

tational efficiency. While end-to-end deep learning based methods have also emerged

in recent years, CF trackers remain relevant due to their high speed and competitive

accuracy. Recently, CF based strategies have demonstrated significant improvement

in tracking performance when trained with multi-channel deep features. Many spatio-

temporal regularization based CF trackers offer computationally inexpensive real time

tracking with performance similar to the end-to-end deep learning based trackers. In

this research, we investigate various methods to improve the performance of visual ob-

ject trackers using CFs.

8.2 Summary

In this thesis, four novel CF based tracking approaches have been proposed, namely

LSTM-AMP, CGRCF, IGSSTRCF, and TRM-KCF. In the first approach, we proposed

an LSTM based ensemble CF tracker (LSTM-AMP in Chapter 4). CF trackers are

combined with an appearance model pool to avoid faulty filter updates. The tracker

performance is further improved by using dedicated filters to compute the scale and

rotation of the target.

The CFs learned in Chapter 4 are trained using multi-channel deep features. How-

ever, each feature channel encodes different appearance information and these may not

be equally important for tracking at different times. This motivated us to introduce

channel regularized CF tracker that learned adaptive channel importance for each fea-

ture channel (CGRCF in Chapter 5). Thus, feature channels that encodes useful ap-

pearance cues are assigned higher weights and the less important feature channels are



suppressed through lower weights.

To further improve tracking accuracy, we investigated spatially and temporally reg-

ularized CFs. The spatial regularization suppressed the effects of unfavorable back-

ground information and boundary effects in the learned filter. The temporal regulariza-

tion helped the filter adapt to appearance changes, preventing drift. We also modelled

sparse spatial and sparse temporal variations to enhance the discriminative ability of the

learned filters (IGSSTRCF in Chapter 6).

We further introduced the kernel trick to the temporally regularized CF tracker that

is learned using multiple kernels (TRM-KCF in Chapter 7). The proposed tracker cap-

tured the non-linearity in the appearance features while retaining the circulant matrix

structure.

Table 8.1: VOT toolkit report for VOT-2017 (Kristan et al., 2017b) showing Accuracy
(A), Robustness (R) and Expected Average Overlap (EAO) for baseline ex-
periment, and Overlap AUC for unsupervised experiment. The top three
trackers are shown in red, blue and green

Baseline Unsupervised Speed
AR-Rank
A R EAO Overlap

LSTM-AMP (Chapter 4) 0.45 25.88 0.21 0.31 ≤5 FPS
CGRCF (Chapter 5) 0.47 29.23 0.20 0.36 ≤5 FPS

IGSSTRCF (Chapter 6) 0.47 26.28 0.20 0.35 ≤5 FPS
TRM-KCF (Chapter 7) 0.43 34.00 0.16 0.31 22 FPS

In Table 8.1, we compare all trackers proposed in this thesis (LSTM-AMP, CGRCF,

IGSSTRCF, and TRM-KCF) using the VOT-2017 official toolkit. The comparison is

done in terms of Accuracy (A), Robustness (R), and Expected Average Overlap (EAO)

for the baseline experiments, overlap for the unsupervised experiments and tracking

speed in Frames Per Second (FPS). It is observed that LSTM-AMP ranks first in terms

of Expected Average Overlap (EAO). To improve the LSTM-AMP, spatio-temporal and

channel regularizations are introduced in CGRCF and IGSSTRCF formulations. This

results in improved Accuracy (A), Robustness (R) and overlap without a significant a

drop in Expected Average Overlap (EAO). In further experiments, we use kernel tricks

with temporal regularization (TRM-KCF), which results in significantly improved Ro-

bustness (R) with comparable performance in terms of Accuracy (A) and Overlap. It

also results in significant improvement in tracking speed. TRM-KCF does not perform

as well in terms of Expected Average Overlap (EAO) as it contains only the temporal
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regularization, unlike CGRCF and IGSSTRCF that incorporate spatio-temporal regu-

larization along with channel regularization. However, TRM-KCF formulation is sub-

stantially faster and real-time capable. It can be concluded that LSTM-AMP is prefer-

able when Expected Average Overlap (EAO) needs to be higher, whereas CGRCF and

IGSSTRCF can be used where high tracking Accuracy (A) is desired. For high speed

robust tracking TRM-KCF will be most suitable.

This research has resulted in the following three accepted publications and one paper

under review.
1. Jain, Monika, A. Venkata Subramanyam, Simon Denman, Sridha Sridharan, and

Clinton Fookes. "LSTM guided ensemble correlation filter tracking with ap-
pearance model pool." Computer Vision and Image Understanding 195 (2020):
102935.

2. Jain, Monika, A. V. Subramanyam, Simon Denman, Sridha Sridharan, and Clin-
ton Fookes. "IGSSTRCF: Importance Guided Sparse Spatio-Temporal Regular-
ized Correlation Filters for Tracking." In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2775-2784. 2021.

3. Jain, Monika, Arjun Tyagi, A. V. Subramanyam, Simon Denman, Sridha Srid-
haran, and Clinton Fookes. "Channel Graph Regularized Correlation Filters for
Visual Object Tracking." IEEE Transactions on Circuits and Systems for Video
Technology (2021).

4. TRM-KCF: Temporally Regularized Multi-Kernel CF For Visual Tracking, sub-
mitted to Pattern Recognition, Elsevier. 2021 (Under Review)

8.3 Future Work

We limit the scope of this thesis to Single Object Tracking (SOT). In future, Correlation

Filter (CF) based visual object tracking can be explored in the following directions.

8.3.1 Long-Term Object Tracking

Due to fast computations in frequency domain, CFs can be explored for long-term track-

ing. One vital challenge in long term visual tracking is the absence of the target. If

the target partially or fully disappears from the view, conventional CFs can be easily

distracted by irrelevant objects because they do not contain a long-term component.

Therefore, introducing a target re-detection module in the CF based trackers can sig-

nificantly improve long-term CF based tracking methods. Additionally, investigation

of long-term CF trackers with channel importance and spatio-temporal constraints has

received little attention and can be explored in future.
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8.3.2 Multi-Object Tracking

Multiple Object Tracking (MOT) is a computer vision task that aims to analyze videos

in order to identify and track objects belonging to one or more categories, such as

pedestrians, cars, animals and inanimate objects, without any prior knowledge about the

appearance and number of targets. Different from object detection algorithms, whose

output is a collection of rectangular bounding boxes identified by their coordinates,

height and width, MOT algorithms also associate a target ID to each box (known as a

detection), in order to distinguish among intra-class objects. MOT task plays an impor-

tant role in computer vision: from video surveillance to autonomous cars, from action

recognition to crowd behaviour analysis, many of these problems would benefit from a

high-quality tracking algorithm.

While in SOT the appearance of the target is known a priori, in MOT a detection step

is necessary to identify the targets, that can leave or enter the scene. The main difficulty

in tracking multiple targets simultaneously stems from the various occlusions and inter-

actions between objects, that can sometimes also have similar appearance. Thus, simply

applying SOT models directly to a MOT problem leads to poor results, and often results

in target drift and numerous ID switch errors, as such models usually struggle in dis-

tinguishing between similar looking intra-class objects. Though a series of algorithms

specifically tuned to MOT have already been developed in recent years to address the

above issues, most of these algorithms are end-to-end deep learning based. Therefore,

MOT still remains a challenging task and hold significant scope for improvement by

incorporating ideas from Correlation Filter based tracking.
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hovin Zajc, T. Vojir, G. Häger, A. Lukežič, A. Eldesokey, and G. Fer-
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G. Nebehay, F. Porikli, and L. Čehovin (2016c). A novel performance evaluation
methodology for single-target trackers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(11), 2137–2155.

88. Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.
2012.

89. Kumar, B. V., A. Mahalanobis, and R. D. Juday, Correlation pattern recognition.
Cambridge University Press, 2005.

90. La Scala, B. F. and R. R. Bitmead (1996). Design of an extended kalman filter fre-
quency tracker. IEEE Transactions on Signal Processing, 44(3), 739–742.

91. Lai, Z., W. K. Wong, Y. Xu, J. Yang, and D. Zhang (2015). Approximate orthogonal
sparse embedding for dimensionality reduction. IEEE transactions on neural networks
and learning systems, 27(4), 723–735.

92. Li, A., M. Yang, and W. Yang, Feature integration with adaptive importance maps for
visual tracking. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence. AAAI Press, 2018a.

93. Li, B., W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, Siamrpn++: Evolution of
siamese visual tracking with very deep networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019a.

94. Li, B., J. Yan, W. Wu, Z. Zhu, and X. Hu, High performance visual tracking with
siamese region proposal network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018b.

95. Li, F., C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, Learning spatial-temporal regu-
larized correlation filters for visual tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018c.

96. Li, F., Y. Yao, P. Li, D. Zhang, W. Zuo, and M.-H. Yang, Integrating boundary and
center correlation filters for visual tracking with aspect ratio variation. In Proceedings
of the IEEE International Conference on Computer Vision. 2017a.

97. Li, H., Y. Li, and F. Porikli (2016). Convolutional neural net bagging for online visual
tracking. Computer Vision and Image Understanding, 153, 120 – 129. ISSN 1077-3142.
Special issue on Visual Tracking.

98. Li, H., Y. Li, F. Porikli, et al., Deeptrack: Learning discriminative feature representa-
tions by convolutional neural networks for visual tracking. In BMVC, volume 1. 2014.

138



99. Li, Y., C. Fu, F. Ding, Z. Huang, and G. Lu (2020a). Autotrack: Towards high-
performance visual tracking for uav with automatic spatio-temporal regularization.
arXiv preprint arXiv:2003.12949.

100. Li, Y., C. Fu, F. Ding, Z. Huang, and G. Lu, Autotrack: Towards high-performance
visual tracking for uav with automatic spatio-temporal regularization. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020b.

101. Li, Y., C. Fu, Z. Huang, Y. Zhang, and J. Pan (2020c). Keyfilter-aware real-time uav
object tracking. arXiv preprint arXiv:2003.05218.

102. Li, Y., Y. Zhang, Y. Xu, Z. Miao, and H. Li, Does resnet learn good general pur-
pose features? In Proceedings of the 2017 International Conference on Artificial In-
telligence, Automation and Control Technologies, AIACT ’17. ACM, New York, NY,
USA, 2017b. ISBN 978-1-4503-5231-4. URL http://doi.acm.org/10.1145/
3080845.3080864.

103. Li, Y. and J. Zhu, A scale adaptive kernel correlation filter tracker with feature integra-
tion. In European conference on computer vision. Springer, 2014.

104. Li, Y., J. Zhu, S. C. Hoi, W. Song, Z. Wang, and H. Liu, Robust estimation of simi-
larity transformation for visual object tracking. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33. 2019b.

105. Liang, P., E. Blasch, and H. Ling (2015). Encoding color information for visual track-
ing: Algorithms and benchmark. IEEE Transactions on Image Processing, 24(12),
5630–5644.

106. Liao, S., Y. Hu, X. Zhu, and S. Z. Li, Person re-identification by local maximal oc-
currence representation and metric learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015.

107. Liu, B., J. Huang, L. Yang, and C. Kulikowsk, Robust tracking using local sparse
appearance model and k-selection. In CVPR 2011. IEEE, 2011.

108. Liu, S., T. Zhang, X. Cao, and C. Xu, Structural correlation filter for robust visual
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016.

109. Liu, T., G. Wang, and Q. Yang, Real-time part-based visual tracking via adaptive
correlation filters. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015.

110. Liu, Z., Z. Lai, W. Ou, K. Zhang, and R. Zheng (2020). Structured optimal
graph based sparse feature extraction for semi-supervised learning. Signal Processing,
107456.

111. Liu, Z., J. Wang, G. Liu, and L. Zhang (2019). Discriminative low-rank preserving
projection for dimensionality reduction. Applied Soft Computing, 85, 105768.

112. Lowe, D. G., Object recognition from local scale-invariant features. In proceedings of
the IEEE International Conference on Computer vision, volume 2. Ieee, 1999.

113. Lu, X., J. Li, Z. He, W. Wang, and H. Wang (2019a). Distracter-aware tracking via
correlation filter. Neurocomputing, 348, 134–144.

139

http://doi.acm.org/10.1145/3080845.3080864
http://doi.acm.org/10.1145/3080845.3080864


114. Lu, X., C. Ma, B. Ni, and X. Yang (2019b). Adaptive region proposal with channel
regularization for robust object tracking. IEEE Transactions on Circuits and Systems
for Video Technology, 1–1.

115. Lu, X., C. Ma, B. Ni, X. Yang, I. Reid, and M.-H. Yang, Deep regression tracking
with shrinkage loss. In Proceedings of the European Conference on Computer Vision
(ECCV). 2018.

116. Lucas, B. D., T. Kanade, et al., An iterative image registration technique with an
application to stereo vision. Vancouver, 1981.

117. Lukezic, A., T. Vojir, L. ˇCehovin Zajc, J. Matas, and M. Kristan, Discriminative
correlation filter with channel and spatial reliability. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2017.

118. Ma, C., J.-B. Huang, X. Yang, and M.-H. Yang, Hierarchical convolutional features
for visual tracking. In Proceedings of the IEEE international conference on computer
vision. 2015a.

119. Ma, C., X. Yang, C. Zhang, and M.-H. Yang, Long-term correlation tracking. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015b.

120. Ma, H., S. T. Acton, and Z. Lin (2020). Situp: Scale invariant tracking using average
peak-to-correlation energy. IEEE Transactions on Image Processing, 29, 3546–3557.

121. Marvasti-Zadeh, S. M., L. Cheng, H. Ghanei-Yakhdan, and S. Kasaei (2021). Deep
learning for visual tracking: A comprehensive survey. IEEE Transactions on Intelligent
Transportation Systems, 1–26.

122. Maybeck, P. S., The kalman filter: An introduction to concepts. In Autonomous robot
vehicles. Springer, 1990, 194–204.

123. Mueller, M., N. Smith, and B. Ghanem, A benchmark and simulator for uav tracking.
In European Conference on Computer Vision. Springer, 2016.

124. Mueller, M., N. Smith, and B. Ghanem, Context-aware correlation filter tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017.

125. Nam, H., M. Baek, and B. Han (2016). Modeling and propagating cnns in a tree
structure for visual tracking. arXiv preprint arXiv:1608.07242.

126. Nam, H. and B. Han, Learning multi-domain convolutional neural networks for visual
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016.

127. Naresh Boddeti, V., T. Kanade, and B. Vijaya Kumar, Correlation filters for object
alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2013.

128. Ning, G., Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He, Spatially
supervised recurrent convolutional neural networks for visual object tracking. In 2017
IEEE International Symposium on Circuits and Systems (ISCAS). 2017.

140



129. Nummiaro, K., E. Koller-Meier, and L. Van Gool (2003). An adaptive color-based
particle filter. Image and vision computing, 21(1), 99–110.

130. Pu, S., Y. Song, C. Ma, H. Zhang, and M.-H. Yang, Deep attentive tracking via
reciprocative learning. In Advances in Neural Information Processing Systems. 2018.

131. Qi, Y., S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang, Hedged deep
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016.

132. Qian, X., L. Han, Y. Wang, and M. Ding (2018). Deep learning assisted robust visual
tracking with adaptive particle filtering. Signal Processing: Image Communication, 60,
183 – 192. ISSN 0923-5965.

133. Rahman, M. M., M. Fiaz, and S. K. Jung (2020). Efficient visual tracking with
stacked channel-spatial attention learning. IEEE Access.

134. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,
real-time object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016.

135. Ross, D. A., J. Lim, R.-S. Lin, and M.-H. Yang (2008). Incremental learning for
robust visual tracking. International journal of computer vision, 77(1-3), 125–141.

136. Senna, P., I. N. Drummond, and G. S. Bastos, Real-time ensemble-based tracker with
kalman filter. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI). IEEE, 2017.

137. Sevilla-Lara, L. and E. Learned-Miller, Distribution fields for tracking. In IEEE
Conference on computer vision and pattern recognition. 2012.

138. Shen, J., X. Tang, X. Dong, and L. Shao (2020). Visual object tracking by hierarchical
attention siamese network. IEEE Transactions on Cybernetics, 50(7), 3068–3080.

139. Simonyan, K. and A. Zisserman (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

140. Smeulders, A. W., D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah (2014). Visual tracking: An experimental survey. IEEE transactions on
pattern analysis and machine intelligence, 36(7), 1442–1468.

141. Song, Y., C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. Lau, and M.-
H. Yang (2018). Vital: Visual tracking via adversarial learning. arXiv preprint
arXiv:1804.04273.

142. Sui, Y., G. Wang, and L. Zhang (2018). Joint correlation filtering for visual tracking.
IEEE Transactions on Circuits and Systems for Video Technology.

143. Sun, C., D. Wang, H. Lu, and M.-H. Yang, Correlation tracking via joint discrimi-
nation and reliability learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018a.

144. Sun, C., D. Wang, H. Lu, and M.-H. Yang, Learning spatial-aware regressions for
visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018b.

141



145. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015.

146. Tang, F. and Q. Ling (2019). Spatial-aware correlation filters with adaptive weight
maps for visual tracking. Neurocomputing, 358, 369–384.

147. Tang, M. and J. Feng, Multi-kernel correlation filter for visual tracking. In Proceedings
of the IEEE international conference on computer vision. 2015.

148. Tang, M., B. Yu, F. Zhang, and J. Wang, High-speed tracking with multi-kernel cor-
relation filters. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.

149. Tao, R., E. Gavves, and A. W. Smeulders, Siamese instance search for tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016.

150. Tian, G., R. Hu, Z. Wang, and Y. Fu (2009). Improved object tracking algorithm
based on new hsv color probability model. Advances in Neural Networks–ISNN 2009,
1145–1151.

151. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

152. Uzkent, B. and Y. Seo, Enkcf: Ensemble of kernelized correlation filters for high-
speed object tracking. In IEEE Winter Conference on Applications of Computer Vision
(WACV). 2018.

153. Valmadre, J., L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr, End-to-end
representation learning for correlation filter based tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017a.

154. Valmadre, J., L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S. Torr, End-to-end
representation learning for correlation filter based tracking. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017b.

155. Velasco-Salido, E. and J. Martınez (2017). Scale adaptive point-based kanade lukas
tomasi colour-filter tracker. Under Review.

156. Vojir, T., J. Noskova, and J. Matas (2014). Robust scale-adaptive mean-shift for track-
ing. Pattern Recognition Letters, 49, 250–258.

157. Wang, J., W. Liu, W. Xing, and S. Zhang (2018a). Visual object tracking with multi-
scale superpixels and color-feature guided kernelized correlation filters. Signal Pro-
cessing: Image Communication, 63, 44 – 62. ISSN 0923-5965.

158. Wang, L., W. Ouyang, X. Wang, and H. Lu, Visual tracking with fully convolutional
networks. In Proceedings of the IEEE international conference on computer vision.
2015a.

159. Wang, N., S. Li, A. Gupta, and D.-Y. Yeung (2015b). Transferring rich feature hier-
archies for robust visual tracking. arXiv preprint arXiv:1501.04587.

142



160. Wang, N. and D.-Y. Yeung, Learning a deep compact image representation for visual
tracking. In Advances in neural information processing systems. 2013.

161. Wang, N., W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, Multi-cue correlation
filters for robust visual tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018b.

162. Wang, Q., J. Gao, J. Xing, M. Zhang, and W. Hu (2017a). Dcfnet: Discriminant
correlation filters network for visual tracking. URL https://arxiv.org/abs/
1704.04057.

163. Wang, X., A. Shrivastava, and A. Gupta, A-fast-rcnn: Hard positive generation via
adversary for object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017b.

164. Wu, Y., J. Lim, and M.-H. Yang (2015). Object tracking benchmark. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 37(9), 1834–1848.

165. Xu, T., Z.-H. Feng, X.-J. Wu, and J. Kittler (2019a). Joint group feature selec-
tion and discriminative filter learning for robust visual object tracking. arXiv preprint
arXiv:1907.13242.

166. Xu, T., Z.-H. Feng, X.-J. Wu, and J. Kittler (2019b). Learning low-rank and sparse
discriminative correlation filters for coarse-to-fine visual object tracking. IEEE Trans-
actions on Circuits and Systems for Video Technology.

167. Xu, Y., Z. Wang, Z. Li, Y. Yuan, and G. Yu (2020). Siamfc++: Towards robust and
accurate visual tracking with target estimation guidelines. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(07), 12549–12556. URL https://ojs.
aaai.org/index.php/AAAI/article/view/6944.

168. Yuan, Y., S. Emmanuel, Y. Fang, and W. Lin (2014). Visual object tracking based
on backward model validation. IEEE Transactions on Circuits and Systems for Video
Technology, 24(11), 1898–1910.

169. Yun, S., J. Choi, Y. Yoo, K. Yun, and J. Young Choi, Action-decision networks for
visual tracking with deep reinforcement learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017.

170. Zhang, B., Z. Li, X. Cao, Q. Ye, C. Chen, L. Shen, A. Perina, and R. Jill (2016). Out-
put constraint transfer for kernelized correlation filter in tracking. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 47(4), 693–703.

171. Zhang, B., S. Luan, C. Chen, J. Han, W. Wang, A. Perina, and L. Shao (2017a).
Latent constrained correlation filter. IEEE Transactions on Image Processing, 27(3),
1038–1048.

172. Zhang, J., S. Ma, and S. Sclaroff, Meem: robust tracking via multiple experts using
entropy minimization. In European Conference on Computer Vision. Springer, 2014a.

173. Zhang, K., L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang, Fast visual tracking via
dense spatio-temporal context learning. In European Conference on Computer Vision.
Springer, 2014b.

143

https://arxiv.org/abs/1704.04057
https://arxiv.org/abs/1704.04057
https://ojs.aaai.org/index.php/AAAI/article/view/6944
https://ojs.aaai.org/index.php/AAAI/article/view/6944


174. Zhang, L. and P. N. Suganthan (2017). Robust visual tracking via co-trained kernel-
ized correlation filters. Pattern Recognition, 69, 82 – 93. ISSN 0031-3203.

175. Zhang, T., C. Xu, and M.-H. Yang, Multi-task correlation particle filter for robust
object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017b.

176. Zhou, T., H. Bhaskar, F. Liu, and J. Yang (2016). Graph regularized and locality-
constrained coding for robust visual tracking. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 27(10), 2153–2164.

177. Zhou, T., H. Bhaskar, F. Liu, and J. Yang (2017). Graph regularized and locality-
constrained coding for robust visual tracking. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 27(10), 2153–2164. ISSN 1558-2205.

178. Zhu, G., J. Wang, and H. Lu (2016). Clustering based ensemble correlation tracking.
Computer Vision and Image Understanding, 153, 55 – 63. ISSN 1077-3142. Special
issue on Visual Tracking.

179. Zhu, Z., Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, Distractor-aware siamese net-
works for visual object tracking. In Proceedings of the European Conference on Com-
puter Vision (ECCV). 2018a.

180. Zhu, Z., W. Wu, W. Zou, and J. Yan, End-to-end flow correlation tracking with spatial-
temporal attention. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2018b.

181. Zuo, W., X. Wu, L. Lin, L. Zhang, and M.-H. Yang (2018). Learning support cor-
relation filters for visual tracking. IEEE transactions on pattern analysis and machine
intelligence, 41(5), 1158–1172.

144


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Motivation
	Research Aims
	Thesis structure
	Contributions of this research

	Related Work
	Introduction
	Evolution of Visual Object Tracking
	Classical Correlation Filter Tracker Formulation

	Correlation Filter based Object Tracking
	Deep Feature based Correlation Filter Trackers
	Correlation Filters with Spatio-Temporal Constraints
	Correlation Filters with Channel and Graph Regularization
	Correlation Filter Based Trackers with Kernel Trick

	Baselines Trackers
	Conclusion

	Tracker Evaluation Protocols
	Introduction
	Evaluation using OTB Toolkit
	Precision plot
	Success plot

	Evaluation using the TC128 Toolkit
	Evaluation using the LaSOT Toolkit
	Evaluation on UAV123 Dataset
	Evaluation using GOT-10k Toolkit
	Evaluation on the Tracking Dataset
	Evaluation using the VOT-Toolkit

	LSTM-AMP: LSTM Guided Ensemble Correlation Filter Tracking with Appearance Model Pool
	Introduction
	LSTM guided ensemble tracking with appearance model pool
	Feature Representation for Target Appearance
	Correlation Filters
	Target Position Estimation using LSTM Network
	Target Scale Estimation
	Target rotation estimation
	Appearance Model Pool
	Updating the Correlation Filters

	Evaluation of the LSTM Component
	Training Data Generation
	CNN Features
	HOG Features
	Training the LSTM
	Weight Estimation using the Trained LSTM

	Experiments
	Implementation Details
	Quantitative Evaluation
	Qualitative Evaluation

	Ablation Study
	Chapter summary

	CGRCF: Channel Graph Regularized Correlation Filters for Visual Object Tracking
	Introduction
	Proposed Approach
	BACF-Channel Regularized
	STRCF-Channel Regularized
	Channel-Graph Regularized Correlation Filter
	Lagrangian Multiplier Update
	Target Localization
	Model Update

	Experiments
	Comparison with Baselines on OTB100 and TC128
	Evaluation on TC128 Dataset
	Evaluation on VOT-2017 Dataset
	Evaluation on VOT-2019 Dataset
	Evaluation on LaSOT Dataset
	Evaluation on UAV123 Dataset
	Evaluation on GOT-10k Dataset
	Evaluation using VGG-Net, ResNet50 and SE-ResNet50
	Discussion

	Chapter Summary

	IGSSTRCF: Importance Guided Sparse Spatio-Temporal Regularized Correlation Filters For Tracking
	Introduction
	Proposed Approach
	Lagrangian Multiplier Update
	Target Localization
	Model Update

	Experiments
	Implementation Details
	Performance Analysis
	Ablation Study

	Chapter Summary

	TRM-KCF: Temporally Regularized Multi-Kernel Correlation Filters For Visual Tracking
	Introduction
	Proposed Approach
	Experiments
	Evaluation on TC128
	Evaluation on OTB100
	Evaluation on LaSOT
	Evaluation on GOT-10k
	Evaluation on UAV123
	Evaluation on VOT-2017
	Discussion and Qualitative Evaluation
	Ablation Study

	Chapter Summary

	Thesis Summary and Future Directions
	Introduction
	Summary
	Future Work
	Long-Term Object Tracking
	Multi-Object Tracking





