
On the Statistical Characterization of the
Binomial Line Processes

by
Souradip Sanyal

Under the Supervision of: Dr. Gourab Ghatak

Submitted
in partial fulfillment of the requirements for the degree of

Master of Technology

to

Indraprastha Institute of Information Technology Delhi
December, 2021



Certificate
This is to certify that the thesis titled “On the Statistical Characterization of the

Binomial Line Processes” being submitted by Souradip Sanyal to the Indraprastha
Institute of Information Technology Delhi, for the award of the Master of Technol-
ogy, is an original research work carried out by him under my supervision. In my
opinion, the thesis has reached the standards fulfilling the requirements of the regu-
lations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any
other university or institute for the award of any degree/diploma.

December, 2021 Dr. Gourab Ghatak
Department of Electronics and Communication Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110 020

i



Acknowledgements
Throughout the entire duration of my work on this thesis I have received a great

deal of support and assistance from my supervisors, peers, friends and family.
I would first like to thank my supervisor, Dr. Gourab Ghatak, whose expertise,

motivation and patience was invaluable in formulating the right research question to
writing this report in itself. Your timely feedback, little encouragements here and
there, and overall guidance pushed me and my work to a higher level. Thank you for
guiding me every step of the way.

I would also like to thank my professors, Dr.Vivek Ashok Bohara and Dr. Anubha
Gupta, for their valuable guidance throughout my studies. You provided me with the
tools that I needed to choose the right direction and successfully complete my thesis.

I would like to acknowledge my peers at IIITD, without whose support this thesis
would have been an even more daunting challenge. In particular, I would like to
sincerely thank Pallab Chakraborty, Ayush MS, Tathagat Pal and Harshal Dev for
their interest, ideas and constant encouragement in my work and overall making the
IIITD experience worthwhile.

Finally, I would like to thank my parents and my partner K.B. for their wise
counsel and support throughout. I would sincerely love to thank you from the bottom
of my heart for being with me every day and every night, especially knowing I might
not have been there as much as I should have been. Thank you for believing in me
when many didn’t.

ii



Abstract
This thesis introduces the Binomial Line Process (BLP) and then Binomial Line

Cox Process (BLCP) based on BLP, a novel spatial stochastic model for the charac-
terization of streets in the statistical evaluation of wireless and vehicular networks.

Stochastic Geometry based network planning is an extensively studied area. Ex-
isting models for streetwise millimeter wave network implementation include Pois-
son line processes (PLP), Manhattan line processes (MLP), etc. However, all of these
models lack an essential aspect of city-wide street network planning: street density
is denser in the city center and sparse near the suburbs. These models simulate street
networks by uniformly distributing the roads on the entire R2 plane. Contrary to
these models, the BLP model introduced here restricts the origin of the roads to a
fixed circular area centered at the origin of the Euclidean plane, thereby artificially
introducing inhomogeneity in street density with respect to the distance from the
center. The idea being the further away we go from the city center, i.e., towards
the suburbs, the sparser the entire network becomes. We have derived a closed-form
expression for the contact distribution of the BLP from a random location on the
plane. Leveraging this, we introduced the novel Binomial line Cox process (BLCP)
to emulate points on individual lines of the BLP, where we derive the distribution
of the distance of the nearest point of the Poisson line Cox process (PLCP) and the
Probability Generating Functional (PGFL) of the PLCP. Based on the PGFL and
the nearest point distribution, we characterize the Signal to Interference plus Noise
Ratio (SINR) coverage of a network. Using these numerical results, we highlight
that the network coverage characteristics from the perspective of a user at city center
is remarkably different to that of a suburban user. This framework can be integrated
with the existing models of line processes for a more accurate characterization of
streets in urban and suburban environments.
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Chapter 1

Introduction

An accurate estimation of modern cellular and vehicular communication networks
need tractable models for the statistical characterization of urban infrastructure, e.g.,
streets, buildings, and blockages [1–3]. This is even more necessary when study-
ing high-frequency millimeter wave (mm-wave) transmissions or vehicular networks,
where network properties like access point deployment, propagation, and the location
of receivers are governed by the physical objects like trees, infrastructure etc. [2, 4].

Fig. 1.1. Vehicular Communication Network: V2I stands for Vehicle to Infrastruc-
ture, while V2V is Vehicle to Vehicle Network

As we can further see from Figure 1.1, cars moving along roads with access
points setup right on or beside the road whose network has to deal with infrastruc-
ture and trees needs a model where we explore the idea of access points on randomly
oriented roads in cities with random blockages here and there. However, this idea
can be extended to urban/suburban networks overall, where access points are located
along roads, and the users may or may not be vehicular only. In this regard, stochas-
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Fig. 1.2. How Access points along roads can provide network coverage to users

tic geometry based studies consider line processes for modeling streets of an urban
environment [5, 6]. As we can see in Figure 1.2, the basic idea that is commonly
used for line process based modelling is: Access points are located on randomly ori-
ented streets. The user/receiver can be located anywhere along such streets or any
random position (depends on the model). For the user, the nearest base station to it
is considered as the serving access point, while all other base stations are considered
as interference.

Out of the numerous candidate line processes, the most popular one for model-
ing streets in wireless communication studies is the Poisson line process (PLP) [7,8].
Here, the roads are randomly and uniformly generated throughout the plane follow-
ing a Poisson Distribution, which governs the average number of roads per unit area.
Although the PLP model provides significant tractability in developing performance
metrics of wireless networks, it fails to accurately take into account some salient
features of urban street networks such as finite street lengths and in-homogeneous
density of streets across a given city. The recent work by Jeyaraj et al. [8] studied
a generalized framework for Cox models to study vehicular networks. The authors
significantly improved the accuracy of line process models to account for finite street
lengths by considering t-junctions, stick processes, and Poisson lilypond models.
However, their work does not consider in-homogeneous road densities e.g., dense
road density in urban areas which gets increasingly sparse as we move further away
from the city center. In this work, we introduce a novel line process model called the
Binomial Line Process (BLP) which bridges this gap. It is envisaged that an accurate
characterization of a city-wide street system will integrate the theory developed in
this paper with the existing works [8].

1.1 Related Work on Line Processes
Gloaguen et al. [9] have modeled streets using either a Poisson-line tessellation
(PLT), Poisson-Voronoi tessellation, or a Poisson-Delaunay tessellation. The PLT
(the tessellation created by the PLP) has received significant interest in further re-
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search, as compared to the other models due to better accuracy and applicability. For
example, in the context of user equipments (UEs), the PLP model was used by Choi
and Baccelli [10] to model vehicular base-stations and UEs and by Morlot [6] to
model the location of UEs. The PLP was further used to study on-road deployment
of mm-wave small cells in [11] and [12]. Further information in this direction can
be found in [7]. To mitigate some of the drawbacks of a PLP, in particular, to take
into account finite length streets, the recent work by Jeyaraj et al. [8] have provided a
generalized framework for a class of line processes. They have considered the Pois-
son stick process and the lilypond model to introduce additional accurate structures
like finite street length, T junctions, loops in street etc.,to the street networks. Then,
using the same results, the authors have analyzed the reliability of communication
networks for these different street models.

1.2 Motivation: Why One More Line Process?

Fig. 1.3. Part of Paris city map. Visual inspection reveals the inhomogeneity of street
density.

Although the literature on line processes is rich, all the above models fail to take
into account a particular property of the urban infrastructure: streets are denser near
the city center or downtown, while they are sparse near the suburbs. This can be
observed by simple visual inspection in Fig. 1.3 where we depict a snapshot of Paris
downtown and suburb. It is also important to note that in large cities, suburban con-
nectivity is facilitated by longer streets that originate near the city centre. Such streets
run through a number of residential clusters and often connect two cities.

Consider another scenario, we are inside a big industrial warehouse which stores
items in bulk. The item loading and unloading is handled by an smart ASRS (Au-
tomated Storage and Retrieval System) system, involving robots/shuttles, ferrying
items from one place to another along fixed paths. The warehouse is centrally orga-
nized, where every item comes in from one direction, gets sorted into different areas
for storage and then gets retrieved as and when needed. The sorting and movement
of items along the roads all radiating outwards from the central location of the ware-
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house can be thought of as an instance of BLCP process, because for a big warehouse
we should not expect density of roads to be uniform thoughout, just like a city.

Fig. 1.4. Warehouse with smart ASRS System

Let us elaborate this notion with the help of realizations of two candidate line
processes: PLP and BLP (Please refer to Section 2.1 for details on the construction
of a BLP). In Fig. 1.5, we plot a realization of a BLP (Fig. 1.5a), a PLP realization
which has the same number of streets as that of the BLP (Fig. 1.5b), and a realization
of a PLP which has the same street density as the BLP (Fig. 1.5c). We notice that the
BLP more accurately captures the two characteristics that we intend to address: i)
denser roads towards the center of the region and sparser roads towards the periphery
and ii) suburbs are connected by roads that originate at the city center. Consequently,
in wireless network modeling, statistical evaluation of metrics such as the distribution
of the distance to the nearest street, the distance to the nearest on-street deployed
access point, the number of street within a given range of a user, etc. are different for
a sub-urban users and a downtown user. Thus, a study of BLP is necessary to take
these nuances into account.
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-1000
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Fig. 1.5. (a) A BLP with nB = 10 and R = 100, (b) A realization of a PLP which
has 10 lines (c) A PLP with the same intensity as the BLP with nB = 10.
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1.3 Contributions
The contributions of this correspondence are as follows:

• We identified a gap in the prevailing literature, where all line process based
models where considered to be homogeneous. But,in real life street densities
tend to vary across urban and suburban regions.

• To plug this gap, we introduce and characterize the BLP, which is a novel
spatial stochastic model to characterize streets jointly in an urban and suburban
environment. To the best of our knowledge, the BLP has never been studied in
wireless network modeling.

• We introduce the notion of domain bands, which are subsets of the generating
set of the BLP that correspond to lines which intersect a given disk in R2.
We derive exact expression for the area of the domain bands. Consequently,
we derive the void probability of the domain bands in the generating domain,
which correspond to the probability that no lines intersect a given given disk in
R2. We extend this framework to derive the distance distribution of the nearest
line from an arbitrary point on the Euclidean plane.

• Leveraging the above, we introduce a doubly stochastic process called the
BLCP which models locations on individual streets as a 1D Poisson point pro-
cess (PPP). We derive the distance distribution of the nearest BLCP point from
a given location in R2.

• Based on the above introduction to BLP and BLCP, we have derived the PGFL
of the BLCP. This in turn, enabled us to do a SINR analysis of this setup.

• Finally, we have compared the results obtained with this framework with the
traditional PLP and PLCP setup to highlight the differences.

It must be noted that the objective of this thesis is not to propose a model that
completely replaces existing stochastic geometry models for characterizing streets
and on-street locations in a wireless network, e.g., PLP and PLCP, respectively. On
the contrary, the proposed framework can be integrated into the existing models to
increase their accuracy, by jointly taking into account the relative inhomogeneity of
street and therefore network configurations for an urban and sub-urban user.
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Chapter 2

Binomial Line Process

A line process P ⊂ R2 is a collection of lines {L1, L2, . . .} in R2. In this chapter, we
shall introduce the BLP and derive various results from the same to gain insight on
how it differs from the standard PLP, that has been used for modelling so far.

2.1 Construction
Let us denote a BLP by PB, which is a collection of a fixed nB number of lines.
Any line that belongs to PB is uniquely characterized by the distance ri between the
origin O and its projection P on the line, and by the angle θ between O⃗P and the
x-axis on the other hand. For a BLP, the domain of the pair of parameters (θ, ri)
is the finite cylinder D := [0, 2π] × [0, R]. We will call D as the generating set or
the domain set of PB, and a point (θi, ri) ∈ D, corresponding to a line Li ∈ PB,
the generating point of Li. Accordingly, there is a bijective mapping f : PB → D
between any random point (θi, ri) ∈ D and a corresponding line Li ∈ PB. We can
now define a BLP, formally.

Definition 1. A line process PB ≜ {Li} in R2 consisting of nB lines is a BLP, if
and only if the set of corresponding nB generating points {(θi, ri) = f(Li)} is a
Binomial Point Process (BPP) in D.
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Fig. 2.1. Illustration of the construction of a BLP and intersecting lines on
B((xt, 0), t).

This is elaborated further in Fig. 2.1, which is an example of BLP with 1 line
and where the generating points of the lines are restricted to the disk B((0, 0), R)
(a disc of radius R, centered at (0,0)). The crucial point to note is: The number of
points (and thus lines corresponding to those points) are fixed and they are randomly
and uniformly oriented within the disc B((0, 0), R) .Furthermore, we note that un-
like stationary point processes, the statistics of the BLP cannot be studied from the
perspective of a typical point due the inherent heterogeneity outside and inside the
disk. However, due to the isotropic construction of the BLP (since the points inside
the circle are located at random), we can assume that the “average” properties of the
BLP as seen from a point depends only on its distance from the center and not its
orientation (Each instance of the process might have varying values, so we are taking
about averages here). Accordingly, without loss of generality, let us consider a test
point located at (xt, 0). First, we study the set of lines that intersect a randomly lo-
cated disk of radius t in R2 centered around a test point (xt, 0) (as shown by the green
circle in the Figure 2.1). We shall use this setup to calculate the CDF of the distance
to the nearest BLP line for a random point in the upcoming sections (specifically
Section 2.4).

2.2 Domain bands in D
The equation of the line Li corresponding to (θi, ri) ∈ D is given by:

x cos(θi) + y sin(θi) = ri.

On the other hand, the equation of the circle Bp((xt, 0), t) with the test node at
its center and a radius of t is given by: (x− xt)

2 + y2 = t2.
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Now, for any straight line given by the equation: ax + by + c = 0, the perpen-
dicular distance of the line from the point (xt, 0) is given by:

|axt + c|√
a2 + b2

.

So, in our case, distance of the line Li from (xt, 0) is:

dLi = |xt cos(θi)− ri| (2.1)

In order to find the set of (θi, ri) for which Li intersects B((xt, 0), t), we need to
find the (θi, ri) which results in dLi ≤ t. So, we get that, Li intersects B((xt, 0), t)
for:

xt cos(θi)− t ≤ ri ≤ xt cos(θi) + t. (2.2)
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x
t 
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Fig. 2.2. Set of points in D which generate lines in R2 that intersect B((xt, 0), t) for
a BLP (denoted by green) and a PLP (denoted by red). Note that the part of the red
region behind the green region is hidden. Here R = 100.

In Fig. 2.2, we show the set of points in D that generate lines in R2 intersecting
Bp((xt, 0), t). Due to their structure, henceforth they are referred to as domain bands.
It is interesting to note that the domain band for the BLP is a clipped version of the
PLP due to the restriction of the points to lie within B((0, 0), R).
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Fig. 2.3. Domain bands for different values of t and xt. Here R = 100. Note that
when |xt|+ t ≤ R, the domain bands for PLP and BLP coincide.

In Fig. 2.3, we plot the domain bands for the BLP for different values of xt and
t. We note that when |xt| + t < R, the domain bands for BLP and PLP coincide.
Additionally, the width of the band decreases as t decreases or xt increases. As we
will see in the next section.

2.3 Void Probabilities
Corollary 1. The area of the domain band for a PLP is independent of xt.

This can be easily verified by evaluating the following:

∫ π

0

(xt cos(θ) + t) dθ −
∫ π

0

(xt cos(θ)− t) dθ = 2πt.

The classical result of PLP follows from above.

Corollary 2. The number of lines intersecting B((0, xt), t) is Poisson distributed
with parameter 2πt. Accordingly, the probability that no lines intersect B((0, xt), t)
is given by exp(−2πλxt).

For a BLP, however, the area of the domain band needs to be calculated explicitly.
For the same, let us first note that the values of θi for which ri, as given by (2.2),
exceeds ±R is:

θ11(xt, t) = cos−1

(
R− t

xt

)
, θ12(xt, t) = cos−1

(
R + t

xt

)
,
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Fig. 2.4. (a) Case 1: |xt| + t ≤ R (b) Case 2 |xt| + t ≥ R and |xt| − t ≤ R and (c)
Case 3: |xt| − t ≥ R.

θ21(xt, t) = cos−1

(
−R− t

xt

)
= π − θ11(xt, t),

θ22(xt, t) = cos−1

(
−R + t

xt

)
= π − θ12(xt, t). (2.3)

We have now developed the necessary tools to evaluate the area of the domain
band for a BLP, which is presented below.

Theorem 1. The area of the domain band for a BLP PB defined on [0, π)× [−R,R]
corresponding to B(xt, t) is:

AD(xt, t) =



2πt; for |xt|+ t ≤ R

2

[
πt− xt

√
1−

(
R−t
xt

)2
+ (R− t) cos−1

(
R−t
xt

)]
;

for |xt|+ t > R and |xt| − t ≤ R

2

[
πt− xt

(√
1−

(
R−t
xt

)2
−
√
1−

(
R+t
xt

)2)
+(R− t) cos−1

(
R−t
xt

)
− (R + t) cos−1

(
R+t
xt

)]
;

for |xt| − t ≥ R

(2.4)

Proof. Let us consider three cases below:

Case 1: |xt|+ t ≤ R. (Refer to Fig. 2.4a). Here, naturally we have |xt| − t ≤ R.
For this case, the domain band for the BLP coincides with that of the PLP. Accord-
ingly, the area of the domain band for Case 1 is AD1(xt, t) = 2πt.

Case 2: |xt| + t > R and |xt| − t ≤ R.(Refer to Fig. 2.4b). In this case, the
upper part of the band is clipped on the left, and the lower part of the band is clipped

10



on the right. Noting the symmetry of the domain bands from the perspective of the
θ = π

2
line, the area is evaluated as:

AD2(xt, t) = 2 (πt− ClippedArea)

= 2πt− 2

∫ cos−1
(

R−t
xt

)
0

(xt cos(θ) + t) dθ

+ 2

∫ cos−1
(

R−t
xt

)
0

R dθ

Case 3: |xt| − t > R. (Refer to Fig. 2.4c). Here, naturally, |xt|+ t > R. In this
case, both the lower and the upper part of the domain band is clipped on both left and
right ends, so in a similar manner to the above case, the area of the domain band is:

AD3(xt, t) = 2 (πt− ClippedArea)

= 2πt− 2

∫ cos−1
(

R+t
xt

)
0

[(xt cos(θ) + t)− (xt cos(θ)− t)] dθ

− 2

∫ cos−1
(

R−t
xt

)
cos−1

(
R+t
xt

) (xt cos(θ) + t) dθ + 2

∫ cos−1
(

R−t
xt

)
cos−1

(
R+t
xt

) R dθ

Evaluating the above integrals for Case 2 and Case 3 completes the proof.

This expression, however is only one of possible ways of representing the Do-
main Band. As seen here, the expression for Ad depends on xt, t and R. But, as
we shall see ahead, a more convenient way of expressing this Domain Band, is in
terms of (r, θ) pair, such that (r, θ) ∈ D and

∫∫
D

drdθ = Ad. For deriving such an

expression, we refer to equation (2.2), while keeping in mind that: −R ≤ ri ≤ R, as
ri ∈ B((0, 0), R) (as described in Section 2.1). This is the expression we get, which
clearly maintains the dependency on xt, t and R :

We begin by defining θ1 and θ2 as follows:

θ1 =

{
cos−1

(
R+t
xt

)
if xt > R + t

0 otherwise

θ2 =

{
cos−1

(
R−t
xt

)
if xt > R− t

0 otherwise

Leveraging these 2 values of θ, we can divide the region D into 3 smaller regions,
each with its own set of limits on (r, θ). These equations are summarized below:
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r θ
xtcosθ − t → R θ1 → θ2
−R → xtcosθ + t π − θ2 → π − θ1
xtcosθ − t → xtcosθ + t θ2 → π − θ2

Table 2.1: (r, θ) limits for valid points which fall in D

Please note that: A valid representation of the Domain Band involves a sum of
3 integrations over the (r, θ) domain, as described in Table 2.1. Going forward, we
shall leverage the fact: (r, θ) ∈ D =⇒ (r, θ) must be in the limits as described by
Table 2.1 to write:

∫ θ2

θ1

∫ R

xtcosθ−t

f(r, θ) drdθ +

∫ π−θ1

π−θ2

∫ xtcosθ+t

−R

f(r, θ) drdθ

+

∫ π−θ2

θ2

∫ xtcosθ+t

xtcosθ−t

f(r, θ) drdθ =

∫∫
Ad

f(r, θ) drdθ

Corollary 3. The probability that no line of the BLP intersects with B((xt, 0), t) is
given by:

VB (B((xt, 0), t)) =

(
2πR−AD (xt, t)

2πR

)nB

(2.5)

In other words, P (No BLP line is within distance t of (xt, 0) = VB.
Consequently, the cumulative density function (CDF) of the distance to the nearest
line from (xt, 0) is given in the following lemma.

2.4 Nearest Line Distribution

Lemma 1. For the point (xt, 0), the CDF of the distance to the nearest line of the
BLP is given by:

Fd(t) = 1− VB (B((xt, 0), t)) (2.6)
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Fig. 2.5. Distance distribution of the nearest line from (xt, 0).

In Fig. 2.5 we plot the CDF for different values of nB and xt. For comparison,
we have also included the CDF of the nearest line of a PLP with the same intensity
λPPP as that of a BLP ( nB

2πR
) with nB = 10 and nB = 50 points for R = 100.

Noticeably the nearest line is statistically closer for a larger value of nB and lower
value of xt. This inference is missed by the CDF of the distance to the nearest line in
a PLP, where the CDFs coincide for all values of xt for a given λPPP . Thus, we note
how a BLP process differs from a standard PLP Process. Next, we shall analyze how
network access points based on streets governed by such a BLP process behaves.

13



Chapter 3

Binomial Line Cox Processes

For each line Li ∈ PB, let us define a 1D PPP Φi with intensity λ. We assume that
Φi is independent of Φj for Li ̸= Lj . The set of all such points created is defined as a
BLCP. The ID PPP represents, the network access points located Independently and
Identically on the roads generated by the BLP Process. Next, we derive the distance
distribution to the nearest BLCP point from (xt, 0). The objective being to calculate
where the nearest access point is located for a random user at (xt, 0).

3.1 Distance Distributions
We begin again with figure 2.1, where we showed the construction for a BLP and
expand on it.

Fig. 2.1. BLP and its construction

For the BLCP, points are distributed according to a PPP on lines such as Li, and
we assume that there are nB such lines in the original BLP.

14



First, we compute the void probability of a given line Li characterized by its
(r, θ) value.

Theorem 2. The probability that no BLCP point will fall inside B((xt, 0), t) given
that there is one BLP line at (r, θ) and the PPP for the BLCP Process has intensity
λ is:

vBLCP =
1

2πR

∫ R

0

∫ 2π

0

e−λC(r,θ) dθ dr (3.1)

where, C(r, θ) =

{
2
√

t2 − (xtcosθ − r)2 when, t ≥ |xtcosθ − r|
0 otherwise

(3.2)

Proof. As we saw in Equation 2.1 in Chapter 2.2, the distance of the line Li from
(xt, 0) point is: |xtcosθ − r|. So, length of a chord passing through B((xt, 0), t) is:

CLength = 2
√

t2 − (xtcosθ − r)2, t ≥ |xtcosθ − r| (3.3)

Now, given that a line characterized by (r, θ) passes through B((xt, 0), t), the
probability that no points of the PPP will fall on that chord is given by: exp(−λCLength).

Now, overall with nB = 1, and a region R given by B((xt, 0), t):

P (No points of PLCP fall within R) = P (The PLP line does not intersect with
R) + P (The PLP line falls within R but there are no PLCP points on the chord)

=⇒ vBLCP =

(
1− Ad

2πR

)
+

(
Ad

2πR

)(
1

Ad

)∫∫
Ad

e−λCLength dr dθ

=

(
1

2πR

) ∫∫
2πR−Ad

dr dθ +

(
1

2πR

)∫∫
Ad

e−λCLength dr dθ

=

(
1

2πR

) ∫∫
2πR−Ad

e0 dr dθ +

∫∫
Ad

e−λCLength dr dθ


=

(
1

2πR

)∫∫
2πR

e−λC(r,θ) dr dθ

=
1

2πR

∫ R

0

∫ 2π

0

e−λC(r,θ) dθ dr

Where, CLength is as described in equation 3.3 and C(r, θ) is as described by equa-
tion 3.2. Note that: C = CLength = 0, when (r, θ) ̸∈ D or, (r, θ) ∈ (2πR− Ad).
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Fig. 3.1. Distance distribution of the nearest BLCP from (xt, 0). xt = 150, R = 100
and nB = 10 for this setup.

With the void probability of a BLCP line calculated, we are now equipped to
calculate the nearest point distribution for BLCP process.

Corollary 4. The distribution of the nearest BLCP point to the point (xt, 0) for nB

BLP points, is given by:

FD(t) = 1−
(

1

2πR

∫ R

0

∫ 2π

0

e−λC(r,θ) dθ dr

)nB

(3.4)

Proof.

FD(t) = P [Min(Distance) ≤ t]

= 1− P [Min(Distance) > t]

= 1− P [Distance of all BLCP Points > t]

= 1− (P [No BLCP Points fall within t])nB

= 1− (vBLCP )
nB
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3.2 Probability Generating Functional
Apart from the distance distributions, another useful metric for Line Processes is
Probability Generating Functional (PGFL).

We define PGFL for a function f(xi) over any Line Process Φ as:

G = E
Φ

(
n∏

i=1

f(xi)

)
, for n total points in the Line Process Φ.

Theorem 3. For a BLP with nB lines, the PGFL of a function f(xi) is given by:

G(xt, R, nB) =


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

0

1− f

(√
y2 + (xtcosθ − r)2

)
dy

)
dr dθ

2πR


nB

(3.5)

Proof. We begin with the PGFL expression for a PPP process. We can then take an
expectation of that value over the lines in the BLP process. In the book ”Poisson
Line Cox Process: Foundations and Applications to Vehicular Networks Synthesis
Lectures”, Harpreet et al. [13], showed that for a PPP (Poisson Point Process) of
intensity λ and a function f is (for d dimensional plane for the PPP):

G = exp(−λ

∫
Rd

(1− f(x))dx)

We shall derive here the PGFL expression for a BLCP process. First, we note
the following things from Figure 3.2:

17
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Fig. 3.2. Setup for Calculating PGFL of BLCP.

• Distance of the BLP Line Li from the point (xt, 0) = |xt cos θ − r|.

• We are taking a random point P, located at a distance ’y’ from the midpoint of
chord.

• The distance of the point P from the center point or (xt, 0) is:√
y2 + (xt cos θ − r)2

• The length of the chord, as given by Equation 3.3 is: 2
√
t2 − (xt cos θ − r)2,

however it is easier to work with half of this chord length and in turn double
the PLP intensity 2λ. So, we define the length of the chord from its midpoint
to the point where it touches the circle as:

C(t) =

{√
(t2 − (xt cos θ − r)2), t ≥ |xt cos θ − r|

0, otherwise
(3.6)

Thus, for a single BLP line Li, characterized by (r, θ) ∈ D and C(t) as described
in Equation 3.6 :

G′′
t (t, xt, r, θ) = exp

−2λ

C(t)∫
0

1− f
(√

y2 + (xtcosθ − r)2
)
dy

 (3.7)
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Now, averaging over ∀(r, θ) ∈ D, with G′′
t (t, xt, r, θ) from Equation 3.7:

G′
t(t, xt, R) =



∫∫
Ad

G′′
t (t, xt, r, θ) dr dθ

Ad

 (3.8)

Leveraging this result, we shall now average this PGFL expression across all nB

lines in the BLP by calculating E
ΦBLP

G′
t(t, xt, R), with G′

t(t, xt, R) as calculated in

Equation 3.8:

Gt(t, xt, R, nB) = E
ΦBLP

G′
t(t, xt, R)

G′
t(t, xt, R) =

nB∑
n=0

(
nB

n

)(
Ad

2πR

)n(
1− Ad

2πR

)nB−n

(G′
t(t, xt, R))

n

=

nB∑
n=0

(
nB

n

)(
Ad

2πR

)n(
2πR− Ad

2πR

)nB−n

 1

Ad

∫∫
Ad

G′′
t (t, xt, r, θ) dr dθ


n

=

(
1

2πR

)nB

nB∑
n=0

(
nB

n

)
(2πR− Ad)

nB−n

∫∫
Ad

G′′
t (t, xt, r, θ) dr dθ

n

=

(
1

2πR

)nB

∫∫
Ad

G′′
t (t, xt, r, θ) dr dθ + 2πR− Ad

nB

=

(
1

2πR

)nB

[∫∫
Ad

exp

(
−2λ

C(t)∫
0

1− f
(√

y2 + (xtcosθ − r)2
)
dy

)
dr dθ

+

∫∫
2πr−Ad

exp(−2λ 0) dr dθ

]nB

=

(
1

2πR

)nB

[ R∫
0

2π∫
0

exp

(
−2λ

C(t)∫
0

1− f
(√

y2 + (xtcosθ − r)2
)
dy

)
dr dθ

]nB
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Thus, we are getting:

Gt(t, xt, R, nB) =


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ C(t)

0

1− f

(√
y2 + (xtcosθ − r)2

)
dy

)
dr dθ

2πR


nB

(3.9)

Now, as we can notice in Equation 3.6, in the expression for Gt(t, xt, R, nB),
only C(t) depends on t. For actual PGFL, we need consider values from all points,
so:

G(xt, R, nB) = lim
t→∞

Gt(t, xt, R, nB) (3.10)

Now, from Equations 3.10 and 3.6, we get:

lim
t→∞

Gt(t, xt, R, nB) = G(xt, R, nB) and lim
t→∞

C(t) = ∞

Finally, using the above 2 equations, we get:

G(xt, R, nB) =


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

0

1− f

(√
y2 + (xtcosθ − r)2

)
dy

)
dr dθ

2πR


nB

This completes our proof for the PGFL of BLCP Process.

In the next section, we shall do the SINR Coverage analysis for a network mod-
elled by such a BLCP Process using all of the results derived so far in this chapter.

20



Chapter 4

SINR Coverage Analysis

In this chapter, we shall finally see a network approximated by a BLCP model and
see how the SINR coverage analysis of such a model holds up to the more traditional
PLCP model. This will in-turn give us some empirical estimate of how much the
constraints of this newly introduced model impact the coverage probability estimate
for a typical user.

4.1 Setup for the BLCP Model
Before we begin with characterization of the network, we shall introduce the Setup
we used/the parameters we assumed for this model

• We are assuming a Typical User model, where a network user is randomly
placed in the network at any point, and we shall derive the characteristics of
the network based on the signal received by that random user.

• We assume a RSSI(Received Signal Strength Indicator) based association of
the typical user. Here, the typical user is connected to the antenna which is the
nearest to that user, and thus presumably has higher transmit power compared
to all other antennas nearby. So, that automatically means that all other anten-
nas excepting the nearest antenna are automatically considered as interferers
for this system.

• We have a single tier network, all operating on the same carrier frequency. On
top of that, the channel is a Rayleigh Fading Channel with unit power, such
that:

RX Power = hiPd−α
i

where, P is the transmitted signal power, di is the distance between the trans-
mitter and the receiver, hi is the channel fading, with hi ∼ exp(1) (Exponential
Density with µ = 1), and finally, α ≥ 2 is the path loss coefficient for the chan-
nel.
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4.2 SINR Coverage Probability for typical networks
For a typical network, we define SINR (Signal to Interference plus Noise Ratio)
coverage probability as:

Pcoverage = P [SINR > γ]

With, SINR =
KPd1

−αh1

N0 +
∑

Φ/{x1}

KPdi
−αhi

(4.1)

Here,
∑

Φ/{d1}

KPdi
−αhi is the interference term. Φ/{d1} represents all the inter-

ferers, that is, the BLCP process Φ minus the nearest base station which is associated
with the user. We consider the nearest base station x1 is located at a distance d1 from
the user. Lastly, N0 is the noise power, hi is the fading for each channel, which is
assumed to be i.i.d. and K is a constant factor.

Theorem 4. For any single tier network, the SINR coverage probability for the de-
scribed scenario is given by:

PCoverage = E
d1

exp( −γN0

KPd1
−α

)
GΦ′

 1

1 +
γd−α

i

d−α
1

 (4.2)

Where, GΦ′ is the PGFL over Φ′ = Φ/{x1}.

Proof.

PCoverage = P

 KPd1
−αh1

N0 +
∑
Φ′

KPdi
−αhi

> γ



= P

h1 >

γ
∑
Φ′

KPdi
−αhi + γN0

KPd−α
1



= E
d1,Φ,hi


γ
∑
Φ′

KPdi
−αhi + γN0

KPd−α
1


[Using the CCDF of Exponential Distribution]
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= E
d1

exp( −γN0

KPd−α
1

)
E

Φ′,hi

exp

−γ
∑
Φ′

hi

d−α
i





Here, the 1st term: exp
(

−γN0

KPd−α
1

)
, is due to noise and thus only depends on d1 and

N0.

The second term: EΦ′,hi

exp


−γ

∑
Φ′

hi

d−α
i


, is due to interference and can be fur-

ther simplified as:

E
Φ′,hi

exp

−γ
∑
Φ′

hi

d−α
i


 = E

Φ′

[
E
h1

[∏
Φ′

exp

(
−γd−α

i hi

d−α
1

)]]

= E
Φ′

[∏
Φ′

[
E
h1

exp

(
−γd−α

i hi

d−α
1

)]]

= E
Φ′

[∏
Φ′

[
E
h1

exp

(
−γd−α

i

d−α
1

hi

)]]

= E
Φ′

∏
Φ′

1

1 +
γd−α

i

d−α
1


[Using the MGF of Exponential Distribution]

= GΦ′

 1

1 +
γd−α

i

d−α
1


Combining the above 2 results, we get the expression of the Coverage Probability,
thereby completing this proof.

4.3 Applications for BLCP Network
We can directly apply the framework and the results demonstrated in Theorem 4, to
our BLCP model to generate the results. The only prerequisite is we must derive an
expression for the PGFL of the interference terms used in the same theorem.

So, we need to evaluate: GΦ′

 1

1+
γd−α

i

d−α
1

 for our BLCP Process.
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We begin by noting that, from Equation 3.5 for a general monotonic function
f(x):

PGFLΦ = G(xt, R, nB)

=


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

0

1− f

(√
y2 + (xtcosθ − r)2

)
dy

)
dr dθ

2πR


nB

In this expression, the integrations over the (r, θ) pair, is to average out the results
over the nB randomly generated BLP lines.

The actual PLCP points are being considered by inner integral over ’y’, which
represents the distance of the point from the midpoint of the chord (Please refer to
Fig 3.2 for reference).

Referring back to the proof for Equation 3.5, |xt cos θ − r| was the distance of
the BLP line from (xt, 0) and y was the distance of the point along the line. Thus
total distance of the BLCP point from (xt, 0) is:

d =

√
y2 + (xtcosθ − r)2 (4.3)

Putting, d = d1 in Equation 4.3, we get:

y =

√
d21 − (xtcosθ − r)2 (4.4)

If start counting the PLCP points from y, as given in Equation 4.4 we would
essentially ensure the only PLCP points with a total distance > d1 are counted. So,
for PGFLΦ′ , we get:

GΦ′ =


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

√
d21−(xtcosθ−r)2

1− f

(√
y2 + (xtcosθ − r)2

)
dy

)
dr dθ

2πR


nB

(4.5)

As we notice from Equation 4.5, that this expression is a function of the random
variable ’d1’, so we have to take an expectation over d1 as well.

Combining all of these and simplifying we get:
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PCoverage = E
d1

exp( −γN0

KPd1
−α

)
GΦ′

 1

1 +
γd−α

i

d−α
1


= E

d1

[
exp

(
−γN0

KPd1
−α

)
GΦ′

(
d−α
1

d−α
1 + γd−α

i

)]

Where: GΦ′

(
d−α
1

d−α
1 +γd−α

i

)

=


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

√
d21−(xtcosθ−r)2

(
1− d−α

1

d−α
1 +γ[y2+(xtcosθ−r)2]

−α
2

)
dy

)
dr dθ

2πR


nB

=


∫ 2π

0

∫ R

0

exp

(
−2λ

∫ ∞

√
d21−(xtcosθ−r)2

(
γ[y2+(xtcosθ−r)2]

−α
2

d−α
1 +γ[y2+(xtcosθ−r)2]

−α
2

)
dy

)
dr dθ

2πR


nB

(4.6)

Before going on, we would like to reiterate that, this expression for GΦ′ is terms
of d1, or rather more accurately we have calculated: EΦ′ (

∏
Φ′ (f(SINR | min. dist. = d1))).

So, we have used a bit of abuse of notation to represent this simply as GΦ′ .

The only problem with this expression is it is too complicated to solve analyti-
cally, so we numerically evaluated the results which are presented in the next section.

4.4 Simulation Results
We begin with a comparative analysis of BLCP v/s PLCP Models under 2 different
values of α (2.5 and 4) to highlight the differences (Please refer to Figure 4.1) be-
tween the 2 models. The Noise intensity is kept at -204 dB to make the environment
predominantly interference dominant.

Immediately there are a few key points which are apparent from this simulation:

• PLCP results are uniform irrespective of the location of the typical user. How-
ever, for BLCP, the location of the typical user with respect to the city abso-
lutely matters.
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Fig. 4.1. Simulated BLCP and PLCP Networks with nB = 10, R = 50,
α = 2.5 and 4, λ = 0.01, P = -10 dB, K = 10−5 and N0 = −204 dBW/Hz

• Towards the city center, where there is a relatively higher density of streets and
thus, access points, we have more interference. Towards the periphery of the
city, the mean distance from the nearest access points increase, thus reducing
received power overall. Thus, SINR Coverage is a fine balance between less
interference v/s more received power. However, this does not matter at all for
a PLCP Process, due to its uniformity.

• Since for BLCP, we have more access points towards the center of the region,
the mean distance is lower. Hence, BLCP consistently gives higher SINR cov-
erage Probability than PLCP model, till we move out far enough that average
distance from access points increase enough to make the PLCP model give
better coverage.

4.4.1 Effect of Path Loss Coefficient (α)
Higher α value, means less received power for similar distance, and thus it penalizes
access points which are further away. In context of this simulation, inside the city,
higher α value means less interference and thus higher SINR Coverage. This holds
true for both BLCP and PLCP model. As we move further out from the city, we see
that the difference in coverage probability between the 2 plots keep reducing as the
average distance is more. However, this being a predominantly interference driven
network, lower α values strictly means more interference and thus lower SINR, even
moderately far from the city center.
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Fig. 4.2. Simulated BLCP network with nB = 10, R = 50, α = 4, λ = 0.001,
0.003, 0.005, 0.01 and 0.05, P = -10 dB, K = 10−5 and N0 = −204 dBW/Hz

4.4.2 Effect of Network Density along roads (λ)
Next, we study the effect of access point density across the street or λ over the overall
SINR coverage.

Increasing the density of access points along a line, decreases the mean distance
to the the nearest access point for a typical user. This in turn increases received signal
strength. However, more power for the nearest access point generally means more
power for the interferers as well. So, too many access points can create poor cov-
erage due to low SINR. But, if we have too few access points, even that results in a
poor coverage, due to greater average distance to nearest access point.

This point is perfectly demonstrated by Figure 4.2 :

• λ = 0.05 : Too high intensity, poor SINR Coverage due to interference.

• λ = 0.001 : Too low intensity, poor SINR Coverage due to nearest access point
being far away.

• λ = 0.01 : This intensity was performing best for the regions outside the
central area, where interference is minimal, due to a lower density of streets.
However, inside the central region, due to high interference, we don’t have
equally good coverage, as compared to the periphery.

• λ = 0.003−0.005 : 0.003 is just about low enough for the dense central region,
to give the best performance there, though both λ = 0.01 and λ = 0.03 are
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performing better than λ = 0.01 for the same region. However, when we move
on to the periphery of the city towards its suburbs, where interference is not
that big of an issue, the performance drops due to lower density.

So, one way to optimize this coverage can be to have unequal network access
point densities inside and outside the cities, to counteract the effect of dense road
networks. In our example, λ = 0.003 (3 access points/Km of a road) inside the city
and λ = 0.01 (1 access point every 100 m of the road) for the less densely packed
suburbs of the city, is the most optimal way to give coverage to users in the entire
region.

With all these simulations, there is one more point to note: The coverage slightly
increases as we go from within the city center towards the periphery, peaking at the
edge of the city, and then dropping sharply as we move out into the suburbs. This can
be explained again as a consequence of interference. The more we move towards the
city center, the more densely packed the roads are, which leads to more interference.
But, as we move outside, the road density, and thus overall SINR falls due to lower
received power.

4.4.3 Effect of Noisy Channel
All the simulations and discussions we had so far, assumed an interference dominated
channel. In this section, we explore what happens in case of a noisy channel with
significant noise.
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Fig. 4.3. Simulated BLCP network with nB = 10, R = 50, α = 4, λ = 0.005,
0.01, 0.05 and 0.1, P = -10 dB, K = 10−5 and N0 = −184 dBW/Hz
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We have simulated the network with -184 dBW/Hz of noise this time, as opposed
to -204 dBW/Hz, that we used previously. When there is more noise, the effect of
interference on the overall SINR reduces. So, with a noisy channel, proximity to a
base station is more important, compared to interference.

So, as we can see from the Figure 4.3, λ = 0.01 is performing the best in the
central region, but the coverage drops sharply outside the dense city area due to in-
creasing distance and high noise. Lower values of λ (like λ = 0.005), gives too much
noise, but with high values, like λ = 0.1, we again face issues due to interference.
The best results are obtained with λ = 0.01 for dense central region and λ = 0.05,
for the periphery.

Thus, overall the pattern is the same: Less Dense urban access point setup with
more dense access points for suburban region. The only added difference is:

The base line values of base station intensity needed to achieve comparable cov-
erage to the previous case, is more here to compensate for the higher noise overall.
This result is as we should intuitively expect.
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Chapter 5

Conclusion and Future Scope

We started out to address the challenges faced by current stochastic geometry based
network models to model heterogeneous networks like modern urban cities. Specifi-
cally, we started with the inadequacies of PLCP process which motivated us to look
into and develop metric for a new line process to model heterogeneous networks,
called the BLCP, which we have introduced here.

Throughout the work, we have derived multiple results pertaining to the line
process we introduced, leading upto the PGFL analysis for the model. Leveraging
which, we were able to conduct a SINR coverage analysis of the model, to see how
it compares to the existing models like PLCP. This allowed us to gain some valuable
insight on network densities related to optimum coverage throughout under different
channel conditions.

The model outlined in this thesis, provides first basic framework for network
analysis for heterogeneous network densities resembling modern urban population
trends. Going forward, this model can be integrated with other models like the lily-
pond model, Poisson stick process etc., to develop an even more accurate framework
for network modelling.

Also, this work has assumed a general network model, without any underlying
nuances like UAV Networks, Vehicular networks, blockages etc. There exists a rich
literature on these specific types of network. We plan to apply our model to these spe-
cific networks, to see how heterogeneous networks impact these types of networks.
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