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Abstract

Large-scale characterization of the human genome has enabled the extensive study of
the diverse genomic alterations present in humans. The integrative analyses of the var-
ious alterations provide a detailed understanding of the factors responsible for disease
initiation and its progression in disorders like cancer. There is a wide range of ma-
chine learning algorithms and statistical methods to analyze genomic data and extract
information for applications such as disease diagnosis and classification of clinical sub-
types. These analyses assist in developing effective drugs for specific diseases and are
particularly helpful in personalized cancer therapy, where the response of a patient to
a particular drug can be captured, and its correlation with the mutation profiles of the
patient can be examined to design targeted medicine. Though a plethora of methods ex-
ist for analyzing cancer genomes, certain challenges exist. Therefore, in this thesis, we
have formulated and proposed different computational solutions to address challenges
in cancer genomics, particularly in hematological malignancies.

Missing value problem is frequently observed in gene expression data, and it may sig-
nificantly impact the findings extracted from the incomplete data. Therefore, we have
dealt with the missing value in gene expression data by devising a compressive sens-
ing (CS) based method, DSNN (Doubly Sparse in the Discrete Cosine Transform with
Nuclear Norm minimization). A significant contribution is the utilization of Discrete
Cosine Transform (DCT) based sparsity for recovering missing values. Further, we have
analyzed the bulk-sequencing exome data of Multiple Myeloma (MM) and Monoclonal
Gammopathy of Undetermined Significance (MGUS) patients. MM is a hematologi-
cal cancer that arises from malignant transformation and deregulated proliferation of
clonal plasma cells (PCs) in bone marrow, preceded by a benign condition of MGUS.
The study has revealed actionable target genes that may be clinically relevant in ad-
dition to the genomic landscape of clonal evolution in MM. A statistically significant
change in the mutational spectrum of MGUS and MM is observed as the disease pro-
gresses from MGUS and MM. We have also utilized survival data of the MM patients
to find the association of Tumor mutational burden (TMB) with overall survival. In
MM, it is critical to identify the initial risk stage of the patient as it helps in deciding
the due course of the treatment to be given to the patient. Therefore, a reliable risk
staging system is required, which may stratify the patients into separate subgroups and
help identify patients requiring frequent visits to the hospital. Multiple staging systems
have been proposed for MM, ISS and R-ISS being the gold standards used widely for
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MM. However, none of them uses ethnicity information. Therefore, we have devel-
oped an ethnicity-aware Artificial Intelligence (Al)-enabled risk staging system, CRSS
(Consensus-based Risk Staging System), for newly diagnosed multiple myeloma pa-
tients. The proposed method can predict the risk stage of any MM patient depending
on the values of the simple parameters like age, albumin, $2-microglobulin, calcium,
eGFR, hemoglobin and high-risk cytogenetic information. There has been an enhanced
inclination towards single-cell sequencing data over bulk-sequencing data, given the
several advantages of single-cell data over bulk NGS data. However, there are differ-
ent noises present in the single-cell data. Therefore, in this thesis, we have devised an
optimization-based framework, ARCANE-ROG, for denoising and imputing noisy and
incomplete single-cell data for inferring patterns of clonal evolution.
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Chapter 1

Introduction

1.1 Background

Cancer is a malignancy demonstrating an unrestricted proliferation of abnormal cells
in the body. According to GLOBOCAN cancer statistics [[1], 2020, there were an es-
timated 19.3 million new cases of cancer in the world in 2020. 10.0 million cancer
mortalities were reported in the same year, making cancer one of the leading causes
of death worldwide. Therefore, it is crucial to identify the mechanisms of cancer ini-
tiation, progression and relapse to improve the life expectancy among cancer patients.
Cancers evolve and propagate via the acquisition of genetic mutations such as single
nucleotide variants, small insertions/deletions and complex chromosomal aberrations
like copy number variants and structural variants [2]. Advances in sequencing tech-
nology coupled with breakthroughs in computational approaches to store and analyze
genomic data have enabled the large scale characterization of the human genome. After
the completion of the first human genome project (HGP), numerous sequencing projects
were initiated, such as the Human Genome Project—Write (HGP-Write) [3], which is a
ten-year extension of the HGP, 100000 Genomes Project [4] and GenomeAsia 100K
(GAI100K) [S]. These projects are aimed to continue research on the human genome
and unravel the genetic mysteries of diseases. Further, after the first cancer genome was
sequenced [2l], NGS data analysis has resulted in the creation of databases containing
information on the mutations driving cancer or mutations which may be of potential
clinical relevance. These databases include tumor alterations relevant for genomics-
driven therapy (TARGET), Catalogue of Somatic Mutations in Cancer (COSMIC), and
International Cancer Genomics Consortium (ICGC; https://dcc.icgc.org)

Conventional sequencing methods such as Sanger sequencing were expensive and time-
consuming. However, next-generation sequencing (NGS) technologies, such as whole-
exome sequencing (WES), whole-genome sequencing (WGS), RNA-sequencing (RNA-
seq), etc., are high-throughput methods that support massively parallel sequencing of
various genomic regions in multiple samples in a single run. In WGS, the entire genome
is sequenced via a large DNA sample. Sequencing coverage for WGS should be high
to detect clinically relevant mutations, which becomes expensive and time-consuming.
On the other hand, WES focuses only on the coding regions (exons) of a genome which
is nearly 2.5% of the entire human genome. Thus, WES is less costly and time-efficient
than WGS, and it is more popularly used in cancer genomics for detecting rare and
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common variants. RNA sequencing (RNA-Seq) assists in detecting changes in the gene
expression profiles, alternative gene-spliced transcripts, gene fusion, etc. In addition to
this, NGS technology is also used to investigate epigenetic alterations. Illumina/Solexa,
SOLIiD (Sequencing by Oligonucleotide Ligation and Detection) and Ion torrent are
a few NGS platforms available today. PacBio sequencing and nanopore sequencing
are referred to as third and fourth-generation sequencers. Though these techniques lag
behind Illumina technology in terms of accuracy, they provide advantages over NGS,
like longer read lengths. In addition, the 10x genomics technology introduced in 2016
enables the cell-by-cell analysis of the genome/transcriptome by using a Chromium
system. Thus, the sequencing platforms are getting faster, more productive and cost-
effective with time. Hence, a tremendous amount of NGS data is generated, demanding
computational/bioinformatics skills to analyze the massive genomic data. Accordingly,
there has been considerable development in the computational capacities to store and
manage the data and computational methods to process the data.

Primary Secondary Tertiary
WGS Functional
i variants .
WXS — . Nucleotide Base Sequence Alignment/ Annotation
calls De novo Assembly Gene based
/ ¢ FASTQ vcf file l,
RNA fils i dbSNP
) Generation of Filtering 4 )
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1
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Figure 1.1: An overview of the NGS pipeline. NGS analysis is divided into three sections-
Primary, Secondary and Tertiary analysis. The primary analysis mainly involves extracting nu-
cleotide base calls from the raw data and converting them to FASTQ files. The quality check of
FASTQ files is done to ensure high-quality reads, followed by pre-processing of FASTQ files. In
the secondary analysis, pre-processed FASTQ files are aligned using a reference human genome
or de novo assembly is done without a reference genome. BAM/SAM files are generated, which
are further processed. Finally, variants are called. In the tertiary analysis, the variants are an-
notated and then filtered, and finally, the variants are interpreted using additional data to reveal
novel findings from the data. This pipeline is mostly followed for exome or whole-genome files
with few changes. For RNA-seq data, instead of calling variants, the expression quantification
step is done to extract the gene expression profiles, which are analysed to get up-regulated or
down-regulated genes.
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All the steps involved in NGS data analysis can be categorized into three sections- pri-
mary, secondary, and tertiary, as shown in Figure [I.I] The primary analysis involves
detecting the raw signal data and converting it into sequence data consisting of nu-
cleotide base calls. Typically, Binary Base Call (BCL) files are the raw files generated
from the sequencers, and these are converted to FASTQ files containing both the se-
quence data and the quality scores of the base call. Phred score, which represents the
quality scores, is a logarithmic error probability. A Phred score of 10 (Q10) denotes
an accuracy of 90%, i.e., a 1 in 10 probability of the base being incorrect. Similarly,
Q30 means a 1 in 1000 probability of an incorrect base or 99.9% accuracy [6]. Thus,
higher scores indicate high confidence in the base calls or better quality reads [7]]. After
generating FASTQ files, pre-processing of NGS reads is done to ensure that only high-
quality reads are used for downstream analysis. Pre-processing steps mainly consist of
filtering, demultiplexing, and adaptor trimming, which is preceded by a quality check
of the sequenced reads by tools such as NGS QC toolkit [8] and FastQC [9]. These
tools generate a well-structured report and provide complete information regarding the
FASTQ files. Depending upon the fastQC report, filtering of the reads is done. Reads
in the FASTQ files are filtered out based on their base call quality (Phred score) and
the read length. The filtering step reduces the detection of false-positive variants as
they have poor confidence base calls. Also, very short reads may hamper the mapping
process as they may align to multiple regions in the genome. In NGS, multiple sam-
ples are sequenced simultaneously in the same instrument. Hence, demultiplexing is
performed to separate the sequencing reads belonging to a particular sample using a
unique barcode assigned to individual samples. Finally, adaptor trimming removes the
library adaptor sequences from the ends of the demultiplexed reads. This step ensures
that they do not interfere with the mapping and assembly processes. Trimmomatic [10]
and Cutadapt [11] are the two most commonly used tools for this analysis.

The secondary analysis mainly encompasses the alignment of the reads against a refer-
ence human genome, or a de novo assembly, followed by variant calling. In sequence
alignment, reads are aligned against a known reference genome, e.g. hgl9 or hg38
for humans, thereby determining the genomic coordinates of the read. BWA [12],
Bowtie [[13], minimap?2 [[14], Magic-BLAST [15] are a few mapping tools used for read-
alignment. De novo assembly is based on graphs theory, where reads are aligned to each
other based on their sequence similarity, and no reference is used. SAM/BAM files are
generated after the sequence alignment. SAMtools [16] are used to manipulate these
files. Once the reads are aligned, three intermediate steps need to be performed before
variant calling: duplicate removal, local read alignment, and base quality recalibration.
During the library preparation, the Polymerase Chain Reaction (PCR) technique gener-
ates duplicate reads, which may cause false positives. Hence, they are removed from
the analysis using Picard tools (http://broadinstitute.github.io/picard/). The presence
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of InDels may cause read mismatch; hence, local read alignment is used to reduce this
mismatching. Phred-scaled quality score, generated by the sequencers, may get affected
by factors such as the sequencing platform and the sequence composition and thus may
not reflect the actual base-calling error rate. Therefore, it is important to recalibrate
the base quality score to enhance variant calling accuracy. Genome Analysis Toolkit
(GATK) [17] is used for local read alignment and base quality score recalibration. Vari-
ants are then identified in the post-processed BAM file using variant callers, relying
on Bayesian approaches, likelihood or machine learning algorithms that have signifi-
cantly evolved over recent years. Most variant callers generate a variant calling format
(VCEF) file as their output. Variants identified may range from single nucleotide variants
(SNVs) and INDELS (insertions and deletions) to complex chromosomal aberrations
such as translocations, inversions, and copy number gains or losses (CNVs). Tools such
as varscan?2 [18]], MuSE [19], Mutect2 [20] and SomaticSniper [21] are used to identify
SNVs and INDELS from WES/WGS data. Delly [22], BreakDancer [23]] and Pindel
[24] identify CNVs and structural variants (SVs) from WGS data.

The final step of the NGS analysis is the data interpretation, i.e. determining the asso-
ciation between variants detected and the phenotype observed in a patient. The tertiary
analysis involves variant annotation and variant filtering followed by data visualiza-
tion. Variant annotation ascertains the biological or functional impact of the genetic
variants in addition to providing the variant context. Variant Effect Predictor (VEP)
[25]], Annovar [26], snpEff [27] are the most widely used annotation tools. These tools
use the vcf files obtained from the variant callers and provide information such as the
chromosomal location of the variants and the biological impact of the variants, i.e. if
the variant is missense, nonsense, synonymous, stop-gain, stop-loss, etc. Variants are
filtered out based on their impact, thereby increasing the probability of detecting an ac-
tionable/driver variant. When we want to discover disease-causing rare variants in the
data, variants commonly found in the population, i.e. SNPs (Single Nucleotide Poly-
morphism), can be removed from the analysis using databases such as dbSNP [2§]].
SNPs are the single nucleotide variants found in at least 1% of the population. Multi-
ple scores such as SIFT[29], Polyphen[30], FATHMM-XF[31] and CADDI32] remove
the benign variants from the analysis. Further, population databases like COSMIC[33]],
ClinVar [34]] and OncoKB [35]] are used to determine the clinical association of variants.
After retrieving the final set of variants, they are correlated with the phenotypic charac-
teristics of the patients. If there is a significant association between them, the findings
are further validated biologically. For example, we can analyze the genomic data at
multiple time points to examine the change in the variants and if any of those variants
are linked to disease progression in the patients. These analyses also assist in develop-
ing effective drugs for specific diseases. They are particularly helpful in personalized
cancer therapy, where a subject’s response to a particular drug can be captured. Thus,
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determining the correlation of the drug with the mutation profiles of the subject can
aid in designing targeted medicine. A plethora of meaningful information is derived
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Figure 1.2: Different challenges that exist in cancer genomics. Development of computational
strategies to tackle these problems.

from the sequencing data, such as identifying upregulated and downregulated genes,
detecting genomics variants, copy number variants, or chromosomal alterations. Di-
verse computational methods are being developed to analyze genomic data. However,
sometimes the data gets corrupted during the acquisition process and may contain noise
in the form of missing values, false positives and false negatives. Hence, we need to
devise methods to address such challenges. For example, gene expression data derived
from molecular techniques may include missing values, and subsequent analysis of this
incomplete data may lead to inaccurate findings. Not only this, single-cell data analysis
has now gained preference over bulk data owing to its better resolution but it is often
corrupted by the presence of false positives, false negatives, and missing bases. Thus,
given the significance of using noise-free data for the precise interpretation of the find-
ings, we have formulated and proposed different computational solutions to deal with
problems in cancer genomics in this thesis. While working with multiple myeloma
data in imputation problem, we became interested in pursuing research in MM. An-
other contributing factor was the availability of exome and clinical data of MM. MM is
a blood cancer characterized by abnormal growth of plasma cells in the bone marrow.
MM is preceded by a benign condition of Monoclonal Gammopathy of Undetermined
Significance (MGUS). We analysed the exome data of MM patients to unravel the het-
erogeneity present in MM patients. We also analysed the exome data of MGUS patients
to determine the factors responsible for the disease progression to MM. Overall survival
in MM varies depending upon the tumor heterogeneity and the initial risk stage of the
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patient as these are the deciding factors for the therapy to be given to the patient and
the subsequent treatment response. Furthermore, disease biology is also impacted by
the ethnicity of the patient. Therefore, we came up with the idea of devising a machine-
learning (ML) based method ethnicity aware method for risk stage prediction in MM
patients. The various challenges addressed in the thesis and the different types of ge-
nomic data handled are shown in the Figure[I.2]

1.2 Literature review

High dimensional gene expression data is crucial in studying the relationship between
genes and diseases including cancer. Molecular techniques such as ‘Microarrays’ facil-
itate estimation of expression levels of thousands of genes simultaneously under differ-
ent experimental conditions and gene expression data generated from such experiments
is subsequently analyzed using statistical or machine learning methods to extract rele-
vant information. Microarray data is useful in a wide range of applications starting from
disease diagnosis to drug discovery. It aids in subject risk stratification, classification of
clinical subtypes and prediction of response to therapy. These analyses further assist in
developing effective drugs as the treatment strategies are targeted directly to the specific
type of cancer. subject’s response to a particular drug may be captured and correlation
between therapeutic responses to drugs and the genetic profiles of the subjects can be
evaluated leading to personalized medical treatment.

A persistent problem associated with microarray dataset is the presence of varying num-
ber of missing values in the data that may arise owing to poor slide quality (dusty or
scratchy), poor image quality, or insufficient resolution [36]. Subsequent downstream
analysis on incomplete gene expression matrices may be highly inaccurate. One of the
ways of dealing with the problem of missing values is to capture microarray data again
but it does not guarantee complete data matrix. Moreover, the entire process is expen-
sive and time consuming. An alternate solution to this problem is to remove the genes
containing missing values from the analysis. However, this can result in loss of infor-
mation and may lead to inaccurate findings on driver genes and/or altered biological
pathway. Therefore, it is worthwhile to apply advanced computational methods for the
imputation of missing values in microarray data prior to any analysis.

Numerous methods have been developed in the recent times for imputation of gene
expression data. These can be broadly categorized into four classes: hybrid methods,
local methods, global methods, and knowledge assisted methods (Table[I.1)). Some of
the early methods developed to account for the missing values are ZEROimpute, ROW-
impute and COLimpute [37]]. In ZEROimpute, missing values are replaced with zeros.
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In ROWimpute and COLimpute, missing values are replaced with the averaged values
of the observed entries of the corresponding rows or columns. These methods do not
take into consideration the correlation present among genes and therefore, do not per-
form optimally. Gene expression matrix is highly correlated. Therefore, it is important
to consider correlation among genes. Several methods exist in literature based on cor-
relation among genes. These are categorized into local and global approaches based on
the type of correlation utilized by them. As shown in Table [I.1] local approaches im-
pute missing values by considering the group of genes that show high correlation with
the gene containing missing values. Such methods perform optimally when the data is
heterogeneous. k nearest-neighbor imputation (KNNimpute) [38] is one of the earliest
local approach method to impute missing value. It first estimates k nearest group of
genes that are similar to the missing target gene, followed by averaging of these genes
to impute the missing value of the target gene. SKNNimpute (Sequential KNNimpute)
[39]] and IKNNimpute (iterative KNNimpute) [40] are variations of KNNimpute. Gaus-
sian mixture clustering imputation (GMCimpute) [41], least square imputation (LSim-
pute) [42] and variations to LLSimpute, sequential LLSimpute (SLLSimpute) [43], it-
erative LLSimpute (ILLSImpute) [44], robust least square estimation with principal
components (RLSP) [45], Bayesian gene selection BGSregress [46]], collateral miss-
ing value imputation (CMVE) [47] and auto-regressive least square imputation (ARLS)
[48]] are all examples of local approaches. On the other hand, SVDimpute (Singular
Value Decomposition) [38], Bayesian Principal Component Analysis (BPCA) [49] are
the examples of global approach and utilize the global correlation present in the entire
gene expression matrix. Hybrid approaches include methods like LinCmb [50]], HPM-
MI [S1]and tri-imputation [S2]]. GOimpute [53]], HAimpute [36] and (iMISS) [54] are
knowledge-assisted methods that combine the already existing domain knowledge to
imputation techniques for imputing missing values in gene expression data, thereby, in-
creasing their imputation accuracy. Gene Ontology based similarity measure has been
recently used for missing value imputation in miRNA microarray data [S5)]. A brief
review of all the existing methods is shown in Table [I.1]

Global approach based methods such as SVDimpute [38]], Bayesian Principal Compo-
nent Analysis (BPCA) [49] exploit the global covariance information resulting from the
entire gene expression matrix. In SVDimpute, singular value decomposition is used to
calculate principal components of gene expression matrix, referred to as eigengenes,
which can then be linearly combined to approximate the expression of all genes in
the data set. SVDimpute first performs linear regression of the target gene against the
‘k’ most significant eigengenes and then uses the coefficients of the regression to re-
construct the missing values from a linear combination of the ‘k’ eigengenes. BPCA
[49] performs missing value imputation in three steps: a) Principal Component (PC)
regression, 2) Bayesian estimation and 3) an Expectation-Maximization (EM)-like al-
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gorithm. N-dimensional gene expression vectors are expressed as a linear combination

of K principal axis vectors and an EM-like algorithm is then used to estimate the poste-

rior distributions of the model parameter and the missing values simultaneously.

Table 1.1: Review of existing methods for missing value imputation in gene expression data

Local Approach

Global Approach

Hybrid Approach

Knowledge assisted
Approach

Imputes missing values by
first estimating the local
correlation among the group
of genes that are highly

Imputes missing values
by utilizing the global

Exploits both the global
and local correlation

Imputes missing values

by integrating already
existing domain knowledge
to imputation methods.
Information about

(Kim et al., 2004a),
Sequential LLSimpute
(SLLSimpute)

(Zhang et al., 2008),
iterative LLSimpute
(ILLSImpute) (Cai et al.,
2006) and robust least
square estimation

with principal components
(RLSP) (Yoon et al., 2007)
(iv) Bayesian gene selection
BGSregress (Zhou et al.,
2003), Collateral missing
value imputation (CMVE)
(Sehgal et al., 2005),
Auto-regressive least square
imputation (ARLS)
(Choong et al., 2009)

by calculating Singular
value decomposition
of the gene matrix and
it then selects the most
significant components.
These selected
components are further
used to approximate
missing values in the
gene expression data.

(Purwar and Singh,

2015) is a hybrid approach
that uses both k-means
clustering and Multilayer
perceptron. It uses eleven
different missing value
imputation techniques

to compute missing values
and then selects the best
clusters using k-means

to compute final result.
(iii) Tri-imputation

(He et al., 2016)

employs three base
imputation algorithms to
impute the genes with
missing values.

Method correlated with the gene correlation among the among genes to calculate . . .
.. . . .. biological process in the
containing missing values genes in the complete missing values . .
. . . . . microarray experiment etc.
and then using the local gene expression matrix. in gene expression data. . .
. is an example of domain
correlation to calculate
the missing value knowledge that can be
ssing ' integrated to the method.
. . Perf imall
Perform optimally when Perform optimally when erform optimally Improves accuracy of
. . regardless of the type . . .
the data is heterogeneous the data has high global . missing value imputation
Advantages | . . . . . . of covariance . .
i.e genes exhibit dominant covariance in expression . and perform optimally in
s . present in the gene .
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expression data.
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imputation (KNNimpute) (i) LinCmb (Jornsten et
(Troyanskaya et al., 2001) al., 2005) uses both global
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SKNNimpute information in the data.
(Sequential KNN) It estimates missing
(Kim et al., 2004b), values using five
IKNNimpute different imputation
(iterative KNNimpute) (i) Bayesian Principal algorithms, row average,
(Bfas and Menezes, 2007) Component Analysis KNNimpute, GMCimpute, | (i) GOimpute (Tuikkala et
(i) Gaussian mixture (BPCA) (Obaet al., SVDimpute and BPCA. al., 2005) uses the prior
clustering imputation 2003). It then takes a convex information about the
(GMCimpute) (ii) SVDimpute combination of the functional similarities
(Ouyang et al., 2004) (Singular Value results obtained from in term of GO for
(iii) Least square imputation Decomposition) each of the methods to missing value imputation.
(LSimpute) (Bg et al., 2004) (Troyanskaya et al., compute final result. (i) HAimpute (Imputation
and its variations- 2001) first estimates (ii) HPM-MI (Hybrid using Histone Acetylation
Local least square principal components of | Prediction Model with information) (Xiang et al.,
Examples imputation (LLSimpute) gene expression matrix Missing value Imputation) | 2008) combines histone

acetylation information as
domain knowledge with
imputation methods such
as KNNimpute and
LLSimpute. Accuracy of
missing value imputation
improves considerably
after utilizing domain
knowledge.
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Most of the methods perform missing value imputation in gene expression data at com-
paratively higher observability, say, when 70% or more data is available (that is equiv-
alent to 30% or less data is missing). Recent developments have made it possible to
predict expression data values when the observed data is as low as 10%. Gene ex-
pression data is a highly correlated data because of the high level of interdependence
between the genes. This interdependence is due to functional relationship between the
genes as the group of genes interact together in any biological process. Therefore, it
is evident that gene expression matrix is very similar to a low rank matrix that can be
embedded into a lower dimensional subspace. Imputation of missing values in data
matrix can be projected as the matrix completion problem and hence, we devised an
optimisation based framework for imputation which is explained in detail in chapter 2.
The proposed method has been tested on datasets of hematological malignancies. While
working with multiple myeloma (MM) dataset on imputation problem, we decided to
focus on only one type of blood cancer i.e. MM. The problem of missing value impu-
tation is a generic one and can be easily applied to datasets of different cancer types.
There has been tremendous amount of research in multiple myeloma, but there are gaps
remaining that need to be addressed. However, such type of research work requires
access to the longitudinal exome and clinical data of cancer patients. We were lucky
to have the availability of the exome data and clinical data of multiple myeloma from
our collaborators and authorized access to online datasets which further motivated us to
pursue this problem.

Multiple Myeloma (MM) is a malignancy of clonal plasma cells that tend to evolve and
accumulate as disease progresses from precursor transition states of Monoclonal gam-
mopathy of undetermined significance (MGUS)/Smoldering Multiple Myeloma (SMM)
to active MM and ultimately Extramedullary disease/Plasma cell leukemia (PCL). Reser-
voir founder clones may exist prior to MGUS [56], that may become detectable and
dominant with progression and gradually evolve into heterogeneous subclones. The
process of subclonal propagation of plasma cells (PCs) during myelomagenesis is com-
plex and is driven under the influence of selection pressures exerted by immune surveil-
lance, microenvironment and therapeutic agents.

Molecular mechanisms that underlie early progression in newly diagnosed MM patients
who fail to respond to existing treatments are not completely understood. MM shows
heterogeneity in terms of clinical phenotypes, rates of disease progression, response to
therapy and survival outcomes, all of which are influenced by the underlying genomic
complexity of the patient [S7]. It is established that two types of primary oncogenic
events are involved in initiation of myelomagenesis [58, 59] as shown in Figure [1.3]
These include IgH translocations (found in nearly 55% patients) and hyperdiploidy of
odd numbered chromosomes (observed at a frequency of 40%). These two kinds of
aberrations may coexist in nearly 10% of cases. A gamut of secondary events (muta-
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tions in RAS, NF-xB pathway, overexpression of MYC, haploinsufficiency of p53, (1q)
gain and (1p) loss) are known to occur that provide further growth advantage to evolving
(sub)clones, promote drug resistance, genome instability and progression. Deletion 13q
is commonly found among non-hyperdiploid MM as well as in MGUS which suggests
its role as a primary event during early oncogenesis of MM [60, 161! 62].

Drivers of clonal evolution:
Immune surveillance

Initiating M.ic:roenvi?omnent
Events Therapeutic agents
y 4 PCL
IGH translocations Founder ‘:'l> MGUS |:> SMM
Hyperdiploidy PC I:> MM ;

S

EMD

Secondary genetic events:
Copy number abnormalities
Acquired somatic mutations

Epigenetic changes

Figure 1.3: Clonal evolution in MM. MM is initiated by events like IGH translocations or
Hyperdiploidy. MGUS and SMM are the precursor stages of MM which progresses to MM
over time on acquisition of multiple genetic changes, ultimately leading to PCL and EMD.

Based on mutational complexity and subclonal architecture, different patterns of clonal
evolution have been reported in MM. The branching type of clonal evolution analo-
gous to Darwinian model is the most frequent one and is found in > 50% MM patients
whereas linear or stable evolution with no significant alteration in subclonal architec-
ture have been observed in < 30% cases [63, 164, [65]. Analysis of WES data obtained
from MM patients on Immunomodulatory imide drugs (IMiDs) from UK Myeloma XI
phase 3 trial and the CoMMpass study has revealed that 20% MM patients experienced
neutral tumor evolution associated with poor prognosis while remaining 80% encoun-
tered branching evolution [11]. Patients with branching evolution may respond well to
IMiDs as these can reconfigure bone marrow stromal cum immune microenvironment
and prolong survival [11]. Instead, patients with neutral clonal evolution with random
genetic drift may benefit from combinations of PIs with high dose melphalan [66, 67]].

Recent NGS studies conducted on pairwise myeloma genomes/ exomes at two or more
serial time points have reported presence of intraclonal heterogeneity during progres-
sion and relapse 56,162,163, 167,168,169, 70,71, 72,[73,74,[75,[76]. A series of somatic
mutations including substitutions, indels and copy number variations emerge during
disease progression that contour the pattern of clonal evolution. Numerous driver mu-
tations have been identified in myeloma genome [72] that may co-evolve mutually in
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cooperation or exclusively either in same or different (sub)clones and modulate their
net impact on clinical outcomes.

Although clonal heterogeneity in MM is well established, subclonal remodelling of
gains/ losses and rewiring of functional pathways are not completely understood. There
is currently a paucity of data available on longitudinal subclonal evolution profiles as-
sociated with progression in MM and a deeper understanding is required to assess mu-
tations of clinical relevance that could potentially be targeted for treatment in future
therapeutic approaches against MM and its precursor states [66, [77]. The progressing
subclonal shifts are of paramount clinical significance as these could promote onco-
genesis and lead to drug refractoriness. Estimation of their cellular prevalence could
further predict likelihood of depth of response and a rationalized approach of combina-
torial therapy. More and more longitudinal studies are needed to explore the progressing
subclonal events and ultimately guide combinations of targeted therapy that can eradi-
cate such subclonal populations and delay progression. Hence, we decided to conduct
this study to capture subclonal mutational landscapes associated with progression of
MM and identify potential actionable/ druggable targets that can be treated with their
corresponding drugs. This work is explained in detail in chapter 3. Multiple myeloma
is preceded by a non malignant condition, Monoclonal Gammopathy of Undetermined
Significance (MGUS). In MGUS, there is normal as well as abnormal plasma cells in
the body. The abnormal plasma cells lead to the presence of M protein in the blood.
MGUS does not usually cause any clinical symptoms and often go undetected till it
transforms to full blown MM. Since, the tumor initiating genomic alterations have al-
ready taken place at MGUS level, it is important to study MGUS and identify prognostic
factors responsible for the malignant transformation of MGUS to MM.

Monoclonal gammopathy of undetermined significance (MGUS) is a benign precur-
sor state of MM characterized by lack of end-organ damage [78] and less than 10% of
plasma cells in the bone marrow. MGUS may progress to asymptomatic or symptomatic
multiple myeloma with a rate of nearly 1% per year [79], where MM is characterized
by severe clinical problems such as bone fractures, anaemia, renal failure, and hyper-
calcemia. Multiple studies involving exome and genome data of MM have been per-
formed to understand the genomic abnormalities driving tumor progression in MM. It is
well established that the primary events in MM are either hyperdiploidy, i.e., trisomy of
chromosomes 3,5,7,9,11,15,19 and/or 21 or non-hyperdiploidy involving translocations
affecting the genes encoding immunoglobulin (Ig) heavy chains (IGH)-mainly t(4;14),
t(6;14), t(11;14), t(14;16) and t(14;20) [80]. Primary events are then followed by multi-
ple secondary events promoting tumor progression. However, it has also been observed
and validated that the genetic aberrations peculiar to MM are also present during the
premalignant state of MGUS, where they do not show any clinical symptoms related
to MM [73} 81]. It is, therefore, worthwhile to thoroughly investigate the mutational
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landscape of the genomic alterations affecting MGUS as well as MM. Though multi-
ple studies have been performed to study the MGUS to MM progression [72, 82, [83I],
the landscape of the mutational patterns of the MGUS and MM largely remains unex-
plored. The study of the changing mutational spectrum of the MGUS as it advances
to MM will provide more insight into the disease biology. Further, it will help identify
the clinically relevant vital biomarkers that can assist in controlling the progression of
MGUS to MM.

Mutational signatures have emerged as critical biomarkers in cancer genomics, with
profound pathogenic, prognostic, and therapeutic implications. Multiple mutational
events occur in a tumor, while only a few of these mutations are actual drivers of can-
cer. However, exploring the entire landscape of coding and non-coding mutations helps
reveal the mutational signatures characteristics of the specific cancer types. For exam-
ple, CG>AT transversion is associated with lung cancer [84], and CG>TA is associated
with skin cancer [85) 86]. Various mutational signatures have been discovered based
on the 96 possible combinations of the single base substitutions and their trinucleotide
contexts. These signatures are linked with the defects of DNA repair mechanisms, age-
ing, UV exposure, and others, thereby validating the role of the mutational processes in
shaping the genomic continuum of each cancer type [87, 188, [89]. It will be interesting
to explore the association of MGUS and MM to with any of these mutational signa-
tures. Further, tumor mutational burden (TMB) has become a prominent biomarker
of response to immunotherapy and is being explored for its association with overall
survival, particularly in solid tumors. TMB is determined as the number of mutations
identified per megabase. It has been observed that cancers with a high TMB load of
greater than 10 mut/Mb have a better chance of responding to drugs called immune
checkpoint inhibitors (ICIs). The primary function of ICIs is to activate the immune
system better to recognize cancer cells [90] and act upon them. As a result, a high tu-
mor mutational burden (TMB) has been increasingly associated with superior overall
survival in ICI-treated patients. Multiple studies are now being conducted to discover
the cancers with high TMB that respond best to ICIs and, thus, prolong the survival of
cancer patients. In addition, the association of TMB with survival in non-ICI-treated
patients has also been explored. It has been observed that high TMB was associated
with poor prognosis and overall survival in the absence of immunotherapy, as opposed
to ICI-treated patients in whom high TMB was associated with prolonged survival [91].
Since, MM may have high mutation burden in certain patients, it will worthwhile to
infer the association of TMB with the survival outcomes in MM.

Synonymous mutations, earlier designated as silent mutations, were mostly ignored
in cancer genomics due to their inability to alter the amino acid of the resultant protein
[92]]. However, they have the capability of changing the protein expression and function
owing to their impact on RNA stability, RNA folding [93] or splicing [94], translation
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[93]], or co-translational protein folding. Multiple studies have corroborated that natural
selection is present in synonymous mutations [95,196,97]], contrary to earlier studies that
denied the role of selective pressure in synonymous mutations [98]. Various genome-
wide association studies conducted in recent times have also confirmed the association
of synonymous SNPs to human disease risk and other complex traits. Therefore, the
role of synonymous mutations in the disease biology of MGUS and MM should be
examined as it could lead to significant prognostic and clinical implications. Given
the existing gap in the literature of MGUS and MM, we were inspired to explore and
compare the evolving mutational spectrum as disease progresses from MGUS to MM.

In MM, the overall survival period ranges from 6 months to more than 10 years. The
variability in the outcome of patients is an implication of the clinical and biological het-
erogeneity underlying MM. Substantial advances in tumor biology have made it possi-
ble to dissect the tumor heterogeneity present in MM, optimize patient treatment, and
examine patient outcome. Multiple prognostic systems [99, 100, 101} 102} [103] have
been described in MM that stratify patients into different risk groups. These risk groups
further assist in identifying high risk patients who may require intense therapy upfront
and/or a higher monitoring frequency during the follow-up periods. The first staging
system for MM was proposed in 1975 [99] followed by the development of Interna-
tional staging system (ISS) [100] in 2005 and a Revised ISS (R-ISS) [101] in 2015.
ISS utilizes serum albumin and $2-microglobulin while R-ISS makes use of ISS, Lac-
tate dehydrogenase (LDH) and high-risk cytogenetic aberrations (HRCA). Currently,
triplet combination therapy is the new standard-of-care in MM which has shifted many
high risk patients to standard risk category, thereby justifying the need for a new risk-
stratification system with the possibility of inclusion of more prognostic factors. Al-
though human physiological and genetic profile is known to vary across ethnic groups,
the current MM risk-staging systems do not account for ethnicity-specific information
that can have a huge impact on the risk score prediction. It is evident from the stud-
ies that African Americans experience 2-3 times higher incidence rates than Asians,
Mexican-Americans or Europeans [[104]. Recent studies have observed significant vari-
ation in the overall survival of different groups belonging to distinct races/ethnicities
since the introduction of novel treatment agents in MM [103} 106, 107, [108]].In a recent
study, vitamin-D deficiency at diagnosis was found to be a predictor of poor overall sur-
vival in MM [[109]. However, this was significant only for White Americans and not for
African Americans even at lower cut-offs of deficiency [109]]. Similarly, HRCA, which
is used to determine the intensity of frontline therapy, does not track with survival out-
comes in African Americans10, thereby, highlighting the need for a race-specific risk-
stratification system. Though ethnicity is an important prognostic factor in predicting
the risk for MM [[110], yet the variations in the clinical characteristics among the dif-
ferent ethnic groups have not been evaluated adequately. Therefore, it is desirable to
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have a staging system that includes the variations in the clinical characteristics of the
patients pertaining to distinct ethnic groups. In addition, it should be based on clini-
cal and laboratory parameters that are easily accessible in healthcare settings across the
globe.

Technology is constantly improving and so are the methods to sequence the genomic
data. Single-cell technology has gained momentum in recent years as it has become
more accessible to researchers due to reduction in library preparation and sequencing
cost. It also provides higher efficiency as compared to bulk sequencing data. Single-cell
vs bulk sequencing could be explained in simple terms by the following analogy. If we
look at stars with bare eyes, we cannot focus on individual stars. However, if we look
at stars with telescope, we get a clear picture of individual stars. Similarly, single-cell
technology improves resolution as the focus is individual cells unlike group of cells in
bulk data. For the same reason, single-cell technology is revolutionizing the field of
cancer genomics as it uncovers the cellular heterogeneity. However, there is a downside
to this technology. Single-cell data is complex and often is corrupted with noise which
needs to be tackled before performing any data analysis. Otherwise, it could result
in inaccurate findings. The challenges associated with single-cell data inspired us to
follow research in single-cell data as the last component of the thesis. Also, we were
able to broadly cover the different technologies used in the study of genomic data in
this thesis.

1.3 Thesis Contributions

The major contributions of the thesis are summarized below:

1. A novel two-stage method was proposed to recover missing values in gene ex-
pression data by utilizing the row and column sparsity of the gene expression
matrix in the Discrete Cosine Transform (DCT) domain. The first stage is the
compressive sensing (CS) based framework that utilizes DCT based sparsity of
the gene expression matrix to recover missing values. The recovered matrix is
then denoised in the second stage, where the low-rank property of the matrix
is utilized. The significant contribution of this work is exploiting DCT based
sparsity to impute missing value in gene expression data which has never been
done before in the context of gene expression data. Further, the significance of
the imputation was established by classification and biological pathway analysis.
The proposed method was tested on CLL (Chronic lymphocytic leukemia), AML
(Acute myeloid leukemia) and MM (Multiple Myeloma) datasets since the focus
of the thesis was hematological malignancies. The problem of missing value im-
putation is generic and can be applied to datasets of other cancer types easily. So,
we decided to concentrate on MM for our subsequent research problems. MM
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is a hematological cancer that arises from malignant transformation and deregu-
lated proliferation of clonal plasma cells (PCs) in bone marrow. The progression
of disease is driven by multiple factors including immune surveillance, microen-
vironment and therapeutic agents. MM is highly heterogeneous where drug resis-
tance can be seen in patients even those who initially showed a good response to
the treatment. Not only this, conventional treatment therapy might not work for
all the patients owing to the heterogeneity of the disease. Thus, longitudinal stud-
ies involving MM patients might help in shedding some light over the genomic
events leading to disease progression and drug resistance.

2. Bulk sequencing data of multiple myeloma patients was analysed to unravel the
potentially actionable targets in multiple myeloma (MM) and thoroughly examine
the genomic landscape of clonal evolution in cancer patients. The major contribu-
tion of this work is the detailed analysis of the variants found to be mutated in the
patients at two time points via exploration of the longitudinal exome data of 62
MM patients. This data was collected at two different time points, one at the time
of diagnosis of disease and the other time when the disease has progressed in the
patient. An ensemble-based approach was adopted to identify a more reliable set
of variants in each patient. The study provided critical insights into the recurrent
subclonal shifts in known drivers, oncogenic and tumor suppressor genes. This
study has been explained in chapter 3. MM is a unique type of cancer which has
a benign precursor stage known as Monoclonal Gammopathy of Undetermined
Significance (MGUS). MGUS patients do not show any clinical symptoms, how-
ever, studies have shown the presence of genomic complexity in MGUS patients.
Hence, it is worthwhile to examine the genomic data of MGUS in conjunction
with MM to understand the differentiating factors leading to the transformation
of MGUS to MM. Once we identify such biomarkers, it is possible to restrict the
progression of MGUS to MM and thus prolong the survival of MGUS patients.
However, it is not easy to get MGUS genomic data because the condition is non
malignant and people usually go undiagnosed till it transforms to cancer. But, we
were able to get access to 61 patients of MGUS and thus, decided to study MGUS
with MM.

3. MGUS is a non-malignant condition identified by the presence of abnormal pro-
tein (M protein) in the blood. This condition does not cause any problem in itself,
however, it poses an increased risk of developing MM with time and therefore,
needs to be continuously monitored. MGUS being a precursor of MM, shows
complex genomic landscape similar to MM and is an area of concern for the re-
searchers. There have been multiple studies related to MGUS and MM, but they
lack an in depth evaluation of the entire spectrum of mutations occurring in both
MGUS and newly diagnosed MM (NDMM) patients. Hence, to fill the existing
gap, exome data of MGUS and MM patients was evaluated in chapter 4 to in-
vestigate the change in the mutational spectrum as the disease transforms from
the benign condition of MGUS to malignant MM. An exhaustive investigation of
all the mutations was done by categorising them into three groups- synonymous,
non-synonymous and others. A statistically significant change in the mutational
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spectrum from MGUS to MM was found. There was a statistically significant in-
crease in the frequency of all the variants as well as the TMB values from MGUS
to MM. It was observed that 3’ and 5 UTR mutations were more frequent in MM
and might be responsible for driving MGUS to MM via regulatory binding site.
The frequency of high TMB was low and was found to be associated with poor
overall survival in newly diagnosed multiple myeloma patients. Survival data of
the MM patients was also utilised to infer the association of survival outcome
with single base substitutions and ABOPEC activity. The abundance of survival
data for MM patients motivated us to explore this data further for risk staging in
newly diagnosed MM.

4. Risk staging is a critical step in deciding the course of treatment for the patient
and may impact the overall prognosis of the disease. Along other prognostic fac-
tors that are critical for designing risk staging system for cancers, ethnicity based
heterogeneity forms an integral part of it. Ethnicity is known to affect disease
biology and hence, cannot be overlooked. Therefore, in chapter 5, an ethnicity-
aware Al-enabled risk staging system for newly diagnosed multiple myeloma pa-
tients has been proposed. The model utilizes the parameters- age, albumin, 52M,
albumin, calcium, eGFR, hemoglobin and information on cytogenetic abnormal-
ities and ethnicity to predict the risk stage of any patient. The main contribution
of the study is examining the impact of ethnicity on risk stage prediction and ex-
ploiting the ethnicity information for risk stage prediction in MM. The proposed
method is robust and reliable and is better able to separate patients into different
risk groups.

5. The thesis mostly deals with either bulk data or clinical data. Bulk data is merely
a representative of group of cells and not individual cells which is why cellular
complexity is often masked by bulk data. On the contrary, single-cell technology
provides better resolution at cellular level and hence, has gained momentum in the
last few years. Single-cell data provides cell-specific information and therefore,
provides a detailed picture of the complexity and the heterogeneity present in tis-
sues. Given the significance of single-cell data in cancer genomics, we wanted to
explore this data to broadly cover the technologies used in the study of genomic
data. Therefore, in chapter 6, an optimization-based method for denoising and
imputing noisy and incomplete single-cell data has been devised to infer the pat-
tern of clonal evolution from the imputed and denoised matrix. Single-cell data
for multiple myeloma was not available so, we tested our data on other cancer
datasets. The significant contribution of the work is the development of a robust
and computationally fast method for single-cell data that can efficiently work on
small-sized datasets and large-sized datasets.
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1.4 Thesis Organization

Rest of the thesis is organized into different chapters. Chapter 2 is on missing value im-
putation in gene expression data. One of the persistent problems associated with gene
expression data is the presence of missing values. Thus, we proposed an optimization
based method, DSNN (Doubly Sparse DCT domain with Nuclear Norm minimization)
for gene expression data imputation. In the first stage, missing values were recovered
by formulating it as the CS-based reconstruction with double sparsity in the Discrete
Cosine Transform (DCT). DSNN uses both column and row sparsity. The second stage
was framed as the denoising problem and exploits the low-rank nature of the data ma-
trix. The proposed method was compared with state-of-the-art methods.

In chapter 3, we studied the genomic landscape of clonal evolution in Multiple Myeloma
using the whole exome sequencing data of 62 MM patients collected at two time points
at AIIMS, New Delhi, first at the time of diagnosis followed by second instant on pro-
gression of MM to investigate the pattern of clonal evolution of MM in these subjects’
data. A comparative evaluation of the variants at two time points along with an depth
analysis of evolving founder clones revealed multiple driver mutations including those
known to be actionable. The workflow and the main findings of the work are presented
in the chapter while detailed analysis of individual patients is provided at the end of the-
sis. In addition, critical insights into the recurrent pattern of subclonal shifts in certain
important genes is also presented.

Whole exome data of MGUS and MM patients was evaluated in chapter 4 to investigate
the change in the mutational spectrum from MGUS to MM. An exhaustive investiga-
tion of all the mutations was done by categorising them into three groups- synonymous,
non-synonymous and others. The critical findings of the study are presented in detail in
the chapter along with the methodology followed. There was a statistically significant
increase in the frequency of all the variants as well as the TMB values from MGUS to
MM. It was observed that 3’ and 5> UTR mutations were more frequent in MM and
might be responsible for driving MGUS to MM via regulatory binding sites. Associa-
tion of survival outcome with multiple prognostic factors is also presented in the study.

In chapter 5, an ethnicity-aware Al based method, Consensus based risk staging (CRSS),
for risk stratification in MM was proposed. This method is based on easy to acquire
clinical parameters like age, albumin, 52M, hemoglobin, eGFR, calcium and informa-
tion of cytogenetic abnormalities and ethnicity. Method was validated on two different
datasets, in-house dataset obtained from AIIMS (MMIn) and Multiple Myeloma dataset
obtained from Multiple Myeloma Research foundation (MMREF). Its performance was
remarkably better as compared to existing risk staging gold standard for Myeloma, i.e.
Revised ISS (RISS) in terms of Kaplan-Meier curves, p-values obtained via Log-rank
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test, hazard ratios and concordance index.

In chapter 6, ARCANE-ROG, Algorithm for Reconstruction of CANcer Evolution from
single cell data using RObust Graph learning was proposed. ARACANE-ROG is an op-
timization based framework which denoises and imputes single cell data and infers the
pattern of clonal evolution from the denoised single cell data. Method was extensively
validated on multiple simulated datasets and real datasets. A comparative analysis of
the proposed method with the state-of-the-art methods in terms of reconstruction error,
False positive to False Negative (FPFN) ratio, Tree distance and V-measure revealed
the robustness and efficacy of the proposed method. Our proposed method efficiently
worked on small-sized datasets and large-sized datasets.

Chapter 7 summarizes the thesis work and provides suggestions for future work.
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Chapter 2

Missing value imputation in gene expression data

2.1 Introduction

Matrix completion is a popular and challenging area of research in various domains. It
is evident from the literature review done in chapter 1, section 1.2 that there is a need
for a robust method for imputing missing values in genes expression data. Such method
should be able to recover missing values efficiently at low as well as higher observ-
ability of the data. Therefore, a novel 2-stage method, DSNN (Doubly Sparse DCT
domain with Nuclear Norm minimization), has been proposed in the study for pre-
dicting missing values in gene expression data using Compressive Sensing (CS) based
formulation. In the first stage, missing values were recovered in gene expression data
by formulating it as the CS-based reconstruction with double sparsity in the Discrete
Cosine Transform (DCT). Matrix obtained in first stage is considered a noisy version
of the original/true matrix. Therefore, in Stage-2, denoising of the matrix recovered
from Stage-1 is done by utilising nuclear norm minimization. It exploits the low rank
property of the data matrix. Missing value imputation was performed on four blood
cancer dataset at different observability of data (10% to 90%) using NMSE as eval-
uation metric. Significance of imputation was validated by two experiments. In the
first experiment, classification of normal versus cancer subjects was carried out. In the
second experiment, biological significance of imputation was ascertained by first iden-
tifying top 500 genes using SPARROW algorithm [111], followed by KEGG analysis
on these top 500 genes. SPARROW (SPARse selected expRessiOn regulators identified
With penalized regression) algorithm finds candidate tumor drivers from the ‘selected
expression regulators’ (SERs). It defines SERs as the genes that drive dysregulated tran-
scription leading to carcinogenesis. This algorithm regresses the gene expression values
on the candidate SERs and provides a rank to each SERs based on the genes expression
values of the samples. The method has been described briefly in Section 3. Once the
ranking was done by SPARROW, top 500 ranked genes from the list were further stud-
ied by KEGG [112, [113} [114] using a web based application, Enrichr, developed and
maintained by [115] and [116]. Many matrix completion methods exist in the literature
and out of these methods, LMaFit [117], LogDet (Logarithm determinant) [118], and
Robust PCA [119] are three different state-of-the-art matrix completion methods. The
proposed method has been compared with these methods. LMaFit is based on matrix
factorization, while LogDet implements nuclear norm minimization. RPCA performs
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feature reduction and is quite robust to outliers. However, these methods have some
limitations. LogDet becomes computationally expensive as the size of the matrix in-
creases. LMaFit and RPCA-GD provide good performance, but their parameters need
to be tuned properly for better recovery of missing values. Recently Kapur et al. [120]
has used low rank constrained matrix completion method for imputing missing values
in genomics.

2.2 Materials and Methods

2.2.1 Dataset Description

Four publicly available microarray gene expression dataset of different cancer types
and different population have been used. Dataset-1 is Chronic lymphocytic leukemia
(CLL) cancer dataset (GSE50006) from USA. CLL dataset contains expression val-
ues of 220 subjects across 54675 probe-ids and consists of two classes depending on
whether the subject has CLL or not. There are 188 tumor samples and rest 32 are normal
samples. Dataset-2 is Acute myeloid leukemia (AML) cancer dataset (GSE9476)[121]
from USA. It contains gene expression values of 64 subjects across 22283 probe-ids.
Two classes are present in the data. Label ‘1’ corresponds to person suffering from
AML and label ‘2’ corresponds to healthy subject. There are 26 tumor subjects and
38 healthy subjects. Dataset-3 is Multiple Myeloma (MM) cancer dataset (GSE47552)
[122] from Spain. It contains gene expression data of 99 subjects across 33297 probe-
ids. It has data from 20 subjects with MGUS, 33 with high-risk SMM, 41 with MM
and rest 5 were healthy subjects. Dataset-4 is Multiple Myeloma (MM) cancer dataset
(GSE125361) belonging to Indian population. It contains gene expression data of 48
MM subjects across 58341 probe-ids.

Data was pre-processed to convert probe-ids to gene symbols because gene versus sam-
ple information is required for SPARROW analysis. It was observed that several probe-
ids showed same gene names. To overcome this problem, gene expression levels of the
probe-ids corresponding to the same gene name were averaged and gene versus sample
matrix was created. After pre-processing, CLL dataset had 220 samples with expres-
sion values of 23348 genes. AML dataset had 64 samples with expression values of
13650 genes. MM-Spanish dataset had 99 samples with expression values of 23307
genes. MM-Indian dataset had 48 samples with gene expression values of 33973 genes.
Since the range of gene expression values was very high (of the order of 10°) for the
CLL dataset, data was log transformed to reduce its dynamic range and to ensure that
the smaller values were not shadowed by the higher values during the missing data
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recovery method.

Xlog-transformed@v j) - 10910 (Xoriginal (Z, ]) + 1) (2 1)

Matrix imputation was carried out on the sample versus gene matrices. After matrix
imputation, only tumor samples of both the dataset were used for SPARROW analysis.

Workflow pipeline of the proposed analysis is shown in Figure First of all, pre-
processing of raw data was done as described in the previous section. Next, missing
value imputation was carried out on four blood cancer dataset at different observability
of data using Normalized Mean Square error (NMSE) as evaluation metric. Significance
of imputation was validated by two experiments. In the first experiment, classification
of normal versus cancer subjects was carried out. In the second experiment, biological
significance of imputation was ascertained using SPARROW algorithm [111] followed
by KEGG analysis on the top 500 genes identified by SPARROW.

Gene expression data obtained
from GEO database

| Pre-processing of data

Imputation of missing values at
different sampling ratios

Validation on Classification Biological Validation

Perform classification on original, Select observed and imputed matrices
observed and imputed matrices at 50% and 70% sampling ratio
Calculate classification accuracy Apply SPARROW only on tumor

and F1 score samples of the data matrix.

|

Select top 500 genes from the sorted
output of SPARROW

| |

Gene enrichment analysis is done on
the top 500 genes using ‘Enrichr’

Analysis of the KEGG and GO
pathways obtained from original,
observed and imputed data matrices

Figure 2.1: Workflow of the proposed analysis
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2.2.2 DSNN Methodology

The proposed ‘Doubly Sparse DCT domain with Nuclear Norm minimization’ (DSNN)
method consists of two stages. Stage-1 imputes missing values using a CS-based frame-
work and DCT-based sparsity, while Stage-2 removes noise from the matrix obtained
from Stage-1 by using a simple denoising framework.

Stage-1: Compressive Sensing based Matrix Completion: In this stage, missing
value problem was projected as compressive sensing based reconstruction problem. To
understand it better, consider an incomplete matrix Y of size r X s, where r represents
the number of subjects and s denotes the number of genes. Since the expression value
of any gene will not vary much across subjects, data within a column would be sparse
in some transform domain. Similarly, for a sample, gene expression levels of the gene
will also be sparse in some transform domain. Columns and rows of the gene expres-
sion matrix were studied in the DCT domain and were observed to be highly sparse as
shown in Figure [2.2] Based on this observation, Discrete Cosine Transform was chosen
as the sparsifying transform in DSNN method because DCT acts as a KL-type basis for
slow-varying signals [[123] and data is sparse in the DCT domain.

Columnwise DCT Rowwise DCT
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Figure 2.2: Each curve represents DCT coefficients of a few randomly chosen columns and
rows of gene expression matrices of CLL dataset.

Thus, the missing data recovery problem was formulated in a compressive sensing
framework, where the sensing matrix ® was of size » X s and had ‘0’ entries for miss-
ing values in data matrix Y, while rest of the entries were ‘1’. Corresponding to each
observed entry (that is not missing) of the i™ column, there is a row in ®; with an entry

‘1’ for the corresponding position and zeros in the rest of the positions. For example,
T

ASSUME Xpigsing= [xl . T3 . . xﬁ] is the observed vector where only x1, 3 and ¢
[

are available and, x5, x4 and x5 are missing (denoted as °.’ in the vector). Then, the
VECLOr Xpyjssing Can be re-written as y:
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y = dx 2.2)
o
n] 1 o000 0] "
v=lzs| =10 010 0 of [, (2.3)
w| 00000 1]|™
T
T
100 00O
where the sensing matrix is writtenas ® = (0 0 1 0 0 0] and x is the desired

000O0O0T1
vector to be recovered. This is the standard formulation in compressive sensing litera-

ture, where it is assumed that only few values of data are sensed. In the above example,
these values are x5, x4 and x5. Thus, we have recast the problem of missing values in
VECtOr Xpissing as the compressively sensed vector y. Now, the task is to recover full data
x from compressively sensed data y that will lead to missing value recovery.

Gene expression data was interpreted as a matrix with few observed samples, where the
goal was to reconstruct the original/true matrix from the observed entries using DCT-
based sparsity of gene expression data.

The following optimization problem was solved to recover the missing values in Y

min(|[Y = @X]J3 + A [IDXDL]],), (2.4)

where D, is columnwise DCT matrix applied on columns of the X and D, is the row-
wise DCT matrix applied on rows of the X. X is the matrix to be recovered. The above
formulation is also known as analysis-prior and presence of DCT matrices in the for-
mulation makes it non-separable. Using the orthogonal property of DCT transform,
analysis prior was transformed to synthesis-prior formulation as

min(|[Y — SDIZD, |3 + Al |Z]l1). (2.5)

where DCXD;F = 7. The above optimization problem was solved using the function
handle and ‘SPGL1’ solver [124], [125], where the regularization parameter A\; was
chosen automatically by the ‘SPGL1’ solver.

Stage-2: Denoising framework: It was assumed that the recovered X from Stage-1
is the noisy version of the original/true matrix X and hence, the recovered matrix was
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denoised in Stage-2. Before denoising, X is re-organized into f(rec as

~ 0 if (|%(j, 1) — )| > Nostd(y,
0 R - men(y) 2 hsdy)
X(j,i), otherwise

where j ranges from 1 to m (number of rows/ subjects), |.| denotes the absolute value
and, mean(y;) and std(y,) denote the mean and the standard deviation of the i** column
of the initial observed (but incomplete) matrix Y. Parameter A\, was determined empir-
ically and was set to value 0.2 for experiments on CLL dataset, MM-Spanish dataset,
and MM-Indian dataset. It was set to 0.1 for experiments on AML dataset. Denoising
was formulated in the Split-Bregman type optimization as

mV%"n(||W||*+/\3||W—)A(—B||2F) st. X =W, 2.7)

where B is randomly initialized matrix and X was initialized as:

}2 = Xrec + Xinv-rec o Tand(m7 TL), (28)

where ‘o’ represents the Hadamard product of two matrices with the elements of Xinv_rec
defined as

5 o 1, if Xee(4, i) =0

Xinv—rec (]7 Z) = ’ . ’ 7 (29)

0, otherwise.

This step involves applying nuclear norm on the matrix W which is essentially the
matrix that we want to recover. Nuclear norm is defined as the sum of the eigen values
of a matrix as below:

W[, =) os(W) (2.10)

Significance of using nuclear norm in the denoising framework is to recover low rank
matrix here because gene expression data is low rank in nature owing to the interde-
pendence between the different genes. Equation was solved in Split Bregman type
iterations as

whH = sy (XE 4 BY), @.11)
B! — X"+ B* — W, 2.12)

oktl _ ¢ < k+1

X - Xrec + Xobs oW ) (213)

where ‘SVT’ denotes the soft singular value thresholding method [[126] and f(obs is the
observed incomplete matrix. Optimal value of parameter \3 was determined using grid
search and was set to 100 in all experiments. All the randomly initialized matrices
consist of uniformly distributed random numbers in the scale of O to 1. The complete
algorithm for the proposed DSNN method is presented below.



Chapter 2. Missing value imputation in gene expression data 26

Algorithm 1 Proposed DSNN Method
Stage 1 - Compressive sensing based matrix recovery
Y (Given incomplete matrix), ¢, Discrete Cosine Transform matrices D,., D,
Obtain Z by solving mzm(| |Y — ®D!ZD,||2 + \1||Z||,) using ’spgl’ solver
X = D'ZD,
X
Stage 2: Nuclear-norm based denoising
X (Recovered Matrix from Stage-1 considered as the noisy matrix)
%) {9, (R ) — mean(y;)] = s std(y)
x(j,1), otherwise,

A~

X = Xiee + Xinyrec © rand(m,n)
while converge:

wh = sy, (X 4 BY)

B! = X"+ BF - W

X = Xrec + Xobs o Whtl

g\nd while
X (Recovered Matrix)

2.3 Results

2.3.1 Evaluation

For assessing the performance of the proposed DSNN method, some data were dropped
randomly to create incomplete matrices with available data ranging from 10% to 90%.
Next, incomplete matrices were imputed using the DSNN method. Results were simul-
taneously generated using three state-of-the-art matrix completion methods for com-
parative analysis. Normalized mean squared error (NMSE) was used as the evaluation
metric and was calculated between the original/true and the recovered matrix. NMSE

is defined as:

. o - 2
NMSE — || X(original) — X(recovered)||3

X(original)|[% 19
Semi-log plots of NMSE at different stages are shown in Figure [2.3] Stage-1 results
were obtained when missing values in data matrix were imputed using compressive
sensing based matrix completion, where double sparsity in DCT domain was exploited.
Stage-2 results were obtained when only nuclear norm minimization was used for ma-
trix imputation. DSNN method combined both these stages. Results clearly indicated
that the performance of imputation has improved with the two successive stages of
DSNN. DSNN method also worked better than the existing methods even at high miss-
ing rates of 10% as shown in Figure NMSE reported in the figures is averaged over
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Figure 2.3: Semi-log plots with normalized y-axis show NMSE after imputation on CLL,
AML, MM-Spanish and MM-Indian dataset using Stage-1 only, Stage-2 only and Proposed
DSNN method (Stage-1 + Stage-2).

30 iterations. For CLL dataset, highest NMSE reported was 0.09 at 10% observed data
and lowest NMSE was 0.004 at 90% observed data. For AML dataset, highest NMSE
was 0.013 at 10% observed data and lowest NMSE was 0.00056 at 90% observed data.
For MM-Spanish dataset, highest NMSE reported was 0.005 at 10% observed data and
lowest NMSE was 0.00039 at 90% observed data. For MM-Indian dataset, highest
NMSE was 0.0122 at 10% observed data and lowest was 6.25E-04 at 90% observed
data.
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Figure 2.4: Semi-log plots with normalized y-axis showing comparison of the proposed DSNN
method with the three state-of-the-art methods in terms of NMSE for CLL, AML, MM-Spanish
and MM-Indian dataset

2.3.2 Validation

In order to determine the significance of the DSNN method, two separate experiments
were carried out on the original/true data, incomplete data and imputed data matrices.
In experiment-1, classification of normal versus cancer subjects was carried out. In
experiment-2, biological significance of imputation was ascertained by first identifying
top candidate tumor drivers from SPARROW algorithm, followed by gene enrichment
analysis on the top-ranked genes using web based application Enrichr.
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2.3.3 Experiment 1: Classification

Simulation results on missing value recovery were validated by performing classifica-
tion on original/true matrices, matrices with random missing values, and imputed ma-
trices of the CLL and AML dataset. Classification can be either supervised or unsuper-
vised depending on the availability of ground truth labels. In these dataset, ground truth
labels were available. Hence, supervised classification was performed to distinguish
between two classes, normal and cancer using two different classifiers: linear Support
Vector Machine (SVM) and k nearest neighbor (KNN) method with £ = 3. Both the
dataset had large number of features, therefore, feature reduction was performed to ex-
tract important features from the data. Three different methods of feature reduction
were used, Mutual Information criterion, Principal Component Analysis (PCA) and
Chi-square method. Optimal number of features in each method were estimated by
grid search. Further, 5-fold cross validation was performed and accuracy reported was
average accuracy over 20 iterations. Experiments were performed in Python 3 environ-
ment with Sklearn 0.20 library. Classification code was written in Python programming
language. Scikit-learn is a Python module for machine learning and contains various
algorithms related to regression, classification and clustering. Examples of these algo-
rithms are support vector machines (SVM), random forest (RF), k-means. Classification
accuracy and Fj score were calculated at different sampling ratios from 10% to 90%.
The accuracy and F} score are defined as:

N
1
Accuracy = — > " 1(z; = i) (2.15)
=1

=]

2 2 x precision X recall
1 pu—

2.16
precision + recall 2.16)

where NV is the total number of samples in the dataset, x; is the class label of the i sam-
ple, and z; is the class label determined by the classifier. Weighted 7 score was used
in order to account for label imbalance arising out due to unequal number of tumor and
normal samples. CLL dataset had 188 tumor and 32 normal samples and AML dataset
had 26 tumor samples and 38 normal. Tables [2.T]and 2.2] clearly indicate that values of
classification accuracy and F} scores for incomplete matrices are low as compared to
the values obtained on imputed matrices. Classification accuracy and [ scores were
also computed on imputed matrices obtained from the three existing methods on both
the dataset and compared with the results of DSNN method as shown in Figures [2.5]and
2.6l Classification was also performed on MM-Spanish dataset (Results are shown in
Table[A.1)). Classification could not be performed on MM-Indian data because it was a
single class data, i.e., of tumor samples only.
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Table 2.1: Classification Accuracy and Fj score for CLL dataset at varying sampling
ratios (FR- Feature reduction, SR- Sampling Ratio, Obs.- Observed, Rec. - Recovered

using DSNN method)
Classification Accuracy
FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR | Obs. | Rec. | Obs. | Rec. | Obs. | Rec. | Obs. | Rec. | Obs. | Rec. | Obs. | Rec.
10% | .71 .87 73 77 .84 .96 .85 .97 .86 .96 .89 .98
20% | .71 .87 75 78 .80 .97 .84 .98 .86 .98 .87 .99
30% | .79 .89 i .81 .85 97 .84 .98 .85 .99 .87 .99
40% | .79 .89 .81 91 .85 .98 .85 .98 .86 .99 .88 .99
50% | .80 .89 .85 97 .86 .99 .85 .98 .88 .99 .90 .99
60% | .78 .92 .87 97 .85 .99 .85 .98 .90 .99 92 .99
70% | .83 .90 .90 97 .86 .99 .86 98 93 .99 .96 .99
80% | .83 91 .96 .98 .86 .99 .87 .98 .98 .99 .99 .99
90% | .85 91 97 97 .87 .98 91 .98 .99 .99 .99 .99

F; score
FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR | Obs. | Rec. | Obs. [ Rec. | Obs. | Rec. | Obs. | Rec. | Obs. | Rec. | Obs. | Rec.
10% | .72 .86 ) 72 78 .96 .79 .96 .79 95 .85 .98
20% | .72 .85 74 72 7 97 78 .98 .79 .98 .81 .98
30% | .78 .88 i i .79 97 78 .97 .79 .99 .82 .99
40% | .78 .86 .80 .90 .79 .98 .79 98 .79 .99 .85 .99
50% | .80 .88 .84 .96 .80 .99 .79 .98 .84 .99 .87 .99
60% | .78 .90 .86 .96 .79 .99 .79 .98 .88 .99 .90 .99
70% | .82 .89 .90 97 .80 .99 .80 .98 .92 .99 .96 .99
80% | .82 .90 .96 .98 .80 .98 .82 .98 .98 .99 .99 .99
90% | .84 91 97 .97 .82 .98 .89 .98 .98 .99 .99 .99
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Figure 2.5: Comparison of different methods in terms of classification accuracy and Fj score
at varying sampling ratios on CLL dataset
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Table 2.2: Classification Accuracy and [} score for AML dataset at varying sampling
ratios (FR- Feature reduction, SR- Sampling Ratio, Obs.- Observed, Rec. - Recovered

using DSNN method)
Classification Accuracy

FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR | Obs. | Rec. | Obs. [ Rec. | Obs. | Rec. | Obs. [ Rec. | Obs. | Rec. | Obs. | Rec.
10% | .35 .84 .54 .83 .60 .86 .86 .96 .76 91 .96 .98
20% | .50 .98 .50 .98 .97 .97 .98 .98 .73 .99 91 .99
30% | .45 .99 45 .99 .97 97 .98 .98 76 1.0 91 .99
40% | .53 .99 .59 .99 95 .99 .99 1.0 71 1.0 .86 1.0
50% | .54 .98 .56 .99 .96 .96 .99 .99 71 1.0 .83 .99
60% | .63 .98 .70 .99 .98 1.0 .99 1.0 75 1.0 .93 1.0
70% | .63 .96 .67 .99 .98 .98 .99 1.0 .82 1.0 .96 .99
80% | .75 .96 77 .99 .99 .99 .96 1.0 .87 .98 .96 1.0
90% | .80 .94 .87 .99 .99 .99 .96 .99 .94 .99 .97 .99

F; score

FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR | Obs. | Rec. | Obs. [ Rec. | Obs. | Rec. | Obs. [ Rec. | Obs. | Rec. | Obs. | Rec.
10% | .53 .83 .54 .83 48 .85 .86 95 .76 91 .96 .98
20% | .49 .98 .50 .98 .97 .97 .98 .98 73 1.0 91 .99
30% | .45 1.0 46 .99 .97 97 .98 .99 76 1.0 91 .99
40% | .52 .99 .60 1.0 .96 .99 1.0 1.0 72 1.0 .86 1.0
50% | .53 .98 57 .99 .96 .96 .99 .99 .78 1.0 .82 .99
60% | .64 97 .70 .99 .98 1.0 .99 1.0 75 1.0 .93 1.0
70% | .64 97 .68 1.0 .98 .98 .99 1.0 .82 1.0 .96 .99
80% | .73 .96 i .99 .98 .99 .96 1.0 .87 .98 .96 1.0
90% | .77 .93 .87 .98 .99 .99 .96 .99 .94 .99 .97 .99
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Figure 2.6: Comparison of different methods in terms of classification accuracy and F} score
at varying sampling ratios on AML dataset

2.3.4 Experiment 2: Biological Validation

For biological validation of the results, SPARROW was applied on the original/true ma-

trix, incomplete matrices, and imputed matrices to identify top candidate tumor driver
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genes. SPARROW (SPARse selected expRessiOn regulators identified With penalized
regression) was proposed by [[111] and aims to find out candidate tumor drivers from
the ‘selected expression regulators’ (SERs). It defines SERs as the genes that drive dys-
regulated transcription leading to carcinogenesis. In this method, variational Bayesian
spike regression model has been used to fit the following model,

Ymm = Z xm,kﬁk,n + €m,n;s (217)

where y,, 1, 1s the value of expression of the n'" gene for the m' subject, Emn 18 @
normally distributed error, z,,  is the value of expression of the k" SER for the m!"
subject and 3y, ,, is the additive effect of the expression of the k' SER on the expression
of the n'" gene. m ranges from 1.....M, where M is the total number of subjects and
n ranges from 1........ N, where N is the total number of genes. Total SERs used in
the analysis were around 3400 and they were downloaded from the link provided in the
original paper. This algorithm provides a rank to each SER based on the gene expression
values of the samples. The top-ranked genes from the list can be further studied by gene
enrichment analysis.

For finding top 500 candidate driver genes, only the tumor samples from the data ma-
trices were considered for SPARROW analysis. Algorithm was applied on original/true
complete data matrices of all the dataset to identify the top-ranked candidate tumor
drivers. This served as the ground truth for our analysis. Further, SPARROW was ap-
plied on incomplete and imputed data matrices of both the dataset at sampling ratios
of 50% and 70%. Top-ranked candidate drivers from the incomplete and imputed data
matrices were obtained. Gene enrichment analysis was performed on top 500 genes.
KEGG pathways were studied using web based application, Enrichr, developed and
maintained by [115] and [116]. KEGG pathways obtained from gene lists of orig-
inal/true dataset were the ground truth. It was observed that when KEGG pathway
analysis was done for incomplete matrices, these were not able to predict cancer path-
ways with a higher significance (low p-value) whereas for imputed matrices, cancer
pathways were predicted with a higher significance due to decrease in p-value. Results
from KEGG analysis on all dataset are presented in tabular form showing the p-values,
combined score for original/true data and the incomplete and complete matrices in tabu-
lar form in the Tables[A.2] [A.3] [A.4]and [A] p-value was computed from the Fisher exact
test. Fisher test was run on random gene sets and ranks were derived at each run. Mean
rank was calculated from the different runs and standard deviation of the rank obtained
from the expected rank was also calculated for each term in the gene-set library. Finally,
a z-score was calculated to estimate the deviation from the expected rank. z-score and
p-value were used to compute combined score which is obtained by multiplying z-score
with the logarithm of p-value. A detailed analysis for CLL dataset consisting of z-score
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and combined score has also been shown in the Tables and[A.7]

2.4 Discussion

2.4.1 Importance of the proposed DSNN method

DSNN, a two stage method proposed for matrix recovery was based on Compressive
Sensing Framework. In Stage-1, it utilized column and row sparsity of the gene ex-
pression matrix in DCT domain for missing value imputation, while in Stage-2, it ex-
ploited low rank nature of the matrix for denoising. Expression values of any particular
gene would vary slowly across subjects, thereby, exhibiting sparsity in columns in some
transformed domain. Similarly, expression values of a subject for most of the genes will
also be slowly varying, thereby, exhibiting sparsity in the rows. Since there is a high
inter-dependence between the expression levels of the genes, one may consider gene
expression matrix as a low rank matrix. Thus, as discussed earlier, both the assump-
tions used in Stage-1 (of sparsity in DCT domain) and Stage-2 (low rank of matrix)
hold true for the given gene expression data. This work utilizes double sparsity, i.e.,
sparsity on both the columns and the rows in the DCT domain. Most of the imputation
algorithms developed for missing value imputation such as KNN, LSimpute, LLSim-
pute, BPCA etc. work at high observability of data, while the proposed DSNN method
worked well even when data had very high missing rates of 10% to 40%. The pro-
posed DSNN method performed better than the other matrix completion methods at all
sampling ratios. The state-of-the-art matrix imputation methods that have been used
for performance comparison in this work required a lot of parameter tuning for opti-
mal performance, while DSNN method did not require parameter tuning to such a great
extent.

2.4.2 Improvement in Classification Accuracy

It was evident from the results shown in Tables and that the classification accu-
racy and F; scores reduced as the number of missing values increased. There were 220
samples in CLL dataset and 64 samples in AML dataset. For smaller dataset like AML,
missing values affected the classification accuracy and F scores greatly. Thus, it is
necessary to impute missing values in gene expression data to prevent incorrect down-
stream analysis of the data. When the classification was performed on the imputed data,
there was considerable improvement in the classification accuracy, thereby, validating
our hypothesis. Classification accuracy and Fj scores calculated on original/true com-
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plete data matrices (100% sampling ratio) were considered as ground truth values. For
CLL dataset, ground truth values of classification accuracy and weighted F); score were
0.99 and 0.99, respectively, as shown in Figure [2.5] For KNN classifier and Chi-square
feature selection approach, classification accuracy and Fj score obtained for 50% ob-
served data was 0.86 and 0.80 respectively as shown in Table 2.1] After imputation,
values improved significantly to 0.99 and 0.99. For AML dataset, ground truth values
of classification accuracy and £ score were 1.0 and 1.0 respectively as shown in Figure
Similarly for Linear SVM classifier and PCA feature selection approach, classifi-
cation accuracy and F} score for 50% observed data was 0.56 and 0.57, respectively, as
shown in Table After matrix imputation, classification accuracy and F} score im-
proved considerably to 0.99 and 0.99 respectively. For every sampling ratio, consistent
results were obtained that validates our method.

Improvement in functional enrichment analysis for KEGG pathways

KEGG enrichment analysis was performed on the top 500 ranked genes obtained from
SPARROW algorithm to biologically validate our results. As mentioned earlier, KEGG
pathways obtained by the top-ranked genes of original/true matrices were considered
the ground truth values. Pathways with p-value < 0.05 were only considered. When
KEGG analysis was done on top-ranked genes from incomplete matrices, there was
significant decrease in the p-value of the most significant pathways. “Wnt signaling
pathway" [[127,[128]] and “Notch signaling pathway" [129, 130] are important pathways
in CLL cancer. An important observation was that p-value for “Notch signaling path-
way" was 2.00E-0O1 at ground truth and it was 5.76E-02 at 70% observed data for CLL
dataset. Values were insignificant in both the cases. However, after imputation, p-value
became significant with value 1.56E-02 which was less than 0.05 as shown in Figure

27

Similarly, p-value for “Wnt signaling pathway" was 8.33E-05 on original/true dataset,
as shown in the Figure[A.I] At 50% observed data p-value for “Wnt signaling pathway"
was 3.10E-02 which was less significant than the ground truth value at 50% observed
data. After matrix imputation, p-value became significant with value 2.13E-03. Sim-
ilarly, p-value became 1.90E-05 after matrix imputation on 70% observed data which
was more significant than the p-value 6.66E-5, observed at 70% data. “Fc epsilon RI
signaling pathway" is an important pathway in AML cancer [131]. This pathway was
insignificant for original/true data with p-value 2.12E-01. At 70% observed data, p-
value was 9.40E-02 which was again greater than 0.05. After matrix imputation, the
value became significant at 2.75E-02, which was less than 0.05 as shown in Fig.
Similarly, ‘Ras signaling pathway" is activated in Multiple Myeloma cancer [132]. For
MM-Spanish data, “Ras signaling pathway" was significant with p-value 0.0052 for
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Figure 2.7: Few important KEGG pathways at 70% observed and imputed data for CLL data.
Adjusted p-values are shown in brackets.
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Figure 2.8: Few important KEGG pathways at 70% observed and imputed data for AML data.
Adjusted p-values are shown in brackets.

original/true data but became insignificant with p-value 0.23 when 70% data was ob-
served as shown in Figure 2.9 After matrix imputation, significance of the pathway
was restored with p-value 0.04. For MM-Indian dataset, “Transcriptional misregulation
in cancer" was found to be insignificant with p-value 0.55 as shown in Figure 2.10] Af-
ter imputation, p-value decreased to 1.37E-03 and became more significant than ground
truth p-value, 7.8E-03. Additional KEGG analysis results on the dataset CLL, AML
and MM-Spanish data are provided in the Figures[A.2][A.3|and [A.4]

Thus, DSNN method not only imputed missing entries but also performed some denois-
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Figure 2.9: Few important KEGG pathways at 70% observed and imputed data for MM-

Spanish data. Adjusted p-values are shown in brackets.
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Figure 2.10: Few important KEGG pathways at 70% observed and imputed data for

MM-Indian data. Adjusted p-values are shown in brackets.

ing to improve the results. It is quite evident from the analysis that gene enrichment

analysis results were partially inaccurate due to incomplete matrices. This was because

the genes identified as top-ranked genes by performing SPARROW analysis on com-

plete data matrix were not identified in the top-ranked list obtained from incomplete

data matrix. However, when the incomplete matrix was imputed using the proposed
DSNN method, top-ranked list of genes obtained from SPARROW analysis was quite
similar to the ground truth. Our observation demonstrates the importance of imputing

missing values in gene expression data.



Chapter 2. Missing value imputation in gene expression data 37

2.5 Conclusion

Gene expression data generally has a lot of missing values that can adversely influence
the downstream analysis. Hence, missing value imputation in gene expression data is
important for appropriate analysis in cancer research. In this work, we have proposed
an optimization based method for imputing missing values in the gene expression data
using discrete cosine transform based sparsity and nuclear norm minimization. The
proposed method is validated quantitatively based on the application of classification.
Additionally, we have also biologically validated the significance of imputation by per-
forming pathway enrichment analysis. The proposed method is tested on datasets of
hematological malignancies involving CLL, AML and MM. While working with mul-
tiple myeloma (MM) dataset, we got interested in pursuing research in MM. MM is a
type of blood cancer where there is presence of abnormal plasma cells in the blood.
One of the main challenges in MM is monitoring disease progression and dealing with
drug resistance in patients which often leads to poor outcome. Therefore, longitudinal
studies involving MM patients might help in identifying the genomic events leading to
disease progression and drug resistance. Given the significance of the mentioned re-
search problem, we decided to study MM. The study has been presented in detail in
next chapter.



Chapter 3

Clonal evolution in Multiple Myeloma

3.1 Introduction

Multiple Myeloma is a hematological malignancy characterized by clonal expansion of
abnormal plasma cells in the bone marrow. Patients with MM show symptoms of cal-
cium elevation, renal failure, anemia and bone lesions as defined in CRAB criteria. Due
to heterogeneity in MM, survival outcomes may vary and needs continuous monitoring
of patients as drug resistance and disease progression are widely seen in MM. Hence, as
discussed in section 1.2, longitudinal data of MM needs to be studied to gain deeper un-
derstanding of the genomic alterations taking place in MM as the disease evolves. In this
study, we have evaluated 186 pairwise whole exome sequences obtained from 62 MM
patients at two time points representing tumor at diagnosis, tumor at progression and
compared to their germline landscapes respectively using NGS. We have identified in-
dividual clonal genomic complexities, tumor mutation burdens (TMBs) and divergence
of clusters of mutations in founder clones. This study has provided novel insights into
recurrent subclonal shifts in drivers (DRV), oncogenes (ONC), tumor suppressor genes
(TSGs) and the potential actionable targets (ACT) associated with progression of MM.

3.2 Materials and Methods

This study was approved by the Institute Ethics Committee and conducted as per eth-
ical guidelines. Voluntary written informed consent was obtained from all the study
individuals.

3.2.1 Whole exome sequencing

Genomic DNA was isolated from CD138+ plasma cells enriched from bone marrow as-
pirates with MACS magnetic microbeads (Miltenyi Biotech, Germany), collected from
62 patients including 61 newly diagnosed treatment naive MM patients and 1 MGUS
(who later converted to MM at TP2) diagnosed as per IMWG guidelines (Table [3.1).
Patients diagnosed and treated at our center from 2014 to 2019 in whom DNA samples
were available prior to therapy and at the time of disease progression were included in
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this study. The patients were treated with triplet combination induction chemotherapy -
VCD (bortezomib, cyclophosphamide, dexamethasone) or VID (bortezomib, thalido-
mide, dexamethasone) or VRD (bortezomib, lenalidomide, dexamethasone) prior to
time of progression. The median overall survival (OS) of the patient cohort was 152.5
weeks and median progression free survival (PFS) was 87.21 weeks.

Whole exome sequencing (WES) was carried out on 186 DNA samples extracted from
62 MM patients collected at two time points- one prior to any therapy at diagnosis (Time
Point 1= TP1) and second at a follow up time point of disease progression (Time Point
2="TP2). WES was also carried out on paired germline DNA obtained from peripheral
blood mononuclear cells for all the patients.

For WES, DNA was extracted using Maxwell RSC cultured cells DNA kit (Promega,
Wisconsin, USA) on automated nucleic acid extraction system (Promega, Wisconsin,
USA). Prior to library construction, DNA was quantified fluorometrically with a DNA
high sensitivity kit with Qubit (ThermoFisher Scientific, MA, USA). WES libraries
were constructed from genomic DNA using the Nextera Exome kit (Illumina, San
Diego, California, USA) which targets a genomic footprint of 62Mb with >3,40,000,
95 mer probes. After quantification, the DNA was normalized to 10ng/ul and a total of
50ng DNA was tagmented with transposons. The tagmented DNA was purified from
the transposome with sample purification beads. The purified tagmented DNA was
subjected to a unique combination of dual index adapters and amplified with sequences
required for cluster generation. After amplification, the DNA libraries were purified and
the purified libraries containing unique indices were combined into a single pool using
a 3-plex strategy. The target regions of interest in the purified libraries were hybridized
with coding exome oligos and captured with streptavidin magnetic beads. The enriched
libraries were eluted from the beads and subjected to a second round of hybridization
with coding exome oligos. Final libraries were eluted and then quantified and evaluated
for quality using DNA high sensitivity Qubit kit (ThermoFisher Scientific, MA, USA)
and DNA HS Kit (Agilent Technologies, Santa Clara, USA) on Agilent Bioanalyser
respectively. The size range of generated libraries was 200-500 bp. The resultant cap-
tured libraries were pooled, normalized following standard normalization method and
paired-end sequencing was carried out using the Illumina cBot system and HiSeq SBS
kit V4-250 cycles on HiSeq 2500 (Illumina).

3.2.2 Analysis of Whole exome data

The overall workflow of data analysis is shown in Figure 3.1 Raw sequencing reads
were quality checked using FastQC software (v0.11.4, http://www.bioinformatics.
babraham.ac.uk/projects/fastqgc/). The adapter sequences were removed


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 3.1: Baseline demographic, laboratory and clinical characteristics of multiple myeloma
(MM) patients (n = 62)

Parameter No. of patients
Median Age (Range) In Years | 58 (31 to 72)
Gender

Male 38
Female 24
Hemoglobin (g/dL)

<10 39

> 10 23
Platelet Count (/dL)

< 100 10

> 100 52
Serum creatinine (mg/dL)

<=2 49

> 2 13
Serum albumin (g/dL)

<35 30
>3.5 32
ISS1/2/3 1/17/44
RISSI/11/1I1/NA 1/36/14/11
MRS 1/2/3/NA 7/33/21/1
Serum calcium (mg/dL)

0-11 54

> 11 8
eGFR (mL/min)

< 40 17

> 40 45
IgG Isotype

IgA 14
IgG 37
Light chain x/\ 11
BM plasma cells (%)

<40 21

> 40 41
Serum LDH (IU/L)

<420 51

> 420 6
NA 5
[2-microglobulin (mg/L)

<3.5 3
>3.5 59
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using Trimmomatic software (v0.39, http://www.usadellab.org/cms/?page=
trimmomatic). [llumina Dragen somatic pipeline (v3.5.7, https://sapac.illumina.
com/products/by-type/informatics—products/basespace—sequerice—hub/
apps/edico-genome—-inc—dragen—-somatic—pipeline.html) was used

to process the trimmed reads and aligned with human reference genome, hgl9 avail-

able at UCSC.

The tumor and normal bam files obtained from Illumina Dragen somatic pipeline were
used for variant calling using three additional variant callers, Strelka v2.9.10 [133];
SomaticSniper v1.0.5.0 [134] and SpeedSeq v0.1.2 (FreeBayes)[135] in order to val-
idate the variants called by Dragen somatic pipeline. Only those variants called by
all the four callers and passed filters of base quality (> 20), mapping quality (> 20),
tumor reads (> 10) and normal reads (> 5) qualified as a consensus. These vali-
dated variants were further annotated using BaseSpace Variant Interpreter (https:

//variantinterpreter.informatics.illumina.com/home).

Further, COSMIC database was explored for assignment of variant pathogenicity (Pathogenic
/ Neutral / Unknown). Variants predicted as Deleterious / Damaging / Pathogenic by

any of the three tools (SIFT / PolyPhen / FATHMM) were considered as Pathogenic.

For identification of CNVs, the .bam files of tumor and normal samples obtained from
Illumina Dragen (v3.3.7) somatic pipeline were analyzed using Sequenza (https:
//cran.r-project.org/web/packages/sequenza/) package along with
human reference .fasta file from UCSC (ucsc.hg19.fasta).

Variants identified were compared with the variants identified in MMRF CoMMPass
Study database (www.themmrf.org). The mutated genes were classified as driver
genes, oncogenes and tumor suppressor genes based on publicly available resources
listed at cBioPortal [136, 137] (https://www.cbioportal.org/); at intOgen
(https://www.intogen.org/search) ([L38]]; OncoKB (https://www.oncokb.
org/) [35] and as described by 2014 [72]].

Potentially actionable targets were identified in this study based on repository of FDA
approved on label or off-label drugs or those experimentally druggable compiled and
listed in literature [[139, [140], at the TARGET (Tumor Alterations Relevant for Ge-
nomics driven Therapy) (https://software.broadinstitute.org/cancezr/
cga/target) database of the Broad Institute and the COSMIC actionability data
vO3 (https://cancer.sanger.ac.uk/cosmic). The TARGET database is a
database of genes that when somatically altered in cancer, are directly linked to a clin-
ical action. The tumor mutational burden (TMB) defined as the number of nonsynony-
mous mutations/ Mb was calculated from average coverage with respect to total bases
(3137161264) in binary mode and with reference to human genome (hg19). Clonal evo-
lution patterns were evaluated using QuantumClone (https://www.rdocumentation.
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org/packages/QuantumClone/versions/0.15.11) [141] and the cellular
prevalence values, é, were calculated as defined below.

~ NCh + NCh(Normal) X e
0 =VAF L 3.1
* NC G-D

where V AF stands for variant allele frequency, V., is the number of copies of the
corresponding locus in cancer cells, Ncy(Normar) 18 the number of copies of the cor-
responding locus in the normal cells ( Nop(normary = 2 for autosomes) and NC'is the
number of chromosomal copies bearing the variant and p is the tumor purity. VAF
is the ratio of the number of reads supporting variants/mutations divided by the total
number of reads at the particular position [142, [141]. NC is a priori unknown and is
deduced by the QuantumClone [141].

The cellular prevalence values 6 of each cluster obtained from QuantumClone were sub-
jected to fishplot R package for visualization[143]. Cellular prevalence values higher
than 1 were set to 1 as suggested[141]. Clonal patterns were classified as branching or
linear or stable as described[68]]. In case of branching evolution, both gain and loss of
clones was observed. In case of linear evolution, there was gain of mutations but no
clonal loss; while in stable progression, the clonal structure remained preserved at two
time points. Stable with loss pattern had predominantly conserved clonal structure but
there was also evidence of clonal loss at a subsequent time point. The biological path-
ways relating to altered clonal mutational profiles were deduced by gene enrichment
analysis using Enrichr (https://maayanlab.cloud/Enrichr/) as described [[116]].

3.2.3 Statistical Analysis

Clinical and biological characteristics of the patients were analysed using Chi-squared
or Fisher’s exact test for discrete categorical variables as applicable. Nonparametric
statistical analysis was carried out for continuous variables with Wilcoxon signed rank
test. A p-value of <0.05 was considered statistically significant.


https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
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Figure 3.1: Workflow of Study and data analysis. Analysis workflow of the WES study per-
formed on 62 MM patients whose tumor PC samples were sequenced at diagnosis, at follow
up and compared with their germline profiles. Fastq files were quality checked with FastQC,
adaptors trimmed with Trimmomatic and processed further through Illumina Dragen Somatic
pipeline for variant calling. Variants were validated with additional 3 variant callers (Strelka?2,
SomaticSniper and SpeedSeq), a consensus .vcf was derived and annotated with Variant Inter-
preter for deducing TMB and SBS with Sigprofiler. CNVs were identified with Sequenza and
processed further with QuantumClone and Fishplot for interpretation of patterns of clonal evo-
lution.
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3.3 Results

3.3.1 Estimation of somatic mutations at two time points

A total of 13951 and 11684 nonsynonymous (NS) somatic mutations were identified
in myeloma pairwise whole exomes sequenced at diagnosis (TP1) and at progression
(TP2) respectively (Table[3.2)). Among these, 4410 somatic mutations in TP1 and 3833
in TP2 were classifiable as pathogenic. At diagnosis, 10561 somatic mutations were
missense type, 1227 belonged to 3’, 1437 were in splicing sites and 538 mapped in
5'UTR regions. On progression, these reduced to 8996, 946, 1207 and 375 somatic
mutations representing missense, 3’, splicing and 5UTR mutations, respectively. The
average numbers of somatic mutations/ sample at diagnosis totalled 236.45 at TP1 while
198.03 at TP2 (Table @) At TP1, there were an average of 179 missense muta-
tions/sample (152.47 at TP2), followed by 20.8 in 3’ (16.03 at TP2), 24.36 in splic-
ing regions (20.46 at TP2), and 9.12 in 5'UTR region (6.36 at TP2). Patients with
high somatic mutations may possess high neoantigen loads and may benefit from im-
munotherapies.

3.3.2 Tumor mutation burden declines from diagnosis to progres-
sion in hypermutators

p-value = 0.039
100.01 . 77.11

='=
10.0-
= N
= 10- 079
|
0.1+
TP TP2 TP1 TP2

Non-hypermutator (n = 51) Hypermutator (n=8)
Timepoint EF TP1 ER TP2

Figure 3.2: Changes in TMB at diagnosis and on progression Comparison of median TMB
across MM patients at TP1 and TP2 in non-hypermutator (n=51) (TMB<10) and hypermutator
category (n=8) (TMB between 10 to 100)
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Table 3.2: A comparison of number of nonsynonymous (NS) somatic mutations, tumor
mutation burden (TMB) and single base substitutions (SBS) in MM at diagnosis and on
progression

. . Time point

Type of somatic mutations TP1 TP2
IN ALL SAMPLES (n=59)
Number of somatic mutations 13951 11684
Number of known pathogenic somatic mutations 4410 3833
Number of Missense somatic mutations 10561 8996
Number of Nonsense somatic mutations 188 160
Number of somatic mutations in 3’UTR 1227 946
Number of somatic mutations at Splicing sites 1437 1207
Number of somatic mutations in 5’UTR 538 375
MEANS PER SAMPLE
Average number of somatic mutations/sample 236.45 198.03
Average number of Missense somatic mutations/sample 179 15247
Average number of Nonsense somatic mutations/sample 3.19 2.71
Average number of somatic mutations in 3°’UTR/sample 20.8 16.03
Average number of somatic mutations at Splicing sites/sample  24.36  20.46
Average number of somatic mutations in 5’UTR/sample 9.12 6.36
MEDIAN number of NS somatic mutations 32 34
Tumor Mutation Burden (TMB)
MEDIAN TMB 0.85 0.93
AVERAGE SBS IN ALL SAMPLES
C>T 128.88 101.86
T>C 85.02 64.66
C>A 3434  27.56
C>G 28.64 2192
T>G 2198 1647

Patients at diagnosis had an average tumor mutation burden (TMB) of 10.8 NS somatic
mutations/Mb/sample (range 0.15 to 95) that reduced to 7.46 (range 0.03 to 105.47)
on progression. The median TMB among patients at TP1 and TP2 were 0.85 and 0.93
respectively. The median TMB at two time points among patients with age at diag-
nosis < 65 years (0.82 versus 0.76) and those with >65 years (1.62 versus 1.22) were
comparable.

Patients were classified on the basis of their TMB levels at diagnosis as those with low
TMB of < 10 (n=51) and high TMB levels > 10 to < 100 (n=8) (i.e., hypermutators).
Three patients (SM0007, SM0052 and SM0145) were outliers or super-hypermutators
with > 100 TMBs (134.43, 132.12 and 126.3 respectively) and were analyzed for clonal
evolution exclusively. In particular, patients grouped into high TMB category (TMB
levels > 10 to < 100) had median TMB levels at TP1 (77.11) that significantly reduced
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Table 3.3: Classification of genes harbouring NS somatic mutations and the variants
observed in MM in this study

Number of

enes with Number of
Classification %nu tations mutations

(n=8977) (n=19022)
Known to be mutated in some cancer 8869 18817
Known to be mutated in MM 7107 15864
Mutated in MMRF CoMMPass study 6690 15063
Known oncogenes 131 252
Known tumor suppressor genes 176 443
Known to be driver genes in some cancer 320 821
Known to be driver genes in MM 72 221
Known as actionable (COSMIC) 100 239
Drivers with decreased frequencies on progression 39 140
Drivers with increased frequencies on progression 12 36
Drivers with constant frequencies both at diagnosis and 71 45

on progression

at TP2 (31.32; p=0.039) (Figure[3.2). Hypermutators might sustain stable drug resistant
clones and hence may benefit from combinations of IMiDs with novel therapeutics.

3.3.3 Comparison of frequencies of driver genes mutated at diag-
nosis versus progression

Table [3.3] summarizes number of mutated genes and mutations that were encountered
in MM in this study. Out of 8977 total mutated genes that got shortlisted, 8869 were
found to be mutated in some form of cancer while 7107 genes were identified to be
mutated in MM among which 6690 genes have been reported in MMRF CoMMPass
dataset. A set of 131 mutated genes turned out to be known oncogenes, 176 were
established tumor suppressors, 320 were known drivers across different cancers while
72 genes were found to be known driver genes in the context of MM. Of all these genes
harbouring somatic mutations in MM, 100 genes got classified as COSMIC candidate
actionable targets.

We screened the WES data for a total repertoire of 102 known driver genes for MM
and found 72 driver genes to be mutated. We then analyzed which driver genes had
subclonal gains or losses or remained stable with progression and arranged them in
descending and ascending series (Figure [3.3). These drivers were further shortlisted
to those that had topmost number of recurrent subclonal shifts and were observed in
atleast 3 or more patients. Figure[3.3p shows topmost temporal falls in PABCP1, BRAF,
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KRAS, CR1, DIS3, ATM and other genes while Figure [3.3c shows topmost temporal
increases that were observed in KMT2C, FOXD4L1, SP140 and NRAS. Similarly, Fig-
ure shows the most recurrent drivers like FAT4 and IGLLS that remained stable on
progression. Contrasting mutational landscapes at diagnosis and at progression high-
light the importance of their immediate monitoring prior to tailoring therapy.
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Figure 3.3: Temporal changes in distribution of driver genes on progression. Distribution of
mutated driver genes in MM patients at TP1 and compared to TP2. (A) Falling mutated drivers
whose frequencies decreased in TP2, (B) Drivers that are maintained at constant frequencies
throughout the disease, and (C) Rising mutated drivers whose preponderance increased in pa-
tients at TP2. Driver mutation profiles observed in atleast 3 or more patients are shown inside
boxed frames. Actionable genes are indicated by arrows on X axis.



Chapter 3. Clonal evolution in Multiple Myeloma 48

3.3.4 Distribution of mutated potential actionable target genes at
diagnosis and progression

As many as 19022 somatic mutations (Table [3.3) were observed at varying frequen-
cies among 8977 genes in MM patients in this study. Of these, 18817 variants are
known mutants in cancers of some kind, 15864 have been reported to be mutated in
MM while 15063 have been described in MMRF dataset. These consisted of 821
mutations across drivers known to be associated with different cancers and 221 mu-
tations in 72 driver genes (BRAF, SP140, EP300, FAT4, PABPC1, CREBBP, FOXD4LI,
PRDM1, KMT2C, CS8ORF34, NRAS, KRAS, DIS3, NFKBIA, LRPIB, IGLLS, ZNF292,
ATM, CRI, PTPNI1, BCL7A, CDKNIB, PARP4, RBI, MAX, NF1, EFTUD?2, TP53,
DNMT3A, RASA2, RFTNI, TET2, EGRI, HISTIHIE, PIM1, ZEBI, FAM46C, LCEID,
CCNDI, MAML2, ARID2, ARIDIA, TRAF3, ARHGAPS, USPS, CYLD, ZFHX3, MAF,
NCORI, RPLS5, KMT2B, IDHI, PIK3CA, KLHL6, SETD2, FGFR3, IRF1, HISTIHID,
HISTIHIB, ABCF1, IRF4, EGFR, UBR5, NUP214, TRAF2, IRAKI, RPLI10, KDMO6A,
KDM5C, HUWEI, AR, ATRX) known to be involved in MM. There were 252 somatic
mutations in oncogenes, 443 in tumor suppressor genes and finally 239 variants were
found across 100 potential actionable genes.

Table [3.4 summarizes a list of variations in 22 actionable target genes that were found
mutated in atleast 3 patients at either or both time points. These consisted of BRAF,
FANCM, MREI11, WRN, EXOI, FANCA, ALK, FANCD2, MSH3, NBN, NRAS, KRAS,
FLT3 MAP2KI, PALB2, RAD51D, RAD51C, MERTK, KDR, RAD54B, FANCG, PTCH1.
The most common actionable mutation was Val600Glu in BRAF that was most abun-
dant at the time of diagnosis. Identification of druggable targets at subclonal levels
could aid in treating patients with genome defined target specific drugs.

3.3.5 Comparison of Single nucleotide substitutions at diagnosis
and progression

As shown in Table six types of single base substitutions (SBS) were observed.
The SBS C>T was the most predominant form of mutation found both at TP1 (128.88;
40.94%) and TP2 (101.86; 41.63%) followed by T>C (85.02; 27.017% at TP1, 64.66;
26.42% at TP2), C>A (34.34; 10.9% at TP1, 27.56; 11.26% at TP2), C>G (28.64,
9.09% at TP1; 21.92, 8.95% at TP2), T>G (21.98, 6.98% at TP1; 16.47, 6.73% at TP2),
T>A (15.9, 5.05% at TP1; 12.25, 5% at TP2).
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Figure 3.4: Frequencies of types of clonal evolution patterns, TMB and founder clones. (a)
Distribution of types of clonal evolution patterns including branching and non branching (Lin-
ear, Stable with loss of clone) observed in MM patients, (b) Number of founder clones observed
in patients with branching and non branching clonal evolution, and (c) Comparison of number of
MM patients with either low or high TMB and who developed branching versus non-branching
patterns of clonal evolution. Patients with branching evolution may benefit from IMiDs.

3.3.6 Heterogeneity in clonal evolution

Three types of clonal evolutionary patterns with 1 to 3 founder clones were observed
in this study (Figure [3.3). The branching pattern of clonal evolution was observed in
maximum number of patients (45; 72.58%) followed by Linear in 9 cases (14.51%) and
Stable with loss of clone in 8 patients (12.90%) (Figure @). Distribution of founder
clones in different subsets of patients with branching (n=45) and non-branching (n=17)
evolution is shown in Figure @3 One, two and three founder clones were detected in
18, 20 and 7 patients respectively out of 45 patients with branching patterns of clonal
evolution. Patients with branching pattern of evolution had significantly higher number
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of founder clones (p=0.0173, Figure [3.3p) than those with non branching patterns. A
significant number of patients with low TMB at TP1 developed branching clonal evo-
lution (n=40 out of 51) whereas those with high TMB had both branching (n=5 out of
11) and non-branching evolutionary patterns (n= 6 out of 11) (p=0.026) (Figure [3.3f).

(a) Branching (b)  Linear (c) Stable with loss of clone

Figure 3.5: Three patterns of clonal evolution. A representative scheme of fish plots corre-
sponding to three patterns of clonal evolution (a) Branching, (b) Linear, and (c) Stable with loss
of clone

Each case of MM was analyzed in depth by QuantumClone and their individual fish
plots, clonal density and evolution plots were generated (Figures [B.T] [B.2] [B.3] [B.4]
B.5][B.6 [B.7, B.8] [B.9] B.10} B.11] B.12] [B.13)). A median of 3 clones (range 2 to 9)

was observed among 45 patients with branching clonal evolution. The number of clones

were relatively lower among patients with non-branching evolution patterns- Linear (2
to 4) and Stable with loss of clone (2 to 3). Figure [3.5h-c shows a representative fish
plot of each of the three types of clonal patterns of evolution (Branching, Linear and
Stable with loss) observed in this study. The somatic mutational diversity in founder
clones and their cellular prevalence was compared at two time points for each patient.
A schematic representation of genes found to be mutated in founder clones including
actionable/non-actionable genes and the significantly associated biological pathways
predicted to be affected by such mutated genes in patients are shown in Figures [3.6] [3.7]
and [3.8| respectively.

The heatmaps in Figures[3.6/and [3.7]also depict falling/ rising frequencies of actionable
and non-actionable targets (including DRV/ONC/TSG/others) respectively. The top-
most ten genes mutated in founder clones were BAGE2 (37.28%) > PABPCI (30.5%) >
MUCI17/ NBPF1 (23.72%) > DNAH14/ FLG (22.03%) > FAT1/ RHPN2/ TPTE (20.33%).
The topmost frequently mutated actionable targets were KRAS (18.64%)> BRAF/ FANCM
(13.55%) > FANCD2/ WRN (11.86%) > FANCA/ MLH1 (10.16%) > NRAS/ ATM (8.47%)
> TET2/ BRCAI (6.77%) > FGFR3/ TP53 (5.08%), and others.

The cellular prevalence of topmost mutated tumor suppressor gene KM7T2C showed an
increase with progression in 6 out of 11 patients followed by FAT1 (6 out of 12), FANCA
(3 out of 6), BRCAI (3 out of 4), TET2 (2 out of 4) and NRAS (4 out of 5) (Figures 3.6
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&[3.7). On the contrary, cellular prevalence of mutated driver PABPC1 decreased with
progression in 13 out of 18 patients, KRAS (8 out of 11), BRAF (6 out of 8), ATM (4

out of 5) and others (Figures [3.6| & [3.7).
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Figure 3.6: Comparison of potential actionable mutated genes in different samples grouped as
with branching or non branching clonal evolution patterns and low or high TMB levels. Heatmap
depicting distribution of actionable targets including drivers, oncogenes and tumor suppressors
with rising or falling frequency trends across MM patients classified on the basis of branching/
non branching clonal evolutionary patterns, TMB levels and number of founder clones.
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Figure 3.7: Heatmap depicting distribution of non actionable target genes drivers, oncogenes
and tumor suppressors with rising or falling trends across MM patients classified on the basis of
branching/ non branching clonal evolution patterns, TMB levels and number of founder clones.
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Figure 3.8: Predicted pathways affected by somatic mutations across samples. Heatmap de-
picting significantly affected biological pathways predicted to be altered by Enrichr across MM
patients classified on the basis of branching/ non branching clonal evolutionary patterns and

TMB levels

3.3.7 Prediction of biological pathways affected by somatic muta-

tions

A comprehensive gene enrichment analysis by Enrichr identified a network of biolog-

ical pathways found to be significantly associated with somatic mutations on progres-
sion of MM (Figure [3.8). These included, notably, ECM-receptor interaction, Galac-
tose metabolism, Protein digestion and absorption, Cholesterol metabolism, Antigen

processing and presentation, Drug metabolism, RNA degradation, Starch and sucrose

metabolism, Hematopoietic cell lineage, Base excision repair, MAPK signaling path-

way, viral carcinogenesis, cell cycle, apoptosis, Th17 cell differentiation, Th1 and Th2

cell differentiation, beta-Alanine metabolism, cellular senescence and others.

Pathways that were affected by 2434 mutated genes found exclusively at diagnosis and

those affected by new mutations in genes at TP2 are shown in Figure [3.9] Additional
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pathways (n=13) found to be affected exclusively on progression included NK cell me-
diated cytotoxicity, chemical carcinogenesis, PI3K-Akt signaling, phototransduction,
PPAR signaling, GnRH signaling and others. Likewise, 18 pathways were exclusively
affected by mutations at TP1.

3.3.8 Clonal divergence in individual cases

Figure [3.5h-c shows a representative fish plot of each of the three types of clonal pat-
terns of evolution (Branching, Linear and Stable with loss) observed in this study. A
case-wise description of subclones and their patterns of evolution are summarized in
the Figures [B.1} [B.2] [B.3} [B.4 [B.5] [B.6| [B.7, [B.8} [B.9, [B.10} [B.11] [B.12] [B.13) and
Supplementary Notes (Appendix B).
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Figure 3.9: Comparison of mutated genes and associated pathways at diagnosis and at pro-
gression. Venn diagram representing number of mutated genes and the predicted biological
pathways affected by mutations exclusively at diagnosis (TP1) or progression (TP2).

Human papillomavirus infection
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3.4 Discussion

Progression of MM is linked with a spatiotemporal shift in subclonal structure. The
prime objective of this study was to explore subclonal evolution associated with pro-
gression of MM and identify potential actionable targets for each patient. In order to
achieve this, we adopted a novel Ensemble algorithm approach for identification of
mutations. As per our findings and as suggested by others [144] [145]], there can be
significant differences in the SNV outputs processed by different variant callers based
on the properties of the caller used, their strengths and weaknesses. Since no somatic
caller has the ultimate ability to perform, an ensemble approach that combines multi-
ple callers has been reported to offer the best balance of both sensitivity and specificity
(145, 146, 147]. Hence, we decided to call mutations through four common variant
callers (Dragen, Strelka2, SomaticSniper and SpeedSeq) and generate a common con-
sensus rather than depending on any single one. This innovative approach ensured that
the clonal landscape of MM captured in our study was closest possible estimation to
reality.

An important observation of this study is that we have been able to identify recurrent
subclonal shifts in actionable/ druggable targets of clinical importance such as BRAF,
KRAS, ATM, TET2 and TP53 at diagnosis in multiple patients (in atleast 3 patients or
more) (Figure [3.3p). A similar gain in subclonal NRAS mutations was observed at the
time of progression (Figure [3.3k). The reduction in frequencies of driver genes with
progression can be explained by their selective loss in response to therapy that may
coincide with fulfillment of their initial functional role(s) needed in triggering myelo-
magenesis. On the other hand, an increase in another set of driver genes indicates
an effect of evolutionary pressure that allows selection of topmost fit clones. These
sweeping subclones may either be novel or may result from expansion of pre-existing
mutations known to be present at low or undetectable frequencies at the time of diag-
nosis or earlier. The inability to detect low copy mutations is largely due to technical
limitations of sequencing of bulk tumor tissue and recent advanced technologies of sin-
gle cell sequencing may be able to resolve effect of evolving somatic mutations more
lucidly.

Screening of actionable genetic mutations in these genes allows to match patients with
future treatments that would be most beneficial, which is in coherence with the over-
all goal of the ongoing Multiple Myeloma Research Foundation (MMRF) MyDRUG
(Myeloma-Developing Regimens Using Genomics) clinical trial (NCT03732703) [[148]].
The MyDRUG aims at enrolling patients with mutations in BRAF, NRAS, KRAS,
FGFR3, CDKN2C, IDH2 or t(11;14) and assign to appropriate targeted agent against
that mutation. Patients with BRAF V600E or any NRAS or KRAS actionable mutations
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found in subclonal populations could thus benefit the most if treated early with BRAF
inhibitor e.g. Vemurafenib or MEK inhibitor Cobimetinib respectively. Heat maps in
Figure [3.6) show genomic signatures of actionable genes for each patient enrolled in
this study that could be targeted specifically to select the right drug for the right patient
based on the specificity of the mutation.

TMB is an emerging prognostic biomarker of response to immunotherapy, approxima-
tion of neoantigen load and overall survival especially in solid tumors [149, [150]. A
high TMB is considered a biomarker of higher neoantigen load, increased response
rates to immunotherapy and better outcomes. High somatic mutation and neoantigen
loads have been found to correlate with reduced PFS in MM [151]]. Patients were clas-
sified in this study into those with low TMB between <1 to 10 or high TMB (>10 or
hypermutators). This study has shown a modest loss of TMB from diagnosis to progres-
sion but only in a subset of patients with hypermutator status (i.e. TMB>10) (Figure
[3.2)). There could be a selective loss of less fit drug sensitive clones yet with persistence
of drug resistant clones in such patients and hence combination of IMiDs with novel
therapeutics could be used to treat such patients.

This study has shown a predominance of branching pattern of clonal evolution in MM
in concurrence to other studies [63} 168, 169, (70, (71, [72, [73] [74] (Figure @}a). An in-
crease in DNA damage and a branching pattern of evolution are considered hallmarks
of effectiveness of therapy and attainment of deep response [68]. Although the branch-
ing type of evolution reflects on the better response rates to therapy while tumor strives
to mutate and acquire fitter clones to survive, it is also a prominent underlying mecha-
nism of relapse. While mutations in founder clones are primarily involved in initiation
of myelomagenesis, those in subclones may contribute significantly to relapse. The
study has further shown that branching evolution is more predominant among patients
with 2 or more founder clones (Figure [3.4b) and those with low tumor mutation bur-
den (TMB<10) (Figure [3.4f). Since, this happens under the positive selection pressure
of therapy and the microenvironment, such patients could perhaps benefit more from
immunomodulatory drugs (IMiDs) such as thalidomide/ lenalidomide and analogues
[67].

Studies have shown that ongoing DNA damage intensifies from MGUS to MM and pro-
vides a mechanism by which chromosomal aberrations and heterogeneity are acquired
by malignant plasma cells [152]. Figures [3.8]and [3.9]show the functional pathways that
were affected by genetic mutations on progression. These include pathways in cancer,
metabolism of galactose, cholesterol, drugs, cellular senescence, cell cycle, apoptosis,
viral carcinogenesis, RNA degradation, base excision repair and several other crucial
signalling pathways involved in pathogenesis of MM or immune surveillance. Dereg-
ulated DNA damage repair related pathways as also seen in our study have been asso-
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ciated with poor prognosis [153] since the tumor cells can withstand DNA damaging
drugs and repopulate with therapy resistant cells on treatment. It has been suggested
that a ‘synthetic lethality’ approach [[154] may be more beneficial where co-treatment
of patients with current drugs and those targeting DNA repair pathways [155] (e.g,
Bortezomib with PARP1 inhibitor [156] or Spironolactone [[157] or a novel compound
DCZ3301 [158]) may reverse drug resistance in such patients [[159,[160].

Studies like this have shown genomic plasticity of mutational landscapes and how rel-
ative preponderance of mutated drivers changes with disease progression. Figures|B.1}
B.2] B.3] [B.4] B.5] B.6l [B.7, B.8] [B.9] B.10] [B.11}, B.12] [B.13] show individual evo-

lution patterns as FISH plots followed by summarized individual case reports on 62

newly diagnosed MM patients enrolled in this study. It provides a detailed genomic
architecture and cellular prevalence of each and every subclone identified for every pa-
tient at diagnosis and at progression. Table [3.4|summarizes the number of patients who
had an actionable/ druggable mutation and who could qualify for targeted treatments
with target specific drugs. Comprehensive analysis of mutational subclonal landscapes
of patients as observed in this study are pre-requisites to infer the genomic mutations
that can be treated in future in similar lines as in MyDRUG trial. An integration of
such early genomic biomarkers with clinical biomarkers could help in risk estimation
and identification of patients who could benefit more from a rationalized therapeutic
approach at early stages. It is indeed not just the individual mutations but an extended
treatment landscape that needs to be monitored preferably at multiple time points to tai-
lor therapy. An early assessment of TMB along with mutations in drivers and actionable
target genes during decision making, may therefore, allow most appropriate therapeutic
personification in clinics.

3.4.1 Conclusion

This study explored the subclonal evolution associated with the progression of MM and
identified the potential actionable targets for each patient. A marked intraclonal hetero-
geneity was observed in all the patients and the disease progression was characterized
by recurrent subclonal shifts in the actionable targets such as KRAS, ATM, TET2 and
TP53 while gain in subclonal mutations in NRAS. Based on the specificity of the ac-
tionable driver mutations revealed by the temporal analysis of the variants at the two
time points, appropriate drug for the individual patients could be selected thereby lead-
ing to personalized treatment. Further, the genomic mutations in addition with clinical
biomarkers could help in identification of high risk patients who are still in the initial
stages of the disease. Timely medical intervention could be provided to such high risk
patients to slow down the progression of disease and improve their overall survival.
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Branching pattern of evolution was observed among 72.58% patients and was found
to be more predominant in patients with low TMB (64.51%) had(<10) and 2 or more
founder clones (61.29%).

This study also revealed loss in the TMB from diagnosis to progression in hypermutator
patients who may benefit from IMiDs. However, it needs to be validated on a larger
cohort of patients. Thus, a systematic analysis of evolving mutational landscapes at
multiple time points in addition with TMB and SBS signatures could help in better
stratification of high risk MGUS/SMM/MM patients prior to subclonal expansion and
therefore open the opportunities of early and personalized cure for the disease. MGUS
and SMM are both precursor stages to MM. While MGUS and SMM are both benign
conditions, displaying no clinical symptoms, there is a higher risk of progression to
MM in SMM patients than MGUS patients. Therefore, genomic landscape of MGUS
and SMM patients should be studied in conjunction with MM to identify the distinctive
features that ultimately leads to MM. It was difficult to collect exome data of MGUS and
SMM as these are non-malignant stages but we were able to get access to MGUS data
of 61 patients. The comparative study of MGUS and MM patients has been presented
in chapter 4 in detail.



Chapter 4

Mutational landscape of MM and its precursor MGUS

4.1 Introduction

MGUS being a precursor of MM shows a genetic profile which is similar to MM, how-
ever, overall the mutations are present at a lower level as compared to MM. This indi-
cates that there are additional mutations taking place in MGUS genome over time which
finally leads to MM. Therefore, in this study, we have studied the exome data of MGUS
and MM patients to reveal the entire spectrum of mutations altered in MGUS and MM
and how it evolves over time. We explored the change in the mutational landscape as
the disease progressed from the MGUS to MM. We found that the difference in the
frequency of the single base substitution is significantly different in MGUS and MM.
We have also analyzed the frequency of the different types of variants across MGUS
and MM and found that few have changed significantly as the disease progressed from
MGUS to MM. Further, we categorized MM patients into low TMB and high TMB (hy-
permutators) based on their overall survival data. We explored the impact of TMB on
the frequency of single base substitutions and the different variant types across the low
and high TMB groups of MM patients. The association of TMB with overall survival is
still unknown in newly diagnosed multiple myeloma (NDMM) patients; therefore, we
have correlated TMB with survival data and found that high TMB is linked with poor
overall survival in NDMM patients.

4.2 Materials and Methods

4.2.1 Datasets used in the study

The present study is based on the data of 1018 NDMM patients and 61 MGUS pa-
tients. Variant files generated from the exome data of 936 NDMM patients out of the
total 1018 patients were obtained from the GDC portal via dbGaP authorized access
(phs000748; phs000348). This data is a part of the MMRF CoMMpass study. Exome
data of the remaining 82 NDMM patients were obtained from AIIMS, Delhi. In ad-
dition, exome data of 33 MGUS patients out of 61 patients was obtained from EGA
(EGADO00001001901), and exome data of the remaining 28 patients was obtained from
AIIMS, Delhi. Four variant callers, namely, MuSE [19], Mutect2 [20], VarScan?2 [18],
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and Somatic-Sniper [21], was used for finding variants in patients from the MMRF
CoMMpass study. Therefore, there were four vcf files corresponding to each variant
caller for each patient. The workflow of the complete analysis is shown in Figure @.1]

4.2.2 Analysis of exome data and the variants identified using the
exome data

Exome data obtained from AIIMS and EGA was processed with a standard exome se-
quencing pipeline, and single nucleotide variants (SNVs) were extracted using MuSE,
Mutect2, VarScan2, and Somatic-Sniper variant callers. SNVs were annotated using
ANNOVAR [26] to gather the genomic information of the mutations, such as their vari-
ant type and the deleteriousness of the mutation, etc. FATHMM-XF [31] was used
to remove the benign variants. The rest of the filtered variants were categorized into
nonsynonymous (NS) variants, synonymous (SYN) variants, and other (OTH) variants.
Exonic, nonsynonymous single nucleotide variants (snvs), ncRNA_exonic, stop gain,
stop loss, start loss, splicing, frameshift insertion, and frameshift deletion were grouped
in nonsynonymous variants. UTR3, synonymous single nucleotide variants (snvs), and
UTRS were grouped in synonymous variants. Non-frameshift insertion, non-frameshift
deletion, non-frameshift substitution, intronic, intergenic ncRNA_intronic, upstream,
downstream, unknown, and ncRNA_splicing were grouped in other variants.

4.2.3 Assessment of single base substitution, mutational signatures,
and TMB

Variants identified by three or more callers were further processed to extract informa-
tion on single base substitution and identify the mutational signatures present in the
data. SigProfilerExtractor [[161] was used to discover the single base substitutions and
the mutational signatures in the MGUS and MM data. The etiology of the deduced sig-
natures were found via the COSMIC v3.2 mutational signature database [[162]. A total
of six single base substitutions C>A, C>G, C>T, T>A, T>C, and T>G were identified.
Tumor mutational burden (TMB) was calculated using the three different categories of
variants- nonsynonymous (NS) variants, synonymous (SYN) variants, and other (OTH)
variants. TMB was determined as described in [163]. TMB_NS, TMB_SYN, and
TMB_OTH were estimated using nonsynonymous (NS) variants, synonymous (SYN)
variants, and other (OTH) variants, respectively. Survival data were available for 832
(753+79) patients out of a total of 1018 NDMM patients, which were utilized to obtain
the threshold values for TMB_NS, TMB_SYN, and TMB_OTH using the K-adaptive
partitioning (KAP) algorithm [164] and Cutoff Finder [1635]].
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Figure 4.1: Workflow of the study and data analysis. Four different variant callers were used
to identify variants in the MM and MGUS patients. Variants were finalized using the majority
voting scheme. Variants were then annotated with Annovar for deducing TMB. Mutational
signatures were inferred using Sigprofiler tool.

4.2.4 Statistical analysis

Wilcoxon rank-sum test was used to determine if the change in the frequencies of the
single base substitutions and the different types of variants is statistically significant
between the MGUS and MM. Unpaired Wilcoxon rank-sum was applied because the
data did not follow the normality distribution and was unpaired.
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4.3 Results

4.3.1 Frequency of single base substitutions (SBS) increases signif-
icantly from MGUS to MM

There was an increase in the median and mean frequency of the single base substitutions
from MGUS to MM. The change in the frequency was statistically significant with p-
values less than 0.05 for all the substitutions according to the Wilcoxon rank-sum test
(Figure[d.2). C>T substitution was observed with the highest frequency in MGUS and
MM, increasing the median value from 30 to 59. T>C substitution was next, with an
increase in the median value from 20 (MGUS) to 35 (MM). T>A was observed with the
lowest frequency in MGUS and MM, increasing the median value from 7 to 17.
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Figure 4.2: Boxplot shows the difference in the frequency of the single base substitutions
between MGUS and MM patients. Wilcoxon rank-sum test was applied to determine if the
change is statistically significant or not. For all the substitutions, there is significant variation in
the frequency with p-values less than 0.05 between the two groups.

4.3.2 Calculation of threshold values for the SBS and comparison
between the high and low-frequency MM groups

Due to the availability of survival data for 832 MM patients, threshold values for the
substitutions were inferred. K-adaptive partitioning (KAP) algorithm and Cutoff Finder
were used to deduce the thresholds. Table 4.1] shows the cut-off values estimated for
the different types of substitutions for PFS and OS via KAP while Figures
and show the cut-offs deduced via Cutoff Finder for PFS and OS respectively.
The higher of the two cut-offs obtained via KAP were selected for C>T, T>C, C>G,
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Table 4.1: The table shows the cut-offs obtained for the six different types of substitutions via
KAP. Two cut-offs were obtained for each SBS, one using PFS and the other using OS. The
higher of the two cut-offs and the patients were then organized into two groups, one with SBS
values less than the selected cut-offs and the other one with SBS values greater than the selected
cut-offs. KM analysis showed that there was a significant difference in the survival patterns
of the two groups of patients for the substitutions, C>T, C>G, C>A, and T>A. However, cut-
offs obtained for T>C and T>G substitutions did not yield a significant difference in the survival
curves. Therefore, cutoffs were manually deduced for the two substitutions where the KM curve
has the maximum separability. Text in bold shows the selected cutoffs.

. . PFS 0OS Manual Freq. PFS OS
SBS | Min | Median | Max cut-off | cut-off | cut-off (<, g) p-value | p-value
C>A 0 17 1251 26 28 - 712,120 | 0.00025 | 5.13E-06
C>G 0 21 1575 37 34 - 763, 69 0.026 | 2.20E-04
C>T 1 59 7315 79 99 - 750, 82 0.001 | 4.80E-06
T>A 0 17 684 5 32 - 784, 48 0.01 0.005
T>C 0 35 4498 12 11 80 816, 16 0.19 0.01
T>G 0 19 915 6 6 41 804,28 0.018 0.007

C>A, T>G, and T>A substitutions and were 99, 12, 37, 28, 6, and 32, respectively.
The patients were then organized into two groups, one with SBS values less than the
selected cut-offs and the other one with SBS values greater than the chosen cut-offs.
Kaplan Meier (KM) curves corresponding to the two groups revealed that there was
a significant difference in the survival patterns of the two groups of patients for the
substitutions, C>T, C>G, C>A, and T>A. However, cut-offs obtained for T>C and T>G
substitutions yielded a significantly poor outcome for the group with values less than
the selected cut-offs. Therefore, cut-offs were manually deduced for T>C and T>G
substitutions where the KM curve has the maximum separability and was found to be
80 and 41, respectively. Univariate and multivariate hazard analysis was also done
using the selected cut-offs via KAP, as shown in the Table The hazard ratio for
all the substitutions was greater than 1 in the univariate analysis, demonstrating that an
increase in the frequency of these substitutions correlated with an enhanced risk in MM
patients. Univariate analysis revealed that C>T substitution had the most significant
impact (p-value <0.05) on the overall survival (OS) owing to the highest hazard ratio
followed by T>C and C>A while T>G had the most significant impact (p-value <0.05)
on PFS followed by C>T and C>A. However, only C>A was significant in multivariate
analysis with p-values less than 0.05 (0.04 for PES and 0.03 for OS).
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Figure 4.3: KM curves reveal differences in the PFS survival patterns of substitutions (a) C>A,
(b) C>T, and (c) T>C at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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Figure 4.4: KM curves reveal differences in the PFS survival patterns of substitutions (a) C>G,
(b) T>A and (c¢) T>G at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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Figure 4.5: KM curves reveal differences in the OS survival patterns of substitutions (a) C>A,
(b) C>T, and (c) T>C at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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Figure 4.6: KM curves reveal differences in the OS survival patterns of substitutions (a) C>G,
(b) T>A and (c¢) T>G at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.

4.3.3 Comparison of mutational signature profiles between MGUS
and MM

A total of 29 and 61 SBS signatures were extracted from the mutation data of MGUS
and NDMM patients, respectively. Union of 29 and 61 signatures resulted in 66 unique



Chapter 4. Mutational landscape of MM and its precursor MGUS 69

Table 4.2: The table shows the univariate hazard analysis and multivariate hazard analysis
on the six different substitutions. T>C was removed from multivariate analysis as it was not
significant for PFS in univariate analysis.

PFS 0S
HR | CI  [p-value | C-index | HR [ CI | p-value [ C-index
Univariate
C>A | 1.63 | 1.26-2.11 | <0.005 0.54 2.16 | 1.54-3.03 | <0.005 0.55
C>G | 1.46 | 1.04-2.04 0.03 0.52 2.11 | 1.41-3.16 | <0.005 0.53
C>T | 1.65 | 1.22-2.24 | <0.005 0.53 2.36 | 1.61-3.45 | <0.005 0.55
T>A | 1.61 | 1.11-2.32 0.01 0.51 1.93 | 1.20-3.11 0.01 0.52
T>C | 1.47 | 0.83-2.61 0.19 0.5 2.27 | 1.19-4.32 0.01 0.51
T>G | 1.73 | 1.09-2.75 0.02 0.51 2.14 | 1.21-3.77 0.01 0.51
Multivariate
C>A | 143 | 1.02-1.99 0.04 1.67 | 1.06-2.63 0.03
C>G | 0.84 | 0.49-1.43 0.52 0.97 | 0.49-1.93 0.93
C>T | 1.38 | 0.86-2.22 0.18 0.55 1.71 | 0.91-3.22 0.1 0.58
T>A | 1.19 | 0.71-1.97 0.65 1.22 | 0.61-2.44 0.58
T>G | 1.03 | 0.52-2.05 0.94 0.82 | 0.34-1.99 0.66

signatures. Signatures SBS37, SBS49, and SBS55 were found only in MGUS. How-
ever, their frequency is low as they were found in a single sample in MGUS (1/61=1.6%).
SBS49 and SBSS55 signatures are possible sequencing artifacts, and the proposed eti-
ology of signature 37 is unknown according to the COSMIC v3.2 mutational signa-
ture database. Further, 37 signatures were discovered only in MM. However, 7 out of
37 were mutated in more than 1% MM samples. They include SBS6, SBS7d, SBS9,
SBS17b, SBS19, SBS40, and SBS42. The rest of the 30 signatures were found in
less than 1% MM samples and include SBS7¢, SBS8, SBS10d, SBS14, SBS20, SBS21,
SBS22, SBS23, SBS25, SBS26, SBS27, SBS28, SBS30, SBS32, SBS33, SBS34, SBS35,
SBS36, SBS39, SBS41, SBS43, SBS46, SBS47, SBS50, SBS52, SBS53, SBS57, SBS86,
SBS88, and SBS89. SBS27, SBS43, SBS46, SBS47, SBS50, SBS52, SBS53, and
SBS57 are possible sequencing artifacts, as described previously. Clock-like signatures
SBS1 and SBS5 were present in both MGUS and MM. Defective DNA mismatch re-
pair signatures SBS15 and SBS44 were present in both MGUS and MM while SBS6,
SBS14, SSB20, SBS21, SBS26 were present only in MM. SBS2 and SBS13 are asso-
ciated with the activity of the AID/APOBEC family of cytidine deaminases and were
found in both MGUS and MM. MM patients with APOBEC signatures were investi-
gated further using survival data. APOBEC signature was present in 27 out of 177
MM patients with poor OS outcome and 52 out of 655 MM patients with superior OS
outcome. Fisher’s exact test revealed a statistically significant association between the
APOBEC activity and poor overall survival in MM (p-value=0.0056). However, there
was no significant association between APOBEC activity and progression-free survival
(p-value=0.9). KM curves showed a significant difference (p-value=1.8e-4) in the over-
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all survival pattern of MM patients with and without APOBEC activity (Figure [4.7).
SBS84 and SBS85 are related to indirect effects of activation-induced cytidine deam-
inase (AID) induced somatic mutagenesis in lymphoid cells and were found in both
MGUS and MM.
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Figure 4.7: KM curves reveal that APOBEC activity is associated with poor overall survival
in NDMM patients. The difference in the overall survival probability between low and high
TMB_NS is statistically significant with p-values 1.8e-4. However, there is no statistically
significant difference between progression-free survival and APOBEC activity.

4.3.4 Frequency of the variants increases significantly from MGUS
to MM

According to the Wilcoxon rank-sum test, there was a statistically significant increase
in all the three categories of variants from MGUS to MM (Figure 4.8). The median
value of nonsynonymous variants increased from 19 to 36 (p-value=5.2e-13) as the dis-
ease progressed from MGUS to MM. Median value of synonymous variants increased
from 6 to 26 (p-value<2e-16) while that of other variants increased from 69 to 100 (p-
value=0.007). Within the nonsynonymous category, there was a statistically significant
increase in the nonsynonymous snv (p-value=2.9e-13) from 14 to 30 and stop-gain (p-
value=0.016) variants from O to 2 as the disease progressed from MGUS to MM (Figure
4.9p). Within the synonymous category, there was a statistically significant increase in
the UTR3 (p-value<2e-16) and UTRS variants (p-value=2.7e-7) (Figure #.9p). Within
the other variant category, there was a statistically significant increase in the intronic
and downstream variants (Figure 4.9c). The median value of UTR3 variants increased
from 4 to 21, while that of UTRS5 increased from 1 to 4.
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Figure 4.8: Boxplot showing the variation in the frequency of the three different categories of
variants- Nonsynonymous (NS), Synonymous (SYN), and Others (OTH) between MGUS and
MM. Wilcoxon rank-sum test was applied to determine if the change is statistically significant
i.e. p-value is less than 0.05.

4.3.5 Comparison of TMB values between MGUS and MM

Tumor mutational burden (TMB) was calculated using the three different categories of
variants- nonsynonymous (NS), synonymous (SYN), and others (OTH). A statistically
significant increase was observed for TMB_NS and TMB_SYN with p-values less than
0.05 (Figure [@ For TMB_OTH, the difference in the KM survival curve was not

significant (Figure 4.10).

4.3.6 Calculation of TMB cut-offs and comparison between high
and low TMB MM groups

Survival data were available for 832 MM patients. Hence, threshold values of TMB
were calculated using the K-adaptive partitioning (KAP) algorithm and Cutoff Finder.
Both the tools inferred almost the same cut-offs (Table {4.3] Figures .11 and §.12).
Table {.3|reveals the different cut-offs obtained for progression-free survival (PFS) and
overall survival (OS) via KAP. For TMB_NS, 0.63 and 0.62 are the threshold values
obtained via PFS and OS. Similarly, for TMB_SYN, 0.55 and 0.52 are the threshold
values obtained for PFS and OS. The patients were then organized into two groups,
one with TMB values less than the selected cut-offs and the other one with SBS values
greater than the chosen cut-offs. There was a significant difference (p-value<0.05) on
the KM survival curves of the patients below 0.63/0.62 and above 0.63/0.62. There is
a signifi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>