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Abstract

Large-scale characterization of the human genome has enabled the extensive study of
the diverse genomic alterations present in humans. The integrative analyses of the var-
ious alterations provide a detailed understanding of the factors responsible for disease
initiation and its progression in disorders like cancer. There is a wide range of ma-
chine learning algorithms and statistical methods to analyze genomic data and extract
information for applications such as disease diagnosis and classification of clinical sub-
types. These analyses assist in developing effective drugs for specific diseases and are
particularly helpful in personalized cancer therapy, where the response of a patient to
a particular drug can be captured, and its correlation with the mutation profiles of the
patient can be examined to design targeted medicine. Though a plethora of methods ex-
ist for analyzing cancer genomes, certain challenges exist. Therefore, in this thesis, we
have formulated and proposed different computational solutions to address challenges
in cancer genomics, particularly in hematological malignancies.

Missing value problem is frequently observed in gene expression data, and it may sig-
nificantly impact the findings extracted from the incomplete data. Therefore, we have
dealt with the missing value in gene expression data by devising a compressive sens-
ing (CS) based method, DSNN (Doubly Sparse in the Discrete Cosine Transform with
Nuclear Norm minimization). A significant contribution is the utilization of Discrete
Cosine Transform (DCT) based sparsity for recovering missing values. Further, we have
analyzed the bulk-sequencing exome data of Multiple Myeloma (MM) and Monoclonal
Gammopathy of Undetermined Significance (MGUS) patients. MM is a hematologi-
cal cancer that arises from malignant transformation and deregulated proliferation of
clonal plasma cells (PCs) in bone marrow, preceded by a benign condition of MGUS.
The study has revealed actionable target genes that may be clinically relevant in ad-
dition to the genomic landscape of clonal evolution in MM. A statistically significant
change in the mutational spectrum of MGUS and MM is observed as the disease pro-
gresses from MGUS and MM. We have also utilized survival data of the MM patients
to find the association of Tumor mutational burden (TMB) with overall survival. In
MM, it is critical to identify the initial risk stage of the patient as it helps in deciding
the due course of the treatment to be given to the patient. Therefore, a reliable risk
staging system is required, which may stratify the patients into separate subgroups and
help identify patients requiring frequent visits to the hospital. Multiple staging systems
have been proposed for MM, ISS and R-ISS being the gold standards used widely for
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MM. However, none of them uses ethnicity information. Therefore, we have devel-
oped an ethnicity-aware Artificial Intelligence (AI)-enabled risk staging system, CRSS
(Consensus-based Risk Staging System), for newly diagnosed multiple myeloma pa-
tients. The proposed method can predict the risk stage of any MM patient depending
on the values of the simple parameters like age, albumin, β2-microglobulin, calcium,
eGFR, hemoglobin and high-risk cytogenetic information. There has been an enhanced
inclination towards single-cell sequencing data over bulk-sequencing data, given the
several advantages of single-cell data over bulk NGS data. However, there are differ-
ent noises present in the single-cell data. Therefore, in this thesis, we have devised an
optimization-based framework, ARCANE-ROG, for denoising and imputing noisy and
incomplete single-cell data for inferring patterns of clonal evolution.
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Chapter 1

Introduction

1.1 Background

Cancer is a malignancy demonstrating an unrestricted proliferation of abnormal cells
in the body. According to GLOBOCAN cancer statistics [1], 2020, there were an es-
timated 19.3 million new cases of cancer in the world in 2020. 10.0 million cancer
mortalities were reported in the same year, making cancer one of the leading causes
of death worldwide. Therefore, it is crucial to identify the mechanisms of cancer ini-
tiation, progression and relapse to improve the life expectancy among cancer patients.
Cancers evolve and propagate via the acquisition of genetic mutations such as single
nucleotide variants, small insertions/deletions and complex chromosomal aberrations
like copy number variants and structural variants [2]. Advances in sequencing tech-
nology coupled with breakthroughs in computational approaches to store and analyze
genomic data have enabled the large scale characterization of the human genome. After
the completion of the first human genome project (HGP), numerous sequencing projects
were initiated, such as the Human Genome Project–Write (HGP-Write) [3], which is a
ten-year extension of the HGP, 100000 Genomes Project [4] and GenomeAsia 100K
(GA100K) [5]. These projects are aimed to continue research on the human genome
and unravel the genetic mysteries of diseases. Further, after the first cancer genome was
sequenced [2], NGS data analysis has resulted in the creation of databases containing
information on the mutations driving cancer or mutations which may be of potential
clinical relevance. These databases include tumor alterations relevant for genomics-
driven therapy (TARGET), Catalogue of Somatic Mutations in Cancer (COSMIC), and
International Cancer Genomics Consortium (ICGC; https://dcc.icgc.org)

Conventional sequencing methods such as Sanger sequencing were expensive and time-
consuming. However, next-generation sequencing (NGS) technologies, such as whole-
exome sequencing (WES), whole-genome sequencing (WGS), RNA-sequencing (RNA-
seq), etc., are high-throughput methods that support massively parallel sequencing of
various genomic regions in multiple samples in a single run. In WGS, the entire genome
is sequenced via a large DNA sample. Sequencing coverage for WGS should be high
to detect clinically relevant mutations, which becomes expensive and time-consuming.
On the other hand, WES focuses only on the coding regions (exons) of a genome which
is nearly 2.5% of the entire human genome. Thus, WES is less costly and time-efficient
than WGS, and it is more popularly used in cancer genomics for detecting rare and

https://dcc.icgc.org
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common variants. RNA sequencing (RNA-Seq) assists in detecting changes in the gene
expression profiles, alternative gene-spliced transcripts, gene fusion, etc. In addition to
this, NGS technology is also used to investigate epigenetic alterations. Illumina/Solexa,
SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and Ion torrent are
a few NGS platforms available today. PacBio sequencing and nanopore sequencing
are referred to as third and fourth-generation sequencers. Though these techniques lag
behind Illumina technology in terms of accuracy, they provide advantages over NGS,
like longer read lengths. In addition, the 10x genomics technology introduced in 2016
enables the cell-by-cell analysis of the genome/transcriptome by using a Chromium
system. Thus, the sequencing platforms are getting faster, more productive and cost-
effective with time. Hence, a tremendous amount of NGS data is generated, demanding
computational/bioinformatics skills to analyze the massive genomic data. Accordingly,
there has been considerable development in the computational capacities to store and
manage the data and computational methods to process the data.
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Figure 1.1: An overview of the NGS pipeline. NGS analysis is divided into three sections-
Primary, Secondary and Tertiary analysis. The primary analysis mainly involves extracting nu-
cleotide base calls from the raw data and converting them to FASTQ files. The quality check of
FASTQ files is done to ensure high-quality reads, followed by pre-processing of FASTQ files. In
the secondary analysis, pre-processed FASTQ files are aligned using a reference human genome
or de novo assembly is done without a reference genome. BAM/SAM files are generated, which
are further processed. Finally, variants are called. In the tertiary analysis, the variants are an-
notated and then filtered, and finally, the variants are interpreted using additional data to reveal
novel findings from the data. This pipeline is mostly followed for exome or whole-genome files
with few changes. For RNA-seq data, instead of calling variants, the expression quantification
step is done to extract the gene expression profiles, which are analysed to get up-regulated or
down-regulated genes.
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All the steps involved in NGS data analysis can be categorized into three sections- pri-
mary, secondary, and tertiary, as shown in Figure 1.1. The primary analysis involves
detecting the raw signal data and converting it into sequence data consisting of nu-
cleotide base calls. Typically, Binary Base Call (BCL) files are the raw files generated
from the sequencers, and these are converted to FASTQ files containing both the se-
quence data and the quality scores of the base call. Phred score, which represents the
quality scores, is a logarithmic error probability. A Phred score of 10 (Q10) denotes
an accuracy of 90%, i.e., a 1 in 10 probability of the base being incorrect. Similarly,
Q30 means a 1 in 1000 probability of an incorrect base or 99.9% accuracy [6]. Thus,
higher scores indicate high confidence in the base calls or better quality reads [7]. After
generating FASTQ files, pre-processing of NGS reads is done to ensure that only high-
quality reads are used for downstream analysis. Pre-processing steps mainly consist of
filtering, demultiplexing, and adaptor trimming, which is preceded by a quality check
of the sequenced reads by tools such as NGS QC toolkit [8] and FastQC [9]. These
tools generate a well-structured report and provide complete information regarding the
FASTQ files. Depending upon the fastQC report, filtering of the reads is done. Reads
in the FASTQ files are filtered out based on their base call quality (Phred score) and
the read length. The filtering step reduces the detection of false-positive variants as
they have poor confidence base calls. Also, very short reads may hamper the mapping
process as they may align to multiple regions in the genome. In NGS, multiple sam-
ples are sequenced simultaneously in the same instrument. Hence, demultiplexing is
performed to separate the sequencing reads belonging to a particular sample using a
unique barcode assigned to individual samples. Finally, adaptor trimming removes the
library adaptor sequences from the ends of the demultiplexed reads. This step ensures
that they do not interfere with the mapping and assembly processes. Trimmomatic [10]
and Cutadapt [11] are the two most commonly used tools for this analysis.

The secondary analysis mainly encompasses the alignment of the reads against a refer-
ence human genome, or a de novo assembly, followed by variant calling. In sequence
alignment, reads are aligned against a known reference genome, e.g. hg19 or hg38
for humans, thereby determining the genomic coordinates of the read. BWA [12],
Bowtie [13], minimap2 [14], Magic-BLAST [15] are a few mapping tools used for read-
alignment. De novo assembly is based on graphs theory, where reads are aligned to each
other based on their sequence similarity, and no reference is used. SAM/BAM files are
generated after the sequence alignment. SAMtools [16] are used to manipulate these
files. Once the reads are aligned, three intermediate steps need to be performed before
variant calling: duplicate removal, local read alignment, and base quality recalibration.
During the library preparation, the Polymerase Chain Reaction (PCR) technique gener-
ates duplicate reads, which may cause false positives. Hence, they are removed from
the analysis using Picard tools (http://broadinstitute.github.io/picard/). The presence

http://broadinstitute.github.io/picard/
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of InDels may cause read mismatch; hence, local read alignment is used to reduce this
mismatching. Phred-scaled quality score, generated by the sequencers, may get affected
by factors such as the sequencing platform and the sequence composition and thus may
not reflect the actual base-calling error rate. Therefore, it is important to recalibrate
the base quality score to enhance variant calling accuracy. Genome Analysis Toolkit
(GATK) [17] is used for local read alignment and base quality score recalibration. Vari-
ants are then identified in the post-processed BAM file using variant callers, relying
on Bayesian approaches, likelihood or machine learning algorithms that have signifi-
cantly evolved over recent years. Most variant callers generate a variant calling format
(VCF) file as their output. Variants identified may range from single nucleotide variants
(SNVs) and INDELS (insertions and deletions) to complex chromosomal aberrations
such as translocations, inversions, and copy number gains or losses (CNVs). Tools such
as varscan2 [18], MuSE [19], Mutect2 [20] and SomaticSniper [21] are used to identify
SNVs and INDELS from WES/WGS data. Delly [22], BreakDancer [23] and Pindel
[24] identify CNVs and structural variants (SVs) from WGS data.

The final step of the NGS analysis is the data interpretation, i.e. determining the asso-
ciation between variants detected and the phenotype observed in a patient. The tertiary
analysis involves variant annotation and variant filtering followed by data visualiza-
tion. Variant annotation ascertains the biological or functional impact of the genetic
variants in addition to providing the variant context. Variant Effect Predictor (VEP)
[25], Annovar [26], snpEff [27] are the most widely used annotation tools. These tools
use the vcf files obtained from the variant callers and provide information such as the
chromosomal location of the variants and the biological impact of the variants, i.e. if
the variant is missense, nonsense, synonymous, stop-gain, stop-loss, etc. Variants are
filtered out based on their impact, thereby increasing the probability of detecting an ac-
tionable/driver variant. When we want to discover disease-causing rare variants in the
data, variants commonly found in the population, i.e. SNPs (Single Nucleotide Poly-
morphism), can be removed from the analysis using databases such as dbSNP [28].
SNPs are the single nucleotide variants found in at least 1% of the population. Multi-
ple scores such as SIFT[29], Polyphen[30], FATHMM-XF[31] and CADD[32] remove
the benign variants from the analysis. Further, population databases like COSMIC[33],
ClinVar [34] and OncoKB [35] are used to determine the clinical association of variants.
After retrieving the final set of variants, they are correlated with the phenotypic charac-
teristics of the patients. If there is a significant association between them, the findings
are further validated biologically. For example, we can analyze the genomic data at
multiple time points to examine the change in the variants and if any of those variants
are linked to disease progression in the patients. These analyses also assist in develop-
ing effective drugs for specific diseases. They are particularly helpful in personalized
cancer therapy, where a subject’s response to a particular drug can be captured. Thus,
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determining the correlation of the drug with the mutation profiles of the subject can
aid in designing targeted medicine. A plethora of meaningful information is derived
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Figure 1.2: Different challenges that exist in cancer genomics. Development of computational
strategies to tackle these problems.

from the sequencing data, such as identifying upregulated and downregulated genes,
detecting genomics variants, copy number variants, or chromosomal alterations. Di-
verse computational methods are being developed to analyze genomic data. However,
sometimes the data gets corrupted during the acquisition process and may contain noise
in the form of missing values, false positives and false negatives. Hence, we need to
devise methods to address such challenges. For example, gene expression data derived
from molecular techniques may include missing values, and subsequent analysis of this
incomplete data may lead to inaccurate findings. Not only this, single-cell data analysis
has now gained preference over bulk data owing to its better resolution but it is often
corrupted by the presence of false positives, false negatives, and missing bases. Thus,
given the significance of using noise-free data for the precise interpretation of the find-
ings, we have formulated and proposed different computational solutions to deal with
problems in cancer genomics in this thesis. While working with multiple myeloma
data in imputation problem, we became interested in pursuing research in MM. An-
other contributing factor was the availability of exome and clinical data of MM. MM is
a blood cancer characterized by abnormal growth of plasma cells in the bone marrow.
MM is preceded by a benign condition of Monoclonal Gammopathy of Undetermined
Significance (MGUS). We analysed the exome data of MM patients to unravel the het-
erogeneity present in MM patients. We also analysed the exome data of MGUS patients
to determine the factors responsible for the disease progression to MM. Overall survival
in MM varies depending upon the tumor heterogeneity and the initial risk stage of the
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patient as these are the deciding factors for the therapy to be given to the patient and
the subsequent treatment response. Furthermore, disease biology is also impacted by
the ethnicity of the patient. Therefore, we came up with the idea of devising a machine-
learning (ML) based method ethnicity aware method for risk stage prediction in MM
patients. The various challenges addressed in the thesis and the different types of ge-
nomic data handled are shown in the Figure 1.2.

1.2 Literature review

High dimensional gene expression data is crucial in studying the relationship between
genes and diseases including cancer. Molecular techniques such as ‘Microarrays’ facil-
itate estimation of expression levels of thousands of genes simultaneously under differ-
ent experimental conditions and gene expression data generated from such experiments
is subsequently analyzed using statistical or machine learning methods to extract rele-
vant information. Microarray data is useful in a wide range of applications starting from
disease diagnosis to drug discovery. It aids in subject risk stratification, classification of
clinical subtypes and prediction of response to therapy. These analyses further assist in
developing effective drugs as the treatment strategies are targeted directly to the specific
type of cancer. subject’s response to a particular drug may be captured and correlation
between therapeutic responses to drugs and the genetic profiles of the subjects can be
evaluated leading to personalized medical treatment.

A persistent problem associated with microarray dataset is the presence of varying num-
ber of missing values in the data that may arise owing to poor slide quality (dusty or
scratchy), poor image quality, or insufficient resolution [36]. Subsequent downstream
analysis on incomplete gene expression matrices may be highly inaccurate. One of the
ways of dealing with the problem of missing values is to capture microarray data again
but it does not guarantee complete data matrix. Moreover, the entire process is expen-
sive and time consuming. An alternate solution to this problem is to remove the genes
containing missing values from the analysis. However, this can result in loss of infor-
mation and may lead to inaccurate findings on driver genes and/or altered biological
pathway. Therefore, it is worthwhile to apply advanced computational methods for the
imputation of missing values in microarray data prior to any analysis.

Numerous methods have been developed in the recent times for imputation of gene
expression data. These can be broadly categorized into four classes: hybrid methods,
local methods, global methods, and knowledge assisted methods (Table 1.1). Some of
the early methods developed to account for the missing values are ZEROimpute, ROW-
impute and COLimpute [37]. In ZEROimpute, missing values are replaced with zeros.
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In ROWimpute and COLimpute, missing values are replaced with the averaged values
of the observed entries of the corresponding rows or columns. These methods do not
take into consideration the correlation present among genes and therefore, do not per-
form optimally. Gene expression matrix is highly correlated. Therefore, it is important
to consider correlation among genes. Several methods exist in literature based on cor-
relation among genes. These are categorized into local and global approaches based on
the type of correlation utilized by them. As shown in Table 1.1, local approaches im-
pute missing values by considering the group of genes that show high correlation with
the gene containing missing values. Such methods perform optimally when the data is
heterogeneous. k nearest-neighbor imputation (KNNimpute) [38] is one of the earliest
local approach method to impute missing value. It first estimates k nearest group of
genes that are similar to the missing target gene, followed by averaging of these genes
to impute the missing value of the target gene. SKNNimpute (Sequential KNNimpute)
[39] and IKNNimpute (iterative KNNimpute) [40] are variations of KNNimpute. Gaus-
sian mixture clustering imputation (GMCimpute) [41], least square imputation (LSim-
pute) [42] and variations to LLSimpute, sequential LLSimpute (SLLSimpute) [43], it-
erative LLSimpute (ILLSImpute) [44], robust least square estimation with principal
components (RLSP) [45], Bayesian gene selection BGSregress [46], collateral miss-
ing value imputation (CMVE) [47] and auto-regressive least square imputation (ARLS)
[48] are all examples of local approaches. On the other hand, SVDimpute (Singular
Value Decomposition) [38], Bayesian Principal Component Analysis (BPCA) [49] are
the examples of global approach and utilize the global correlation present in the entire
gene expression matrix. Hybrid approaches include methods like LinCmb [50], HPM-
MI [51]and tri-imputation [52]. GOimpute [53], HAimpute [36] and (iMISS) [54] are
knowledge-assisted methods that combine the already existing domain knowledge to
imputation techniques for imputing missing values in gene expression data, thereby, in-
creasing their imputation accuracy. Gene Ontology based similarity measure has been
recently used for missing value imputation in miRNA microarray data [55]. A brief
review of all the existing methods is shown in Table 1.1.

Global approach based methods such as SVDimpute [38], Bayesian Principal Compo-
nent Analysis (BPCA) [49] exploit the global covariance information resulting from the
entire gene expression matrix. In SVDimpute, singular value decomposition is used to
calculate principal components of gene expression matrix, referred to as eigengenes,
which can then be linearly combined to approximate the expression of all genes in
the data set. SVDimpute first performs linear regression of the target gene against the
‘k’ most significant eigengenes and then uses the coefficients of the regression to re-
construct the missing values from a linear combination of the ‘k’ eigengenes. BPCA
[49] performs missing value imputation in three steps: a) Principal Component (PC)
regression, 2) Bayesian estimation and 3) an Expectation-Maximization (EM)-like al-
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gorithm. N-dimensional gene expression vectors are expressed as a linear combination
of K principal axis vectors and an EM-like algorithm is then used to estimate the poste-
rior distributions of the model parameter and the missing values simultaneously.

Table 1.1: Review of existing methods for missing value imputation in gene expression data

Local Approach Global Approach Hybrid Approach Knowledge assisted
Approach

Method

Imputes missing values by
first estimating the local
correlation among the group
of genes that are highly
correlated with the gene
containing missing values
and then using the local
correlation to calculate
the missing value.

Imputes missing values
by utilizing the global
correlation among the
genes in the complete
gene expression matrix.

Exploits both the global
and local correlation
among genes to calculate
missing values
in gene expression data.

Imputes missing values
by integrating already
existing domain knowledge
to imputation methods.
Information about
biological process in the
microarray experiment etc.
is an example of domain
knowledge that can be
integrated to the method.

Advantages

Perform optimally when
the data is heterogeneous
i.e genes exhibit dominant
local similarity structure.

Perform optimally when
the data has high global
covariance in expression
matrix.

Perform optimally
regardless of the type
of covariance
present in the gene
expression data.

Improves accuracy of
missing value imputation
and perform optimally in
presence of noisy data.

Limitations Perform poorly when data
lacks local similarity structure.

Fail to perform well
when the data is
heterogeneous.

Perform sub optimally
when data is noisy and
has high missing rates.

Perform sub optimally
when data has
high missing rates.

Examples

(i) K nearest-neighbor
imputation (KNNimpute)
(Troyanskaya et al., 2001)
and its variations-
SKNNimpute
(Sequential KNN)
(Kim et al., 2004b),
IKNNimpute
(iterative KNNimpute)
(Bŕas and Menezes, 2007)
(ii) Gaussian mixture
clustering imputation
(GMCimpute)
(Ouyang et al., 2004)
(iii) Least square imputation
(LSimpute) (Bø et al., 2004)
and its variations-
Local least square
imputation (LLSimpute)
(Kim et al., 2004a),
Sequential LLSimpute
(SLLSimpute)
(Zhang et al., 2008),
iterative LLSimpute
(ILLSImpute) (Cai et al.,
2006) and robust least
square estimation
with principal components
(RLSP) (Yoon et al., 2007)
(iv) Bayesian gene selection
BGSregress (Zhou et al.,
2003), Collateral missing
value imputation (CMVE)
(Sehgal et al., 2005),
Auto-regressive least square
imputation (ARLS)
(Choong et al., 2009)

(i) Bayesian Principal
Component Analysis
(BPCA) (Oba et al.,
2003).
(ii) SVDimpute
(Singular Value
Decomposition)
(Troyanskaya et al.,
2001) first estimates
principal components of
gene expression matrix
by calculating Singular
value decomposition
of the gene matrix and
it then selects the most
significant components.
These selected
components are further
used to approximate
missing values in the
gene expression data.

(i) LinCmb (Jörnsten et
al., 2005) uses both global
and local correlation
information in the data.
It estimates missing
values using five
different imputation
algorithms, row average,
KNNimpute, GMCimpute,
SVDimpute and BPCA.
It then takes a convex
combination of the
results obtained from
each of the methods to
compute final result.
(ii) HPM-MI (Hybrid
Prediction Model with
Missing value Imputation)
(Purwar and Singh,
2015) is a hybrid approach
that uses both k-means
clustering and Multilayer
perceptron. It uses eleven
different missing value
imputation techniques
to compute missing values
and then selects the best
clusters using k-means
to compute final result.
(iii) Tri-imputation
(He et al., 2016)
employs three base
imputation algorithms to
impute the genes with
missing values.

(i) GOimpute (Tuikkala et
al., 2005) uses the prior
information about the
functional similarities
in term of GO for
missing value imputation.
(ii) HAimpute (Imputation
using Histone Acetylation
information) (Xiang et al.,
2008) combines histone
acetylation information as
domain knowledge with
imputation methods such
as KNNimpute and
LLSimpute. Accuracy of
missing value imputation
improves considerably
after utilizing domain
knowledge.
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Most of the methods perform missing value imputation in gene expression data at com-
paratively higher observability, say, when 70% or more data is available (that is equiv-
alent to 30% or less data is missing). Recent developments have made it possible to
predict expression data values when the observed data is as low as 10%. Gene ex-
pression data is a highly correlated data because of the high level of interdependence
between the genes. This interdependence is due to functional relationship between the
genes as the group of genes interact together in any biological process. Therefore, it
is evident that gene expression matrix is very similar to a low rank matrix that can be
embedded into a lower dimensional subspace. Imputation of missing values in data
matrix can be projected as the matrix completion problem and hence, we devised an
optimisation based framework for imputation which is explained in detail in chapter 2.
The proposed method has been tested on datasets of hematological malignancies. While
working with multiple myeloma (MM) dataset on imputation problem, we decided to
focus on only one type of blood cancer i.e. MM. The problem of missing value impu-
tation is a generic one and can be easily applied to datasets of different cancer types.
There has been tremendous amount of research in multiple myeloma, but there are gaps
remaining that need to be addressed. However, such type of research work requires
access to the longitudinal exome and clinical data of cancer patients. We were lucky
to have the availability of the exome data and clinical data of multiple myeloma from
our collaborators and authorized access to online datasets which further motivated us to
pursue this problem.

Multiple Myeloma (MM) is a malignancy of clonal plasma cells that tend to evolve and
accumulate as disease progresses from precursor transition states of Monoclonal gam-
mopathy of undetermined significance (MGUS)/Smoldering Multiple Myeloma (SMM)
to active MM and ultimately Extramedullary disease/Plasma cell leukemia (PCL). Reser-
voir founder clones may exist prior to MGUS [56], that may become detectable and
dominant with progression and gradually evolve into heterogeneous subclones. The
process of subclonal propagation of plasma cells (PCs) during myelomagenesis is com-
plex and is driven under the influence of selection pressures exerted by immune surveil-
lance, microenvironment and therapeutic agents.

Molecular mechanisms that underlie early progression in newly diagnosed MM patients
who fail to respond to existing treatments are not completely understood. MM shows
heterogeneity in terms of clinical phenotypes, rates of disease progression, response to
therapy and survival outcomes, all of which are influenced by the underlying genomic
complexity of the patient [57]. It is established that two types of primary oncogenic
events are involved in initiation of myelomagenesis [58, 59] as shown in Figure 1.3.
These include IgH translocations (found in nearly 55% patients) and hyperdiploidy of
odd numbered chromosomes (observed at a frequency of 40%). These two kinds of
aberrations may coexist in nearly 10% of cases. A gamut of secondary events (muta-
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tions in RAS, NF-κB pathway, overexpression of MYC, haploinsufficiency of p53, (1q)
gain and (1p) loss) are known to occur that provide further growth advantage to evolving
(sub)clones, promote drug resistance, genome instability and progression. Deletion 13q
is commonly found among non-hyperdiploid MM as well as in MGUS which suggests
its role as a primary event during early oncogenesis of MM [60, 61, 62].

Figure 1.3: Clonal evolution in MM. MM is initiated by events like IGH translocations or
Hyperdiploidy. MGUS and SMM are the precursor stages of MM which progresses to MM
over time on acquisition of multiple genetic changes, ultimately leading to PCL and EMD.

Based on mutational complexity and subclonal architecture, different patterns of clonal
evolution have been reported in MM. The branching type of clonal evolution analo-
gous to Darwinian model is the most frequent one and is found in ≥ 50% MM patients
whereas linear or stable evolution with no significant alteration in subclonal architec-
ture have been observed in ≤ 30% cases [63, 64, 65]. Analysis of WES data obtained
from MM patients on Immunomodulatory imide drugs (IMiDs) from UK Myeloma XI
phase 3 trial and the CoMMpass study has revealed that 20% MM patients experienced
neutral tumor evolution associated with poor prognosis while remaining 80% encoun-
tered branching evolution [11]. Patients with branching evolution may respond well to
IMiDs as these can reconfigure bone marrow stromal cum immune microenvironment
and prolong survival [11]. Instead, patients with neutral clonal evolution with random
genetic drift may benefit from combinations of PIs with high dose melphalan [66, 67].

Recent NGS studies conducted on pairwise myeloma genomes/ exomes at two or more
serial time points have reported presence of intraclonal heterogeneity during progres-
sion and relapse [56, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. A series of somatic
mutations including substitutions, indels and copy number variations emerge during
disease progression that contour the pattern of clonal evolution. Numerous driver mu-
tations have been identified in myeloma genome [72] that may co-evolve mutually in
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cooperation or exclusively either in same or different (sub)clones and modulate their
net impact on clinical outcomes.

Although clonal heterogeneity in MM is well established, subclonal remodelling of
gains/ losses and rewiring of functional pathways are not completely understood. There
is currently a paucity of data available on longitudinal subclonal evolution profiles as-
sociated with progression in MM and a deeper understanding is required to assess mu-
tations of clinical relevance that could potentially be targeted for treatment in future
therapeutic approaches against MM and its precursor states [66, 77]. The progressing
subclonal shifts are of paramount clinical significance as these could promote onco-
genesis and lead to drug refractoriness. Estimation of their cellular prevalence could
further predict likelihood of depth of response and a rationalized approach of combina-
torial therapy. More and more longitudinal studies are needed to explore the progressing
subclonal events and ultimately guide combinations of targeted therapy that can eradi-
cate such subclonal populations and delay progression. Hence, we decided to conduct
this study to capture subclonal mutational landscapes associated with progression of
MM and identify potential actionable/ druggable targets that can be treated with their
corresponding drugs. This work is explained in detail in chapter 3. Multiple myeloma
is preceded by a non malignant condition, Monoclonal Gammopathy of Undetermined
Significance (MGUS). In MGUS, there is normal as well as abnormal plasma cells in
the body. The abnormal plasma cells lead to the presence of M protein in the blood.
MGUS does not usually cause any clinical symptoms and often go undetected till it
transforms to full blown MM. Since, the tumor initiating genomic alterations have al-
ready taken place at MGUS level, it is important to study MGUS and identify prognostic
factors responsible for the malignant transformation of MGUS to MM.

Monoclonal gammopathy of undetermined significance (MGUS) is a benign precur-
sor state of MM characterized by lack of end-organ damage [78] and less than 10% of
plasma cells in the bone marrow. MGUS may progress to asymptomatic or symptomatic
multiple myeloma with a rate of nearly 1% per year [79], where MM is characterized
by severe clinical problems such as bone fractures, anaemia, renal failure, and hyper-
calcemia. Multiple studies involving exome and genome data of MM have been per-
formed to understand the genomic abnormalities driving tumor progression in MM. It is
well established that the primary events in MM are either hyperdiploidy, i.e., trisomy of
chromosomes 3,5,7,9,11,15,19 and/or 21 or non-hyperdiploidy involving translocations
affecting the genes encoding immunoglobulin (Ig) heavy chains (IGH)-mainly t(4;14),
t(6;14), t(11;14), t(14;16) and t(14;20) [80]. Primary events are then followed by multi-
ple secondary events promoting tumor progression. However, it has also been observed
and validated that the genetic aberrations peculiar to MM are also present during the
premalignant state of MGUS, where they do not show any clinical symptoms related
to MM [73, 81]. It is, therefore, worthwhile to thoroughly investigate the mutational
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landscape of the genomic alterations affecting MGUS as well as MM. Though multi-
ple studies have been performed to study the MGUS to MM progression [72, 82, 83],
the landscape of the mutational patterns of the MGUS and MM largely remains unex-
plored. The study of the changing mutational spectrum of the MGUS as it advances
to MM will provide more insight into the disease biology. Further, it will help identify
the clinically relevant vital biomarkers that can assist in controlling the progression of
MGUS to MM.

Mutational signatures have emerged as critical biomarkers in cancer genomics, with
profound pathogenic, prognostic, and therapeutic implications. Multiple mutational
events occur in a tumor, while only a few of these mutations are actual drivers of can-
cer. However, exploring the entire landscape of coding and non-coding mutations helps
reveal the mutational signatures characteristics of the specific cancer types. For exam-
ple, CG>AT transversion is associated with lung cancer [84], and CG>TA is associated
with skin cancer [85, 86]. Various mutational signatures have been discovered based
on the 96 possible combinations of the single base substitutions and their trinucleotide
contexts. These signatures are linked with the defects of DNA repair mechanisms, age-
ing, UV exposure, and others, thereby validating the role of the mutational processes in
shaping the genomic continuum of each cancer type [87, 88, 89]. It will be interesting
to explore the association of MGUS and MM to with any of these mutational signa-
tures. Further, tumor mutational burden (TMB) has become a prominent biomarker
of response to immunotherapy and is being explored for its association with overall
survival, particularly in solid tumors. TMB is determined as the number of mutations
identified per megabase. It has been observed that cancers with a high TMB load of
greater than 10 mut/Mb have a better chance of responding to drugs called immune
checkpoint inhibitors (ICIs). The primary function of ICIs is to activate the immune
system better to recognize cancer cells [90] and act upon them. As a result, a high tu-
mor mutational burden (TMB) has been increasingly associated with superior overall
survival in ICI-treated patients. Multiple studies are now being conducted to discover
the cancers with high TMB that respond best to ICIs and, thus, prolong the survival of
cancer patients. In addition, the association of TMB with survival in non-ICI-treated
patients has also been explored. It has been observed that high TMB was associated
with poor prognosis and overall survival in the absence of immunotherapy, as opposed
to ICI-treated patients in whom high TMB was associated with prolonged survival [91].
Since, MM may have high mutation burden in certain patients, it will worthwhile to
infer the association of TMB with the survival outcomes in MM.

Synonymous mutations, earlier designated as silent mutations, were mostly ignored
in cancer genomics due to their inability to alter the amino acid of the resultant protein
[92]. However, they have the capability of changing the protein expression and function
owing to their impact on RNA stability, RNA folding [93] or splicing [94], translation



Chapter 1. Introduction 13

[95], or co-translational protein folding. Multiple studies have corroborated that natural
selection is present in synonymous mutations [95, 96, 97], contrary to earlier studies that
denied the role of selective pressure in synonymous mutations [98]. Various genome-
wide association studies conducted in recent times have also confirmed the association
of synonymous SNPs to human disease risk and other complex traits. Therefore, the
role of synonymous mutations in the disease biology of MGUS and MM should be
examined as it could lead to significant prognostic and clinical implications. Given
the existing gap in the literature of MGUS and MM, we were inspired to explore and
compare the evolving mutational spectrum as disease progresses from MGUS to MM.

In MM, the overall survival period ranges from 6 months to more than 10 years. The
variability in the outcome of patients is an implication of the clinical and biological het-
erogeneity underlying MM. Substantial advances in tumor biology have made it possi-
ble to dissect the tumor heterogeneity present in MM, optimize patient treatment, and
examine patient outcome. Multiple prognostic systems [99, 100, 101, 102, 103] have
been described in MM that stratify patients into different risk groups. These risk groups
further assist in identifying high risk patients who may require intense therapy upfront
and/or a higher monitoring frequency during the follow-up periods. The first staging
system for MM was proposed in 1975 [99] followed by the development of Interna-
tional staging system (ISS) [100] in 2005 and a Revised ISS (R-ISS) [101] in 2015.
ISS utilizes serum albumin and β2-microglobulin while R-ISS makes use of ISS, Lac-
tate dehydrogenase (LDH) and high-risk cytogenetic aberrations (HRCA). Currently,
triplet combination therapy is the new standard-of-care in MM which has shifted many
high risk patients to standard risk category, thereby justifying the need for a new risk-
stratification system with the possibility of inclusion of more prognostic factors. Al-
though human physiological and genetic profile is known to vary across ethnic groups,
the current MM risk-staging systems do not account for ethnicity-specific information
that can have a huge impact on the risk score prediction. It is evident from the stud-
ies that African Americans experience 2-3 times higher incidence rates than Asians,
Mexican-Americans or Europeans [104]. Recent studies have observed significant vari-
ation in the overall survival of different groups belonging to distinct races/ethnicities
since the introduction of novel treatment agents in MM [105, 106, 107, 108].In a recent
study, vitamin-D deficiency at diagnosis was found to be a predictor of poor overall sur-
vival in MM [109]. However, this was significant only for White Americans and not for
African Americans even at lower cut-offs of deficiency [109]. Similarly, HRCA, which
is used to determine the intensity of frontline therapy, does not track with survival out-
comes in African Americans10, thereby, highlighting the need for a race-specific risk-
stratification system. Though ethnicity is an important prognostic factor in predicting
the risk for MM [110], yet the variations in the clinical characteristics among the dif-
ferent ethnic groups have not been evaluated adequately. Therefore, it is desirable to
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have a staging system that includes the variations in the clinical characteristics of the
patients pertaining to distinct ethnic groups. In addition, it should be based on clini-
cal and laboratory parameters that are easily accessible in healthcare settings across the
globe.

Technology is constantly improving and so are the methods to sequence the genomic
data. Single-cell technology has gained momentum in recent years as it has become
more accessible to researchers due to reduction in library preparation and sequencing
cost. It also provides higher efficiency as compared to bulk sequencing data. Single-cell
vs bulk sequencing could be explained in simple terms by the following analogy. If we
look at stars with bare eyes, we cannot focus on individual stars. However, if we look
at stars with telescope, we get a clear picture of individual stars. Similarly, single-cell
technology improves resolution as the focus is individual cells unlike group of cells in
bulk data. For the same reason, single-cell technology is revolutionizing the field of
cancer genomics as it uncovers the cellular heterogeneity. However, there is a downside
to this technology. Single-cell data is complex and often is corrupted with noise which
needs to be tackled before performing any data analysis. Otherwise, it could result
in inaccurate findings. The challenges associated with single-cell data inspired us to
follow research in single-cell data as the last component of the thesis. Also, we were
able to broadly cover the different technologies used in the study of genomic data in
this thesis.

1.3 Thesis Contributions

The major contributions of the thesis are summarized below:

1. A novel two-stage method was proposed to recover missing values in gene ex-
pression data by utilizing the row and column sparsity of the gene expression
matrix in the Discrete Cosine Transform (DCT) domain. The first stage is the
compressive sensing (CS) based framework that utilizes DCT based sparsity of
the gene expression matrix to recover missing values. The recovered matrix is
then denoised in the second stage, where the low-rank property of the matrix
is utilized. The significant contribution of this work is exploiting DCT based
sparsity to impute missing value in gene expression data which has never been
done before in the context of gene expression data. Further, the significance of
the imputation was established by classification and biological pathway analysis.
The proposed method was tested on CLL (Chronic lymphocytic leukemia), AML
(Acute myeloid leukemia) and MM (Multiple Myeloma) datasets since the focus
of the thesis was hematological malignancies. The problem of missing value im-
putation is generic and can be applied to datasets of other cancer types easily. So,
we decided to concentrate on MM for our subsequent research problems. MM
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is a hematological cancer that arises from malignant transformation and deregu-
lated proliferation of clonal plasma cells (PCs) in bone marrow. The progression
of disease is driven by multiple factors including immune surveillance, microen-
vironment and therapeutic agents. MM is highly heterogeneous where drug resis-
tance can be seen in patients even those who initially showed a good response to
the treatment. Not only this, conventional treatment therapy might not work for
all the patients owing to the heterogeneity of the disease. Thus, longitudinal stud-
ies involving MM patients might help in shedding some light over the genomic
events leading to disease progression and drug resistance.

2. Bulk sequencing data of multiple myeloma patients was analysed to unravel the
potentially actionable targets in multiple myeloma (MM) and thoroughly examine
the genomic landscape of clonal evolution in cancer patients. The major contribu-
tion of this work is the detailed analysis of the variants found to be mutated in the
patients at two time points via exploration of the longitudinal exome data of 62
MM patients. This data was collected at two different time points, one at the time
of diagnosis of disease and the other time when the disease has progressed in the
patient. An ensemble-based approach was adopted to identify a more reliable set
of variants in each patient. The study provided critical insights into the recurrent
subclonal shifts in known drivers, oncogenic and tumor suppressor genes. This
study has been explained in chapter 3. MM is a unique type of cancer which has
a benign precursor stage known as Monoclonal Gammopathy of Undetermined
Significance (MGUS). MGUS patients do not show any clinical symptoms, how-
ever, studies have shown the presence of genomic complexity in MGUS patients.
Hence, it is worthwhile to examine the genomic data of MGUS in conjunction
with MM to understand the differentiating factors leading to the transformation
of MGUS to MM. Once we identify such biomarkers, it is possible to restrict the
progression of MGUS to MM and thus prolong the survival of MGUS patients.
However, it is not easy to get MGUS genomic data because the condition is non
malignant and people usually go undiagnosed till it transforms to cancer. But, we
were able to get access to 61 patients of MGUS and thus, decided to study MGUS
with MM.

3. MGUS is a non-malignant condition identified by the presence of abnormal pro-
tein (M protein) in the blood. This condition does not cause any problem in itself,
however, it poses an increased risk of developing MM with time and therefore,
needs to be continuously monitored. MGUS being a precursor of MM, shows
complex genomic landscape similar to MM and is an area of concern for the re-
searchers. There have been multiple studies related to MGUS and MM, but they
lack an in depth evaluation of the entire spectrum of mutations occurring in both
MGUS and newly diagnosed MM (NDMM) patients. Hence, to fill the existing
gap, exome data of MGUS and MM patients was evaluated in chapter 4 to in-
vestigate the change in the mutational spectrum as the disease transforms from
the benign condition of MGUS to malignant MM. An exhaustive investigation of
all the mutations was done by categorising them into three groups- synonymous,
non-synonymous and others. A statistically significant change in the mutational
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spectrum from MGUS to MM was found. There was a statistically significant in-
crease in the frequency of all the variants as well as the TMB values from MGUS
to MM. It was observed that 3’ and 5’ UTR mutations were more frequent in MM
and might be responsible for driving MGUS to MM via regulatory binding site.
The frequency of high TMB was low and was found to be associated with poor
overall survival in newly diagnosed multiple myeloma patients. Survival data of
the MM patients was also utilised to infer the association of survival outcome
with single base substitutions and ABOPEC activity. The abundance of survival
data for MM patients motivated us to explore this data further for risk staging in
newly diagnosed MM.

4. Risk staging is a critical step in deciding the course of treatment for the patient
and may impact the overall prognosis of the disease. Along other prognostic fac-
tors that are critical for designing risk staging system for cancers, ethnicity based
heterogeneity forms an integral part of it. Ethnicity is known to affect disease
biology and hence, cannot be overlooked. Therefore, in chapter 5, an ethnicity-
aware AI-enabled risk staging system for newly diagnosed multiple myeloma pa-
tients has been proposed. The model utilizes the parameters- age, albumin, β2M,
albumin, calcium, eGFR, hemoglobin and information on cytogenetic abnormal-
ities and ethnicity to predict the risk stage of any patient. The main contribution
of the study is examining the impact of ethnicity on risk stage prediction and ex-
ploiting the ethnicity information for risk stage prediction in MM. The proposed
method is robust and reliable and is better able to separate patients into different
risk groups.

5. The thesis mostly deals with either bulk data or clinical data. Bulk data is merely
a representative of group of cells and not individual cells which is why cellular
complexity is often masked by bulk data. On the contrary, single-cell technology
provides better resolution at cellular level and hence, has gained momentum in the
last few years. Single-cell data provides cell-specific information and therefore,
provides a detailed picture of the complexity and the heterogeneity present in tis-
sues. Given the significance of single-cell data in cancer genomics, we wanted to
explore this data to broadly cover the technologies used in the study of genomic
data. Therefore, in chapter 6, an optimization-based method for denoising and
imputing noisy and incomplete single-cell data has been devised to infer the pat-
tern of clonal evolution from the imputed and denoised matrix. Single-cell data
for multiple myeloma was not available so, we tested our data on other cancer
datasets. The significant contribution of the work is the development of a robust
and computationally fast method for single-cell data that can efficiently work on
small-sized datasets and large-sized datasets.
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1.4 Thesis Organization

Rest of the thesis is organized into different chapters. Chapter 2 is on missing value im-
putation in gene expression data. One of the persistent problems associated with gene
expression data is the presence of missing values. Thus, we proposed an optimization
based method, DSNN (Doubly Sparse DCT domain with Nuclear Norm minimization)
for gene expression data imputation. In the first stage, missing values were recovered
by formulating it as the CS-based reconstruction with double sparsity in the Discrete
Cosine Transform (DCT). DSNN uses both column and row sparsity. The second stage
was framed as the denoising problem and exploits the low-rank nature of the data ma-
trix. The proposed method was compared with state-of-the-art methods.

In chapter 3, we studied the genomic landscape of clonal evolution in Multiple Myeloma
using the whole exome sequencing data of 62 MM patients collected at two time points
at AIIMS, New Delhi, first at the time of diagnosis followed by second instant on pro-
gression of MM to investigate the pattern of clonal evolution of MM in these subjects’
data. A comparative evaluation of the variants at two time points along with an depth
analysis of evolving founder clones revealed multiple driver mutations including those
known to be actionable. The workflow and the main findings of the work are presented
in the chapter while detailed analysis of individual patients is provided at the end of the-
sis. In addition, critical insights into the recurrent pattern of subclonal shifts in certain
important genes is also presented.

Whole exome data of MGUS and MM patients was evaluated in chapter 4 to investigate
the change in the mutational spectrum from MGUS to MM. An exhaustive investiga-
tion of all the mutations was done by categorising them into three groups- synonymous,
non-synonymous and others. The critical findings of the study are presented in detail in
the chapter along with the methodology followed. There was a statistically significant
increase in the frequency of all the variants as well as the TMB values from MGUS to
MM. It was observed that 3’ and 5’ UTR mutations were more frequent in MM and
might be responsible for driving MGUS to MM via regulatory binding sites. Associa-
tion of survival outcome with multiple prognostic factors is also presented in the study.

In chapter 5, an ethnicity-aware AI based method, Consensus based risk staging (CRSS),
for risk stratification in MM was proposed. This method is based on easy to acquire
clinical parameters like age, albumin, β2M, hemoglobin, eGFR, calcium and informa-
tion of cytogenetic abnormalities and ethnicity. Method was validated on two different
datasets, in-house dataset obtained from AIIMS (MMIn) and Multiple Myeloma dataset
obtained from Multiple Myeloma Research foundation (MMRF). Its performance was
remarkably better as compared to existing risk staging gold standard for Myeloma, i.e.
Revised ISS (RISS) in terms of Kaplan-Meier curves, p-values obtained via Log-rank
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test, hazard ratios and concordance index.

In chapter 6, ARCANE-ROG, Algorithm for Reconstruction of CANcer Evolution from
single cell data using RObust Graph learning was proposed. ARACANE-ROG is an op-
timization based framework which denoises and imputes single cell data and infers the
pattern of clonal evolution from the denoised single cell data. Method was extensively
validated on multiple simulated datasets and real datasets. A comparative analysis of
the proposed method with the state-of-the-art methods in terms of reconstruction error,
False positive to False Negative (FPFN) ratio, Tree distance and V-measure revealed
the robustness and efficacy of the proposed method. Our proposed method efficiently
worked on small-sized datasets and large-sized datasets.

Chapter 7 summarizes the thesis work and provides suggestions for future work.
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Chapter 2

Missing value imputation in gene expression data

2.1 Introduction

Matrix completion is a popular and challenging area of research in various domains. It
is evident from the literature review done in chapter 1, section 1.2 that there is a need
for a robust method for imputing missing values in genes expression data. Such method
should be able to recover missing values efficiently at low as well as higher observ-
ability of the data. Therefore, a novel 2-stage method, DSNN (Doubly Sparse DCT
domain with Nuclear Norm minimization), has been proposed in the study for pre-
dicting missing values in gene expression data using Compressive Sensing (CS) based
formulation. In the first stage, missing values were recovered in gene expression data
by formulating it as the CS-based reconstruction with double sparsity in the Discrete
Cosine Transform (DCT). Matrix obtained in first stage is considered a noisy version
of the original/true matrix. Therefore, in Stage-2, denoising of the matrix recovered
from Stage-1 is done by utilising nuclear norm minimization. It exploits the low rank
property of the data matrix. Missing value imputation was performed on four blood
cancer dataset at different observability of data (10% to 90%) using NMSE as eval-
uation metric. Significance of imputation was validated by two experiments. In the
first experiment, classification of normal versus cancer subjects was carried out. In the
second experiment, biological significance of imputation was ascertained by first iden-
tifying top 500 genes using SPARROW algorithm [111], followed by KEGG analysis
on these top 500 genes. SPARROW (SPARse selected expRessiOn regulators identified
With penalized regression) algorithm finds candidate tumor drivers from the ‘selected
expression regulators’ (SERs). It defines SERs as the genes that drive dysregulated tran-
scription leading to carcinogenesis. This algorithm regresses the gene expression values
on the candidate SERs and provides a rank to each SERs based on the genes expression
values of the samples. The method has been described briefly in Section 3. Once the
ranking was done by SPARROW, top 500 ranked genes from the list were further stud-
ied by KEGG [112, 113, 114] using a web based application, Enrichr, developed and
maintained by [115] and [116]. Many matrix completion methods exist in the literature
and out of these methods, LMaFit [117], LogDet (Logarithm determinant) [118], and
Robust PCA [119] are three different state-of-the-art matrix completion methods. The
proposed method has been compared with these methods. LMaFit is based on matrix
factorization, while LogDet implements nuclear norm minimization. RPCA performs
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feature reduction and is quite robust to outliers. However, these methods have some
limitations. LogDet becomes computationally expensive as the size of the matrix in-
creases. LMaFit and RPCA-GD provide good performance, but their parameters need
to be tuned properly for better recovery of missing values. Recently Kapur et al. [120]
has used low rank constrained matrix completion method for imputing missing values
in genomics.

2.2 Materials and Methods

2.2.1 Dataset Description

Four publicly available microarray gene expression dataset of different cancer types
and different population have been used. Dataset-1 is Chronic lymphocytic leukemia
(CLL) cancer dataset (GSE50006) from USA. CLL dataset contains expression val-
ues of 220 subjects across 54675 probe-ids and consists of two classes depending on
whether the subject has CLL or not. There are 188 tumor samples and rest 32 are normal
samples. Dataset-2 is Acute myeloid leukemia (AML) cancer dataset (GSE9476)[121]
from USA. It contains gene expression values of 64 subjects across 22283 probe-ids.
Two classes are present in the data. Label ‘1’ corresponds to person suffering from
AML and label ‘2’ corresponds to healthy subject. There are 26 tumor subjects and
38 healthy subjects. Dataset-3 is Multiple Myeloma (MM) cancer dataset (GSE47552)
[122] from Spain. It contains gene expression data of 99 subjects across 33297 probe-
ids. It has data from 20 subjects with MGUS, 33 with high-risk SMM, 41 with MM
and rest 5 were healthy subjects. Dataset-4 is Multiple Myeloma (MM) cancer dataset
(GSE125361) belonging to Indian population. It contains gene expression data of 48
MM subjects across 58341 probe-ids.

Data was pre-processed to convert probe-ids to gene symbols because gene versus sam-
ple information is required for SPARROW analysis. It was observed that several probe-
ids showed same gene names. To overcome this problem, gene expression levels of the
probe-ids corresponding to the same gene name were averaged and gene versus sample
matrix was created. After pre-processing, CLL dataset had 220 samples with expres-
sion values of 23348 genes. AML dataset had 64 samples with expression values of
13650 genes. MM-Spanish dataset had 99 samples with expression values of 23307
genes. MM-Indian dataset had 48 samples with gene expression values of 33973 genes.
Since the range of gene expression values was very high (of the order of 106) for the
CLL dataset, data was log transformed to reduce its dynamic range and to ensure that
the smaller values were not shadowed by the higher values during the missing data
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recovery method.

Xlog-transformed(i, j) = log10(Xoriginal(i, j) + 1) (2.1)

Matrix imputation was carried out on the sample versus gene matrices. After matrix
imputation, only tumor samples of both the dataset were used for SPARROW analysis.

Workflow pipeline of the proposed analysis is shown in Figure 2.1. First of all, pre-
processing of raw data was done as described in the previous section. Next, missing
value imputation was carried out on four blood cancer dataset at different observability
of data using Normalized Mean Square error (NMSE) as evaluation metric. Significance
of imputation was validated by two experiments. In the first experiment, classification
of normal versus cancer subjects was carried out. In the second experiment, biological
significance of imputation was ascertained using SPARROW algorithm [111] followed
by KEGG analysis on the top 500 genes identified by SPARROW.

Gene expression data obtained 
from GEO database 

Pre-processing of data 

Imputation of missing values at 
different sampling ratios

Select observed and imputed matrices 
at 50% and 70% sampling ratio

Apply SPARROW only on tumor 
samples of the data matrix. 

Select top 500 genes from the sorted 
output of SPARROW

Gene enrichment analysis is done on 
the top 500 genes using ‘Enrichr’

Analysis of the KEGG and GO 
pathways obtained from original, 

observed and imputed data matrices

Perform classification on original, 
observed and imputed matrices

Calculate classification accuracy 
and F1 score

Biological ValidationValidation on Classification

Figure 2.1: Workflow of the proposed analysis
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2.2.2 DSNN Methodology

The proposed ‘Doubly Sparse DCT domain with Nuclear Norm minimization’ (DSNN)
method consists of two stages. Stage-1 imputes missing values using a CS-based frame-
work and DCT-based sparsity, while Stage-2 removes noise from the matrix obtained
from Stage-1 by using a simple denoising framework.

Stage-1: Compressive Sensing based Matrix Completion: In this stage, missing
value problem was projected as compressive sensing based reconstruction problem. To
understand it better, consider an incomplete matrix Y of size r × s, where r represents
the number of subjects and s denotes the number of genes. Since the expression value
of any gene will not vary much across subjects, data within a column would be sparse
in some transform domain. Similarly, for a sample, gene expression levels of the gene
will also be sparse in some transform domain. Columns and rows of the gene expres-
sion matrix were studied in the DCT domain and were observed to be highly sparse as
shown in Figure 2.2. Based on this observation, Discrete Cosine Transform was chosen
as the sparsifying transform in DSNN method because DCT acts as a KL-type basis for
slow-varying signals [123] and data is sparse in the DCT domain.
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Figure 2.2: Each curve represents DCT coefficients of a few randomly chosen columns and
rows of gene expression matrices of CLL dataset.

Thus, the missing data recovery problem was formulated in a compressive sensing
framework, where the sensing matrix Φ was of size r × s and had ‘0’ entries for miss-
ing values in data matrix Y, while rest of the entries were ‘1’. Corresponding to each
observed entry (that is not missing) of the ith column, there is a row in Φi with an entry
‘1’ for the corresponding position and zeros in the rest of the positions. For example,

assume xmissing=
[
x1 . x3 . . x6

]T
is the observed vector where only x1, x3 and x6

are available and, x2, x4 and x5 are missing (denoted as ‘.’ in the vector). Then, the
vector xmissing can be re-written as y:
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y = Φx (2.2)

y =

x1

x3

x6

 =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1




x1

x2

x3

x4

x5

x6


, (2.3)

where the sensing matrix is written as Φ =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

 and x is the desired

vector to be recovered. This is the standard formulation in compressive sensing litera-
ture, where it is assumed that only few values of data are sensed. In the above example,
these values are x2, x4 and x5. Thus, we have recast the problem of missing values in
vector xmissing as the compressively sensed vector y. Now, the task is to recover full data
x from compressively sensed data y that will lead to missing value recovery.

Gene expression data was interpreted as a matrix with few observed samples, where the
goal was to reconstruct the original/true matrix from the observed entries using DCT-
based sparsity of gene expression data.

The following optimization problem was solved to recover the missing values in Y

min
X̃

(||Y − ΦX̃||22 + λ1||DcX̃DT
r ||1), (2.4)

where Dc is columnwise DCT matrix applied on columns of the X̃ and Dr is the row-
wise DCT matrix applied on rows of the X̃. X̃ is the matrix to be recovered. The above
formulation is also known as analysis-prior and presence of DCT matrices in the for-
mulation makes it non-separable. Using the orthogonal property of DCT transform,
analysis prior was transformed to synthesis-prior formulation as

min
Z

(||Y − ΦDT
c ZDr||22 + λ1||Z||1), (2.5)

where DcX̃DT
r = Z. The above optimization problem was solved using the function

handle and ‘SPGL1’ solver [124], [125], where the regularization parameter λ1 was
chosen automatically by the ‘SPGL1’ solver.

Stage-2: Denoising framework: It was assumed that the recovered X̃ from Stage-1
is the noisy version of the original/true matrix X and hence, the recovered matrix was
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denoised in Stage-2. Before denoising, X̃ is re-organized into X̃rec as

X̃rec(j, i) =

0, if (|x̃(j, i)− mean(yi)| ≥ λ2std(yi)

x̃(j, i), otherwise
(2.6)

where j ranges from 1 to m (number of rows/ subjects), |.| denotes the absolute value
and, mean(yi) and std(yi) denote the mean and the standard deviation of the ith column
of the initial observed (but incomplete) matrix Y. Parameter λ2 was determined empir-
ically and was set to value 0.2 for experiments on CLL dataset, MM-Spanish dataset,
and MM-Indian dataset. It was set to 0.1 for experiments on AML dataset. Denoising
was formulated in the Split-Bregman type optimization as

min
W

(
||W||∗ + λ3||W − X̂ − B||2F

)
s.t. X̂ = W, (2.7)

where B is randomly initialized matrix and X̂ was initialized as:

X̂ = X̃rec + X̃inv-rec ◦ rand(m,n), (2.8)

where ‘◦’ represents the Hadamard product of two matrices with the elements of X̃inv-rec

defined as

X̃inv-rec(j, i) =

1, if X̃rec(j, i) = 0,

0, otherwise.
(2.9)

This step involves applying nuclear norm on the matrix W which is essentially the
matrix that we want to recover. Nuclear norm is defined as the sum of the eigen values
of a matrix as below:

||W||∗ =
∑
i

σi(W ) (2.10)

Significance of using nuclear norm in the denoising framework is to recover low rank
matrix here because gene expression data is low rank in nature owing to the interde-
pendence between the different genes. Equation 2.7 was solved in Split Bregman type
iterations as

Wk+1 = SV Tλ3(X̂
k
+ Bk), (2.11)

Bk+1 = X̂
k
+ Bk − Wk, (2.12)

X̂
k+1

= X̃rec + X̃obs ◦ Wk+1, (2.13)

where ‘SVT’ denotes the soft singular value thresholding method [126] and X̃obs is the
observed incomplete matrix. Optimal value of parameter λ3 was determined using grid
search and was set to 100 in all experiments. All the randomly initialized matrices
consist of uniformly distributed random numbers in the scale of 0 to 1. The complete
algorithm for the proposed DSNN method is presented below.



Chapter 2. Missing value imputation in gene expression data 26

Algorithm 1 Proposed DSNN Method
Stage 1 - Compressive sensing based matrix recovery
Y (Given incomplete matrix), ϕ, Discrete Cosine Transform matrices Dr, Dc

Obtain Z by solving min
Z

(||Y − ΦDT
c ZDr||22 + λ1||Z||1) using ’spgl’ solver

X̃ = DT
c ZDr

X̃
Stage 2: Nuclear-norm based denoising
X̃ (Recovered Matrix from Stage-1 considered as the noisy matrix)

X̃rec(j, i) =

{
0, if (|x̃(j, i)− mean(yi)| ≥ λ2 std(yi)

x̃(j, i), otherwise,

X̂ = X̃rec + X̃inv-rec ◦ rand(m,n)
while converge:
Wk+1 = SV Tλ3(X̂

k
+ Bk)

Bk+1 = X̂
k
+ Bk − Wk

X̂
k+1

= X̃rec + X̃obs ◦ Wk+1

end while
X̂ (Recovered Matrix)

2.3 Results

2.3.1 Evaluation

For assessing the performance of the proposed DSNN method, some data were dropped
randomly to create incomplete matrices with available data ranging from 10% to 90%.
Next, incomplete matrices were imputed using the DSNN method. Results were simul-
taneously generated using three state-of-the-art matrix completion methods for com-
parative analysis. Normalized mean squared error (NMSE) was used as the evaluation
metric and was calculated between the original/true and the recovered matrix. NMSE
is defined as:

NMSE =
||X(original)− X̂(recovered)||2F

||X(original)||2F
. (2.14)

Semi-log plots of NMSE at different stages are shown in Figure 2.3. Stage-1 results
were obtained when missing values in data matrix were imputed using compressive
sensing based matrix completion, where double sparsity in DCT domain was exploited.
Stage-2 results were obtained when only nuclear norm minimization was used for ma-
trix imputation. DSNN method combined both these stages. Results clearly indicated
that the performance of imputation has improved with the two successive stages of
DSNN. DSNN method also worked better than the existing methods even at high miss-
ing rates of 10% as shown in Figure 2.4. NMSE reported in the figures is averaged over
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Figure 2.3: Semi-log plots with normalized y-axis show NMSE after imputation on CLL,
AML, MM-Spanish and MM-Indian dataset using Stage-1 only, Stage-2 only and Proposed
DSNN method (Stage-1 + Stage-2).

30 iterations. For CLL dataset, highest NMSE reported was 0.09 at 10% observed data
and lowest NMSE was 0.004 at 90% observed data. For AML dataset, highest NMSE
was 0.013 at 10% observed data and lowest NMSE was 0.00056 at 90% observed data.
For MM-Spanish dataset, highest NMSE reported was 0.005 at 10% observed data and
lowest NMSE was 0.00039 at 90% observed data. For MM-Indian dataset, highest
NMSE was 0.0122 at 10% observed data and lowest was 6.25E-04 at 90% observed
data.
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Figure 2.4: Semi-log plots with normalized y-axis showing comparison of the proposed DSNN
method with the three state-of-the-art methods in terms of NMSE for CLL, AML, MM-Spanish
and MM-Indian dataset

2.3.2 Validation

In order to determine the significance of the DSNN method, two separate experiments
were carried out on the original/true data, incomplete data and imputed data matrices.
In experiment-1, classification of normal versus cancer subjects was carried out. In
experiment-2, biological significance of imputation was ascertained by first identifying
top candidate tumor drivers from SPARROW algorithm, followed by gene enrichment
analysis on the top-ranked genes using web based application Enrichr.
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2.3.3 Experiment 1: Classification

Simulation results on missing value recovery were validated by performing classifica-
tion on original/true matrices, matrices with random missing values, and imputed ma-
trices of the CLL and AML dataset. Classification can be either supervised or unsuper-
vised depending on the availability of ground truth labels. In these dataset, ground truth
labels were available. Hence, supervised classification was performed to distinguish
between two classes, normal and cancer using two different classifiers: linear Support
Vector Machine (SVM) and k nearest neighbor (KNN) method with k = 3. Both the
dataset had large number of features, therefore, feature reduction was performed to ex-
tract important features from the data. Three different methods of feature reduction
were used, Mutual Information criterion, Principal Component Analysis (PCA) and
Chi-square method. Optimal number of features in each method were estimated by
grid search. Further, 5-fold cross validation was performed and accuracy reported was
average accuracy over 20 iterations. Experiments were performed in Python 3 environ-
ment with Sklearn 0.20 library. Classification code was written in Python programming
language. Scikit-learn is a Python module for machine learning and contains various
algorithms related to regression, classification and clustering. Examples of these algo-
rithms are support vector machines (SVM), random forest (RF), k-means. Classification
accuracy and F1 score were calculated at different sampling ratios from 10% to 90%.
The accuracy and F1 score are defined as:

Accuracy =
1

N

N∑
i=1

1(xi = x̃i) (2.15)

F1 =
2× precision × recall

precision + recall
, (2.16)

where N is the total number of samples in the dataset, xi is the class label of the ith sam-
ple, and xi is the class label determined by the classifier. Weighted F1 score was used
in order to account for label imbalance arising out due to unequal number of tumor and
normal samples. CLL dataset had 188 tumor and 32 normal samples and AML dataset
had 26 tumor samples and 38 normal. Tables 2.1 and 2.2 clearly indicate that values of
classification accuracy and F1 scores for incomplete matrices are low as compared to
the values obtained on imputed matrices. Classification accuracy and F1 scores were
also computed on imputed matrices obtained from the three existing methods on both
the dataset and compared with the results of DSNN method as shown in Figures 2.5 and
2.6. Classification was also performed on MM-Spanish dataset (Results are shown in
Table A.1). Classification could not be performed on MM-Indian data because it was a
single class data, i.e., of tumor samples only.
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Table 2.1: Classification Accuracy and F1 score for CLL dataset at varying sampling
ratios (FR- Feature reduction, SR- Sampling Ratio, Obs.- Observed, Rec. - Recovered
using DSNN method)

Classification Accuracy
FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM
SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.
10% .71 .87 .73 .77 .84 .96 .85 .97 .86 .96 .89 .98
20% .71 .87 .75 .78 .80 .97 .84 .98 .86 .98 .87 .99
30% .79 .89 .77 .81 .85 .97 .84 .98 .85 .99 .87 .99
40% .79 .89 .81 .91 .85 .98 .85 .98 .86 .99 .88 .99
50% .80 .89 .85 .97 .86 .99 .85 .98 .88 .99 .90 .99
60% .78 .92 .87 .97 .85 .99 .85 .98 .90 .99 .92 .99
70% .83 .90 .90 .97 .86 .99 .86 .98 .93 .99 .96 .99
80% .83 .91 .96 .98 .86 .99 .87 .98 .98 .99 .99 .99
90% .85 .91 .97 .97 .87 .98 .91 .98 .99 .99 .99 .99

F1 score
FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM
SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.
10% .72 .86 .72 .72 .78 .96 .79 .96 .79 .95 .85 .98
20% .72 .85 .74 .72 .77 .97 .78 .98 .79 .98 .81 .98
30% .78 .88 .77 .77 .79 .97 .78 .97 .79 .99 .82 .99
40% .78 .86 .80 .90 .79 .98 .79 .98 .79 .99 .85 .99
50% .80 .88 .84 .96 .80 .99 .79 .98 .84 .99 .87 .99
60% .78 .90 .86 .96 .79 .99 .79 .98 .88 .99 .90 .99
70% .82 .89 .90 .97 .80 .99 .80 .98 .92 .99 .96 .99
80% .82 .90 .96 .98 .80 .98 .82 .98 .98 .99 .99 .99
90% .84 .91 .97 .97 .82 .98 .89 .98 .98 .99 .99 .99
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Figure 2.5: Comparison of different methods in terms of classification accuracy and F1 score
at varying sampling ratios on CLL dataset
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Table 2.2: Classification Accuracy and F1 score for AML dataset at varying sampling
ratios (FR- Feature reduction, SR- Sampling Ratio, Obs.- Observed, Rec. - Recovered
using DSNN method)

Classification Accuracy
FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM
SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.
10% .55 .84 .54 .83 .60 .86 .86 .96 .76 .91 .96 .98
20% .50 .98 .50 .98 .97 .97 .98 .98 .73 .99 .91 .99
30% .45 .99 .45 .99 .97 .97 .98 .98 .76 1.0 .91 .99
40% .53 .99 .59 .99 .95 .99 .99 1.0 .71 1.0 .86 1.0
50% .54 .98 .56 .99 .96 .96 .99 .99 .77 1.0 .83 .99
60% .63 .98 .70 .99 .98 1.0 .99 1.0 .75 1.0 .93 1.0
70% .63 .96 .67 .99 .98 .98 .99 1.0 .82 1.0 .96 .99
80% .75 .96 .77 .99 .99 .99 .96 1.0 .87 .98 .96 1.0
90% .80 .94 .87 .99 .99 .99 .96 .99 .94 .99 .97 .99

F1 score
FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM
SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.
10% .53 .83 .54 .83 .48 .85 .86 .95 .76 .91 .96 .98
20% .49 .98 .50 .98 .97 .97 .98 .98 .73 1.0 .91 .99
30% .45 1.0 .46 .99 .97 .97 .98 .99 .76 1.0 .91 .99
40% .52 .99 .60 1.0 .96 .99 1.0 1.0 .72 1.0 .86 1.0
50% .53 .98 .57 .99 .96 .96 .99 .99 .78 1.0 .82 .99
60% .64 .97 .70 .99 .98 1.0 .99 1.0 .75 1.0 .93 1.0
70% .64 .97 .68 1.0 .98 .98 .99 1.0 .82 1.0 .96 .99
80% .73 .96 .77 .99 .98 .99 .96 1.0 .87 .98 .96 1.0
90% .77 .93 .87 .98 .99 .99 .96 .99 .94 .99 .97 .99
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Figure 2.6: Comparison of different methods in terms of classification accuracy and F1 score
at varying sampling ratios on AML dataset

2.3.4 Experiment 2: Biological Validation

For biological validation of the results, SPARROW was applied on the original/true ma-
trix, incomplete matrices, and imputed matrices to identify top candidate tumor driver
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genes. SPARROW (SPARse selected expRessiOn regulators identified With penalized
regression) was proposed by [111] and aims to find out candidate tumor drivers from
the ‘selected expression regulators’ (SERs). It defines SERs as the genes that drive dys-
regulated transcription leading to carcinogenesis. In this method, variational Bayesian
spike regression model has been used to fit the following model,

ym,n =
∑

xm,kβk,n + em,n, (2.17)

where ym,k is the value of expression of the nth gene for the mth subject, em,n is a
normally distributed error, xm,k is the value of expression of the kth SER for the mth

subject and βk,n is the additive effect of the expression of the kth SER on the expression
of the nth gene. m ranges from 1.....M , where M is the total number of subjects and
n ranges from 1........N , where N is the total number of genes. Total SERs used in
the analysis were around 3400 and they were downloaded from the link provided in the
original paper. This algorithm provides a rank to each SER based on the gene expression
values of the samples. The top-ranked genes from the list can be further studied by gene
enrichment analysis.

For finding top 500 candidate driver genes, only the tumor samples from the data ma-
trices were considered for SPARROW analysis. Algorithm was applied on original/true
complete data matrices of all the dataset to identify the top-ranked candidate tumor
drivers. This served as the ground truth for our analysis. Further, SPARROW was ap-
plied on incomplete and imputed data matrices of both the dataset at sampling ratios
of 50% and 70%. Top-ranked candidate drivers from the incomplete and imputed data
matrices were obtained. Gene enrichment analysis was performed on top 500 genes.
KEGG pathways were studied using web based application, Enrichr, developed and
maintained by [115] and [116]. KEGG pathways obtained from gene lists of orig-
inal/true dataset were the ground truth. It was observed that when KEGG pathway
analysis was done for incomplete matrices, these were not able to predict cancer path-
ways with a higher significance (low p-value) whereas for imputed matrices, cancer
pathways were predicted with a higher significance due to decrease in p-value. Results
from KEGG analysis on all dataset are presented in tabular form showing the p-values,
combined score for original/true data and the incomplete and complete matrices in tabu-
lar form in the Tables A.2, A.3, A.4 and A. p-value was computed from the Fisher exact
test. Fisher test was run on random gene sets and ranks were derived at each run. Mean
rank was calculated from the different runs and standard deviation of the rank obtained
from the expected rank was also calculated for each term in the gene-set library. Finally,
a z-score was calculated to estimate the deviation from the expected rank. z-score and
p-value were used to compute combined score which is obtained by multiplying z-score
with the logarithm of p-value. A detailed analysis for CLL dataset consisting of z-score
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and combined score has also been shown in the Tables A.6 and A.7.

2.4 Discussion

2.4.1 Importance of the proposed DSNN method

DSNN, a two stage method proposed for matrix recovery was based on Compressive
Sensing Framework. In Stage-1, it utilized column and row sparsity of the gene ex-
pression matrix in DCT domain for missing value imputation, while in Stage-2, it ex-
ploited low rank nature of the matrix for denoising. Expression values of any particular
gene would vary slowly across subjects, thereby, exhibiting sparsity in columns in some
transformed domain. Similarly, expression values of a subject for most of the genes will
also be slowly varying, thereby, exhibiting sparsity in the rows. Since there is a high
inter-dependence between the expression levels of the genes, one may consider gene
expression matrix as a low rank matrix. Thus, as discussed earlier, both the assump-
tions used in Stage-1 (of sparsity in DCT domain) and Stage-2 (low rank of matrix)
hold true for the given gene expression data. This work utilizes double sparsity, i.e.,
sparsity on both the columns and the rows in the DCT domain. Most of the imputation
algorithms developed for missing value imputation such as KNN, LSimpute, LLSim-
pute, BPCA etc. work at high observability of data, while the proposed DSNN method
worked well even when data had very high missing rates of 10% to 40%. The pro-
posed DSNN method performed better than the other matrix completion methods at all
sampling ratios. The state-of-the-art matrix imputation methods that have been used
for performance comparison in this work required a lot of parameter tuning for opti-
mal performance, while DSNN method did not require parameter tuning to such a great
extent.

2.4.2 Improvement in Classification Accuracy

It was evident from the results shown in Tables 2.1 and 2.2 that the classification accu-
racy and F1 scores reduced as the number of missing values increased. There were 220
samples in CLL dataset and 64 samples in AML dataset. For smaller dataset like AML,
missing values affected the classification accuracy and F1 scores greatly. Thus, it is
necessary to impute missing values in gene expression data to prevent incorrect down-
stream analysis of the data. When the classification was performed on the imputed data,
there was considerable improvement in the classification accuracy, thereby, validating
our hypothesis. Classification accuracy and F1 scores calculated on original/true com-



Chapter 2. Missing value imputation in gene expression data 34

plete data matrices (100% sampling ratio) were considered as ground truth values. For
CLL dataset, ground truth values of classification accuracy and weighted F1 score were
0.99 and 0.99, respectively, as shown in Figure 2.5. For KNN classifier and Chi-square
feature selection approach, classification accuracy and F1 score obtained for 50% ob-
served data was 0.86 and 0.80 respectively as shown in Table 2.1. After imputation,
values improved significantly to 0.99 and 0.99. For AML dataset, ground truth values
of classification accuracy and F1 score were 1.0 and 1.0 respectively as shown in Figure
2.6. Similarly for Linear SVM classifier and PCA feature selection approach, classifi-
cation accuracy and F1 score for 50% observed data was 0.56 and 0.57, respectively, as
shown in Table 2.2. After matrix imputation, classification accuracy and F1 score im-
proved considerably to 0.99 and 0.99 respectively. For every sampling ratio, consistent
results were obtained that validates our method.

Improvement in functional enrichment analysis for KEGG pathways

KEGG enrichment analysis was performed on the top 500 ranked genes obtained from
SPARROW algorithm to biologically validate our results. As mentioned earlier, KEGG
pathways obtained by the top-ranked genes of original/true matrices were considered
the ground truth values. Pathways with p-value < 0.05 were only considered. When
KEGG analysis was done on top-ranked genes from incomplete matrices, there was
significant decrease in the p-value of the most significant pathways. “Wnt signaling
pathway" [127, 128] and “Notch signaling pathway" [129, 130] are important pathways
in CLL cancer. An important observation was that p-value for “Notch signaling path-
way" was 2.00E-01 at ground truth and it was 5.76E-02 at 70% observed data for CLL
dataset. Values were insignificant in both the cases. However, after imputation, p-value
became significant with value 1.56E-02 which was less than 0.05 as shown in Figure
2.7.

Similarly, p-value for “Wnt signaling pathway" was 8.33E-05 on original/true dataset,
as shown in the Figure A.1. At 50% observed data p-value for “Wnt signaling pathway"
was 3.10E-02 which was less significant than the ground truth value at 50% observed
data. After matrix imputation, p-value became significant with value 2.13E-03. Sim-
ilarly, p-value became 1.90E-05 after matrix imputation on 70% observed data which
was more significant than the p-value 6.66E-5, observed at 70% data. “Fc epsilon RI
signaling pathway" is an important pathway in AML cancer [131]. This pathway was
insignificant for original/true data with p-value 2.12E-01. At 70% observed data, p-
value was 9.40E-02 which was again greater than 0.05. After matrix imputation, the
value became significant at 2.75E-02, which was less than 0.05 as shown in Fig. 2.8.
Similarly, ‘Ras signaling pathway" is activated in Multiple Myeloma cancer [132]. For
MM-Spanish data, “Ras signaling pathway" was significant with p-value 0.0052 for
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Figure 2.7: Few important KEGG pathways at 70% observed and imputed data for CLL data.
Adjusted p-values are shown in brackets.

Figure 2.8: Few important KEGG pathways at 70% observed and imputed data for AML data.
Adjusted p-values are shown in brackets.

original/true data but became insignificant with p-value 0.23 when 70% data was ob-
served as shown in Figure 2.9. After matrix imputation, significance of the pathway
was restored with p-value 0.04. For MM-Indian dataset,“Transcriptional misregulation
in cancer" was found to be insignificant with p-value 0.55 as shown in Figure 2.10. Af-
ter imputation, p-value decreased to 1.37E-03 and became more significant than ground
truth p-value, 7.8E-03. Additional KEGG analysis results on the dataset CLL, AML
and MM-Spanish data are provided in the Figures A.2, A.3 and A.4.

Thus, DSNN method not only imputed missing entries but also performed some denois-
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Figure 2.9: Few important KEGG pathways at 70% observed and imputed data for MM-
Spanish data. Adjusted p-values are shown in brackets.

Figure 2.10: Few important KEGG pathways at 70% observed and imputed data for
MM-Indian data. Adjusted p-values are shown in brackets.

ing to improve the results. It is quite evident from the analysis that gene enrichment
analysis results were partially inaccurate due to incomplete matrices. This was because
the genes identified as top-ranked genes by performing SPARROW analysis on com-
plete data matrix were not identified in the top-ranked list obtained from incomplete
data matrix. However, when the incomplete matrix was imputed using the proposed
DSNN method, top-ranked list of genes obtained from SPARROW analysis was quite
similar to the ground truth. Our observation demonstrates the importance of imputing
missing values in gene expression data.
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2.5 Conclusion

Gene expression data generally has a lot of missing values that can adversely influence
the downstream analysis. Hence, missing value imputation in gene expression data is
important for appropriate analysis in cancer research. In this work, we have proposed
an optimization based method for imputing missing values in the gene expression data
using discrete cosine transform based sparsity and nuclear norm minimization. The
proposed method is validated quantitatively based on the application of classification.
Additionally, we have also biologically validated the significance of imputation by per-
forming pathway enrichment analysis. The proposed method is tested on datasets of
hematological malignancies involving CLL, AML and MM. While working with mul-
tiple myeloma (MM) dataset, we got interested in pursuing research in MM. MM is a
type of blood cancer where there is presence of abnormal plasma cells in the blood.
One of the main challenges in MM is monitoring disease progression and dealing with
drug resistance in patients which often leads to poor outcome. Therefore, longitudinal
studies involving MM patients might help in identifying the genomic events leading to
disease progression and drug resistance. Given the significance of the mentioned re-
search problem, we decided to study MM. The study has been presented in detail in
next chapter.



Chapter 3

Clonal evolution in Multiple Myeloma

3.1 Introduction

Multiple Myeloma is a hematological malignancy characterized by clonal expansion of
abnormal plasma cells in the bone marrow. Patients with MM show symptoms of cal-
cium elevation, renal failure, anemia and bone lesions as defined in CRAB criteria. Due
to heterogeneity in MM, survival outcomes may vary and needs continuous monitoring
of patients as drug resistance and disease progression are widely seen in MM. Hence, as
discussed in section 1.2, longitudinal data of MM needs to be studied to gain deeper un-
derstanding of the genomic alterations taking place in MM as the disease evolves. In this
study, we have evaluated 186 pairwise whole exome sequences obtained from 62 MM
patients at two time points representing tumor at diagnosis, tumor at progression and
compared to their germline landscapes respectively using NGS. We have identified in-
dividual clonal genomic complexities, tumor mutation burdens (TMBs) and divergence
of clusters of mutations in founder clones. This study has provided novel insights into
recurrent subclonal shifts in drivers (DRV), oncogenes (ONC), tumor suppressor genes
(TSGs) and the potential actionable targets (ACT) associated with progression of MM.

3.2 Materials and Methods

This study was approved by the Institute Ethics Committee and conducted as per eth-
ical guidelines. Voluntary written informed consent was obtained from all the study
individuals.

3.2.1 Whole exome sequencing

Genomic DNA was isolated from CD138+ plasma cells enriched from bone marrow as-
pirates with MACS magnetic microbeads (Miltenyi Biotech, Germany), collected from
62 patients including 61 newly diagnosed treatment naïve MM patients and 1 MGUS
(who later converted to MM at TP2) diagnosed as per IMWG guidelines (Table 3.1).
Patients diagnosed and treated at our center from 2014 to 2019 in whom DNA samples
were available prior to therapy and at the time of disease progression were included in
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this study. The patients were treated with triplet combination induction chemotherapy -
VCD (bortezomib, cyclophosphamide, dexamethasone) or VTD (bortezomib, thalido-
mide, dexamethasone) or VRD (bortezomib, lenalidomide, dexamethasone) prior to
time of progression. The median overall survival (OS) of the patient cohort was 152.5
weeks and median progression free survival (PFS) was 87.21 weeks.

Whole exome sequencing (WES) was carried out on 186 DNA samples extracted from
62 MM patients collected at two time points- one prior to any therapy at diagnosis (Time
Point 1= TP1) and second at a follow up time point of disease progression (Time Point
2= TP2). WES was also carried out on paired germline DNA obtained from peripheral
blood mononuclear cells for all the patients.

For WES, DNA was extracted using Maxwell RSC cultured cells DNA kit (Promega,
Wisconsin, USA) on automated nucleic acid extraction system (Promega, Wisconsin,
USA). Prior to library construction, DNA was quantified fluorometrically with a DNA
high sensitivity kit with Qubit (ThermoFisher Scientific, MA, USA). WES libraries
were constructed from genomic DNA using the Nextera Exome kit (Illumina, San
Diego, California, USA) which targets a genomic footprint of 62Mb with >3,40,000,
95 mer probes. After quantification, the DNA was normalized to 10ng/µl and a total of
50ng DNA was tagmented with transposons. The tagmented DNA was purified from
the transposome with sample purification beads. The purified tagmented DNA was
subjected to a unique combination of dual index adapters and amplified with sequences
required for cluster generation. After amplification, the DNA libraries were purified and
the purified libraries containing unique indices were combined into a single pool using
a 3-plex strategy. The target regions of interest in the purified libraries were hybridized
with coding exome oligos and captured with streptavidin magnetic beads. The enriched
libraries were eluted from the beads and subjected to a second round of hybridization
with coding exome oligos. Final libraries were eluted and then quantified and evaluated
for quality using DNA high sensitivity Qubit kit (ThermoFisher Scientific, MA, USA)
and DNA HS Kit (Agilent Technologies, Santa Clara, USA) on Agilent Bioanalyser
respectively. The size range of generated libraries was 200-500 bp. The resultant cap-
tured libraries were pooled, normalized following standard normalization method and
paired-end sequencing was carried out using the Illumina cBot system and HiSeq SBS
kit V4-250 cycles on HiSeq 2500 (Illumina).

3.2.2 Analysis of Whole exome data

The overall workflow of data analysis is shown in Figure 3.1. Raw sequencing reads
were quality checked using FastQC software (v0.11.4, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The adapter sequences were removed

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 3.1: Baseline demographic, laboratory and clinical characteristics of multiple myeloma
(MM) patients (n = 62)

Parameter No. of patients
Median Age (Range) In Years 58 (31 to 72)
Gender
Male 38
Female 24
Hemoglobin (g/dL)
≤ 10 39
> 10 23
Platelet Count (/dL)
< 100 10
≥ 100 52
Serum creatinine (mg/dL)
≤= 2 49
> 2 13
Serum albumin (g/dL)
< 3.5 30
≥ 3.5 32
ISS 1 / 2 / 3 1/17/44
RISS I / II / III / NA 1/36/14/11
MRS 1 / 2 / 3 / NA 7/33/21/1
Serum calcium (mg/dL)
0-11 54
> 11 8
eGFR (mL/min)
< 40 17
≥ 40 45
IgG Isotype
IgA 14
IgG 37
Light chain κ/λ 11
BM plasma cells (%)
≤ 40 21
> 40 41
Serum LDH (IU/L)
≤420 51
> 420 6
NA 5
β2-microglobulin (mg/L)
< 3.5 3
≥3.5 59
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using Trimmomatic software (v0.39, http://www.usadellab.org/cms/?page=
trimmomatic). Illumina Dragen somatic pipeline (v3.5.7, https://sapac.illumina.
com/products/by-type/informatics-products/basespace-sequence-hub/

apps/edico-genome-inc-dragen-somatic-pipeline.html) was used
to process the trimmed reads and aligned with human reference genome, hg19 avail-
able at UCSC.

The tumor and normal bam files obtained from Illumina Dragen somatic pipeline were
used for variant calling using three additional variant callers, Strelka v2.9.10 [133];
SomaticSniper v1.0.5.0 [134] and SpeedSeq v0.1.2 (FreeBayes)[135] in order to val-
idate the variants called by Dragen somatic pipeline. Only those variants called by
all the four callers and passed filters of base quality (≥ 20), mapping quality (≥ 20),
tumor reads (≥ 10) and normal reads (≥ 5) qualified as a consensus. These vali-
dated variants were further annotated using BaseSpace Variant Interpreter (https:
//variantinterpreter.informatics.illumina.com/home).

Further, COSMIC database was explored for assignment of variant pathogenicity (Pathogenic
/ Neutral / Unknown). Variants predicted as Deleterious / Damaging / Pathogenic by
any of the three tools (SIFT / PolyPhen / FATHMM) were considered as Pathogenic.
For identification of CNVs, the .bam files of tumor and normal samples obtained from
Illumina Dragen (v3.3.7) somatic pipeline were analyzed using Sequenza (https:
//cran.r-project.org/web/packages/sequenza/) package along with
human reference .fasta file from UCSC (ucsc.hg19.fasta).

Variants identified were compared with the variants identified in MMRF CoMMPass
Study database (www.themmrf.org). The mutated genes were classified as driver
genes, oncogenes and tumor suppressor genes based on publicly available resources
listed at cBioPortal [136, 137] (https://www.cbioportal.org/); at intOgen
(https://www.intogen.org/search) ([138]; OncoKB (https://www.oncokb.
org/) [35] and as described by 2014 [72].

Potentially actionable targets were identified in this study based on repository of FDA
approved on label or off-label drugs or those experimentally druggable compiled and
listed in literature [139, 140], at the TARGET (Tumor Alterations Relevant for Ge-
nomics driven Therapy) (https://software.broadinstitute.org/cancer/
cga/target) database of the Broad Institute and the COSMIC actionability data
v93 (https://cancer.sanger.ac.uk/cosmic). The TARGET database is a
database of genes that when somatically altered in cancer, are directly linked to a clin-
ical action. The tumor mutational burden (TMB) defined as the number of nonsynony-
mous mutations/ Mb was calculated from average coverage with respect to total bases
(3137161264) in binary mode and with reference to human genome (hg19). Clonal evo-
lution patterns were evaluated using QuantumClone (https://www.rdocumentation.

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/edico-genome-inc-dragen-somatic-pipeline.html
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/edico-genome-inc-dragen-somatic-pipeline.html
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/edico-genome-inc-dragen-somatic-pipeline.html
https://variantinterpreter.informatics.illumina.com/home
https://variantinterpreter.informatics.illumina.com/home
https://cran.r-project.org/web/packages/sequenza/
https://cran.r-project.org/web/packages/sequenza/
www.themmrf.org
https://www.cbioportal.org/
https://www.intogen.org/search
https://www.oncokb.org/
https://www.oncokb.org/
https://software.broadinstitute.org/cancer/cga/target
https://software.broadinstitute.org/cancer/cga/target
https://cancer.sanger.ac.uk/cosmic
https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
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org/packages/QuantumClone/versions/0.15.11) [141] and the cellular
prevalence values, θ̂, were calculated as defined below.

θ̂ = V AF ×
NCh +NCh(Normal) × 1−p

p

NC
(3.1)

where V AF stands for variant allele frequency, Nch is the number of copies of the
corresponding locus in cancer cells, NCh(Normal) is the number of copies of the cor-
responding locus in the normal cells ( NCh(Normal) = 2 for autosomes) and NC is the
number of chromosomal copies bearing the variant and p is the tumor purity. V AF

is the ratio of the number of reads supporting variants/mutations divided by the total
number of reads at the particular position [142, 141]. NC is a priori unknown and is
deduced by the QuantumClone [141].

The cellular prevalence values θ̂ of each cluster obtained from QuantumClone were sub-
jected to fishplot R package for visualization[143]. Cellular prevalence values higher
than 1 were set to 1 as suggested[141]. Clonal patterns were classified as branching or
linear or stable as described[68]. In case of branching evolution, both gain and loss of
clones was observed. In case of linear evolution, there was gain of mutations but no
clonal loss; while in stable progression, the clonal structure remained preserved at two
time points. Stable with loss pattern had predominantly conserved clonal structure but
there was also evidence of clonal loss at a subsequent time point. The biological path-
ways relating to altered clonal mutational profiles were deduced by gene enrichment
analysis using Enrichr (https://maayanlab.cloud/Enrichr/) as described [116].

3.2.3 Statistical Analysis

Clinical and biological characteristics of the patients were analysed using Chi-squared
or Fisher’s exact test for discrete categorical variables as applicable. Nonparametric
statistical analysis was carried out for continuous variables with Wilcoxon signed rank
test. A p-value of <0.05 was considered statistically significant.

https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
https://www.rdocumentation.org/packages/QuantumClone/versions/0.15.11
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Figure 3.1: Workflow of Study and data analysis. Analysis workflow of the WES study per-
formed on 62 MM patients whose tumor PC samples were sequenced at diagnosis, at follow
up and compared with their germline profiles. Fastq files were quality checked with FastQC,
adaptors trimmed with Trimmomatic and processed further through Illumina Dragen Somatic
pipeline for variant calling. Variants were validated with additional 3 variant callers (Strelka2,
SomaticSniper and SpeedSeq), a consensus .vcf was derived and annotated with Variant Inter-
preter for deducing TMB and SBS with Sigprofiler. CNVs were identified with Sequenza and
processed further with QuantumClone and Fishplot for interpretation of patterns of clonal evo-
lution.
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3.3 Results

3.3.1 Estimation of somatic mutations at two time points

A total of 13951 and 11684 nonsynonymous (NS) somatic mutations were identified
in myeloma pairwise whole exomes sequenced at diagnosis (TP1) and at progression
(TP2) respectively (Table 3.2). Among these, 4410 somatic mutations in TP1 and 3833
in TP2 were classifiable as pathogenic. At diagnosis, 10561 somatic mutations were
missense type, 1227 belonged to 3′, 1437 were in splicing sites and 538 mapped in
5′UTR regions. On progression, these reduced to 8996, 946, 1207 and 375 somatic
mutations representing missense, 3′, splicing and 5′UTR mutations, respectively. The
average numbers of somatic mutations/ sample at diagnosis totalled 236.45 at TP1 while
198.03 at TP2 (Table 3.2). At TP1, there were an average of 179 missense muta-
tions/sample (152.47 at TP2), followed by 20.8 in 3′ (16.03 at TP2), 24.36 in splic-
ing regions (20.46 at TP2), and 9.12 in 5′UTR region (6.36 at TP2). Patients with
high somatic mutations may possess high neoantigen loads and may benefit from im-
munotherapies.

3.3.2 Tumor mutation burden declines from diagnosis to progres-
sion in hypermutators

Figure 3.2: Changes in TMB at diagnosis and on progression Comparison of median TMB
across MM patients at TP1 and TP2 in non-hypermutator (n=51) (TMB<10) and hypermutator
category (n=8) (TMB between 10 to 100)
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Table 3.2: A comparison of number of nonsynonymous (NS) somatic mutations, tumor
mutation burden (TMB) and single base substitutions (SBS) in MM at diagnosis and on
progression

Type of somatic mutations Time point
TP1 TP2

IN ALL SAMPLES (n=59)
Number of somatic mutations 13951 11684
Number of known pathogenic somatic mutations 4410 3833
Number of Missense somatic mutations 10561 8996
Number of Nonsense somatic mutations 188 160
Number of somatic mutations in 3’UTR 1227 946
Number of somatic mutations at Splicing sites 1437 1207
Number of somatic mutations in 5’UTR 538 375
MEANS PER SAMPLE
Average number of somatic mutations/sample 236.45 198.03
Average number of Missense somatic mutations/sample 179 152.47
Average number of Nonsense somatic mutations/sample 3.19 2.71
Average number of somatic mutations in 3’UTR/sample 20.8 16.03
Average number of somatic mutations at Splicing sites/sample 24.36 20.46
Average number of somatic mutations in 5’UTR/sample 9.12 6.36
MEDIAN number of NS somatic mutations 32 34
Tumor Mutation Burden (TMB)
MEDIAN TMB 0.85 0.93
AVERAGE SBS IN ALL SAMPLES
C>T 128.88 101.86
T>C 85.02 64.66
C>A 34.34 27.56
C>G 28.64 21.92
T>G 21.98 16.47

Patients at diagnosis had an average tumor mutation burden (TMB) of 10.8 NS somatic
mutations/Mb/sample (range 0.15 to 95) that reduced to 7.46 (range 0.03 to 105.47)
on progression. The median TMB among patients at TP1 and TP2 were 0.85 and 0.93
respectively. The median TMB at two time points among patients with age at diag-
nosis ≤ 65 years (0.82 versus 0.76) and those with >65 years (1.62 versus 1.22) were
comparable.

Patients were classified on the basis of their TMB levels at diagnosis as those with low
TMB of ≤ 10 (n= 51) and high TMB levels ≥ 10 to ≤ 100 (n=8) (i.e., hypermutators).
Three patients (SM0007, SM0052 and SM0145) were outliers or super-hypermutators
with ≥ 100 TMBs (134.43, 132.12 and 126.3 respectively) and were analyzed for clonal
evolution exclusively. In particular, patients grouped into high TMB category (TMB
levels ≥ 10 to ≤ 100) had median TMB levels at TP1 (77.11) that significantly reduced
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Table 3.3: Classification of genes harbouring NS somatic mutations and the variants
observed in MM in this study

Classification

Number of
genes with
mutations
(n=8977)

Number of
mutations
(n=19022)

Known to be mutated in some cancer 8869 18817
Known to be mutated in MM 7107 15864
Mutated in MMRF CoMMPass study 6690 15063
Known oncogenes 131 252
Known tumor suppressor genes 176 443
Known to be driver genes in some cancer 320 821
Known to be driver genes in MM 72 221
Known as actionable (COSMIC) 100 239
Drivers with decreased frequencies on progression 39 140
Drivers with increased frequencies on progression 12 36
Drivers with constant frequencies both at diagnosis and
on progression 21 45

at TP2 (31.32; p=0.039) (Figure 3.2). Hypermutators might sustain stable drug resistant
clones and hence may benefit from combinations of IMiDs with novel therapeutics.

3.3.3 Comparison of frequencies of driver genes mutated at diag-
nosis versus progression

Table 3.3 summarizes number of mutated genes and mutations that were encountered
in MM in this study. Out of 8977 total mutated genes that got shortlisted, 8869 were
found to be mutated in some form of cancer while 7107 genes were identified to be
mutated in MM among which 6690 genes have been reported in MMRF CoMMPass
dataset. A set of 131 mutated genes turned out to be known oncogenes, 176 were
established tumor suppressors, 320 were known drivers across different cancers while
72 genes were found to be known driver genes in the context of MM. Of all these genes
harbouring somatic mutations in MM, 100 genes got classified as COSMIC candidate
actionable targets.

We screened the WES data for a total repertoire of 102 known driver genes for MM
and found 72 driver genes to be mutated. We then analyzed which driver genes had
subclonal gains or losses or remained stable with progression and arranged them in
descending and ascending series (Figure 3.3). These drivers were further shortlisted
to those that had topmost number of recurrent subclonal shifts and were observed in
atleast 3 or more patients. Figure 3.3a shows topmost temporal falls in PABCP1, BRAF,
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KRAS, CR1, DIS3, ATM and other genes while Figure 3.3c shows topmost temporal
increases that were observed in KMT2C, FOXD4L1, SP140 and NRAS. Similarly, Fig-
ure 3.3b shows the most recurrent drivers like FAT4 and IGLL5 that remained stable on
progression. Contrasting mutational landscapes at diagnosis and at progression high-
light the importance of their immediate monitoring prior to tailoring therapy.

Figure 3.3: Temporal changes in distribution of driver genes on progression. Distribution of
mutated driver genes in MM patients at TP1 and compared to TP2. (A) Falling mutated drivers
whose frequencies decreased in TP2, (B) Drivers that are maintained at constant frequencies
throughout the disease, and (C) Rising mutated drivers whose preponderance increased in pa-
tients at TP2. Driver mutation profiles observed in atleast 3 or more patients are shown inside
boxed frames. Actionable genes are indicated by arrows on X axis.
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3.3.4 Distribution of mutated potential actionable target genes at
diagnosis and progression

As many as 19022 somatic mutations (Table 3.3) were observed at varying frequen-
cies among 8977 genes in MM patients in this study. Of these, 18817 variants are
known mutants in cancers of some kind, 15864 have been reported to be mutated in
MM while 15063 have been described in MMRF dataset. These consisted of 821
mutations across drivers known to be associated with different cancers and 221 mu-
tations in 72 driver genes (BRAF, SP140, EP300, FAT4, PABPC1, CREBBP, FOXD4L1,
PRDM1, KMT2C, C8ORF34, NRAS, KRAS, DIS3, NFKBIA, LRP1B, IGLL5, ZNF292,
ATM, CR1, PTPN11, BCL7A, CDKN1B, PARP4, RB1, MAX, NF1, EFTUD2, TP53,
DNMT3A, RASA2, RFTN1, TET2, EGR1, HIST1H1E, PIM1, ZEB1, FAM46C, LCE1D,
CCND1, MAML2, ARID2, ARID1A, TRAF3, ARHGAP5, USP8, CYLD, ZFHX3, MAF,
NCOR1, RPL5, KMT2B, IDH1, PIK3CA, KLHL6, SETD2, FGFR3, IRF1, HIST1H1D,
HIST1H1B, ABCF1, IRF4, EGFR, UBR5, NUP214, TRAF2, IRAK1, RPL10, KDM6A,
KDM5C, HUWE1, AR, ATRX) known to be involved in MM. There were 252 somatic
mutations in oncogenes, 443 in tumor suppressor genes and finally 239 variants were
found across 100 potential actionable genes.

Table 3.4 summarizes a list of variations in 22 actionable target genes that were found
mutated in atleast 3 patients at either or both time points. These consisted of BRAF,
FANCM, MRE11, WRN, EXO1, FANCA, ALK, FANCD2, MSH3, NBN, NRAS, KRAS,
FLT3 MAP2K1, PALB2, RAD51D, RAD51C, MERTK, KDR, RAD54B, FANCG, PTCH1.
The most common actionable mutation was Val600Glu in BRAF that was most abun-
dant at the time of diagnosis. Identification of druggable targets at subclonal levels
could aid in treating patients with genome defined target specific drugs.

3.3.5 Comparison of Single nucleotide substitutions at diagnosis
and progression

As shown in Table 3.2, six types of single base substitutions (SBS) were observed.
The SBS C>T was the most predominant form of mutation found both at TP1 (128.88;
40.94%) and TP2 (101.86; 41.63%) followed by T>C (85.02; 27.017% at TP1, 64.66;
26.42% at TP2), C>A (34.34; 10.9% at TP1, 27.56; 11.26% at TP2), C>G (28.64,
9.09% at TP1; 21.92, 8.95% at TP2), T>G (21.98, 6.98% at TP1; 16.47, 6.73% at TP2),
T>A (15.9, 5.05% at TP1; 12.25, 5% at TP2).
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(a) (b)

(c)

p-value=0.026

n=8, 
12.9%

n=9, 
14.52%

n=45, 
72.58%

p-value=0.0173

IMiDs

IMiDs

Figure 3.4: Frequencies of types of clonal evolution patterns, TMB and founder clones. (a)
Distribution of types of clonal evolution patterns including branching and non branching (Lin-
ear, Stable with loss of clone) observed in MM patients, (b) Number of founder clones observed
in patients with branching and non branching clonal evolution, and (c) Comparison of number of
MM patients with either low or high TMB and who developed branching versus non-branching
patterns of clonal evolution. Patients with branching evolution may benefit from IMiDs.

3.3.6 Heterogeneity in clonal evolution

Three types of clonal evolutionary patterns with 1 to 3 founder clones were observed
in this study (Figure 3.3). The branching pattern of clonal evolution was observed in
maximum number of patients (45; 72.58%) followed by Linear in 9 cases (14.51%) and
Stable with loss of clone in 8 patients (12.90%) (Figure 3.3a). Distribution of founder
clones in different subsets of patients with branching (n=45) and non-branching (n=17)
evolution is shown in Figure 3.3b. One, two and three founder clones were detected in
18, 20 and 7 patients respectively out of 45 patients with branching patterns of clonal
evolution. Patients with branching pattern of evolution had significantly higher number
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of founder clones (p=0.0173, Figure 3.3b) than those with non branching patterns. A
significant number of patients with low TMB at TP1 developed branching clonal evo-
lution (n=40 out of 51) whereas those with high TMB had both branching (n=5 out of
11) and non-branching evolutionary patterns (n= 6 out of 11) (p=0.026) (Figure 3.3c).

(a) Branching (b) Linear (c)  Stable with loss of clone

Figure 3.5: Three patterns of clonal evolution. A representative scheme of fish plots corre-
sponding to three patterns of clonal evolution (a) Branching, (b) Linear, and (c) Stable with loss
of clone

Each case of MM was analyzed in depth by QuantumClone and their individual fish
plots, clonal density and evolution plots were generated (Figures B.1, B.2, B.3, B.4,
B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13). A median of 3 clones (range 2 to 9)
was observed among 45 patients with branching clonal evolution. The number of clones
were relatively lower among patients with non-branching evolution patterns- Linear (2
to 4) and Stable with loss of clone (2 to 3). Figure 3.5a-c shows a representative fish
plot of each of the three types of clonal patterns of evolution (Branching, Linear and
Stable with loss) observed in this study. The somatic mutational diversity in founder
clones and their cellular prevalence was compared at two time points for each patient.
A schematic representation of genes found to be mutated in founder clones including
actionable/non-actionable genes and the significantly associated biological pathways
predicted to be affected by such mutated genes in patients are shown in Figures 3.6, 3.7
and 3.8 respectively.

The heatmaps in Figures 3.6 and 3.7 also depict falling/ rising frequencies of actionable
and non-actionable targets (including DRV/ONC/TSG/others) respectively. The top-
most ten genes mutated in founder clones were BAGE2 (37.28%) > PABPC1 (30.5%) >
MUC17/ NBPF1 (23.72%) > DNAH14/ FLG (22.03%) > FAT1/ RHPN2/ TPTE (20.33%).
The topmost frequently mutated actionable targets were KRAS (18.64%)> BRAF/ FANCM
(13.55%) > FANCD2/ WRN (11.86%) > FANCA/ MLH1 (10.16%) > NRAS/ ATM (8.47%)
> TET2/ BRCA1 (6.77%) > FGFR3/ TP53 (5.08%), and others.

The cellular prevalence of topmost mutated tumor suppressor gene KMT2C showed an
increase with progression in 6 out of 11 patients followed by FAT1 (6 out of 12), FANCA
(3 out of 6), BRCA1 (3 out of 4), TET2 (2 out of 4) and NRAS (4 out of 5) (Figures 3.6
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& 3.7). On the contrary, cellular prevalence of mutated driver PABPC1 decreased with
progression in 13 out of 18 patients, KRAS (8 out of 11), BRAF (6 out of 8), ATM (4
out of 5) and others (Figures 3.6 & 3.7).

Figure 3.6: Comparison of potential actionable mutated genes in different samples grouped as
with branching or non branching clonal evolution patterns and low or high TMB levels. Heatmap
depicting distribution of actionable targets including drivers, oncogenes and tumor suppressors
with rising or falling frequency trends across MM patients classified on the basis of branching/
non branching clonal evolutionary patterns, TMB levels and number of founder clones.
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Figure 3.7: Heatmap depicting distribution of non actionable target genes drivers, oncogenes
and tumor suppressors with rising or falling trends across MM patients classified on the basis of
branching/ non branching clonal evolution patterns, TMB levels and number of founder clones.
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Figure 3.8: Predicted pathways affected by somatic mutations across samples. Heatmap de-
picting significantly affected biological pathways predicted to be altered by Enrichr across MM
patients classified on the basis of branching/ non branching clonal evolutionary patterns and
TMB levels

3.3.7 Prediction of biological pathways affected by somatic muta-
tions

A comprehensive gene enrichment analysis by Enrichr identified a network of biolog-
ical pathways found to be significantly associated with somatic mutations on progres-
sion of MM (Figure 3.8). These included, notably, ECM-receptor interaction, Galac-
tose metabolism, Protein digestion and absorption, Cholesterol metabolism, Antigen
processing and presentation, Drug metabolism, RNA degradation, Starch and sucrose
metabolism, Hematopoietic cell lineage, Base excision repair, MAPK signaling path-
way, viral carcinogenesis, cell cycle, apoptosis, Th17 cell differentiation, Th1 and Th2
cell differentiation, beta-Alanine metabolism, cellular senescence and others.

Pathways that were affected by 2434 mutated genes found exclusively at diagnosis and
those affected by new mutations in genes at TP2 are shown in Figure 3.9. Additional
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pathways (n=13) found to be affected exclusively on progression included NK cell me-
diated cytotoxicity, chemical carcinogenesis, PI3K-Akt signaling, phototransduction,
PPAR signaling, GnRH signaling and others. Likewise, 18 pathways were exclusively
affected by mutations at TP1.

3.3.8 Clonal divergence in individual cases

Figure 3.5a-c shows a representative fish plot of each of the three types of clonal pat-
terns of evolution (Branching, Linear and Stable with loss) observed in this study. A
case-wise description of subclones and their patterns of evolution are summarized in
the Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13) and
Supplementary Notes (Appendix B).

Figure 3.9: Comparison of mutated genes and associated pathways at diagnosis and at pro-
gression. Venn diagram representing number of mutated genes and the predicted biological
pathways affected by mutations exclusively at diagnosis (TP1) or progression (TP2).
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3.4 Discussion

Progression of MM is linked with a spatiotemporal shift in subclonal structure. The
prime objective of this study was to explore subclonal evolution associated with pro-
gression of MM and identify potential actionable targets for each patient. In order to
achieve this, we adopted a novel Ensemble algorithm approach for identification of
mutations. As per our findings and as suggested by others [144, 145], there can be
significant differences in the SNV outputs processed by different variant callers based
on the properties of the caller used, their strengths and weaknesses. Since no somatic
caller has the ultimate ability to perform, an ensemble approach that combines multi-
ple callers has been reported to offer the best balance of both sensitivity and specificity
[145, 146, 147]. Hence, we decided to call mutations through four common variant
callers (Dragen, Strelka2, SomaticSniper and SpeedSeq) and generate a common con-
sensus rather than depending on any single one. This innovative approach ensured that
the clonal landscape of MM captured in our study was closest possible estimation to
reality.

An important observation of this study is that we have been able to identify recurrent
subclonal shifts in actionable/ druggable targets of clinical importance such as BRAF,
KRAS, ATM, TET2 and TP53 at diagnosis in multiple patients (in atleast 3 patients or
more) (Figure 3.3a). A similar gain in subclonal NRAS mutations was observed at the
time of progression (Figure 3.3c). The reduction in frequencies of driver genes with
progression can be explained by their selective loss in response to therapy that may
coincide with fulfillment of their initial functional role(s) needed in triggering myelo-
magenesis. On the other hand, an increase in another set of driver genes indicates
an effect of evolutionary pressure that allows selection of topmost fit clones. These
sweeping subclones may either be novel or may result from expansion of pre-existing
mutations known to be present at low or undetectable frequencies at the time of diag-
nosis or earlier. The inability to detect low copy mutations is largely due to technical
limitations of sequencing of bulk tumor tissue and recent advanced technologies of sin-
gle cell sequencing may be able to resolve effect of evolving somatic mutations more
lucidly.

Screening of actionable genetic mutations in these genes allows to match patients with
future treatments that would be most beneficial, which is in coherence with the over-
all goal of the ongoing Multiple Myeloma Research Foundation (MMRF) MyDRUG
(Myeloma-Developing Regimens Using Genomics) clinical trial (NCT03732703) [148].
The MyDRUG aims at enrolling patients with mutations in BRAF, NRAS, KRAS,
FGFR3, CDKN2C, IDH2 or t(11;14) and assign to appropriate targeted agent against
that mutation. Patients with BRAF V600E or any NRAS or KRAS actionable mutations
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found in subclonal populations could thus benefit the most if treated early with BRAF
inhibitor e.g. Vemurafenib or MEK inhibitor Cobimetinib respectively. Heat maps in
Figure 3.6 show genomic signatures of actionable genes for each patient enrolled in
this study that could be targeted specifically to select the right drug for the right patient
based on the specificity of the mutation.

TMB is an emerging prognostic biomarker of response to immunotherapy, approxima-
tion of neoantigen load and overall survival especially in solid tumors [149, 150]. A
high TMB is considered a biomarker of higher neoantigen load, increased response
rates to immunotherapy and better outcomes. High somatic mutation and neoantigen
loads have been found to correlate with reduced PFS in MM [151]. Patients were clas-
sified in this study into those with low TMB between ≤1 to 10 or high TMB (≥10 or
hypermutators). This study has shown a modest loss of TMB from diagnosis to progres-
sion but only in a subset of patients with hypermutator status (i.e. TMB≥10) (Figure
3.2). There could be a selective loss of less fit drug sensitive clones yet with persistence
of drug resistant clones in such patients and hence combination of IMiDs with novel
therapeutics could be used to treat such patients.

This study has shown a predominance of branching pattern of clonal evolution in MM
in concurrence to other studies [63, 68, 69, 70, 71, 72, 73, 74] (Figure 3.4a). An in-
crease in DNA damage and a branching pattern of evolution are considered hallmarks
of effectiveness of therapy and attainment of deep response [68]. Although the branch-
ing type of evolution reflects on the better response rates to therapy while tumor strives
to mutate and acquire fitter clones to survive, it is also a prominent underlying mecha-
nism of relapse. While mutations in founder clones are primarily involved in initiation
of myelomagenesis, those in subclones may contribute significantly to relapse. The
study has further shown that branching evolution is more predominant among patients
with 2 or more founder clones (Figure 3.4b) and those with low tumor mutation bur-
den (TMB<10) (Figure 3.4c). Since, this happens under the positive selection pressure
of therapy and the microenvironment, such patients could perhaps benefit more from
immunomodulatory drugs (IMiDs) such as thalidomide/ lenalidomide and analogues
[67].

Studies have shown that ongoing DNA damage intensifies from MGUS to MM and pro-
vides a mechanism by which chromosomal aberrations and heterogeneity are acquired
by malignant plasma cells [152]. Figures 3.8 and 3.9 show the functional pathways that
were affected by genetic mutations on progression. These include pathways in cancer,
metabolism of galactose, cholesterol, drugs, cellular senescence, cell cycle, apoptosis,
viral carcinogenesis, RNA degradation, base excision repair and several other crucial
signalling pathways involved in pathogenesis of MM or immune surveillance. Dereg-
ulated DNA damage repair related pathways as also seen in our study have been asso-
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ciated with poor prognosis [153] since the tumor cells can withstand DNA damaging
drugs and repopulate with therapy resistant cells on treatment. It has been suggested
that a ‘synthetic lethality’ approach [154] may be more beneficial where co-treatment
of patients with current drugs and those targeting DNA repair pathways [155] (e.g,
Bortezomib with PARP1 inhibitor [156] or Spironolactone [157] or a novel compound
DCZ3301 [158]) may reverse drug resistance in such patients [159, 160].

Studies like this have shown genomic plasticity of mutational landscapes and how rel-
ative preponderance of mutated drivers changes with disease progression. Figures B.1,
B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13 show individual evo-
lution patterns as FISH plots followed by summarized individual case reports on 62
newly diagnosed MM patients enrolled in this study. It provides a detailed genomic
architecture and cellular prevalence of each and every subclone identified for every pa-
tient at diagnosis and at progression. Table 3.4 summarizes the number of patients who
had an actionable/ druggable mutation and who could qualify for targeted treatments
with target specific drugs. Comprehensive analysis of mutational subclonal landscapes
of patients as observed in this study are pre-requisites to infer the genomic mutations
that can be treated in future in similar lines as in MyDRUG trial. An integration of
such early genomic biomarkers with clinical biomarkers could help in risk estimation
and identification of patients who could benefit more from a rationalized therapeutic
approach at early stages. It is indeed not just the individual mutations but an extended
treatment landscape that needs to be monitored preferably at multiple time points to tai-
lor therapy. An early assessment of TMB along with mutations in drivers and actionable
target genes during decision making, may therefore, allow most appropriate therapeutic
personification in clinics.

3.4.1 Conclusion

This study explored the subclonal evolution associated with the progression of MM and
identified the potential actionable targets for each patient. A marked intraclonal hetero-
geneity was observed in all the patients and the disease progression was characterized
by recurrent subclonal shifts in the actionable targets such as KRAS, ATM, TET2 and
TP53 while gain in subclonal mutations in NRAS. Based on the specificity of the ac-
tionable driver mutations revealed by the temporal analysis of the variants at the two
time points, appropriate drug for the individual patients could be selected thereby lead-
ing to personalized treatment. Further, the genomic mutations in addition with clinical
biomarkers could help in identification of high risk patients who are still in the initial
stages of the disease. Timely medical intervention could be provided to such high risk
patients to slow down the progression of disease and improve their overall survival.
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Branching pattern of evolution was observed among 72.58% patients and was found
to be more predominant in patients with low TMB (64.51%) had(<10) and 2 or more
founder clones (61.29%).

This study also revealed loss in the TMB from diagnosis to progression in hypermutator
patients who may benefit from IMiDs. However, it needs to be validated on a larger
cohort of patients. Thus, a systematic analysis of evolving mutational landscapes at
multiple time points in addition with TMB and SBS signatures could help in better
stratification of high risk MGUS/SMM/MM patients prior to subclonal expansion and
therefore open the opportunities of early and personalized cure for the disease. MGUS
and SMM are both precursor stages to MM. While MGUS and SMM are both benign
conditions, displaying no clinical symptoms, there is a higher risk of progression to
MM in SMM patients than MGUS patients. Therefore, genomic landscape of MGUS
and SMM patients should be studied in conjunction with MM to identify the distinctive
features that ultimately leads to MM. It was difficult to collect exome data of MGUS and
SMM as these are non-malignant stages but we were able to get access to MGUS data
of 61 patients. The comparative study of MGUS and MM patients has been presented
in chapter 4 in detail.



Chapter 4

Mutational landscape of MM and its precursor MGUS

4.1 Introduction

MGUS being a precursor of MM shows a genetic profile which is similar to MM, how-
ever, overall the mutations are present at a lower level as compared to MM. This indi-
cates that there are additional mutations taking place in MGUS genome over time which
finally leads to MM. Therefore, in this study, we have studied the exome data of MGUS
and MM patients to reveal the entire spectrum of mutations altered in MGUS and MM
and how it evolves over time. We explored the change in the mutational landscape as
the disease progressed from the MGUS to MM. We found that the difference in the
frequency of the single base substitution is significantly different in MGUS and MM.
We have also analyzed the frequency of the different types of variants across MGUS
and MM and found that few have changed significantly as the disease progressed from
MGUS to MM. Further, we categorized MM patients into low TMB and high TMB (hy-
permutators) based on their overall survival data. We explored the impact of TMB on
the frequency of single base substitutions and the different variant types across the low
and high TMB groups of MM patients. The association of TMB with overall survival is
still unknown in newly diagnosed multiple myeloma (NDMM) patients; therefore, we
have correlated TMB with survival data and found that high TMB is linked with poor
overall survival in NDMM patients.

4.2 Materials and Methods

4.2.1 Datasets used in the study

The present study is based on the data of 1018 NDMM patients and 61 MGUS pa-
tients. Variant files generated from the exome data of 936 NDMM patients out of the
total 1018 patients were obtained from the GDC portal via dbGaP authorized access
(phs000748; phs000348). This data is a part of the MMRF CoMMpass study. Exome
data of the remaining 82 NDMM patients were obtained from AIIMS, Delhi. In ad-
dition, exome data of 33 MGUS patients out of 61 patients was obtained from EGA
(EGAD00001001901), and exome data of the remaining 28 patients was obtained from
AIIMS, Delhi. Four variant callers, namely, MuSE [19], Mutect2 [20], VarScan2 [18],
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and Somatic-Sniper [21], was used for finding variants in patients from the MMRF
CoMMpass study. Therefore, there were four vcf files corresponding to each variant
caller for each patient. The workflow of the complete analysis is shown in Figure 4.1.

4.2.2 Analysis of exome data and the variants identified using the
exome data

Exome data obtained from AIIMS and EGA was processed with a standard exome se-
quencing pipeline, and single nucleotide variants (SNVs) were extracted using MuSE,
Mutect2, VarScan2, and Somatic-Sniper variant callers. SNVs were annotated using
ANNOVAR [26] to gather the genomic information of the mutations, such as their vari-
ant type and the deleteriousness of the mutation, etc. FATHMM-XF [31] was used
to remove the benign variants. The rest of the filtered variants were categorized into
nonsynonymous (NS) variants, synonymous (SYN) variants, and other (OTH) variants.
Exonic, nonsynonymous single nucleotide variants (snvs), ncRNA_exonic, stop gain,
stop loss, start loss, splicing, frameshift insertion, and frameshift deletion were grouped
in nonsynonymous variants. UTR3, synonymous single nucleotide variants (snvs), and
UTR5 were grouped in synonymous variants. Non-frameshift insertion, non-frameshift
deletion, non-frameshift substitution, intronic, intergenic ncRNA_intronic, upstream,
downstream, unknown, and ncRNA_splicing were grouped in other variants.

4.2.3 Assessment of single base substitution, mutational signatures,
and TMB

Variants identified by three or more callers were further processed to extract informa-
tion on single base substitution and identify the mutational signatures present in the
data. SigProfilerExtractor [161] was used to discover the single base substitutions and
the mutational signatures in the MGUS and MM data. The etiology of the deduced sig-
natures were found via the COSMIC v3.2 mutational signature database [162]. A total
of six single base substitutions C>A, C>G, C>T, T>A, T>C, and T>G were identified.
Tumor mutational burden (TMB) was calculated using the three different categories of
variants- nonsynonymous (NS) variants, synonymous (SYN) variants, and other (OTH)
variants. TMB was determined as described in [163]. TMB_NS, TMB_SYN, and
TMB_OTH were estimated using nonsynonymous (NS) variants, synonymous (SYN)
variants, and other (OTH) variants, respectively. Survival data were available for 832
(753+79) patients out of a total of 1018 NDMM patients, which were utilized to obtain
the threshold values for TMB_NS, TMB_SYN, and TMB_OTH using the K-adaptive
partitioning (KAP) algorithm [164] and Cutoff Finder [165].
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Figure 4.1: Workflow of the study and data analysis. Four different variant callers were used
to identify variants in the MM and MGUS patients. Variants were finalized using the majority
voting scheme. Variants were then annotated with Annovar for deducing TMB. Mutational
signatures were inferred using Sigprofiler tool.

4.2.4 Statistical analysis

Wilcoxon rank-sum test was used to determine if the change in the frequencies of the
single base substitutions and the different types of variants is statistically significant
between the MGUS and MM. Unpaired Wilcoxon rank-sum was applied because the
data did not follow the normality distribution and was unpaired.
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4.3 Results

4.3.1 Frequency of single base substitutions (SBS) increases signif-
icantly from MGUS to MM

There was an increase in the median and mean frequency of the single base substitutions
from MGUS to MM. The change in the frequency was statistically significant with p-
values less than 0.05 for all the substitutions according to the Wilcoxon rank-sum test
(Figure 4.2). C>T substitution was observed with the highest frequency in MGUS and
MM, increasing the median value from 30 to 59. T>C substitution was next, with an
increase in the median value from 20 (MGUS) to 35 (MM). T>A was observed with the
lowest frequency in MGUS and MM, increasing the median value from 7 to 17.

Figure 4.2: Boxplot shows the difference in the frequency of the single base substitutions
between MGUS and MM patients. Wilcoxon rank-sum test was applied to determine if the
change is statistically significant or not. For all the substitutions, there is significant variation in
the frequency with p-values less than 0.05 between the two groups.

4.3.2 Calculation of threshold values for the SBS and comparison
between the high and low-frequency MM groups

Due to the availability of survival data for 832 MM patients, threshold values for the
substitutions were inferred. K-adaptive partitioning (KAP) algorithm and Cutoff Finder
were used to deduce the thresholds. Table 4.1 shows the cut-off values estimated for
the different types of substitutions for PFS and OS via KAP while Figures 4.3, 4.4,
4.5 and 4.6 show the cut-offs deduced via Cutoff Finder for PFS and OS respectively.
The higher of the two cut-offs obtained via KAP were selected for C>T, T>C, C>G,
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Table 4.1: The table shows the cut-offs obtained for the six different types of substitutions via
KAP. Two cut-offs were obtained for each SBS, one using PFS and the other using OS. The
higher of the two cut-offs and the patients were then organized into two groups, one with SBS
values less than the selected cut-offs and the other one with SBS values greater than the selected
cut-offs. KM analysis showed that there was a significant difference in the survival patterns
of the two groups of patients for the substitutions, C>T, C>G, C>A, and T>A. However, cut-
offs obtained for T>C and T>G substitutions did not yield a significant difference in the survival
curves. Therefore, cutoffs were manually deduced for the two substitutions where the KM curve
has the maximum separability. Text in bold shows the selected cutoffs.

SBS Min Median Max PFS
cut-off

OS
cut-off

Manual
cut-off

Freq.
(≤, >)

PFS
p-value

OS
p-value

C>A 0 17 1251 26 28 - 712, 120 0.00025 5.13E-06
C>G 0 21 1575 37 34 - 763, 69 0.026 2.20E-04
C>T 1 59 7315 79 99 - 750, 82 0.001 4.80E-06
T>A 0 17 684 5 32 - 784, 48 0.01 0.005
T>C 0 35 4498 12 11 80 816, 16 0.19 0.01
T>G 0 19 915 6 6 41 804,28 0.018 0.007

C>A, T>G, and T>A substitutions and were 99, 12, 37, 28, 6, and 32, respectively.
The patients were then organized into two groups, one with SBS values less than the
selected cut-offs and the other one with SBS values greater than the chosen cut-offs.
Kaplan Meier (KM) curves corresponding to the two groups revealed that there was
a significant difference in the survival patterns of the two groups of patients for the
substitutions, C>T, C>G, C>A, and T>A. However, cut-offs obtained for T>C and T>G
substitutions yielded a significantly poor outcome for the group with values less than
the selected cut-offs. Therefore, cut-offs were manually deduced for T>C and T>G
substitutions where the KM curve has the maximum separability and was found to be
80 and 41, respectively. Univariate and multivariate hazard analysis was also done
using the selected cut-offs via KAP, as shown in the Table 4.2. The hazard ratio for
all the substitutions was greater than 1 in the univariate analysis, demonstrating that an
increase in the frequency of these substitutions correlated with an enhanced risk in MM
patients. Univariate analysis revealed that C>T substitution had the most significant
impact (p-value <0.05) on the overall survival (OS) owing to the highest hazard ratio
followed by T>C and C>A while T>G had the most significant impact (p-value <0.05)
on PFS followed by C>T and C>A. However, only C>A was significant in multivariate
analysis with p-values less than 0.05 (0.04 for PFS and 0.03 for OS).
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(a)

(b)

(c)

Figure 4.3: KM curves reveal differences in the PFS survival patterns of substitutions (a) C>A,
(b) C>T, and (c) T>C at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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(a)

(b)

(c)

Figure 4.4: KM curves reveal differences in the PFS survival patterns of substitutions (a) C>G,
(b) T>A and (c) T>G at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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(a)

(b)

(c)

Figure 4.5: KM curves reveal differences in the OS survival patterns of substitutions (a) C>A,
(b) C>T, and (c) T>C at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.
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(a)

(b)

(c)

Figure 4.6: KM curves reveal differences in the OS survival patterns of substitutions (a) C>G,
(b) T>A and (c) T>G at the thresholds obtained via Cutoff Finder. Separation in the survival
curves is significant if p-values <0.05.

4.3.3 Comparison of mutational signature profiles between MGUS
and MM

A total of 29 and 61 SBS signatures were extracted from the mutation data of MGUS
and NDMM patients, respectively. Union of 29 and 61 signatures resulted in 66 unique
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Table 4.2: The table shows the univariate hazard analysis and multivariate hazard analysis
on the six different substitutions. T>C was removed from multivariate analysis as it was not
significant for PFS in univariate analysis.

PFS OS
HR CI p-value C-index HR CI p-value C-index

Univariate
C>A 1.63 1.26-2.11 <0.005 0.54 2.16 1.54-3.03 <0.005 0.55
C>G 1.46 1.04-2.04 0.03 0.52 2.11 1.41-3.16 <0.005 0.53
C>T 1.65 1.22-2.24 <0.005 0.53 2.36 1.61-3.45 <0.005 0.55
T>A 1.61 1.11-2.32 0.01 0.51 1.93 1.20-3.11 0.01 0.52
T>C 1.47 0.83-2.61 0.19 0.5 2.27 1.19-4.32 0.01 0.51
T>G 1.73 1.09-2.75 0.02 0.51 2.14 1.21-3.77 0.01 0.51

Multivariate
C>A 1.43 1.02-1.99 0.04

0.55

1.67 1.06-2.63 0.03

0.58
C>G 0.84 0.49-1.43 0.52 0.97 0.49-1.93 0.93
C>T 1.38 0.86-2.22 0.18 1.71 0.91-3.22 0.1
T>A 1.19 0.71-1.97 0.65 1.22 0.61-2.44 0.58
T>G 1.03 0.52-2.05 0.94 0.82 0.34-1.99 0.66

signatures. Signatures SBS37, SBS49, and SBS55 were found only in MGUS. How-
ever, their frequency is low as they were found in a single sample in MGUS (1/61=1.6%).
SBS49 and SBS55 signatures are possible sequencing artifacts, and the proposed eti-
ology of signature 37 is unknown according to the COSMIC v3.2 mutational signa-
ture database. Further, 37 signatures were discovered only in MM. However, 7 out of
37 were mutated in more than 1% MM samples. They include SBS6, SBS7d, SBS9,
SBS17b, SBS19, SBS40, and SBS42. The rest of the 30 signatures were found in
less than 1% MM samples and include SBS7c, SBS8, SBS10d, SBS14, SBS20, SBS21,
SBS22, SBS23, SBS25, SBS26, SBS27, SBS28, SBS30, SBS32, SBS33, SBS34, SBS35,
SBS36, SBS39, SBS41, SBS43, SBS46, SBS47, SBS50, SBS52, SBS53, SBS57, SBS86,
SBS88, and SBS89. SBS27, SBS43, SBS46, SBS47, SBS50, SBS52, SBS53, and
SBS57 are possible sequencing artifacts, as described previously. Clock-like signatures
SBS1 and SBS5 were present in both MGUS and MM. Defective DNA mismatch re-
pair signatures SBS15 and SBS44 were present in both MGUS and MM while SBS6,
SBS14, SSB20, SBS21, SBS26 were present only in MM. SBS2 and SBS13 are asso-
ciated with the activity of the AID/APOBEC family of cytidine deaminases and were
found in both MGUS and MM. MM patients with APOBEC signatures were investi-
gated further using survival data. APOBEC signature was present in 27 out of 177
MM patients with poor OS outcome and 52 out of 655 MM patients with superior OS
outcome. Fisher’s exact test revealed a statistically significant association between the
APOBEC activity and poor overall survival in MM (p-value=0.0056). However, there
was no significant association between APOBEC activity and progression-free survival
(p-value=0.9). KM curves showed a significant difference (p-value=1.8e-4) in the over-



Chapter 4. Mutational landscape of MM and its precursor MGUS 70

all survival pattern of MM patients with and without APOBEC activity (Figure 4.7).
SBS84 and SBS85 are related to indirect effects of activation-induced cytidine deam-
inase (AID) induced somatic mutagenesis in lymphoid cells and were found in both
MGUS and MM.

(a) Overall survival (b) Progression Free Survival

Figure 4.7: KM curves reveal that APOBEC activity is associated with poor overall survival
in NDMM patients. The difference in the overall survival probability between low and high
TMB_NS is statistically significant with p-values 1.8e-4. However, there is no statistically
significant difference between progression-free survival and APOBEC activity.

4.3.4 Frequency of the variants increases significantly from MGUS
to MM

According to the Wilcoxon rank-sum test, there was a statistically significant increase
in all the three categories of variants from MGUS to MM (Figure 4.8). The median
value of nonsynonymous variants increased from 19 to 36 (p-value=5.2e-13) as the dis-
ease progressed from MGUS to MM. Median value of synonymous variants increased
from 6 to 26 (p-value<2e-16) while that of other variants increased from 69 to 100 (p-
value=0.007). Within the nonsynonymous category, there was a statistically significant
increase in the nonsynonymous snv (p-value=2.9e-13) from 14 to 30 and stop-gain (p-
value=0.016) variants from 0 to 2 as the disease progressed from MGUS to MM (Figure
4.9a). Within the synonymous category, there was a statistically significant increase in
the UTR3 (p-value<2e-16) and UTR5 variants (p-value=2.7e-7) (Figure 4.9b). Within
the other variant category, there was a statistically significant increase in the intronic
and downstream variants (Figure 4.9c). The median value of UTR3 variants increased
from 4 to 21, while that of UTR5 increased from 1 to 4.
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Figure 4.8: Boxplot showing the variation in the frequency of the three different categories of
variants- Nonsynonymous (NS), Synonymous (SYN), and Others (OTH) between MGUS and
MM. Wilcoxon rank-sum test was applied to determine if the change is statistically significant
i.e. p-value is less than 0.05.

4.3.5 Comparison of TMB values between MGUS and MM

Tumor mutational burden (TMB) was calculated using the three different categories of
variants- nonsynonymous (NS), synonymous (SYN), and others (OTH). A statistically
significant increase was observed for TMB_NS and TMB_SYN with p-values less than
0.05 (Figure 4.10). For TMB_OTH, the difference in the KM survival curve was not
significant (Figure 4.10).

4.3.6 Calculation of TMB cut-offs and comparison between high
and low TMB MM groups

Survival data were available for 832 MM patients. Hence, threshold values of TMB
were calculated using the K-adaptive partitioning (KAP) algorithm and Cutoff Finder.
Both the tools inferred almost the same cut-offs (Table 4.3, Figures 4.11 and 4.12).
Table 4.3 reveals the different cut-offs obtained for progression-free survival (PFS) and
overall survival (OS) via KAP. For TMB_NS, 0.63 and 0.62 are the threshold values
obtained via PFS and OS. Similarly, for TMB_SYN, 0.55 and 0.52 are the threshold
values obtained for PFS and OS. The patients were then organized into two groups,
one with TMB values less than the selected cut-offs and the other one with SBS values
greater than the chosen cut-offs. There was a significant difference (p-value<0.05) on
the KM survival curves of the patients below 0.63/0.62 and above 0.63/0.62. There is
a significant difference (p-value<0.05) on the KM survival curves of the patients below
0.55/0.52 and above 0.55/0.52. Univariate and multivariate hazard analysis was also
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(a) Change in frequency of the subcategories of nonsynonymous (NS) variants.

(b) Change in frequency of the subcategories of synonymous (SYN) variants.

(c) Change in frequency of the subcategories of other (OTH) variants.

Figure 4.9: a) Boxplot showing the variation in the frequency of the variants under the non-
synonymous category. There was a statistically significant variation in the frequency of non-
synonymous_snv and stop_gain variants with p-values less than 0.05. b) Boxplot showing the
variation in the frequency of the variants under the synonymous category. There was a statisti-
cally significant variation in the frequency of UTR3 and UTR5 variants with p-values less than
0.05. c) Boxplot showing the variation in the frequency of the variants under the other variants
category. There was a statistically significant rise in the frequency of intronic and downstream
variants with p-values less than 0.05. Wilcoxon rank-sum test was applied to determine if the
change is statistically significant or not.

done using the cut-offs via KAP, as shown in the Table 4.4. Hazard ratios for TMB_NS,
TMB_SYN and TMB_OTH were greater than 1 in both the univariate and multivariate
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Figure 4.10: Boxplot reveals that the difference in the low TMB and high TMB groups is
statistically significant with p-values less than 0.05 for TMB_NS and TMB_SYN. Wilcoxon
rank-sum test was applied to determine if the change is statistically significant or not.

analysis and indicate the enhanced risk associated with an increase in the mutation
burden. Multivariate analysis showed the combined effect of the TMB values on the
survival patterns where TMB_NS had the highest impact, followed by TMB_OTH and
TMB_SYN, respectively.

Table 4.3: The table shows the cut-offs obtained for TMB_NS, TMB_SYN aand TMB_OTH
via KAP. Two cutoffs were obtained, one using PFS and the other using OS. The two cut-offs
obtained for TMB_NS and TMB_SYN are close to each other. The same cut-off was obtained
using PFS and OS for TMB_OTH. There was a significant difference (p-value < 0.05) on the
KM survival curves of the patients below and above the selected cut-offs.

Min
Median

Max

KAP on PFS KAP on OS
Cut-off
(<=,>) PFS OS Cut-off

(<=,>) PFS OS

TMB_NS
0

0.496
154.2

0.63
(612, 220) 3.19E-07 3.52E-08

0.62
(611, 221) 3.90E-07 2.09E-08

TMB_SYN
0

0.3487
50.84

0.55
(703, 129) 4.12E-05 2.05E-08

0.52
(668, 164) 5.60E-04 3.50E-08

TMB_OTH
0.1114
1.3742

193.673

1.84
(666, 166) 4.90E-06 9.16E-09

1.84
(666, 166) 4.90E-06 9.16E-09

MM patients with very high TMB_NS load and very low TMB_NS load were analyzed
separately. Cut-off of 35 and 0.1 was deduced using the maximum separability on the
KM survival curves. There were 822 patients with TMB_NS less than 35 and only 10
with TMB_NS greater than 35. There were 6 patients with TMB_NS less than 0.1 and
826 patients with TMB_NS greater than 0.1. A significant difference in the survival
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(a)

(b)

(c)

Figure 4.11: KM curves reveal differences in the PFS survival patterns of different categories
of TMB (a) TMB_NS, (b) TMB_SYN, and (c) TMB_OTH at the thresholds obtained via Cutoff
Finder. Separation in the survival curves is significant if p-values <0.05.
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(a)

(b)

(c)

Figure 4.12: KM curves reveal differences in the OS survival patterns of different categories
of TMB (a) TMB_NS, (b) TMB_SYN, and (c) TMB_OTH at the thresholds obtained via Cutoff
Finder. Separation in the survival curves is significant if p-values <0.05.
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Table 4.4: The table shows the univariate hazard analysis and multivariate hazard analysis
obtained on TMB_NS, TMB_SYN and TMB_OTH.

PFS OS
HR CI p-value C-index HR CI p-value C-index

Univariate
TMB_NS 1.71 1.39-2.12 <0.005 0.56 2.26 1.68-3.05 <0.005 0.58

TMB_SYN 1.68 1.31-2.15 <0.005 0.54 2.46 1.78-3.40 <0.005 0.56
TMB_OTH 1.71 1.35-2.16 <0.005 0.55 2.43 1.78-3.32 <0.005 0.58

Multivariate
TMB_NS 1.45 1.11-1.90 0.01

0.57
1.55 1.04-2.31 0.03

0.6TMB_SYN 1.13 0.81-1.58 0.48 1.41 0.89-2.24 0.14
TMB_OTH 1.26 0.92-1.74 0.16 1.48 0.94-2.34 0.09

patterns of patients with TMB_NS less than 35 and greater than 35 were observed.
For PFS, the observed p-value was 0.04, and for OS, the observed p-value was 0.022
(Figure 4.13). The patients with TMB_NS greater than 35 are hypermutators, and the
characteristics specific to these high-risk patients were examined thoroughly.

(a) Overall survival (b) Progression Free Survival

Figure 4.13: High TMB is associated with poor overall survival in NDMM patients. The
difference in the overall survival probability between low and high TMB_NS is statistically
significant with p-values 0.045 and 0.022 for PFS and OS respectively.

4.3.7 Comparison of TMB and SBS based on the overall survival
event

Out of 832 MM patients for which survival data were available, 177 observed poor OS
outcome while the rest of the 655 MM patients observed superior OS outcome. SBS and
TMB values of the two groups were examined, and Wilcoxon rank-sum test was used to
deduce if the change in the TMB and SBS values is statistically significant or not. The
median SBS and TMB values for the two groups are shown in Table 4.5. There was a



Chapter 4. Mutational landscape of MM and its precursor MGUS 77

significant change (p-value <0.05) for SBS T>G, C>A, and C>T. An increase was ob-
served in the C>A and C>T substitution values, while a decrease was observed in T>G
substitutions. Further, there is a statistically significant difference in the TMB values
of TMB_NS, TMB_SYN, and TMB_OTH, i.e. there was a considerable increase in
the tumor mutational burden of the patients with poor outcome as compared to patients
with a superior outcome.

Table 4.5: The table shows the median values of TMB and SBS for the two groups of MM
patients, one where the death event was observed and the other where the death event was not
observed. Wilcoxon rank-sum test was applied to determine if the change is statistically sig-
nificant or not. For substitutions, C>A, C>T, and T>G, the frequency was statistically different
(p-values < 0.05) between the two groups.

Median
(OS event = 0)

Median
(OS event = 1) p-value

SBS

C>A 17 18 0.018
C>G 20 21 0.1205
C>T 59 64 0.038
T>A 17 16 0.07
T>C 36 33 0.08
T>G 19 17 0.02

TMB
TMB_NS 0.4828 0.5766 4.26E-07

TMB_SYN 0.3487 0.4023 0.002
TMB_OTH 1.341 1.5288 3.08E-04

4.4 Discussion

The fundamental goal of the study was to investigate the entire spectrum of the mu-
tations altered in MGUS and MM, thereby identifying the critical factors responsible
for the progression of the disease from MGUS to MM. In this study, we have explored
the nonsynonymous and synonymous variants due to their impact on protein expression
and function. First of all, variants were identified using four different variant callers to
reduce the false positives from the study. Our approach ensured that the variants discov-
ered in our research are the closest possible estimation of the true variants present in the
MM and MGUS patients. Variants were then categorized into three main categories-
nonsynonymous (NS), synonymous (SYN), and other (OTH) variants. TMB was cal-
culated for each of the three categories of variants. This study reveals changes in the
mutational spectrum from MGUS to MM. There was a statistically significant rise in
the single base substitutions as the disease progressed from MGUS to MM (Figure 4.2).
The frequency pattern of the substitutions in MM is similar to what was observed in a
previous study [63]. The highest rise in the frequency was observed in C>T transitions,
where the median almost doubled from 30 to 59. An increase in the C>T transitions in
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MM can be attributed to the overexpression of A3B, an APOBEC cytidine deaminase,
that has an essential part in immunity against diseases [166]. Aberrant expression of
A3B is known to be correlated with drug resistance, metastasis, and poor prognosis in
breast cancer [167], lung cancer [168], and ovarian cancer [169]. Yamazaki et al. [166]
proposed that A3B may promote disease progression and drug resistance in MM, which
validates our observation of the hike in C>T transitions from MGUS to MM. The asso-
ciation of the frequency of substitutions in the MM patients and their survival outcome
was further explored. Frequency of C>T, C>A, and T>G substitutions were signifi-
cantly higher in MM patients with poor overall survival outcome as compared to MM
patients with superior overall survival outcome (Table 4.5). However, in multivariate
Cox Hazard analysis (Table 4.2), only C>A transitions have a statistically significant
impact on the survival outcome of MM patients.

In addition, SBS2 and SBS13 mutational signatures are linked to APOBEC activity
reported in MM in multiple studies [170, 171]. APOBEC signatures were found in
nearly 9.63% (98/1018) of the total MM patients, while they were primarily absent
in MGUS patients (present in only 1 out of 61 MGUS patients). This finding sug-
gests that ABOPEC activity may be responsible for the molecular mechanisms driv-
ing tumor progression from MGUS to MM. The association of ABOPEC activity with
overall and progression-free survival in MM was also explored. There was a statisti-
cally significant association between the ABOPEC activity and poor overall survival in
MM (p-value=0.0056). The KM survival analysis validated this, which yielded signif-
icant separation (p-value=1.8e-4) in the OS curves of MM patients with and without
APOBEC activity. Contrary to these findings, no significant association was found be-
tween PFS and APOBEC activity. Further, signatures SBS6, SBS14, SSB20, SBS21,
SBS26 were found only in MM and are associated with defective DNA mismatch repair
and microsatellite instability (MSI) as described previously. MSI has been reported in
Multiple Myeloma [172]. However, its frequency is low (1̃0%) [173]. MSI has been ob-
served to be an effective indicator of response to immunotherapy in solid tumors [174],
like colorectal carcinoma [175]. Therefore, it is vital to look for these signatures in MM
to help identify the high-risk MM patients in need of immunotherapy.

In the present study, synonymous mutations have been examined along with nonsyn-
onymous mutations. Though synonymous mutations do not change the amino acid
sequence of the resulting protein, they have a profound influence on RNA stability,
RNA folding [93] or splicing [94], translation [95], or co-translational protein folding.
Hence, their role in cancer progression cannot be ignored. There are three different
variants categorized under synonymous- synonymous snvs, 3′s and 5′UTRs. A statis-
tically significant rise in the 3′ (p-value=2e-16) and 5′UTR (p-value=2.7e-7) mutations
were observed from MGUS and MM. 3′ untranslated region (UTR) are a part of mRNA
containing regulatory binding sites that post-transcriptionally influence gene expres-
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sion and may lead to disruption in critical pathways associated with different types of
cancers. Multiple studies have demonstrated that 3′ variants are linked to the risk of
developing tumor or tumor progression. Zhang et al. [176] discovered that a polymor-
phism detected in the IL-1α 3′ of the miRNA-122-binding site was associated with the
risk of epithelial ovarian cancer. A unique variant located in the 3′ was identified in the
gene PCM1, which was significantly associated with ovarian cancer [177]. Recently,
Melaiu et al. [178] evaluated the significance of germline genetic variants located within
the 3′-untranslated region (polymorphic 3′, i.e., p3UTR) of candidate genes involved in
multiple myeloma. Their findings suggested that IL10-rs3024496 was associated with
an increased risk of developing MM and worse overall survival in MM patients. They
also observed that IL10-rs3024496 SNP might regulate the IL10 mRNA expression and
hence, could help in the stratification of MM patients in terms of risk progression and
prognosis. 5′UTR regions are a part of mRNA, which regulates the protein expres-
sion by controlling the translation initiation. Hence, single nucleotide polymorphisms
(SNPs) located at 5′UTR regions may alter the protein levels by regulating the mRNA
translation efficiency, thereby disturbing consequential biological pathways. The role
of 5′UTR variants in multiple cancers has been explored in previous studies. A 5′UTR
variant was the driving factor leading to familial breast and ovarian cancer in two in-
dependent families [179]. 5′UTR SNP in the PLA2G2A gene was associated with PC
metastasis [180]. Thus, it can be concluded that 3′ and 5′ UTR mutations are more
frequent in MM and drive MGUS to MM via regulatory binding sites.

TMB has become a prominent biomarker of enhanced responsiveness to immunother-
apy and better outcomes. High TMB is often associated with longer survival after
treatment with immune checkpoint inhibitors (ICIs) [90]. However, in non-ICI-treated
patients, high TMB was associated with poor prognosis and overall survival in many
cancer types [91]. Correlation of high TMB with response to targeted immunotherapies
has been established in solid tumors [181, 182]. High somatic mutation and neoantigen
loads have been correlated with reduced PFS in MM [183]. However, the association
of TMB with overall survival is still unknown in newly diagnosed multiple myeloma
(NDMM) patients. Patients with very high TMB_NS values were further analyzed
to examine the relation of TMB with OS. These are known as hypermutators and are
high-risk patients. Hypermutators demonstrated a significant poor overall survival (p-
value=0.022) and poor progression-free survival (p-value=0.045) as compared to non-
hypermutators (TMB_NS≤35) (Figure 4.13). The median overall survival of hypermu-
tators was 220 weeks compared to 316 weeks of non-hypermutators, while the median
progression-free survival of hypermutators was 105 weeks compared to 143.3 weeks
non-hypermutators. Mutational signatures SBS1, SBS5, and SBS54 were observed in
hypermutators and death events in 7 out of 10 hypermutators. DBS4, DBS5, DBS9,
DBS10, and DBS11 are the mutational signatures reflective of double base substitutions
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(DBS) and were found to be present in hypermutators. On the contrary, no DBS sig-
natures were found in low TMB patients (TMB_NS<0.1; n=6). SBS1 and SBS5 were
present in low TMB patients, including SBS7a, SBS17b, SBS27, SBS51, and SBS86.
Our study establishes that the frequency of hypermutators is low in the MM population,
and hypermutators are associated with poor OS and poor PFS outcome. Since TMB is a
predictor of enhanced responsiveness to immunotherapy, hypermutators may be treated
with immunotherapy drugs such as Daratumumab/Elotuzumab [184], Isatuximab [185],
and Belantamab Mafodotin [186] to improve their overall survival.

4.4.1 Conclusion

In conclusion, the present study revealed the factors responsible for disease progression
from MGUS to MM and poor survival outcome in MM via a detailed investigation of
the mutations present in MGUS and MM. The entire landscape of the mutational spec-
trum involving both synonymous and nonsynonymous mutations was examined. This
study finds a change in the mutational spectrum with a statistically significant increase
from MGUS to MM. There was a statistically significant increase in the frequency of all
the three categories of variants-non-synonymous, synonymous, and others from MGUS
to MM (p<0.05). However, there was a statistically significant rise in the TMB values
for TMB_NS and TMB_SYN only. We also observed that 3′ and 5′ UTR mutations
were more frequent in MM and might be responsible for driving MGUS to MM via
regulatory binding sites. A detailed investigation of these mutations might help un-
derstand the mechanism of the progression of MGUS to internecine MM and may be
explored in future studies. In addition, NDMM patients were also examined separately
along with their survival outcome. 10 out of 832 NDMM patients had TMB_NS values
greater than 35 and were designated as hypermutators. It could be concluded that the
frequency of hypermutators was low in MM with poor OS and PFS outcome. We also
observed a statistically significant rise in the frequency of C>A and C>T substitutions
and a statistically significant decline in T>G substitutions. There was a statistically sig-
nificant increase in the tumor mutational burden of the patients with poor outcome as
compared to patients with a superior outcome. Further, a statistically significant associ-
ation between the APOBEC activity and poor overall survival in MM was discovered.
A limitation of the current study is that the number of MGUS patients is significantly
less than the number of MM patients. Comparison with a larger cohort of MGUS pa-
tients can substantiate the findings of the study. A coherent analysis of evolving mu-
tational landscapes and cancer signatures could assist in designing therapies to impede
the transformation of benign MGUS to malignant MM. Additionally, a systematized
comparison of high-risk MM patients with low-risk MM patients can aid in identifying
the risk factors responsible for disease progression and ultimately guide towards a per-
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sonalized cure, thereby improving the overall survival of MM patients. Assessing the
risk stage of MM patients based on their genomic profile is a challenging field, since, it
is dependent on many prognostic factors. This motivated us to our next research prob-
lem of developing a robust system for risk stratification in MM. The proposed method
has been explained in detail in chapter 5.



Chapter 5

AI-supported risk staging system for multiple myeloma

5.1 Introduction

The main objective of risk staging system is to identify high risk patients in order to
optimize their treatment and improve their overall survival. Moreover, it also aids in
enhancing the positive outcomes in low risk and medium risk patients. Risk staging
systems are mostly developed using the genetic and clinical features. However as dis-
cussed in section 1.2, ethnicity plays an important role in disease biology and must be
considered while designing an optimal risk staging model. Therefore, to address this
concern, we first investigated the role of ethnicity in differential clinical characteristics
between the two independent cohorts of MMIn (MM patients belonging to the Indian
population) and MMRF (Multiple Myeloma Research Foundation) in this study. Both
these datasets belong to patients with newly diagnosed multiple myeloma (NDMM)
belonging to two separate ethnic groups. Further, we proposed a Consensus based
risk-stratification system (CRSS), an AI-enabled risk-stratification system, for NDMM
that incorporates the ethnicity-specific cut-offs of the laboratory parameters like albu-
min, beta-2 microglobulin (β2M), calcium, estimated glomerular filtration rate (eGFR),
hemoglobin, age along with high risk cytogenetic abnormalities (HRCA). The newly
proposed ethnicity aware AI-assisted CRSS method was shown to have superior perfor-
mance as compared to R-ISS. In addition, we also interpreted our proposed model via
SHAP [187] analysis to demonstrate the clinical significance of the risk stage predic-
tions by CRSS. Our findings establish the significance of integrating ethnicity-specific
information as well as the effectiveness of machine learning methods in devising a ro-
bust risk-staging model for MM.

5.2 Materials and Methods

5.2.1 Datasets

A total of 1675 entries were found in the computerized database search on June 28,
2019 with keyword ‘ICD C90’ registered at the Institute Rotary Cancer Centre, All In-
dia Institute of Medical Sciences (AIIMS). Patients with plasma cell dyscrasia other
than MM (n=253) or who were lost to follow up after a single visit (n=111) or before
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first response could be assessed (n=21) or with inadequate clinical and/or laboratory
parameters (n=121) or with early deaths (n=99) were excluded. Remaining 1070 pa-
tients of MM belonging to the Indian population, referred to as MMIn, were evaluated
in this study (Figure 5.1). Out of 1070 patients, 41 patients had one or two miss-
ing values. There are several methods to impute missing values [188, 189, 190, 191].
However, in the MMIn dataset, missing values were imputed with the median value
of the parameters. An independent cohort of 900 MM patients enrolled in Multiple
Myeloma Research Foundation (MMRF) repository, was also used for developing the
model. Clinical and laboratory data for MMRF dataset, belonging to the American pop-
ulation, is available publicly. High risk cytogenetic information was available for 384
out of 1070 patients in the MMIn cohort and 800 out of a total of 900 patients in the
MMRF which were further used for building the staging model.

Figure 5.1: Flowchart of Study Population for MMIn dataset.

5.2.2 Clinical and Laboratory Characteristics

The clinical, laboratory, and radiological data was obtained from the medical case files.
R-ISS could be assigned to a subset of patients (n=627) as described previously [192].
Response outcome was estimated following the International uniform response crite-
ria for multiple myeloma [193]. Progression free survival (PFS) was computed from
the date of diagnosis till the time of progression or death. Overall survival (OS) was
computed from the date of diagnosis till death due to any cause or being censored at
last follow-up. Baseline clinical and laboratory features of the patients are given in the
Table 5.1.
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Table 5.1: Baseline demographic, laboratory and clinical characteristics of multiple myeloma
(MM) patients of MMIn and MMRF cohort.

Parameters MMIn (n=1070) MMRF (n=900)
Age (Median, Range; in years) 56 (18-87) 62 (27 - 91)

Male/
Female

710 (66·36%)
360 (33·64%)

529 (58.78%)
371 (41.22%)

Hemoglobin (g/dL)
<10
≥10

599 (55·98%)
471 (44·02%)

331 (36·77%)
569 (63·23%)

Serum albumin (g/dL)
<3·5
≥3·5

449 (41·96%)
621 (58.04%)

328 (36·44%)
572 (63·56%)

Beta 2 microglobulin (mg/L)
<5·5
≥5·5

534 (49.90%)
536 (50.09%)

661 (73·44%)
239 (26·56%)

Serum LDH (IU/L)
≤280
>280

929 (86·82%)
141 (13·18%)

850 (94·44%)
50 (5·56%)

Serum creatinine (mg/dL)
≤2
>2

830 (77.57%)
240 (22.43%)

816 (90·66%)
84 (9·34%)

Serum calcium (mg/dL)
≤11
>11

935 (87.38%)
135 (12.62%)

831 (92·33%)
69 (7·67%)

ISS 1/2/3 207/323/540 342/319/239
R-ISS 1/2/3 47/459/121 107/505/91

5.2.3 Study Design

The complete design strategy of the Consensus based approach for developing the risk-
stratification system (CRSS) is explained in this section (Figure 5.2). Data from both the
cohorts was separately used to develop the risk-staging models based on CRSS. Differ-
ent clinical parameters were evaluated for developing the risk staging system consisting
of age, albumin, β2M, calcium, eGFR, Hemoglobin, LDH and HRCA which includes
t(4;14), t(14;16) and del17. β2M and LDH levels are reflective of tumor burden and
serum albumin, hemoglobin, calcium and creatinine are reflective of the bone and renal
homeostasis. eGFR was calculated from creatinine concentration using MDRD eGFR
equation [194]. LDH values were brought to a common scale by multiplying each entry
by 280 and dividing it by the upper limit of LDH provided for that particular entry in
MMIn data. Description of the steps used in consensus based approach for developing
risk staging model is given below:

Step 1: Dividing patients into two risk groups based on established thresholds of pa-
rameters: For each parameter, patients were initially divided into high-risk and low-risk
groups using the well-established cut-offs of these parameters as shown in Table 5.2.
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Figure 5.2: Comparison of established and proposed cutoffs for clinical and laboratory param-
eters for the stratification of patients for progression-free survival (PFS) and overall survival
(OS) in MMIn and MMRF using Kaplan–Meier analysis.

Established thresholds for albumin and β2M are derived from ISS and for eGFR, cal-
cium, hemoglobin are derived from revised IMWG criteria [195].

Step 2: Finding new thresholds of parameters via KAP: K-adaptive partitioning [164]
(KAP) algorithm was used to find new threshold values for the parameters using com-
plete data of MMIn (n=1070) and MMRF (n=900). KAP was performed on the pa-
tients’ parameters yielding two threshold values for each parameter, one from PFS and
the other from OS analysis. The cut-off which was close to the original value was cho-
sen as the new cut-off for each parameter. Patients were again divided into high and
low risk groups based on the proposed cut-offs. Proposed thresholds maximised the
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Table 5.2: Comparison of established and proposed cutoffs for clinical and laboratory param-
eters for the stratification of patients for progression-free survival (PFS) and overall survival
(OS) in MMIn and MMRF using Kaplan–Meier analysis. Note: The proposed cutoffs were
found using complete data of MMIn (n = 1070) and MMRF (n = 900). Less than or equal to
cutoff reveals the increased risk in the patient. “>65" shows that a patient with age greater than
65 years is at greater risk than a patient less than 65 years. “≤3.5" shows that a patient with
albumin levels less than equal to 3.5 is at a greater risk than a patient with albumin levels greater
than 3.5. It holds true for other parameters also in a similar manner. Bold values of the column
“proposed cutoff value” signify the change in the value of the parameters from the existing cut-
offs. p-values in bold signify that p-values became more significant with the proposed changes
in cutoffs.

Parameter Established
cutoff
value

Proposed
cutoff
value

PFS OS
p-value with
established

cutoff

p-value with
proposed

cutoff

p-value with
established

cutoff

p-value with
proposed

cutoff
MMIn (n = 1070)

Age
(years) >65 >67 0.11 0.012 5.84e-5 1.25e-6

Albumin
(g/dl) ≤3.5 ≤3.5 0.115 0.115 7.0e-4 7.0e-4

β2M
(mg/L) ≥5.5 ≥4.78 8.15e-10 9.32e-10 4.13e-10 4.53e-14

Calcium
(mg/dl) ≥11 ≥11 0.0078 0.0078 0.0037 0.0037

eGFR
(ml/min/1.73m2) ≤40 ≤48.2 0.16 0.04 0.005 1.5e-4

Hb
(g/dl) ≤10 ≤12.3 0.0019 8.56e-5 0.0014 3.75e-7

MMRF (n = 900)
Age
(years) >65 >69 3.23e-05 1.98e-08 1.06e-05 1.58e-09

Albumin
(g/dl) ≤3.5 ≤3.5 0.00017 0.00017 8.47e-07 8.47e-07

β2M
(mg/L) ≥5.5 ≥5.5 1.22e-10 1.22e-10 9.25e-13 9.25e-13

Calcium
(mg/dl) ≥11 ≥10.52 0.0077 1.40e-04 5.88e-06 3.49e-06

eGFR
(ml/min/1.73m2) ≤40 ≤48.3 4.5e-05 4.67e-09 7.48e-06 2.48e-10

Hb
(g/dl) ≤10 ≤9.59 2.82e-06 5.69e-09 6.77e-06 5.42e-07

separation between the high and low risk groups as compared to the established thresh-
olds. This is evident from the lower p-values obtained from the Log-rank test on the
Kaplan-Meier curves for all the parameters. A complete list of proposed thresholds for
MMIn and MMRF data is shown in Table 5.2.

Step 3: Cumulative integration of the prognostic impact of the parameters: The collec-
tive prognostic impact of the parameters was integrated into risk staging via creation of
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three different adjacency graphs using hazard ratios obtained from univariate Cox haz-
ard analysis, p-values obtained from Log Rank test on Kaplan-Meier curves and ranks
obtained from multivariate Cox hazard analysis.

Step 4: Creation of first adjacency graph: First adjacency graph was created using ranks
obtained from the multivariate Cox hazard analysis. The parameter with the highest
hazard value was given the highest rank and the one with the lowest hazard value was
given the lowest rank. The respective ranks served as the weights of each of the param-
eters and captured the relative impact of each parameter on the patients’ survival. Next,
the risk score for each patient was calculated by successive addition of the weights of
all those parameters that had values (in the respective patient) greater than the cut-offs
defined for the high-risk group. These patient scores were used to compute an adja-
cency graph of n rows and n columns (columns are features) where n is the number of
patients. Each row corresponds to one patient and each entry in the row is the absolute
difference between the score of that patient with each of the patients including self.

Step 5: Creation of second and third adjacency graphs: For the second adjacency graph,
hazard ratio values obtained from univariate Cox hazard analysis were used. For each
parameter, the highest of the two HR values obtained from PFS and OS was chosen
and normalized using ‘minmax’ scaling. The scaled HR values were assigned as the
respective weights of each of the parameters representing the impact of each parameter
on patients’ survival. Third adjacency graph was created using p-values obtained by
performing a Log-rank test on Kaplan-Meier curves. For each parameter, the lower of
the two p-values obtained from PFS and OS was chosen and normalized using ‘min-
max’ scaling. The scaled p-values were assigned as the respective weights of each of
the parameters. Further, the risk score for each patient was calculated by successive
addition of the weights of all those parameters that had values (in the respective patient)
greater than the cut-off defined for the high-risk group. The two different patient scores
obtained from univariate hazard ratios and p-values were further used to compute two
separate adjacency graphs of n rows and n columns (columns are features) where n is
the number of patients. Each row corresponds to one patient and each entry in the row
is the absolute difference between the score of that patient with each of the patients
including self.

Step 6: GMM clustering on the adjacency graphs: Gaussian mixture model (GMM)
based clustering is an unsupervised clustering algorithm which was applied on the three
adjacency graphs to obtain clustering labels.

Step 7: Creation of a consensus graph: The clustering outputs of the three different
adjacency graphs were used to create a consensus graph [196] of size n × n. The entry
for the ith row and jth column in the consensus graph was determined by calculating
the number of times ith and jth patients were assigned the same group. Diagonal entries
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were zero in this graph.

Step 8: Hierarchical clustering on the consensus graph: Agglomerative clustering was
performed on the consensus graph to cluster the patients into three risk groups. Each
cluster of patients was assigned one label: Stage-1 (low-risk), Stage-2 (intermediate-
risk), or Stage-3 (high-risk). The rationale behind using multiple clustering was to com-
bine the results of the clustering outputs achieved from the different adjacency graphs
and ensure the stability of the final clusters so deduced from agglomerative clustering.

Step 9: Training a Decision tree classifier: The staging labels obtained from agglomer-
ative clustering served as ground truth labels for training the supervised Decision tree
classifier. The trained Decision tree classifier provided the rules in terms of the pa-
rameters for the identification of risk groups, labeled as CRSS-1 (low risk), CRSS-2
(intermediate-risk), and CRSS-3 (high-risk) (Figure 5.3). Step 10: Infer actual risk
groups of the patients using Decision tree classifier rules: Decision tree classifier rules
were then used to identify the risk stages of the patients in both the cohorts. The risk
stage assigned by the Decision tree classifier was considered the actual risk class for
each patient.

5.2.4 Creation of multiple models on the datasets

CRSS method explained in Figure 5.2 was used to create multiple models for MMIn
and MMRF datasets. Models A1, A2 and A3 were built for MMIn data (Table 5.3).
Model A1 was built using established cut-offs of the parameters of albumin, β2M,
LDH and HRCA. Model A2 was built using the established cut-offs of the parameters of
albumin, age, calcium, eGFR, hemoglobin, β2M and HRCA. Model A3 uses the same
parameters as Model A2, but with the newly proposed cut-offs of the parameters derived
from MMIn dataset. Similarly, models M1, M2, M3 and M4 were built for MMRF data
(Table 5.3). Model M1 and M2 are equivalent to Model A1 and A2 respectively. For
the model M3, proposed cut-offs of parameters derived from MMIn dataset were used
for albumin, age, calcium, eGFR, hemoglobin, β2M and HRCA. Model M4 is similar
to Model M3, but uses the proposed cut-offs of the parameters derived from the MMRF
dataset.
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(a)

(b)

Figure 5.3: Hierarchical rule based tree structure to assign data samples to CRSS-1 (Low),
CRSS-2 (Inter) and CRSS-3 (High) groups. Parameters: Age: Age; Alb: Albumin; β2M:
beta2-microglobulin; Ca: Calcium; eGFR: estimated glomerular filtration rate; Hb: hemoglobin
and HRCA: High risk cytogenetic abnormalities. (a) MMIn cohort and (b) MMRF cohort
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Table 5.3: Comparison of different models devised for the risk stratification of patients in the
MMIn and MMRF cohorts with the R-ISS. Models were built using data for which high-risk
cytogenetic information (HRCA) was available (n = 384 for MMIn and n = 800 for MMRF).
R-ISS information was available for only 355 out of 384 patients in the MMIn dataset and 658
out of 800 patients in the MMRF dataset. The model with the best performance was A3 and
M4 (in bold). Model A1: beta-2 microglobulin (β2M), albumin, LDH, and CA [del17, t(4;14),
t(14;16)] at existing cutoffs. Model A2: age, β2M, albumin, calcium, estimated glomerular
filtration rate (eGFR), Hb, and HRCA using existing cutoffs. Model A3: age, β2M, albumin,
calcium, eGFR, Hb, and HRCA using proposed cutoffs for MMIn data. Model M1: β2M,
albumin, LDH, and HRCA at existing cutoffs. Model M2: age, β2M, albumin, calcium, eGFR,
Hb, and HRCA using existing cutoffs. Model M3: age, β2M, albumin, calcium, eGFR, Hb, and
HRCA using proposed cutoffs for MMIn data. Model M4: age, β2M, albumin, calcium, eGFR,
Hb, and HRCA using proposed cutoffs for MMRF data.

PFS OS
Hazard

ratio p-value C-index Hazard
ratio p-value C-index

MMIn (n=384)

R-ISS
(n=355)

1.42 0.004
0.57

2.32 <5e-6
0.6362vs1 1.24 0.33 2.31 0.04

3vs1 1.92 0.009 5.37 0.00013

Model A1
1.5 1.00e-5

0.594
2.03 <5e-6

0.6462vs1 1.53 0.007 2.13 0.0013
3vs1 2.26 2.00e-5 4.16 <5e-6

Model A2
1.4 0.0001

0.579
1.74 1.00e-5

0.6162vs1 1.42 0.056 1.9 0.02
3vs1 1.98 0.00013 3.13 2.00e-5

Model A3
(CRSS)

1.8 <5e-6
0.6

2.43 <5e-6
0.672vs1 1.76 3.00e-4 3.95 <5e-6

3vs1 3.27 <5e-6 6.43 <5e-6
MMRF (n=800)

R-ISS
(n=658)

1.61 0.00001
0.578

2.26 <5e-6
0.6182vs1 1.49 0.015 1.79 0.03

3vs1 2.6 0.00001 4.66 <5e-6

Model M1
1.55 <5e-6

0.6
2.07 <5e-6

0.6562vs1 1.55 0.00042 2.06 0.00067
3vs1 2.4 <5e-6 4.3 <5e-6

Model M2
1.62 <5e-6

0.6
2.36 <5e-6

0.6572vs1 1.44 0.01 2.12 0.0081
3vs1 2.54 <5e-6 5.22 <5e-6

Model M3
1.54 <5e-6

0.604
2.2 <5e-6

0.6792vs1 1.87 <5e-6 2.95 <5e-6
3vs1 2.32 <5e-6 5.11 <5e-6

Model M4
(CRSS)

1.79 <5e-6
0.61

2.85 <5e-6
0.6762vs1 1.76 8.10e-4 4.1 3.40e-4

3vs1 3.19 <5e-6 10.61 <5e-6

5.3 Results

5.3.1 Clinical and Laboratory characteristics of myeloma patients

The baseline clinical and laboratory features of patients from the two cohorts were com-
pared using unpaired Wilcoxon rank-sum test. The median values of all the parameters
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except albumin was found to be significantly different (p-value < 0.05, Table 5.4) in both
the cohorts thereby substantiating that the two populations are different. Novel agents
(IMIDs:thalidomide or lenalidomide and/or PSI i.e. bortezomib) either as primary or
maintenance therapy were given to all the patients. Triplet Therapy was rendered to
56·5% of patients. With a median follow up of 166 weeks (range: 14-961 weeks), 626
patients progressed (median PFS =117 weeks) and 372 died (median OS=166 weeks).

Table 5.4: The parameters of the two cohorts MMIn and MMRF were compared via
unpaired Wilcoxon rank-sum test. If the p-value < 0.05, it can be concluded that the
median is significantly different in both the cohorts. Median value of albumin was not
statistically different between MMIn and MMRF, while these were statistically different
for the rest of the parameters across the cohorts.

Parameter p-value
Age 3.09e-34

Albumin 0.2
β2M 2.54e-34

calcium 0.00029
eGFR 1.98e-09

Hemoglobin 2.89e-34

5.3.2 Results on MMIn dataset (n=384)

Univariate Cox analysis of the entire patient cohort (n=1070, Table 5.5, Figure 5.4),
revealed increased risk of progression and mortality for age>67 years, albumin≤3.5,
β2M≥4.78, calcium≥11, eGFR≤48.2 and hemoglobin≤12.3. Multivariate Cox hazard
analysis was also performed to analyse the cumulative risk of the parameters (Table
5.6). Of the three models generated, model A3 based on ML derived cut-offs for the
prognostic parameters was best with higher C-index and hazard ratio (Table 5.3). Using
model A3, the patients were risk stratified and the largest proportion of patients were
placed in CRSS-2 (n=192, 50%) followed by CRSS-1 (n=137, 35.68%) and CRSS-3
(n=55, 14.32%). KM survival analysis of CRSS groups indicated statistically significant
difference in PFS between CRSS-1 and CRSS-2 groups (median PFS: 213 vs. 138
weeks; p=0.0003) and between CRSS-2 and CRSS-3 groups (median PFS: 138 vs.100
weeks; p=0.0026) (Figure 5.4). For R-ISS, there was a statistically significant difference
in PFS between R-ISS2 and R-ISS3 (median PFS: 160 vs.105 weeks; p=0.01) but not
between R-ISS1 and R-ISS2 (median PFS=196 vs. 160 weeks p=0.31). Further, for
CRSS there was statistically significant difference in OS between CRSS-1 and CRSS-
2 groups (median OS= 495 vs. 249 weeks; p=1.08e-8) as well as between CRSS-2
and CRSS-3 groups (median OS=249 vs. 182 weeks; p=0.02). For R-ISS, there was
statistical difference in OS between R-ISS2 and R-ISS3 groups (median OS=377 vs.
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Figure 5.4: (A, B) Progression-Free Survival (PFS) in patients with multiple myeloma (MM)
from the MMIn cohort (n = 1070) stratified by the R-ISS (n = 355) and the proposed CRSS (n =
384), respectively. Median PFS for R-ISS1, R-ISS2, and R-ISS3 are 196, 160, and 105 weeks,
respectively. Observed p-value obtained after performing a log-rank test on R-ISS is 9.47e-3.
Median PFS for CRSS-1, CRSS-2, and CRSS-3 are 213, 138, and 100 weeks, respectively.
Observed p-value obtained after performing a log-rank test on CRSS is 5.60e-8. (C, D) Overall
survival (OS) in patients with MM from the MMIn cohort (n = 1070) stratified by the R-ISS (n
= 355) and CRSS (n = 384), respectively. Median OS for R-ISS1, R-ISS2, and R-ISS3 are 478,
337, and 168 weeks, respectively. Observed p-value obtained on R-ISS is 1.00e-6. Median OS
for CRSS-1, CRSS-2, and CRSS-3 are 495, 249, and 182 weeks, respectively. Observed p-value
obtained on CRSS is 4.96e-11. (E, F) Univariate Cox hazard analysis on the prognostic factors.
Hazard ratios for all the parameters except HRCA were calculated on complete data (n = 1070)
for the MMIn dataset. Hazard ratio for HRCA and the risk-staging models were found using the
data for which HRCA information was present (n = 384 for the MMIn dataset).
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168 weeks; p=1.86e-5) as well as between R-ISS1 and R-ISS2 groups (median OS=478
vs. 377 weeks; p=0.03).

Table 5.5: Univariate Cox hazard analysis on the prognostic factors- age, albumin, β2M, cal-
cium, eGFR, hemoglobin and high risk cytogenetic abnormalities (HRCA). Hazard ratios of all
the parameters except HRCA were calculated on the full data (n=1070 for MMIn and n=900
for MMRF). Hazard ratio of HRCA was found using data for which HRCA information was
present (n=384 for MMIn and n=800 for MMRF).

Parameter
(lower risk threshold,
higher risk threshold)

MMIn (n=1070, HRCA available for n=384)
PFS OS

HR CI p-value HR CI p-value
Age

(≤67, >67) 1.35 1.06-171 0.01 1.92 1.46-2.51 1.92e-06

Albumin
(>3·5, ≤3·5) 1.13 0.96-1.32 0.11 1.41 1.15-1.73 8e-04

β2M
(<4·78, ≥ 4·78) 1.64 1.4-1.93 1.34e-09 2.27 1.82-2.82 1.94e-13

Calcium
(<11, ≥ 11) 1.36 1.08-1.69 0.008 1.50 1.13-1.98 3.9e-3

eGFR
(>48·2,≤48·2) 1.19 1.00-1.41 0.04 1.50 1.21-1.85 1.7e-04

Hb
(>12·3, ≤ 12·3) 1.6 1.26-2.03 1.00e-04 2.55 1.75-3.7 9.60e-07

HRCA
(del17, t(4;14), t(14;16)) 1.68 1.23-2.28 0.00085 1.9 1.29-2.8 0.00112

Parameter
(lower risk threshold,
higher risk threshold)

MMRF (n=900, HRCA available for n=800)
PFS OS

HR CI p-value HR CI p-value
Age

(≤69, >69) 1.79 1.45-2.20 <5e-06 2.41 1.79-3.23 <5e-06

Albumin
(>3·5, ≤ 3·5) 1.44 1.19-1.75 0.0002 2.06 1.53-2.76 <5e-06

β2M
(<5·5, ≥ 5.5) 1.92 1.56-2.35 <5e-05 2.76 2.06-3.69 <5e-06

Calcium
(<10.52, ≥ 10.52) 1.67 1.28-2.19 0.00017 2.24 1.58-3.18 1e-05

eGFR
(>48·3,≤48·3) 1.91 1.53-2.38 <5e-05 2.57 1.90-3.49 <5e-06

Hb
(>9.59, ≤ 9.59) 1.80 1.47-2.20 <5e-05 2.07 1.55-2.78 <5e-06

HRCA
(del17, t(4;14), t(14;16)) 1.08 0.87-1.35 0.48012 1.38 0.99-1.91 0.05388

C-statistic and hazard ratios computed on CRSS surpassed the C-index and hazard ratios
obtained for R-ISS with respect to both PFS and OS (Table 5.3). C-statistic for CRSS
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was 0.60 (AIC=2171.49, BIC=2175.43, HR=1.80, 95% CI=1.46–2.21, p<5e-6) for PFS
and 0.67 (AIC=1244.72, BIC=1248.67, HR=2.43, 95% CI=1.87–3.14, p<5e-6) for OS
while C-statistic for R-ISS was 0.57 (AIC=2011.14, BIC=2015.01, HR=1.43, 95%
CI=1.12–1.82, p=4.18e-3) for PFS and 0.636 (AIC=1132.20, BIC=1136.07, HR=2.32,
95% CI=1.67–3.23, p < 5e-6) for OS.

5.3.3 Results on MMRF dataset (n=800)

For MMRF data, out of the four models generated, the model M4 performed the best
and had the highest C-index and hazard ratios as compared to other models as well as
R-ISS (Table 5.3). In the univariate Cox hazard analysis of the MMRF data, risk of
progression and mortality was increased for age>69 years, β2M≥5.5, albumin≤3.5,
hemoglobin≤9.59, eGFR≤48.3 and calcium≥10.52 (Table 5.5, Figure 5.5). Multivari-
ate Cox hazard analysis was also performed (Table 5.6). In the MMRF cohort, using the
M4 model, the majority of the patients were placed in CRSS-2 (n=452, 56.5%) followed
by CRSS-3 (n=174, 21.75%) and CRSS-1 (n=174, 21.75%). Results of the median PFS
on CRSS groups (p=8.64e-12) and R-ISS groups (p=1.73e-5) as well as median OS on
CRSS groups (p=1.08e-15) and R-ISS groups (p=6.57e-8) reveal superior performance
of CRSS than R-ISS (significant p-values; Figure 5.5).

C-statistic for CRSS in MMRF data is 0.61 (AIC=4126.07, BIC=4130.74, HR=1.79,
95% CI=1.52–2.12, p<5e-6) for PFS and 0.676 (AIC=1819.95, BIC=1824.62, HR=2.85,
95% CI=2.19–3.71, p<5e-6) for OS. C-statistic for R-ISS is 0.578 (AIC=3413.36, BIC=3416.49,
HR=1.61, 95% CI=1.30–2.00, p=1.00e-5) for PFS and 0.618 (AIC=1586.78, BIC=1591.27,
HR=2.26, 95% CI=1.65–3.11, p < 5e-6) for OS (Table 5.3).

The 5-year OS for the MMIn (n=384) was 89.79% for CRSS-1, 47.91% for CRSS-2
and 31.36% for CRSS-3 (Table 5.7). Overall there is a substantial difference in the per-
centages of the 5-year OS and median OS for different risk groups which indicate that
the groups were significant. A similar stratification was achieved when the CRSS model
was applied on the MMRF test dataset. The 5-year OS for MMRF data was 94.78%
for CRSS-1, 65.69% for CRSS-2 and 46.91% for CRSS-3 which is quite comparable to
that obtained in the MMIn data. Higher values of C-index and hazard ratios as well as
lower values of partial AIC and BIC on both the datasets were indicative of the superior
performance of our AI-based CRSS method as compared to R-ISS.
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Table 5.6: Multivariate Cox hazard analysis on the prognostic factors- age, albumin, β2M, cal-
cium, eGFR, hemoglobin and high risk cytogenetic abnormalities (HRCA). Multivariate analy-
sis was performed on data with HRCA information (n=384 for MMIn and n=800 for MMRF).

Parameter
(lower risk threshold,
higher risk threshold)

MMIn (n = 384)
PFS OS

HR CI p-value HR CI p-value
Age (67≤, >67) 1.40 0.91-2.16 0.12657 2.63 1.67-4.15 0.00003

Albumin
(>3·5, ≤ 3·5) 0.92 0.70-1.22 0.57215 0.96 0.67-1.39 0.83982

β2M
(<4·78, ≥ 4·78) 1.57 1.14-2.15 0.00544 3.30 2.06-5.29 <5e-06

Calcium
(<11, ≥ 11) 1.68 1.09-2.59 0.01841 1.34 0.72-2.48 0.35021

eGFR
(>48·2,≤48·2) 0.91 0.66-1.25 0.56159 0.74 0.50-1.11 0.15055

Hb
(>12·3, ≤ 12·3) 1.63 0.97-2.74 0.06395 1.84 0.82-4.11 0.14009

HRCA
(del17, t(4;14), t(14;16)) 1.48 1.08-2.03 0.01396 1.44 0.97-2.14 0.0739

Parameter
(lower risk threshold,
higher risk threshold)

MMRF (n = 800)
PFS OS

HR CI p-value HR CI p-value
Age

(≤69, >69) 1.52 1.20-1.92 0.00047 1.98 1.42-2.77 0.00006

Albumin
(>3·5, ≤ 3·5) 1.23 0.98-1.54 0.06812 1.74 1.23-2.45 0.00179

β2M
(<5·5, ≥ 5.5) 1.25 0.94-1.65 0.12029 1.48 1.00-2.20 0.04926

Calcium
(<10.52, ≥ 10.52) 1.62 1.21-2.18 0.00136 1.94 1.29-2.90 0.00143

eGFR
(>48·3,≤48·3) 1.19 0.89-1.60 0.24308 1.47 0.98-2.21 0.0645

Hb
(>9.59, ≤ 9.59) 1.50 1.17-1.93 0.00134 1.35 0.93-1.96 0.1097

HRCA
(del17, t(4;14), t(14;16)) 1.11 0.89-1.39 0.34433 1.42 1.02-1.97 0.03786

5.3.4 Statistical Analysis on the parameters used in CRSS

Kruskal Wallis test was performed to compare the median values of the parameters-
age, albumin, β2M, calcium, eGFR and hemoglobin across the three risk groups for
both MMIn and MMRF dataset. There was a significant increase (p < 0.05) in the
values of age and β2M while there was a significant decrease (p<0.05) in the values
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Figure 5.5: (A, B) Progression-Free Survival (PFS) in patients with MM from MMRF cohort
(n=900) stratified by R-ISS (n=658) and the proposed CRSS (n=800) respectively. Median PFS
for R-ISS1, R-ISS2 and R-ISS3 are 186, 151 and 79 weeks respectively with a p-value of 1.73e-
5. Median PFS for CRSS-1, CRSS-2 and CRSS-3 are 249, 158 and 90 weeks respectively with
a p-value of 8.64e-12. (C, D) Overall Survival (OS) in patients with MM from MMRF cohort
(n=900) stratified by R-ISS (n=658) and the proposed CRSS (n=800) respectively. Median OS
for R-ISS1, R-ISS2 and R-ISS3 are 264, Not reached and 164 weeks respectively. with a p-
value of 6.58e-8. Median OS for CRSS-1, CRSS-2 and CRSS-3 are Not reached, Not reached
and 238 weeks respectively with a p-value of 1.08e-15. (E, F) Univariate Cox hazard analysis
on the prognostic factors. Hazard ratios for all the parameters except HRCA were calculated
on complete data (n=900) for MMRF dataset. Hazard ratio for HRCA and the risk staging
models were found using the data for which HRCA information was present (n=800 for MMRF
dataset).
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Table 5.7: Prediction of progression-free survival and overall survival (in %) for CRSS and
R-ISS at 1, 2, 3, 4, and 5 years in the MMIn (n = 384) and MMRF datasets (n = 800).

MMIn data

Year R-ISS (n = 355) CRSS (n = 384)
1 2 3 1 2 3

PFS

1 0.9318 0.8305 0.6967 0.8966 0.7812 0.7196
2 0.8606 0.6601 0.5223 0.7709 0.6265 0.4472
3 0.6404 0.5124 0.3632 0.6449 0.4729 0.2515
4 0.3422 0.4179 0.2810 0.5251 0.3624 0.0587
5 0.2738 0.2856 0.2342 0.4014 0.2679 0.0587

OS

1 0.9773 0.9387 0.7784 0.9630 0.8938 0.7976
2 0.9540 0.8415 0.6393 0.9466 0.7679 0.6155
3 0.9282 0.7764 0.5342 0.9098 0.6702 0.5831
4 0.8895 0.6790 0.4953 0.8979 0.5691 0.4574
5 0.8895 0.6422 0.3698 0.8979 0.4791 0.3136

MMRF data

Year R-ISS (n = 658) CRSS (n = 800)
1 2 3 1 2 3

PFS

1 0.9033 0.8132 0.6358 0.9325 0.8367 0.6611
2 0.7957 0.6261 0.4040 0.8162 0.6734 0.4423
3 0.6295 0.4862 0.3059 0.7008 0.5084 0.3129
4 0.4641 0.3414 0.2781 0.5151 0.3711 0.2249
5 0.2769 0.2450 0.2781 0.4121 0.2637 0.1799

OS

1 0.9807 0.9092 0.8559 0.9869 0.9379 0.8231
2 0.9612 0.8372 0.6460 0.9689 0.8772 0.6780
3 0.9286 0.7799 0.5211 0.9478 0.8217 0.5814
4 0.8833 0.7461 0.4904 0.9478 0.7844 0.5293
5 0.5748 0.7108 0.3678 0.9478 0.6569 0.4691

of albumin, eGFR, and hemoglobin as the risk of disease increased (Figures 5.6 and
5.7) for both the MMIn and MMRF dataset. Wilcoxon-rank sum test was performed to
compare the median values of the parameters between two successive risk groups and
showed significant variation of parameters for both the datasets.

5.3.5 Model Interpretation

To ascertain the impact of individual parameters on risk stage predictions by CRSS,
decision tree models built using MMIn and MMRF datasets were analysed using SHAP
(Shapley Additive Explanations) (Figures 5.8 and 5.12). Key contributors of high risk
predictions in the MMIn dataset were presence of HRCA, elevated levels of β2M,
higher age and lower levels of albumin (Figure 5.8). Further, lower levels of eGFR
and hemoglobin along with elevated levels of calcium also contributed to high risk pre-
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Figure 5.6: Boxplot showing the variation of the six parameters: A-age, B-albumin, C- β2M,
D- calcium, E- eGFR and F-hemoglobin for MMIn dataset at CRSS-1, CRSS-2 and CRSS-3.
The median values of all the parameters differ significantly across the three risk stages. Age and
β2M are increasing while albumin, eGFR and hemoglobin are decreasing as the risk increases.
Wilcoxon rank-sum test was used to compare two risk groups and Kruskal-Wallis test was used
for comparing the three risk groups.

diction in the patients. It was observed from the waterfall plots (Figures 5.9, 5.10 and
5.11) of the randomly chosen patients in different risk stages that the order of the im-
pact of the parameters varied in different patients within the same risk category. For the
high-risk category (Figure 5.11), HRCA had the highest impact on one of the randomly
chosen patients; in another patient, β2M had the highest impact in contributing to high
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Figure 5.7: Boxplot showing the variation of the six parameters: A-age, B-albumin, C- β2M,
D- calcium, E- eGFR and F-hemoglobin for MMRF dataset at CRSS-1, CRSS-2 and CRSS-3.
The median values of all the parameters differ significantly across the three risk stages. Age and
β2M are increasing while albumin, eGFR and hemoglobin are decreasing as the risk increases.
Wilcoxon rank-sum test was used to compare two risk groups and Kruskal-Wallis test was used
for comparing the three risk groups.

risk while in the third patient, age and albumin had the highest prognostic impact. This
suggests that the risk assessment in MM is a cumulative function of multiple factors.
An individual parameter cannot adequately capture the risk associated with MM given
that other prognostic parameters could influence the outcome. Further, the complex
association among different parameters that encapsulates the disease risk varies accord-
ing to the patients, thereby, leading to varying order of impact of parameters in the
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Figure 5.8: Model interpretation using SHAP (SHapley Additive exPlanations). SHAP sum-
mary plots for different risk stages inferred from MMIn data showing the relative impact of
different parameters (top to bottom) contributing to a particular risk stage prediction. (A, B)
CRSS-1: Normal levels of β2M and hemoglobin are the key contributors to the low-risk stage
prediction. Furthermore, high values of age on the left side of the summary plot are pushing the
model away from the low-risk prediction and are indicative of either intermediate or high risk.
Overall, β2M has the highest impact and calcium has the lowest impact on the low-risk stage
prediction. (C, D) CRSS-2: β2M and hemoglobin are the key contributors to the intermediate-
risk stage. Elevated levels of β2M with lower levels of hemoglobin are indicative of interme-
diate risk. (E, F) CRSS-3: Presence of HRCA is contributing the most to the high-risk stage.
Elevated values of β2M and calcium and lower levels of albumin, hemoglobin, and eGFR are
contributing toward the high-risk stage prediction.

patients. Hence, the AI-based decision tree algorithms can handle such an integrated
analysis. This analysis reveals that each patient is unique and multiple factors interact
and impact the outcome differently in individual patients.
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Figure 5.9: SHAP waterfall plots for the randomly chosen four patients in low-risk stage
(CRSS-1) from the MMIn dataset. The pink color shows the positive impact of the feature,
while the blue color shows the negative impact of the feature. Features with a positive im-
pact contributed to the class of low-risk stage prediction, while features with a negative impact
contributed to class opposite to low risk. β2M, hemoglobin, age, and HRCA have the highest
overall impact on low-risk stage prediction in the MMIn dataset. However, this ranking itself
differs from patient to patient as can be seen in (A–D). (A) β2M has the highest impact followed
by hemoglobin, age, and HRCA. (B) Hemoglobin has the highest impact followed by β2M and
age. (C, D) β2M has the highest impact followed by age and HRCA.

5.4 Discussion

The influence of ethnicities on clinical characteristics in patients belonging to distinct
ethnic groups is well known and therefore, it is of paramount interest to integrate the
ethnic group specific information in risk-staging models as it can affect the risk score
prediction. R-ISS3 is the current standard of care for staging myeloma patients which
includes a few HRCA but molecular aberrations such as 1q gain and chromothripsis as-
sociated with adverse outcome have been overlooked [197]. In fact, it includes t(4;14)
which has lost significance in patients treated with triplet regimens [198]. Besides,
R-ISS does not include any ethnic specific information and therefore, is not robust con-
sidering the large heterogeneous population of MM patients globally. An ideal risk
staging system would be based on all the known adverse prognostic factors includ-
ing clinical, ethnic and molecular aberrations. There is tremendous heterogeneity in
global healthcare systems that limit availability of high end molecular testing for all
patients and yet, the internet/electronic connectivity allow patients to receive medical
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Figure 5.10: SHAP waterfall plots for the randomly chosen four patients in the intermediate-
risk stage (CRSS-2) from the MMIn dataset. The pink color shows the positive impact of the
feature, while the blue color shows the negative impact of the feature. Features with a positive
impact contributed to the class of intermediate-risk stage prediction, while features with a neg-
ative impact contributed to the class opposite to intermediate risk. β2M, hemoglobin, HRCA,
and albumin have the highest overall impact on the intermediate-risk stage prediction in the
MMIn dataset. However, the ranking of the features itself differs from patient to patient as can
be seen in (A–D). (A) β2M has the highest impact followed by HRCA. (B) Hemoglobin has the
highest impact followed by HRCA. (C) HRCA has the highest impact followed by albumin. (D)
Albumin has the highest impact followed by age.

advice from global leaders in medicine. Recently, an AI-supported risk staging model,
MRS [199], has been developed for NDMM, however, it does not include HRCA and
ethnicity information. Considering the present world scenario, it is, thus, desirable to
develop a simple risk-staging model that integrates ethnic specific characteristics of the
prognostic parameters that are easy to acquire in the healthcare settings worldwide.

5.4.1 Risk-staging models and their performance as compared to
R-ISS

In contrast to R-ISS which utilizes four parameters, seven parameters were taken into
consideration for designing CRSS. It was observed that the cut-off values for these
parameters derived using KAP, vary in the two cohorts, one of which belongs to Indian
and the other belongs to the American population. For the Indian data, there was a
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Figure 5.11: SHAP waterfall plots for randomly chosen patients in high-risk stage (CRSS-3)
from the MMIn dataset. The pink color shows the positive impact of the feature, while the blue
color shows the negative impact of the feature. Features with a positive impact contributed to
the class of high-risk stage prediction, while features with a negative impact contributed to class
opposite to highest risk. HRCA, β2M, age, and albumin have the highest overall impact on
high-risk stage prediction. However, this ranking differs from patient to patient as can be seen
in (A–C). (A) HRCA has the highest impact. (B) β2M has the highest impact. (C, D) Age and
albumin have the highest impact.

change in the cut-off values for β2M, age, eGFR and hemoglobin while there was no
change in the cut-off value for calcium and albumin as shown in (Table 5.2). For MMRF
data, there was change in cut-off values for calcium, eGFR, hemoglobin and age while
the cut-off values for albumin and β2M remain unchanged. The median age of onset of
MM in the Indian population is almost a decade early as compared to the population in
the USA [200, 201]. This supported our assertion of choosing different cut-offs of age
for MMIn from the MMRF dataset.

Various models were built on the different combinations of the parameters using both
the established and proposed cut-offs for the two datasets. The best staging model
for both the dataset was obtained when proposed cut-offs for the respective cohorts
were used. When the ML-derived cut-offs were used for the parameters age, eGFR,
hemoglobin and β2M in A3 model, performance was enhanced significantly in terms of
high C-index and hazard ratios as compared to R-ISS. A similar observation was noticed
in the M4 model which utilized ML derived cut-offs obtained for MMRF dataset and



Chapter 5. AI-supported risk staging system for multiple myeloma 104

achieved the best performance among all the models with a significant improvement in
the C-index as well as hazard ratios as compared to R-ISS. Overall, A3 and M4 were
the best staging models for MMIn and MMRF data respectively. The improvement in
the performance of the model verified our hypothesis that the cut-offs of the different
parameters vary with different ethnicities.

The plausibility of the proposed model was further substantiated by performing signif-
icance testing. Kruskal-Wallis test showed statistically significant variations (p < 0.05)
in the median values of the parameters-age, albumin, β2M, eGFR, hemoglobin across
the three risk groups (Figures 5.6 and 5.7) for both the datasets. Further, Wilcoxon rank-
sum test revealed statistically significant variations (p < 0·05) in the median values of
the parameters between two successive risk groups (CRSS-1 and CRSS-2; CRSS-2 and
CRSS-3). Further, CRSS for MMIn and MMRF dataset were interpreted using SHAP
(Shapley Additive Explanations) to establish the clinical relevance of the risk stages
predicted by CRSS. For MMIn data, elevated levels of β2M and calcium with lower
levels of eGFR and hemoglobin contributed to high risk whereas in MMRF data, ele-
vated levels of β2M and lower levels of hemoglobin, eGFR and albumin contributed to
high risk in myeloma patients. These findings are in accordance with the observations
mostly identified in high risk MM patients. Additionally, it was observed that the order
of impact of hemoglobin was higher in low risk stage prediction in MMIn dataset as
compared to MMRF dataset while the order of impact of hemoglobin was higher in
high risk stage prediction in MMRF dataset as compared to MMIn dataset (Figures 5.8
and 5.12). The difference in the rankings can be attributed to the varying ethnicities and
further confirmed our claim of using ethnicity-aware risk staging models for MM. In the
present study, we have used MMIn and MMRF cohorts belonging to Indian and Amer-
ican ethnicities respectively for building CRSS models. Results on both the cohorts
have strengthened our claim that the robustness of the staging model is amplified by
inclusion of ethnicity-specific cut-offs of the prognostic factors as well as by utilizing
AI techniques.

The classification rules were obtained using a Decision tree classifier on the classifica-
tion output of the best performing models in both MMIn and MMRF data. Overall clas-
sification accuracy was 94.79% and 98% for the MMIn and MMRF data respectively.
Final risk-stages were evaluated using the classification rules in both the dataset. Fur-
ther, it is evident from the UMAP plots that both the MMIn and MMRF data were not
visible as three separate risk groups initially in the absence of CRSS risk labels (Figures
5.13A, 5.13C and 5.13E). With the addition of these risk labels with every patient sam-
ple, the subjects could be seen to be grouped separately (where a group corresponds to
one risk label) in the UMAP plot (Figures 5.13B and 5.13D). This demonstrates the abil-
ity of the CRSS model in identifying the risk groups correctly from the non-separable
data. To further validate our model, we found risk stages in 123 prospective subjects of
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Figure 5.12: Model interpretation using SHAP. SHAP summary plots for different risk stages
inferred in MMRF data showing the impact of different parameters used in the model. (A, B)
CRSS-1: albumin, HRCA, and β2M have the highest impact on the low-risk stage. Normal
levels of albumin, absence of HRCA, and lower values of β2M are contributing to low risk
(CRSS-1) in myeloma patients. (C, D) CRSS-2: β2M, albumin, and HRCA are the key con-
tributors to the intermediate-risk stage. (E, F) CRSS-3: β2M and hemoglobin have the highest
impact on the high-risk stage. Elevated levels of β2M and lower values of hemoglobin are
contributing toward the high-risk stage in the patient. Lower values of albumin and eGFR are
further promoting high-risk stage prediction.

MMIn data that were not used to build the CRSS model. UMAP plots (Figure 5.13F)
suggest that the prospective subjects got correctly aligned to their respective risk stages
inferred via CRSS.

For MMIn data, β2M was in the highest level of hierarchy in the classification rules
followed by hemoglobin and HRCA (Figure 5.3(a)). For MMRF data, the prognostic
factor in the highest level of hierarchy was β2M followed by albumin and Hb (Figure
5.3(b)). The cut-off values for β2M, albumin and Hb were 5.2, 3.55 and 9.64. The cut-
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Figure 5.13: UMAP scatter plot of (A), (B) MMIn data and (C), (D) MMRF data depicting the
data in absence and presence of risk stage labels respectively. The plot indicates that both the
MMIn and MMRF data were not visible as three separate risk groups initially in the absence of
CRSS risk labels. With the addition of these risk labels, the patients are now grouped separately
(where a group corresponds to one risk label) in the UMAP plot. This demonstrates the ability
of the CRSS model in identifying the risk groups correctly from the non-separable data. Perfor-
mance of the model was further validated by identifying risk stages in 123 prospective MMIn
subjects that were not used to build CRSS. (E) UMAP scatter plot of the prospective MMIn
subjects (n=123) along with the MMIn data of 384 patients reveals that data is not visible as
separate risk groups in absence of risk stage labels and (F) UMAP scatter plot reveals that the
prospective MMIn subjects align themselves to their respective risk groups after addition of risk
stage labels.
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offs for β2M and albumin were not changed but the cut-off value proposed for Hb was
9.59 which was close to the observed value in the classification rules. This observation
further justified our choice of using new cut-offs for the risk-staging model.

5.4.2 Conclusion

In this work, we examined the impact of ethnicity based cut-offs of laboratory param-
eters derived using ML algorithm on risk prediction in Indian and American patients
with MM. We trained different risk staging models for both MMRF and MMIn dataset.
The best predictor model was obtained when ethnicity specific cut-offs of the clinical
parameters were utilized. Further, we presented a new reliable and robust AI-enabled
risk staging system, namely, CRSS that utilizes easily acquirable laboratory and clinical
parameters i.e. age, albumin, β2-microglobulin (β2M), calcium, estimated glomerular
filtration rate (eGFR) and hemoglobin along with HRCA. Risk-stratification achieved
by AI-assisted CRSS is able to better separate the patients into different risk groups
as compared to R-ISS. High concordance-index and hazard ratios reveal the superior
performance of CRSS as compared to R-ISS. Further, the clinical and biological sig-
nificance of the decision tree classifier rules for risk stage prediction in MM patients
was deduced via SHAP analysis on both the datasets. The successful evaluation of our
proposed staging system on both the datasets establishes the utility of the proposed eth-
nicity aware staging system for NDMM patients, treated largely with novel agents or a
combination thereof, in a real-world scenario. Our study also highlights the importance
of application of AI in building CRSS thereby enhancing the prediction of survival out-
come and separability of risk-stages in NDMM patients. We have also developed a web
platform based AI-assisted ethnicity aware MM risk staging calculator. Screenshot of
the online calculator is shown in the Figure 5.14.

5.4.3 Limitations and Future work

CRSS has been built on a smaller set of NDMM patients as compared to the R-ISS3
study. In future, the CRSS model may be tested on larger datasets with varying ethnic
groups as the cohort size of the present study is 25% of the cohort used in R-ISS reported
in 2015. As the CRSS calculator becomes available online, data could be generated by
independent groups for further validation in real world scenarios.
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Consensus based Risk Staging System (CRSS) calculator for Multiple
Myeloma (version 1.0)

Joint collaborative work of Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMS, New Delhi and
SBILab, Department of ECE, IIIT-Delhi, New Delhi

Principal Investigators: Prof. Ritu Gupta, AIIMS and Prof. Anubha Gupta, IIITD

Description: An efficient and robust AI-enabled risk-staging system for MM patients that utilizes ethnicity-
specific cutoffs of key prognostic parameters. It predicts the risk stage of a patient depending on the values of
the seven parameters- age, albumin, β2m, hemoglobin, calcium, eGFR and high risk cytogenetic
abnormalities [del 17p; t(4;14); t(14;16)].

It's utility has been validated for Newly diagnosed Multiple Myeloma (NDMM) patients.
Risk-stratification achieved by AI assisted CRSS is able to better separate the patients into different risk
groups as compared to RISS
It is a reliable and efficient tool for upfront risk stratification of MM patients and can help the
clinicians/doctors in designing and providing effective therapy to MM patients.

Ethnicity(Indian/American)  Indian  American
Age (years) 45

Albumin (g/dL) 4

β2M (mg/L) 4

Calcium (mg/dL) 10

eGFR (mL/min) 78

Hemoglobin (g/dL) 12

High risk cytogenetic abnormalities  No  Yes
Reset Calculate

CRSS stage 1
Low Risk

Please cite us if you use CRSS calculator in your research work.

Farswan A, Gupta A, Sriram K, Sharma A, Kumar L, Gupta R. Does ethnicity matter in multiple
myeloma risk prediction in the era of genomics and novel agents? Evidence from real-world data. Front
Oncol 2021.

If information on ethnicity and genetic abnormalties is not available, then you can use MRS calculator
designed by us. MRS is also an advanced AI-supported calculator that works efficiently in the absence of

cytogenetic abnormalities, that is, it predicts the MM cancer risk stage using the six parameters of the
patients- age, albumin, hemoglobin, β2M, calcium and eGFR.

Figure 5.14: Online version of CRSS calculator



Chapter 6

Inference of clonal trajectory in single-cell data

6.1 Introduction

Clonal heterogeneity is an established feature of cancer, characterized by the co-existence
of genetically divergent clonal sub-populations of malignant cells within the tumor
[202, 203]. The cause of the intra-tumor heterogeneity is genomic instability [204]
which promotes elevated mutation rate [205] by the sequential acquisition of somatic
mutations within the diverse subclones. The multiple subclones differ in their immuno-
logical characteristics, growth rate, and ability to metastasize. Further, the treatment
therapy affects every clone distinctly due to the diversified nature of the subclones. A
group of the clones extinct, while others become resistant to the drug/therapy, eventu-
ally causing relapse in the cancer patients. Multiple studies have established the fact that
intra-tumor heterogeneity adversely affects the overall drug response in cancer patients
[206]. It is, therefore, critical to gain insight into the process of cancer evolution and
characterize the intra-tumor heterogeneity as it may foster the development of drugs to
deal with the treatment resistance clones in the cancer patients [205]. Next-generation
sequencing technology has enabled the identification of the genomic changes in the
tumor population at a higher resolution. Several computational methods have been pro-
posed to infer the pattern of clonal evolution from the high throughput next-generation
bulk sequencing data [207, 142, 208, 209, 141]. However, reconstructing the clonal evo-
lution pattern from bulk DNA sequencing data is difficult because the bulk DNA data
comprises of the mixtures of mutations from thousands to millions of heterogeneous
cells in the sample.

With the advent of single-cell sequencing (SCS) technology, the resolution of tumor
cell profiling has vastly improved, thereby leading to a better quantification of intratu-
moral heterogeneity [210, 211]. Several methods for constructing tumor phylogenies
have been developed that utilize single-cell copy number variation (scCNV) profiles
or single-cell single nucleotide variation (scSNV) data. For deriving cancer evolu-
tion from scSNV data, distance-based methods like UPGMA were initially proposed
in [212, 213]. In [214, 215], copy number profiles from scCNV data were employed to
reconstruct tumor phylogeny. Single-cell sequencing data helps overcome the struggle
of inferring tumor phylogeny from the bulk sequencing data; it poses other challenges
arising during the sequencing process. These challenges comprise of several errors
found in the single-cell data. The most common types of errors are false positives (FP),
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false negatives (FN), missing bases (MB), and doublets. False positives arise when a
mutation is called, but it is not present in the cell. A false negative is created when
either one or both the alleles do not amplify enough during allele dropout events and
are thus neglected in the final computation. Doublets occur when two or more cells
are measured simultaneously due to errors in cell capture or sorting. It can be deduced
from multiple studies that the false positive rate is in the range of 10−5 while false neg-
ative varies from 0.1 to 0.43 [212, 216]. Cell doublets have varying rates of occurrence
depending on the technique used to isolate cells and can range from 1% to 10% [217].
Further, single-cell data also suffers from the problem of missing bases which arise out
due to insufficient coverage of the signal during the sequencing process. The highest
reported missing rate is 58% [215, 218]. Multiple methods have been proposed for the
imputation of the missing values in the genomics data, such as DSNN [190].

Errors associated with single-cell data can adversely affect the downstream analysis.
Therefore, numerous methods have been devised to resolve these errors in single-cell
data in recent times. Examples include SCITE by [219], OncoNEM by [220], SCG
by [221] and SciΦ by [222]. However, most of these methods are based on the as-
sumptions of the infinite site model (ISM); though few of the methods do account for
the loss of heterozygosity (LOH), they completely overlook the recurrent mutations.
In the ISM model, a locus in the cell has the presence of mutation, denoted by 1 or
the absence of mutation, marked by 0. Transitions between these states are restricted
so that a mutation can be gained atmost once during the cancer evolution, and it can-
not be lost after it is gained. The phylogeny constructed by following the principles
of the infinite-sites model is known as a perfect phylogeny. When the data is error-
free, a unique and perfect phylogeny is created. However, if the data has errors, it may
lead to multiple phylogenies as there are numerous ways of removing the errors from
the single-cell data. Further, the assumption of the infinite site model may not always
hold for tumor evolution where simultaneously multiple recurrent events occur ([223].
Therefore, methods like SiFit [217], BEAM [224] and RobustClone [225] have been
developed that place no constraints on the mutation model. All the methods perform
well for the dataset of small to medium size, but they become computationally expen-
sive for large datasets. Methods like OncoNEM fail in computation on the dataset of
median size 500× 500 [225]. Further, the size of the single-cell data is increasing with
rapid evolution in single-cell technology, ultimately leading to enhanced computational
complexity. Therefore, a robust and computationally inexpensive method that works
well on large and small datasets needs to be formulated.

Recently, Robust Principal Component Analysis (RPCA) was utilized to recover de-
noised matrix from the observed noisy data [225]. RPCA decomposes the observed
noisy matrix into a low-rank matrix and a sparse error matrix, the noise associated with
the observed matrix. Clones were inferred from the denoised matrix via the Louvain-
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Jaccard algorithm, and ultimately, a clonal tree was deduced from the clones via a
minimum spanning tree algorithm. However, the Louvain method may yield poorly
connected clusters in the data, as established by [226], therefore the authors proposed
Leiden algorithm that outperforms Louvain by determining better partitions in the data.
RobustClone uses the Louvain-Jaccard algorithm, and hence, it may not always infer
the optimal number of clusters. Further, the method infers subclones via the denoised
matrix, and if the matrix is not denoised properly, it may again lead to an inaccurate
number of clusters in the data. Therefore, we propose a novel method, ARCANE-ROG
(Algorithm for Reconstruction of CANcer Evolution via RObust Graph Learning), to
infer evolutionary cancer patterns from single-cell DNA data. The first step involves a
robust graph learning-based method [227] which denoises and imputes the noisy and
incomplete matrix. The original algorithm [227] worked only on noisy data and was
evaluated on image data. In our work, we have improved the algorithm to impute the
missing entries in addition to denoising. An adjacency graph is also learnt from the data
simultaneously. Both the denoising and adjacency graph learning operations boost each
other such that the overall performance of the denoising algorithm is improved. In the
second step, the learned graph is used to infer an optimal number of clusters/subclones
in the data via the Leiden algorithm. The adjacency graph is used instead of the denoised
data for inferring subclones which ensures error-free prediction of subclones. Finally,
a clonal pattern is deduced using subclonal information via a minimum spanning algo-
rithm. We have compared the performance of ARCANE-ROG with RobustClone [225],
BnpC [228] and GRMT [229]. The novel contributions of the work are as follows.

• Robust graph learning is utilized to denoise and impute the noisy and incomplete
binary matrix of single-cell DNA data. An adjacency graph is simultaneously
learnt from the input matrix.

• Learned adjacency matrix is used to infer the number of subclones in the data
instead of the denoised matrix.

• Optimal number of subclones are identified in the data via the Leiden algorithm.

The work has been organized in the following manner. The methods section describes
the method and the algorithm proposed in the current study, along with a detailed de-
scription of the simulated and real datasets used to validate our proposed method’s per-
formance. The results and discussion section give an exhaustive illustration of the per-
formance of our proposed ARCANE-ROG method on the simulated and real datasets.
It also shows the comparison of ARCANE-ROG with the state-of-the-art RobustClone
method in terms of different evaluation metrics. Finally, we conclude our proposed
method by establishing the robustness and the efficiency of the proposed method.
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6.2 Methods

Our proposed method, ARCANE-ROG, is based on simultaneously learning the adja-
cency graph from the data while denoising and imputing the noisy and incomplete data.
Leiden algorithm is then applied on the learned graph to find the optimal number of
clusters, and finally, the clonal tree is inferred via a minimum spanning tree algorithm.
In this section, we first explain how the algorithm was extended for accommodating
missing entries and then, we describe the Leiden algorithm and Minimum Spanning
Tree algorithm used for recovering the number of clones and clonal tree, respectively.
Robust Graph learning [227] method to denoise the noisy binary input data matrix has
been explained in the Appendix C.

6.2.1 Proposed Extension of Robust Graph Learning for Recover-
ing Missing Values

In this work, we have extended robust graph learning for handling missing entries in
the data. Consider a noisy single-cell data matrix, XN , of size m× n. m is the number
of cells and n is the number of mutation sites. This matrix is binary in nature where ‘1’
represents the presence of mutation and ‘0’ denotes the absence of mutation. Our goal is
to extract a denoised matrix, XD from this noisy matrix along with E which is the error
observed in matrix such that XN = XD + E. This task of denoising a noisy matrix is
very well performed by applying robust PCA on the noisy matrix as done in [225]. Low
rank constraints are added on the denoised matrix, XD, because the original genotype
matrix is a low rank matrix where the tumor cells are clustered together into various
subclones such that there is little to no variation in the genotype of the cells within the
same subclone. Further, we consider that error component, E, is sparse. Single-cell
data not only suffers from noisy corruptions but it also has missing values which needs
to be tackled for accurate downstream analysis. Therefore, a linear operator, PΩ(X

D),
was defined which sets the unobserved entries to 0 while keeping the rest equal to the
observed entries as follows:

PΩ(X
D) =

XD
ij if(i,j) ∈ Ω;

0 if(i,j) /∈ Ω.
(6.1)

Our objective now is to recover a denoised matrix, recover missing values as well as
to learn an adjacency graph during the denoising process. Consider L and S to be
the Laplacian and similarity graph learned during the denoising step. The objective is
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formulated in equation 6.2.

min
XD,E,S

||XD||∗ + a||E||1 + bTrXDL(XD)T + c||S||2F ,

s.t. PΩ(X
N) = PΩ(X

D + E), S1 = 1, 0 ≤ S ≤ 1
(6.2)

where a, b and c are the trade-off parameters. In the above formulation, denoising, and
graph learning are implemented together such that each of the step iteratively enhances
the other step. The above formulation ensures that the low rank denoised matrix and
noisy sparse component is recovered from the observed entries, PΩ(X

N). The above
equation can be further converted to the following framework:

min
XD,E,S

||XD||∗ + a||PΩ(E)||1 + bTrXDL(XD)T + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1
(6.3)

W is an auxiliary variable and the above formulation can now be solved via alternating
direction method of multipliers (ADMM) by adding an auxiliary variable W in the
equation.

min
XD,E,S,W

||XD||∗ + a||PΩ(E)||1 + bTr(WLW T ) + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1,W = XD
(6.4)

Augmented Lagrangian function can be obtained by removing equality constraints on
XN and W :

L(XD, E, S,W,Z1, Z2) = ||XD||∗ + a||PΩ(E)||1 + bTr(WLW T ) + c||S||2F

+
µ

2

(
||XD + E −XN +

Z1

µ
||2F + ||XD −W +

Z2

µ
||2F
)

s.t. S1 = 1, 0 ≤ S ≤ 1

(6.5)

where µ is penalty parameter and Z1 and Z2 are the Lagrangian multipliers. In our
proposed method, ARCANE-ROG, a was set to (1 + 3 × Ω)/

√
m× n, b was set to

5/
√
m× n and c was set to 5/

√
m× n. The steps to solve the above problem and the

algorithm used for denoising the data has been provided in the Appendix C.
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6.2.2 Leiden algorithm

Leiden algorithm is a type of community/cluster detection method proposed in [226]
for the analysis of complex networks. One of the best performing community detection
algorithms in the literature is the Louvain algorithm [230]. However, there is a major
problem associated with Louvain, i.e., it may yield arbitrarily poorly connected and
sometimes internally disconnected communities/clusters. Hence, the Leiden algorithm
[226] was proposed to resolve the shortcomings posed by the Louvain algorithm. It
is based on an algorithm introduced in [231], which was an improvement of the Lou-
vain algorithm. In addition, the Leiden algorithm has also utilized ideas proposed in
[232, 233, 234] to improve its performance. It has been shown in the paper [226] that
the Leiden algorithm significantly outperforms the Louvain algorithm. Leiden algo-
rithm guarantees well-connected communities/clusters. Leiden algorithm is explained
as follows (Figure 6.1). Consider an undirected graph, G = (V,E) with nodes, n = |V |
and edges, m = |E|. A partition is defined as P = {C1, C2, ....Cr} where r = |P|
denotes the number of communities. Each community Ci is a subset of V and consists
of a set of nodes such that V =

⋃
i Ci and intersection of Ci and Ci is an empty set

(Ci ∩ Ci = ∅) for all when i ̸= j. To ascertain the quality of the partition, a quality
function, H(G,P) is defined as follows.

H(G,P) =
∑
C∈P

[
E(C,D)− η

(
||C||
2

)]
, (6.6)

where η is the resolution parameter and E(C,D) represents the number of edges formed
between the nodes in the communities denoted by C and D. ||C|| is the cardinality of
the flattened set C i.e ||C|| = |flat(C)|. Our objective is to find the highest possible
quality partition. We start with an initial partition P0 which is usually the singleton parti-
tion of the graph G, i.e each nodes act as an individual community (P0 = {{v}|v ∈ V }).
Now nodes are moved from one community to another to find a partition, P . This parti-
tion is then refined to create a refined partition, Prefined. The refinement phase is unique
to the Leiden algorithm. During this phase, nodes are merged with the community ran-
domly, and the community with the largest increase in the quality function, H(G,P), is
selected. Thus, communities in P may split into multiple sub-communities in Prefined.
In the Figure 6.1, the magenta community in (B) is refined into two sub-communities
shown by red and magenta in (C), which are separated into two nodes after aggregation
in (D); however, they belong to the same community. Once an aggregate network is
created from the refined partition, individual nodes are further moved in the aggregate
network and refined. This procedure is repeated till no further improvements in the par-
titions can be made. More details on the method and its code can be found in the paper
[226].
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Move nodes Refine

Level 1

Level 2

Figure 6.1: The Leiden algorithm starts with an initial partition which is usually the singleton
partition of the graph, i.e. each nodes act as an individual community (A). Individual nodes
are moved from one community to another to find an initial partition (B). The initial partition
so formed is then refined as in (C). During the refinement phase, nodes are merged with the
community randomly, and the community with the largest increase in the quality function is
selected. Thus, communities in the initial partition may split into multiple sub-communities in
the refined partitions. An aggregate network (D) is formed using the refined partitions. It is to be
noted that the aggregate network is initially created using the non-refined partition. Individual
nodes are then moved in the aggregate network (E). Refining the aggregate network may or may
not change the partition. There is no change in the partition (F) in this case. These steps are
repeated until there is no scope for further improvement.

6.2.3 Minimum Spanning Tree

Minimum spanning tree (MST) can be described as a spanning tree having the minimum
cost among all spanning trees. For example, consider the graph G in 6.2(A). A graph
can be represented as G(V,E,w) where V represents vertices A, B, C, D, E, and E

represents edges and w represents weights of the edges 1, 2, 3, 4, 5, 6, 7, and 8. A
spanning tree of the graph can be built if it satisfies two main conditions, 1) the number
of vertices in the tree is equal to the number of vertices in graph G, and 2) the number
of edges present in the spanning tree is a subset of the number of edges in G. There
can be multiple spanning trees corresponding to a graph as shown in Figure 6.2(B-E).
We can compute the cost of each tree by the addition of weights of all edges in the
spanning tree. The tree having the minimum cost is defined as the minimum spanning
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tree. For graph G, MST is shown in the Figure 6.2(E) having the lowest of cost of 10
as compared to other trees having cost 12 (6.2(B)), 14 (6.2(C)), and 22 (6.2(D)). There
can also exist multiple minimum spanning trees to a graph. Minimum spanning tree
algorithm is extensively used in problems such as image segmentation, cluster analysis
etc.
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Figure 6.2: (A) Graph G(V,E,w), where V represents vertices, E represents edges and w
represents weights of the edges. (B)-(E) Multiple Spanning tree corresponding to the graph G.
(E) Minimum Spanning tree for Graph G.

6.2.4 ARCANE-ROG: Algorithm for Reconstruction of Cancer Evo-
lution from Single-Cell Data via Robust Graph Learning

The methodology of the proposed algorithm, ARCANE-ROG, is shown in Figure 6.3. It
consists of three steps for identifying clonal evolution from the noisy single-cell data. In
the first step, denoised and complete data is recovered using robust graph learning from
noisy and incomplete single-cell DNA data. In this step, we also learn an adjacency
graph simultaneously. The number of clones is determined using the adjacency matrix
in the second step. The final step infers a clonal tree using the clones inferred in step 2
via the minimum spanning tree algorithm.

Step 1: Recover denoised and complete matrix from the noisy incomplete data
matrix

The first step of ARCANE-ROG recovers an approximate version of the true genotype
matrix from the noisy and incomplete data. The original genotype matrix is a low-
rank matrix, where the tumor cells are clustered together into various subclones such
that there is little to no variation in the genotype of the cells within the same subclone.
Hence, our goal is to recover this low-dimensional subspace of subclones along with
the imputation of missing values that are embedded in the noisy and incomplete data
matrix. For this task, we have used Robust Graph learning [227] in our work, where the
input data is denoised, and an adjacency graph is also learnt simultaneously. Since both
these operations are implemented together in a joint framework, they boost each other
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Figure 6.3: Methodology of the proposed ARCANE-ROG method. It consists of three steps
for identifying clonal evolution from the noisy single-cell data. In the first step, denoised and
complete data is recovered from the noisy and incomplete single-cell DNA data using robust
graph learning. In this step, we also learn an adjacency graph simultaneously. In the second
step, the number of clones are determined using the adjacency graph. Final step infers clonal
tree using the clones inferred in step 2 via minimum spanning tree algorithm.

such that the overall performance of the algorithm is enhanced. Since the robust graph
learning algorithm only denoises the noisy data, we extended the existing algorithm to
impute missing values in the incomplete input data matrix. The details of this modified
algorithm for simultaneous denoising and data imputation are provided in the Appendix
C.

Step 2: Identify optimal number of subclones in the data

Once the denoised complete data matrix and similarity matrix are obtained, an optimal
number of clusters is identified using the similarity matrix. Similarity matrix is the cell-
to-cell adjacency matrix that was learned in the first step. Leiden algorithm is applied
on this adjacency graph to infer subclones present in the data.
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Step 3: Infer clonal evolution tree from the denoised data and the subclones

Mutations corresponding to each subclone are found using the subclone information
and the denoised data, which is referred to as the genotype of the subclones. Euclidean
distance between each pair of subclones is calculated based on their subclonal geno-
types, and then the minimum spanning tree among the different subclones is inferred
via their euclidean distances. The minimum spanning tree so obtained is the clonal tree.

6.2.5 Evaluation Metrics

We have used four different evaluation metrics for performance comparison in our work.
For evaluating the performance of the denoising framework, reconstruction error and
False Positive to False Negative (FPFN) ratio was computed. For assessing the perfor-
mance of the clustering and clonal tree inference, tree error and V-measure have been
calculated. These metrics are specified below.

Reconstruction Error

Reconstruction error is based on the number of mismatched entries between the de-
noised matrix and the ground truth matrix. The ground truth matrix is the original
matrix on which the error was added. Reconstruction error should be as low as possi-
ble.

R.E. =
Number of unequal entries between XD & XG

Size of the matrix(m × n)
(6.7)

FPFN Ratio

FPFN ratio is the ratio of the total number of false positives and false negatives in the
denoised matrix to the total number of false positives and false negatives in the ground
truth matrix. It should be as low as possible for the denoised matrix.

FPFN ratio =
FP(XD) + FN(XD)

FP(XN) + FN(XN)
(6.8)

Tree Reconstruction Error

Tree reconstruction error, also known as the tree distance error, is calculated as the aver-
age differences between the shortest pairwise distance computed for the reconstructed
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tree and the ground truth tree. Cells are grouped in different clusters in a tree and dis-
tance between two cells is computed as the distance between the clusters to which these
cells belong to. Pairwise distance matrices for both the inferred tree and the ground
truth tree were computed and the difference in between the two matrices yielded the
tree reconstruction error. Its value is 0 when the inferred tree is identical to the ground
truth tree. In our work, we have reported normalized values of tree distance error by
multiplying the error value with the size of the data matrix.

V-measure

V-measure is a cluster evaluation measure. It basically informs about the goodness of
the clusters obtained from any algorithm. It is defined as

V-measure =
(1 + β)× homogenity × completeness
(β + homogenity) + completeness

(6.9)

where β is a factor that provides more weight to either homogeneity or completeness.
Homogeneity measures the similarity between the samples in a cluster, while complete-
ness determines if similar samples are grouped in the same cluster or not. It is a reliable
measure to ascertain the output of clustering as it does not depend on the number of
class labels or number of the clusters. V-measure ranges from 0 to 1, with higher values
indicating better performance.

6.2.6 Datasets

We have evaluated the performance of our proposed ARCANE-ROG method on the
simulated as well as real datasets. We generated a total of 1000 datasets of different
sizes under various settings. We have also generated simulated datasets mimicking real
datasets to determine the efficacy of our proposed method. Details of the dataset used
are given below.

Simulated Data

Five different groups of datasets, namely S1, S2, S3, S4 and S5, were simulated.
There were 200 datasets in each group with varying settings to test the effectiveness
of ARCANE-ROG. S1 group was simulated with varying values of α (False positive
rate) ranging from 0.001 to 0.01, 0.1 and 0.2. 50 datasets for each value of α were
simulated. The number of cells was fixed to 500, mutation sites to 500, the number of
clones to 10, β (False-negative rate) to 0.2 and γ (Missing rate) to 0.2. S2 group was
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simulated with varying values of β (False-negative rate) ranging from 0.1 to 0.2, 0.3
and 0.4. 50 datasets for each value of β were simulated. The number of cells was fixed
to 500, mutation sites to 500, the number of clones to 10, α to 0.01 and γ (Missing
rate) to 0.2. S3 group was simulated with varying values of γ (Missing rate) ranging
from 0.2 to 0.3, 0.4 and 0.5. The number of cells was fixed to 500, mutation sites to
500, the number of clones to 10, α to 0.01 and β to 0.2. 50 datasets for each value of
γ were simulated. S4 group was simulated with a varying number of mutation sites (n)
ranging from 100 to 500, 1000, 2000. 50 datasets for each value of n were simulated.
The number of cells was fixed to 500, number of clones to 10, α to 0.01, β to 0.2 and
γ to 0.2. S5 group was simulated with varying number of cells (m) and clones starting
from 100 cells with 10 clones to 500 cells with 20 clones, 1000 cells with 30 clones and
2000 cells with 40 clones. 50 datasets for each value of m and the number of clones
were simulated. The number of mutation sites was fixed at 500, α at 0.01, β at 0.2 and
γ at 0.2.

Real Data

Apart from simulated data, we also tested the performance of ARCANE-ROG on five
different real datasets. Real datasets were of different sizes with varying rates of missing
entries, false positives, and false negatives. Different real datasets used in the study
are explained in detail as follows. JAK2-negative myeloproliferative neoplasm dataset
contained 58 cells and 712 mutation sites and was initially studied in [216]. This dataset
has a high missing rate of 58%. The binarized matrix used in our study was directly
downloaded from [220]. Muscle-invasive bladder transitional cell carcinoma single-
cell dataset of 44 cells and 443 mutation sites were initially studied in [235]. A total
of 55.2% values were missing in this dataset. We used the data matrix provided with
oncoNEM software [220]. Clear-cell renal-cell carcinoma dataset consisting of 17 cells
and 35 mutations was initially studied in [212]. The false-positive rate was estimated
to be 2.67 × 105, and the false-negative rate was estimated to be 0.1643 by Xu et al.
This dataset has 22% missing values. We used the processed data matrix provided
with the SCITE software [219]. Estrogen-receptor positive (ER+) breast cancer dataset
consisting of 47 cells and 40 mutations was initially studied in [215]. We used the
processed data matrix provided with the SCITE software [219]. High grade serious
ovarian cancer (HGSOC) dataset of size 420 cells and 48 mutation sites was studied in
[221, 236]. We downloaded the data matrix from [221].

There is no ground truth in real single-cell datasets that can be used to ascertain the
accuracy of the results obtained on these real datasets. Hence, we performed an ab-
lation study to determine the fidelity of the results via our proposed method. We
simulated datasets imitating the characteristics of real datasets in terms of missing
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values, false positives, and false negatives. The rates of missing entries, false posi-
tives, and false negatives were reported in previous studies. The size of the simulated
datasets was fixed to the size of the real datasets. We first generated 50 datasets with
the reported percentage of missing values and then introduced the reported number of
false positives in the next 50 datasets and finally added false negatives to the last 50
datasets. Such a type of ablation study helps in deducing the trajectory of the perfor-
mance of the proposed method when different forms of noise are added to the data.
Overall, 150 datasets were generated for the three datasets: JAK2-negative myelopro-
liferative neoplasm, muscle-invasive bladder transitional cell carcinoma and clear-cell
renal-cell carcinoma dataset. The missing rate was unknown for the Estrogen-receptor
positive (ER+) breast cancer dataset of size 47 × 40. Hence, 50 datasets were sim-
ulated with only false positives and false negatives. For the high grade serious ovar-
ian cancer dataset of size 420 × 48, information on only missing rate was available.
Hence, 50 synthetic datasets were generated with only missing entries. We also com-
pared the results obtained on two real datasets with the previous findings. We used
TARGET (https://software.broadinstitute.org/cancer/cga/target) database and COSMIC
(https://cancer.sanger.ac.uk/actionability/home) database for identifying the actionable
genes.

6.3 Results

Our proposed ARCANE-ROG method was compared with the RobustClone [225] method,
which is a state-of-the-art method for reconstructing clonal evolution in single-cell data.
We have also compared ARCANE-ROG with BnpC [228] and GRMT [229] methods,
the results of which have been provided in Appendix 3 Table C.1 and Figures 6.10 and
6.11 respectively. BnpC and GRMT are computationally time-consuming for datasets
of size 500 × 500 and larger. RobustClone, BnpC, and GRMT were run on default
parameters.

6.3.1 Impact of denoising in the inference of clonal trajectory

To investigate the role of the denoising process, we performed a few experiments where
50 datasets were generated for each mutation site, i.e. 100, 500, 1000, and 2000 while
keeping the number of cells fixed to 500 and the number of clones fixed to 10. α, β and
γ were fixed to 0.01, 0.2, 0.2 respectively for the experiments. The number of clones,
tree distance and V-measure were calculated on the noisy and denoised simulated data.
It is evident from Figure 6.4(a) that for the noisy data, the number of clones was over-
estimated when the number of mutation sites were 100 and underestimated when the

https://software.broadinstitute.org/cancer/cga/target
https://cancer.sanger.ac.uk/actionability/home
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number of mutation sites was greater than 100. On the contrary, the clones inferred
via denoised data were close to 10 at all settings. Similarly, tree distance was high,
and V-measure was low for the noisy data compared to the denoised data for all values
of mutation sites. It can, thus, be established that noisy data hampers the process of
reconstruction of clonal evolution.

(a) Number of clones

(b) Tree distance (c) V-measure

Figure 6.4: Boxplots for the comparison of the noisy data with the denoised data for the sim-
ulated datasets. (a) The number of clones are overestimated when the number of mutation sites
are 100 and underestimated when the number of mutation sites are greater than 100. On the
contrary, the number of clone inferred via denoised data are close to 10 at all settings. (b) and
(c) Similarly, tree distance was high and V-measure was low for the noisy data as compared to
denoised data at all values of mutation sites.

6.3.2 Performance on Simulated Dataset

Performance with varying α

In the S1 dataset, α was varied from 0.001 to 0.01, 0.1 and 0.2, while the number of cells
was set to 500, the number of mutation sites to 500, β to 0.2 and γ to 0.2 and the number
of clones to 10. With an increase in values of α, reconstruction error increased. Though
the difference in the performance was not visible at lower values of alpha, our proposed
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(a) Reconstruction error

(b) FPFN ratio (c) Number of clones inferred

(d) V-measure (e) Tree distance

Figure 6.5: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone at varying rates of α. (a) Reconstruction error and (b) FPFN ratio increased slowly with
an increase in α but at 0.2, there was a sharp increase leading to the highest value of recon-
struction error and FPFN ratio. (c) Number of clones estimated were around 10 at all values
of α except at 0.2 where ARCANE-ROG underestimated the number of clones to be around
8. (d) V-measure decreased with an increase in α and was the lowest at 0.2. (e) Tree distance
also increased with increase in α and had the maximum value at 0.2 when the number of clones
were not inferred accurately. Overall, ARCANE-ROG demonstrated significantly superior per-
formance (p-value < 0.05) as compared to RobustClone at all values of α thereby suggesting
that it is robust to false positives.

method performed remarkably better than RobustClone at α = 0.2, as shown in the
Figures 6.5(a)-6.5(e). Similarly, the FPFN ratio was lower at all varying rates compared
to RobustClone. At lower values of α, ARCANE-ROG could perfectly reconstruct the
clonal history with nearly zero tree distance. V-measure is also high for ARCANE-
ROG compared to RobustClone at all values of α except at 0.2, where the V-measure is
slightly less than that of RobustClone. Further, ARCANE-ROG, which uses the Leiden
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algorithm, was able to infer the number of clones more accurately than RobustClone.
The number of clones inferred via ARCANE-ROG was around 10 for low values of α
while for RobustClone, it was around 7. At α = 0.2, the range of inferred clones was
around 7 for ARCANE-ROG, while that of RobustClone was around 5. Overall, the
performance of our proposed method was found to be significantly superior (p-value <

0.05) to the RobustClone with increasing values of false positives.

(a) Reconstruction error

(b) FPFN ratio (c) Number of clones inferred

(d) V-measure (e) Tree distance

Figure 6.6: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone at varying rates of β. (a) Reconstruction error and (b) FPFN ratio increased slowly with
an increase in β but at 0.2, there was a sharp increase leading to the highest value of reconstruc-
tion error and FPFN ratio. (c) Number of clones were overestimated at 0.1 and were around 10
at other values of β. (d) V-measure was low at 0.1 due to overestimation of number of clones.
For other values of β, it gradually decreased with an increase in β (e) Tree distance was high
owing to overestimation of number of clones at 0.1 and after that, it gradually increased with an
increase in β. Overall, the performance of ARCANE-ROG was significantly better (p-value <
0.05) than RobustClone at all values of β thereby suggesting that it is robust to false negatives.
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Performance with varying β

In the S2 dataset, β was varied from 0.1 to 0.2, 0.3 and 0.4, while the number of cells
was set to 500, the number of mutation sites to 500, α to 0.01 and γ to 0.2 and the
number of clones to 10. For β = 0.1 and 0.2, reconstruction error and FPFN ratio were
nearly zero as shown in Figures 6.6(a)-6.6(e). It reveals that the denoised matrix was
reconstructed perfectly. Reconstruction error and FPFN ratio gradually increased with
an increase in the value of β. However, it remained consistently lower as compared
to RobustClone. The gap in the performance became evident at higher levels of β,
suggesting the superior performance of our proposed method even at high levels of
β. The number of clones was overestimated by ARCANE-ROG, while RobustClone
underestimated them at β = 0.1. Because of overestimation of number of clones, Tree
distance and V-measure values were higher for beta = 0.1 than for beta = 0.2, 0.3.
For β = 0.4, the number of clones inferred was 8, while the ground truth was 10. The
inference of the number of clones by ARCANE-ROG was better than that obtained by
RobustClone. Owing to better estimation of the number of clones, the tree distance
and the V-measure, our proposed method works superior to RobustClone. Overall,
ARCANE-ROG performed significantly better (p-value < 0.05) than RobustClone at
all values of β.

Performance with varying γ

In the S3 dataset, γ was varied from 0.2 to 0.3, 0.4 and 0.5, while the number of cells
was set to 500, the number of mutation sites to 500, α to 0.01 and β to 0.2 and the
number of clones to 10. Reconstruction error and FPFN ratio increased with an increase
in the unobserved entries. It was lowest when the missing rate was 0.2 and highest
when the missing rate was 0.5 as shown in Figures 6.7(a)-6.7(e). There is a significant
performance difference between the RobustClone and our proposed method at higher
missing rates compared to lower missing rates. The actual number of the clones were
set to 10 for the S3 dataset. The number of clones inferred by our proposed method was
around 10 at all levels of missing values whereas, for RobustClone, it was close to 7.
As the number of clones inferred by ARCANE-ROG was more comparable to ground
truth data, tree distance and V-measure were also superior to RobustClone. Lower
values of tree distance and high V-measure further suggest that the performance of
our proposed method was not much affected by increasing missing rates, and it was
able to reconstruct the clonal evolutionary pattern. Overall, ARCANE-ROG performed
significantly (p-value < 0.05) superior to the other method at varying rates of missing
bases.
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(a) Reconstruction error

(b) FPFN ratio (c) Number of clones inferred

(d) V-measure (e) Tree distance

Figure 6.7: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone at varying rates of γ. (a) Reconstruction error and (b) FPFN ratio increased gradually
with an increase in γ but had the highest value when the missing rate was 50% i.e. only 50%
of the entries are observed in the data. (c) Number of clones were inferred to be around 10
at all missing rates thereby suggesting that the matrices have been accurately reconstructed in
the denoising stage. (d) V-measure was nearly 1 at 0.1 (10%) missing rate while it gradually
decreased with an increase in the γ. (e) Tree distance was also close to 0 at 0.1(10%) miss-
ing rate and after that, it gradually increased with an increase in γ. Overall, ARCANE-ROG
significantly (p-value < 0.05) outperformed RobustClone at all percentages of observed values
making it robust to the varying rates of missing entries.

Performance with varying mutation sites

In the S4 dataset, the number of mutation sites was varied from 100 to 500, 1000 and
2000, while the number of cells was set to 500, α to 0.01, β to 0.2 and γ to 0.2 and
the number of clones to 10. When the number of mutations was 100, the reconstruction
error and FPFN ratio was highest, as shown in Figures 6.8(a)-6.8(e). This was because
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(a) Reconstruction error

(b) FPFN ratio (c) Number of clones inferred

(d) V-measure (e) Tree distance

Figure 6.8: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone at varying number of mutations. (a) Reconstruction error and (b) FPFN ratio had the
maximum value when the number of mutations were 100 and it almost decreased to 0 at higher
number of mutations. (c) Number of clones were estimated to be around 10 irrespective of the
number of mutations. (d) V-measure was the lowest when the number of mutations were 100
while for the rest it was nearly 1. (e) Tree distance gradually decreased with an increase in the
number of mutations and was the highest when the number of mutations were 100. Overall,
ARCANE-ROG performed significantly better (p-value < 0.05) than RobustClone.

the overall size of the data was small, and hence, the algorithm was not able to recover
the original matrix accurately. However, the performance of the proposed method was
better than RobustClone. Further, the clones inferred at 100 mutations were above 10
and close to 11. This resulted in high tree distance and low V-measure. However,
tree distance and V-measure for ARCANE-ROG were better than RobustClone. When
the number of mutation sites changed to 500, 1000 and 2000, reconstruction error and
FPFN ratio decreased. The number of clones inferred was also close to 10, with low
tree distance and high values of V-measure. Tree distance error was close to 0, and V-
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measure was around 0.99 at these settings, indicating the efficacy of ARCANE-ROG.
RobustClone also performed comparative to our proposed method, but overall, the per-
formance of ARCANE-ROG significantly surpassed (p-value < 0.05) that of Robust-
Clone.

(a) Reconstruction error

(b) FPFN ratio (c) Number of clones inferred

(d) V-measure (e) Tree distance

Figure 6.9: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone at varying number of cells and clones. (a) Reconstruction error and (b) FPFN ratio had
the maximum value when the number of cells were 100 and number of clones was set to 10.
For 500 cells and 20 clones, reconstruction error and FPFN ratio had the minimum value which
gradually increased with an increase in the number of cells and clones. (c) Number of clones
estimated by ARCANE-ROG were close to the actual number of clones while RobustClone un-
derestimated the number of clones. (d) V-measure was the lowest when the number of cells
and clones were set to 100 and 10 respectively. It had the maximum value for 500 cells and 20
clones after which there was a gradual decrease with an increase in number of cells and clones.
(e) Tree distance gradually increased with an increase in the number of cells and clones. Overall,
ARCANE-ROG outperformed RobustClone. There was a significant improvement significantly
(p-value < 0.05) in the performance.
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Performance with varying cells and number of clones

In the S5 dataset, the number of cells was varied along with the number of clones,
while the number of mutation sites was set to 500, α to 0.01, β to 0.2 and γ to 0.2.
Though the reconstruction error and FPFN ratio were highest at 100 cells and 10 clones
in ARCANE-ROG, it was lower than RobustClone. At 500 cells and 20 clones, the re-
construction error and FPFN ratio was lowest in ARCANE-ROG. It increased slightly
as the number of cells and the number of clones increased, as shown in Figure 6.9(a)-
6.9(e). On the contrary, the performance of RobustClone degraded sharply as the num-
ber of cells and the number of clones increased, with the highest reconstruction error
and FPFN ratio being observed at 2000 cells and 40 clones. Tree distance increased
with an increase in the number of cells and clones in ARCANE-ROG, but it was less
than what was observed for RobustClone. The increase in tree distance can also be at-
tributed to the increase in the size of the data matrices. The number of clones inferred
by the Leiden method in ARCANE-ROG consistently increased with an increase in the
size of the input data and was closer to the ground truth values compared to Robust-
Clone. The performance of RobustClone was poor when the number of cells was 2000,
and the number of clones was 40. The number of clones was not inferred correctly by
RobustClone. It predicted less number of clones leading to high values of tree distance
error and low values of V-measure. Overall, ARCANE-ROG surpassed RobustClone
owing to its robust performance. The improvement in the performance was statistically
significant (p-value < 0.05).

(a) Reconstruction error (b) FPFN ratio

Figure 6.10: Boxplots for comparison of the proposed ARCANE-ROG method with GRMT
and RobustClone for 50 datasets of size 500 × 100. (a) Reconstruction error and (b) FPFN
ratio had the lowest values for ARCANE-ROG. The values are significantly less as compared to
GRMT and RobustClone.
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(a) Reconstruction error (b) FPFN ratio

Figure 6.11: Boxplots for comparison of the proposed ARCANE-ROG method with GRMT
and RobustClone for 12 datasets of size 500 × 500. (a) Reconstruction error and (b) FPFN
ratio had the lowest values for ARCANE-ROG. The values are significantly less as compared to
GRMT and RobustClone.

Comparison with GRMT algorithm

We have compared the results of our method with GRMT. Our method significantly per-
forms better and faster than GRMT. GRMT took more than 24 hours on a 98GB RAM
workstation while using 40 cores to compute results on 12 datasets of size 500 × 500.
On the other hand, ARCANE-ROG and RobustClone computed results on the same
data within 30 min using single core on the same system. Since GRMT is computation-
ally very heavy, we have computed results on two datasets of small sizes: 500 × 100

with 500 cells and 100 mutations and 500 × 500 with 500 cells and 100 mutations. α
was set to 0.01, β was set to 0.2, γ was set to 0.2 and number of clones were set at 10
for these two datasets. We could only compute Reconstruction error and FPFN ratio.
We could not compute the V-measure and Tree distance for GRMT because GRMT
generates tree as output that has a format different from the one used in our method for
evaluation. We tried to contact the authors regarding the same because it appears that
they modified their tree to calculate the tree evaluation metrics, but we could not get
a code for computing tree evaluation metrics from them. Figure 6.10 shows results on
dataset of size 500 × 100. ARCANE-ROG has the lowest median reconstruction error
(0.0076) and FPFN ratio (0.1507) and these values were significantly less than those
obtained via GRMT (p-value < 0.05) and Robustclone (p-value < 0.05). For this data,
GRMT performed significantly better than RobustClone but inferior as compared to
ARCANE-ROG. In addition, GRMT was computationally expensive than ARCANE-
ROG and RobustClone. It took around 7 hours to compute results on 50 datasets of size
500 × 100 using 40 cores on a 98GB RAM computer, while ARCANE-ROG and Ro-
bustClone computed results within 30 min for 50 datasets using single core on a 98GB
RAM computer. Figure 6.11 shows results on dataset of size 500 × 500. ARCANE-
ROG has the lowest median reconstruction error (8e−04) and FPFN ratio (0.0167) and
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these values were significantly less than those obtained via GRMT (p-value < 0.05) and
Robustclone (p-value < 0.05). For this data, GRMT performed significantly inferior to
both ARCANE-ROG and RobustClone. In addition, GRMT was computationally ex-
pensive than both the methods.

6.3.3 Performance on Real Datasets

There is no ground truth in real single-cell datasets. Therefore, to compare the perfor-
mance of our proposed method with RobustClone on real datasets, we simulated data
imitating the characteristics of real datasets in terms of the missing values, false posi-
tives and false negatives. The size of the simulated datasets was fixed to the size of the
real datasets.

‘JAK2-negative myeloproliferative neoplasm’ dataset

Performance of ARCANE-ROG was evaluated for the different datasets generated ac-
cording to the real data of JAK2-negative myeloproliferative neoplasm. Maximum re-
construction error, tree distance and lowest V-measure was observed when the data was
corrupted with missing entries, false positives and false negatives as shown in the Fig-
ure C.1. The number of clones inferred by ARCANE-ROG was close to the ground
truth in the simulated data, i.e. 5. RobustClone underestimated the number of clones. It
can be deduced from these experiments that our proposed method performed superior
to RobustClone under varied settings of the simulated dataset. Further, it was able to
recover missing entries and remove the noise from the real scSNV data. The adjacency
graph learned during the denoising process was used for finding subclones via the Lei-
den algorithm. 2 clones were identified, and the number of cells in each clone was 29.
The pattern of clonal evolution identified in the data was linear, i.e. all the subclones
were connected linearly one after the other, as shown in Figure C.6(a). Results deduced
via ARCANE-ROG are consistent with the previous findings in [216, 220, 219].

‘Muscle-invasive bladder transitional cell carcinoma’ dataset

When the simulated data had missing entries, false positives and false negatives, re-
construction error and tree distance were maximum, and V-measure was minimum as
shown in the Figure C.2. For all the settings, ARCANE-ROG was able to accurately
predict the number of subclones compared to RobustClone. Given the superior per-
formance of ARCANE-ROG at simulated datasets, it can be concluded that it would
perform better at the real dataset also. ARCANE-ROG was able to recover missing
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Figure 6.12: Comparison of the results obtained on real dataset of (ER +) breast cancer data. A.
MAP (Maximum a posteriori) tree for the cancer data deduced via SCITE. MAP tree provided
the order of the mutations acquired progressively during the cancer progression B. Sequential
acquisition of mutations in the clonal tree inferred by ARCANE-ROG. Our proposed method
provides the order of clones but it does not provide the order of mutations within the clones,
hence SCITE was used to infer the sequence of mutations within the clones. Green colored
genes indicate non-synonymous mutations in known cancer genes, Magenta colored gene indi-
cate non-synonymous mutations in known cancer genes that are identified actionable according
to TARGET and COSMIC database and Red colored genes indicate actionable mutations. C.
Clonal tree deduced via ARCANE-ROG. Seven clones were inferred in the data. Blue colored
genes indicate the genes acquired in the clone and rest of the genes are carried forward from
their parent clone. m denotes the number of cells.

values and learn the adjacency graph from the noisy matrix. An adjacency graph was
further used to infer three main subclones in the data, with two of the subclones having
emerged from the third subclone as shown in Figure C.6(b). There were 16, 17 and 11
cells in each subclone, respectively. The findings were consistent with the conclusions
of [235].
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‘Clear-cell renal-cell carcinoma’ dataset

For the simulated data, reconstruction error and tree distance were the maximum when
the data was corrupted with missing values, false positives as well false negatives
as shown in the Figure C.3. At this setting, the number of clones inferred by both
ARCANE-ROG and RobustClone was 2, which is not equal to the ground truth data
value of 3. However, V-measure for ARCANE-ROG was still higher than RobustClone,
thereby suggesting that ARCANE-ROG could cluster similar cells together efficiently.
In other settings, the number of clones estimated by ARCANE-ROG was close to the
ground truth value, 3, as opposed to RobustClone, which underestimated the clones.
FPFN ratio was calculated only when the simulated data had both the false positives and
false negatives along with the missing entries. Overall, ARCANE-ROG outperformed
RobustClone. Hence, results inferred by our proposed method can be considered more
accurate than RobustClone for the real dataset. Five subclones were identified via our
proposed method in the data. The linear pattern was dominant in the clonal tree inferred
as shown in Figures C.6(c) and C.7, which was also observed in [215, 219]. FGFR4 was
found to be mutated, which is an actionable gene according to the TARGET/COSMIC
database.

‘Estrogen-receptor positive (ER+) breast cancer’ dataset

There were no missing values in the breast cancer dataset; therefore, datasets with only
false positives and false negatives were simulated. Our proposed method worked su-
perior as compared to RobustClone in terms of low reconstruction error, low FPFN
ratio, low tree distance error and high V-measure as shown in Figure C.4. The num-
ber of clones inferred by ARCANE-ROG was close to the ground truth value of 5.
Hence, ARCANE-ROG is capable of efficiently identifying the pattern of clonal history.
For the real data, seven subclones were inferred, as shown in Figure 6.12. Subclones
were arranged in a linear pattern initially and evolved into a more complex branch-
ing pattern, later on, giving rise to four different subclones as shown in the Figure
C.6(d). These findings were also reported in [212]. Further, in the linear pattern, non-
synonymous mutations were identified in genes- PIK3CA, CASP3, FBN2 and PPP2RE.
PIK3CA and FGFR2 were identified as actionable mutated genes according to the TAR-
GET/COSMIC database. The order of mutations in individual clones was deduced us-
ing SCITE [219].
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‘High grade serious ovarian cancer (HGSOC)’ dataset

HGSOC dataset contains 10.7% missing values, and there are no false positives and
false negatives in the data. Hence, datasets with only missing entries were generated.
ARCANE-ROG had low reconstruction, low tree distance and high V-measure in com-
parison to another method (Figure C.5). ARCANE-ROG detected the number of clones
close to the ground truth value of 8 at all instances. For the real data, our proposed
method inferred 6 clones in the data as shown in Figure C.6(e). The results are consis-
tent with the findings in [221]. The number of cells in each cluster are 89 (subclone1),
34 (subclone2), 36 (subclone3), 67 (subclone4), 83 (subclone5) and 111 (subclone6).
The root clone has 36 cells which are close to what was predicted in the original study
([221]), where the root clone had 35 cells. Further, the total cells in the two subclones
on the left are 123. In the original study by [221], the subclone to the left of the tree had
123 cells. The findings are similar; however, the only difference here is that the clone
has been split into two.

6.4 Discussion

In this study, we designed a novel method, ARCANE-ROG, to reconstruct cancer evo-
lutionary patterns from single-cell DNA data. The first step is a graph learning-based
framework where the input to the method is a binary genotype matrix containing miss-
ing entries and errors in the form of false positives and false negatives. ARCANE-ROG
denoises the input matrix and imputes missing entries in the data. It simultaneously
learns an adjacency graph during the denoising process. Both the operations are imple-
mented together, resulting in the overall improvement in the algorithm’s performance.
In the second step, the adjacency graph is used to infer subclones in the data via the
Leiden algorithm. Finally, the clonal tree is inferred using a minimum spanning tree
algorithm. The performance of the algorithm has been validated on the simulated as
well as on the real datasets.

ARCANE-ROG method has been tested on 1000 simulated datasets of different sizes
and under different settings via multiple evaluation metrics. Results on all the sim-
ulated datasets are compiled and shown in Table 6.1. Reconstruction error and FPFN
ratio test the accuracy of the denoising step, V-measure assesses the efficacy of the clus-
tering step and Tree reconstruction error evaluates the correctness of the inferred tree.
ARCANE-ROG is robust to changes in the number of cells and clones. It has a statis-
tically significant (p-value < 0.05) low reconstruction error, low tree distance error and
low FPFN ratio for small as well as large number of cells as compared to RobustClone.
V-measure is also significantly higher than the other method for the varying number of
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Table 6.1: Performance comparison of ARCANE-ROG with RobustClone for different values
of false positive rate (α), false negative rate (β), missing bases rate (γ), number of mutation sites
(n) and number of cells (m) and clones (s). Checkmark indicates that ARCANE-ROG performed
significantly better than RobustClone while cross indicates that RobustClone performed better
than ARCANE-ROG. RE: Reconstruction error, FPFN ratio: False positive to false negative
ratio, TD: Tree distance error and VM: V-measure.

RE FPFN ratio TD VM #clones

β= γ = 0.2
n= m= 500
s= 10

α 0.001 ✓ ✓ ✓ ✓ ✓
0.01 ✓ ✓ ✓ ✓ ✓
0.1 ✗ ✗ ✓ ✓ ✓
0.2 ✓ ✓ ✓ ✗ ✓

α= 0.01
γ = 0.2
n= m= 500
s= 10

β 0.1 ✓ ✓ ✓ ✓ ✓
0.2 ✓ ✓ ✓ ✗ ✓
0.3 ✓ ✓ ✓ ✓ ✓
0.4 ✓ ✓ ✓ ✓ ✓

α= 0.01
β = 0.2
n= m= 500
s= 10

γ 0.2 ✓ ✓ ✓ ✓ ✓
0.3 ✓ ✓ ✓ ✓ ✓
0.4 ✓ ✓ ✓ ✓ ✓
0.5 ✓ ✓ ✓ ✓ ✓

α= 0.01
β= γ = 0.2
m= 500
s= 10

n 100 ✓ ✓ ✓ ✓ ✓
500 ✓ ✓ ✓ ✓ ✓

1000 ✓ ✓ ✓ ✓ ✓
2000 ✓ ✓ ✓ ✓ ✓

α= 0.01
β= γ = 0.2
n= 500

m,s
100 cells
10 clones ✓ ✓ ✓ ✓ ✓

500 cells
20 clones ✓ ✓ ✓ ✓ ✓

1000 cells
30 clones ✓ ✓ ✓ ✓ ✓

2000 cells
40 clones ✓ ✓ ✓ ✓ ✓

cells. In addition, it is also robust to changes in the number of mutation sites. Though
reconstruction is a bit high for the small number of mutation sites, reconstruction er-
ror reduces significantly for the larger number of mutations along with low FPFN ratio
and low tree distance error. Further, ARCANE-ROG is resilient to alterations in false
positives, false negatives and missing bases.

We have further evaluated the performance of ARCANE-ROG on real datasets of vary-
ing sizes. Additionally, we have generated simulated datasets imitating characteristics
of real data and tested the performance of ARCANE-ROG on these datasets (Table 6.2).
ARCANE-ROG can reconstruct clonal patterns very similar to the ground truth clonal
pattern of the simulated datasets under diverse settings. The tree distance error, recon-
struction error and low FPFN ratio are statistically significantly (p-value < 0.05) lower
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Table 6.2: Performance comparison of ARCANE-ROG with RobustClone for simulated
datasets generated for real data under varying conditions of false positive rate (α), false neg-
ative rate (β), and missing bases rate (γ). Checkmark indicates that ARCANE-ROG performed
significantly better than RobustClone while cross indicates that RobustClone performed better
than ARCANE-ROG. RE: Reconstruction error, FPFN: False positive to false negative ratio,
TD: Tree distance error and VM: V-measure. R1: JAK2-negative myeloproliferative neoplasm,
R2:Muscle-invasive bladder transitional cell carcinoma, R3: real Clear-cell renal-cell carci-
noma, R4: ER(+) breast cancer and R5: High grade serious ovarian cancer

RE FPFN TD VM #clones

R1
γ=0.58 ✓ - ✓ ✓ ✓

γ=0.58 , α=6.4x10−5 ✓ - ✓ ✓ ✓

γ=0.58 , α=6.4x10−5, β=0.42 ✓ ✓ ✓ ✓ ✓

R1
γ=0.55 ✓ - ✓ ✓ ✓

γ=0.55 , α=6.7x10−5 ✓ - ✓ ✓ ✓

γ=0.55 , α=6.7x10−5, β=0.4 ✓ ✓ ✓ ✓ ✓

R1
γ=0.22 ✓ - ✓ ✓ ✓

γ=0.22 , α=2.67x10−5 ✓ - ✓ ✓ ✓

γ=0.22 , α=2.67x10−5, β=0.16 ✓ ✓ ✓ ✓ ✓

R4 α=1.24x10−6, β=0.097 ✓ ✓ ✓ ✗ ✓

R5 γ=0.11 ✓ - ✓ ✓ ✓

than RobustClone. High values of V-measure indicate that cells have been accurately
assigned to different clusters.

6.4.1 Significance of denoising in clonal trajectory inference

Denoising the single-cell data is important because noisy data may impair the inference
of clonal trajectory. It is evident from Figure 6.4(a) that in the presence of noise in the
input data, the number of clones was overestimated for n = 100 and underestimated for
n > 100. n represents the number of mutation sites. On the contrary, the clones inferred
via denoised data were close to 10 at all settings. A similar observation was made for
tree distance and V-measure which were high and low respectively for the noisy data
compared to the denoised data for all values of n. Hence, it can be corroborated from
the experiments that denoising is a critical step for the accurate identification of clones
and precise inference of clonal trajectory from the noisy data.
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6.4.2 Significance of deducing optimal number of clones and hier-
archical order of mutations

ARCANE-ROG can predict an optimal number of clones compared to RobustClone,
which underestimates the number of clones. First of all, clones are inferred from the
denoised matrix via the Louvain-Jaccard algorithm in RobustClone. Recently, it was
shown that the Leiden algorithm outperforms Louvain by determining better partitions
in the data [226], contrary to the Louvain method, which may yield poorly connected
clusters in the data. Secondly, improper denoising of the noisy matrix may also lead
to a sub-optimal number of clusters in the data. However, in ARCANE-ROG, we use
an adjacency matrix learnt during the denoising step to infer the optimal number of
clones via the Leiden method, which ensures the identification of the optimal number
of clones in the data. Consequently, the clonal tree constructed by ARCANE-ROG is
more precise and accurate. We validated our findings on real datasets.

As of now, knowledge on the predetermined order of mutations, i.e., the order in which
they are acquired in cancer, is limited, but the sequential acquisition of the mutations
does influence cancer progression. Thus, deciphering a correct order of mutation may
assist us in drawing more relevant and significant biological findings from the data.
The mutation tree inferred by ARCANE-ROG for the breast cancer data was compared
with the MAP tree inferred by SCITE. The clonal tree initially grouped the cells having
similar mutations into clones, and then we deduced the sequence of mutations in indi-
vidual clones by applying SCITE. Figure 6.12 shows the variation in the sequence of
mutations. According to the TARGET and COSMIC database, genes in red color are
actionable genes, genes in green indicate non-synonymous mutations in known cancer
genes and genes in magenta color are both non-synonymous mutations in known can-
cer and actionable genes. FBN2 precedes PIK3CA and PPP2RE precedes CASP3 in
the tree inferred by ARCANE-ROG (Figure 6.12B) contrary to what is observed in the
tree inferred by SCITE in Figure 6.12A. In a recent study ([237]), FAK/ERK signaling
pathway was found to be inhibited by the suppression of the FBN2 gene in lung cancer,
which validates our finding that the FBN2 gene may mutate before PIK3CA as the FAK
signaling pathway affects PIK3 pathway. The progressive acquisition of the mutations
is, thus, dependent on the initial clustering of cells. Hence, it is important to deduce the
optimal number of clusters from the data as sub-optimal clusters may affect the order
of mutations and lead to inaccurate information on the trajectory of mutations.

Cancer is a highly heterogeneous disease consisting of a clonal and sub-clonal pop-
ulation of mutations. Different combinations of chemotherapy drugs are utilized as
treatment therapy to prolong the survival of cancer patients, where each drug targets a
specific cancer pathway or a clone. A precise and accurate estimation of the clones and
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their trajectory pattern may aid in comprehending the phenomenon of drug resistance
in patients and assist in deciding the treatment therapy for the patient.

6.4.3 Conclusion

ARCANE-ROG performs well for small datasets of size 17 × 35 to large datasets of
size 2000× 500 under varying conditions of false-positive rate, false-negative rate and
missing bases, thereby divulging its robustness. Further, ARCANE-ROG can deduce a
more precise estimation of the cancer evolutionary pattern from real data. It has signifi-
cantly outperformed RobustClone in terms of reconstruction error, FPFN ratio, number
of clones, tree distance and V-measure. Our proposed method is a reliable and compu-
tationally fast method for recovering clonal patterns from single-cell data of all sizes,
capable of efficiently dealing with the increasing size of the single-cell data. Overall,
the proposed method is an improvement over the existing methods as it enhances cluster
assignment and inference on clonal hierarchies. The biological information, thus, de-
duced would be superior in understanding the sequence of molecular oncogenesis and
drug resistance in this era of targeted therapy.



Chapter 7

Conclusion and Future Work

In this dissertation, we proposed robust and efficient solutions to address challenges in
cancer genomics. We successfully validated the significance of our proposed methods
qualitatively as well as quantitatively.

In chapter 2, we proposed a CS-based framework for addressing the problem of missing
values in gene expression data. The novelty of this method is the utilization of row and
column sparsity of the gene expression matrix in the Discrete Cosine Transform domain
to recover missing values. We demonstrated the robustness of the proposed method on
different cancer datasets at low and high observability of data. We further revealed
the significance of the imputation via classification and biological pathway analysis.
The proposed method was tested mainly on bulk RNA (microarray) data. However,
this work could be extended to impute missing values in single-cell RNA sequencing
(scRNA) data. Missing values in scRNA arise from dropout events which lead to non
biological zero gene expression values and might negatively impact the following data
analysis. The method needs to be adjusted to account for the properties of single-cell
data. scRNA represents the expression values of individual cells across genes where
cells are indicative of different cell types. DCT might not work for this data, so we
may need to explore other constraints in addition to nuclear norm for imputing missing
values.

In chapter 3, we studied the genomic landscape of clonal evolution in Multiple Myeloma
(MM) using the bulk-sequencing whole-exome data of 62 MM patients collected at two
time points at AIIMS, New Delhi, first at the time of diagnosis, followed by a sec-
ond instant on the progression of MM. A comparative analysis of the variants at the
two time points along with an in-depth analysis of evolving founder clones revealed
multiple driver mutations, including those known to be actionable. Based on these ac-
tionable genes, medical treatment tailored to the genetic landscape of the patient could
be provided to slow down the progression of disease or to prevent relapse in the pa-
tients. Branching evolution was observed in among 72.58% patients, of whom 64.51%
had low TMBs and 61.29% had 2 or more founder clones. The hypermutator patients
(with high TMB levels 10 to 100) showed a significant decrease in their TMBs from
diagnosis to progression. Fall in the subclonal driver mutations was identified recur-
rently in genes like PABPC1, BRAF, KRAS, CR1, DIS3 and ATM while an analogous
rise in driver mutations was observed in KMT2C, FOXD4L1, SP140, NRAS and other
genes. The findings of the study are clinically relevant and highlight the importance of
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evaluating temporal mutational data for designing better risk stratification strategies and
risk adapted combination therapies in future. However, the observations in this data are
based on a cohort of 62 patients and in future, these findings could be validated on the a
larger cohort of patients. Not only this, single cell exome analysis could be performed
on the data to validate the findings of the current study because single cell data provides
better resolution. Additionally, whole genome data could be used to further confirm the
findings from the exome study as it provides a comprehensive spectrum of mutations.
Whole genome data of MM is available through authorized access from dbGaP.

MM is preceded mainly by benign state of Monoclonal Gammopathy of Undetermined
Significance (MGUS). MGUS patients do not show any clinical symptoms, unlike MM.
However, recent studies have shown that the critical genomic alterations found in MM
are also present in MGUS. Thus, in chapter 4, we evaluated the bulk-sequencing ex-
ome data of 61 MGUS and 1018 MM patients for a detailed investigation of the change
in the mutational spectrum as the disease progresses from MGUS to MM. There was
a statistically significant increase in the frequency of all the three categories of vari-
ants, non-synonymous (NS), synonymous (SYN), and others (OTH), from MGUS to
MM (P<0.05). However, there was a statistically significant rise in the TMB values
for TMB_NS and TMB_SYN only. It was observed that 3’ and 5’UTR mutations
were more frequent in MM and might be responsible for driving MGUS to MM via
regulatory binding sites. This study also revealed the association of high TMB with
newly diagnosed multiple myeloma patients by utilizing the survival data of the MM
patients. There was a statistically significant increase in the TMB between patients with
poor outcome and superior outcome. A statistically significant association between the
APOBEC activity and poor overall survival in MM was discovered. These findings
have potential clinical relevance and can assist in designing risk-adapted therapies to
inhibit the progression of MGUS to MM and prolong the overall survival in high-risk
MM patients. However, this result could be validated further in future using a larger
MGUS dataset as the size of the MGUS dataset used in the current study was very
small compared to MM. It is challenging to diagnose MGUS owing to the benign con-
dition; hence, genomic data of MGUS is not available easily. Therefore, creating a
large cohort by collecting genomic data of MGUS is in itself a research problem. For a
clear understanding of the factors responsible for the progression of MGUS to MM, it
is important to study larger cohort of MGUS patients in future.

In chapter 5, an ethnicity-aware AI-supported risk staging system, Consensus based
Risk Staging system (CRSS), was developed for newly diagnosed multiple myeloma
patients. The proposed method is based on easy to acquire clinical parameters like age,
albumin, β2M, hemoglobin, eGFR, calcium and the presence of cytogenetic abnormali-
ties in the patient, along with ethnicity information. We validated CRSS on two different
datasets belonging to two ethnicities. The performance of CRSS was remarkably bet-
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ter compared to the existing risk staging gold standard for Myeloma, i.e. Revised ISS
(RISS) in terms of p-values, separation on KM curves, hazard ratios and concordance
index. In the future, the proposed risk staging method could be extended by including
MM datasets belonging to other ethnicities. Considering the impact of ethnicity on dis-
ease biology, utilizing datasets of multiple ethnicities will enhance the robustness and
utility of the proposed method. In addition to this, other prognostic factors could be
included in the model like therapy given and their response to the treatment. This might
help in re-evaluating the risk in the patients after therapy and help in deciding the future
course of treatment.

In chapter 6, we devised an optimization-based framework for denoising and imputing
noisy and incomplete single-cell data to infer patterns of clonal evolution from the de-
noised and complete single-cell data. We extensively validated our proposed method
on multiple simulated datasets using different evaluation metrics such as reconstruction
error, False positive to False Negative (FPFN) ratio, Tree distance and V-measure. We
also performed an ablation study on real datasets to examine the performance of our
method. Our method infers the number of clones present in the single-cell data and the
mutations and cells within each clone; however, we could further extend our method to
give the ordering of mutations within the different clones. Such an extension will help
find a detailed pattern of how mutations evolve within the tumor cells. Single-cell data
also suffers from the problem of doublets. Doublets appear when two (or more) cells
are falsely considered to be a part of the same single cell during the time of capturing
and processing of single-cell data. So, the method can be further improved to deal with
doublets, leading to more accurate identification of clonal evolution patterns in the data.
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Appendix A

Missing value imputation in gene expression data

This Section contains additional results of Chapter 1 on imputation of gene expression
matrices in the form of tables and bargraphs on the four dataset- CLL, AML, MM-
Spanish and MM-India. It contains results obtained from KEGG pathway analysis.
These tables and figures are appropriately referred in the main manuscript.

Table A.1: Classification accuracy and F1 scores on different sampling percentage of incom-
plete matrix and the recovered/imputed matrix on MM-Spanish data. SR stands for Sampling
ratio of observed data to the total data (in percentage)

Classification Accuracy F1 score

KNN Linear SVM
classifier KNN Linear SVM

classifier
SR Observed Recovered Observed Recovered Observed Recovered Observed Recovered
10 0.22 0.6 0.77 0.8 0.21 0.59 0.75 0.8
20 0.35 0.82 0.7 0.88 0.37 0.82 0.68 0.88
30 0.6 0.88 0.72 0.9 0.6 0.88 0.71 0.9
40 0.56 0.86 0.65 0.92 0.54 0.84 0.64 0.92
50 0.54 0.84 0.72 0.94 0.65 0.84 0.7 0.94
60 0.66 0.83 0.76 0.93 0.63 0.84 0.74 0.93
70 0.63 0.89 0.75 0.92 0.62 0.89 0.74 0.92
80 0.67 0.86 0.83 0.92 0.86 0.86 0.81 0.92
90 0.67 0.87 0.86 0.94 0.88 0.87 0.85 0.94
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Table A.2: Adjusted p-values for KEGG pathways at ground truth, 50% observed and imputed
data, 70% observed and imputed data for CLL dataset.

50% 70%

Term Ground
Truth Observed Recovered Observed Recovered

Pathways in cancer 2.75e-13 6.17e-07 1.08e-08 1.21e-11 5.59e-13
Transcriptional misregulation in cancer 3.30e-15 3.25e-15 1.82e-12 3.26e-15 6.98e-12
MAPK signaling pathway 3.13e-08 5.71e-06 1.50e-05 5.13e-12 5.25e-10
Acute myeloid leukemia 3.04e-08 3.31e-03 1.57e-04 3.01e-08 2.79e-07
T cell receptor signaling pathway 2.55e-08 2.28e-01 2.25e-01 2.40e-04 1.48e-05
Chronic myeloid leukemia 5.54e-08 9.35e-03 3.88e-05 3.44e-07 7.84e-09
HTLV-I infection 1.42e-07 5.35e-05 5.22e-07 5.13e-12 6.34e-07
Proteoglycans in cancer 5.69e-07 1.51e-03 1.85e-03 2.21e-05 8.40e-06
ErbB signaling pathway 2.56e-06 1.51e-01 2.73e-03 5.51e-05 5.09e-05
B cell receptor signaling pathway 1.66e-05 2.14e-01 2.11e-01 1.49e-03 1.40e-03
AGE-RAGE signaling pathway 5.93e-05 4.02e-02 1.70e-02 1.91e-04 4.35e-05
Neurotrophin signaling pathway 6.74e-05 4.82e-03 3.88e-05 1.27e-07 3.38e-06
Wnt signaling pathway 8.33e-05 3.10e-02 2.13e-03 6.66e-05 1.90e-05
Signaling pathways regulating
pluripotency of stem cells 8.33e-05 6.01e-04 3.74e-06 5.33e-06 6.18e-05

Chemokine signaling pathway 1.13e-04 2.02e-01 2.47e-02 3.82e-02 8.19e-02
TNF signaling pathway 1.13e-04 2.81e-04 2.25e-02 1.94e-07 1.27e-06
TGF-beta signaling pathway 2.37e-04 1.27e-04 4.75e-04 4.27e-05 1.81e-04
Toll-like receptor signaling pathway 3.17e-04 6.52e-03 1.14e-01 1.57e-05 3.99e-06
PI3K-Akt signaling pathway 1.43e-03 2.71e-03 2.14e-02 3.31e-05 1.99e-04
p53 signaling pathway 2.67e-04 2.23e-03 2.47e-02 2.22e-04 9.81e-04
HIF-1 signaling pathway 1.02e-03 6.00e-03 1.82e-02 1.24e-05 1.99e-04
NF-kappa B signaling pathway 4.65e-04 1.48e-05 3.53e-03 9.93e-05 2.19e-05
Ras signaling pathway 1.96e-03 3.82e-02 3.99e-03 7.12e-04 4.73e-03
Jak-STAT signaling pathway 1.97e-03 2.03e-01 2.02e-01 1.49e-02 5.35e-03
Hippo signaling pathway 4.57e-03 1.10e-03 3.99e-04 1.49e-03 4.28e-04
FoxO signaling pathway 5.12e-03 5.27e-02 2.25e-02 1.56e-03 3.59e-05
Phospholipase D signaling pathway 8.76e-03 6.70e-01 1.50e-01 1.16e-01 5.33e-02
RNA degradation 2.04e-03 3.99e-03 1.45e-02 1.96e-03 8.58e-07
cGMP-PKG signaling pathway 2.17e-02 7.95e-01 7.87e-01 4.66e-02 4.79e-02
Insulin signaling pathway 1.96e-02 6.49e-01 6.39e-02 1.02e-01 1.81e-02
cAMP signaling pathway 5.82e-02 5.60e-01 2.36e-01 1.05e-02 5.33e-02
NOD-like receptor signaling pathway 1.74e-03 3.31e-03 1.21e-01 1.56e-03 1.18e-05
Fc epsilon RI signaling pathway 1.72e-02 3.98e-01 1.83e-01 5.07e-02 1.60e-02
RIG-I-like receptor signaling pathway 6.08e-02 2.02e-01 7.16e-01 1.79e-02 4.73e-03
Notch signaling pathway 2.00e-01 2.95e-04 6.94e-03 5.76e-02 1.56e-02
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Table A.3: Adjusted p-values for KEGG pathways at ground truth, 50% observed and imputed
data, 70% observed and imputed data for AML dataset.

50% 70%

Term Ground
Truth Observed Recovered Observed Recovered

Signaling pathways regulating
pluripotency of stem cells 2.76e-12 2.06e-19 1.63e-17 1.57e-15 1.02e-12

Pathways in cancer 2.71e-09 6.56e-10 8.63e-06 2.81e-11 2.81e-11
HTLV-I infection 1.58e-05 5.59e-07 2.86e-04 2.34e-06 2.34e-06
Hippo signaling pathway 9.62e-06 2.21e-06 3.11e-05 2.99e-07 7.10e-06
Transcriptional misregulation in cancer 1.58e-05 5.42e-04 1.37e-07 2.71e-08 2.71e-08
TGF-beta signaling pathway 2.47e-05 9.89e-07 1.15e-06 2.30e-09 1.15e-06
FoxO signaling pathway 1.21e-04 6.34e-06 4.98e-02 6.27e-06 1.23e-06
Proteoglycans in cancer 6.57e-04 7.41e-05 1.89e-04 2.00e-07 2.00e-07
Hedgehog signaling pathway 4.57e-04 7.41e-05 1.48e-03 2.31e-04 8.04e-03
Cytokine-cytokine receptor interaction 1.33e-03 1.27e-02 7.11e-03 1.09e-03 3.57e-06
p53 signaling pathway 6.57e-04 5.56e-04 1.66e-03 1.66e-03 5.31e-05
PI3K-Akt signaling pathway 2.97e-03 2.53e-04 1.02e-03 1.02e-03 5.26e-07
Wnt signaling pathway 2.02e-03 5.88e-04 8.98e-04 2.65e-02 2.40e-04
T cell receptor signaling pathway 2.24e-03 2.36e-03 4.64e-02 4.58e-03 1.19e-03
Jak-STAT signaling pathway 4.38e-03 1.61e-04 6.49e-03 6.36e-04 6.36e-04
HIF-1 signaling pathway 6.72e-03 1.61e-04 5.36e-05 4.32e-03 1.02e-05
ErbB signaling pathway 8.50e-03 2.30e-02 6.12e-03 6.12e-03 1.50e-03
Neurotrophin signaling pathway 1.67e-02 8.99e-02 8.08e-02 1.06e-02 1.06e-02
MAPK signaling pathway 2.47e-02 3.26e-04 1.23e-02 2.49e-04 8.05e-05
Ras signaling pathway 4.98e-02 1.89e-02 2.09e-01 6.22e-04 4.70e-06
Toll-like receptor signaling pathway 6.60e-02 1.33e-01 2.74e-01 1.27e-01 1.71e-02
AGE-RAGE signaling pathway 1.20e-01 5.35e-03 7.22e-01 3.83e-03 4.47e-05
cGMP-PKG signaling pathway 1.60e-01 4.41e-01 7.91e-01 2.40e-01 2.48e-02
TNF signaling pathway 1.60e-01 1.48e-01 7.65e-01 2.05e-02 6.40e-03
Rap1 signaling pathway 2.00e-01 1.99e-01 4.33e-01 7.02e-03 2.42e-05
NOD-like receptor signaling pathway 5.43e-02 1.40e-01 4.19e-01 5.40e-02 2.92e-03
AMPK signaling pathway 2.12e-01 5.91e-03 3.98e-03 1.27e-02 2.85e-04
Fc epsilon RI signaling pathway 2.12e-01 2.54e-02 5.10e-01 9.04e-02 2.75e-02
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Table A.4: Adjusted p-values for KEGG pathways at ground truth, 50% observed and imputed
data, 70% observed and imputed data for MM-Spanish dataset.

Term 50% 70%
Ground
Truth Observed Recovered Observed Recovered

Epstein-Barr virus infection 6.07e-08 8.04e-03 2.16e-03 3.61e-04 8.59e-07
T cell receptor signaling pathway 2.31e-05 6.10e-02 2.76e-02 2.34e-03 1.41e-03
Pathways in cancer 1.18e-04 1.92e-04 5.94e-09 3.37e-03 2.07e-05
RNA polymerase 4.92e-05 3.32e-01 3.43e-01 3.47e-01 3.84e-02
RNA degradation 1.18e-04 5.45e-02 4.26e-04 4.60e-02 7.65e-03
MAPK signaling pathway 4.50e-04 1.40e-01 2.81e-02 2.58e-02 4.67e-02
NF-kappa B signaling pathway 4.10e-04 5.83e-01 9.61e-02 3.57e-02 4.04e-02
FoxO signaling pathway 1.59e-03 6.95e-02 1.82e-03 1.54e-03 2.56e-03
Apoptosis 2.22e-03 7.94e-01 3.99e-02 7.59e-02 1.67e-02
Neurotrophin signaling pathway 2.22e-03 9.39e-02 2.25e-03 4.08e-02 4.51e-02
HTLV-I infection 2.62e-03 9.13e-03 2.36e-01 8.16e-03 1.18e-03
Ras signaling pathway 5.26e-03 1.46e-01 2.81e-02 2.37e-01 4.67e-02
Rap1 signaling pathway 6.37e-03 3.65e-02 3.36e-02 1.83e-01 5.83e-02
Thyroid hormone signaling pathway 6.22e-03 2.80e-03 2.16e-03 5.64e-04 1.25e-03
PI3K-Akt signaling pathway 6.62e-03 1.91e-02 4.02e-03 3.37e-03 1.58e-02
AGE-RAGE signaling pathway in
diabetic complications 6.59e-03 2.65e-02 2.38e-02 1.07e-01 9.55e-03

VEGF signaling pathway 6.25e-03 1.58e-01 6.69e-02 1.55e-01 1.53e-01
RNA transport 7.73e-03 2.74e-01 1.66e-01 8.34e-02 1.07e-02
HIF-1 signaling pathway 6.89e-03 1.20e-01 9.45e-03 2.50e-02 2.31e-01
Transcriptional misregulation in cancer 1.03e-02 8.04e-03 2.91e-04 5.41e-02 1.33e-03
Fc epsilon RI signaling pathway 8.37e-03 6.67e-01 9.37e-02 1.94e-01 1.94e-01
Signaling pathways regulating
pluripotency of stem cells 1.43e-02 5.00e-03 8.24e-03 3.57e-03 9.28e-03

Prolactin signaling pathway 1.09e-02 4.33e-01 4.07e-02 3.68e-02 4.16e-02
ErbB signaling pathway 2.54e-02 1.58e-01 3.08e-02 3.96e-03 1.12e-02
cAMP signaling pathway 4.16e-02 5.00e-03 3.50e-05 2.50e-02 4.67e-02
B cell receptor signaling pathway 3.66e-02 2.26e-01 4.23e-02 9.69e-02 1.04e-01
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Table A.5: Adjusted p-values for KEGG pathways at ground truth and 70% observed and
imputed data for MM-Indian dataset.

Term 70%
Adjusted
p-value Observed Recovered

Signaling pathways regulating
pluripotency of stem cells 3.23e-03 3.31e-04 2.26e-05

Pathways in cancer 4.65e-03 3.43e-04 1.00e-04
PI3K-Akt signaling pathway 3.30e-03 5.46e-03 7.06e-04
Proteoglycans in cancer 3.72e-03 5.68e-04 7.84e-05
Ras signaling pathway 4.93e-03 2.42e-02 1.54e-02
Breast cancer 4.33e-03 4.45e-04 1.53e-03
Gastric cancer 4.26e-03 6.27e-05 8.14e-05
T cell receptor signaling pathway 8.44e-03 8.61e-02 3.07e-03
Non-small cell lung cancer 7.95e-03 5.50e-03 1.12e-02
Transcriptional misregulation in cancer 7.82e-03 5.55e-01 1.37e-03
ErbB signaling pathway 7.59e-03 5.57e-03 3.48e-03
Regulation of actin cytoskeleton 8.59e-03 1.05e-01 1.36e-01
Spliceosome 1.31e-02 3.52e-04 1.51e-02
Pancreatic cancer 1.23e-02 2.89e-03 1.76e-02
Herpes simplex virus 1 infection 1.41e-02 5.43e-03 5.48e-04
Human papillomavirus infection 1.33e-02 1.02e-02 1.53e-03
HIF-1 signaling pathway 1.63e-02 3.36e-02 2.96e-05
Hepatocellular carcinoma 1.86e-02 3.17e-04 5.62e-04
Acute myeloid leukemia 2.07e-02 1.64e-02 7.61e-04
Colorectal cancer 2.14e-02 2.17e-03 3.30e-04
Renal cell carcinoma 2.43e-02 1.96e-02 3.48e-04
TGF-beta signaling pathway 2.49e-02 5.52e-02 9.17e-02
Rap1 signaling pathway 2.71e-02 4.73e-01 5.95e-02
Melanoma 2.62e-02 3.84e-01 1.52e-02
Primary immunodeficiency 2.55e-02 6.56e-01 5.53e-02
Cellular senescence 2.67e-02 3.84e-01 7.30e-03
Thyroid hormone signaling pathway 2.80e-02 1.36e-01 4.13e-02
Chronic myeloid leukemia 3.07e-02 9.44e-03 1.82e-02
Prostate cancer 3.06e-02 4.02e-03 7.19e-03
Sphingolipid signaling pathway 3.01e-02 6.91e-02 3.43e-04
Cell cycle 3.83e-02 1.67e-01 1.21e-01
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Figure A.1: Few important KEGG pathways at 50% observed and imputed data for CLL data.
Adjusted p-values are shown in brackets.

Figure A.2: Few important KEGG pathways at 70% observed and imputed data for CLL data.
Adjusted p-values are shown in brackets.
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Figure A.3: Few important KEGG pathways at 70% observed and imputed data for AML data.
Adjusted p-values are shown in brackets

Figure A.4: Few important KEGG pathways at 50% observed and imputed data for MM- Span-
ish data. Adjusted p-values are shown in brackets.
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Table A.6: KEGG pathways on CLL dataset

100% 50% 70%
Ground
Truth Observed Imputed Observed Imputed

1 Transcriptional misregulation in cancer_Homo sapiens_hsa05202
Overlap 31/180 31/180 28/180 31/180 27/180

Adj. p-value 3.30e-15 3.25e-15 1.82e-12 3.26e-15 6.98e-12
Comb. score 67.49 67.49 56.44 67.49 52.19

2 Pathways in cancer_Homo sapiens_hsa05200
Overlap 42/397 32/397 35/397 39/397 42/397

Adj. p-value 2.75e-13 6.17e-07 1.08e-08 1.21e-11 5.59e-13
Comb. score 69.69 39.19 47.65 57.57 70.58

3 Hepatitis B_Homo sapiens_hsa05161
Overlap 24/146 14/146 15/146 24/146 24/146

Adj. p-value 1.45e-11 2.80e-04 6.18e-05 1.08e-11 1.47e-11
Comb. score 54.83 18.06 20.59 54.09 54.83

4 Measles_Homo sapiens_hsa05162
Overlap 23/136 10/136 8/136 15/136 16/136

Adj. p-value 1.86e-11 9.35e-03 5.86e-02 1.20e-05 3.38e-06
Comb. score 50.89 4.87 0.75 16.69 22.20

5 Herpes simplex infection_Homo sapiens_hsa05168
Overlap 23/185 14/185 13/185 21/185 23/185

Adj. p-value 9.76e-09 1.83e-03 4.88e-03 1.27e-07 7.84e-09
Comb. score 37.11 10.24 7.75 28.19 36.58

6 T cell receptor signaling pathway_Homo sapiens_hsa04660
Overlap 17/104 5/104 5/104 11/104 13/104

Adj. p-value 2.55e-08 2.28e-01 2.25e-01 2.40e-04 1.48e-05
Comb. score 36.46 -1.59 -1.76 6.47 15.99

7 Acute myeloid leukemia_Homo sapiens_hsa05221
Overlap 13/57 7/57 9/57 13/57 12/57

Adj. p-value 3.04e-08 3.31e-03 1.57e-04 3.01e-08 2.79e-07
Comb. score 36.94 7.01 17.66 36.94 31.04

8 MAPK signaling pathway_Homo sapiens_hsa04010
Overlap 26/255 23/255 22/255 32/255 29/255

Adj. p-value 3.13e-08 5.71e-06 1.50e-05 5.13e-12 5.25e-10
Comb. score 37.06 30.54 27.12 60.04 48.47

9 Epstein-Barr virus infection_Homo sapiens_hsa05169
Overlap 23/202 18/202 18/202 21/202 25/202

Adj. p-value 3.13e-08 7.06e-05 5.87e-05 4.25e-07 1.81e-09
Comb. score 35.55 22.01 21.38 26.48 43.94

10 Chronic myeloid leukemia_Homo sapiens_hsa05220
Overlap 14/73 7/73 11/73 13/73 15/73

Adj. p-value 5.54e-08 9.35e-03 3.88e-05 3.44e-07 7.84e-09
Comb. score 32.25 3.22 22.10 25.72 38.24

11 HTLV-I infection_Homo sapiens_hsa05166
Overlap 25/258 21/258 25/258 32/258 24/258

Adj. p-value 1.42e-07 5.35e-05 5.22e-07 5.13e-12 6.34e-07
Comb. score 31.48 22.93 35.20 57.00 28.98

12 Viral carcinogenesis_Homo sapiens_hsa05203
Overlap 22/205 14/205 11/205 24/205 18/205

Adj. p-value 1.61e-07 3.99e-03 4.05e-02 1.15e-08 2.61e-05
Comb. score 31.30 8.90 1.39 40.27 15.07

13 Thyroid cancer_Homo sapiens_hsa05216
Overlap 9/29 6/29 9/29 6/29 9/29

Adj. p-value 3.26e-07 6.64e-04 1.06e-06 2.59e-04 4.31e-07
Comb. score 19.55 7.12 29.27 -10.53 22.79

14 Proteoglycans in cancer_Homo sapiens_hsa05205
Overlap 21/203 15/203 15/203 18/203 19/203

Adj. p-value 5.69e-07 1.51e-03 1.85e-03 2.21e-05 8.40e-06
Comb. score 28.45 12.38 13.27 15.46 21.20

15 Inflammatory bowel disease (IBD)_Homo sapiens_hsa05321
Overlap 12/65 11/65 11/65 13/65 14/65

Adj. p-value 7.84e-07 1.48e-05 1.50e-05 1.27e-07 1.39e-08
Comb. score 23.71 25.06 25.06 32.13 36.19

16 Pancreatic cancer_Homo sapiens_hsa05212
Overlap 12/66 7/66 9/66 13/66 12/66

Adj. p-value 8.78e-07 6.48e-03 4.31e-04 1.27e-07 1.10e-06
Comb. score 23.89 5.03 14.86 31.33 25.70
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Table A.7: KEGG pathways on CLL dataset continued from Table A.6

100% 50% 70%
Ground
Truth Observed Imputed Observed Imputed

17 ErbB signaling pathway_Homo sapiens_hsa04012
Overlap 13/87 5/87 9/87 11/87 11/87

Adj. p-value 2.56e-06 1.51e-01 2.73e-03 5.51e-05 5.09e-05
Comb. score 21.71 -1.29 10.26 9.84 8.48

18 Spliceosome_Homo sapiens_hsa03040
Overlap 16/134 16/134 13/134 15/134 13/134

Adj. p-value 2.56e-06 9.06e-06 3.99e-04 1.08e-05 1.35e-04
Comb. score 20.95 25.83 15.02 16.95 7.37

19 Osteoclast differentiation_Homo sapiens_hsa04380
Overlap 15/132 14/132 11/132 17/132 13/132

Adj. p-value 1.09e-05 1.05e-04 3.38e-03 3.88e-07 1.18e-04
Comb. score 19.17 19.68 9.28 25.39 7.89

20 Hepatitis C_Homo sapiens_hsa05160
Overlap 15/133 8/133 9/133 15/133 14/133

Adj. p-value 1.14e-05 5.27e-02 2.25e-02 1.06e-05 3.59e-05
Comb. score 18.38 0.78 2.68 18.03 12.18

21 B cell receptor signaling pathway_Homo sapiens_hsa04662
Overlap 11/73 4/73 4/73 8/73 8/73

Adj. p-value 1.66e-05 2.14e-01 2.11e-01 1.49e-03 1.40e-03
Comb. score 17.46 -2.50 -2.73 1.12 -0.69

22 Influenza A_Homo sapiens_hsa05164
Overlap 17/175 10/175 9/175 16/175 16/175

Adj. p-value 1.69e-05 3.91e-02 7.88e-02 4.70e-05 4.44e-05
Comb. score 18.71 1.93 0.10 12.99 12.09

23 Colorectal cancer_Homo sapiens_hsa05210
Overlap 10/62 5/62 6/62 9/62 10/62

Adj. p-value 2.36e-05 5.35e-02 1.84e-02 1.05e-04 1.90e-05
Comb. score 14.51 -2.20 1.47 5.44 11.49

24 Renal cell carcinoma_Homo sapiens_hsa05211
Overlap 10/66 7/66 8/66 12/66 9/66

Adj. p-value 4.06e-05 6.48e-03 2.13e-03 7.72e-07 1.52e-04
Comb. score 13.32 4.44 10.37 21.49 3.14

25 AGe-RAGE signaling pathway in diabetic complications_Homo sapiens_hsa04933
Overlap 12/101 7/101 8/101 11/101 12/101

Adj. p-value 5.93e-05 4.02e-02 1.70e-02 1.91e-04 4.35e-05
Comb. score 15.76 1.49 4.95 8.62 12.41

26 Legionellosis_Homo sapiens_hsa05134
Overlap 9/55 11/55 7/55 10/55 9/55

Adj. p-value 5.93e-05 5.71e-06 3.26e-03 8.55e-06 4.35e-05
Comb. score 10.66 29.69 7.40 15.56 5.72

27 Neurotrophin signaling pathway_Homo sapiens_hsa04722
Overlap 13/120 10/120 14/120 17/120 15/120

Adj. p-value 6.74e-05 4.82e-03 3.88e-05 1.27e-07 3.38e-06
Comb. score 13.78 7.30 22.43 30.22 21.43

28 Wnt signaling pathway_Homo sapiens_hsa04310
Overlap 14/142 9/142 12/142 14/142 15/142

Adj. p-value 8.33e-05 3.10e-02 2.13e-03 6.66e-05 1.90e-05
Comb. score 13.11 2.25 11.43 10.83 15.26

29 Signaling pathways regulating pluripotency of stem cells_hsa04550
Overlap 14/142 13/142 17/142 16/142 14/142

Adj. p-value 8.33e-05 6.01e-04 3.74e-06 5.33e-06 6.18e-05
Comb. score 12.96 13.68 27.86 19.89 9.32

30 Prostate cancer_Homo sapiens_hsa05215
Overlap 11/89 5/89 7/89 12/89 13/89

Adj. p-value 8.33e-05 1.59e-01 2.37e-02 1.47e-05 3.38e-06
Comb. score 12.36 -1.36 1.84 15.57 22.43

31 Insulin resistance_Homo sapiens_hsa04931
Overlap 12/109 9/109 9/109 13/109 12/109

Adj. p-value 1.09e-04 7.23e-03 8.58e-03 2.06e-05 7.99e-05
Comb. score 11.64 4.96 5.98 13.78 8.17

32 Chemokine signaling pathway_Homo sapiens_hsa04062
Overlap 16/187 8/187 11/187 10/187 9/187

Adj. p-value 1.13e-04 2.02e-01 2.47e-02 3.82e-02 8.19e-02
Comb. score 11.88 -0.82 2.32 -1.91 -2.45
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Table A.8: KEGG pathways on CLL dataset (continued from Table A.7

)

100% 50% 70%
Ground
Truth Observed Imputed Observed Imputed

33 TNF signaling pathway_Homo sapiens_hsa04668
Overlap 12/110 12/110 8/110 16/110 15/110

Adj. p-value 1.13e-04 2.81e-04 2.25e-02 1.94e-07 1.27e-06
Comb. score 11.69 17.22 2.60 28.21 24.78

34 Cytosolic DNA-sensing pathway_Homo sapiens_hsa04623
Overlap 9/64 6/64 6/64 7/64 7/64

Adj. p-value 1.58e-04 1.99e-02 2.02e-02 2.87e-03 3.04e-03
Comb. score 5.45 0.03 0.22 -5.01 -4.50

35 Endometrial cancer_Homo sapiens_hsa05213
Overlap 8/52 5/52 8/52 6/52 7/52

Adj. p-value 2.19e-04 3.10e-02 4.52e-04 4.41e-03 9.32e-04
Comb. score 5.51 -1.45 13.31 -7.65 -4.28

36 TGF-beta signaling pathway_Homo sapiens_hsa04350
Overlap 10/84 11/84 10/84 11/84 10/84

Adj. p-value 2.37e-04 1.27e-04 4.75e-04 4.27e-05 1.81e-04
Comb. score 8.13 18.51 13.58 10.66 4.50

37 p53 signaling pathway_Homo sapiens_hsa04115
Overlap 9/69 8/69 6/69 9/69 8/69

Adj. p-value 2.67e-04 2.23e-03 2.47e-02 2.22e-04 9.81e-04
Comb. score 5.17 7.30 -0.65 2.78 -2.47

38 Small cell lung cancer_Homo sapiens_hsa05222
Overlap 10/86 4/86 4/86 8/86 12/86

Adj. p-value 2.76e-04 2.94e-01 3.01e-01 3.51e-03 1.24e-05
Comb. score 7.16 -2.41 -2.36 -2.15 16.50

39 MicroRNAs in cancer_Homo sapiens_hsa05206
Overlap 20/297 13/297 17/297 20/297 20/297

Adj. p-value 3.03e-04 8.87e-02 7.41e-03 2.54e-04 2.31e-04
Comb. score 9.57 0.32 7.32 7.94 6.54

40 Cell cycle_Homo sapiens_hsa04110
Overlap 12/124 11/124 9/124 12/124 16/124

Adj. p-value 3.07e-04 2.08e-03 1.72e-02 2.56e-04 1.12e-06
Comb. score 7.19 9.20 3.71 5.49 22.90

41 Toll-like receptor signaling pathway_Homo sapiens_hsa04620
Overlap 11/106 9/106 6/106 13/106 14/106

Adj. p-value 3.17e-04 6.52e-03 1.14e-01 1.57e-05 3.99e-06
Comb. score 7.80 5.91 -0.90 15.10 20.81

42 Leishmaniasis_Homo sapiens_hsa05140
Overlap 9/73 7/73 6/73 8/73 9/73

Adj. p-value 3.69e-04 9.35e-03 3.05e-02 1.49e-03 2.92e-04
Comb. score 4.85 2.53 -0.37 0.14 1.11

43 Pertussis_Homo sapiens_hsa05133
Overlap 9/75 9/75 6/75 11/75 10/75

Adj. p-value 4.46e-04 9.43e-04 3.35e-02 1.57e-05 7.58e-05
Comb. score 3.54 10.33 -1.02 10.79 4.59

44 NF-kappa B signaling pathway_Homo sapiens_hsa04064
Overlap 10/93 13/93 9/93 11/93 12/93

Adj. p-value 4.65e-04 1.48e-05 3.53e-03 9.93e-05 2.19e-05
Comb. score 4.97 23.47 7.54 7.73 11.86

45 Tuberculosis_Homo sapiens_hsa05152
Overlap 14/178 14/178 12/178 16/178 15/178

Adj. p-value 6.64e-04 1.34e-03 8.98e-03 5.51e-05 1.73e-04
Comb. score 6.40 11.29 5.87 11.16 6.87

46 Toxoplasmosis_Homo sapiens_hsa05145
Overlap 11/118 9/118 8/118 14/118 14/118

Adj. p-value 7.44e-04 1.14e-02 3.03e-02 1.15e-05 1.24e-05
Comb. score 5.83 3.97 1.47 17.30 17.67

47 HIF-1 signaling pathway_Homo sapiens_hsa04066
Overlap 10/103 9/103 8/103 13/103 11/103

Adj. p-value 1.02e-03 6.00e-03 1.82e-02 1.24e-05 1.99e-04
Comb. score 5.01 6.50 3.74 15.51 4.90

48 Chagas disease (American trypanosomiasis)_Homo sapiens_hsa05142
Overlap 10/104 11/104 8/104 16/104 13/104

Adj. p-value 1.08e-03 6.01e-04 1.85e-02 1.27e-07 1.48e-05
Comb. score 4.54 13.62 3.28 30.48 15.87
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Table A.9: KEGG pathways on CLL dataset (continued from Table A.8)

100% 50% 70%
Ground
Truth Observed Imputed Observed Imputed

49 Epithelial cell signaling in Helicobacter pylori infection_Homo sapiens_hsa05120
Overlap 8/68 7/68 5/68 8/68 9/68

Adj. p-value 1.09e-03 6.79e-03 7.11e-02 9.75e-04 1.82e-04
Comb. score 1.45 3.08 -2.43 -0.06 1.77

50 Salmonella infection_Homo sapiens_hsa05132
Overlap 9/86 8/86 7/86 9/86 11/86

Adj. p-value 1.10e-03 6.52e-03 2.14e-02 9.91e-04 4.67e-05
Comb. score 2.16 3.90 1.37 0.95 6.85

51 Melanoma_Homo sapiens_hsa05218
Overlap 8/71 6/71 8/71 9/71 9/71

Adj. p-value 1.41e-03 3.02e-02 3.12e-03 2.56e-04 2.38e-04
Comb. score 2.02 1.06 9.51 3.45 1.81

52 PI3K-Akt signaling pathway_Homo sapiens_hsa04151
Overlap 20/341 20/341 17/341 24/341 22/341

Adj. p-value 1.43e-03 2.71e-03 2.14e-02 3.31e-05 1.99e-04
Comb. score 5.83 10.90 4.25 15.24 7.85

53 Adherens junction_Homo sapiens_hsa04520
Overlap 8/74 6/74 6/74 4/74 3/74

Adj. p-value 1.73e-03 3.36e-02 3.19e-02 1.81e-01 4.20e-01
Comb. score 0.42 -0.06 -0.67 -4.33 -2.99

54 Longevity regulating pathway - mammal_Homo sapiens_hsa04211
Overlap 9/94 7/94 8/94 11/94 9/94

Adj. p-value 1.88e-03 3.10e-02 1.20e-02 1.05e-04 1.70e-03
Comb. score 2.20 1.79 5.09 8.44 0.68

55 Natural killer cell mediated cytotoxicity_Homo sapiens_hsa04650
Overlap 11/135 3/135 5/135 6/135 7/135

Adj. p-value 1.89e-03 8.45e-01 3.93e-01 1.92e-01 9.30e-02
Comb. score 2.96 -0.72 -1.57 -2.36 -2.56

56 Ras signaling pathway_Homo sapiens_hsa04014
Overlap 15/227 12/227 15/227 16/227 14/227

Adj. p-value 1.96e-03 3.82e-02 3.99e-03 7.12e-04 4.73e-03
Comb. score 3.75 2.36 9.48 5.87 1.42

57 Jak-STAT signaling pathway_Homo sapiens_hsa04630
Overlap 12/158 7/158 7/158 10/158 11/158

Adj. p-value 1.97e-03 2.03e-01 2.02e-01 1.49e-02 5.35e-03
Comb. score 3.17 -0.82 -0.99 -0.39 0.30

58 Thyroid hormone signaling pathway_Homo sapiens_hsa04919
Overlap 10/118 10/118 7/118 10/118 10/118

Adj. p-value 2.29e-03 4.36e-03 7.34e-02 2.19e-03 2.22e-03
Comb. score 1.61 7.39 -0.25 1.23 1.04

59 Apoptosis_Homo sapiens_hsa04210
Overlap 11/140 13/140 10/140 18/140 15/140

Adj. p-value 2.36e-03 5.83e-04 1.32e-02 1.94e-07 1.71e-05
Comb. score 2.62 15.57 5.80 29.92 17.09

60 Non-alcoholic fatty liver disease (NAFLD)_Homo sapiens_hsa04932
Overlap 11/151 11/151 7/151 16/151 13/151

Adj. p-value 4.18e-03 6.78e-03 1.76e-01 1.06e-05 3.81e-04
Comb. score 1.85 6.23 -0.83 19.29 5.17

61 Hippo signaling pathway_Homo sapiens_hsa04390
Overlap 11/153 13/153 14/153 12/153 13/153

Adj. p-value 4.57e-03 1.10e-03 3.99e-04 1.49e-03 4.28e-04
Comb. score 0.95 11.26 14.77 2.61 3.71

62 Focal adhesion_Homo sapiens_hsa04510
Overlap 13/202 6/202 9/202 12/202 9/202

Adj. p-value 4.86e-03 5.75e-01 1.49e-01 1.17e-02 1.15e-01
Comb. score 1.50 -1.12 -0.51 -0.21 -2.34

63 FoxO signaling pathway_Homo sapiens_hsa04068
Overlap 10/133 8/133 9/133 11/133 14/133

Adj. p-value 5.12e-03 5.27e-02 2.25e-02 1.56e-03 3.59e-05
Comb. score 0.61 0.90 2.82 2.28 12.44

64 Tight junction_Homo sapiens_hsa04530
Overlap 10/139 6/139 5/139 8/139 9/139

Adj. p-value 6.88e-03 2.54e-01 4.09e-01 4.54e-02 1.81e-02
Comb. score 0.18 -1.22 -1.56 -2.11 -1.68

65 Phospholipase D signaling pathway_Homo sapiens_hsa04072
Overlap 10/144 4/144 7/144 7/144 8/144

Adj. p-value 8.76e-03 6.70e-01 1.50e-01 1.16e-01 5.33e-02
Comb. score 0.50 -1.06 -0.78 -2.41 -2.32
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Clonal evolution in Multiple Myeloma

Supplementary Notes: Casewise Clonal evolution

Therapies given to patients-
V= Bortezomib
C= Cyclophosphamide
T= Thalidomide
R= Lenalidomide
D=Dexamethasone
M= Melphalan
P=Pomalidomide

Branching Clonal Evolution

SM0018 (Female / 54 years old / MM R-ISS2 with OS of 182.43, PFS of 106.14 weeks)

• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (3, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (15.67 to 30.43), 1 (0.00 to 42.74)

• TMB at TP1 is 0.59; TMB at TP2 became 1.44

• Therapy: VCD

• Two founder clones (1,3) were detected at diagnosis that diversified into 4 clones
by the time of progression (Figure B.1). The founder clone 3 possessed muta-
tions in 5 genes including MUC6 (p.(Ala2054Val) that reduced in cellular preva-
lence from 0.31 at TP1 to 0.26 at TP2), rising mutations in NBPF1(c.3444G>A
(p.(LysTer1148=)), NPIPB15 (p.(Ala238Thr)), GSTA2 (p.(Pro110Ser)), and MUC17
(p.(Thr959Ala)). Similarly, founder clone 1 had multiple mutations that increased
with progression. These comprised of driver mutations in RNF213 (p.(Val1195Met)),
KMT2C (p.(Tyr987His)) a tumor suppressor gene and others.
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SM0022 (Male / 62 years old / MM R-ISS2 with OS of 304.86, PFS of 74.71 weeks)
• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (2, 4); Rising clones (cellular prevalence at TP1 to
TP2) = 4 (0.00 to 45.15); Falling clones (cellular prevalence at TP1 to TP2) = 2
(31.76 to 23.14)

• TMB at TP1 is 1.75; TMB at TP2 became 1.43

• Therapy: VCD

• This patient had 4 clones of which clones 2 and 4 were founders at diagnosis
(Figure B.2). Clone 2 had several falling mutations such as in CHI3L1 (5’UTR),
ATP8B1(p.(Gln461Lys)), UNC80 (p.(Arg1030His)) and mutations with rising
cellular prevalence such as termination in PABPC1 (p.(Glu345Ter)), LIMS1 (p.(Arg74His))
and others. Founder clone 4 had predominantly rising mutations in MYC (3’UTR),
MTA1(splice variant), BAGE2 (5’UTR), AHNAK2 (p.(Met2187Val)), CARMIL3
(p.(Gly1161Val)) and others.

SM0024 (Male / 52 years old / MM R-ISS2 with OS of 121.29, PFS of 116.71 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (51.32 to 70.19)

• TMB at TP1 is 0.23; TMB at TP2 became 0.29

• Therapy: VCD, ASCT+VRD

• There were 3 clones in this patient that arose from a single founder clone 2. Nu-
merous mutations emerged in this patient that evolved with rising cellular preva-
lence. Twelve mutations were detected and consisted of F5 (p.(His1327Arg)),
KRT6B (p.(Ile365Val)), HERC1 (p.(Asp76Glu)), GOLGA6A(p.(Gln505Glu)),
ZNF705G (p.(Gly47Arg)) and others.

SM0025 (Male / 48 years old / MM R-ISS2 with OS of 179.57, PFS of 127.43 weeks)
• Evolution pattern: Branching

• Total clones= 5; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (50.00 to 50.00); Falling clones (cellular prevalence at TP1 to TP2) = 1
(50.00 to 47.39)

• TMB at TP1 is 0.82; TMB at TP2 became 0.5

• Therapy: VCD Two founder clones (1,2) were enriched in CDKN1B (p.(Phe64Val))
and CSNK2A3 (p.(Arg280Gln)) in clone 1 that tended to decrease with progres-
sion and with stable levels of CACNA1G (p.(Leu1174Met)), MLF1 (p.(Ser102Tyr))
and RTP3 (p.(Asn74Ser)) in clone 2.
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SM0067 (Female / 54 years old / MM R-ISS2 with OS of 70.14, PFS of 65.71 weeks)
• Evolution pattern: Branching

• Total clones= 5; 2 founder(s) (3, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (28.66 to 36.80), 2 (0.00 to 42.50); ;

• TMB at TP1 is 0.2; TMB at TP2 became 1.42

• Therapy: VCD

• Founder clone 3 had abundant PDE4DIP (p.(His1598Arg)), CSTL1 (p.(Arg66Lys))
and FCRL6 (p.(Gln423Ter) rising mutations while reducing prevalence of KRTAP1-
1 (p.(Pro58Arg)) and CSTL1 (p.(Arg66Lys)). The founder clone 2 had two rising
mutations in OR4A16 (p.(Ile166Phe)) and MYH8 (p.(Lys638Asn)).

SM0082 (Male / 60 years old / MM R-ISS2 with OS of 275.86, PFS of 198.57 weeks)
• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (4, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 4 (22.66 to 44.09); Falling clones (cellular prevalence at TP1 to TP2) = 1
(32.52 to 0.00);

• TMB at TP1 is 0.82; TMB at TP2 became 0.77

• Therapy: VRD, ASCT

• This patient had two founder clones that branched to total 4 clones at the time of
progression. Founder clone 1 had all falling mutations in USP31 (p.(Phe567Val)),
METTL15 (p.(Asn31Lys)) and other genes, all of which diminished by progres-
sion. On the contrary, founder clone 4 had two mutations ZNF285 (p.(Lys292Glu))
and CCDC13 (p.(Arg25Trp)) that increased in prevalence further on progression.

SM0094 (Female / 44 years old / MM R-ISS2 with OS of 215.57, PFS of 67.86 weeks)

• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (3); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (41.72 to 59.76); ;

• TMB at TP1 is 2.42; TMB at TP2 became 0.58

• Therapy: RD, VCD_VD, CTD,VRD, CRP, PAD

• A single founder clone 3 was identified at diagnosis that evolved into three clones
by TP2. The founder clone had multiple mutations in drivers such as FAT4 (rising
p.(Ala807Val)) and PABPC1 (falling 3’UTR variant) and other rising mutations
among LAMC1 (p.(Ile458Val)), NABP2 (p.(Glu118Lys)) and others.

SM0102 (Male / 48 years old / MM R-ISS3 with OS of 140.86, PFS of 45.00 weeks)
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• Evolution pattern: Branching

• Total clones= 4; 3 founder(s) (3, 2, 4); Rising clones (cellular prevalence at TP1
to TP2) = 3 (33.33 to 33.33), 4 (0.00 to 21.39); Falling clones (cellular prevalence
at TP1 to TP2) = 2 (20.47 to 0.00);

• TMB at TP1 is 88.1; TMB at TP2 became 91.85

• Therapy: VRD, VD

• Driver mutations in PDE4DIP (splice variant), tumor suppressor gene PIKR3
(p.(Asn329Lys)), oncogene CYP19A1, (3’UTR), MAP2K1 (splice variant), FANCA
(p.(Gly501Ser)), SERPINB3 (p.(Gly351Ala)), PLCG1 (p.(Ile813Thr)), ALK (p.(Lys1491Arg)),
DROSHA (3’UTR), PTCH1 (p.(Pro1315Leu)) were observed in clone 3. Clone 2
had NTRK1(p.(His604Tyr)), KRAS (3’UTR), PDPR (p.(Thr29Ala)), FAT1 (p.(Thr2261Met)),
IL3 (p.(Pro27Ser)), PABPC1 (p.(Gly579Ser)) mutations. Founder clone 4 had
NTRK1 (p.(Gly613Val)), PTPN14 (splice variant), EXO1 (p.(Glu589Lys)), BRCA1
(3’UTR) and other mutations.

SM0113 (Male / 61 years old / MM R-ISS2 with OS of 267.29, PFS of 267.29 weeks)
• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (2, 3); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (19.06 to 36.56); Falling clones (cellular prevalence at TP1 to TP2) = 3
(22.34 to 0.00);

• TMB at TP1 is 0.48; TMB at TP2 became 0.93

• Therapy: RD, VRD Representative mutations in founder clones 2 and 3 at di-
agnosis comprised of DNAH17 (p.(Arg879His)), LRP5 (splice variant), IRAK1
(p.(Asn345Ser)), ZNF98 (p.(Tyr350Cys)), ACOXL (p.(Thr255Met)), EXD3 (p.(Arg38Trp))
and others.

SM0152 (Male / 70 years old / MM R-ISS3 with OS of 238.00, PFS of 106.71 weeks)
• Evolution pattern: Branching

• Total clones= 4; 1 founder(s) (4); ; Falling clones (cellular prevalence at TP1 to
TP2) = 4 (66.29 to 54.25);

• TMB at TP1 is 0.79; TMB at TP2 became 1.52

• Therapy: VTD-VD, CTD-RD A single founder clone 4 had mutations in driver
HOXD13 (p.(Gly11Ala)), in MST1L (p.(Trp403Ter)), DHX58 (p.(Arg523Gln)),
KLK14 (p.(Gln33Arg)) and others that diversified into total 4 clones by progres-
sion.

SM0172 (Female / 69 years old / MM R-ISS3 with OS of 51.86, PFS of 21.86 weeks)
• Evolution pattern: Branching
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• Total clones= 6; 3 founder(s) (1, 4, 6); Rising clones (cellular prevalence at TP1
to TP2) = 1 (32.00 to 33.33), 6 (0.00 to 15.95); Falling clones (cellular prevalence
at TP1 to TP2) = 4 (15.27 to 0.00);

• TMB at TP1 is 0.31; TMB at TP2 became 0.35

• Therapy: RD, VRD

• In this patient, three out of 6 clones were founders. Founder clone 1 had PLET1
(p.(Ser142Pro)), PABPC3 (p.(Met251Ile)), CCDC173 (5’UTR), clone 4 carried
mutations in AK2 (3’UTR), SMARCB1 (p.(Val234Met)), CEL (p.(Ile488Thr))
whereas clone 6 had FCGBP (p.(Ala3916Val)), TTC30A (p.(Val446Ile)) and UGT1A5
(p.(Gly259Arg)).

SM0197 (Male / 45 years old / MM R-ISS3 with OS of 155.86, PFS of 50.00 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (45.78 to 50.31); ;

• TMB at TP1 was 2.19; TMB at TP2 became 1.39

• Therapy: VCD, VTD-DT,ASCT+VRD- RD

• Only one founder was detected at diagnosis. This clone 1 had 18 mutations, no-
tably in drivers DIS3 (p.(Ile348Lys)), DICER1 (p.(Glu235Gly)), EPHA7 (p.(Met450Ile)),
VWF (p.(Gly1922Ala)) and others.

SM0224 (Female / 61 years old / MM R-ISS2 with OS of 72.00, PFS of 72.00 weeks)
• Evolution pattern: Branching

• Total clones= 6; 3 founder(s) (5, 3, 4); Rising clones (cellular prevalence at TP1
to TP2) = 5 (33.33 to 33.33), 4 (0.00 to 33.33); Falling clones (cellular prevalence
at TP1 to TP2) = 3 (33.33 to 0.00);

• TMB at TP1 is 48.4; TMB at TP2 became 23.23

• Therapy: VCD, RD

• Founder clone 5 had driver mutations in SUFU (c.1299T>C(p.(Ile433=))), PGR
(p.(Ser344Thr)), CAMTA1 (p.(Asn1177Lys)), RHPN2 (p.(Gln384Arg)), SIRPA
(p.(Gly75Ala)), BARD1 (p.(Arg378Ser)), ZNF292 (p.(Ile1740Val)). Clone 3 was
characterized by mutations in PDE4DIP (p.(Arg171Lys)), ERCC5 (p.(Cys529Ser)),
FANCM (p.(Ile1460Val)), PLCB4 (p.(Thr998Ala)), EP300 (p.(Ile997Val)), FAT4
(p.(Gly3526Asp)). Clone 4 had PDE4DIP (p.(Leu1272Phe)), CLIP (p.(Pro1403Leu)),
EP400 (p.(Leu1741Gln)), TRAF3 (p.(Met129Thr)), BLM (p.(Pro868Leu), p.(Val1321Ile))
and other mutations.



Appendix B. Clonal evolution in Multiple Myeloma 180

SM0237 (Female / 52 years old / MM R-ISS2 with OS of 225.29, PFS of 225.29 weeks)

• Evolution pattern: Branching

• Total clones= 5; 2 founder(s) (3, 5); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (28.77 to 50.00); Falling clones (cellular prevalence at TP1 to TP2) = 5
(28.82 to 0.00);

• TMB at TP1 is 0.66; TMB at TP2 became 0.39

• Therapy: RD, VRD-VD, ASCT+VRD-RD

• Founder clone 5 had one major mutation PABPC3 (p.(Val119Phe) that reduced in
prevalence on progression but the other founder clone 3 picked up prevalence of 4
mutations viz. RAB3GAP2 (p.(Asn570Ser)), TPTE (p.(Val68Asp)), RAB11FIP5
(p.(Arg461Trp)) and PBK (splice variant).

SM0267 (Male / 42 years old / MM R-ISS2 with OS of 235.14, PFS of 235.14 weeks)
• Evolution pattern: Branching

• Total clones= 2; 2 founder(s) (1, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.00 to 15.74); Falling clones (cellular prevalence at TP1 to TP2) = 1
(14.87 to 0.00);

• TMB at TP1 is 0.96; TMB at TP2 became 0.24

• Therapy: RD

• On diagnosis, founder clone 2 had 3 mutations BAGE2 (p.(Arg106Gln)), EPHA5
(p.(Lys626Glu)) and PCDH12 (p.(Gln500His)). The other founder clone 1 had
multiple mutations e.g., PADI4 (p.(Gly112Ala)), PRAMEF1 (p.(Trp98Arg)), AP3S2
(p.(Phe23Leu)), CGB7 (5’UTR) and others.

SM0294 (Male / 48 years old / MM R-ISS2 with OS of 241.71, PFS of 241.71 weeks)
• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (4, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 4 (29.98 to 36.03); Falling clones (cellular prevalence at TP1 to TP2) = 2
(50.00 to 0.00);

• TMB at TP1 is 0.31; TMB at TP2 became 0.63

• Therapy: VRD

• Founder clone 2 had mutations in KIAA0586 (p.(Leu1568Pro)) and GRK4 (p.(Arg65Leu)),
both of which were lost by progression. Clone 4 became predominant by pro-
gression and most of mutations in clone 4 increased in cellular prevalence with
time. These mutations were CDK11B (c.1959T>G(p.(Ala653=))), KRTAP4-11
(p.(Leu161Val)), TTC30A (p.(Val446Ile)), SENP2 (p.(Thr301Lys)), ZAN (p.(Ala2761Pro))
and NUTM2F (p.(Ala589Gly)).
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SM0299 (Female / 53 years old / MM R-ISS2 with OS of 90.14, PFS of 40.86 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (1); ; Falling clones (cellular prevalence at TP1 to
TP2) = 1 (77.14 to 36.45);

• TMB at TP1 is 0.26; TMB at TP2 became 0.17

• Therapy: RD

• This patient had a single founder clone 1 that had a falling mutation in SPRN
(p.(Thr7Met)) and an almost constant maintained mutation in OBSCN (5’UTR).

SM0311 (Female / 52 years old / MM R-ISS2 with OS of 104.43, PFS of 94.00 weeks)

• Evolution pattern: Branching

• Total clones= 5; 1 founder(s) (3); ; Falling clones (cellular prevalence at TP1 to
TP2) = 3 (100.00 to 90.80);

• TMB at TP1 is 0.79; TMB at TP2 became 0.14

• Therapy: VRD-VD, ASCT-VRD,VCD

• A single founder clone 3 had falling mutations in ALG10 (p.(Val19Ile)), GC-
SAML (5’UTR) and a consistent KLH5 (splice mutation).

SM0329 (Female / 54 years old / MM R-ISS2 with OS of 69.14, PFS of 67.86 weeks)
• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (2, 4); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (29.58 to 31.59), 4 (0.00 to 34.69);

• TMB at TP1 is 1.39; TMB at TP2 became 4.53

• Therapy: VD, VTD

• Two founder clones 2 and 4 were identified at diagnosis. Clone 2 had driver muta-
tions in TP53 (p.(Arg158His)), MCM3AP (p.(Trp502Ter)), EGR1 (p.(Ser62Asn)).
Similarly, clone 4 was mutated in multiple drivers such as KRAS (p.(Gly13Asp)),
DNMT1 (p.(Ala1334Thr)), CNOT3 (3’UTR), KMT2C (p.(Tyr987His)) etc.

SM0339 (Male / 71 years old / MM R-ISS2 with OS of 100.43, PFS of 28.86 weeks)
• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (2, 3); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (0.00 to 19.73); Falling clones (cellular prevalence at TP1 to TP2) = 2
(45.66 to 18.93);
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• TMB at TP1 is 1.74; TMB at TP2 became 0.33

• Therapy: VRD, RD

• Founder clone 3 showed an increase in prevalence while the other founder clone
2 reduced in cellular prevalence with time. Clone 2 had mutations such as those
in F5 (p.(Arg740Ter)), RBL2 (p.(Gln783Ter)), HIST1H4D (p.(Ala70Val)) etc.
While clone 3 had driver mutations in PARP4 (splice variant), IGLL5 (p.(Pro20His))
and others.

SM0343 (Male / 60 years old / MM R-ISS2 with OS of 123.57, PFS of 121.57 weeks)
• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (1, 3); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (8.65 to 35.34); Falling clones (cellular prevalence at TP1 to TP2) = 3
(10.74 to 0.00);

• TMB at TP1 is 0.86; TMB at TP2 became 0.69

• Therapy: VD, RD+H3:H31

• Three rising mutations were found in founder clone 1 (STK36 (p.(Leu434Pro)),
GPR160 (p.(Ile262Thr)), KLHL38 (p.(Ile334Val))) that increased in prevalence
from diagnosis to progression. On the contrary, founder clone 3 had mutations
that reduced relatively with time. These included FLG (p.(Trp3555Arg)), CFP
(p.(Pro237His)), FBXW11 (p.(Arg356Ser)) and others.

SM0351 (Male / 58 years old / MM R-ISS2 with OS of 226.86, PFS of 108.86 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (1); ; Falling clones (cellular prevalence at TP1 to
TP2) = 1 (71.36 to 68.79);

• TMB at TP1 is 1.13; TMB at TP2 became 1.44

• Therapy: RD

• One founder clone 1 was found with mutations that increased in prevalence (WDFY4
(p.(Leu841Met)), DIAPH3 (p.(Leu1034Ter)), BRAF (p.(Val600Glu)) ) or de-
creased with time (CABLES1 (p.(Lys496Arg)), CLOCK (p.(Ala400Gly)), KLHL31
(p.(Ala203Ser)) etc).

SM0370 (Female / 55 years old / MM R-ISS3 with OS of 228.00, PFS of 160.57 weeks)

• Evolution pattern: Branching

• Total clones= 4; 2 founder(s) (1, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (21.95 to 25.48), 2 (0.00 to 26.65); ;
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• TMB at TP1 is 0.27; TMB at TP2 became 0.57

• Therapy: RD, VRD-VD

• Driver mutations in BCL7A (p.(Arg4Gly)) in founder clone 1 and DOT1L(p.(Phe1474Tyr)),
MLH1 (p.(Cys142Arg)) were observed in clone 2 among others.

SM0422 (Female / 45 years old / MM R-ISS2 with OS of 205.86, PFS of 146.00 weeks)

• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (1, 3); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (0.00 to 16.19); Falling clones (cellular prevalence at TP1 to TP2) = 1
(46.07 to 15.64);

• TMB at TP1 is 0.47; TMB at TP2 became 0.29

• Therapy: VRD, VD, VTD, VCD, CRP

• In this patient, founder clone 1 had falling mutations in FANK1 (p.(Gln4Ter)),
DDX60L (p.(Cys336Tyr)) whereas clone 3 had rising mutations in CPED1 (p.(Ala551Gly),
STAP2 (p.(Ala366Gly)), CETP (c.1212C>T(p.(Phe404=))) and others.

SM0433 (Male / 72 years old / MM R-ISS2 with OS of 186.29, PFS of 183.29 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (3); ; Falling clones (cellular prevalence at TP1 to
TP2) = 3 (69.20 to 47.65);

• TMB at TP1 is 1.51; TMB at TP2 became 1.11

• Therapy: VD, VRD, RD

• An individual founder clone 3 had rising variations in driver NRAS (p.(Gln61Arg)),
PRDM4 (p.(His99Arg)), RBM5 (p.(Gly759Arg), p.(Arg633Thr), p.(Ser744Ile)),
MAPK10 (p.(Val244Leu)). Mutations that decreased in prevalence in this clone
with time included HCAR1 (p.(Val277Met)), OBSCN (p.(Val634Met)), CD163L1
(p.(Gly1074Cys)) and others.

SM0505 (Male / 60 years old / MM R-ISS2 with OS of 168.71, PFS of 72.00 weeks)
• Evolution pattern: Branching

• Total clones= 5; 2 founder(s) (3, 5); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (18.24 to 42.96), 5 (0.00 to 50.00);

• TMB at TP1 is 0.77; TMB at TP2 became 1.97

• Therapy: VCD, VD
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• Two founder clones were observed at diagnosis. Clone 3 had multiple mutations
while clone 5 had 4 mutations that emerged before progression. The latter were
BRINP2 (p.(Val134Gly)), FAN1 (p.(Arg581Ter)), COL14A1 (p.(Pro1717Arg))
and FSD1L (p.(Phe57Leu)). Clone 3 had TRPC6 (p.(Gly20Arg)), RORC (p.(Leu501Val)),
HDAC10 (p.(Asn142Lys)) and others.

SM0510 (Male / 39 years old / MM R-ISS2 with OS of 48.86, PFS of 46.14 weeks)
• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (3, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (0.00 to 32.58); Falling clones (cellular prevalence at TP1 to TP2) = 3
(16.67 to 0.00);

• TMB at TP1 is 0.15; TMB at TP2 became 0.78

• Therapy: VRD

• Founder clone 1 was a rising clone with mutations in driver CIC (p.(Glu125Ter)),
FAM171A1 (p.(Thr303Met)), TRPV4 (p.(Gly20Arg)), DNAH1 (p.(Tyr1899Cys)),
MUC16 (p.(Pro14112His)), MLLT6 (p.(Pro45Thr)) etc. Cellular prevalence of
mutations e.g., in PARP4 (5’UTR), SYNM (p..(Ala212Val)) and EXOC7 (3’UTR)
were observed to fall with time in clone 3.

SM0546 (Female / 54 years old / MM R-ISS2 with OS of 143.71, PFS of 100.29 weeks)

• Evolution pattern: Branching

• Total clones= 2; 2 founder(s) (1, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.00 to 50.00); Falling clones (cellular prevalence at TP1 to TP2) = 1
(17.54 to 0.00);

• TMB at TP1 is 0.55; TMB at TP2 became 0.03

• Therapy: VRD, RD

• Founder Clone 2 had a single mutation in SF1 (p.(Pro64Ser)). Whereas founder
clone 1 had several mutations in drivers CR1 (p.(Glu888Asp)), PTPRS (p.(Arg1798Cys)),
BCORL1 (p.(Ile175Asn)), EGR1 (p.(Asn61Lys)), HIST1H1D (p.(Asn78Ser), p.(Ser87Arg)),
FAM3C (p.(Ser75Gly)) and others.

SM0581 (Female / 58 years old / MM R-ISS2 with OS of 138.14, PFS of 18.86 weeks)

• Evolution pattern: Branching

• Total clones= 4; 1 founder(s) (4); ; Falling clones (cellular prevalence at TP1 to
TP2) = 4 (93.11 to 90.22);
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• TMB at TP1 is 0.55; TMB at TP2 became 0.63

• Therapy: PD

• This patient had a single founder clone with a mutation in MYRFL (p.(Ser157Ala))
and in PPIAL4G (3’UTR).

SM0584 (Male / 67 years old / MM R-ISS2 with OS of 64.00, PFS of 51.00 weeks)
• Evolution pattern: Branching

• Total clones= 5; 2 founder(s) (4, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.01 to 47.04); Falling clones (cellular prevalence at TP1 to TP2) = 4
(32.58 to 21.86);

• TMB at TP1 is 2.47; TMB at TP2 became 1.54

• Therapy: RD

• Founder clone 4 had multiple mutations such as MTA2 (p.(Pro184Ala)), MUC5AC
(p.(Gly1085Ser)), UNG (p.(Ala264Thr)), NCAPD2 (p.(Thr1331Ala)). The other
founder clone 2 had mutations in NM1 (p.(Ser16Leu)) and others.

SM0588 (Male / 53 years old / MM R-ISS2 with OS of 97.57, PFS of 23.00 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); ; Falling clones (cellular prevalence at TP1 to
TP2) = 2 (77.14 to 45.18);

• TMB at TP1 is 65.79; TMB at TP2 became 46.64

• Therapy: VRD

• Multiple driver mutations were present in a single founder clone 2. These con-
sisted of actionable WRN (p.(Leu1074Phe)), ROS1 (splice variant), MAP3K1
(p.(Asp806Asn)), FBN2 (p.(Pro2784Leu), p.(Met2311Val)), ATXN7 (p.(Lys264Arg),
p.(Val862Met)), ATR (p.(Arg2425Gln)), CUL3 p.(Val573Ile), FOXD4L1 (p.(Asn162Lys))
and others.

SM0660 (Male / 63 years old / MM R-ISS2 with OS of 166.71, PFS of 49.14 weeks)
• Evolution pattern: Branching

• Total clones= 4; 3 founder(s) (3, 1, 4); Rising clones (cellular prevalence at TP1
to TP2) = 4 (0.00 to 8.89); Falling clones (cellular prevalence at TP1 to TP2) = 3
(10.05 to 7.29), 1 (33.33 to 0.00);

• TMB at TP1 is 0.26; TMB at TP2 became 0.18

• Therapy: VRD, VD
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• Of the 3 founder clones at diagnosis, only one clone 4 increased in cellular preva-
lence by progression and had mutations in LMAN2L (p.(Arg255Cys)), TIPARP
(p.(Glu370Lys)) and WDFY3 (p.(Arg941Met)). The other clone 3 had LEPR
(p.(Pro266Ser)) and NDST3 (p.(Lys498Thr)) mutations while the clone 1 had 3’
UTR mutations in ASCC1, GIT2, CDH24 etc.

SM0678 (Male / 68 years old / MM R-ISS3 with OS of 133.00, PFS of 112.43 weeks)
• Evolution pattern: Branching

• Total clones= 4; 3 founder(s) (3, 4, 2); Rising clones (cellular prevalence at TP1
to TP2) = 3 (10.16 to 14.82), 2 (0.00 to 17.66); Falling clones (cellular prevalence
at TP1 to TP2) = 4 (18.82 to 0.00);

• TMB at TP1 is 0.38; TMB at TP2 became 1.34

• Therapy: VCD, VD

• This patient had three founder clones at the time of diagnosis. Clone 3 had
driver mutations in MAX (p.(Arg33Ter)), clone 4 in SLC45A3 (5’UTR), GREM1
(3’UTR), and clone 2 in PLCB4 (p.(Ile222Val)), FANCD2 (p.(Tyr632Cys)) and
FGFR3(p.(Arg671Gly)).

SM0686 (Male / 63 years old / MM NA with OS of 141.00, PFS of 84.71 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); ; Falling clones (cellular prevalence at TP1 to
TP2) = 2 (53.70 to 40.38);

• TMB at TP1 is 0.76; TMB at TP2 became 0.41

• Therapy: VCD, VD

• Only single founder clone was identified in this patient and had a mutation in tu-
mor suppressor gene KLF2 (p.(Leu104Pro)), and in other genes PBX1 (p.(Tyr384Ter))
and MKNK2 (p.(Lys4Asn)).

SM0698 (Male / 44 years old / MM R-ISS2 with OS of 149.14, PFS of 54.29 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (51.63 to 68.78); ;

• TMB at TP1 is 0.48; TMB at TP2 became 1.12

• Therapy: VCD, VD

• One founder clone was present at TP1 with multiple mutations in RIF1 (p.(Leu645His)),
C6orf118 (p.(Lys327Met)), and many more.
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SM0726 (Male / 56 years old / MM R-ISS3 with OS of 126.14, PFS of 64.00 weeks)
• Evolution pattern: Branching

• Total clones= 3; 2 founder(s) (1, 3); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (0.00 to 18.19); Falling clones (cellular prevalence at TP1 to TP2) = 1
(50.00 to 0.00);

• TMB at TP1 is 0.19; TMB at TP2 became 0.35

• Therapy: VRD, VD

• Founder clone 5 had 5’UTR variations in ACTA2, STK39 and EPHB1 genes
while clone 3 had mutations in PIK3C2A (p.(Asn1003Ser)), C1orf167 (p.(Gly1188Ser)),
SPINK5 (p.(Arg711Gln)) and others.

SM0738 (Male / 61 years old / MM NA with OS of 143.43, PFS of 80.00 weeks)
• Evolution pattern: Branching

• Total clones= 5; 1 founder(s) (2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (100.00 to 100.00); ;

• TMB at TP1 is 0.85; TMB at TP2 became 1.1

• Therapy: VRD, RD

• A single founder dominated at diagnosis with mutations in APOA4 (p.(Arg220Cys)),
TENM4 (p.(Arg2298Trp)), PCDHGC3 (p.(Val701Gly)) and 5’UTR variant in
OSTF1 gene.

SM0740 (Male / 47 years old / MM R-ISS2 with OS of 124.57, PFS of 51.71 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (49.10 to 94.36); ;

• TMB at TP1 is 2.01; TMB at TP2 became 2.6

• Therapy: VRD, VD

• This patient also had a single founder clone carrying driver mutations in ENPEP
(3’UTR), and PIM1 (p.(His6Leu), p.(Thr287Pro)) genes.

SM0755 (Male / 46 years old / MM R-ISS2 with OS of 126.86, PFS of 100.29 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (45.20 to 54.62); ;

• TMB at TP1 is 1.74; TMB at TP2 became 1.91
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• Therapy: VCD, VRD

• One founder clone was detected at TP1 with several driver mutations such as
MAX (p.(Arg35Cys)), FAT1 (p.(Phe3823Val)), PIM1 (p.(Ser74Ala)), RECQL4
(p.(Ser886Arg)) and NR4A3 (p.(Glu591Lys)).

SM0779 (Female / 70 years old / MM R-ISS2 with OS of 129.57, PFS of 85.14 weeks)

• Evolution pattern: Branching

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (0.00 to 32.99); Falling clones (cellular prevalence at TP1 to TP2) = 2
(13.43 to 0.00);

• TMB at TP1 is 0.48; TMB at TP2 became 1.74

• Therapy: VRD, RD

• At TP1, the founder clone 2 had mutations in EIF!AD (p.(Ala164Thr)), TAS2R43
(p.(Gly160Arg)), DVL3 (p.(Ser233Leu)) etc while the founder clone 1 had so-
matic mutations in driver genes such as KRAS (p.(Gln61His)), STAG2 (p.(Arg252Trp))
and CTNNB1 (p.(Asp162Glu)).

SM0815 (Male / 62 years old / MM R-ISS2 with OS of 78.29, PFS of 36.29 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (3); ; Falling clones (cellular prevalence at TP1 to
TP2) = 3 (44.95 to 33.44);

• TMB at TP1 is 2.97; TMB at TP2 became 1.02

• Therapy: VRD, VD

• Only one founder clone carrying mutations in MYH2 (p.(Glu1940Lys)), GAL3ST1
(p.(Arg354His)), PLXND1 (3’UTR), GRM4 (p.(Arg351Cys)) and TREML1 (p.(Pro269Leu))
was present at diagnosis.

SM1288 (Female / 48 years old / MM R-ISS2 with OS of 46.57, PFS of 26.71 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); ; Falling clones (cellular prevalence at TP1 to
TP2) = 2 (68.21 to 46.28);

• TMB at TP1 is 1.09; TMB at TP2 became 0.86

• Therapy: VCD

• This patient possessed single founder clone with mutations in drivers TP53 (p.(Cys277Phe)),
DCC (p.(Leu334Ter)) and BRAF (p.(Val600Glu)).
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SM1547 (Male / 34 years old / MM R-ISS2 with OS of 60.29, PFS of 57.14 weeks)
• Evolution pattern: Branching

• Total clones= 3; 1 founder(s) (2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (54.63 to 55.53); ;

• TMB at TP1 is 1.88; TMB at TP2 became 1.67

• Therapy: VCD

• A single founder clone was identified with multiple mutations in NXPE1 (p.(Thr117Pro)),
MMP26 (splice variant), NOS1 (p.(Arg904Gly)) and others.

SM007 (Female/58 years old/MM R-ISS3 with OS of 221 weeks, PFS of 175 weeks)
• Evolution pattern: Branching

• Total clones= 9; 3 founder(s) (3, 8, 9); Rising clones (cellular prevalence at TP1
to TP2) = 3 (33.33 to 33.33); Falling clones (cellular prevalence at TP1 to TP2) =
8 (33.33 to 27.41), 9 (33.33 to 0.00);

• TMB at TP1 is 134.43; TMB at TP2 became 96.61

• Therapy: VCD; PCD

• Among several somatic mutations present in founder clone 1, an actionable driver
mutation in NRAS (p.(Gly12Ala)) and another in FOXD4L1 (p.(Arg145Cys))
were noticed. Additional somatic mutations observed in founder clone 2 included
KIAA0556 (p.(Ser368Asn)), MIPEP (p.(Ser368Asn)) and others.

SM0052 (Male / 59 years old/MM R-ISS2 with OS of 242.29 weeks, PFS of 148.00
weeks)

• Evolution pattern: Branching

• Total clones= 5; 3 founder(s) (3, 4, 5); Rising clones (cellular prevalence at TP1
to TP2) = 3 (0.00 to 32.75); Falling clones (cellular prevalence at TP1 to TP2) =
5 (32.99 to 32.64), 4 (32.11 to 0.00);

• TMB at TP1 is 132.12; TMB at TP2 became 119.99

• Therapy: DT, ASCT

• This patient has several driver mutations such as those in FAM186A (p.(Leu1233Pro),
p.(Lys187Gln)), ZNF626 (p.(Lys180Asn)), MERTK (p.(Ile518Val)), IL3 (p.(Pro27Ser))
in founder clone 5, in PTPRC (p.(Asp543Asn)), KRAS (3’UTR), BRCA2 (p.(Asn289His)),
CYP19A1 (p.(Arg264Cys)) in founder 4, and in NCOR2 (p.(Ala1699Thr)), KMT2B
(p.(Asp2364Gly)) in founder clone 3.
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Linear evolution

SM0076 (Male / 72 years old / MM R-ISS2 with OS of 280.71, PFS of 252.71 weeks)
• Evolution pattern: Linear

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (17.13 to 20.99), 1 (0.00 to 23.15); ;

• TMB at TP1 is 0.35; TMB at TP2 became 2.16

• Therapy: MPT

• Founder clone 2 carried mutations in PNPLA2 (p.(Ser170Ala)), MIXL1 (p.(Ala81Thr))
etc while founder clone 1 had mutations in actionable driver oncogene NRAS
(p.(Gly12Ala)), FOXD4L1 (p.(Arg145Cys)) and many more.

SM0133 (Male / 50 years old / MM R-ISS2 with OS of 260.00, PFS of 260.00 weeks)
• Evolution pattern: Linear

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.31 to 29.50), 1 (0.00 to 49.93); ;

• TMB at TP1 is 1.36; TMB at TP2 became 105.47

• Therapy: VTD-VD

• Founder clone 2 had driver mutations such as TSG SUFU (p.(Arg280Gln)), ac-
tionable oncogene RET (p.(Lys989Arg)), TSG TET1 (p.(Ser193Thr), p.(Ala256Val)),
NOTCH2 (p.(Asn2008Ser), p.(Asp1327Gly)), KRAS (3’UTR), FLT1 (p.(Lys337Gln)),
TP53BP1 (p.(Lys1141Gln)), BRCA1 (p.(Ser1613Gly), p.(Lys1183Arg), p.(Glu1038Gly)),
DNMT1 (p.(Ile327Val)) while founder clone 1 had numerous mutations in drivers
such as CLIP1 p.(Asp1080Glu), MLH3 (p.(Pro844Leu)), STIL (p.(Ala86Val))
and CIITA (p.(Leu45Val)).

SM0138 (Male / 69 years old / MM R-ISS2 with OS of 181.14, PFS of 85.14 weeks)
• Evolution pattern: Linear

• Total clones= 3; 1 founder(s) (1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (82.81 to 97.65); ;

• TMB at TP1 is 79.67; TMB at TP2 became 80.72

• Therapy: RD

• One single founder clone was observed at diagnosis, which contained mutations
in PDE4DIP (p.(Trp560Ter), p.(Arg295His)), PRRX1 (p.(Ser200Arg)), IKBKE
(p.(Pro713Leu)), PTPN11 (p.(Asn18Ser)) and others.

SM0143 (Female / 43 years old / MM R-ISS2 with OS of 253.14, PFS of 139.71 weeks)
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• Evolution pattern: Linear

• Total clones= 3; 2 founder(s) (3, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (49.23 to 49.91), 2 (0.00 to 49.69); ;

• TMB at TP1 is 95; TMB at TP2 became 39.41

• Founder clone 3 had FANCA (p.(Gly809Asp)), MSH3 (p.(Ala1045Thr)), WRN(p.(Leu1074Phe)),
founder clone 2 had TET1 (p.(Asp162Gly)), RBM15 (p.(Asn798Ser)), FAM46C
(p.(His67Gln)) and additional driver mutations.

SM0208 (Male / 54 years old / MM R-ISS2 with OS of 179.00, PFS of 132.71 weeks)
• Evolution pattern: Linear

• Total clones= 4; 2 founder(s) (3, 4); Rising clones (cellular prevalence at TP1 to
TP2) = 4 (0.00 to 50.00); Falling clones (cellular prevalence at TP1 to TP2) = 3
(22.68 to 17.85);

• TMB at TP1 is 0.18; TMB at TP2 became 0.55

• Therapy: VRD-VD, ASCT+VRD-RD, CPT, DCEP

• Founder clone 3 was a falling clone with GUCY1A2(p.(Cys725Tyr)), TTF2 (p.(Lys167Glu)),
whereas clone 4 was a rising founder clone with ZNF778 (p.(Tyr701Cys)), SLC35G4
(p.(Leu45Met)), and other mutations.

SM0559 (Female / 31 years old / MM R-ISS2 with OS of 163.57, PFS of 22.00 weeks)

• Evolution pattern: Linear

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (0.00 to 19.21); Falling clones (cellular prevalence at TP1 to TP2) = 2
(17.43 to 0.05);

• TMB at TP1 is 0.16; TMB at TP2 became 0.37

• Therapy: VCD

• The founder clone 2 had mutations with falling prevalence (SDK2 (p.(Ala1499Gly)),
ST8SIA3 (p.(Ala45Thr))) whereas founder clone 1 had mutations rising preva-
lence before progression (MUC5B (p.(Pro2830Leu)), MYH4 (p.(Ile1106Met)),
etc.)

SM0664 (Male / 47 years old / MM R-ISS2 with OS of 101.71, PFS of 28.29 weeks)
• Evolution pattern: Linear

• Total clones= 2; 2 founder(s) (1, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.00 to 18.56); Falling clones (cellular prevalence at TP1 to TP2) = 1
(30.07 to 0.97);
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• TMB at TP1 is 4.69; TMB at TP2 became 1.16

• Therapy: VRD, CTD, DCEP

• In this patient, founder clone 1 had driver mutations in FAT3 (p.(Ser3322Arg)),
SPRTN (p.(Val183Asp)), MGA (p.(Ser1263Ter)), EP300 (p.(Asn607Thr)) while
founder clone 2 had mutations in KMT2C (p.(Lys339Asn)), KMT5A (p.(Pro60Leu)),
TRIM60 (p.(Trp44Arg)) and others.

SM0667 (Female / 65 years old / MM R-ISS2 with OS of 130.57, PFS of 89.29 weeks)

• Evolution pattern: Linear

• Total clones= 4; 1 founder(s) (4); Rising clones (cellular prevalence at TP1 to
TP2) = 4 (82.50 to 91.33); ;

• TMB at TP1 is 0.24; TMB at TP2 became 0.96

• Therapy: VRD, CRD

• A single founder clone was present in this patient at TP1 and harboured mutations
in LRRC378 (p.(Gly652Arg)) and POM121 (p.(Pro478Leu)).

SM1595 (Female / 58 years old / MM R-ISS3 with OS of 95.86, PFS of 94.71 weeks)
• Evolution pattern: Linear

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (0.00 to 21.40); Falling clones (cellular prevalence at TP1 to TP2) = 2
(20.47 to 10.83);

• TMB at TP1 is 0.91; TMB at TP2 became 3.14

• Therapy: VRD-VD, ASCT+VRD-RD

• This patient had mutations in founder clone 2 (such as PRAMEF1 (p.(Leu105Ter),
(p.(Glu110Gly), CUL9 (p.(Glu377Ter))) while in founder clone 1 in KRAS (p.(Gly12Asp)),
LRIG3 (p.(Val251Ile)), NBEA (p.(Arg2083His)) and others.

Stable with loss of clone

SM0115 (Female / 67 years old / MM R-ISS2 with OS of 220.00, PFS of 168.14 weeks)

• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (2, 1); ; Falling clones (cellular prevalence at TP1
to TP2) = 2 (33.84 to 0.58), 1 (50.00 to 0.00);
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• TMB at TP1 is 54.83; TMB at TP2 became 0.53

• Therapy: RD, DT, CTD

• Founder clone 2 carried driver mutations in PDE4DIP (p.(Glu2001Gly)), PTPN14
(p.(Ile924Val)), HERC2 (p.(Val3327Met)), IGLL5 (p.(Thr211Ala))„ KMT2C (p.(Ala1685Ser),
p.(Cys391Ter)). The other founder clone 1 had driver mutations in PGR (p.(Gln553Glu)),
ATM (p.(His1380Tyr)), PRDM2 (p.(Ile586Thr)) , NUMA1 (p.(Ala794Gly)), KRAS
(3’UTR), EXO1 (p.(Glu589Lys)), DIS3 (p.(Asn269Ser)) and others.

SM0167 (Female / 66 years old / MM R-ISS3 with OS of 67.57, PFS of 34.00 weeks)
• Evolution pattern: Stable with loss of clone

• Total clones= 2; 1 founder(s) (1); ; Falling clones (cellular prevalence at TP1 to
TP2) = 1 (100.00 to 0.17);

• TMB at TP1 is 78.34; TMB at TP2 became 1.09

• Therapy: VRD, RD

• This patient had a single founder clone harbouring mutations in driver TSG TET1
(p.(Asp162Gly)), PDE4DIP (p.(Arg1978His), NUMA1 (p.(Glu809Asp), FAT3
(p.(Asn2293Ser)), CR1 (p.(Pro1827Arg)), TSG ATXN2 (p.(Ser248Asn)) and oth-
ers.

SM0185 (Male / 63 years old / MM R-ISS2 with OS of 259.14, PFS of 147.00 weeks)
• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (2, 1); ; Falling clones (cellular prevalence at TP1
to TP2) = 2 (31.33 to 0.72), 1 (50.00 to 0.00);

• TMB at TP1 is 75.88; TMB at TP2 became 0.67

• Therapy: MP, MPT, RD

SM0266 (Male / 63 years old / MM R-ISS1 with OS of 184.14, PFS of 184.14 weeks)
• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (0.92 to 29.01); Falling clones (cellular prevalence at TP1 to TP2) = 1
(16.69 to 0.00);

• TMB at TP1 is 0.63; TMB at TP2 became 0.47

• Therapy: VRD, VD Driver mutations in founder clone 2 included TSG TET1
(p.(Asn1018Ser)), CLIP1 (p.(Asp1080Glu)), PITRB (p.(Asp633Glu)), DNMT3B
(c.1674T>C(p.(Tyr558=))), TSG FANCD2 (p.(Asn405Ser)), KMT2C (p.(Ala1685Ser)).
Founder clone 1 had CPEB3 (p.(Ala499Gly)), PDE4DIP (p.(Val1371Ile)), LRP5
(p.(Val667Met)), FAT3(p.(Gln1726Arg)) and others.
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SM0353 (Female / 61 years old / MM R-ISS3 with OS of 202.43, PFS of 133.43 weeks)

• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (1, 2); Rising clones (cellular prevalence at TP1 to
TP2) = 1 (14.09 to 17.57); Falling clones (cellular prevalence at TP1 to TP2) = 2
(18.61 to 0.00);

• TMB at TP1 is 1.08; TMB at TP2 became 0.34

• Therapy: VRD-VD, VCD-VD, CPT

• Founder clone 1 possessed driver mutations at TP1 (MYO5A (p.(Arg90Ser))),
similarly, founder clone 2 had CACNA1D (p.(Ser1224Tyr)), FAT1 (p.(Val43Met)),
NSD2 (p.(Met397Ile)) and BRAF (p.(Val600Glu)) actionable driver mutations.

SM0471 (Female / 48 years old / MM R-ISS3 with OS of 220.43, PFS of 52.14 weeks)

• Evolution pattern: Stable with loss of clone

• Total clones= 3; 2 founder(s) (3, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 3 (25.46 to 27.33); Falling clones (cellular prevalence at TP1 to TP2) = 1
(33.07 to 0.00);

• TMB at TP1 is 1.13; TMB at TP2 became 0.32

• Therapy: RD, CTD, DT

• In this case, at diagnosis, founder clone 3 was loaded with actionable driver muta-
tions in BIRC3 (p.(Tyr31His)), etc. The other founder clone 1 also had actionable
driver mutations in BARD1 (p.(Tyr87His)), FGFR3 (p.(Cys275Tyr)) and oth-
ers including IGLL5 (p.(Gln22Ter)), TNFAIP3 (p.(Arg45Ter)) and HIST1H1E
(p.(Ala116Val)).

SM0808 (Male / 70 years old / MM R-ISS3 with OS of 83.14, PFS of 31.00 weeks)
• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (2, 1); Rising clones (cellular prevalence at TP1 to
TP2) = 2 (7.46 to 22.78); Falling clones (cellular prevalence at TP1 to TP2) = 1
(15.81 to 0.00);

• TMB at TP1 is 2.44; TMB at TP2 became 0.69

• Therapy: VCD, VTD

• On diagnosis, two driver somatic mutations were observed in founder clone 2
(NBEA (p.(Ser200Cys)), IRF4 (p.(Lys123Arg))) and a few in founder clone 1
(ARID5B (p.(Asn640Ser)), DIS3 (p.(Arg780Lys)), AXIN2 (p.(Arg841Gln)), ac-
tionable BRAF (p.(Val600Glu)) and others).
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SM0145 (Male / 60 years old/MM R-ISS3 with OS of 251.14 weeks, PFS of 123.29
weeks)

• Evolution pattern: Stable with loss of clone

• Total clones= 2; 2 founder(s) (1, 2); Falling clones (cellular prevalence at TP1 to
TP2) = 2 (34.89 to 1.28), 1 (50.00 to 0.00);

• TMB at TP1 is 126.3; TMB at TP2 became 0.97

• Therapy: VRD-VD, VCD-RD

• Driver mutations found in founder clone 2 included PARP4 (p.(His490Gln)),
MAX (p.(Met1?)), actionable MLH3 (p.(Pro844Leu)), HERC2 (p.(Val3327Met)),
ALK (p.(Glu588Ala)), NOTCH4 (p.(Gly534Ser), p.(Lys117Gln)) and others. The
founder clone also possessed driver mutations such as TCF7L2 (p.(Pro495Ala),
RET (p.(Gly691Ser), CCDC6 (p.(Pro470Thr), ARID5B (p.(Asn299Lys)), ATM
(p.(Leu263Pro), p.(Ser707Pro)), KMT2A (p.(Arg3564Trp)), NOTCH2 (p.(His1160Arg)).
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Supplementary Figures: Casewise Clonal evolution

Figure B.1: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.2: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.3: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.4: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.5: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.6: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.7: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.8: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.9: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.10: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.11: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Figure B.12: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.



Appendix B. Clonal evolution in Multiple Myeloma 208

Figure B.13: (A-E) Clonal evolution in each case of MM. Representation of clonal evolution
through (a) Density, (b) Evolution and (c) Fish plots across individual MM patients with branch-
ing, linear and stable with loss of clone patterns of clonal evolution.
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Inference of clonal trajectory in single-cell data

Robust Graph Learning

Consider a noisy single-cell data matrix, XN , of size m × n. m is the number of
cells and n is the number of mutation sites. This matrix is binary in nature where
‘1’ represents the presence of mutation and ‘0’ denotes the absence of mutation. Our
goal is to extract a denoised matrix, XD from this noisy matrix along with E which
is the error observed in matrix such that XN = XD + E. This task of denoising a
noisy matrix is very well performed by applying robust PCA on the noisy matrix as
done in [225]. Low rank constraints are added on the denoised matrix, XD, because
the original genotype matrix is a low rank matrix where the tumor cells are clustered
together into various subclones such that there is little to no variation in the genotype
of the cells within the same subclone. Further, we consider that error component, E, is
sparse. However, recently an improved version has been proposed to this problem i.e.
Robust Graph learning [227], where along with the denoising, an adjacency matrix is
simultaneously learned. Our objective now is to recover a denoised matrix as well as
to learn an adjacency graph during the denoising process. Consider L and S to be the
Laplacian and similarity graph learned during the denoising step. Robust graph learning
is formulated in equation C.1.

min
XN ,XD,E

||XD||∗ + a||E||1 + bTrXDL(XD)T + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1
(C.1)

where a, b and c are the trade-off parameters. In the above formulation, denoising and
graph learning are implemented together such that each of the step iteratively enhances
the other step. In order to solve equation C.1, an auxiliary variable, W is introduced
such that the equation becomes:

min
XN ,XD,E,W

||XD||∗ + a||E||1 + bTr(WLW T ) + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1,W = XD
(C.2)

The above formulation can now be solved via alternating direction method of multipli-
ers (ADMM).
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Proposed Extension of Robust Graph Learning for Recovering Missing Values

In this work, we have extended robust graph learning for handling missing entries in
the data. Single-cell data not only suffers from noisy corruptions but it also has missing
values which needs to be tackled for accurate downstream analysis. Therefore, we
have extended the robust graph learning algorithm to handle missing values. A linear
operator, PΩ(X

D), was defined which sets the unobserved entries to 0 while keeping
the rest equal to the observed entries as follows:

PΩ(X
D) =

XD
ij if(i,j) ∈ Ω;

0 if(i,j) /∈ Ω.
(C.3)

Equation C.1 was modified such that the denoising and missing value imputation occurs
simultaneously along with graph learning.

min
XD,S,E

||XD||∗ + a||E||1 + bTrXDL(XD)T + c||S||2F ,

s.t. PΩ(X
N) = PΩ(X

D + E), S1 = 1, 0 ≤ S ≤ 1
(C.4)

The above formulation ensures that the low rank denoised matrix and noisy sparse com-
ponent is recovered from the observed entries, PΩ(X

N). The above equation can be
further converted to the following framework:

min
XD,S,E

||XD||∗ + a||PΩ(E)||1 + bTrXDL(XD)T + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1
(C.5)

The above formulation can now be solved via alternating direction method of multipli-
ers (ADMM) by adding an auxiliary variable W in the equation.

min
XD,S,E,W

||XD||∗ + a||PΩ(E)||1 + bTr(WLW T ) + c||S||2F ,

s.t. XN = XD + E, S1 = 1, 0 ≤ S ≤ 1,W = XD
(C.6)

Augmented Lagrangian function can be obtained by removing equality constraints on
XN and W :
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L(XD, E, S,W,Z1, Z2) = ||XD||∗ + a||PΩ(E)||1 + bTr(WLW T ) + c||S||2F

+
µ

2

(
||XD + E −XN +

Z1

µ
||2F + ||XD −W +

Z2

µ
||2F
)

s.t. S1 = 1, 0 ≤ S ≤ 1

(C.7)

where µ is penalty parameter and Z1 and Z2 are the Lagrangian multipliers. In our
proposed method, ARCANE-ROG, a was set to (1 + 3 × Ω)/

√
m× n, b was set to

5/
√
m× n and c was set to 5/

√
m× n. The above function can be solved iteratively

for each of the parameters one by one by keeping the other parameters fixed as follows.
• Update XD: We update XD after fixing other variables such that problem (C.7)

becomes
min
XD

||XD||∗ + µ||XD −XI ||2F (C.8)

where XI is XI = [ ( XN +W − E − ( Z1 + Z2) /µ) /2] . It has a closed form
solution according to singular value shrinkage, i.e.

XD = Udiag((σ − (
1

2µ
))+)V

T (C.9)

where

Udiag(σ)V T is SVD of XI =
(
XN +W − E − (Z1 + Z2)

µ

)
/2 (C.10)

• Update E: We update E after fixing other variables such that problem (C.7)
becomes

min
E

a||PΩ(E)||1 +
µ

2
||E −

(
XN −XD − Z1

µ

)
||2F (C.11)

It also admits closed-form solution, i.e.

eij = (|oij| −
a

µ
)+.sign(oij)

where O = XN −XD − Z1

µ

(C.12)

It is to be noted that sparse component, E, were recovered only from the obser-
vations i.e. PΩ(X

D).

• Update S: L is also a function of S, so for updating S, equation (C.7) becomes

min
si

n∑
j=1

( b
2
||wi − wj||2sij + cs2ij

)
s.t. sTi 1 = 1, 0 ≤ sij ≤ 1. (C.13)

We can denote ||wi − wj||2 as fij where fi ∈ Rn×1. Thus, the above can be
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reformulated as
min

sTi 1=1,0≤sij≤1
||si −

b

4c
fi||2 (C.14)

The problem has a sparse solution which is why we update the k-nearest neigh-
bours, that it, sj has k positive entries and sij = 0 for j > k. The Lagrangian
function of it is

L(si, η, ξ) = ||si +
b

4c
fi||2 − η(sTi 1− 1)− ξT si (C.15)

where η and ξ ∈ Rn×1 are the Lagrangian multipliers and the overall c can be
set to the average of {ci}ni=1. By the Karush-Kuhn-Tucker condition, it yields
si = ((η/2)− (bfi/4ci))+. We then rank fi in ascending order and we obtain

sik =
η
2
− bfik

4ci
> 0

si,k+1 =
η
2
− bfi,k+1

4ci
≤ 0

sTi 1 =
∑k

j=1(
η
2
− bfij

4ci
) = 1

(C.16)

⇒


sij =

fi,k+1−fij

kf i,k+1−
∑k

r=1 fir
, j ≤ k

ci =
b
4

(
kfi,k+1 −

∑k
j=1 fij

)
η = 2

k
+ b

2kci

∑k
j=1 fij

(C.17)

The value of ci has been set to maximum in the above derivation. Thus, taking
the average of {ci}ni=1, we have

c =
b

4n

n∑
i=1

(
kfi,k+1 −

k∑
j=1

fij

)
(C.18)

• Update Z: For updating Z we have

min
W

bTr(WLW T ) +
µ

2
||E −

(
XD −W − Z2

µ

)
||2F (C.19)

Its first-order derivative is 2bWL− µ(XD −W + (Z2/µ)). By setting it to zero,
we achieve

W = (µXD + Z2)(2bL+ µI)−1 (C.20)

• Update Lagrangian multipliers:

Z1 = Z1 + µ(XD + E −XN)

Z2 = Z2 + µ(XD −W )
(C.21)
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Algorithm 2 Algorithm for denoising and imputation of noisy and incomplete data

Input: XN (Incomplete and noisy matrix), parameters a > 0, b > 0, µ > 0, c
Initialize: W = XN , E = 0, Z1 = Z2 = 0
while converge do

Calculate XD as:
XD = Udiag((σ − ( 1

2µ
))+)V

T ,

where Udiag(σ)V T is SVD of A = (XN +W − E − (Z1+Z2)
µ

)/2
Update E as:
eij = (|oij| − a

µ
)+.sign(oij), where O = XN −XD − Z1

µ

Update S as:
sik =

fi,k+1−fij

kf i,k+1−
∑k

r=1 fir
, j ≤ k where fij = ||wi − wj||2

Update W as:
W = (µXD + Z2)(2bL+ µI)−1

Update Lagrangian multipliers as:
Z1 = Z1 + µ(XD + E −XN)
Z2 = Z2 + µ(XD −W )

end while
Output: XD (Denoised data), S (Similarity matrix/ Adjacency graph)

Additional results

Results on simulated datasets for real datasets

There is no ground truth in real single cell datasets. Therefore, to test the performance
of our proposed method on real datasets, we simulated data imitating the characteristics
of real datasets in terms of the missing values, false positives and false negatives. Size
of the simulated datasets was fixed to the size of the real datasets. We applied Robust-
Clone and ARCANE-ROG on the simulated datasets and found that ARCANE-ROG
performed significantly (p-value < 0.5) superior to RobustClone for all the datasets un-
der different conditions. Overall comparison of the both the methods is shown in the
Table 6.2.

Results on Real datasets

Five clones were inferred in clear-cell renal-cell carcinoma dataset. The sequence in
which the mutations were acquired are shown in the Figure C.7. FGFR4 gene in red
denotes an actionable mutation and is visible in the initial stages of the mutations tree
in the data in Figures C.7(A) and C.7(B). However, mutations in genes like NOS1 and
CDON are shown in the bottom of the hierarchy in the figure C.7(B) suggesting that
they are acquired in the later stages of cancer compared to what is observed in the fig-
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(a) Reconstruction error (b) Number of clones inferred

(c) FPFN ratio (d) V-measure (e) Tree distance

Figure C.1: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone for simulated dataset generated for JAK2-negative myeloproliferative neoplasm data of
size 58 × 712. (a) Reconstruction error when the data has the maximum noise as it was being
corrupted with missing values and false positives as well false negatives. (b) FPFN ratio was cal-
culated only when the simulated data had both the false positives and false negatives along with
the missing entries. (c) Number of clones estimated by ARCANE-ROG were close to the actual
number of clones while RobustClone underestimated the number of clones. (d) V-measure was
the lowest when the added noise was the highest (e) Tree distance gradually increased with an
increase in noise. Overall, the performance of ARCANE-ROG was significantly (p-value < 0.5)
better than RobustClone.

ure C.7(A). Similarly, genes like PTPRT which are altered in later stages in C.7(A) are
found to altered in the initial stages in C.7(B). As we have already discussed in the main
manuscript that there is limited knowledge on predetermined order of mutations, but,
the sequential acquisition of the mutations does influence cancer progression. There-
fore, inferring an accurate sequence of mutation may assist us in drawing more relevant
and significant biological findings from the data.

Comparison with BnpC algorithm

We have also compared our method with BnpC [228] algorithm. However, the method
was computationally expensive even on small datasets. Therefore, we ran BnpC only on
single dataset of each simulated case. BnpC took nearly 12 hrs on data of size 500×500

while ARCANE-ROG takes less than 2 min for the same task. Default settings were
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(a) Reconstruction error (b) Number of clones inferred

(c) FPFN ratio (d) V-measure (e) Tree distance

Figure C.2: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone for simulated dataset generated for Muscle-invasive bladder transitional cell carcinoma
data of size 44× 443. (a) Reconstruction error when the data has the maximum noise as it was
being corrupted with missing values and false positives as well false negatives. (b) FPFN ratio
was calculated only when the simulated data had both the false positives and false negatives
along with the missing entries. (c) Number of clones estimated by ARCANE-ROG were close
to the actual number of clones while RobustClone underestimated the number of clones. (d)
V-measure was the lowest when the added noise was the highest (e) Tree distance gradually in-
creased with an increase in noise. Overall, the performance of ARCANE-ROG was significantly
(p-value < 0.5) better than RobustClone.

used to run BnpC and 20 cores were alloted for the process in an Ubuntu system with
98 GB RAM. We have compared BnpC with ARCANE-ROG in terms of tree distance
error and V-measure.
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(a) Reconstruction error (b) Number of clones inferred

(c) FPFN ratio (d) V-measure (e) Tree distance

Figure C.3: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone for simulated dataset generated for real Clear-cell renal-cell carcinoma data of size
17×35. (a) Reconstruction error when the data has the maximum noise as it was being corrupted
with missing values and false positives as well false negatives. (b) FPFN ratio was calculated
only when the simulated data had both the false positives and false negatives along with the
missing entries. (c) Number of clones estimated by ARCANE-ROG were close to the actual
number of clones while RobustClone underestimated the number of clones. (d) V-measure was
the lowest when the added noise was the highest (e) Tree distance gradually increased with an
increase in noise. Overall, the performance of ARCANE-ROG was significantly (p-value < 0.5)
better than RobustClone.

Performance of BnpC on varying α, β, γ, number of mutation sites, number of
cells and clones.

With increase in α, tree distance increased and V-measure decreased as shown in the ta-
ble C.1. Overall, ARCANE-ROG performed superior to BnpC in terms of tree distance
error and V-measure. Similarly at all values of β, BnpC has high tree distance and low
V-measure as compared to ARCANE-ROG. For different values of γ, ARCANE-ROG
performs better than BnpC as it has low tree distance and higher value of V-measure at
all values of γ. When mutation sites are equal to 100, BnpC performs better as com-
pared to ARCANE-ROG, however, for higher number of mutations sites, our proposed
method has low tree distance error and high V-measure. With change in number of cells
and clones, BnpC performs slightly better as compared to ARCANE-ROG, however,
the computational time 12 hrs which is very high in comparison to ARCANE-ROG
which takes less than 5 minutes for the computation. So, it is evident from the above
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(a) Reconstruction error (b) Number of clones inferred

(c) FPFN ratio (d) V-measure (e) Tree distance

Figure C.4: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone for simulated dataset generated for real dataset, 47×40. ARCANE-ROG exhibited supe-
rior performance as compared to RobustClone in terms of low values of (a) Reconstruction error,
(b) FPFN ratio, and (e) Tree distance. (c) Number of clones inferred by ARCANE-ROG were
close to the actual number of clones while RobustClone underestimated the number of clones.
(d) V-measure was higher for our proposed method. Overall, the performance of ARCANE-
ROG was significantly (p-value < 0.5) better than RobustClone.

(a) Reconstruction error (b) Number of clones
inferred

(c) V-measure (d) Tree distance

Figure C.5: Boxplots for comparison of the proposed ARCANE-ROG method with Robust-
Clone for simulated dataset generated for High grade serious ovarian cancer dataset with size
420×48. (a) Reconstruction error and (d) Tree distance values are low for our proposed method.
(b) Number of clones estimated by ARCANE-ROG were close to the actual number of clones
while RobustClone underestimated the number of clones (c) V-measure for ARCANE-ROG is
high. Overall, the performance of ARCANE-ROG was significantly (p-value < 0.5) better than
RobustClone.
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Figure C.6: Performance of ARCANE-ROG on real datasets. The subclones inferred in the
data and the pattern of clonal trajectory inferred via ARCANE-ROG.

experiments that ARCANE-ROG is robust to varying α, β, γ, number of mutation sites,
number of cells and clones. Further, it is computationally robust and efficient in terms
of performance as well as time.
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Figure C.7: Comparison of the results obtained on real dataset of clear-cell renal-cell carci-
noma. A. Maximum Likelihood (ML) tree for the clear-cell renal-cell carcinoma dataset. Mu-
tations placed in a single box have non-identifiable order. B. Sequence of mutations inferred
via ARCANE-ROG. Red genes indicate actionable mutations according to TARGET/COSMIC
database C. Clonal tree deduced via ARCANE-ROG. Five clones were inferred in total. Child
clone has all the mutations acquired in the parent clone. New mutations acquired by the child
clone are shown in the blue color. m denotes the number of cells.
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Table C.1: Performance comparison between BnpC and ARCANE-ROG for different values
of α, β, γ, m, n and s. ARCANE-ROG is more robust to BnpC with low tree distance error and
high V-measure at all settings.

Tree distance V-measure
BnpC ARCANE-ROG BnpC ARCANE-ROG

α
0.001 0 0 1 1
0.01 0.013832 0 0.986 1
0.1 0.0522 0.002992 0.968 0.99

β

0.1 0.278424 0 0.822 1
0.2 0 0 1 1
0.3 0 0 1 1
0.4 0.06846 0.015936 0.942 0.978

γ

0.2 0 0 1 1
0.3 0.081992 0.004 0.948 0.99
0.4 0.007984 0 0.99 1
0.5 0 0 1 1

n
100 0.04972 0.24752 0.979 0.90
500 0 0 1 1

1000 0.023612 0 0.96 1

m,s

100 cells, 10 clones 0.01016 0.02116 0.98 0.94
500 cells, 20 clones 0 0.017896 1 0.989

1000 cells, 30 clones 0.01394 0.12288 0.998 0.966
2000 cells, 40 clones 0.66056 0.504918 0.988 0.96


