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Abstract

Traditional censorship revolves around blocking access to some websites (or services) over the
Internet. However, recently there has been a rise in the events of an extreme form of censorship
viz., deliberate Internet shutdown, leading to complete Internet disconnection, severely impacting
lives in such regions. Naturally, these shutdowns render all existing circumvention schemes
unusable.

Thus, we present Dolphin, a first of its kind system that can provide access to lightweight and
delay tolerant Internet applications (email, tweets, news snippets, etc.) during Internet shutdowns.
Dolphin uses the cellular voice channel to transmit data bits. A user in the shutdown region (who
wishes to access these applications) requires a peer in non-shutdown region to send and retrieve
content on its behalf. The data bits between the peers are sent by first encoding them into audio
and then transmitting them over a cellular voice call.

We overcome multiple challenges while designing and implementing Dolphin. E.g., the
cellular voice channel is inherently lossy and unreliable. But the Internet applications need
reliable transfers. Thus, in Dolphin we develop a TCP-style reliability layer to overcome the
losses that works atop any underlying encoding and modulation scheme. Further, to evade
eavesdroppers over the insecure voice channel, we provide end-to-end confidentiality. Also,
Dolphin can function even without human intervention, by using cellular voice automation
services. We experimentally show that Dolphin works for Internet applications, by testing it for
sending email, tweets and accessing news snippets. All these applications take a few minutes to
be accessed (e.g., a 500 character email was received in under 2 minutes).
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Chapter 1

Introduction

The original idea of Internet was to provide a platform to facilitate free flow of information

across the globe. This unhindered access to information has promulgated the rampant growth in

all walks of life (including technology). On one hand the Internet is so vital to the modern world

that free speech over it is considered a fundamental human right by the UN [1]. But on the other

hand many censoring nation states attempt to disrupt the free flow of information (as per their

convenience), opposing the original idea of Internet. As a result, in the past decade, there has

been an exponential rise in the events of Internet censorship globally [2–4]. This has lead to an

ongoing arms race between adversaries and free speech activists across the globe; adversaries

continue to evolve various censorship techniques [5–9], whereas civil liberty activists counter

them with wide range of novel circumvention systems [10–13].

Traditional censorship involves restricting access to a particular resource (such as a website)

on the Internet. However, in the recent past, an extreme form of Internet censorship viz., Internet

shutdowns, has been on the rise. With such extreme measures, the adversary has gone a step

ahead in the arms race by completely disabling Internet connectivity in a particular region. These

shutdowns can range from a day to over a year in some cases (like in Myanmar and Chad [14]).

Due to the complete Internet disconnection, none of the available circumvention tools work.

Moreover, such a step has severe impact on the lives of people residing in shutdown regions.

They are even devoid of accessing essential services over Internet e.g., access to news, reporting
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No Internet Region

DOLPHIN CALLER DOLPHIN CALLEE INTERNET

Figure 1.1: Overview of Dolphin’s architecture.

power failures and outages, sending and receiving important emails etc. The recent COVID-19

pandemic further exacerbates the impact—a large population of the globe has moved to working

online, both for professional and personal tasks. Thus, the regions with such shutdowns have

been adversely impacted in these trying times. E.g., due to Internet shutdown in Myanmar some

rural areas were not even aware of the pandemic for many months [15]. It is even alarming that

more and more countries are opting for Internet shutdowns. E.g., the number of countries who

performed Internet shutdown increased from 25 in 2018 to 33 in 2019, with overall documented

shutdown events increasing from 75 in 2016, to 213 in 2019 [14]. Considering that such trends

are becoming common, it is plausible that more nation states opt for such measures [16,17]. Thus,

it becomes an imperative to explore solutions using which people living in Internet shutdown

regions could access basic Internet services like email, accessing news articles, tweets etc.

There may be multiple alternatives to exchange information during Internet shutdowns. A

naïve solution may involve users in shutdown regions directly speaking to their friends and

acquaintances in non-shutdown region, over regular voice calls. However, it does not assure

confidentiality and is prone to eavesdropping by the cellular provider. Same is also true for SMS

messages, besides being capped in several countries [18, 19]. Further, approaches like setting

up separate ad-hoc networks [20, 21], using low earth satellites [22] and satellite phones have

merit, but may encounter infrastructural and deployment challenges (e.g. requiring exceptional

authorizations).

Thus, we introduce Dolphin, a novel system that can provide access to lightweight and delay-

tolerant Internet applications by simply using the existing cellular voice channel to transmit

encoded data bits. This idea rests on the observation that in Internet shutdown regions cellular

voice connectivity is maintained (possibly for performing important executive and adminis-

trative tasks, by the governments). There are multiple documented evidences to support this
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observation [23–26].

Novel use of cellular voice channel: The voice channel is by design not built for running

Internet applications. It is unreliable, lossy, insecure and highly bandwidth constrained. In the

past researchers have explored the feasibility of transmitting data over cellular calls [27–29], but

primarily through simulations and thus may not be representative of the challenges one might

face when employing those schemes in real world scenarios. To the best of our knowledge none

of the prior work attempted to practically use the cellular channel to access Internet applications

and counter the challenges.

Dolphin overview: Dolphin user requires running a Dolphin client utility on its host, while

also requiring a peer (e.g., a friend) in a non-shutdown region to run a server utility. Both the

peers also require mobile phones, paired to their respective hosts, through which the cellular

call will be placed. Dolphin client’s utility initiates a cellular call to the peer, that the Dolphin

server program automatically receives. Once the user has some data to send (email, tweet etc.), it

provides it to the Dolphin client which encodes (and encrypts) the data bits to audio with the help

of an underlying modulation and framing technique. This audio is then played into the ongoing

call, which is transmitted over the cellular network and received by the Dolphin server. The

server program would then demodulate (and decrypt) the received audio and recovers the data

bits. Thereafter, the data is forwarded to the respective application (such as Twitter client) that

performs the necessary operation (such as posting the tweet). The overall high-level functioning

of Dolphin can be understood from Fig. 1.1.

Does Dolphin emulate dial-up modems? At a first glance, Dolphin seems similar to legacy

dial-up modems. Thus, one may believe that the same voice modems could also be used in

Dolphin. But such voice modems worked largely for landline connections, and the few that

supported cellular channels are now obsolete. With the exponential growth of cellular users,

service providers now use extreme compression and psycho-acoustic techniques that filter audio

features that are not essential for humans to perceive. This renders the channel unsuitable for

transmitting data using legacy modems [30].

Major challenges for Dolphin: We now enlist the three major challenges in sending data bits
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using the cellular voice channel. First, the voice encoded data (that is to be transmitted over the

voice channel) should be similar to human vocal frequency. This is because, cellular networks

use variety of optimizations such as voice activity detection (VAD), automatic gain control (AGC)

etc., that attempt to suppress any audio signal that does not belong to human vocal frequency.

Thus, Dolphin encodes data to such frequencies before sending it over the cellular voice channel.

Second, real-time voice channel is unreliable by design i.e., the lost audio data will not

be recovered. Intermittent connectivity issues with the base station can further deteriorate the

condition. However, most of the Internet applications are built with reliability in consideration.

Thus, in order to run these applications, in Dolphin we present a new TCP style (framing,

sequence numbering, acknowledgements etc.) reliability layer atop the voice channel, which

ensures end-to-end reliable and in order delivery of data. We discuss in Sec. 3.2, why especially

for Dolphin, standard TCP is not a good option with respect to performance.

Third, the voice channel lacks end-to-end confidentiality. Thus, Dolphin also provides end-

to-end data encryption with additional security features that resists various other attacks (e.g.,

channel perturbation) explained in detail in Sec.6.

Dolphin’s proof-of-concept implementation: We successfully demonstrate that using Dolphin

users can tweet, send an email, and access news excerpts. Even on a severely bandwidth restricted

cellular voice channel, Dolphin takes close to a minute to tweet (280 characters). Additionally,

depending on the size, email can also be delivered in a few minutes, e.g., 500 character email

takes less than 3 minutes, including the time to establish a secure channel.1

It must be noted, that Dolphin has a modular design, as it provides a data link and a transport

layer (on top of cellular calls) ensuring reliable end-to-end transfer of data. Thus, it can be easily

extended to support other lightweight applications as well.

Furthermore, Users can transmit/download a large file by leveraging multiple parallel calls.

Dolphin can securely transmit a 2000 character file in 9 minutes just by using 2 parallel calls.

Also, in case of call disconnections, Dolphin allows its users to resume the previous transmis-
1This duration to send an email might seem very large. Thus one can argue that a user can simply call the trusted friend and

request him to send the email directly on his behalf. However, this dependence on the human peer could hamper the usability, as
the peer has to be available whenever the user wishes to access the Internet applications. Dolphin, being a completely automated
system addresses these concerns.
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sion/downloading session (section 3.3).

Additionally, we tested Dolphin during a real shutdown event [31] that occurred in Delhi,

India and confirmed that there also Dolphin worked with similar performance. Moreover, by

design, Dolphin is easy to adopt and use—it requires access to a computer and a bluetooth

enabled smartphone, and relies on commonly available open source libraries. It is agnostic to

the underlying cellular technology (2G/3G/4G voice). Additionally, we also provide a way for

users to access Internet, even with a fully-automated peer, that requires no human support after

an initial setup. This is achieved using cellular voice automation services (such as Twilio [32])

that enables hosting the Dolphin server program on a cloud, while providing a local number that

users could call. (ref. Sec. 4.3 for more details).

To summarize, following are our major contributions:

• The design of Dolphin, a system that provides a way to combat the extreme form of censorship

due to Internet shutdowns by using the cellular voice channel. The design ensures security and

reliability on top of the insecure, unreliable and bandwidth constrained cellular voice channel.

• An extensive evaluation exploring the feasibility of transmitting data bits in the cellular voice

channel by varying data encoding rates, cellular operators, location of peers etc.

• A working implementation of Dolphin that can be used for emails, posting tweets, accessing

news etc., all within a few minutes. Due to its modular design it can be extended to support

other lightweight applications as well. Moreover, Dolphin not only works with a human peer,

but can also operate without one (using cellular voice automation services).

• For usability purpose, Dolphin provides pause and resume feature. Further, using multiple

parallel calls, Dolphin can speed up the
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Chapter 2

Internet shutdown and outages

Internet shutdowns are deliberate acts of turning off the Internet connectivity in a particular

region (city, state or even a country) by the competent authorities at the behest of the governments.

Such shutdowns have been on the rise, with 213 documented cases reported in 2019 alone. These

shutdowns could last for less than a day to over a year in some cases (472 days in Chad) [14]

Various projects keep track of these shutdowns at country as well as global scale. E.g.,

accessnow project [14] categorically reports incidents of shutdowns occurring across the

globe, presenting detailed statistics of such events. Further, there are country specific projects

such as [33] which maintain a record of all the shutdowns that happen in India (country with

the highest number of shutdowns). Some projects even attempt to estimate the economic losses

inflicted due to Internet shutdowns e.g., internetsociety [34].

Other projects attempt to identify Internet outages in general. E.g., IODA [35] keeps

track of Internet outages by performing active measurements using various probes, as well

as using passive measurements by identifying anomalies in publicly available BGP paths and

characterizing them as possible cases of outages. There are some proprietary projects such as

ThousandEyes (managed by Cisco) [36] which also keep track of Internet outages across the

globe in real-time.

Overall, while there are various studies and platforms that report Internet shutdowns and

outages, but none provide solutions to circumvent them. Thus, we present Dolphin, a novel
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system which provides basic Internet connectivity to the users in shutdown and outage regions

by using cellular voice (utilizing just a mobile phone and a laptop/desktop).
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Chapter 3

Dolphin System Design

We now describe the overall design of Dolphin. We begin by describing the individual com-

ponents of Dolphin (depicted in Fig. 1.1) and their functioning, followed by a step-by-step

walk-through of Dolphin’s operation. Dolphin has two major components: caller and callee.

Dolphin caller infrastructure consists of the following:

• Dolphin caller machine: This machine runs the Dolphin client utility. It accepts input from

the user (e.g., text) that it wishes to send over the Internet (e.g. as an email or a tweet).

The client utility inputs the text to an audio encoder (explained in detail ahead in Sec. 4.2),

which encodes the text to audio format. This audio is streamed into the audio input of the

mobile handset (connected to this machine using Bluetooth).

• Dolphin caller mobile phone: This phone is paired to the client machine via Bluetooth in a

manner that it accepts audio input from the said machine (details in Sec. 4.1). The audio

received from the host is relayed to the Dolphin callee mobile over a standard voice call.

Dolphin callee infrastructure consists of:

• Dolphin callee mobile phone: This phone receives the call from the caller‘s phone and

forwards the received audio to the server machine, via Bluetooth.

• Dolphin callee machine: Upon receiving the audio, from the callee mobile, it is forwarded

to the Dolphin server program which decodes the audio to the corresponding data bits

8



(text). These bits are processed by the server program which performs subsequent actions

(sending the text as email or tweet on the Internet etc.).

3.1 Dolphin communication protocol

We now describe the communication protocol of Dolphin. We assume that Dolphin’s caller and

callee infrastructure is in place. Additionally, we assume that the caller knows the trusted callee’s

phone number, its Diffie Hellman (DH) public exponent (gy) and its public key (Kpub) out of

band.

Figure 3.1: Dolphin’s secure channel and data transmission phases. f() computes HMAC tag (green) and f_v()
verifies it.

Once a cellular call is established, Dolphin then operates in two phases. First phase deals

with establishing a secure encrypted channel between the caller and the callee, required to evade

an eavesdropping adversary. Once the secure channel is established, the second phase then deals

with actual transmission of data (refer to overall design in Fig. 3.1). The details of these two

phases are as follows:

Secure channel establishment phase:

9



1. In this phase, the caller and callee establish a shared secret to encrypt the data bits, for

which they rely on a Diffie-Hellman (DH) key exchange.

2. The caller’s client utility first selects a DH private part x, and derives the shared secret gxy,

using the already known gy of the callee. Then the encryption/decryption key (Kcr, Kce),

and the initializing vector (IV) are derived from the shared secret using a key derivation

function (KDF) by the caller. We use AES-128 in GCM mode (an AEAD cipher [37]) for

encryption/decryption. The derived IV is considered as an input nonce to AES-GCM.

3. Once the keys are derived, the caller prepares the bootstrapping information (the application

requested to access, current timestamp and plain-text magic string, and encrypts it with

its encryption key (Kcr). Additionally, the caller encrypts its DH public part gx with the

already known public key (Kpub) of the callee (for callee authentication) and appends it

with the encrypted bootstrapping information. The caller’s client utility then sends this

data to the callee.

4. The server utility, on successful reception of data, computes gxy, by extracting gx with the

help of its private key. It then derives the respective keys (Kcr, Kce), decrypts the received

bootstrapping information (using Kcr) and sends back an acknowledgement (containing

gx) encrypted with its encryption key Kce. Notably, successful retrieval of the plain-text

magic string provides a quick way to check the integrity and authenticity of the received

data.

5. The secure channel establishment phase completes on successful reception and decryption

of the acknowledgement by the caller.

In Sec. 6 we discuss our threat model in detail along with an analysis of possible attacks.

Data transmission phase:

1. Once the key is derived, the caller or the callee initiates data transmission based on the

bootstrapping information. Since we use AES-GCM, the encrypted data to be sent is

appended with a one time HMAC tag that ensures integrity and authenticity of the data
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bits. For efficient capacity utilization, the plaintext data bits are first compressed, before

being encrypted and encoded.

2. The resulting data is divided into data frames and is transmitted sequentially to the receiver.

3. These data frames are received and stored by the receiving end until all frames for the

current transmission are successfully received.

4. The above steps are repeated for subsequent data transfers as and when required in either

direction.

Notably, the peers derive a new key every time some fresh data is to be transferred. However,

for performance efficiency, they can derive a key that stays active for multiple data transfer

sessions (e.g., a day or a week).
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Figure 3.2: Some representative scenarios that are handled by Dolphin’s reliability protocol: (a) represents the best
case where no data is corrupted/lost, (b) depicts the case where one (or more) chunks are corrupted/lost, (c) is the
case where a complete batch of chunks is corrupted/lost, and in (d) the acknowledgement(s) are corrupted/lost. All
other scenarios that exist are the variation of these base cases and are thus handled by our reliability protocol.

3.2 Dolphin reliability protocol

The above walkthrough raises several important questions i.e., how is the data flow controlled,

how is the data integrity preserved and verified etc. Moreover, it is known that the voice channel

is lossy. Thus, a natural question is how to ensure reliable data transfer over the lossy cellular

voice channel?

One approach is to directly use the standard TCP protocol between the caller and callee to

ensure reliability. However, using standard TCP directly would lead to performance degradation.
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This is because, in practice, we are able to transmit data at low transfer rates of about 64 bps

over the voice channel, with tolerable errors (ref. Sec. 5.1). With such limited bandwidth, the

overheads of the headers itself severely impact the overall performance. E.g., a TCP ACK packet

has a minimum header size of 40 bytes (i.e.) 320 bits, thus, even if there was no error, it would

take atleast 5 seconds just to transfer a single ACK packet. Moreover, sending standard MTU

sized packets will be detrimental from performance perspective as larger the amount of data

transmitted , the more the chances of encountering errors during transmission (due to lossy nature

of real-time voice), thus making it prone to many re-transmissions. Overall, it is not feasible to

use standard TCP for Dolphin as it can severely impact performance.

Thus, to achieve reliable and in-order delivery of data, we designed a new reliability protocol.

Our protocol is (in part) similar to TCP, but tailored specifically for Dolphin, considering the

underlying lossy and low capacity cellular voice channel. Our reliability protocol specifically

incorporates the re-transmission, sequencing and timeout mechanisms, for the in-order and

reliable transmission of data, while minimizing the overheads for such operations to a bare

minimum. Moreover, as described ahead (ref. Sec. 5.1), we select a fixed bit rate for transmitting

data and thus do not require congestion control mechanisms of TCP.

Our protocol involves dividing the data into small fixed sized chunks and transmitting each

of them with their respective checksums. Small sized chunks help in localizing the impact of

any data corruption or losses. Thus, the corruption of each chunk can be individually detected

and the callee can solicit the caller to re-transmit only the corrupted chunk, rather than the entire

large sized data. This scheme helps in reducing the number of possible re-transmissions while

transferring data. E.g., one way to transmit 100 bytes data is to send it as a single chunk. An

alternate way is to divide this data into smaller chunk sizes of say 20 bytes each before sending

it. In the former, the corruption of a single bit would require the re-transmission of the entire

data (100 bytes), while in the latter, the callee may only solicit for a single 20 bytes chunk. This

potentially leads to a five fold decrease in the amount of data to be re-transmitted. Thus dividing

the data into smaller size chunks helps us in minimizing the amount of data to be re-transmitted.

Also, our scheme requires transferring only 1 bit for acknowledging each individual chunk (ref.

Sec. 3.2). In comparison to direct TCP, this is about 320 times reduction in the overhead.
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Moreover, we transmit the data at a bit rate of 64 bps, and the acknowledgements (or other

control messages) at a relatively slower rate of 16 bps. The control information is sent at a

low rate to minimize the chances of its corruption so that we do not have to re-transmit this

information again, as it does not contribute to overall data transmission. Moreover, since the

control information is only a few bytes, transmitting them at low rates does not hamper the

overall performance.

ENCRYPTION /
DECRYPTION

RELIABILITY
PROTOCOL

MODULATOR /
DEMODULATOR

ENCRYPTION /
DECRYPTION

RELIABILITY
PROTOCOL

MODULATOR /
DEMODULATOR

APPLICATION

TRANSPORT

DATA LINK

Internet Shutdown Region

Figure 3.3: Dolphin’s block diagram depicting its different functionalities (end-to-end).

Having discussed the major motivation and driving factors behind the reliability protocol, we

now describe the end-to-end functioning of Dolphin’s reliability protocol.

1. In order to transfer data in either direction, first the data is divided into smaller chunks of

fixed size. Each chunk consists of data bits and the corresponding integrity check (CRC).

These chunks are also prepended with a sequence number for managing their order (ref.

Fig. 3.4).

2. Thereafter, the sender transmits a batch of chunks sequentially. The exact number of

chunks in a batch are fixed and known to both the parties beforehand (with the help of

bootstrapping information). Once the chunk batch is completely transmitted, the sender

waits for an acknowledgement.

3. The receiver listens for, and stores, the incoming data. Since total data to be transferred,

and the transmission rate are fixed, the receiver calculates and sets an appropriate timeout.

E.g., if a batch of five chunks (20 bytes each) are to be transferred at a rate of 64 bps (8

bytes/sec), then the total timeout should be 12.5 s (100 ÷ 8 s). Thus, the receiver sets a
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timeout of 13 s (additional δ say 0.5 s) to compensate for any stochastic delays.

4. After receiving a batch, the receiver pre-processes the chunks by validating their integrity.

All the correctly received chunks are queued as per the sequence numbers. The incorrectly

received chunks are marked. Subsequently, the receiver sends an acknowledgement,

indicating the corrupted chunks (thereby soliciting re-transmission).

5. The sender receives the acknowledgement, verifies its integrity, identifies the corrupted

chunks, and re-transmits them. In case the acknowledgement gets corrupted, the sender

re-transmits the entire batch sent in the previous iteration.

6. The received re-transmitted chunks are processed similar to step 4. Upon successfully

receiving the re-transmitted chunks, the receiver accordingly acknowledges the sender.

7. Thereafter, both caller and callee repeat steps 1 to 6 for any subsequent data transmission.

Moreover, once the complete data has been received, the HMAC tag appended at the end is

used as an additional mechanism to verify the integrity and authenticity of the complete

received data.

8. Once there is no more subsequent data to be sent or application to access, the call is

disconnected.

Thus, using the above protocol, we are able to ensure reliable delivery of data over the cellular

voice channel. A concise version depicting different scenarios and how the protocol handles

them is shown in Fig. 3.2 and the overall working of Dolphin along with how the different

components interact is depicted in Fig. 3.3.

However, there might be a few questions about what exactly is sent in the acknowledgements,

how are sequence numbers assigned etc. We now describe the answers to such questions.

Delineating chunks: It is important to delineate chunk boundaries.The reliability protocol

categorically addresses this issue. A naïve approach is to delineate the chunks based on their

sizes. E.g., if five 20 byte chunks are transferred (total of 100 bytes), then the initial 20 bytes

would belong to first chunk, the next 20 to the second and so on. However, if a single byte is
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lost in a chunk, then the boundary for all subsequent chunks would be miscalculated. More

specifically, if a byte is lost in the first chunk, then even if all the subsequent four chunks are

received correctly, they would be discarded due to inaccurate delineation. Though, this strategy

is easy to implement, it can lead to unnecessary re-transmission even when the data is correctly

received.

The other strategy would be to use a delimiter to delineate each chunk. There can be multiple

approaches to add a delimiter. However, we use a technique known as byte stuffing [38]. This

technique allows us to use a character (say e.g., the null character), to be used as a delimiter to

mark the end of a chunk. All other instances of the character (selected as the delimiter) in the

original data are masked (by using extra bytes) in a manner such that the original characters can

be easily recovered at the receiver.

However, the traditional byte stuffing algorithms can lead to large overheads, with worst case

scenario leading to doubling of the original data. Thus, in order to minimize the overhead, we

use the Constant Offset Byte Stuffing (COBS) [39] algorithm. This algorithm ensures, that there

will be a constant overhead of only 1 byte per delimiter. Thus, effectively, a 100 byte data (5

chunks) would be converted to 105 byte data, with each chunk ending with the delimiter.

It must be noted that we also handle the case when the delimiter itself gets corrupted. E.g.,

if five chunks were transferred (numbered 1 to 5) but the delimiter of the second chunk was

lost or corrupted. In this case, the delineation would detect four chunks numbered 1, 2, 4 and

5. Further, checksum validation would mark chunk 2 as corrupted (as it essentially contains

data of both chunk 2 and 3) and mark chunk 1, 4 and 5 as correctly received. Thus, appropriate

acknowledgements would be generated so that chunk 2 and 3 can be re-transmitted.

Sequence numbering: First byte of each chunk is reserved for assigning a sequence number.

Thus, the maximum sequence numbers that can be assigned is 256. Dolphin can be configured

to transmit more chunks per batch, by reserving multiple (sequence number) bytes per chunk.

Selecting a single byte for sequence number minimizes the overhead.

Dolphin assign sequence numbers from the set { 0, 1, 2, ... W } where W is a wraparound

value < 256 (Since we are restricting sequence numbers to a single byte). Ideally this wraparound
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value should at-least be more than twice the batch size to avoid synchronization issues between

the sender and the receiver. In our experimental setup we have fixed it at 64 as we were usually

dealing with batch sizes of 8 chunks.

Acknowledgements: Acknowledgements identify the correctly and incorrectly received (or lost)

chunks. Each chunk corresponding to its seq. no. is assigned either a bit 1 (correctly received) or

0 (incorrectly received), within a bit sequence. Thus, the acknowledgement is this bit sequence

of 0s and 1s. E.g., if eight chunks are transmitted in a batch, and the fifth and sixth are corrupted

or lost, then the acknowledgement will be the bit sequence with the corresponding bits set to 1,

i.e., “11110011”. The acknowledgement will also contain 1 byte for integrity verification.

One might argue as to why do we not send only the negative acknowledgements for the

missing chunks. This could ideally further reduce the overheads. However, then we would

require more than 1 bit per chunk as acknowledgement, since it would involve indicating the

position of the missing chunk to the sender. In the current scheme the positioning information is

implicitly handled. Moreover, sending just the negative acknowledgements would also make the

size of acknowledgements variable, making it difficult to calculate appropriate timeout values

and thus would not be beneficial.

Timeout calculation: The duration for which the peers need to wait for receiving the data/ac-

knowledgement can be easily calculated from the length of data and the transmission rate (known

beforehand to both parties). The approx. timeout could then be calculated using the formula:

timeout = (total data (in bits) ÷ bit rate) + δ. We fix the value of δ to a small one (e.g., 0.5 s) to

account for any unexpected delay. The selection of the delta value is backed by the observation

that ITU [40] mandates the one way delay in a voice call to be strictly under 400ms. Thus

selecting a value of 500 ms is reasonable. However, this parameter could be tuned as required.

Data compression: We perform the compression of data before encrypting it, as text data can be

compressed with high compression ratio, as compared to cipher-text [41]. In our experiments,

compression reduced the data size by 20%-60%, leading to overall lesser data being transferred

over the voice channel.

Integrity check: The integrity for each chunk is calculated using the CRC algorithm (CRC-
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8) [42]. Thus, each chunk consists of an additionally appended one byte to verify the integrity of

the received data. Other mechanisms such as CRC-32 (4 bytes) can also be used, but we use

CRC-8 (1 byte) to minimize the overhead of verifying integrity. Also, CRC-8 is sufficient for

our requirements as it can be used to verify integrity of data up to 64 bytes [43], as we generally

select a much smaller chunk size i.e., 20 bytes. Moreover, we also transmit a one time HMAC

tag with the complete data to additionally verify the overall integrity of received bytes.

Seq. No. Payload Integrity
Check

1 Byte 18 Bytes

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5

Chunk Delimiter : 1 Byte

1 Byte

Figure 3.4: Details about individual chunks and how they are stacked before sending.

Effective data transport capacity: Overall, a 20 byte chunk would include one byte for sequence

number and another one for checksum. Thus, effectively 18 useful bytes are transmitted per

chunk (ref. Fig. 3.4). Thus if 100 bytes are sent via 20 byte chunks, then effectively 90 bytes of

data and 10 bytes of checksums and sequences number are transmitted. The overheads can be

minimized by selecting a larger sized chunks, say 50 bytes each. Thus effectively transmitting

96 bytes of data, along with only four additional bytes. However, in such cases, re-transmission

of larger chunks (upon errors or losses) would incur higher overall delays. Our experience shows

us that using 20 byte chunks, minimizes the latency, without reducing the data transport capacity

(90 bytes of data for every 100 bytes sent) drastically. Therefore, for all our measurements

we use 20 byte chunks. Additionally, data compression also increases the data transmission

efficiency.

3.3 Pause and Resume Protocol

We will now describe the Pause and Resume protocol used to download large files over multiple

dolphin sessions. The Fig 3.5 depicts the protocol. For the sake of simplicity, we assume that the

dolphin caller is requesting the file download. The pause and resume protocol builds over the

data transmission protocol hence we can assume reliable in-order transmission of data on both
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ends.

1. A cellular connection is made and a secure channel is established as described in section

3.1.

2. The caller requests a file using it’s uri (uniform resource indicator) and suffixes the number

of bytes it has received previously (hereafter referred to as seek). The seek value is

initialised with 0.

3. The receiver (callee) would fetch the file using it’s uri. If the uri is wrong it sends an error

message. Otherwise it would start transmitting the part of the file requested based on the

seek value.

4. In case the call is disconnected, the caller starts again from step 1 but with an updated seek

value.

Figure 3.5: The pause and resume protocol.

3.4 Parallel Connections

We will now describe how we can utilize parallel dolphin connections to speedup file downloads.

All parallel connections use the pause and resume protocol (Sec 3.3) to download the file even if

one of the connection is disconnected. Figure Fig 3.6 depicts the protocol.

For the sake of simplicity, we assume that the dolphin caller is requesting the file from the

internet and only utilizing two parallel connections. Also, the different dolphin callee’s are

independent and hence the caller might very well be connected to two different peers. Only
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the two dolphin caller are assumed to coupled even though they are using two different mobile

phones. A main controller (hereafter referred to as client) would be controlling the different

caller’s and using each of them to receive parts of data. The final file would be reconstructed by

concatenating the parts.

Having discussed the major assumptions about the system, we now list the exact steps taken

under the protocol:

1. The client would setup two different dolphin connections and establish secure channels

over both of them.

2. It would assign a static weight (wc) and a index to each channel with the following

constraints, 0 ≤ wc ≤ 1 and
∑

wc = 1. This set of weights is called a distribution. These

weights are used by the callee to appropriately divide the final file in parts and transmit

over the corresponding connection.

3. When a file is requested, the client sends the file uri and the distribution to the callers. The

caller sends this information over the connection and the callee send backs the requested

part of the file.

4. Once all the caller’s have received the respective parts, the client collates all the parts and

reconstruct the final file.

3.5 Modes of operation

We now enlist the two operating modes of Dolphin:

Human callee mode: This mode requires the user in Internet shutdown region to find a trusted

peer (or friend) in a region with uninterrupted Internet connectivity. The Dolphin user (caller)

would then request this peer to setup the Dolphin callee infrastructure, for accessing Internet

applications (such as Twitter, email etc.). This is similar to users running circumvention systems

in non-censoring countries, to support those living under repressive regimes. However, this
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Figure 3.6: The parallel connection protocol.

model is not always conducive — what if one cannot find peers in non-shutdown regions? To

answer this question, we introduce the second mode of operation.

Automated callee mode: This mode provides a way for users to access Internet, even without a

friend. We achieve this using cellular voice automation services (e.g., Twilio [32]). Such services

enable hosting the Dolphin server on a cloud, while providing a local number that users could

call. Their automation engine forwards the audio (from the call) to the cloud hosted Dolphin

server, that serves the encoded requests. During a shutdown, the Dolphin caller would only

require knowing the phone number provided by Twilio (or other similar services) to access

Internet (implementation details in Sec. 4.3). However, unlike the human callee mode, such

services would incur periodic subscription fee.
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Chapter 4

Implementation Details

In this chapter we describe how we implemented the above protocol to easily use it in real-world

scenarios.

4.1 Setup

The major components of the setup include caller and callee mobile phone and a host machine to

which they are paired via Bluetooth (ref. Fig. 1.1). Pairing phones with the hosts ensures that

during a cellular call, the audio input and output is captured from the host’s sound card, rather

than the mobile phones’ inbuilt microphones and speakers, respectively. Data encoded audio is

played out via the hosts’ sound card. The output is treated as microphone input by the mobile

phone, due to Bluetooth pairing. At the receiver, a similar pairing joins phone’s speaker output

to the host’s sound card’s input, allowing for decoding of received audio.

We used Android 10 version mobile phones for our setup. The host machines were provi-

sioned with 4GB RAM, Intel i5 8th gen processor and ran Ubuntu 20.04. We assumed the caller

to be in an Internet shutdown region. We ensured this by disconnecting the caller’s phone and

it’s host to any sort of Internet access (WiFi, LAN or cellular data). On the other hand, callee is

assumed to be in a region with Internet access i.e., in our setup, the host on the callee’s side had

access to uninterrupted Internet via LAN/WiFi.
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4.2 General implementation details

Connection establishment and call automation: The phones need to be paired to the host via

Bluetooth manually, for the first time. Once paired, the subsequent pairing is automatic. We use

ofono framework [44] for call automation as it helps manage various calling features – dialing

and disconnecting, tracking call related events (call established/missed etc.), on the phone via

Bluetooth. Ofono is accessed using a dbus interface (using pydbus [45] library).

Sending and receiving data: Since, we cannot directly send the data over the cellular voice

channel, we first encode it into an audio signal. Additionally, sending the encoded data over

the cellular voice channel, while ensuring minimal losses is not trivial. Various background

processing and optimizations in the cellular infrastructure, e.g., Voice Activity Detectors (VAD),

Automatic Gain Control (AGC), can deteriorate the encoded bits significantly. VAD filters

out all frequency components outside the human speech range, i.e., it significantly attenuates

frequencies close to 0 Hz or above 4 Khz. Thus, our modulation scheme must ensure that the

data encoded audio lies between such a frequency range. Similarly, AGC dynamically adjusts

the transmitted signal’s amplitude. Hence, the modulation technique must also not rely on

the amplitude of the voice signal to encode data. Hence, we selected Frequency Shift Keying

(FSK) [46] to modulate the data bits. Since, it uses frequency to modulate data, AGC will not

have much impact. Similarly, we ensure that the generated audio does not go beyond 4 KHz

frequency range, and thus remains unaffected by VAD.

Thus, Dolphin relies on minimodem [47], a software modem which encodes (or decodes)

data bits into (or from) audio tones using FSK. The rate at which data can be encoded/decoded

can be varied. We thus present experimental results in Sec. 5.1 to establish the suitable data rates

for transmitting data over the cellular voice channel.

Establishing secure channel: We aim to establish a shared secret between the caller and the

callee using DH. Traditional DH uses 128 byte public DH exponents. For regular network speeds,

transferring such keys takes under half a second. However, in Dolphin, low data rates (≈ 64 bps)

can incur significant delays to exchange such keys. Thus, in Dolphin, we minimize this delay

by using DH over elliptic curve group (ECDH), instead of DH over finite cyclic group. ECDH
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keys are 32 bytes long and can be transferred relatively quickly (4 times sooner, as compared

to DH). Moreover, the smaller key size does not compromise the security of derived keys [48].

The established shared secret along with the bootstrapping information is used by the peers as

input to the PBKDF (password based key derivation function) to derive the key and IV. We used

pycrypto [49] and coincurve [50] to perform the crypto operations.

On privacy implications of initiating connection by the peer on behalf of caller: In Dolphin

we assume that the peer in non-shutdown region is trusted and thus sharing password of protected

accounts (email, twitter) should not be an issue. However, there are alternatives which one can

use to protect the privacy of their accounts. First, the caller can enable two-factor authentication

(SMS based) on its password protected accounts so that every new access requires the caller

to provide an OTP, preventing unintended access. Second, caller can use OAuth token based

access schemes. These tokens allow for stricter control and can be configured to perform specific

tasks with confined scope. E.g., in case of Twitter the user can generate tokens that allow

only for tweeting and can share these via Dolphin whenever it wants to tweet from its account.

The current Dolphin implementation incorporates the above methods (for Twitter and Gmail).

However, the user requires configuring its account for OTP access and generate tokens before

any shutdown event. If the user is not able to perform this task beforehand, then an alternate

approach as described in Mailet [51] could be used that relies on multiple parties to derive the

password, with no one party having complete information.

Running Internet applications: In Dolphin the callee accesses the Interent services on behalf of

the caller, using the server utility. The current implementation, integrates Dolphin with three ap-

plications viz., email, Twitter and news. The email has been automated using smtplib [52], and

Twitter using twython [53] library. The news application is automated using newsapi [54],

which returns concise news snippets based on a keyword query.

Transmitting files: Dolphin can securely transmit/download a file (like a website’s html)

essentially by making the callee act as proxy for the caller. The dolphin client would send the url

with the number of equal size parts that the data needs to be divided and the index of the part

that the server needs to send back.The server would download and cache the url and respond

back with the appropriate data.
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Accessing web pages: Dolphin can also access web pages that can be rendered in a browser

in a semi real-time fashion.The client start a https server on the localhost to which the browser

connects as a proxy. It will also setup multiple dolphin calls during the bootstrap phase. After

the user types the url and hits enter, the browser will redirect the request to dolphin client, which

would appropriately divide the data among servers (based on number of active connections),

download it, and send it back to the server. To further decrease the size of the data to be

downloaded, the server would use the textize api [55] to download a text only version of the

website.

4.3 Automated callee mode

As discussed previously, Dolphin can also work in a mode where the callee is completely

automated and implemented on a cloud host using cellular voice automation services. Thus,

the caller would not need to rely on a human peer. To achieve this, we need a way to manage

cellular voice calls (automatically answering, playing audio, recording audio etc.) from a cloud

host. In dolphin, we achieve this with the help of the Twilio platform.1 The details of the

implementation can be referred to in Appendix 8.3.

Figure 4.1: Bit error rate variation for
different bit rates for 100B transfer.

Figure 4.2: Bit error rate variation for
different bit rates for 1000B transfer.

Figure 4.3: Bit error rate variation for
different bit rates for 5000B transfer.

1Dolphin is not coupled to Twilio, it can be integrated with any other similar platform that provides cellular call management
functionality.
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Chapter 5

Data collection and Results

We now present the details of various tests performed for evaluating Dolphin along with their

corresponding results. Broadly we divided our experiments into two categories. First set of

experiments are devised to test the viability of sending data at different bit rates over the cellular

voice channel. Second set of experiments are conducted to gauge the performance of actual

Internet applications when accessed via Dolphin. Additionally, we also conducted experiments

to assess the performance of Dolphin for the automated callee mode configuration.

5.1 Performance of Dolphin at various encoding rates

As already described, we encode and decode data bits into and from voice respectively. However,

the underlying cellular voice channel used in Dolphin is lossy. Thus, our aim is to identify the

achievable bit rates with which the caller can transmit the data to callee over cellular telephony

network.

Size Bit Rate (bps)
(Bytes) 16 32 64 128 256

100 0.01 0.15 0.29 4.86 18.76
500 0.61 0.9 0.92 5.71 19.32

1000 0.92 1.23 1.16 7.71 21.32
5000 0.97 1.8 1.69 16.07 22.28

Table 5.1: Error percentage for varying bit rates and file sizes.

Thus, we performed various experiments that involved encoding and sending of data bytes at
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different bit rates. In our experiments we used the setup as already described in Sec. 4.1. For

these, we first established a cellular call from the caller to the callee and then sent the data of

varying lengths (100, 500, 1000, 5000 bytes) at different rates (16, 32, 64, 128 and 256 bps).

The goal of these experiments was to measure the bit error rate (BER) when the encoded data is

transmitted over the cellular voice channel at different rates.

But, with Dolphin, the calculation of BER was not straightforward. The BER is defined as

the percentage of corrupted bits in a transmission. However, standard BER calculation does not

consider lost bits, but only bit flips. As Dolphin relies on lossy cellular telephony network, the

resulting errors not only include bit flips but often also results in bit losses. Thus, general BER

techniques cannot be directly used; rather we used edit distance [56] as a metric to measure the

bit errors. The edit distance algorithm outputs the minimum number of bit operations required to

convert the received data to its original form. For our scenarios these bit operations represent all

possible errors – bit flips and losses. Since in our experiments we controlled both the caller and

callee, we could compare the bits sent from those received. This enabled us to compute the edit

distance.

Further, the edit distance represents the total bit errors. Dividing it by the bits transmitted

yields the BER for data transmitted. In all our experiments, we computed the BER using the edit

distance metric. We repeated each experiment for a particular bit rate and data length 30 times.

Corresponding to different bit rates (16, 32, 64, 128 and 256 bps) we tabulate the average

BER in Tab. 5.1 and present the complete error distributions in Fig. 4.1, Fig. 4.2 and Fig. 4.3 for

100, 1000 and 5000 bytes respectively. It is evident from the table and the graphs that upto 64

bps, the BER is relatively low i.e., less than 2 %. At 16 bps the BER was even lower i.e., less

than 1%. However, the BER increases drastically with relatively higher data rates i.e., 128 and

256 bps. E.g., with 256 bps the BER is around 20%.

Ideally one would want to transmit the data at higher bit rates using Dolphin (e.g., above 256

bps). This would reduce the overall latency. However, as demonstrated through our extensive

experiments, higher data rate results in more error, eventually rendering the cellular voice channel

unsuitable for data transmission. On the other hand, if we send the data at extremely low rates
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(e.g., under 16 bps), the data would be delivered with least errors, albeit increasing the overall

end-to-end delay. Thus, 64 bps seems like a good trade-off point between latency and errors, and

thus we selected it for performing subsequent experiments.

However, since control information (e.g., acknowledgements etc.) is generally smaller in

size, compared to data chunks, we sent them at low rates (i.e., 16 bps), to further minimize their

chance of corruption. This step does not impact the overall latency much.

It must be noted that we also explored several transmission rates between 64 and 128 bps.

The error rates were directly proportionate to the increase in transmission rates (from 64 to 128

bps). We noticed an overall improvement in performance (average reliable transfer time) when

using rates as high as 90 bps; but increasing it higher provided no significant performance gains.

However, we also observed larger variance in error rates and download times when we used such

relatively higher bit rates. At 64 bps, the data transmission was much more stable and consistent

during our experiments. Thus, we used a rate of 64 bps for our experiments.

Figure 5.1: Dolphin’s secure channel
establishment time.

Figure 5.2: Time taken to tweet 280
characters (max. limit) using Dol-
phin.

Figure 5.3: Time taken to send an
email of varying sizes using Dolphin.

Figure 5.4: Time taken to send a file
of varying length with two parallel
connections.

Varying cellular connectivity: Notably, the above set of experiments assumes the caller to be

in a shutdown region, and the callee to be outside. The caller phone was manually switched to
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use only 2G voice (representing bare minimum cellular connectivity) and the callee’s phone was

enabled with 4G voice connectivity. However, the peers may not always have such connectivity

due to various reasons (such as intermittent signal or proximity to base station etc.).

Thus, to test the feasibility of all such cases for caller and callee, we repeated the above set

of experiments varying bit rates and data sizes for different combinations of 2G, 3G and 4G

voice connectivity. The BER received in these scenarios (e.g., caller (2G) callee (4G), caller (3G)

callee (4G) etc.) did not vary much (ref. Appendix 8.1 for details), depicting similar performance

for different connectivity scenarios. Thus we continued using 64 bps as our default data sending

rate.

Varying cellular providers: We also performed the aforementioned experiments for different

cellular service providers. We observed similar BER ( < 2% error for bit rates < 64 bps) when

we tested Dolphin for four popular providers which serve majority (≈ 90%) of the users in their

region [57]. Thus, one can infer that Dolphin functions well across different cellular providers.

Geographical variation: In the aforementioned experiments, both the caller and the callee were

in a close proximity (in the same building) and may thus be connected to the same cellular tower.

Thus, one may argue that the results may vary if the geographical distance between the caller

and callee is increased as it would involve data to travel over multiple cellular towers. Thus, we

repeated the experiments with the caller and callee in different cities (≈ 1100 miles apart) within

the same country, as well as different countries (one in Asia and other in Europe, being≈ 3600

miles apart). We observed similar BER for downloading 100 to 500 byte files at different bit

rates (16, 32,..., 256 bps), with less than 2% error for 64 bps. Moreover, we also show in the

subsequent section (automated callee mode) that even when the callee infrastructure was hosted

on a cloud service, the results did not vary much. This establishes that Dolphin’s efficacy is not

generally impacted by geographical variations.

Impact of Bluetooth: One may argue, that bluetooth used for transferring data between the

phone and laptop, might impact the transmission rates we observed. Thus, we conducted

experiments to test if bluetooth impedes the achievable data rates. These experiments involved

isolating the errors introduced by bluetooth transmission (if any) and comparing them to the
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errors introduced by the cellular channel. We used the same setup as in Fig. 1.1. However, in this

case, we recorded the audio at the callee’s laptop as well as the caller’s mobile phone. The latter

bear the errors introduced due to bluetooth while the former contain the errors introduced by

both the bluetooth as well as cellular channel. For all data rates (upto 256 bps), we observed that

no errors were introduced by bluetooth (BER of zero). At the same time, the cellular channel

introduced significant errors (Bit error of atleast 1%, max at about 20% for data rate of 256 bps).

This confirms that bluetooth did not contributed to errors in audio, they were introduced only by

the cellular voice channel.

Justifying Dolphin’s observed data rates: It may be argued that the bit rate achieved by Dolphin

is low and that it could be improved if existing modulation techniques that claim to provide

a higher data rate are employed. To that end, we attempted to test these existing modulation

techniques on our setup by encoding and sending data over the cellular channel, and measuring

the corresponding error rates. Notably, there are very few modulation schemes that are made

resistant to multiple distortions and processing, and thus, can actually be tested.

One such modulation scheme was proposed in Hermes [58]. It was developed in 2010 and

claimed to obtain close to 1 Kbps data encoding rate with low bit error percentage (< 1%).

However, their code is not publicly available and the design of their demodulator is very complex

with some missing details, making it difficult to implement. Another such research, authloop [30]

developed in 2016, also tried to implement Hermes demodulator, but failed to do so. But,

authloop build and implemented their own modulatotion scheme based on the ideas used in

Hermes. Their modem claimed to have obtained about 500 bps encoding rate in simulation.

Thus, we obtained Authloop modem code and used it to encode and sent data over real cellular

channel to measure the error rates. We observed that authloop suffered about 55% bit error

rates when sent over the cellular channel. Thus, the previously developed modulation schemes

that also extensively employed channel coding theory, were also not able to perform well when

tested over the current cellular voice channel. We thus currently employ Dolphin’s FSK based

modulation and build the system with the practically achievable data rate of 64 bps. However,

due to Dolphin’s modular design, if in future some modulation scheme could provide better data

rates, we could easily integrate that to improve Dolphin’s performance.
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Note: One may further question as to why the previous studies that claimed higher bit rates are

not able to perform well. We investigated the reason for such difference and found out that the

studies focused on the evaluation using only one of the many available modes of the popular

AMR cellular codec. We performed simulation based evaluation and found out that for the

mode which they tested, their modulation scheme performs well. However, for other modes

their scheme faces large errors. Notably, Dolphin’s modulation also performed at par or better

when tested against the AMR codec mode used by previous studies, offering about 1% error

at 1024 bps data encoding rate. We believe that the current cellular channel provides the large

error inducing mode of AMR and thus makes it difficult to achieve high data encoding rates by

Hermes, Authloop and Dolphin alike. ( refer App. 8.2.5 for details)

5.2 Performance of Internet applications

In this subsection we quantify the performance when Internet applications (email, twitter etc.)

are used over Dolphin.

As already described (Sec. 3.1), Dolphin works in two phases i.e., the secure channel

establishment phase and data transmission phase. Thus, first we quantify the time taken to

establish a secure channel between the caller and callee. As depicted in Fig. 5.1, we observe

on an average a minute to establish an encrypted channel, with the worst case being around 1.7

minutes (experiment repeated 30 times). Ideally, for better security guarantees, the caller should

establish the secure channel every time it sends or accesses some content. However, in case the

user wishes to reduce the overall latency, the Dolphin caller utility can be configured to establish

a key once and use it for all data transfers for a specified time duration e.g., a day.

Next, we measured the time taken by Dolphin to access (or send) content using different

Internet applications. Using a single dolphin connection we tested three applications viz., email,

twitter and news. For each application, we measured the time taken by the caller to send (or

receive) the complete data reliably. First we tested the time taken to tweet a 280 character

message (maximum size for a single tweet). We repeated this experiment 30 times and observed

that on an average it took under a minute to tweet this message (ref. Fig. 5.2). Similarly, we sent
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emails of varying size (100–1000 characters) and again recorded the time elapsed in reliably

sending them. This experiment was also repeated 30 times for different email sizes. Overall

results are depicted in Fig. 5.3. It is evident that it takes ≈ 1.7 minutes (102 seconds) to send

an email of 500 characters. Lastly, we recorded the time taken (at the caller end) to retrieve 10

concise news snippets (around 60 characters each). It took us on an average 2 minutes to receive

to receive the 10 snippets. Using two parallel dolphin connections we tested the file downloading

application. We took two files of sizes 2kB and 10kB and downloaded them over two parallel

connections. Each connection was given the same weight i.e through each connection 1kb and

5kb of data was transmitted. We repeated these experiments 30 times for both the cases. From

the Fig. 5.4 it can be seen that a 2kB files takes an ≈ 8.7 minutes to download, whereas a 5kB

file is downloaded in ≈ 33.02 minutes.

Thus, the overall end-to-end time for accessing applications using Dolphin would be the sum

of secure channel establishment time and the data transmission time. E.g., sending an email of

500 characters would in average case take 2.7 minutes (about 160 s). Thus, by and large, our

results depict that most of the implemented applications would take only a few minutes to deliver

the content end-to-end reliably. And in case of larger file transmissions, dolphin can deliver in a

semi-reasonable time using 2 or more parallel connections.

5.3 Automated callee mode performance

Size Bit Rate (bps)
(Bytes) 16 32 64 128 256

100 0.23 0.82 1.27 8.9 22.51
1000 0.284 1.18 1.41 10.8 22.2

Table 5.2: Error percentage for varying bit rates and file sizes (100 B and 1000 B) for automated callee mode.

Similar to the previous experiments, we performed tests to gauge the efficacy of callee side

automation. These experiments were essentially performed to measure if there is any potential

impact on performance, when the callee infrastructure operates from the cloud. In the first

experiment, we transmitted files of 100 and 1000 bytes at varying bit rates (16,32,...,256 bps)

and recorded the BER. As depicted in Tab. 5.2, BER of 0.8% was observed when data was

transmitted at 32 bps (for 100 byte content), and 1.3% when sent at 64 bps. Thus, it is evident
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that even with callee completely on the cloud, the overall performance (in terms of BER) did

not vary much, indicating minimal processing overheads. Additionally, we also sent tweets and

email in the automated callee mode and observed similar performance with an email of 100

characters delivered reliably in under a minute.

Overall, the results establish that it is feasible to use lightweight and delay tolerant Internet

applications using Dolphin in shutdown regions with transmission times in the range of a few

minutes.

5.4 Anecdotes

While conducting the experiments, we observed an Internet shutdown in the region of one of

the authors (Delhi, India) [31]. This provided us an opportunity to test Dolphin during an actual

shutdown. Thus, we conducted experiments by transferring data from the shutdown region to a

callee placed in another location with Internet connectivity (managed by another author). As

expected, we observed similar performance in this scenario (300 character email transferred

reliably in about a minute), further establishing Dolphin’s efficacy.
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Chapter 6

Security Aspects of Dolphin

We being by describing our adversary model and the different types of possible attacks.

6.1 Threat model:

It is known that shutdowns are carried out by ISPs on the orders of some higher authorities. Thus

we assume that when shutdown resistance systems like Dolphin would become popular among

the masses the same authorities could direct the telecom operators to identify and (or) block such

systems. This practically deems the telecom operators as adversaries. However, to the best of

our knowledge, no prior research has explored the possibilities of telecom operators as censors.

Thus, we try to characterize their capabilities. Unlike regular network eavesdroppers, cellular

voice channels cannot be trivially analyzed by capturing packets; cellular voice networks (except

VoLTE) do not work on the regular Internet’s store-and-forward model. Thus, we believe that

it will be difficult to perform real-time traffic analysis on ongoing calls for telecom operators.

But operators may intercept and record audio calls. We confirmed this by communicating with a

major telecom provider operating in a developing country with frequent shutdowns.

Thus, we assume in our threat model that the adversary will not be able to perform real-time

analysis on cellular voice channel to actively detect Dolphin. Although, it may attempt to perform

offline analysis on recorded cellular calls to identify Dolphin calls. However, performing analysis
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on all the calls could be resource intensive and practically daunting for a cellular provider. Thus,

it may instead opt for some “smart ways” to disrupt Dolphin. E.g., adversary may add noise or

perturbations in voice calls with an aim to completely disrupt Dolphin while refraining from

degrading the quality of voice (from the added noise) to an extent that it becomes practically

unusable for ordinary calls. Further, we also assume that the adversary has the capability to

restrict cellular communication for calls destined to specific mobile numbers. Overall, we assume

the adversary would not disable the cellular voice channel during the Internet shutdown, as it

may negatively impact several critical services of the state. This is already observed in multiple

recent Internet shutdowns [23–26].

6.2 Voice perturbation attacks:

To disrupt Dolphin, an adversary may attempt to induce intentional perturbations or noise in voice

calls. The rationale behind this attack is, that these perturbations could corrupt the encoded data

of Dolphin users’ calls. However, innocuous cellular users may perceive it as some disturbance

while conversing. This attack may turn out to be very powerful because the adversary can aim

to completely block Dolphin without having to even detect if Dolphin is under use. There are

largely two ways by which an adversary can try to induce these perturbations. One way is to

just drop or disrupt voice samples of short duration (say 0.1s or 0.2s) at every fixed or random

interval. The other way is to add a constant disturbance (e.g., a low frequency hum sound)

throughout the duration of the call.

Case I: We start by exploring how the adversary can use the first way to disrupt Dolphin. A

simple attack would be to drop voice samples repeatedly at randomly chosen intervals. However,

the reliability layer in Dolphin helps recover from random data losses and thus the attack may

not be very effective. But, a determined adversary may induce perturbations intelligently such

that all the transmitted chunks are corrupted. This could lead to endless re-transmission of data

between the Dolphin peers. To do so, the adversary would need to induce perturbations at very

small interval. E.g., the adversary may need to introduce perturbations every 2.5 s to corrupt

each 20 byte chunk transmitted at 64 bps. But, in practice, this attack could render cellular
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voice unusable for regular callers due to the unpleasant periodic disturbance (after every 2.5 s)

throughout the call.

To quantitatively verify this, we conducted experiments to determine how periodic distur-

bances affect perceivable voice quality. Thus to measure voice quality, we used PESQ (Perceptual

Evaluation of Speech Quality) [59], a metric standardized by International telecommunication

Union (ITU) to measure the perceptual audio quality. PESQ scores show very high correlation

with Mean Opinion Scores (MOS) given by actual humans. The PESQ metric takes the original

audio and the audio that undergoes degradation as input and outputs a score between 1 to 5, with

1 being the worst and 5 being the best audio quality. A PESQ score of above 3 is considered

as good whereas a score less than 3 is not considered ideal. Moreover, a score of below 2 is

considered as poor and unusable. Thus to perform our experiment, we took a sample audio

containing human speech and introduced perturbations in it by removing samples of 0.1s from it

after every 2.5s. Then we calculated the PESQ score between the original audio and the audio

with the periodically disturbed samples. We observed an average PESQ score of 1.6, clearly

establishing that the audio in the cellular channel would become perceivably distorted if such a

disruption is introduced.

However, as a workaround, the adversary can also try to disrupt the channel by attempting to

corrupt only all the acknowledgements instead of the chunks. This way adversary would require

to drop samples after every ≈12.5s as in the default configuration, we transmit five chunks before

transmitting an acknowledgement. Moreover, we calculated the PESQ score for this scenario

(i.e., disruptions after every 12.5s) and achieved a score 3.6, demonstrating that such a disruption

will lead to complete disruption of Dolphin without severely impacting the perceptual quality

for normal calls. But, as a countermeasure to this attack, we can slightly alter Dolphin’s default

configuration by soliciting acknowledgements after every chunk instead of after a batch of five

chunks. This would force the adversary to again cause disruption after every 2.5s, which, as

previously seen, would unlikely be implemented by the adversary as it leads to the voice channel

becoming unusable for regular users. However, Dolphin will still be able to function. Hence, we

believe, the adversary would refrain from performing this attack.

Case II: Next, we move to the scenario where the adversary can try to introduce continuous
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noise throughout the duration of the call, hoping that it will disrupt Dolphin’s functioning,

without making it unusable for regular users. To that end, the adversary can introduce a constant

low frequency sound in all cellular calls. To normal users this should sound like a constant

background sound (such as a hum or a continuous beep). We started with a continuous 50 Hz

beep and it did not have much impact on quality of call (PESQ = 3.8) or on Dolphin (error rate =

1.3%). We kept increasing the frequency of the noise and found out that at about 440 Hz, the

introduced noise lowers the PESQ score to about 1.7 thereby making it unsuitable for regular

calls. However, the error percentage of Dolphin is still not affected much and is 2.1%.1 Thus, it

would prove to be a futile exercise for the adversary to disrupt Dolphin with continuous noise as

well.

6.3 Active probing attacks

The aim of this attack is to enumerate possible Dolphin callee numbers and eventually dropping

all calls made to them. To do so, the adversary can itself pretend as a Dolphin caller and may

brute force some suspicious mobile numbers. The adversary may confirm the Dolphin callees by

checking if it can avail Dolphin service through these suspicious numbers.

However, to avail Dolphin’s service the adversary requires the DH public exponent of the

callee, which is shared out of band with the caller and is a secret. If the caller fails to provide

requisite data encrypted with this key, or the provided data is incorrect, the callee program just

plays an audio containing the traditional “hello” sound a few random times and then disconnects

the call. This behaviour is similar to how a normal user would react if he/she received a call with

some gibberish tones. However, effective active probing resistance is an open research problem

and the current standard is to adapt according to the measures taken by the adversaries [60].

Thus, as Dolphin becomes popular, adversaries may be able to find unique ways with which

they could actively probe and detect Dolphin peers. As and when such attacks evolve, we would

accordingly design countermeasures to avoid such detection.
1Dolphin’s functioning is only dependent on correctly decoding the frequency samples, so they can be converted to data. But

it is observed that low frequency tones do not affect Dolphin, but impacts human perception.
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6.4 Replay Attacks

An adversary can attempt to replay a part of (or complete) audio in order to confirm if Dolphin

service can be availed on a particular mobile number. For this the adversary can attempt to replay

the starting few seconds of suspicious calls to the potential callee mobile number corresponding

to those calls. If the adversary obtains an adequate response, she confirms that the callee is

running a Dolphin server, and can block it. However, firstly, the suspicious audio may be

noisy and probably contain arbitrary data due to lossy channel and multiple retransmissions,

significantly decreasing the chance of successfully detecting the callee. But even in the unlikely

scenario where the adversary obtains an audio with no losses and is able to successfully transfer

it to the potential callee, the latter will still not respond as the initial boostrapping information

(ref. Sec. 3) must include fresh timestamps (otherwise they are silently dropped by the callee

and responded with as described in the active probing attacks).

As assumed in the threat model, the adversary can record all cellular calls of the region and

analyze them offline to confirm if they were using Dolphin. One easy approach that can be

adopted by the adversary is to try and decode the recorded audio using the public information of

Dolphin implementation.

After decoding the audio, the adversary can check if the data contains valid CRC checksums,

periodically after every few bytes. The signature of periodic checksums, being unique to Dolphin,

could lead to its detection. We remove this detectable feature by XOR-ing the CRC values with

some extra random bytes derived from KDF while establishing the secure key. Since the KDF is

given the same input by both peers, they will be able to derive the same random bytes to invert

the XOR.

However, the adversary may use advanced signal processing techniques to differentiate

regular audio, from that generated by Dolphin. Broadly, an audio signal can either be studied in

the time or frequency domain. We start by describing the time domain analysis.

In order to distinguish Dolphin, the adversary can analyze the time domain waveforms of

Dolphin encoded audio and compare them with normal human audio. As depicted in Fig. 6.1,
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Figure 6.1: Signal waveform of 50 ms for normal human speech audio and Dolphin encoded audio.

one can visually differentiate Dolphin audio from normal human audio. This is because in

Dolphin the amplitude and frequency of the signal has low variation in comparison to that of

human speech. This distinguishing behaviour can also be characterized by a statistical analysis

that records the change in amplitude and frequency of a signal across multiple time intervals,

and if the change is relatively low, the waveform can be classified as Dolphin encoded. Using

this analysis, we were able to distinguish Dolphin calls. The mean and standard deviation across

all intervals (of 2 ms) for amplitude was 0.4 and 224 respectively for Dolphin. In comparison the

mean of amplitude for normal human audio extracted from a large speech database [61] was 205

and 1590 respectively (about an order of magnitude difference in comparison to Dolphin).

Figure 6.2: Signal waveform of 70s for normal human speech audio and Dolphin encoded audio superimposed over
normal human speech.

As a countermeasure for such an analysis, we need to transform the Dolphin encoded audio to

resemble more like normal human speech so that it cannot be distinguished. This can be achieved

by superimposing Dolphin’s voice encoded data with human speech. While superimposing,

Dolphin’s encoded data component should be suppressed as much as possible in order to make
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detection harder. However, the suppression should be such that Dolphin’s data can be decoded at

the receiver with reasonable error rates. To find the sweet spot between suppression and decoding

errors we performed experiments by varying the suppression values of Dolphin encoded audio

and measured the corresponding error rates when sent over the cellular channel. We found that

suppressing the Dolphin’s audio encoded data by 20 dB gave us reasonable error rates (≈ 1.5%);

suppressing any further resulted in high errors (> 5%). It can be seen from Fig. 6.2, that Dolphin

superimposed audio looks almost identical to the normal human audio even when analyzed for

a large time duration, with some additional noise component. Further, upon evaluation, this

approach prevented us from distinguishing human speech from Dolphin’s superimposed audio,

based on frequency and amplitude variation. This is because, such variation was dominated by

the normal human audio on which Dolphin was superimposed.

Alternatively, the adversary can analyze the audio signal in the frequency domain for finding

distinguishing features between regular human speech and superimposed Dolphin audio. To

convert the waveform into frequency domain, we employed the standard discrete fourier trans-

form technique and analyzed the audio in this transformed domain. The frequency response of

superimposed Dolphin audio was very similar to that of normal human speech extracted from

the normal speech database [61] both visually and statistically. The mean and standard deviation

of the frequency response for Dolphin superimposed audio was found out to be - 55.85 dB and

11.00 dB respectively. In comparison, for normal human audio we observed a mean and standard

deviation of - 56.25 dB and 10.46 dB respectively. Thus, we believe, it will be difficult for the

adversary to distinguish superimposed Dolphin to normal human audio even in the frequency

domain.

However, a determined adversary can perform a deeper analysis that looks beyond signal

characteristics. For instance, the adversary can try to see if the Dolphin superimposed audio

resembles an actual human conversation. Usually, human conversation has random silences,

which are absent in Dolphin’s encoded data superimposed with voice. The absence of silences

may help the adversary to identify Dolphin. Thus, we performed silence detection using short

term analysis [62] which differentiates voice and silence based on the energy observed in a

small interval. The voice frames would have much more energy than frames that contain silence.
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As expected, we found no silences in Dolphin’s encoded data superimposed with voice. In

comparison, the normal human speech audio did contain random instance of silences.

As a countermeasure to such analysis, in Dolphin, silences can be introduced at appropriate

intervals (e.g., at instances where silence is already present in the cover audio), keeping in mind

that Dolphin’s performance is not drastically impacted. Such silence introduction will make

adversarial analysis difficult.

Lastly, the adversary may still be able to learn hidden features in Dolphin audio using

advanced learning techniques. Analysis of such detection and proposing counter detection

methods shall be explored in future.

6.5 Active Attacks

Here we consider possibilities of an adversary performing active attacks to disrupt Dolphin usage.

Notably, performing active operations an all calls passing through the telecom operator will

hamper the QoS of benign users, which is outside the scope of our threat model. However, the

adversary can attempt to perform such analysis on some suspicious calls (which are difficult to

identify if they are superimposed using normal human voice). That being said, the analysis will

be similar to the one done in perturbation attacks, where adversary introduced noise in calls and

aimed to disrupt Dolphin by corrupting the chunks or the acknowledgements.

However, here we assume that the adversary can act as a man in the middle in an ongoing

cellular call and modify or inject data or acks to disrupt Dolphin sessions. Modifying or forging

data or acks would eventually be detected and recovered due to the integrity mechanisms (CRC

for chunks + HMAC on complete data) and reliability protocol. However, if the adversary aims

to consistently disrupt Dolphin service, it would need to forge/modify all acks. As discussed

in Sec. 6.2 doing so for a benign call would lead to poor QoS and make the cellular channel

unusable. Thus, the adversary would not perform such operations. Notably, forging selective

real-time voice data in an ongoing call with superimposed Dolphin audio may in itself be an

extremely challenging task for an adversary.
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Chapter 7

Relevant Work

In the traditional censorship circumvention literature various systems have been proposed in

the past that send data using the underlying VoIP or video channel over the Internet [63–68].

However, the cellular voice channel is different and thus has received separate attention with

several prior research efforts exploring the feasibility of sending data bits over the cellular voice

channel [27–29, 58, 69–72]. But, these studies are either for a particular codec, provide just the

theoretical analysis, or do not provide accessible code. Moreover, none of the existing approaches

attempted using actual Internet applications, nor depicted the challenges in doing the same. The

cellular voice channel is unreliable and can lead to unprecedented data distortion and losses (e.g.,

due to poor connectivity of mobile devices with the base stations). This behavior may greatly

hamper the functioning of existing schemes and has not been studied. Thus, with Dolphin we

develop an end-to-end system and demonstrate the practicality and usability of sending data

over voice by running actual Internet applications using the cellular voice channel. We solve

various challenges and build a security and reliability layer, that can work with any underlying

modulation scheme.
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Chapter 8

Discussion

8.1 Results for Varied Cellular Connectivity

Figure 8.1: 4G-4G: Bit error rate variation for different bit rate for 100B content transfer.

Figure 8.2: 4G-4G: Bit error rate variation for different bit rate for 1KB transfer.

In order to gauge the performance of Dolphin with varying cellular connectivity, we conducted

experiments with different connectivity scenarios. Overall there are six possible combinations

of caller and callee for 2G, 3G, and 4G voice connectivity i.e., 4G-4G, 3G-4G, 2G-4G, 3G-3G,

2G-3G and 2G-2G. For each combination, we transferred data of different sizes (100, 1000 and

5000 bytes) at different bit rates (16,32,...,256), and record the BER. We have already depicted
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Figure 8.3: 4G-4G: Bit error rate variation for different bit rate for 5KB transfer.

Figure 8.4: 3G-4G: Bit error rate vari-
ation for different bit rate for 100B
transfer.

Figure 8.5: 3G-4G: Bit error rate vari-
ation for different bit rate for 1KB
transfer.

Figure 8.6: 3G-4G: Bit error rate vari-
ation for different bit rate for 5KB
transfer.

Figure 8.7: 3G-3G: Bit error rate vari-
ation for different bit rate for 100B
transfer.

Figure 8.8: 3G-3G: Bit error rate vari-
ation for different bit rate for 1KB
transfer.

Figure 8.9: 3G-3G: Bit error rate vari-
ation for different bit rate for 5KB
transfer.

Figure 8.10: 2G-3G: Bit error rate
variation for different bit rate for
100B transfer.

Figure 8.11: 2G-3G: Bit error rate
variation for different bit rate for 1KB
transfer.

Figure 8.12: 2G-3G: Bit error rate
variation for different bit rate for 5KB
transfer.

the results of 2G-4G setting. Thus, here we present the results of remaining scenarios in Fig. 8.1

to Fig. 8.15.
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Figure 8.13: 2G-2G: Bit error rate
variation for different bit rate for
100B transfer.

Figure 8.14: 2G-2G: Bit error rate
variation for different bit rate for 1KB
transfer.

Figure 8.15: 2G-2G: Bit error rate
variation for different bit rate for 5KB
transfer.

It is evident that by and large, for all scenarios we obtain low bit error (< 3%) for data rates

below 64 bps. However, there is a significant increase in the BER at higher rates (20-30% for 256

bps). Thus, we selected 64 bps as our data sending rate as the error percentage was consistently

low for all possible scenarios. Overall, these results establishes that Dolphin would work across

all cellular connectivity scenarios.

8.2 Additional Discussion Points

8.2.1 Dolphin Usability

Dolphin is an end-to-end system and has a modular architecture such that every layer can be

developed independently. Dolphin supports bi-directional communication and can be easily

used as an API for transferring any application’s content. The API offers send(data) and recv()

function calls (similar to the standard linux send() and recv() system calls) which can transfer or

receive data via the underlying cellular channel using the Dolphin protocol.

We used this API and tested it for three popular Internet applications. Moreover, we also

tested Dolphin for accessing websites. To do so, we built a TLS proxy that can be used with

browsers such as firefox and chrome. The proxy listens on a local port for TCP connections from

the browser and performs MITM between the browser and the website. The proxy only forwards

the HTTP GET request using the send() call, which transfers the request to the Dolphin server

(already listening using the recv() call), where the corresponding HTTP response is retrieved

and sent back to the proxy. The proxy then forwards the HTTP response to the browser. The
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above cycle is repeated for subsequent website requests. The current implementation of Dolphin

and the proxy is functioning and tested to access static websites. Notably, we do not tunnel

actual TCP and TLS packets between the client and the website as the overhead to do so via the

bandwidth constraint cellular channel is prohibitively large.

8.2.2 On using error detection and correction techniques:

One can argue that an alternative approach to provide reliability could be to employ error

detection and correction techniques. However, there are multiple problems with using them

in case of Dolphin. Firstly, such techniques need a bound on the maximum number of bit

errors that can occur during transmission. Predicting the exact bounds in case of unreliable and

unpredictably lossy voice channel is difficult. Secondly, even if we were able to somehow bound

the bit errors, the error correction techniques are not built to tolerate bit losses (that happen

in case of Dolphin). The standard techniques only work in cases of bit flips. Thirdly, such

techniques incur a significant data overhead even when there are no errors in the received data.

In contrast, Dolphin’s reliability protocol ensures that data will be re-transmitted only when

some data is lost or corrupted, thereby minimizing the overheads.

8.2.3 Maximum achievable transmission rates for Dolphin:

We experimentally demonstrate that Dolphin traffic experiences very low error rates, when trans-

mitted at 64 bps. Further, as already depicted, this rate seems acceptable for various “lightweight”

applications like email and Twitter. Higher data transmission rates incur significant error and

eventually re-transmissions. Exploring new techniques (such as modulation) to increasing the

data rate further, in the face of such errors is an important direction for future work

However, it must be noted that Dolphin’s reliability layer runs atop any underlying data

framing and modulation mechanism. Thus, any high bit rate modulation schemes proposed in

future, could be easily used with Dolphin.

Additionally, there are researches that explored sending data at relatively higher bit rates in
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packet based VoLTE systems [73,74]. Such schemes exploited the access control implementation

vulnerabilities to transfer data packets. These schemes may be beneficial in scenarios where

VoLTE services are maintained in the shutdown region. However, an adversary can very easily

restrict such schemes by disabling VoLTE and allowing only 2G and 3G voice services to

function. Also, in developing countries where such shutdowns are most prevalent, VoLTE

services are anyways not very widespread. Moreover, these schemes require rooting the phones

and modifying the kernel to achieve data transfer which would not be very usable even for most

tech savvy users. On the other hand, Dolphin’s scheme works irrespective of the underlying

cellular technology and is usable even for general non-tech users.

8.2.4 Using Dolphin as a covert channel:

The primary focus of designing Dolphin has been to provide basic Internet access in regions

experiencing shutdowns.

However, Dolphin can also be used for various applications in non-internet shutdown regions

such as a low bit rate covert channel to perform tasks such as exchanging secret information.

Moreover, Dolphin cal also be used as a secondary secret communication channel to bootstrap

various anti-censorship systems [75, 76] etc.

8.2.5 Potential reason for observing low bit rates:

In Dolphin, the feasibility study of encoding and sending data at different bit rates revealed

that we can encode data at bit rates of around 64 bps with reasonable error rates. But, there are

existing studies [30, 58] that show that data encoding rate can be much higher (500 bps to 1000

bps). When we tested them on real cellular call we observed poor performance for these studies.

We believe that the potential reason for such differences can be explained as follows.

First, in the context of this work, it is important to understand the role of modulation and

codec when encoding data bits to be sent over the cellular channel. Modulation is responsible for

encoding/converting the data bits to analog signal such that this signal can be transmitted over
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the physical medium. Similarly, demodulation is applied at the receiver to obtain the encoded

data bits from the analog signal. A codec transforms this data encoded modulated signal such

that it can be transmitted on a constrained and capacity limited physical medium (in terms of

bandwidth available etc.). The codecs are optimized to preserve the audio features in the signal

and do not care about if the audio contains encoded data bits instead, leading to large data errors.

The modulation schemes try to anticipate and minimize the distortions due to codec to ensure

good achievable data encoding rate. Thus, the success of the modulation scheme is dependent on

the underlying codec.

One of the oldest and most widely used codec in cellular networks is the AMR codec. It is an

adaptive multirate codec and provides different modes each working on different bandwidth or

bit rates (4.75 to 12.2 kbps). The network operators selects one of these modes depending on

the network condition, the client density etc. However, the few previous studies (Hermes and

authloop) that proposed a codec independent modulation scheme assumed and evaluated their

system for the maximum AMR bit rate mode i.e., 12.2 kbps.

When we tested Dolphin against AMR’s 12.2 kbps configuration codec in simulation, we

observed that it offers bit error rates comparable to those reported in the previous studies.

Dolphin’s modulation observed a bit error rate of 1.02% for data encoding rate of 512 bps 1.

However, when we test Dolphin on a lower AMR mode of 7.4 kbps, the error observed for the

same encoding rate increases to 15%. In comparison, we observed that authloop introduces an

error of about 23%, on the same AMR mode of 7.4 Kbps, which is even higher than Dolphin.

Thus, overall we believe that while performing the experiments for Dolphin, we obtained

one of the lower AMR rate modes from the service providers, leading to higher bit error rates.

However, if we get a higher rate AMR codec modes or some other codec, the obtained data

rate and Dolphin’s performance can be drastically increased. Moreover, we tested Dolphin for

one of the worst codec configurations and show that still it can be used to access lightweight

applications. Thus, Dolphin should be able to obtain performance atleast similar to the one

reported in this paper or higher. In future, we can introduce a module in Dolphin, which does

some initial testing to get a sense of the maximum achievable data rate and performs the data
1Similar low error rate of about 1% was also observed for 1024 bps.
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transfer according to the available data rates.

8.2.6 Motivation for not shutting down the cellular channel

Internet shutdowns are generally employed to stop the rapid broadcast of information and the

organization of protests. Such broadcasts generally happen over social media apps such as

Whatsapp, Facebook, etc. But, in the absence of Internet access, it becomes extremely difficult to

use cellular channels for such purposes. Moreover, blocking the cellular voice channel, besides

the Internet, would completely disconnect the masses and prevent them from availing critical

services e.g. banking, emergency healthcare, civic helpline etc. Hence, the known censors do not

have much motivation to block the cellular voice channel by default (as backed by multiple cited

instances). Additionally, even with Dolphin, it is not trivial to spread information en-masse due

to its practically achievable data rate, making it less appealing for the adversary to completely

block the cellular channel. However, in the worst case, if the censor decides, than it could still

block the cellular channel, but with serious collateral damages

8.2.7 VoIP vs cellular

The major distortions in the voice channel are generally introduced by codecs. The codecs used

for VoIP communication are much less sophisticated as they work over the Internet and they are

not very constarined about bandwidth. However, cellular codecs are designed for very bandwidth

constrained operations and thus perform many psycoacoustic optimizations on the original audio

leading to much more distortions. Thus, the solutions and analysis for VoIP systems are not

easily applicable to the cellular channels. Moreover, we also performed some evaluation to see

the achievable data rates over VoIP apps using Dolphin’s modulation. We found out that we were

able to achieve a data encoding rate of 1 Kbps with reasonable error rates (about 2We include a

section on Page xx under the heading “VoIP vs cellular” highlighting the above.
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8.2.8 Cellular call charges

It is difficult to do a cost analysis as it would be dependent on the region from which the call

is being made and the region to which it is being made to. Internet shutdowns are generally

performed in developing countries which usually have a low cost. For instance, we studied the

incurred cost in India, which is the country with most shutdowns across the globe. International

call rate in one of the most popular provider in India i.e., Reliance Jio, ranges from 0.0065 $ to

0.077 $ per minute to all countries around the world []. Thus, for a 1 hour operation of Dolphin,

it would cost from a min of 0.39 $ to a max of 4.62 $. In Myanmar it costs about 1.62 $ for an

hour. In ethiopia it would cost about 10.8 $. The call rates would be higher if the shutdown is

being performed in developed countries.

8.2.9 Comparison with existing work

We discuss in detail in the previous subsection about how Hermes and Authloop’s modulation

schemes compare to that of Dolphin. But, there are a few other studies that also propose a

modulation scheme for encoding data bits. LaDue et al. [27] proposed a modulation scheme that

was designed specifically for the GSM-EFR codec. Similarly, Ozkan et al. [69] also designed

and tested the modem for the GSM FR codec. Since, these modems are designed for a specific

codec, they are not good candidates to be considered for integration in Dolphin. Another, modem

was designed by Ali et al. [29] and was tested for AMR 12.2 kbps mode as well as the AMR

4.75 mode. However, for the lower rate AMR mode, the authors demonstrated a data encoding

rate of close to 80 bps, which is similar to that of Dolphin.

8.2.10 Alternatives to cellular voice:

One may argue that voice may not be the only medium using which people can communicate

in an Internet disrupted region. An alternative may be automating cellular SMS to transfer

data. SMS has an advantage of providing a reliable data channel. However, it suffers from

a few drawbacks. Many countries restrict the number of SMS that can be sent/received per
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day [18, 19]. But no such restriction is generally imposed on voice calls. Sending and receiving

bulk SMS messages in a short duration can make it very easy for the adversaries to suspect and

identify Dolphin users. In contrast, a long duration (say an hour long) voice call is relatively less

suspicious, as long duration calls are not generally unusual. These limitations make SMS less

suitable for sending data in comparison to voice channel.

8.3 Automated Callee Implementation

Twilio provides a diverse API to automate a variety of tasks related to voice calls (cellular,

PSTN as well as VoIP). For Dolphin, we use the Twilio API to specify the operations to

perform when a cellular call arrives on a particular phone number.2

We configure Twilio API to manage any incoming call using a webhook. Further, a call

management module, hosted on the cloud, interacts with Twilio (via a webhook) to manage

calls. This module relies on fastAPI [77] to process webhook messages. Once a call is

established, we use the Twilio stream API to manage audio playback and recording. This API

sends the incoming audio data to a websocket. An audio management module listens on this

websocket and plays it on the cloud host’s sound card (using pyaudio library), which is then

finally decoded using minimodem (running in receiver mode). After correctly decoding the

requests, they are processed by the Dolphin server program. The corresponding response data is

encoded and played back on the host’s sound card, which gets relayed back to the websocket

using the audio management module. The websocket sends the audio back to the caller, via

the Twilio stream API.

Overall, managing call audio with Twilio enables Dolphin clients without a peer to still

access Internet applications.
2This number can be leased from either Twilio or elsewhere.
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8.4 Accessing websites over dolphin

A big limitation of dolphin is it’s inability to provide normal browsing capabilities to it’s users.

We fetched home pages of alexa top 1000 websites and found out that the average size is at

around 100 KB and can easily be as high 5 MB for some news websites. Hence, browsing these

websites would very much be non real time. To decrease the page size, we used the textize api

[55]. Textize would extract all the text and serve a plain text version of the file. After textizing

and compressing the resulting plain text file we were about to get an average file size of 10 KB

with going to a maximum of 50 KB. To provide a further speedup we could leverage parallel

dolphin connections as described in Sec 3.4.

Conventionally, Users utilize web browsers like Google chrome, FireFox, etc to browse the

internet. We developed a HTTPS proxy to provide a user friendly interface. The user would

configure their browsers to connect to this proxy and the proxy would configure and use all the

dolphin connections and sessions. This way a user can configure a normal browsing session to

run over dolphin.
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Chapter 9

Conclusion

The world has recently observed a sudden rise in an extreme form of censorship — i.e., Internet

shutdowns. To circumvent such steps we present Dolphin, a system that can provide access

to lightweight and delay tolerant Internet applications, by utilizing the cellular voice channel.

Dolphin serves the request of a client in shutdown region by relying on trusted peers outside

such regions which access Internet applications, on behalf of the client. We demonstrate the

feasibility of Dolphin by implementing and testing it for real Internet applications such as email,

tweet and news. Across all our experiments for these applications we observed that it takes only

a few minutes to access all of them. Overall, there is a compelling need to build systems that

provide basic Internet access during shutdowns. Dolphin is a first attempt in this direction and

we hope it will further propel development of more such sophisticated systems.
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