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Abstract

Location-based mobile applications are steadily gaining popularity across the world.

These applications require information about user’s current location to access dif-

ferent kind of services. However, location-based applications have diverse set of

requirements, some of them require location information intermittently such as local

search, whereas other applications require continuous access to location informa-

tion i.e. ones which need to infer high level information such as places and routes.

Additionally, localization accuracy requirements are different across various location-

based services. For instance, navigation applications require high level of accuracy

(¤ 10 meters) whereas sharing location with online social networks may suffice with

an accuracy of hundreds of meters. There are mainly three different localization

approaches which are used to estimate current user location using a mobile phone,

i.e. Global Positioning System (GPS), WiFi-based, and GSM-based. These three

different approaches differ in terms of localization accuracy, availability, and energy

consumption. GPS and WiFi-based approaches provide fine grained localization ac-

curacy but there are many phones, which do not have GPS and WiFi sensors (i.e.

feature phones). It is predicted that for the at least next five years, over 50% of

the phones will not have GPS. Apart from limited availability, GPS and WiFi-based

approaches result in high energy consumption specially for the services which re-

quire continuous tracking of location information. Further, many cities in the world

do not have a large scale Wi-Fi infrastructure, which is a sole requirement for all
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WiFi-based approaches. GSM-based approaches (Cell ID-based) work on both fea-

ture phones as well as smartphones and energy-efficient as compared to GPS/WiFi.

However, they require access to a comprehensive database of Cell IDs created us-

ing war-driving. Such a database either does not exist or have limited coverage in

developing countries.

In this thesis, we make the following contributions to enable energy-efficient geo-

localization and location-aware communication on mobile phones: (1) We propose a

novel Cell Broadcast (CBS) based localization system, which removes the necessity

of war-driving or building a Cell ID database for GSM-based localization. Evaluation

using self-collected real world traces show that the proposed approach provide good

accuracy (nearly 400 - 500 meters), which is sufficient for enabling many location-

based services on feature phones. We have developed several location-aware appli-

cations using CBS-based approach and combined it with existing techniques such

as Cell ID and GPS for improving localization availability while minimizing energy

consumption on smartphones. (2) We propose PlaceMap, a system to discover places

and routes visited by mobile users based on only Cell ID information. Our system

employs a novel graph-based clustering algorithm, which handles challenges such

as fluctuating among Cell IDs on same place and segregate Cell IDs according to

physical places. To provide better accuracy in place discovery, we design algorithm

that uses an initial training of WiFi/GPS data to learn places and later use Cell

ID data only. Our evaluations on two large scale mobility dataset collected in India

and Switzerland show that PlaceMap can correctly discover nearly 80% of places

as compared to baseline (GPS/WiFi). (3) We build and evaluate designs of two

Cloud-enabled mobile systems, which facilitate opportunistic communication among

co-located phones. These system are designed specifically for bandwidth constrained

settings. One of them, MobiShare uses the Cloud for scalable content search and an

encounter prediction framework to predict encounter time between content source

vii



and requestor based on their mobility history. Second system, Unity finds social

groups, who have similar interests and have frequent encounters to enable collabo-

rative download of mutually interested content from the Internet. (4) We discover

aggregated mobility and place visiting patterns of people in developing countries

using one CDR (Call Detail Records) dataset collected in Ivory Coast and two fine-

grained location information datasets collected in India and Switzerland. We have

compared these mobility patterns with existing studies for developed countries (US

and Switzerland) and found several differences. One of the difference is that people in

developing countries are less likely to travel long distance on weekends as compared

to developed countries.

With the fast evolution of hardware and software technologies for mobile phones,

there has been a large gap created between capabilities of feature phones and smart-

phones. This thesis tries to fill that gap and provide practical and promising solutions

to enable location-based services on both feature phones and smartphones using low

energy location interfaces.
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Introduction

The total number of mobile phone subscriptions were nearly 6.8 billion in early

2013 covering more than 95% of world population [24]. At the same time, mobile

devices shipments continue to rise every year. According to Gartner, 1.75 billion

handsets were sold in 2012 and it is predicted that in 2013, shipments will grow

to 1.90 billion [23]. Similarly, mobile networks have evolved from 1G to 4G in last

two decades. Increase in mobile devices coupled with subscriptions enabled large

proliferation of mobile systems and applications. Apart from traditional services

such as voice calls, SMSes, today’s mobile phones enable array of other services

such as navigation, location-based services, multimedia, education, mobile payment,

social media, gaming, and citizen information services for the consumers.

Today’s smart phones come with many embedded sensors, which could be pro-

grammed to get an access of contextual data. User’s current location is an integral

part of contextual data. The process of acquiring current location on a mobile

phone is called geo-localization (localization). Traditionally, localization has been

an active area of research in domains like robotics and small or large scale sensing

systems [62]. Over time, localization has improved due to advancements in wire-
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less technologies and has been playing an important role in people’s lives since last

decade. Some of the well-known technologies which are used for localization on a

mobile phone includes Global Positioning System (GPS), WiFi-based, and Cellular

network-based [172] [144].

1. GPS : It is the most prevalent and widely used approach of getting location on

mobile phones. GPS is a worldwide localization system consisting of a network

of at least 24 satellites, they are placed in such a way that at least four satellites

are visible from any part of the world. All these satellites are maintained by

U.S. Department of Defense and civilians are granted access to communicate

with these satellites on a specific frequency range [143].

In this approach, the phone has a GPS receiver that receives signal broadcasted

by the satellites and estimates its current location by triangulation. GPS works

across the world and it is highly accurate (� 10-100 meter) [122]. However, it

does not work in indoor environments because satellite signals are typically not

available indoors [157].

2. WiFi-based Localization : IEEE 802.11 is currently the most used wire-

less networking standard and many countries have a wide deployment of WiFi

access points (APs). Apart from communication, these APs are used for lo-

calization. Typically, WiFi-based approaches have two different localization

phases i.e. offline phase and online phase.

In offline phase, a perceptual map of AP identifiers, respective signal strengths

(RSSI), and approximate geo-coordinates of APs is created by war-driving.

Data collected by war-driving is stored in a database on a location server. In

online phase, mobile phone sends visible WiFi APs with RSSI information to

the server for estimating its current location. WiFi based localization can work

indoors and even outdoors if there is a WiFi network in place. On outdoors,
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if there is an extensive perceptual map of WiFi APs, then its accuracy is

comparable with that of GPS [138].

3. GSM-based Localization : There are two kinds of GSM-based localization

approaches: Base station assisted and Independent. Base station assisted ap-

proaches require installation of sophisticated hardware and software component

on base stations and require direct assistance from operators [172].

Base station independent GSM localization approach is based on Cell ID and

RSSI fingerprinting similar to WiFi-based positioning system. A perceptual

map of cellular cell towers is created using war-driving and this is queried to

estimate the current location of a phone. This method does not require any

extra hardware and works on the phones, which have a cellular connection [78].

This approach has lower accuracy (˜100 � 1500 meters) than GPS and WiFi.

Its accuracy depends on many factors like coverage of Cell ID database, Cell

ID density in an area, and visibility of Cell IDs on phone.

All the three technologies presented above are not perfect alone, but they do

have complementary strengths. For instance, GPS does not work indoor whereas, if

a good perceptual map for wireless APs is built, WiFi based localization can work

indoors and provide comparable accuracy as GPS. Mobile phones having GPS and

Wi-Fi chips are expensive, so a large number of feature phones1 do not have these

capabilities. It is predicted that for the next five years, over 50% of the phones will

not have GPS [146]. Also, WiFi infrastructure does not exist, at a city scale in many

countries and hence, it is not feasible to use WiFi-based localization approaches in

many parts of the world.

In 2011, ratio of feature phones to smart phones sales was 2 : 1 [3] and majority

of these phones had capability of internet connectivity also [1]. In the absence of

1 Also, known as low-end phones or non-Smartphones
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GPS and WiFi-based localization, GSM-based localization is best suited for feature

phones [146]. However, GSM based localization has several practical limitations such

as need of war-driving, which need to be overcome before making it widely available.

Location-based services have different types of requirements w.r.t. accuracy and

location tracking frequency. Interestingly, all location based services do not require

same level of accuracy for current location. For instance, navigation applications

require high level of accuracy (  10 meter), whereas if one has to share location with

online social networks (OSNs), required location accuracy could be in hundreds of

meter. Similarly, there are some location-based services which require only one-time

location estimates such as local search and geo-tagging of pictures. While, there are

some services which require continuous location tracking to learn all the visited places

of a user with their respective arrival and departure time. Place learning is required

in many application scenarios such as life-logging, context-aware advertisements, and

place-based recommendations.

Energy is a limited resource on all mobile devices. Continuous tracking of location

information using WiFi and GPS result in high energy consumption [72]. Power

consumption is found to be one of the biggest barrier in large scale adoption of

location-based services [92]. We measured power consumption of GSM, GPS, and

WiFi in a continuous location access scenario as shown in Figure 1.1. In comparison

to GSM, we observed that GPS and WiFi reduces battery life time by 90% and 51%

respectively. With a sampling period of 5 minutes, the reduction of battery life time

was 71% for GPS and 16% for WiFi in comparison to GSM. Yohan et al. observed

similar pattern and the reduction of battery life time in of GPS, WiFi, and GSM was

72%, 45%, and 18% respectively in comparison to baseline for 1400 mAh battery [54].

Data consumption rate of the mobile phones is increasing every day due to re-

quirements posed by mobile applications/services such as multimedia. However,

many mobile phone subscribers still use 2G based data connection, which is con-
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Figure 1.1: Power consumption analysis of different location interfaces. The anal-
ysis was performed on a HTC A310E Explorer phone with 1230 mAh battery.

strained in terms of bandwidth. In 2012, number of 3G subscribers in China were

only 14% of the total 1 billion cellular subscribers[2], while in India, it is only 2% of

over 893.8 million subscribers [4]. Low penetration of 3G{4G networks is attributed

to higher setup cost, limited number of supporting handsets, and expensive data

plans. Many mobile phone subscribers do not have alternative way of accessing In-

ternet other than their mobile phones. For instance, over 50% of total mobile users

in India and Egypt access Internet using the mobile phone only [7]. Opera is one of

the widely used browser in mobile phones and recent Opera mobile web report shows

that mobile users download content (mostly multimedia) from the Internet using 2G

network and the top handsets were found to be feature phones [9].

To summarize, there are mainly two different kind of challenges faced by majority

of mobile phones. First, there is a lack of war-driving free geo-localization solutions

and energy-efficient mechanism to build mobility profiles of users. Second, there

is lack of systems which can overcome limitations of limited bandwidth connectiv-

ity. This thesis brings following contributions to solve these challenges and enable
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location-based services for both feature phones as well as smart phones using low

energy location interfaces:

� We designed and implemented a novel GSM-based system using Cell Broadcast

(CBS) messages to provide localization on mobile phones [162, 163]. Existing

GSM-based localization system requires war-driving databases where as pro-

posed system does not rely on war-driving. Base station periodically broadcast

CBS messages that contain the nearby location name. For localization, these

messages need to converted into geo-coordinates using several publicly available

geo-coding engine such as Google Maps. We collected real CBS messages traces

in New Delhi, India and found that there are several challenges in realizing a

working localization system. Some of these challenges were presence of adver-

tisement, geo-coding failures, and inaccuracies among CBS location messages.

Specifically, for reducing geo-coding failures, we implemented a geo-coding

framework, which uses several techniques such as pre-processing of location

names and crowdsourced POI (Point of Interest) addresses for estimation of lo-

cation geo-coordinates. Proposed framework increased the geo-coding success

rate by approx 26%. To minimize the impact of inaccuracies present in CBS

location messages, we designed two algorithms, which uses immediate space-

time history of received CBS messages to improve localization accuracy. Our

trace-based evaluation results showed that proposed algorithms can improve

the localization accuracy by up to 35%. Further, we designed multi-modal

approaches i.e. combination of CBS with Cell ID and combination of CBS

with GPS. CBS-based localization complements limited availability of Cell ID

database especially in developing countries where as with GPS, CBS-based lo-

calization can be made more accurate while minimizing energy consumption.

Finally, we describe many applications built using CBS-based localization ap-
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proach. One of the hyper local search application i.e. Nokia Nearby devel-

oped by Nokia uses CBS-based localization and have more than half a million

users [8].

� We developed a system PlaceMap to discover places and routes visited by a

mobile users using only GSM information [161]. PlaceMap uses a novel graph-

based clustering algorithm (GCA ) to discover places solely from GSM (Cell ID)

information only. To increase the accuracy of GCA , we designed algorithms

which uses an initial training of WiFi/GPS data to learn places and later

use Cell ID data only. Based on extracted places using GSM information,

we estimated the arrival and departure time as well as the routes that users

took between any two places. We did an extensive evaluation of PlaceMap

algorithms on two extensive mobility traces dataset i.e. self collected dataset

(Location : India, Number of users : 62, Duration : 1 month) and MDC dataset

(Location : Switzerland, Number of users : 38, Duration : 12 months). Further,

PlaceMap is implemented as a cloud service on Microsoft Azure and provides

APIs for third party application developers. They can use PlaceMap APIs for

building context-aware applications, which need fine-grained information about

places that a user visits, arrival/departure time at the places, and frequent

routes undertaken by her. We have used PlaceMap to build a place logging

application, which is deployed on Google play store [10].

� We discovered local sharing patterns among mobile users with the help of data

collected from approx 17, 000 users of WiFiShare mobile application [11, 12].

To facilitate local sharing and collaboration among co-located users, we de-

signed and implemented two different systems, which uses location informa-

tion to enable opportunistic communication among mobile phone users. First

of these systems, MobiShare facilitates searching and local sharing of content
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using mobile phones [160]. It is based on a hybrid architecture that uses a

central entity i.e. the Cloud for storing, aggregating and performing analysis

on the information which is uploaded by a frontend mobile application. Mo-

biShare used place discovery algorithms of PlaceMap to build mobility profiles

of users and detect encounters among users for opportunistic content sharing.

MobiShare also uses an encounter prediction framework to provide an estimate

of content delivery time to the content requestor. We have deployed MobiShare

on 16 mobile phone users and found that for nearly 88% of requests, content

was delivered in less than 10 hours. Second system, Unity provides a platform

for collaborative downloading of content, which is of mutual interest to mobile

peers [84]. In our system evaluation, we have found that Unity can increase the

download rate by a factor of 3 as compared to the best download rate amongst

all peers. Also, Unity uses the encounter notification mechanism similar to

MobiShare to detect collaboration opportunities.

� Large scale location data collected from mobile phones can be used to analyze

human mobility patterns, which can given useful insights for planning city

infrastructure such as transportation. We investigated the space of human

mobility patterns by analyzing a large call details records (CDRs) dataset of

50, 000 users collected by a cellular operator in an African country Ivory Coast

and compared it with existing studies performed in US [159]. Our findings

suggests that people in developing countries have restricted mobility range, as

compared to developed countries. We found place visiting patterns from two

fine-grained location dataset collected in India and Switzerland.

The rest of this thesis is organized as follows. Chapter 2 proposes CBS-based lo-

calization system, specifically designed for enabling location-based services on feature

phones. Chapter 3 presents a system PlaceMap and various algorithms to discover
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places and routes in a person’s mobility. Chapter 4 unveils local sharing patterns

with the help of data collected from a widely deployed mobile application and pro-

poses two systems MobiShare and Unity to facilitate local sharing and collaboration

among co-located mobile users. Chapter 5 investigates the space of human mobility

patterns using three different datasets and identifies interesting differences of human

mobility between developed and developing countries. Finally, Chapter 6 presents

the conclusions.

9



2

Cell Broadcast(CBS) based Localization

2.1 Introduction

For the class of location-based applications that do not require fine grained location

accuracy, Cell ID based GSM localization is better suited due it its wide availability

and low power consumption. In fact, for feature phones, this is the best suited

approach [146]. However, GSM based localization has to overcome following practical

limitations:

1. According to GSM standards, a phone can receive signals from seven different

Cell towers [49]. However, most of the phones can access (using APIs) only

one Cell tower to which the phone is currently connected [122]. Access to only

a single Cell ID offers coarse grained accuracy.

2. For Cell ID based localization, perceptual map (Cell ID database) has to be

created by wardriving. Wardriving is not scalable because it is practically

impossible to cover each and every street of a country to create a database of

Cell IDs. Although, there are few crowd-sourcing based open source Cell ID

databases, e.g. OpenCellID [25] and Cell Spotting [15]. These databases have
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few entries and often become obsolete due to lack of participation. There are

some proprietary databases, such as Google Maps [17] which claim to have good

listing of Cell ID databases but they are paid services which restrict application

developers to use them.

We propose, a novel scheme which uses Cell Broadcast Service (CBS) messages

to provide localization for low end phones. CBS is defined in the phase II of GSM

standard 3.49 [14]. The CBS messages are broadcast by Cell towers to all the phones

in its range [20]. The users need not pay airtime charges to receive CBS messages,

even while roaming outside of their home area. The CBS messages are commonly

used to broadcast information about weather forecast, landmarks/area names, news,

announcement by governments, etc. All this information can be broadcasted simulta-

neously on different channels and this makes it an ideal technology to disseminate in-

formation during emergency. A cell tower typically broadcasts the locality/landmark

name, where it is located. Channel 50 is reserved for broadcasting location/area

names. Most of the phones come with built-in APIs to capture CBS messages.

A phone can receive CBS messages only from the cell tower to which it is currently

connected. CBS-based localization scheme removes the necessity of building Cell ID

database (wardriving) and can support location aware services that do not require

fine grained accuracy. Figure 2.1 shows a native application, in a Nokia Symbian

phone, displaying last six received CBS messages. A CBS message may contain a

location name or an advertisement. For localization, we need to filter out the location

names from advertisements.

In this chapter, we evaluated feasibility of using CBS messages for localization.

During our study, we have found that CBS-based localization has many associated

challenges such as geo-coding failure, low accuracy etc. Evaluation results on our self

collected dataset showed that nearly 35% of CBS location names can not be geocoded
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using state of the art geocoding engines such as Google Maps [17]. Also, more

than 58% of CBS locations had localization error of more than 600 meters. These

challenges need to be resolved before realizing a working localization system based

on CBS messages. For reducing geo-coding failures, we designed a framework that

uses combination of pre-processing algorithms and crowd sourced POIs information

to estimate geo-coordinates of CBS location names. Proposed framework increases

the geo-coding success rate by nearly 27%.

Further, two space-time history based algorithms have been designed to improve

localization accuracy over the baseline approach. Our evaluation of 58 real world

location traces showed that space-time history can improve the localization accu-

racy by up to 35%. Our experiments showed that combination of CBS with other

localization approaches such as Cell ID-based and GPS can be complementary. CBS

complements limited availability of Cell ID database especially in developing coun-

tries. Even if, nearly 30% of Cell IDs exists in a war-driving database, accuracy

improved by 29.2% as compared to CBS only approach. As part of multimodal

approachs, we designed an approach which uses GPS information when CBS-based

approach was found to be error prone. Combination of CBS with intermittent GPS

information enhanced localization accuracy by about 51% as compared to CBS only

approach while GPS is used every 6.4 minutes on an average.

At the end of the chapter, we describe several applications built using CBS-based

localization approach. These applications include location sharing with online social

networks, local search and trajectory matching. In case of trajectory matching appli-

cation, we estimate the accurate route travelled by a user based on street segments

data and CBS location trace.
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Figure 2.1: A native application in Nokia Symbian phone displaying last six re-
ceived CBS Messages

2.2 Background

Related work in GSM-based localization can be divided into two categories: (A) Cell

ID based Approaches and (B) Fingerprinting based approaches.

2.2.1 Cell ID-based Approaches

In this approach, Cell IDs are fetched using phone APIs, and looked up in an ex-

isting database to provide localization. To the best of our knowledge, none of the
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mobile phone operators reveal exact location of the Cell towers. Hence, using crowd

sourcing/war driving data, cell tower location is approximated, which could be sev-

eral hundred meter away from its actual location [154, 146]. If there are multiple

visible Cell IDs provided by phone APIs, the approaches compute some function,

e.g. centroid, of all the geo-coordinates (latitude and longitude) obtained from the

database [50].

As discussed earlier, there are limitations on how much visibility phone APIs

provide to third party developers for accessing Cell IDs. Many of the prior works

assume that phone APIs provide access to multiple Cell IDs, as far as seven, at

a time [49, 50]. Our experience, supported by other prior work [122, 119], shows

that for phones including Nokia S40, Nokia S60, and several Android-based phones

only provide access to only one Cell ID to which the phone is currently connected.

Access to single Cell ID reduces accuracy of the localization as compared to that

obtained had there been access to seven Cell IDs. Google Mobile Maps’(GMM) My

Location [17] application works on a single Cell ID-based approach. According to

measurements done in Egypt, it provides a median localization error of 656.37 meter

for a rural area and 503.89 meter for an urban area [79]. The localization error

depends on density of cell towers. Since in urban areas, density of cell towers is high,

so this method provides good location accuracy.

The main limitation of Cell ID based approaches is in procuring access to a

comprehensive database of Cell IDs. To check the coverage of open source (crowd-

sourced) Cell ID databases, we selected two widely used operators in New Delhi. We

call them X and Y for anonymity. On our self collected dataset of Cell IDs for op-

erators X, we observed that out of 252 cell IDs, OpenCellID contained only 65. For

operator Y, the number was only 21 out of 164 as shown in Table 2.1. We cannot

find out comprehensiveness of the Google Maps [17] as it is not publicly available.

However, given low penetration of Android phones in rural India, we postulate that
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the database will be underpopulated.

We believe that crowd-sourcing for building cell ID database has been in-effective

till now due to following two main reasons:

1. Lack of incentives as people need to incur airtime charges for contributing to

the database.

2. Lack of GPS-enabled phones in developing countries.

Operator No of cell IDs Found on OpenCellID %
X 252 65 31%
Y 164 21 13%

Table 2.1: Success rate of Open Cell ID (most extensive open source database of cell
IDs) on our dataset collected in New Delhi region

2.2.2 Fingerprinting-based Approaches

In this approach, RSSI values are also collected with Cell IDs during war-driving.

Typically, a fingerprint collected during war-driving constitutes of Cell IDs, their

associated RSSI values, and GPS locations that are represented in a vector form.

During the localization phase, Cell ID(s) and associated RSSI values are sensed at

a phone and compared with stored vector space of fingerprints using one of the

following techniques to approximate location coordinates:

1. Deterministic Techniques: It uses kNN (k nearest neighbor) classification to

find k closest matches from the war-driving data. The difference between two

RSSI fingerprints is measured by a metric such as Euclidean distance [49]. After

finding the closest matches, it averages their corresponding geo-coordinates to

estimate location. This method requires building of an extensive war-driving

database for accurate positioning. Also, search space for finding closest matches
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is large since mobile phone given RSSI fingerprint has to be compared with each

fingerprint stored in the war-driving database.

2. Probabilistic Techniques: These techniques build the probability distributions

from the war-driving RSSI data and use that to find the most probable location

for a given RSSI fingerprint. These approaches build local statistics like RSSI

histogram [77] for each Cell ID and then predict the signal strength at each

point. On the similar lines, [50] uses gaussian processes (GPs) with radio

propagation model and Markov localization to build a model which captures the

relation between RSSI and distance. Density of data collection of probabilistic

techniques are lower than as required by deterministic techniques.

Fingerprint based approaches give better accuracy than the Cell ID-based ap-

proaches due to high granularity of stored information. However, they require more

storage and computational capabilities. Continuous war-driving effort is required in

this approach because RSSI keeps on fluctuating due to changes in physical envi-

ronment. Similar to Cell ID based approaches, these approaches give good accuracy

when there is a visibility of seven cell towers and their respective RSSI values. How-

ever, we have described earlier that many mobile phone platforms do not provide

access to seven Cell IDs and only give information about the Cell ID to which phone

is connected. Recent results demonstrates that RSSI measures from single Cell tower

is not a good measure to estimate movement [122].

We conducted our own study to find out whether using RSSI with a single Cell ID

information is a good metric for localization. A RSSI difference is the absolute change

in the RSSI, for a given Cell ID, when user moved from one location to another. In our

self collected dataset, we had 24064 unique RSSI difference values with the respective

difference in distance from 410 unique cell IDs. We plot maximum, minimum, and

average distances for each RSSI difference.
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Figure 2.2: In whole dataset, Min-Max bars representing minimum and maximum
distance between two position into same cell ID. For instance, for a difference of 14
dBm in RSSI, distance between those points can range from 0 to 4000 meter.

As seen in Figure 2.2, the average difference is almost constant for RSSI difference

ranging from 1 to 9 dBm. We zoom in on one Cell ID and plot the data (Refer

Figure 2.3). We observed the similar behavior for RSSI difference ranging from 1 to

6 dBm. This concluded that using RSSI with single Cell ID information is not a good

measure for GSM-based localization as one observes similar RSSI values between two

points with large physical distance between them.

2.3 System Design

In this section, we describe design and various components of CBS-based localization

system. Figure 2.4 presents system design containing a phone which receives CBS

messages broadcasted by base station and a geocoding service which helps in con-

verting CBS location names in geo-coordinates. Following is a detailed description

of data flow depicted by numbered arrows as shown in Figure 2.4 .

1. GSM base station broadcasts CBS messages, each containing a CBS string
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Figure 2.3: Only for single cell ID, X-Y scatter plot for showing variance in RSSI
difference vs distance between two positions into same Cell ID. For instance, two
points with RSSI difference 21 dBm can have a distance of 0 to 500 meter.

Figure 2.4: Architecture of working CBS-based Localization Approach

mentioning location name or advertisement. The messages are received by

a listener application running on the phone. The listener application at the

phone continuously listen at the port 50 for incoming messages.

2. After receiving a message, mobile application automatically figures out whether

it contains location or advertisement using a regular expression. If the mes-

sage content is a location, then the phone checks for its corresponding geo-

coordinates in its local cache. If it is not available, the application makes a
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request to geo-coding service.

3. Geo-coding service estimates the geo-coordinates of the queried location name

using a combination of techniques described in Section 2.5.2 and return them

to the phone. The application at the phone adds it to local cache of the phone.

Geo-coding service is likely to get request from many phones, using that it

builds a cache of all location names with their geo-coordinates. Phone applica-

tion can download this global cache proactively to avoid frequent requests to

the cloud.

Above described approach is the most basic way of estimating a user’s location

using CBS messages and called as baseline approach. Baseline approach is identical

to Cell ID approach described in Section 2.2.1.

2.4 Pilot Collection of CBS Data

To the best of our knowledge, this is the first attempt to use CBS messages for

localization. We could not find any publicly available dataset of CBS messages.

To characterize the accuracy of CBS-based localization approach, we collected CBS

messages for two different operators X and Y in urban settings of New Delhi, India.

We have used following two different sources of data collection:

1. CBS Traces Dataset: Our data collection application is written in J2ME.

We ran the application on Nokia S60 and Nokia S40 phones. Though we have

collected data using Nokia phones, we have found that nearly all Java-enabled

phones provide APIs to receive CBS messages. For example, phones from

Samsung, Sony Ericsson, Black Berry, etc are able to receives CBS messages

at port 50. but their APIs to get other location information like Cell ID differs

since each manufacturer gives proprietary APIs to access information. Our
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data collection application had capability to run on all of these platforms with

minor modifications. Five volunteers ran our data collection application for

three months.

Figure 2.5: Walking trace of a student volunteer. Total distance travelled was
about 3 km with an average speed of 2.5 KM/hr

Figure 2.6: Travelling trace of a student volunteer while returning to home from
campus. Total distance travelled was about 23 KM with an average speed of 29
KM/hr

We collected this data to measure accuracy of the baseline approach and de-

sign algorithms to improve upon the baseline accuracy. The application collects

CBS messages by continuously listening to channel 50, time stamp of each CBS
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message reception, Cell ID, MCC (Mobile Country code), MNC (Mobile Net-

work Code), and GPS coordinates (if GPS is available on the phone). We have

collected GPS coordinates for creating ground truth for CBS-based localiza-

tion. Volunteers were given choices to start and stop application at any point

of time. After collecting each trace, participants tagged their activity as walk-

ing or traveling and uploaded it using one of following methods. – (a) using

phone’s data connection or (b) transferring it to PC first and then uploading

it using PC’s Internet connection.

Nearly half of our traces did not have GPS coordinates due to volunteers being

indoor. For consistency in evaluation, we have only considered the traces,

which had GPS values nearly all the time. Also, if a user did not tag a trace

for walking/travelling or if it is a combination of both, we tag it with the help

of GPS information. A location trace which had an average speed of less than

8 KM/hr is tagged as walking/static where as if average speed is greater than

or equal to 8 KM/hr, it is tagged as travelling [91]. Figure 2.5 and Figure 2.6

show two traces collected by a volunteer, walking trace is about 3KM long and

collected around the campus. Traveling trace is about 23KM collected while

going from campus to home.

Most of the traces in this dataset were collected in the western part of New

Delhi, India. Table 2.2 lists some of the statistics about total walking and

traveling traces present in our dataset. All of these traces had GPS coordi-

nates information with them, which have been used for evaluation later in this

chapter.

2. Nokia Nearby Dataset : This dataset was collected as part of pilot de-

ployment of Nokia Nearby. Nokia Nearby is a local search application built in

J2ME which can run on feature phones as well as smart phones. Whenever a
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State X Y Combined(X+Y) Avg Duration (Minutes)
Travelling 27 12 10 46
Walking 12 7 7 65

Table 2.2: Number of travelling and walking traces in CBS dataset across two dif-
ferent operators X and Y

user searches for nearby businesses, the application captures CBS messages and

GPS coordinates (if available). We have obtained this dataset from Nokia for

New Delhi area which has CBS messages and corresponding GPS coordinates.

This dataset have about 29K records with 469 unique CBS location names.

This dataset is only collected for Operator X but covers most parts of New

Delhi, India and nearby township areas i.e. popularly called National Capital

Region (NCR). NCR covers an area over 2000 square kilometers.

We analyze the data from both the datasets in the next section and list out

challenges in using CBS messages for localization.

2.5 Challenges in CBS based Localization

Data from our pilot study brought forth non-trivial challenges that require addressing

before CBS-based localization can be realized in real-world setting. In this section,

we describe all challenges and present our approaches to solve them [162, 164].

2.5.1 Filtering of Advertisement Messages

CBS messages contain advertisements in addition to location names. It is essential to

filter out these advertisements. Table 2.3 shows sample CBS advertisement messages

and Table 2.4 shows sample CBS location messages extracted from our datasets.

By looking at the data, we have made following two observations which can

distinguish between a location name and an advertisement message.

1. Advertisements contain common patterns such as special characters (’*’,’#’,’%’,’@’)
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S.No. CBS Message
1 CRICKET 321451#
2 32114# BHAVISHYA
3 HELLO TUNES 578785 5172
4 321983# MIRCHI
5 3216# DOST BANAO 5843

Table 2.3: Sample advertisement CBS messages extracted from our datasets

S.No. CBS Message
1 GANESHNGR
2 Jyoti Ngr
3 RISHI PARK
4 Noida Sec-18
5 NIZAMUDIN BRDG

Table 2.4: Sample CBS location messages extracted from our datasets

or continuous digits like (’578785’) which are unlikely to be present in genuine

location names.

2. Advertisements contain operator name or some other advertisement specific

words such as “Cricket”, “Free”, “Ringtone”, which are hard to find in genuine

location names.

Using these two discriminators, we designed a regular expression which can filter

all the advertisements at the phone itself [164]. These observations hold true for

both the operator’s data. We got 100% accuracy in filtering advertisements when

the regular expression was applied off-line to 33279 CBS messages in our dataset.

Interestingly, we found that number of advertisements differ among operators X and

Y as shown in Table 2.5, operator Y had about 61% advertisement CBS messages

as compared to Operator X, which had about 46%.
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Operator Total CBS Messages Advertisements(%)
X 32106 46%
Y 1173 60.53%

Table 2.5: Percentage of advertisement CBS messages in both the datasets collected
for operator X and Y

2.5.2 Geocoding of Location Names

As described in Figure 2.4, CBS location messages need to be converted into cor-

responding geo-coordinates using a geo-coding service. Among all the on-line maps

services, we found Google Maps to be most effective in geo-coding CBS location

names because its coverage is much higher than other map providers specifically in

the areas where we had collected data. We have used Google Maps’s geo-coding

APIs [16] for all our experiments.

We found that more than 30% of location names can not be geo-coded directly

by Google APIs. Primary reasons of geo-coding failures were following:

1. Location names may exist differently (in the geo-coding service), e.g. there

could be a spelling difference, use of short hand abbreviations etc. For example,

’Matiyala’ and ’Matyala’, ’Uttam Nagar’ and ’Uttam Ngr’, ’Dwarka Sec-3’ and

’Sec-3 Dwarka’.

2. Some locations have two different names i.e. one could be colloquial which local

people use and other one is official name which exist on Maps. For example,

’Kakrola Mor’ and ’Dwarka Mor’ etc.

3. Some location names do not exists completely on maps as coverage of these

services in developing regions are still limited and there is no publicly available

extensive GIS database by government agencies too.

To increase geo-coding success rate, we propose following geo-coding framework

which uses combination of several techniques described as follows:
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Figure 2.7: Flowchart of three different steps used in geocoding framework to
convert CBS location names into geo-coordinates

Geo-coding Framework

It consists of three different main steps as shown in Figure 2.7.

1. Direct Geo-coding : The location names which needs to be geo-coded are

directly sent to Google Maps’s geo-coding APIs. If it exist on maps, APIs will

return corresponding latitude and longitude information. Otherwise, it will

return a geo-coding failure.

2. Pre-processing Location Names: If there is a geo-coding failure in pre-
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vious step then pre-processing is done on location name to remove ambiguity,

if any. Presence of irregular or no-space, extra characters, and short hand ab-

breviations in some location names makes it difficult for direct geo-coding to

find their coordinates. To resolve the ambiguity present in location names, we

do a pre-processing of location names before sending them to the geo-coding

service. Pre-processing algorithm apply following steps to sanitize the CBS

location names:

(a) Replace special character such as ’-’ with a space. For example, location

names such as ’Dwarka Sec-02’, ’Dwarka Sec-2’ and ’Sec-2-Dwarka’ are

converted to ’Dwarka Sec 02’, ’Dwarka Sec 2’ and ’Sec 2 Dwarka’ respec-

tively.

(b) Numerical characters in the location name are separated out from sur-

rounding text characters e.g. converting ’Dwarka Sec2’ to ’Dwarka Sec

2’.

(c) After fixing special characters and numerical characters in location name,

our pre-processing algorithm search for popular abbreviations in location

names like ’NGR’, ’SEC’, ’VHR’ etc., and replace them with its full form

like ’NGR’ for ’Nagar’ with the help of a dictionary. We have populated

this dictionary from the location names using a semi-automated process.

(d) Similar to the above step, stop words such as ’Nagar’, ’Garden’ are searched

into a location name and a space is inserted before every occurrence of

stop word. For example, ’Rajourigarden’ will be converted into ’Rajouri

Garden’.

After sanitizing location name using above listed steps, direct geo-coding is

used to convert give location names into coordinates. If geo-coding is successful,
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process is stopped here otherwise, it will move to next step.

3. Using Crowd sourced POIs Information : For the location names that

are completely missing from digital maps or exist with different name(s), we

take help of point of interest (POIs)/businesses data which are crowd sourced

by Google Maps. We use Google Places API [18] to fetch POIs information

about a specific location name. Many of CBS location names are colloquial,

they were present in this crowd sourced location data in some form or other

but not on Google Maps. For example, Figure 2.8 shows snapshot of Google

Maps whenever it is not able to pinpoint a queried location name. It shows the

set of POIs which contains part of queried location name. We need to make

use of these POIs information to estimate geo-coordinates of queried location.

As, crowd sourced data has its own challenges in terms of accuracy, noise etc,

which need to be solved before using this data for estimating a CBS location’s

geo-coordinates. Following is step by step description of our algorithm which

estimates coordinates of a given location using this POIs data.

Step 1 : Google Places API requires input of base coordinates, queried loca-

tion name and it searches POIs around base coordinates which contains queried

location name in their addresses. We use the geo-coordinates of immediate pre-

vious received and geo-coded location name from the CBS trace, as base coordi-

nates. If the queried CBS location name has space, we break it into different set

of location names and query Google Places API multiple times. For example,

’Palam Railway Junction’ will have three different values for queried location

name i.e. [’Palam’, ’Palam Railway’, ’Palam Railway Junction’]. The idea

behind creating multiple names/queries is to maximize POI addresses because

many times, a part of location name may miss from the actual POI address.

For instance, many POIs may contains name ’Palam’ because it is more pop-
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ular location entity than ’Palam Railway Junction’. Here is one sample query

to Google Places API. [19]

Step 2 : Google Places API returns a different set of POI addresses with

every different value of queried location name. The results are aggregated

from all the queries and a single set of POI addresses is maintained with their

corresponding geo-coordinates. After aggregation, we apply levenshtein string

edit distance to rank POI addresses based on their lexical similarity to the

actual CBS location name and select top-K addresses.

Step 3 : After selecting top-K POI addresses, we compute an average of

their geo-coordinates and resultant coordinates will be estimated coordinates

for a given CBS location name.

Figure 2.8: Snapshot of a failed location search query on Google Maps. Markers
A� F display POIs information which are similar to queried location name

Geocoding Framework Evaluation :

From both the datasets, we had total 572 unique location names. In our data col-

lection, we have collected GPS coordinates too with the CBS location names. We

use GPS coordinates as a ground truth to evaluate accuracy of geo-coding frame-

work as well as individual contribution of different techniques. From our empirical

28



evaluation, we have found value of K equal to 10. Our geo-coding framework suc-

cessfully geo-coded nearly 92% of total 572 location names as shown in Table 2.6.

Our pre-processing algorithms and use of crowd sourced information jointly increased

the geo-coding success rate by 26.39%. Pre-processing location names increased the

geo-coding success rate by only 4.54%. In our earlier work [162], pre-processing

of location names increased geo-coding success rate by about 15% on a relatively

smaller dataset of 143 location names. From our close observation, we have found

that Google Maps have improved over time and they are already doing some pre-

processing of location names which we have done earlier in [162].

We believe that a common algorithm that can work for geo-coding of all the

location names is very hard to achieve due to non-standard nomenclature for CBS

messages and poor GIS database (specially in developing countries). However, it is

still a one-time task to geo-code the names which are not automatically geo-coded

by any service and requires much less effort than the war-driving used by other

GSM-based localization approaches.

Geocoding frameworks Successfully geocoded Successful(%)
Direct Geocoding 376 65.73%
Pre-processing +
Direct Geocoding 26 4.54%

Using Crowdsourced
POIs information 125 21.85%

Total 527 92.13%

Table 2.6: Success percentage of different steps in geo-coding

2.5.3 Inaccuracy of CBS Location Messages

In our datasets, there were multiple GPS coordinates recorded with a single CBS

location name, we took an average of all the GPS coordinates collected for a given

location name and define that as the estimated GPS coordinates for the correspond-

ing location name. For instance, if we receive a CBS location name A when GPS
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coordinates were G1,G2,G3, and G4, we take an average of these GPS coordinates to

calculate estimated GPS coordinates. After that, we calculate localization error for

given CBS location name as the distance between the estimated GPS coordinates

and the geo-coordinates of A returned by the geo-coding service.

Figure 2.9 shows a bar graph of distribution of error in terms of percentage of

the location names. Out of 527 location names, about 8% of the names could not be

geo-coded, we have ignored such names while plotting Figure 2.9. For about 58% of

the names, which were successfully geo-coded, localization error was more than 500

meters.

Figure 2.9: Distribution of localization error for all the location names. For 58%
of the location names, error is more than 500 meters.

In Cell ID-based localization approach, accuracy depends on the richness of the

perceptual map (Cell ID database) that is created using war-driving. Similarly, ac-

curacy of CBS-based localization approach will depend on quality of location names

that we receive as CBS messages. Typically, CBS messages have following inaccura-

cies, which will impact the accuracy of the localization.

� Inaccuracies of Geocoding Services : We are using geo-coding services,

e.g. Google Maps, for finding geo-coordinates of the location names. There are
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inherent errors within these services, e.g. a location called “Dwarka Sec-3” (a

neighborhood in Delhi) is not mapped with geo-coordinates representing the

central location of that neighborhood. Such errors vary from one location name

to another and get introduced in the result.

� Presence of Generic Location Names : CBS location names are non-

standardized. An operator may select a large locality as CBS location name

thereby reducing the accuracy. For instance, a CBS location name such as

“West Delhi” is a large area and therefore, location accuracy will decrease if

such a name is taken into account for localization.

� Same CBS Name for Multiple Cells : If there is a distinct CBS location

name for each different Cell, the accuracy will be better. However, some time

operators use the same CBS name for different Cell towers, if they are in

situated in same but a large area. For instance, ’Karol Bagh-A’ and ’Karol

Bagh-B’ are within the same generic ’Karol Bagh’ area.

To improve the localization accuracy of CBS-based approach, above described

inaccuracies w.r.t. CBS messages have to be resolved automatically. Section 2.6

presents the algorithms which minimize the impact of errors introduced by these

inaccuracies.

2.5.4 Heterogeneity in Location Names Among Operators

Similar to Cell ID-based approaches, CBS-based approaches suffer from operator

heterogeneity, i.e. broadcasted CBS location names for a particular place differ

across operators. This may affect localization accuracy. In Section 2.7, we will show

impact of operator heterogeneity on accuracy of localization by analyzing results from

experiments with different operators. The main challenge here is to build algorithm

which can tolerate this heterogeneity.
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2.6 Algorithms To Improve Localization Accuracy

CBS-based localization approach is primarily aimed for feature phones. Primary

design goal for CBS-based localization algorithms is to strike a balance between

reasonable accuracy and being low-cost in terms of computation, communication,

and data storage. Baseline approach takes the most recently received CBS message’s

geo-coordinates to approximate the location of the user. Baseline approach does not

always give good results due to inherent errors described in Section 2.5.3. A key

insight towards reducing the impact of these errors is that we are not taking into

account history of the locations visited by the mobile users in the recent past.

Figure 2.10: Snapshot of received CBS location messages at a given location.
Marker E depicts the current location of the phone and markers A�D presents the
four CBS location messages received during phone’s stay at E

To account for location history, we form a vector of location names received in the

past. When the user is stationary, the phone often receives multiple distinct location

names as it can associate with different cell towers that are in geographic proximity

at different time instances [36]. Figure 2.10 presents a real example from our dataset

which shows reception of four different CBS messages even when user stays at same

place. As shown in Figure 2.10, CBS messages sometimes may include locations that,
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in reality are far away from user’s current location. However, the frequency of such

location names may be smaller than frequency of location names that are in close

proximity to the current location. We hypothesize that this frequency difference is

a factor of distance between Cell Tower and the user. Therefore, a weighted average

based approach where the weight given to each location name is dependent on the

frequency of received messages with the corresponding location name (within fixed

time window) will intuitively work well for improving the localization accuracy. We

call this approach FrequencyWeighted .

For a slow moving user, since the conditions are similar to a static user, the Fre-

quencyWeighted approach should ideally provide better localization accuracy. How-

ever, a fast moving user will probably be in the range of a Cell tower for a short

duration and hence will receive a small number (often only a single) of CBS messages

with the corresponding location. However, it may also happen that the currently re-

ceived location name corresponds to a location in real world that is ahead on the path

of the user while the previously received location name was behind on the path of

the user (a typical case when the location name is received immediately on crossing

the cell boundary). Therefore, weighted average of the geo-coordinates of received

location names with higher weight given to those that are received most recently

and exponentially reducing the weights of location names received in the past will

intuitively improve the localization accuracy. We call this approach TimeWeighted .

2.6.1 FrequencyWeighted Algorithm

As discussed above, this algorithm is designed to improve localization accuracy in

the case of static or slow moving user. The FrequencyWeighted algorithm considers

all CBS location messages received in a fixed time window duration δ as described

in Algorithm 1. For instance, if a service running in a mobile phone requires user’s

current location at time t, FrequencyWeighted algorithm takes all the CBS location
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messages which were received between (t, t � δ) and compute their respective fre-

quencies. All the selected CBS location with their respective geo-coordinates are

kept in TWV ector as described in Algorithm 1. After that, a weighted average of

location geo-coordinates present in TWV ector is performed to estimate the location

of the user and returned to the requesting mobile application.

Time window parameter δ in FrequencyWeighted algorithm needs to be tuned

according to user’s mobility as a high value of δ could consider old location names

and a low value could unnecessarily discard recent location names. In the next

sections, we will provide evaluation results while varying δ parameter.

2.6.2 TimeWeighted Algorithm

Assuming that CBS messages are received at more than a certain minimum rate,

say once every λ minutes, TimeWeighted algorithm considers all the received CBS

messages in the past to calculate the current location of the user. In other words,

whenever there is a long gap (more than λ minutes) in the reception of a CBS loca-

tion message, the algorithm forgets past history of messages and starts accumulating

new history. The pseudocode of TimeWeighted algorithm is given in Algorithm 2. At

the first time instance, the calculated location is same as the current geo-coordinates

because there is no history available. Thereafter, the calculated location is the aver-

age of the current observed location and previously calculated location. As a result,

the weights of previous received location messages decrease exponentially with time.

TimeWeighted algorithm forgets history faster than FrequencyWeighted algorithm,

which is a necessary thing to do while user is traveling.

CBS-based localization service implements both FrequencyWeighted and TimeWeighted

algorithms. This service continuously listen to incoming CBS messages and stores

them in a location vector with their geo-coordinates. Whenever any application needs

current location of the user, the service takes location vector as an input and returns
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Algorithm: FrequencyWeighted
Input:

� Location Vector(LocVector) containing CBS location name, reception time
stamp(ReceptionTime), GeoCoordinates[Lat,Lon]

� Time window parameter δ

� Empty vector TWVector[Location, Geo-coordinates, Frequency]

Output:

� Approximate Location Coordinates i.e. EstimatedCoordinates[Lat,Lon]

begin
Index=LocationVector.Size;

EndTime = LocationVector[Index].ReceptionTime;

StartTime = EndTime - δ;

Index = Index-1;

while Index ¡ 0 do
ReceptionTime = LocationVector[Index].ReceptionTime;

Location = LocationVector[Index].LocationName;
if (ReceptionTime ¡ StartTime) AND (ReceptionTime   EndTime)
then

if Location is in TWVector then
Update the Frequency;

else
Add Location with its Geo-Coordinates to TWVector;

end

end

Index = Index - 1;

end
Compute weighted average on all the locations(L1, L2, ..., Ln) with their
frequency(f1, f2, ...., fn) present in TWVector;

return EstimatedCoordinates ;

end

Algorithm 1: Pseudocode of FrequencyWeighted Algorithm
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Algorithm: TimeWeighted
Input:

� Location Vector(LocVector) containing CBS location name, reception time
stamp(ReceptionTime), GeoCoordinates[Lat,Lon]

� Time out interval λ (in minutes)

Output:

� Approximate Location Coordinates i.e. EstimatedCoordinates[Lat,Lon]

begin
Index=0;

RunningCoordinates= LocVector[Index].Geo-Coordinates;

Index = Index + 1;

while Index   LocVector.Size do
TimeDifference = LocVector[Index].ReceptionTime -
LocVector[Index-1].ReceptionTime;

if TimeDifference   λ then
RunningCoordinates = (RunningCoordinates +
LocVector[Index].Geo-Coordinates)/2;

else
RunningCoordinates= LocVector[Index].Geo-Coordinates;

end
Index = Index + 1;

end

EstimatedCoordinates = RunningCoordinates;

return EstimatedCoordinates ;

end

Algorithm 2: Pseudocode of TimeWeighted Algorithm

calculated coordinates. It is important to note that our approach (aimed for low-end

phones) cannot assume any means, e.g. accelerometer or GPS, to measure the speed

of the user and accordingly switch between algorithms to possibly improve accuracy

of localization. We therefore compare the two approaches - FrequencyWeighted and

TimeWeighted with the baseline approach empirically for cases with slow and fast

user speed.
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2.7 Evaluation of The Algorithms’ Accuracy

We now describe the empirical evaluation of the two algorithms, FrequencyWeighted

and TimeWeighted, explained in the previous section, using our self collected CBS

traces dataset. We have compared performance of these algorithms with baseline

CBS-based localization approach which is identical to Cell ID based localization

approaches (including service providers like Google). We used localization error as

our evaluation metric. It is the distance between actual location (GPS Coordinates)

and estimated location using CBS-based approach.

For simplicity, we discuss only one operator’s result (referred to as operator Y) in

detail. However, at the end of Section 2.7.1 and Section 2.7.2, we also briefly present

results for operator X. As hypothesized earlier, the accuracy of the algorithms may

depend on the speed of travel. Hence, we evaluated our algorithms on traces for two

different modes i.e. static/walking and traveling.

2.7.1 Traveling Traces

Let us first analyze the intuitive effect of varying input parameters on the perfor-

mance of two algorithms. For TimeWeighted algorithm, λ is a time-out parame-

ter, which is necessary to forget old history. Empirically, we found value of λ to

be 2 minutes since it gave the least median localization error for all the traveling

traces. Therefore, we have used λ as 2 minutes for evaluating the performance of

TimeWeighted algorithm. For FrequencyWeighted algorithm, parameter δ is used to

fix the time window within which it considers the received CBS messages to perform

weighted average. Empirically, we found value of δ to be equal to 2 minutes for trav-

eling traces since it gave the least median localization error for all of traveling traces.

Hence, we have used δ=2 for evaluating the performance of FrequencyWeighted al-

gorithm.
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Figure 2.11: CDF plot for comparison between TimeWeighted and Frequency-
Weighted algorithm w.r.t to Baseline for operator Y traveling traces

Figure 2.11 compares the Cumulative Distribution Function (CDF) of localiza-

tion error for TimeWeighted and FrequencyWeighted algorithms with the baseline

approach. Both algorithms perform consistently better than baseline. The improve-

ment in median localization accuracy for TimeWeighted and FrequencyWeighted over

baseline is approximately 12% and 16% respectively, as shown in Table 2.7.

Let us discuss intuition for performance of the two algorithms in traveling case.

Typical rate of arrival of CBS message is 1 per minute. With λ fixed to 2 minutes

and assuming average speed of traveling trace as 30KM{hr, if no CBS message

is received for 2 minutes, the user has approximately moved by 1KM from the

location of previously received CBS message. It is therefore better for TimeWeighted

algorithm to discard the history of CBS messages than to consider them for future

calculation of localization. Similarly, with δ fixed to 2 minutes, FrequencyWeighted

algorithm will only consider CBS messages received within a distance of 1KM for

calculation of localization, giving weights based on frequency of each CBS message

received. This will mostly translate to average of two distinct CBS messages received
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in the 2 minute interval.

Therefore, in case of traveling trace with correspondingly fixed parameter values,

FrequencyWeighted algorithm never considers any CBS message outside the 2 minute

window while the TimeWeighted algorithm gives any message outside the 2 minute

window a small weight in case there is no time out in received rate of CBS messages.

If a timeout happens in first 2 minutes for TimeWeighted, calculated localization for

both of the algorithms will be same. This led to nearly similar performance of both

the algorithms in case of travelling traces.

For operator X, both algorithms perform equally good as compared to baseline.

The improvement in localization accuracy for TimeWeighted and FrequencyWeighted

over baseline is approximately 10% and 11% respectively, as shown in Table 2.8.

We have seen similar CBS reception rate across both the operators.

Traces Baseline TimeWeighted FrequencyWeighted
Travelling 621.40 549.82 521.52
Walking 712.94 462.54 644.85

Table 2.7: For operator Y, median localization error (in meters) comparison of
TimeWeighted and FrequencyWeighted algorithms with baseline for walking and
traveling traces

Traces Baseline TimeWeighted FrequencyWeighted
Travelling 688.2 618.29 615.14
Walking 466.69 382.8 386.56

Table 2.8: For operator X, Median localization error (in meters) comparison of
TimeWeighted and FrequencyWeighted algorithms with baseline for walking and
traveling traces

2.7.2 Walking Traces

TimeWeighted uses λ as timeout parameter to remove old history of CBS messages.

In walking traces, we did not find any instance where CBS location messages were
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not received for a significant amount of time. However, we still kept λ equal to 2 min-

utes for TimeWeighted algorithm to maintain uniformity across both traveling and

walking traces. For the case of FrequencyWeighted algorithm, we again empirically

calculated the most optimal value of δ that came out to be 3 minutes. Intuitively,

higher value of δ, as compared to the case of traveling traces, is justified since longer

history of CBS location messages will be useful as user is mostly static or walking at

a slow speed.

Figure 2.12: CDF plot for comparison between TimeWeighted and Frequency-
Weighted algorithm w.r.t to Baseline for operator Y traveling traces

Figure 2.12 show the CDF plot where performance of TimeWeighted and Fre-

quencyWeighted algorithm is compared with baseline for walking traces. As shown

in Table 2.7, overall TimeWeighted and FrequencyWeighted algorithms give median

accuracy improvement of approximately 35% and 10% respectively over the baseline

approach. Earlier, we had hypothesized FrequencyWeighted algorithm to provide

higher localization accuracy than TimeWeighted algorithm for walking traces (as

discussed in Section 2.6). However, empirical study showed otherwise. Close ob-

servation of the collected data revealed that the walking traces contained a lot of
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location names, that were farther located, 1200 � 1500 meter from phone’s actual

location. This noise, particularly, gets added by the geo-coding service and presence

of distant location names, which are among the challenges mentioned in Section 2.5.

Effect of this noise can also be seen in terms of higher baseline error for walking

traces (712.94 meter) as compared to traveling traces (621.4 meter).

Although FrequencyWeighted algorithm is hypothesized to have better accuracy

for walking traces but, if the message containing distant location name is repeated

within the δ time interval, it will have significant effect on the location computed

by FrequencyWeighted algorithm (with fixed δ). For instance, if the location names

represented by markers D & A are received more frequently than the location names

which are closer to actual location (i.e. B & C) in Figure 2.10, it will deteriorate

the accuracy of FrequencyWeighted algorithm because it give the similar weighage

to all the location names in a given time window.

On the other hand, for TimeWeighted algorithm, when such a CBS message with

distant location name is received most recently, the calculated location is inaccurate.

However, as the time progresses the weight of the CBS message with distant location

is reduced, correspondingly resulting inaccuracy is reduced in estimated location as

well.

We conclude that our initial assumption that fast and slow motion patterns would

demand different approaches for improved localization was empirically found incor-

rect on our collected data. As shown here, TimeWeighted algorithm that was hy-

pothesized to handle fast motion suffices for slow motion as well since it tolerates

the noise added by the distant CBS location names for real data. However, we be-

lieve that the localization accuracy may vary slightly across different environments.

For operator X, baseline accuracy was good due to good quality of landmarks. Im-

provement in localization accuracy for TimeWeighted and FrequencyWeighted over

baseline is approximately 18% and 17% respectively, as shown in Table 2.8.
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2.7.3 Impact of Parameters on Algorithms
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(a) Effect of varying δ in FrequencyWeighted
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(c) Effect of λ in TimeWeighted for traveling
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(d) Effect of λ in FrequencyWeighted for walk-
ing traces

Figure 2.13: CDF plots with varying values of δ and λ in TimeWeighted and
FrequencyWeighted algorithms w.r.t to Baseline for both the operators. Values of δ
and λ are in minutes.

In previous sections, we have evaluated that TimeWeighted and FrequencyWeighted

algorithms for both fast and slow movement patterns with fixed parameter settings.

In this section, we evaluate the impact of λ and δ parameters on the respective algo-

rithms’ performance to gain more insights. Figure 2.13(a) presents the localization
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error of FrequencyWeighted algorithm when value of δ varies from 1 to 5 minutes. In

case of traveling traces, δ � 2 provided the least median localization error and error

increases whenever there is an increase in value of δ beyond 2 minutes. This is one of

side-effects of considering large time window for localization which may include some

CBS locations which are very far. For instance, 90th percentile localization error for

δ � 5 is 1628.81 meters, which is worse than even baseline error (1204.16 metres).

For walking traces, a larger window (δ � 3) provides the least median localization

error as shown in Figure 2.13(b). However unlike traveling traces, localization error

does not significantly increase when δ value is increased beyond 3 minutes, the 90th

percentile localization error with δ � 3 is 887.67 meters as compared to 949.73 meters

when δ was set to 5 minutes. These observations conclude that while a larger time

window is useful in case of walking traces, it deteriorate the accuracy while user is

traveling as history becomes old very quickly.

In case of TimeWeighted algorithm for traveling traces, λ � 2 provides the least

localization error and error increases when λ increases beyond 2 minutes. However,

the increase in localization error w.r.t. λ is not as significant as it happened in Fre-

quencyWeighted algorithm because TimeWeighted algorithm automatically reduces

weights of previously received CBS messages. For walking traces, λ � 2 provides

the least localization error (419.15 meters). Increasing value of λ beyond 2 minutes

does not increase localization error due to the same reason as described for travelling

traces.

2.7.4 Impact of Operator Heterogeneity on Accuracy

We observed that different operators broadcast different CBS location names as well

as with different time interval (broadcast cycle). In this subsection, we analyze the

impact of operator heterogeneity on localization accuracy. For a fair comparison

across two different operators, we selected walking and traveling traces which were
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collected together for Operator X and Y on the same geographic path and time

period described in Table 2.2.

Table 2.9 shows the median localization error for the three different approaches

across both the operators. Although the individual errors are different for each

operator, we observe that TimeWeighted algorithm consistently performs better

for both the operators. These observations empirically confirmed our finding that

TimeWeighted algorithm is able to tolerate different broadcast cycles of the opera-

tors.

Algorithm Walking Traveling
X Y X Y

Baseline 670.71 641.08 530.87 712.94
TimeWeighted 577.11 581.38 318.5 462.54

FrequencyWeighted 562.41 529.82 343.07 644.85

Table 2.9: Median localization error (in meters) comparison of different algorithms

2.8 Multimodal Approaches with CBS-based Localization

CBS-based approach does not require war-driving and can provide an alternative to

Cell ID-based approach. Cell ID database availability is variable in different areas

because it depends on various other factors such as network (GPRS/EDGE/HSDPA)

coverage, operator etc. As shown in Section 2.2, open source Cell ID databases such

as OpenCellID, have very limited coverage across both the operators. Therefore, it

makes sense to combine CBS and Cell ID based approaches to improve the over-

all accuracy and availability of localization. For evaluation purpose, we have used

Google Cell ID database1 that has good coverage (˜90% in our dataset) for operator

X but very limited for operator Y.

1 Google does not provide official APIs to access Cell ID database
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2.8.1 Comparison with Cell ID based Approach

Since, TimeWeighted (TW) algorithm performed equally good for both walking and

traveling traces across different operators, we use TimeWeighted algorithm for fur-

ther experiments with all the traces. Figure 2.14 presents a CDF for comparison

between CBS with TW algorithm and Google’s Cell ID based approach. As described

above, Cell ID data was taken from Google Cell ID database.

According to evaluation on our self collected dataset, median localization error of

CBS with TW algorithm was 585.81 meters as compared to 254.11 meters provided

by Cell ID based approach. Following are the primary reasons of high localization

error of CBS-based approach:

1. The Cell ID database is more granular than CBS location messages because

different Cell IDs in an area may broadcast same CBS location name.

2. Cell ID database geo-coordinates are mostly collected on main streets using

war-driving/crowd-sourcing. Since, most of our data is also collected from

such streets, it produces low error as compared to CBS based approach.

2.8.2 Cell ID + CBS based Approaches

In this section, we investigate whether limited Cell ID database can be used in con-

junction with CBS based localization for improving localization accuracy. A com-

bined localization scheme can use Cell ID-based localization whenever it is available

or otherwise make use of CBS. We ran trace driven simulation of two different sce-

narios where 30% or 50% of Cell IDs can be found in a Cell ID database for each

trace. Assignments of Cell ID coordinates in all the traces were done randomly.

After combining geo-coordinates from CBS and available Cell IDs, we have applied

TimeWeighted algorithm to further refine accuracy.
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Figure 2.14: Comparison of CBS with TW algorithm with (A) only Cell ID based
approaches and (B) combinations of CBS with TW algorithm and Cell ID

Figure 2.14 presents the comparison of different combinations of Cell ID + CBS

with only Cell ID and only CBS based approaches. We have found that if 30% of

Cell IDs can be found in the Cell ID database, it can result in 29.2% improvement in

localization accuracy whereas for existence of 50% Cell IDs, this improvement can be

up to 40.2%. Cell ID based localization require a pre-built Cell ID database, which

is limited in many parts of the world. Whereas CBS based localization provides

coarse grained accuracy. Therefore, combining of these two approaches can provide

a robust and sufficiently accurate localization for low end phones because Cell ID-

based localization provides good accuracy where as CBS-based scheme can improve

the overall availability of localization scheme.

2.8.3 CBS + GPS based Approaches

GPS is extremely power hungry when used with the applications that require con-

tinuous location access [154, 91]. There are many approaches which duty cycle GPS

with the help of other information such as Cell ID blacklisting, movement detection
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etc [122, 61, 129]. CBS-based approach can also be used to duty cycle GPS which

can potentially save power. Even if, GPS is not available on a user’s mobile phone,

social proximity to other GPS-based devices can be exploited to get GPS coordinates

intermittently using short range communication technology such as Bluetooth [96].

A combined approach will increase the accuracy as compared to CBS-based approach

without taxing battery as GPS-based localization does.

Section 2.6 described TimeWeighted algorithm, which uses spatio-temporal his-

tory of CBS messages to improve localization accuracy. The following three different

approaches use intermittent GPS coordinates information with TimeWeighted algo-

rithm are as follows.

1. Fixed Sampling of GPS : This approach uses CBS with TimeWeighted

algorithm and gets GPS coordinates every t minutes either by switching it ON

locally or by social collaboration. For instance, at a time t1, if we get access

to GPS coordinates, RunningCoordinates in TimeWeighted will be initialized

to those GPS coordinates and it will keep using CBS location messages to ap-

proximate location coordinates until new GPS coordinates are available (refer

Algorithm 2. We call it Approach 1.

2. Use GPS when CBS is Error-prone : Unlike previous approach, which

uses a fixed sampling method, this approach uses CBS in a more opportunistic

manner, i.e., if CBS location coordinates are not available or localization error

is high. From our observations of real-data, we found that non-availability of

CBS coordinates occurs due to two main reasons, either by geo-coding failure

or non-receipt of valid CBS location messages. In our case, TimeWeighted

algorithm uses the time out interval (λ � 2) for finding non-receipt of CBS

messages. Whenever we have a timeout interval or geo-coding failure, we obtain

GPS geo-coordinates and initialize RunningCoordinates with them, we call it
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Approach 2.

It is hard to find instances of high localization error without training data.

However, we want to build an approach, which is war-driving free and does not

require any training overhead. In case of CBS locations, occasionally we receive

location names, which are very farther than actual location (as also described

in Section 2.5.3). For instance, Figure 2.9 represents that more than 10%

of CBS location names are farther than 1500m from actual location. When

we use geo-coordinates of these location names in TimeWeighted algorithm,

they reduce the accuracy till the time we receive new CBS location messages,

which are closer to the actual location. To detect these names, we used a

simple idea that if at a given time tn, the distance between running coordinates

(refer Algorithm 2) and immediately received geo-coordinates are greater than

d distance, it is most likely that the current received CBS location name is error-

prone. Apart from timeout interval and geo-coding failure, if we encounter high

localization error situations, we use GPS coordinates, we call this approach as

Approach 3.

To evaluate above-mentioned approaches, we executed trace-based simulations on

our collected CBS traces. Our simulation results presented in Table 2.10 proved that

a combination of CBS and GPS can be very effective, achieving median localization

error of 283.31 meters. Our results also showed that GPS information yields high

accuracy when it is sampled on demand (i.e. when CBS is prone to errors) than that

of periodic sampling. For instance, Approach 3 resulted in less median localization

error (283.31 meters) than that of approach 1. Further, GPS information helps in

removing noisy information, as seen from lesser 90th percentile localization error in

Approaches 2 & 3.
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Approach 30th 50th 90th Sampling
Approach Percentile Percentile Percentile Interval

CBS only with TW 420.31 580.71 1081.92 -
Approach 1 234.33 360.58 833.32 5
Approach 1 374.01 473.67 1002.73 10
Approach 2 270.69 381.29 785.47 9.7
Approach 3 187.61 283.31 709.38 6.4

Table 2.10: Comparison of different CBS + GPS based approaches. Approaches 2
& 3, which uses GPS when CBS is error prone, provides the least localization error
as compared to fixed sampling interval approaches. Localization error is in meter
and sampling interval is in minutes

2.9 Potential Applications of CBS-based Localization

Location is a key enabler of many context aware applications. Though, CBS-based

localization is suited for all location-based applications which do not require fine

grained accuracy, here we list some of which we have already developed.

2.9.1 Activity Classification

Activity recognition using mobile phones have been done using GPS [130], accelerom-

eter [91] and even using GSM information [142]. There are some applications such as

counting number of exact number of steps for health applications which require fine

grained activity recognition. However, there are applications like PEIR [113] which

require state of the user (walking/traveling) over few minutes of time interval.

We have noted in our data collection that CBS messages’ rate of reception (num-

ber of message received per minute) is higher in walking traces than that in traveling

as represented in Table 2.11. We have classified mobility with more than speed

of about 8KM{hr as traveling or otherwise walking/static [91]. At an average, a

number of CBS messages (includes location names and advertisements) received per

minute is higher than 2 in walking, where as it is lower than 2 in traveling traces.

Using CBS message reception rate as a measure, we were able to perform binary
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classification with 100% accuracy over a session, duration equal to or greater than

5 minutes. Accuracy of minute level activity classification was about 70%, which

is due to unpredictable behavior of CBS message reception during traveling. We

believe that this kind of less granular activity classification could be useful for many

context-aware applications without any extra energy overhead.

Activity Duration in
Minutes

CBS Mes-
sages/Minute

Location
CBS/Minute

Average
Speed(KM/h)

Walking 124 2.40 1.77 3.14
Walking 47 2.06 1.04 4.10
Traveling 16 1.62 0.94 30.89
Traveling 25 1.64 0.85 31.78

Table 2.11: CBS reception rate comparison among traveling and walking traces

2.9.2 Location Sharing and Local Search

Growing ubiquity of location enabled smart phones prompted people to share current

location with their friends. However, these services are limited to mostly smart

phones, which use GPS for getting current location and GPRS for communication.

Using CBS-based localization system, we have built a location sharing service for

Facebook. We have given two communication mediums, SMS and GPRS. Since

most of the people uses bulk SMS packs, it is a preferred medium for many users

to send their locations to Facebook as well as query other friend’s current location.

Similar mobile application can be built for twitter which can publish or retrieve

location specific tweets. The location-assisted tweets could be further used to build

local trends at the granularity of an area.

In developing countries like India, most people do not use digital maps for nav-

igation and searching local businesses [94]. They usually take help of others to get

an idea about directions from place A to place B which is mostly landmark oriented.

Nokia have built an application named as Nokia Nearby which enabled hyper local
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search for business around current location of a user. The positioning technology

used by this application is a combination of CBS and Cell ID based approach as

described earlier.

2.9.3 Trajectory Matching

Many location aware services require access to a trajectory (route travelled), which

is built using periodic location samples. Many of these services require information

of route travelled by a mobile object. Examples of such services include fleet man-

agement, mobile object/asset tracking applications [146], etc. In this section, we

investigate whether a combination of CBS and Cell ID information further combined

with street map data can result in low cost but accurate trajectory matching. Street

map data for most of regions are widely available from different map providers such

as Navteq [22], OpenSteetMaps [26], Google Maps [17] etc.

In case of GPS, association of a coordinate with a street is highly accurate because

GPS coordinates are found most of the time to be on streets. In trajectory matching,

we have to find the actual path (in terms of different streets) that a user or an object

takes during the travel. Since, CBS based localization has a median localization error

of 500 � 600 meter, it is difficult to estimate street based on solely using CBS data.

As discussed before, occasional samples of Cell ID help reduce this error. Most of

the time crowd sourced Cell ID geo-coordinates happens to be on actual streets only

which can be utilized in improving accuracy.

Our street matching algorithm uses TimeWeighted approach with street data

to associate each point in a trace with a street. We can also take previous history

(street associated at previous point in a trace) into account for estimation of street at

a particular point. Here, a point is referred to as any one of the CBS geo-coordinates

or Cell ID coordinates. Following is our street matching algorithm.

� Step 1 : For first point in the trace, find closest top N streets and store them
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in a vector (i.e. previous street vector).

� Step 2 : For subsequent point, find closest top N streets and find a street

match which occurred in previous street vector also. If more than one match

is found, choose the one, which is closest in terms of distance. Associate the

matched street with current point and last point.

� Step 3 : If no match is found for two CBS subsequent points, keep storing

their top N streets until a Cell ID coordinates occurs in the trace. For a point

with Cell ID, take closest street among N and backtrack to previous points

to assign them street also. While backtracking, if no common street match is

found among subsequent points, assign them to their closest street in terms of

distance.

We have evaluated above described street matching algorithm on five different

driving traces while using 30% Cell IDs with CBS for all the traces as shown in

Table 2.12. From our collected dataset, we have selected five distinct traveling CBS

traces. For every point in a trace, we have first estimated the closest street using

our street matching algorithm where user is likely to be there and then compared

with ground truth (street association using GPS coordinates). Matching accuracy of

algorithm is defined as the % of the instances, where CBS + Cell ID based trajectory

matching algorithm was correct with respect to the ground truth.

As shown in Table 2.12, for three traces (i.e 1, 2, and 5), our algorithm produces

over 75% matching accuracy. In some cases, due to high error of CBS, it went off

in one or two consecutive instances as shown in the Figure 2.15. However, median

localization error was low using street data compared to only CBS with TW approach

as shown in Table 2.12. For some traces (3 and 4), street prediction accuracy was

comparatively low due to poor quality of CBS as well as lot of turns in between.
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Traces
Length Matching Street Matching CBS Loc
(KM) Accuracy (%) Error(meters) Error(meters)

Trace1 10.75 76.31 298.96 592.94
Trace2 21.74 77.41 343.75 656.44
Trace3 22.50 62.85 397.50 548.69
Trace4 32.4 64.70 422.72 508.01
Trace5 19.52 75.86 307.54 554.48

Table 2.12: Trajectory matching accuracy for different driving traces with median
street matching error and CBS localization error. All the figures are in meters

Figure 2.15: A snapshot of street matching algorithm. Blue line marks the actual
path travelled and blue markers represents CBS geo-coordinates during the trace.
Red circle marks the matched street using CBS and partial Cell ID information.

From our analysis of street data, we have found that combination of CBS and

limited Cell ID database can be used for finding trajectory or route travelled. It will

be useful for many applications such as fleet management in which highly accurate

trajectory information is not required.

2.10 Discussion

Sixty percent of total phones will be feature phones in 2016. Due to absence of

many sensors and good processing capacity, many feature phone users can not use

context aware applications which have become ubiquitous among smart phone users.

Enabling location-aware applications on feature phones require building a Cell ID
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database which is created through cost-intensive process “war-driving”. In this chap-

ter, we have performed detailed analysis on using CBS messages for providing lo-

calization on feature phones. Proposed CBS based localization approach removes

the necessity of war-driving or building a Cell ID database for GSM based localiza-

tion. Evaluation using real-world traces show that proposed approach can provide

reasonably good accuracy which is sufficient for many location based services.

By collecting city-scale real data, we identify the various challenges in realiz-

ing a workable CBS-based localization system. Some of these challenges are geo-

coding errors, automatic filtering of advertisements, quality of CBS location names

etc. We suggest various measures to overcome these challenges. For instance, our

geo-coding framework utilizes pre-processing algorithm and crowd-sourcing data to

increase overall geo-coding success rate by 27%. Feature phones have limited process-

ing and memory capacity, we have taken special consideration that our algorithms

should not pose any special requirements at backend or phone client and can be

easily deployed in real world.

Proposed algorithms, TimeWeighted and FrequencyWeighted reduce impact of

these errors by taking space time history. Using empirical evaluation, we observed

that TimeWeighted can work for both walking and traveling traces. We tested our

approach across two different operators. GPS has constraints in terms or energy and

indoor availability where as, Cell ID-based approaches suffer from limited availability

of war-driving data. Our multimodal approaches of combining CBS with limited Cell

ID and GPS information proves complementary by improving localization accuracy

as well as increase overall availability. We believe that these multimodal approaches

can be used by smart phones too to minimize energy consumption and enable an

ubiquitous environment for location aware applications.

We already built some proof-of-concept real world applications using CBS based

localization as well as some large scale applications such as “Nokia Nearby” which
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are using CBS-based approach in wild. Third party application developers can build

location aware applications for both feature phones as well as smart phones using

our platform.
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3

Identifying and Managing Places of Human Interest

3.1 Introduction

As the reliance of location on mobile applications getting increased, some of them

require continuous tracking of location to infer high level information i.e. places

visited by user in everyday life, routes taken by users between a set of places. People

spends approx 80 � 90% time in indoors places on an average [91, 56]. Finding

everyday places from a user’s mobility has critical importance for many context aware

applications. For example, many context-aware applications use place information

to enable geo-reminders (reminds whenever a user is at a specified places to perform

a task) [108, 140], participatory sensing [113], content-sharing decisions [145], crowd

sourcing location-based queries [43], advertisements [89] etc. Popular social networks

such as FourSquare and Facebook places also use place information for automatic

checkins etc. Similarly, there are many services that require routes (trajectory)

travelled by a user such as pollution impact report [113], healthcare [41], traffic

estimation, ride-sharing, and advertisements/recommendations [95].

A mobility profile for a user consists of all the places visited by her with their
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respective arrival and departure time information. Recently, there has been growing

interest to automatically infer different places visited by users from raw location

information provided by different localization schemes. Most of research work in

this space use GPS and WiFi [152, 91, 56] to continuously track user’s location and

find places by applying different clustering algorithms. For instance, WiFi-based

schemes such as Jyotish [152] keeps scanning nearby WiFi APs at a regular interval

and then a clustering algorithm is applied to map/classify WiFi APs to physical

places automatically. The clustering algorithm works on assumption that user is

unlikely to see same set of WiFi APs on different places that she visits.

However, current schemes of building mobility profiles are not designed for feature

phones. In addition, they are power hungry. There is need of a new approach to

find places information from mobility data, which has much wider availability than

current approaches and should be energy-efficient. Previous research have shown

that capturing GSM location information on a phone is energy-efficient as compared

to GPS or WiFi [146, 72, 54]. Also, many applications do not require high granularity

of accuracy (such as room level) in case of place discovery. We will be discussing

such applications in later parts of this chapter. Bayir et al [37] proposed a framework

that discovers places using GSM data and evaluated it with publicly available reality

mining dataset. However, their framework takes help of manually tagged Cell IDs

for clustering. There is a lack of a framework that can discover places using GSM

data without human intervention/tagging.

We propose a system PlaceMap to discover places and routes visited by a mobile

users using only GSM information. Similar to WiFi-based approaches, our framework

keeps track of Cell IDs continuously and then uses a clustering algorithm to segregate

Cell IDs according to physical places. One of the main challenge encountered by Cell

ID clustering is that Cell IDs keep on changing even if user stays at a same place

due to high density of Cell towers in urban areas. The main contributions of this
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chapter are as follows:

1. We propose a graph-based clustering algorithm (GCA ) to discover places solely

from GSM (Cell ID) information only. To increase the accuracy of GCA , we

develop algorithms, which use an initial training of WiFi/GPS data to learn

places and later use Cell ID data only.

2. Based on extracted places using GSM data, we estimate the arrival and depar-

ture time as well as the routes that a user takes between any two places.

3. We did an extensive evaluation of proposed algorithms on two extensive mobil-

ity traces dataset i.e. self collected dataset (Location : India, Number of users

: 62, Duration : 1 month) and MDC dataset (Location : Switzerland, Number

of users : 38, Duration : 12 months).

4. We designed and developed a system PlaceMap that uses above mentioned

algorithms and provide APIs for third party application developers. Developers

can use PlaceMap APIs for building context-aware applications, which need

fine-grained information about places that she visits, arrival/departure time at

the places and frequent routes undertaken by her.

Current mobile operating systems do not provide any support for mobile ap-

plications, which require place information. As a result, each mobile application

implement their own algorithms/techniques to infer places using various location in-

terfaces, which create communication, processing and battery overheard on mobile

phones. PlaceMap removes this redundancy and provides a common mobile-cloud

service to infer and manage user’s mobility into set of places and routes. Hence, one

of the main advantage for third party application developers is that they can offload

the mobility management overhead to PlaceMap without worrying about low level

implementation.
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3.2 Background

In this section, we describe related work that deals with energy-efficient location

sensing, finding places, tracking travel routes (paths), semantic labeling of places.

We categorize the related work according to following dimensions:

3.2.1 Continuous Location Sensing

Many mobile systems adaptively duty cycle GPS with the help of movement detector

and previous history to save energy. These approaches takes help of other sensors of

a phone in minimizing GPS usage and provide raw geo-coordinates to applications in

an energy-efficient manner. RAPS [122] uses accelerometer for movement detection,

space-time history to estimate velocity and Cell ID-RSSI based blacklisting to learn

unavailability of GPS. CAPS [123] uses combination of Cell ID and GPS to build

a sequence for user’s most travelled paths and later uses only Cell ID sequence to

provide location coordinates, whenever user is at a known location.

A-Loc [105] works on the assumption that location accuracy requirements for

mobile applications are dynamic in nature and uses multiple mobile phone sensors

for localization. It finds a tradeoff between energy and accuracy using bayesian esti-

mation framework. WheelLoc [154] do not sample GPS, rather it uses Cell ID based

geo-coordinates with sensors such as accelerometer, magnetometer. After capturing

user mobility trace with the sensor values, it computes the location coordinates with

the help of street segment information and approximate coordinates derived from

Cell IDs. However, the applicability of WheelLoc is limited due to its dependence

on war-driving to get Cell ID geo-coordinates.

Though, these approaches provide a strong base for energy-efficient sensing of

location coordinates continuously, they do not abstract user’s mobility according to

places and routes. Associating raw location coordinates to places and routes is a
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requirement for enabling next generation of mobile application and services.

3.2.2 Place Recognition

There have been many approaches, which use GPS, WiFi, and GSM data indi-

vidually or collectively to discover places for a user. Kang et al [86] designed a

clustering algorithm to find places using GPS coordinates based on temporal and

spatial stay threshold. Later, they have applied similar algorithm to find places us-

ing geo-coordinates generated by PlaceLab system based on the location of WiFi

Hotspots [87]. Zhou et al [178] used density and join (DJ) clustering algorithm to

discover places using GPS coordinates and proposed evaluation metrics to compare

discovered places with human inputs. They evaluated their approach with GPS data

collected from 24 subjects. GPS-based approaches gives building level accuracy in

detecting places but they require continuous sampling of GPS coordinates. In forth-

coming sections, we will compare PlaceMap with Kang et al for discovering places.

Some of the indoor place-based applications require room level accuracy. Jy-

otish [152] proposes an algorithm that can cluster WiFi APs according to physical

places after overcoming signal fluctuation problem. We use Jyotish to cluster WiFi

APs according to places for creating baseline and compare it with places generated

using PlaceMap . Senseloc [91] uses repetitive WiFi scans to learn about arrival and

departure from a place. Similarity between consecutive WiFi scans is computed us-

ing Tanimoto coefficient. Accelerometer sensor is used to detect movement and WiFi

scans are not performed when user is static to save energy. Also, Senseloc uses GPS

whenever it detects that user is traveling to track travel paths. SmartDC [56] uses a

three level triggered sensing scheme to discover places in a user’s mobility profile, (1)

Location area code (LAC), (2) WiFi, and (3) GPS. SmartDC differs from Sensloc

by using a mobility prediction based adaptive duty cycling of location sensors and

saves energy due to regularity in individual human mobility patterns.
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Demirbas et al [37] use GSM data to generate spatio-temporal mobility profile of

mobile users using reality mining dataset. Most of Cell IDs in reality mining dataset

have a place label attached that is given by participants during data collection phase.

Place labels have been used for clustering Cell IDs w.r.t. different places along with

a circular subsequence algorithm to recognize oscillating Cell IDs. However, Demir-

bas et al do not provide any evaluation of produced clusters. A similar clustering

algorithm is also presented in [165], which has limited evaluation with only one

user. Lassonen et al [97] presented a Cell ID clustering algorithm based on cell

graph, which is similar to movement graph in PlaceMap without any edge weights.

Also, their cluster merging algorithm combines Cell ID clusters with even one Cell

ID being common, which may merge lot of distinct places. PlaceMap differs from

these research work in several aspects, (1) It has a different Cell ID clustering algo-

rithm that uses a edge weighted movement graphs to model Cell ID fluctuations (2)

PlaceMap provides algorithms for identifying and segregating nearby places, which

may be merged due to high range of Cell IDs with the help of training provided by

GPS or WiFi (3) Unlike previous work, PlaceMap designed metrics to compare Cell

ID clusters with baseline and presents evaluation results on two diverse long duration

datasets.

3.2.3 Place Characterization, Prediction and Labeling

Some research approaches perform analytics on discovered places to understand hu-

man mobility i.e. place visiting pattern etc. Do et al. [63] found out that most

people visit 2 � 4 places every day and calendar (day/time) has significant impact

on people’s mobility. Several studies have shown that given a week worth of mobil-

ity profile, it is possible to predict places that are likely to be visited by a person

in the future [73]. There is a considerable amount of research that tries to predict

next place that a user is likely to visit given previous history of places. Along with
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place information, some approaches predict the time information too by answering

questions like at what time user is likely to arrive at place X? How much time

she is likely to stay at place X? Some of the widely used approaches for prediction

are Markov-based models [56], non-linear time series analysis [133], traversing the

sequence model [45] etc.

After discovering places from raw mobility data, each place is assigned a semantic

meaning i.e. “Home”, “Workplace” with the help of features such as number of visits,

stay time etc. Do et al. combine mobility features with place labeling features to

automatically label a place among 10 pre-defined categories. They observed that it is

relatively easy to label places which are visited more frequently than the places which

are not so frequent in user’s mobility profile. Chon et al [53] proposed an approach

which combines crowdsensing data with social network data such as Foursquare to

automatically label the places of human interest.

Due to lack of ground truth, we have focussed our analysis on extraction of places

only. However, our place extraction approach can be directly used by the researchers

working in mobility characterization, place labeling or prediction.

3.3 Preliminaries

Following are some of the frequently used terms and definitions in this chapter.

� Place : A place is defined as a location, where the user stays for a significant

amount of time, e.g., “Home” and “Workplace”. Burbey et al [45] considered a

location as a place if the user has spent more than 10 minutes at that location.

Depending on different location interfaces, a place can constitute a set of Cell

IDs or a set of WiFi APs, or a pair of gps-coordinates.

Pi = {c1,c2,c3,c4,c5} or
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Pi = {w1,w2,w3,w4} or

Pi = {latitude, longitude}

� Route : A route is defined as a travel path taken by a user between two places.

In our context, a route can constitute of a series of timestamp ordered GPS

coordinates or a set of time ordered Cell IDs observed during travel duration.

Ri = tpc1, t1q, pc2, t2q, ...........pck, tkqu or

Ri = tpg1, t1q, pg2, t2q, ...........pgk, tkqu

where tlatitude, longitudeu P gi and ti represents the timestamp.

� Mobility Profile : Mobility Profile is defined as a spatio-temporal representa-

tion of user’s mobility, i.e, visited places along with their respective arrival and

departure time information and routes information with their start and end

time. Mobility profile for a user X is represented as follows:

MX = tpP1, a1, d1q, pP2, a2, d2q, ...........pPn, an, dnquand

tpR1, s1, e1q, pR2, s2, e2q, ...........pRm, sm, emqu

3.4 System Overview

We have shown high level architecture of PlaceMap system in Figure 3.1 and we

will discuss the functionalities of different modules in this section. More details

on each module are given in subsequent sections. Location tracking modules deal

with collecting location data from phone sensors, it tracks GSM information which

comprises of MCC (Mobile Country Code), MNC (Mobile Network Code), LAC

(Location Area Code) and Cell ID continuously and duty cycle other high energy

consumption sensors i.e. GPS, WiFi and Bluetooth to save energy. Most of people’s

mobility is redundant and there are a set of places (i.e. “Home” & “Workplaces),

which she is expected to visit most of the days. PlaceMap duty cycle GPS/WiFi
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Figure 3.1: System Architecture of PlaceMap

information (if available) for initial few days to enhance accuracy of only GSM-based

place recognition algorithm.

Place recognition module finds signature information of different places visited by

a user in a day using only GSM information. The place signature information consists

of one or more Cell IDs, which were observed during user’s stay at that place. In

WiFi-based place recognition, this signature information consists of a set of WiFi APs

observed during her stay at the place. Whenever available, place recognition module

tracks GPS/WiFi information for initial few days to find places and compares them

with the places found using only GSM information. If it finds mistakes in recognizing

places from only GSM information, it uses initial GPS/WiFi data for training and

afterwards uses only GSM information to recognize places. Place recognition module

is one of the core part of PlaceMap service, after that place signature information

is used to track revisit on a place, movement between different places and tracking

social meetings during user’s stay at a given place.

Mobility paths module extract the routes travelled by a user from GSM data.

From the recognized place signatures, it finds the time difference between the time
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at which user leaves a place and enters into a subsequent place. This time difference is

the total route time between these places. Further for every route, we approximate

distance travelled by a user in each route with the help of Cell IDs seen during

the trip. If some application requires fine grained information on routes travelled

by user, the extracted place departure and arrival information can also be used to

switch ON/OFF GPS sensor.

Place IDs Time Info Cell IDs WiFi APs Bluetooth
Devices

P1 00:49-9:30 c1, c2, c3 w1, w2, w3 b1, b2, b8
P2 9:55-18:34 c5, c6 w6, w8, w9 b3, b4, b7
P3 20:45-22:30 c11, c12 w1, w2, w3 b5

Table 3.1: Representation of extracted places with the other information stored by
PlaceMap for user X given a day’s mobility data. Stored places do not contain places
where user spend less than 10 minutes of time

Route IDs Time Info Source Destination Cell IDs
R1 9:31-9:54 P1 P2 c7, c8, ....
R2 6:35-8:44 P2 P3 c13, c14, ...

Table 3.2: Representation of routes extracted by PlaceMap service for user X from
a day’s mobility data.

Many applications requires fine grained information about social contacts (i.e.

friends, acquaintances) that a user encounters in everyday life [42]. Based on places

information, contact discovery module duty cycles Bluetooth sensor to find interac-

tions with social contacts. Also, social interactions can be sensed by computing sim-

ilarity between scanned WiFi APs across two users using Tanimoto coefficient [152].

PlaceMap allows applications to do a targeted sensing of contacts based on places

information. For instance, an application may be interested in logging interactions

with social contacts only when a user is at workplace or in a certain time interval.

PlaceMap finds arrival and departure time information for every place identified

by place recognition module. In mobility profile module, a day-wise history of ex-
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tracted places and their respective arrival and departure times is stored for future

use. Also, this module stores different routes taken by a user on different days as well

as interaction with the social contacts. A snapshot of places signatures in typical

mobility profile of a user is shown in Figure 3.1. PlaceMap maintain a signature

for each place i.e. a set of Cell IDs and a set of WiFi APs. Further, a Cell ID

geo-coordinates mapping database such as Open Cell ID [25], Cell Spotting [15], and

Google Location [17] can be used to estimate a place’s geo-coordinates.

Finally, different services of PlaceMap can be used by customizable third party

mobile applications to abstract user’s mobility into places, routes, and building mo-

bility profile for every user. These application can be benefitted from PlaceMap’s

place management module which keeps history of a user’s movement (i.e. places,

routes) and can be used by applications which require long term history such as mo-

bility prediction. As an example, if there is a target application such as PIER [113],

which gives pollution exposure report to a user at the end of day based on her mo-

bility. PIER can use PlaceMap services to find all the place visits as well as frequent

routes taken by the user and combine it with the spatial pollution data to compute

pollution exposure. In the nutshell, PlaceMap reduces the mobility management

overhead from the mobile applications by provide an extensive set of mobility man-

agement APIs.

3.5 Place Recognition

For building mobility profile, one of the first and challenging step is to discover differ-

ent places that a person visits using raw location data and then, use this information

to find arrival and departure time. In case of WiFi-based place detection, repetitive

time window based WiFi-scanning is performed to check if a user is stationary. The

main idea is that the signal fingerprints obtained by WiFi scans will be similar if

the user is stationary, similarity between WiFi signal fingerprints are detected by
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Tanimoto Coefficient [91, 56]. Once the place is detected, corresponding WiFi APs

are saved so that revisits to this place can be detected.

In case of GSM, phone APIs provide access to only one Cell ID to which it is

connected at that time and its corresponding RSSI (Received signal strength indica-

tion) [122]. Hence, the signal fingerprinting method that works in case of WiFi does

not work in case of GSM. Range of GSM base station is several KMs compared to

range of WiFi APs which is nearly 100 meter. It means that even if a user moves,

Cell ID to which she is connected may remain the same for some time. Previous

work [37] has shown that even if a user stays at the same place, the Cell ID may

change due to various reasons such as network load, small time signal fading, and

inter-network (2G to 3G or vice versa) handoff. This change in Cell ID at the same

place is called as an “oscillating effect” which means that even if Cell ID changes, it

does not necessarily conclude that user has moved out from a place.

PlaceMap organizes GSM information (MCC, MNC, LAC, and Cell ID) with

timestamp information. As an example, if a user’s movement pattern in terms of

Cell IDs is {c1,c2,c2,c1,c1} at time {t1,t2,t3,t4,t5} respectively, it is represented as

tpc1, t1q, pc2, t2q, ........pc1, t5qu. Here, apart from Cell ID, c1 and c2 collectively holds

other GSM parameters such as MCC, MNC and LAC. In GSM-based place recogni-

tion, an approach have to learn place signatures from collected data which involves

clustering of Cell IDs according to physical places. Following are some of clustering

algorithms which could be used for this purpose:

3.5.1 LAC-based Clustering

Cellular network assigns a group of nearby cell base station in a location area with

the same identifier, known as Location Area Code (LAC) [68]. Thus, one of the

parameter to cluster set of Cell IDs is by using LAC with an assumption that each

place visited by user will have a different LAC.
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From given GSM data, we build clusters of Cell IDs visited by a user belonging

to same LAC. Each of the LAC-based clusters (i.e. CL) can have one or more Cell

IDs into them. After that, we compute the amount of time spent by user into each

Cell ID cluster in CL and select clusters, where a user spends more than 10 minutes

of time as places. We compare the accuracy of LAC-based clustering with ground

truth in Section 3.8.1.

3.5.2 Graph-based Clustering Algorithm (GCA)

Assuming that tpc1, t1q, pc2, t2q, ........pck, tkqu are the distinct time-ordered Cell records

observed in a day, we build an undirected graph, called as movement graph, GpV,Eq

where @iPt1,kuci P V and there exist an edge epci, cjq between ci and cj, if both of the

following conditions are satisfied:

1. ci and cj are contiguous in time ordered cell records

2. Time difference between start time of cj and end time of ci is less than α.

As an example in step 1 of Figure 3.2, c1 and c2 occurred contiguously and

t2-t1¤α, so there will be an edge between c1 and c2 in the corresponding movement

graph of the user. Multiple edges between ci and cj are merged into a single edge

with weight equal to the number of edges between ci and cj. α ensures that an edge

occurs only across neighboring (in time) Cell IDs and other cell records, that may

be neighboring but with a high time difference between them due to reasons such as

switching off of the phone, unavailability of the network, and loss of location updates,

are pruned. An example of movement graph created from user X’s data is shown in

step 2 of Figure 3.2.

We converted Cell ID records into a movement graph because it solved two main

problems related to Cell ID clustering i.e. missing records are handled using timeout

parameter α and oscillating effect between Cell IDs is modelled using edge weight. As
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Figure 3.2: A snapshot of different steps in GCA based place recognition algorithm

illustrated in the movement profile in step 2 of Figure 3.2, for each of the two places

(represented using dark color nodes), several Cell IDs are observed with multiple

fluctuations amongst them. Figure 3.3 presents a snapshot of a real movement

graph of a user’s mobility data.

To cluster Cell IDs into different places visited by the user, we propose a three

phase algorithm as described in Algorithm 3. GCA takes movement graph as an

input and produces Cell ID clusters as an output, where each cluster of Cell IDs will

represent a different place.

The weight of an edge measures the number of fluctuations between a pair of Cell

IDs in a day. As an example, for visible cell records in step 1 of Figure 3.2, edge

weight between Cell ID c1 and c2 is 2 and vice versa. Our hypothesis is that the Cell

IDs which belong to same cluster will have high edge weight due to high number of

fluctuations. We define a parameter called as oscillation parameter η, which acts as

a threshold to select Cell IDs which have high number of fluctuation between them.
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Figure 3.3: Movement graph representing a day’s mobility of a user from MDC
dataset

In the first phase of GCA , we start with initializing cluster set CG to φ. All

edges in the movement graph GpV,Eq are then sorted according to their weights in

descending order. After sorting, GCA selects one edge at a time and if edge weight

of selected edge is greater than η then it is termed as candidate edge. If at least one

vertex of candidate edge is present in one of the cluster sets (say CGi P CG), both

the vertices of that edge are merged into CGi. Otherwise, a new cluster is created

containing only those two vertices and added to CG.

Node degree in movement graph measures the number of transitions from a Cell

ID to any other Cell ID in the movement graph in a day. It is expected that Cell IDs,

which are encountered for a very short interval during travel will have at most two

transitions i.e. when a user enters into a Cell ID and other one, whenever she leaves

from that Cell ID as shown by Cell IDs c5 to c11 in step 3 of Figure 3.2. On the

other hand, we have observed a star like topology among Cell IDs which belong to

same cluster as shown in Figure 3.2. Hence, we define a variant of earlier oscillation

parameter, called η1 to select nodes with high node degree. In the second phase, we
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consider each vertex within the set of clusters (CG) and if the degree of vertex (say

v) is higher or equal to η1, all the neighboring vertices of v are also added to the

respective cluster, if they are not already included.

To create distinct and non-overlapping clusters, in the third phase, we combine all

the clusters in CG, which have a common vertex, among themselves to produce a new

set of clusters CG1 that does not have any common vertices across different clusters.

All the left over vertices are added as a separate cluster in CG1. For instance, if a

vertex (say vi) that does not belong to any of the clusters in CG1, we create a new

cluster CGn that contains vi and add it to set of clusters CG1. Finally, all clusters

in CG1 are copied into CG.

As defined earlier, each vertex in every cluster (CGi P CG), corresponds to a

unique Cell ID. As shown in step 4 of Figure 3.2, we compute the amount of time

spent by user into each cluster of CG and select clusters where a user spend more

than 10 minutes of time as places. We compare the accuracy of GCA with ground

truth as well as LCA-based clustering in Section 3.8.1.

3.5.3 WiFi Trained Cell ID Clustering (WTCA)

Previous algorithms i.e. GCA and LCA work on the assumption that a user will

connect to completely different set of Cell IDs on different places and as a result,

Cell ID clusters will always have non-overlapping sets of Cell IDs. However, there

may be users who visit more than one places which are in close proximity, e.g. a

student staying in a dorm that is close to the academic building or a student visiting

academic building and library building. Because, range of cellular tower is high than

WiFi APs, user’s phone may see same (or nearly same) set of Cell ID at both the

places.

In case of GCA , it will merge the two different places and shown them as one

even if there is single common Cell ID observed at each of the two places. This
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1 Algorithm: Graph-based Cell Clustering Algorithm (GCA)

Input: Movement Graph GpV,Eq where V is set of vertices and E is the set of edges
Output: Set of Cell ID Clusters CG

2 begin
3 /* First Phase */

4 Rank all the edges in E into decreasing order of their weight;

5 CG = φ ;

6 while p@ek P Eq AND wpekq ¥ η do
7 if vi P CGj where vi P ek, i P p1, 2q, CGj P CG then
8 CGj = CGj Y vk1 Y vk2;

9 else
10 Create new cluster CGn = vk1 Y vk2 and add it to CG ;

11 end

12 end

13 /* Second Phase */

14 while p@vj P CGkq where CGk P CG do
15 if pdegreepvjq ¥ η1q then
16 CGk = CGk Y neighborspvjq ;

17 end

18 end

19 /* Third Phase */

20 CG1 = φ ;

21 while p@CGi P CGq do
22 isExist = false ;

23 while p@CGj P CG
1q do

24 if pCGi X CGjq � φ then
25 CGi = CGi Y CGj ;

26 isExist = true ;

27 break ;

28 end

29 end

30 if  pisExistq then
31 Add CGi to CG1 ;

32 end

33 end

34 while p@vi P V q do
35 if pvi R DCGkq where CGk P CG

1 then
36 Create new cluster CGn = vi and add it to CG1 ;

37 end

38 end

39 Copy CG1 into CG ;

40 return CG ;

41 end

Algorithm 3: Pseudocode of GCA
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merging effect of GCA is also observed in our collected data as some of our users

also live in campus residence. For instance, if a user saw Cell IDs {c1,c2,c3,c4} at P1

and Cell IDs {c4,c5,c6} at place P2. Cell ID c4 remains overlapping across places P1

and P2.

While such geographically close places may have overlapping Cell IDs, it is un-

likely that they will have overlapping WiFi APs due to limited range. Further, not

all Cell IDs will overlap across the two places which are in vicinity. In the above

example, we can take into account non-overlapping Cell IDs such as {c1,c2,c3} and

{c5,c6} to distinguish between different places. We use this insight to extend GCA

by training it with WiFi based Cell ID clustering. For training purpose, we use

the WiFi mobility profile to compute corresponding Cell ID clusters. Building WiFi

mobility profile has been extensively studied in previous research work [91, 152, 56]

and we have used the earlier proposed techniques to recognize different places and

detect entrance and departure of a user from those places. In particular, PlaceMap

performs following steps to find WiFi-based Cell ID clusters:

1. Build mobility profile (say MPw) using the WiFi data which has all places

with their respective arrival and departure time information for a given day d.

MPwd = {(P1, a1, d1), (P2, a2, d2),.......... (Pn, an, dn)}

2. For each place (say P1) in MPw, find all the Cell IDs observed by the user

and create a cluster with all these Cell IDs. If a user visits same place at two

different time intervals, we take a union of all Cell IDs seen in both of these

time interval to create a Cell ID cluster, corresponding to P1.

3. For a given day d, once a cell cluster is formed for each place in MPw, all of

them are put into set of clusters say CW .

After, PlaceMap has collected WiFi data for d number of days, it computes WiFi
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based Cell ID clusters observed for each day, say CW = {CW1, CW2,....CWd}. A

Cell ID is said to be conflicting if it belongs to two different Cell ID clusters (places)

within the same day. Such conflicting Cell IDs essentially belong to two different

places and hence can not be relied upon when performing clustering. We create a

separate conflicting set, CC , that contains all such conflicting Cell IDs which exist

in CW .

Now, we have to cluster remaining non-conflicting Cell IDs in CW into unique

places. We define a support metric spci, cjq for every non-conflicting Cell ID pair

ci, cj P CW as spci, cjq �
Opci,cjq

minpOpciq,Opcjqq
, where Opci, cjq denotes the number of joint

occurrences (in days) of ci and cj within the same cluster and Opciq denotes all the

occurrences (in days) of ci, irrespective of whether cj was in the same cluster as ci

or not. Two Cell IDs ci and cj are strongly connected, and are likely to be in the

same cluster, if spci, cjq ¥ γ, where γ is system defined threshold. The high value

of support metric i.e. spci, cjq indicates that ci and cj are observed together in the

same cluster for high number of days. For instance, if spci, cjq � 0.5, it means that

a pair of Cell IDs were observed in the same cluster in nearly half of total days in

training period. On the same lines, if we use value of γ equal to 0.5, it means that a

pair of Cell IDs should belong to same cluster more than half of total days and then

only, they can be termed as strongly connected.

Value of support metric is computed for each non-conflicting Cell IDs using WiFi-

based cell clusters which are used for training. After that, GCA-based Cell ID clusters

(CG) are refined to remove the merging effect with the help of following steps:

1. For each cluster CGi P CG, remove the Cell IDs that overlap with the conflict-

ing set CC , and insert them into a separate cluster called CS. Correspondingly,

CG is modified to a cluster set CG1 for which Cell IDs across all the clusters

are non-overlapping.
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2. Separately, for each cluster CG1
i P CG

1, if it was affected in the previous step

then it is taken out from CG1 and all its Cell IDs are added into a single cluster

CGn. Thereafter, Algorithm 4 is used to return one or more strongly connected

clusters in CGn, called SC.

3. Separately, for each of the strongly connected clusters, add back the corre-

sponding conflicting Cell IDs from CS to each of its components, to create the

modified strongly connected clusters SC 1.

4. Final modified cluster set CG is obtained by combining clusters in SC 1 and

CG1.

Using the WiFi training data, WTCA algorithm corrects the merging error of

GCA algorithm and subsequently, forms new set of Cell ID clusters which will result

in more accurate places compared to GCA. Similar to WiFi based approach, places

can be discovered using a series of GPS coordinates [86, 87] and subsequently, GPS-

based Cell ID clusters can be formed using GSM data. After that, GPS-based Cell

ID clusters will be used to correct merging errors of GCA , we call it as GTCA . We

will evaluate the accuracy of WTCA and GTCA with baseline in Section 3.8.1.

3.6 Building Mobility Profiles

As defined in Section 3.3, a user’s mobility profile is a combination of places, their

respective arrival and departure time, and route information. Many context-aware

applications require historical mobility profiles of a user to provide services. For

instance, based on mobility history of a person, a mobile-based advertisement frame-

work may be interested in finding about the weekdays on which a user is likely to

go out for dinner? PlaceMap computes mobility profiles and store them instead of

storing raw mobility data for every user. Historical mobility profiles of a user can be

used to extract mobility patterns and answer questions related to a person’s mobility.
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1 Algorithm: Strongly Connected Clusters Algorithm

Input: CGi is a cluster of Cell IDs
Output: Strongly connected clusters set SC

2 begin
3 SC = φ ;

4 while p@cj P CGiq do
5 while p@ck P CGiq do
6 if spcj , ckq ¡ γ then
7 if pcj P SCm OR ck P SCm where SCm P SCq then
8 SCm � SCm Y cj Y ck ;

9 else
10 Create a new cluster with pcj , ckq and add it to SC ;

11 end

12 end

13 end

14 end

15 return SC ;

16 end

Algorithm 4: Pseudocode of Strongly Connected Clustering Algorithm

3.6.1 Place Arrival and Departure Time Detection

The amount of time that a person stays at different places is an important information

for many context-aware applications. For accounting of stay time of a person at

a place, we need to track her arrival and departure time information from that

place. As discussed in previous section, place recognition algorithms create a unique

signature for every place. Signature information consists of a set of Cell IDs in case

of GSM-based place recognition. This signature information can be used to detect

arrival and departure time of a user from a given place in real time.

PlaceMap stores all the visited places signatures and continuously tracks Cell

ID information with sampling interval of 1 minute. If currently sensed Cell ID

information belongs to one of the place signatures for continuous ta minutes, it

signals arrival at a place. PlaceMap uses a threshold of ta minutes to reduce the

effect of occasional fluctuation among Cell IDs. PlaceMap stores the arrival time

and place information i.e. name till there is a signal of departure from that place.

To detect departure from a place, PlaceMap keep track of current Cell ID in-

formation to see if it belongs to place signature where it has recorded last arrival.
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Once, it detects a Cell ID which does not belongs to place signature for consecutive

td minutes, departure is recorded for the given place. In the same way, arrival and

departure time information of all the places are recorded and mobility profile of a

user. Stay time of a user at a given place will be the time difference between arrival

and departure time.

3.6.2 Finding Route Information

In day to day life, a mobile user is likely to travel between places. Route taken

by a user to travel between a set of places is an important information for many

applications such as PIER [113]. PlaceMap’s route finding algorithm takes help of

arrival and departure time information to extract route information from mobility

data. As PlaceMap is aimed at providing a generic service for building mobility

profile, it gives a flexibility to specify mode of route tracking to mobile applications.

Based on the application requirements/context, PlaceMap have two different modes

of route tracking as described below:

1. Low Accuracy Mode : Once a user departs from a place (say source),

PlaceMap starts tracking of current Cell ID information at a sampling interval

of 1 minute. Route tracking will be on till user arrives at destination place and

it will result in a sequence of Cell IDs. Apart from Cell IDs, route information

will consist of start time of route which is equal to departure time of source

place and end time of route will be equal to arrival time of destination place.

2. High Accuracy Mode : If an application requires high accuracy in route

tracking, PlaceMap activates GPS tracking whenever a user departs from source

place and keep it on till she arrives at the destination place. In this case, route

information will consist of series of GPS coordinates, start and end time.
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Some applications such as crowd-sourced traffic information or ride-sharing need

highly accurate route tracking, which can only be obtained by GPS. While working

with such applications, PlaceMap opportunistically activates GPS to obtain highly

accurate tracking information. As, GPS is switched on only, when a user departs

from a place (Refer Section 3.6.1), it does not consume much energy as compared

to continuously tracking of GPS [91]. However, some applications such as participa-

tory sensing may work with low accuracy, PlaceMap uses GSM information only to

capture route information for those applications. Route information obtained using

GSM-based approach can be further combined with trajectory matching algorithms

to find a sequence of map segments travelled by a user [146].

3.7 Datasets

We have used two extensive datasets to evaluate PlaceMap in this chapter. Following

are the details about the datasets:

1. Self Dataset : We have developed a data collection tool for Android

phones and deployed among 62 participants in New Delhi, India. The par-

ticipants included students (graduate and undergraduate) and university tech-

nical/administrative staff members. The participants were selected using con-

venience sampling and only criteria used for recruitment was availability of

Android phone. Data connection costs were covered of all participants for

whole duration of data collection.

Our data collection tool scans and logs GSM (Cell ID) information every 1

minute which includes timestamp, MCC, MNC, LAC, Cell ID and RSSI. Every

10 minutes, it scans visible WiFi APs and log their SSID, BSSID information

with timestamp. Mobile data collection tool provides the user with an option to

automatically sync collected location information to the cloud at any interval
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between five to thirty minutes.

Figure 3.4: Data collection days for all the participants in self dataset

For some of the participants (10), we had less than a week’s data, we have

removed them from the dataset for further analysis. As shown in Table 3.3,

our data collection tool collected about 11 million GSM records and about

1 million WiFi records. Spatial diversity of the collected data was high as

participants encountered 11847 unique Cell IDs and 7717 unique WiFi APs in

the whole duration of data collection. Further, we have counted the number of

days for which data was collected for every participant as shown in Figure 3.4.

In case of GSM, nearly half of participants uploaded data for about 30 days

whereas in case of WiFi, it was 28 days.

Data Self Dataset MDC Dataset
Total GSM records 11, 31, 509 80, 29, 388
Total WiFi records 1, 09, 286 28, 56, 858
Total GPS records 15, 53, 154

Table 3.3: Descriptive statistics about self dataset and MDC dataset

2. MDC Dataset: It is a public dataset which was released as part of Nokia Mo-

bile Data Challenge (MDC) 2012 [100]. This dataset was collected in Switzer-

land from 2009 to 2011 using Nokia N95 smartphones. Although, original
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dataset was collected with 200 participants, they have publicly released data of

only 38 participants. Dataset contains continuously collected mobility (GPS,

WiFi, GSM), social interactions (Call, SMS, Bluetooth) and phone usage (ap-

plication usage) data for all the participants. We have considered only mobility

data for our analysis.

Figure 3.5: Data collection days for all the participants in MDC dataset

In total, this dataset had about 80 million GSM records, 28 million WiFi

records and 15 million GPS records as shown in Table 3.3. GSM information

was scanned every 1 minutes, WiFi scanning was performed every 2 minutes

and GPS coordinates were sampled every 10 seconds. Spatial diversity of the

dataset was also very high due to large duration and high number of partici-

pants, there were 18321 unique Cell IDs observed and 1, 26, 968 unique WiFi

APs. As shown in Figure 3.5, dataset has about 122 days of GPS data, 191

days of GSM data and 188 days of WiFi data for nearly half of the participants.

3.8 Evaluation

In this section, we evaluate PlaceMap using the aforementioned datasets. Previous

studies have used human inputs (i.e. travel diary) to collect ground truth (baseline)
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data to evaluate place recognition algorithms. However, most of these studies were for

a short time period with few participants only. Due to limited scale of data collection,

it was feasible to collect diary based inputs from participants [91]. However in our

datasets, scale of data collection is large and it is very difficult to collect human

inputs considering number of participants and data collection duration. It has been

proven by previous research that GPS or WiFi can be used to identify important

places in a person’s life. In our evaluation, we will compare GSM-based PlaceMap

algorithms with the baseline created using GPS or WiFi based algorithms.

3.8.1 Place Recognition Evaluation

The accuracy of place recognition in PlaceMap is directly correlated with accuracy of

clustering algorithms because each Cell ID cluster corresponds to a distinct physical

place. For the comparison purpose, a baseline has to be created using WiFi or GPS.

For WiFi, we have used clustering algorithm presented in Jyotish [152] which can

cluster WiFi APs into set of distinct places. Based on these places, we compute

WiFi mobility profile and for every place in mobility profile, find Cell ID cluster as

shown in Section 3.5.3. These set of clusters originated using WiFi are called as

WiFi-based cell clusters and they have been used to compare PlaceMap recognition

algorithms.

Kang et al. [86] proposed a time and distance based algorithm for clustering of

GPS coordinates according to physical places. This algorithm takes a set of GPS

coordinates and timestamp information as an input and produces coordinates of

places where user has stayed for a significant time. We have used their algorithm to

find places using GPS coordinates. This algorithm needs a time (t) and distance (d)

threshold parameter for clustering, we have used t=5 minutes and d = 200 meters

in our settings. Similar to WiFi, we have built GPS based mobility profile and

computed Cell ID cluster corresponding to each place in GPS based mobility profile.
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Set of Cell ID clusters computed using GSM based mobility profile are called GPS

based cell clusters and used to compare place recognition algorithms of PlaceMap .

We evaluate place recognition algorithms using multiple dimensions. First, how

does clustering algorithms perform in assigning Cell IDs to distinct set of places?

Second, how many places are correctly discovered in whole duration of data collec-

tion compared to baseline? In the subsequent subsection, we aim to answer these

questions.

Clustering Algorithm Evaluation

We have used WiFi data in self dataset and GPS data in MDC dataset to create

baseline. In self dataset, we find Cell ID clusters (say CW ) for a day using WiFi

mobility profile. For every day, we define Cell ID clusters made using GCA , LCA,

WiFi, GPS, WTCA and GTCA as CC, CL, CW , CG, CWT , CGT respectively.

For GCA, we empirically found η and η1 to be equal to 3 and used it for performing

all experiments related to GCA. Later in this section, we will present the effect of η

and η1 on the performance of clustering algorithm.

Using a pre-defined metric, we compared baseline (say CW ) individually with

clusters produced by different clustering algorithms i.e. CC. Previous approaches [37]

do not provide any comparison of Cell ID clustering with baseline. Hence, we define

our own pair-wise comparison metric, called Correct Pair as shown below:

Correct Pair : A Cell ID pair (i.e. Ci and Cj) is counted as Correct Pair,

if their occurrence within the same or across different clusters in CW is reflected

accordingly in the Cell ID based clustering approach. For instance, if Ci and Cj

belong to same cluster in baseline (say CW ) then they should be in same cluster of

evaluated scheme (say CG) or vice versa.

It is common to have missing mobility data. For instance, WiFi may not be

available at some places. Our proposed metric ensures that comparison is done only,
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(a) Self dataset. (b) MDC dataset.

Figure 3.6: Accuracy of clustering algorithms for all the participants. In both the
datasets, GCA outperformed LCA by giving more average % correct pairs. Using
WiFi/GPS training, WTCA/GTCA improved upon GCA to provide more average
% correct pairs

when there is availability of baseline data. For every day, % of correct pairs found

in evaluated scheme (say CG) is computed out of total pairs of Cell IDs in baseline

(say CW ). After that, we compute average correct pairs (%) which is an average

of all days of % correct pairs. Average correct pairs (%) depict the final accuracy

of evaluated clustering algorithm (say CG) and it is calculated for each participant

separately. Similar process is followed to compute the accuracy of other clustering

algorithms i.e. CL, CWT and CGT .

Figure 3.4 presents the distribution of clustering algorithms’ performance across

all participants. Mobility characteristics of each participant is different, therefore,

accuracy of clustering algorithms are likely to differ. As shown in box plot of Fig-

ure 3.6(a), GCA produced 84.93% average correct pairs (50th percentile) while LCA

produced 62.23% average correct pairs. For some participants, LCA gave good accu-

racy (max = 90.75% average correct pairs), which is essentially when LCA’s under-

lying assumption becomes true, i.e. a person visits places that are in different LAC

areas. Errors in GCA occurred due to merging of places that were geographically
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close to each other.1.

WTCA corrected mistakes of GCA by identifying merged places and segregating

Cell IDs accordingly. While calculating correct pairs using WTCA , we ignore Cell ID

pairs containing conflicting Cell IDs because they can belong to any of those places.

For calculating the strongly connected components in WTCA , we empirically found

the γ value to be 0.5, which provides maximum possible accuracy. Score of γ � 0.5

for each Cell ID pair means that they should be seen together in the same cluster

for at least half of the training days. As WTCA relies on initial training provided

by WiFi-based Cell Clusters, we have empirically found that d � 8 gives maximum

possible accuracy. We have used d � 8 for all further experiments.

WTCA either equals or improves % of average correct pairs across all participants

as compared to GCA or LAC-based Clustering Algorithm . In self dataset, WTCA

produced 90.03% average correct pairs (50th percentile) as compared to GCA which

produced 84.93% average correct pairs. WTCA improves upon the overall accuracy

of clustering, when compared to GCA , since it can split merged places and put them

into different clusters using the training data. We have observed that WTCA fails

to correct merging places when there is no distinct Cell ID respective to places i.e.

all the Cell IDs are observed at both the places belongs to conflicting set.

In case of MDC dataset, GCA produced 85.72% average correct pairs (50th per-

centile) as compared to LAC-based Clustering Algorithm which produced 60.24%

average correct pairs. We found that improvement in clustering accuracy with GCA

is consistent across both the datasets. Both of these datasets were collected in two

different countries and varied demographics, it shows the generalizability of the GCA

algorithm. However, as it can be seen in Figure 3.6(b), GTCA provided 87.52% av-

erage correct pairs (50th percentile) and improved marginally over GCA in MDC

dataset. GPS-based clustering can merge closely located places (i.e. places in closely

1 Some of our users lived in campus residence
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located buildings) [91, 86] and due to this, it was not able to detect all merged

places in GSM-based clustering. We believe that this was the primary reason for low

improvement provided by GTCA in case of MDC dataset.

Parameter Variation : For GCA, we have used η � 3 and η1 � 3 performing

Cell ID clustering. We have varied η and η1 to see its impact on clustering accuracy

as shown in Figure 3.7. GCA achieved maximum possible accuracy (50th percentile)

when values of η and η1 equal to 3. According to Figure 3.7, GCA is more sensitive

to value of η1 because its accuracy nearly remains same when value of η is increased

from 2 to 4.

Figure 3.7: Impact on clustering accuracy of GCA with the variation of parameters
η and η1 in Nokia MDC dataset.

Overall Place Extraction Evaluation

The main task of a place discovery algorithm is to capture all the places visited

by a user using her mobility data. In last section, we have found that GSM-based

clustering does a good job in associating different Cell IDs to physical places and day-

based clustering evaluation is done w.r.t. baseline. In this section, we will evaluate

PlaceMap performance in discovering all places visited by participants in complete

data collection duration by comparing with the baseline.
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Figure 3.8: Relationship between different places discovered by baseline and
PlaceMap

The places which are discovered by PlaceMap are called discovered places and

those which are discovered by baseline (GPS/WiFi) are called baseline places. Base-

line places which are also discovered by PlaceMap are baseline-discovered places and

the places which could not be discovered by PlaceMap are missed places as shown

in Figure 3.8 [91, 178], .

For comparison purpose, we need to build a mapping between baseline places and

discovered places. For each place discovered by baseline (WiFi/GPS), we find set

of corresponding Cell IDs observed by user during her stay at that place. The set

of Cell IDs for each place in baseline will produce a set of Cell ID clusters. Now,

we have to find a relation between these two set of Cell Clusters i.e. one which is

created using baseline (say CW ) and second one is discovered using PlaceMap (say

CC). To measure the similarity between a pair of Cell ID clusters, we define a metric

i.e. Cluster Similarity Index (CSI) score:

CSIpCWi, CCjq �
CWiXCCj

minp|CWi|,|CCj |q
where CWi P CW and CCj P CC

CSI score between two Cell ID clusters is defined as the ratio of number of common
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Cell IDs found to the minimum of length of Cell ID clusters. A length of Cell ID

cluster is equal to number of Cell IDs contained. For every place (Cell ID cluster)

in baseline, we found all the clusters in CC which are similar. We consider two

Cell ID clusters similar if value of CSI is greater than δ (a system defined threshold).

While computing similarity for WTCA clusters, we remove conflicting Cell IDs before

computing CSI score to minimize their impact on the score. A mapping such as

following is built between baseline and PlaceMap discovered places:

PlaceMappingpPMq = tCWi Ñ pCCjq;CWj Ñ pCCi, CCkq;CWk Ñ pCCjq;

CWl Ñ pqu

Using the place mapping, we further classify baseline-discovered places into cat-

egories i.e. correct, merged and divided as shown in Figure 3.8.

� Missing Place : A baseline place (cluster) is said to be missed if it does not have

any corresponding mapping found in discovered places. For instance, CWl in

above example depicts this scenario.

� Merged Place : A place is said to be merged if two different baseline places

point to a single discovered place. For instance, CWi and CWk map to the

single place CCj in above example.

� Divided Place : A place is said to divided if a baseline place maps to two or

more discovered places. For instance, CWj represents a divided place in above

example.

� Correct Place : A place is called as correct if there is a single mapping of

baseline place to discovered place.

Above described place categories help in building evaluation metrics and have

been used extensively in related work [91, 178]. For both the datasets, we build

mapping between baseline and discovered places for each participant and then find
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instances of missing, correct, merged and divided places. We have not found any

instance of missing place in both the datasets as all the baselines places existed in

some form among discovered places. The places which are discovered by PlaceMap

but did not exist in baseline are called extra places. Extra places are due to missing

baseline i.e. some location may not have WiFi infrastructure.

Figure 3.9: Places discovered by GCA and WTCA in self dataset across all par-
ticipants; Nearly 78% places were found to be correct using WTCA as compared to
baseline (WiFi)

In total, number of baseline places were 228 in self dataset and 1123 in MDC

dataset. In self dataset, while using PlaceMap’s GCA clustering, about 69% places

were found to be correct when compared with baseline and 24% places were merged.

As described earlier, range of cellular tower is high and nearby places may observe

similar Cell IDs and hence, there were high instances of merged places. WTCA

identifies merged places using the history based training and reduces merged places

to nearly 15% in self dataset. There were small number of places (nearly 6.11%)

which were divided by both GCA and WTCA , division of a place happens primarily

due to clustering errors.

For MDC dataset, as shown in Figure 3.10, there were less merged places (20%)

even while using GCA in comparison to self dataset. This is a side-effect of using GPS
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for baseline because place clustering using GPS can not distinguish between place

which are very near [91]. Using GTCA , there was small improvement in correct

places from 75% to 80%.

Figure 3.10: Places discovered by GCA and GTCA in MDC dataset across all
participants; Nearly 80% places were found to be correct using GTCA as compared
to baseline (GPS)

3.8.2 Mobility Profiles Evaluation

User mobility profile have time information associated with the places i.e. place

arrival time and departure time. Also, it has information on routes travelled by user.

Arrival and Departure Time Comparison

In this section, we will evaluate PlaceMap’s effectiveness in finding arrival and de-

parture time w.r.t. visited places and different routes. After finding places using

baseline (GPS/WiFi), we find arrival and departure time of a user for each place and

build a mobility profile (say Mb) for a day.

Mb = pP1, a1, d1q, pP2, a2, d2q, ...........pPn, an, dnq

Similarly, PlaceMap is used to create mobility profile of a user for the same day

as described in Figure 3.6.

Mp = pP1, a1, d1q, pP2, a2, d2q, ...........pPk, ak, dkq
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After that, a mapping between places is built to find out same places which exist

in both Mb and Mp (described in Section 3.8.1). We define following two metrics to

compare Mb and Mp:

1. Arrival Detection Delay : It is time difference between baseline arrival time

and PlaceMap arrival time for same place in Mb and Mp. Assuming, P1 P Mb

and P2 PMp are found to be same, it will be computed as following:

Arrival Detection Delay = Baseline Arrival Time (P1) - PlaceMap Arrival Time

(P2)

2. Departure Detection Delay : It represents the time difference between baseline

departure time and PlaceMap departure time for same place in Mb and Mp.

For the above example, it would be computed as following:

Departure Detection Delay = Baseline Departure Time (P1) - PlaceMap De-

parture Time (P2)

For every place in Mb and Mp, which is discovered correctly, we find out the

arrival detection delay and departure detection delay. The places which are merged

in PlaceMap due to clustering, we assume them as a single place in baseline too and

subsequently, compute their arrival and departure detection delay.

Figure 3.11(a) shows the distribution of arrival detection delay for all the places

and across different participants using both the datasets. The negative values rep-

resents that PlaceMap detected the place after arrival of a user at a place and vice

versa. Nearly 80% of total place arrivals were detected within a delay of 10 minutes

by PlaceMap for both the datasets. As it is seen in Figure 3.11(a), there were some

cases where arrival detection delay is large which may be due to clustering errors or

missing data. As we considered merged places by PlaceMap service as one for this
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(a) Arrival time detection (b) Departure time detection

Figure 3.11: Distribution of arrival time and departure time detection delays in
PlaceMap when compared with GPS and WiFi

evaluation, we did not see any noticeable difference among PlaceMap variants i.e.

GCA and WTCA .

Similarly, departure detection delay for 76% place departures was less than 10

minutes in case of self dataset. In MDC dataset, nearly 83% place departures had

a detection delay of less than 10 minutes. From our experimental evaluation, we

have found that PlaceMap can be used in application scenarios which can tolerate

inaccuracy of few minutes in detecting and arrival of a user at a place.

Routes Evaluation

A mobile user often travels between places of her interest using various transportation

modes. As defined earlier, a route is a series of geo-coordinates which represent the

path that a user take between source and destination place. Using baseline (GPS),

we find instances where a user was moving between places and record information

about the route. The route information consists of series of time-ordered GPS geo-

coordinates, start time and end time of the travel. The process for finding routes

from GPS data works exactly opposite to the process which finds stay points or

places [177, 86]. We compute the total distance travelled in a route using series of

time-sorted geo-coordinates and time duration from difference of start time and end
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time.

PlaceMap has a high accuracy mode for route tracking which uses GPS for route

tracking. It is difficult to collect human inputs for accurate labelling of all the routes.

Hence, we do not provide any evaluation results for high accuracy mode here. In

PlaceMap’s low accuracy mode, route consist of time ordered Cell IDs observed

during the travel. We convert these Cell IDs into corresponding geo-coordinates

with the help of war-driving based Cell ID databases such as Open Cell ID 2 and

compute the distance. Routes found by PlaceMap are then compared with baseline

on following metrics:

� Route Distance Error : The modulo difference between route distance esti-

mated by baseline and estimated using PlaceMap . It is measured in Kilometer

(KM).

� Route Duration Error : The modulo difference between route duration mea-

sured by baseline and estimated using PlaceMap . It is measured in minutes.

(a) Route distance errors (b) Route time errors

Figure 3.12: Cumulative distribution function (CDF) plot of route distance and
time errors in MDC dataset

2 www.opencellid.org
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In total, we have found non-distinct 7258 routes using baseline for all the partic-

ipants in MDC dataset. The median route duration was 17.58 minutes and median

route distance was 8.03 KM. We have noticed that whenever a user travels between

nearby places, path tracking is not enabled by PlaceMap due to failure of depar-

ture time detection possibly by place merging effect originated from clustering errors

described in Section 3.8.1. The routes which are missed by PlaceMap are called

missing routes and we have found that PlaceMap missed nearly 35% of routes as

compared to baseline. We have noticed that most of missing routes were for a very

short distance, 90% percentile of route distance was 2.52 KM.

For the routes which were detected by PlaceMap and existed in baseline, we have

computed the route distance error and route duration error as shown in Figure 3.12.

According to Figure 3.12(a), median (50th percentile) route distance error was 1.47

KM and 75th percentile error was 2.83 KM. Route distance error is introduced by

crowdsourced geo-coordinates of Cell IDs because range of a Cell ID in urban area

could be up to few KMs.

As shown in Figure 3.12(b), PlaceMap has median route duration error of 6.71

minutes and 75th percentile error of 12.44 minutes. Route duration error in PlaceMap

is introduced by errors in detecting departure and arrival time based only on Cell

ID. We believe that errors found in route distance and duration will be consistent

in case of high accuracy mode of PlaceMap too. We do not provide any evaluation

results on self dataset due to lack of GPS data.

Based on evaluation results, we conclude that PlaceMap can make errors of few

KMs in distance estimation and several minutes in case of estimating route duration.

However, we believe that it can be used to detect routes in user applications where

accurate route information is not needed such as PIER [113].
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(a) (b) (c)

Figure 3.13: Different screens of PlaceMap mobility history logging application: (a)
shows the different places visited by user, (b) User generated tags for each place and (c) a
day-based mobility profile of a user

3.9 Potential Applications

PlaceMap can be effectively used in most of the application scenarios where WiFi/GPS

have been used [63, 168, 177]. However, we explicitly list some of applications that

can be enabled using PlaceMap .

1. Personal Mobility History Logging : There are several mobile applications

which enable automatic logging of personal mobility history using location in-

terfaces such as WiFi/GPS. For instance, LifeMap [21] provides a visualization

of places visited by a person, average time spent on those places etc. However,

LifeMap primarily takes help of WiFi APs to learn places with a room level

accuracy in a user’s mobility profile. We build similar system using PlaceMap

APIs for visualizing personal mobility as shown in Figure 3.13. Continuous

scans of WiFi APs consume high amount of battery, a limitation observed by

many reviewers of LifeMap application on Google Play. A PlaceMap based

mobility history logging system is energy-efficient and it has capability to work

with both smartphones as well as feature phones.
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2. Content Pre-fetching: Most of cellular data transfers are small in size but

repetitive in nature i.e. email sync, RSS feeds, weather updates etc. Repeti-

tive cellular data transfers result in lot of energy consumption because a fixed

amount of energy (i.e. tail and ramp up) is spent on every transfer irrespec-

tive of size. To minimize these data transfers, pre-fetching of content can be

done in case of delay tolerant application using predictive mobility informa-

tion [34]. Also, there are approaches which aim to predict RSSI values on

frequently traveled routes for energy-efficient cellular data transfers [135]. Mo-

bility profiles generated by PlaceMap can be used to make content pre-fetching

decisions for mobile applications. For instance, an application can schedule its

pre-fetching session whenever a user is likely to leave a place. In case of [135],

PlaceMap can be used to manage RSSI values along with route information.

Similarly, there have been lot of research on augmenting 3G with intermittent

WiFi availability [33], PlaceMap can be used to store route information with

the availability of WiFi Hotspots, that will help applications to make a decision

about offloading cellular traffic to WiFi.

3. Context-based Advertisements : Recent studies have found that most

of mobile advertisements shown during mobile application sessions are irrele-

vant [115]. Location is an important part of context and with more fine grained

information such as visiting pattern of places, mobile advertisements can be

more context sensitive and relevant for users. However, it is unlikely that a

mobile user will support the idea of using WiFi/GPS to build mobility profile

primarily due to battery constraints. PlaceMap generated Mobility patterns

can help in pushing context-based and meaningful advertisements in mobile ap-

plications. As an example, place visiting patterns of a user can be used to infer

the weekdays on which she is likely to visit infrequent places (i.e. restaurants,
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shopping malls) and depending on that, advertisements can be pushed. Down-

loading of mobile advertisements initiates lot of cellular data transfers, which

results in significant energy consumption [89]. With the help of PlaceMap , mo-

bile applications can pre-fetch ads based on the locations that a user is likely

to visit in a day.

4. Crowd Sensing : Crowd sensing is an emerging paradigm where large

group of mobile users contribute for a common cause such as urban planning,

decision making, citizens information services such as traffic updates etc. For

most of crowd sensing applications, user location is an integral part. With the

historical place visiting patterns in PlaceMap , crowd sensing campaign can be

made more smarter by assigning tasks to people who are more likely to take a

certain route or likely to visit a place [47, 158]. For instance, if a crowd sensing

campaign wants to crowd sense traffic conditions in a city, it will assign the

traffic sensing task according to likelihood of different user’s route patterns

extracted using PlaceMap .

5. Finding Collaboration Opportunities : There are many mobile applica-

tions which require collaboration among multiple co-located users. PlaceMap

can be be used to find or predict these collaboration opportunities. Some of the

questions which PlaceMap can be used to answer include i.e. at what time a

set of people are likely to be at place P1 or at what time user A and B will be at

same place? These collaboration opportunities can be used in multiple appli-

cation scenarios including facilitating local content transfer [160], collaborative

content downloading [84], mobile gaming etc.
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3.10 Discussion

Next generation location-based services require high level information such as places

and routes instead of raw geo-coordinates. Current mobile operating systems do not

provide any support/APIs to infer places as well as routes and mobile application

developers are forced to implement their own algorithms to infer places using various

location interfaces. Most of current research work uses location interfaces such as

GPS, WiFi to infer places which are power hungry and can not be used continuously

in battery powered mobile devices.

In this chapter, we use location interfaces such as GSM to build algorithms for

inferring places, routes, and building mobility profile. There are two main advan-

tages of using GSM based interface for mobility profiling, (1) It consume very less

energy as compared to current alternatives (WiFi, GSM), (2) It is available on all

programmable mobile devices and can work in smartphones as well as feature phones.

Our Graph-based Clustering Algorithm (GCA ) find clusters of Cell IDs from raw

GSM cell records and every cluster, where a user spends more than 10 minutes of

time is termed as a place. GCA was prone to merge places that are located nearby

due to high range of cell towers. To minimize merging of places, we propose WTCA

and GTCA which use an initial training of WiFi and GPS to improve clustering of

Cell IDs. We build algorithms to find arrival and departure time information for the

discovered places and extract routes to build complete mobility profile of users.

We have evaluated proposed algorithms using two long duration mobility dataset

collected in India and Switzerland. Our findings suggest that our place recognition

algorithms were able to discover nearly 80% of places across both the dataset. Nearly,

80% of arrival and departure events from places were detected with in delay of 10

minutes. Also, our route discovery algorithm was unable to identify routes which

were of short duration or distance and missed nearly 35% of routes. Among the routes
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which were identified, the median route distance error was 1.47KM and median route

distance error was 6.71 minutes.

Our evaluation findings suggested that GSM-based place recognition algorithms

can not be used for applications, which require fine grained accuracy such as shop

level places recognition in shopping malls. However, there are array of applications

which require building level accuracy in place recognition and can tolerate delay in

arrival and departure detection time such as crowd sensing and context-aware ad-

vertisements. PlaceMap implemented all these algorithms as a service which can be

used by third party application developers to provide services and to manage human

mobility in an effective manner. Finally, we believe that the work described in this

chapter is an interesting direction and in future, we envision many mobile applica-

tions/systems which will use PlaceMap as a building block for offering innovative

location based services.
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4

Location-aware Opportunistic Communication

4.1 Introduction

Most advanced 2G technology (EDGE) can provide download throughput of up to

48 KBps. We performed an experiment to measure the throughput of 2G data

connection in wild by repeatedly downloading a MP3 song of about 5MB size on five

different phones, which were used by volunteers for a week. The median download

throughput achieved by the EDGE network across two operators was about 18 KBps

while the variation was from 4 KBps to 28 KBps. We also observed many instances

of failed downloads - approx. 22% downloads failing for Operator A and approx.

42% for Operator B. Low throughput and failed downloads were primarily due to

two major reasons - variable wireless conditions (low RSSI) and variable load on

cellular networks. As a result downloading content (especially multimedia) on EDGE

network results in several limitations described as follows:

1. Higher time in downloading content

2. Excessive power consumption due to low throughput (cellular radio is switched

ON irrespective of data speed [137])

99



3. Poor user experience due to frequent failed downloads

Unavailability of a good Internet connection on mobile phones motivate people

to use local sharing mechanisms, such as - (1) Using an intermediary PC/laptop;

(2) Physical exchange of memory cards; and (3) Short range communication such

as Bluetooth/WiFi. Typically, for all these sharing mechanisms, content seekers

manually ask their friends in their social network for the desired content and then

seek a rendezvous opportunity (meeting at the same place and time) to exchange

the content. Manual checking with friends and need to keep track of all the content

makes the current local sharing models difficult to scale for large number of users

and content. Additionally, there is a lack of appropriate systems that can assist

users while sharing content locally or downloading content from Internet in limited

bandwidth conditions offered by 2G.

Mobile phone users are typically expected to be part of several social gatherings

during the day at different places i.e. home, workplace, and even while commut-

ing [110]. It is likely that a person will encounter (meet) mostly the same people

at these frequently visited places across different days. With the proliferation of

localization technologies, these encounters can be detected automatically and can be

used for opportunistic content sharing using mobile phones. For instance, Figure 4.1

shows encounter pattern among a pair of users, inferred using our self-collected WiFi

data. It can be clearly seen that the two users spent a lot of time together across

different days of the week, e.g. 12 : 00 to 19 : 00 across Day 3, 4 and 5, which can

be utilized for content sharing.

In this chapter, we describe two different systems which uses location information

to enable opportunistic communication among mobile phone users. First of these

systems, MobiShare facilitates searching and local sharing of content using mobile

phones. It is based on a hybrid architecture that uses a central entity i.e. the Cloud
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Figure 4.1: Encounters between a pair of users using WiFi traces in our self col-
lected dataset

for storing, aggregating, and performing analysis on the information uploaded by

frontend mobile application. Primarily, the Cloud stores information about user’s

social network, content that is shared by users, and mobility profiles information

information. MobiShare utilizes place discovery algorithms presented in previous

chapter to build mobility profiles of users and using them, detect encounters among

users for opportunistic content sharing.

Second system, Unity enables collaborative content downloading between a set

of co-located mobile phone users (peers). Almost all the phones, including feature

phones, have one or more small range radio technologies such as WiFi, Bluetooth, and

NFC. Unity leverages one of the available short range technologies for coordinating

and local sharing of workload parts amongst peers, while each part is downloaded

by individual peer from the Internet using a limited bandwidth cellular connection.

Unity use the Cloud for storing mobility profile of the users, their social network,

and content requests from mobile phones users. The Cloud is used to match content

requests to find people with similar interests and it generates notifications to all

interested mobile phone users when they are in physical proximity.
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4.2 Background

Related areas of work for the location-aware opportunistic communication systems

includes, (a) Mobility profiling and encounter prediction, (b) Opportunistic content

search and sharing in delay tolerant networks (DTNs), and (c) Collaborative content

downloading from Internet.

4.2.1 Mobility profiling and encounter prediction

As described in Section 3.2, previous research work designed algorithms to cate-

gorize mobile user’s continuous location information in terms of places visited and

subsequently, built fine grained mobility profile with place arrival and departure time

information [91, 56]. In this subsection, we will focus on the work which deals with

finding and predicting encounters between mobile users.

There had been many research work, which studied the content dissemination

process among mobile nodes using various properties such as node degree [112],

contact rate [127], contact time [48] etc. The overall aim of finding these properties

were to maximize probability of content delivery among any two mobile nodes. Anna-

Kaisa et al [125, 127] found that people who are social connected (i.e. friends,

facebook friends, shared city or affiliation) have long duration encounters. Further,

Anna-Kaisa et al introduced the idea of temporal graph and proposed techniques to

find connected component (i.e. consisting of nodes which are connected all the time)

and social groups from these communities.

Some research work designed models to predict future human mobility for a single

user based on past information such as predicting next place [133], arrival time on

future places [45], and stay duration at the places [56]. Encounter prediction is

more challenging because even if one person deviates from usual mobility profile, the

prediction can go wrong. While, there have been considerable amount of research
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work in building mobility profiles and predicting their next places to visit, arrival

time on frequently visited places, however there is lack of research on predicting

interactions (encounters) between mobile users.

4.2.2 Content Search and Sharing in DTNs

Majority of the content search protocols in DTNs are distributed in nature. A mes-

sage containing a search query by the content requester is routed in the network to

find the peer with requested content [145]. Both, content search query and actual

content (if available) are routed in the network with the help of underlying routing

protocols. Mainly, routing protocols in DTNs are classified into three different cat-

egories i.e. using extra infrastructure, opportunity-based, and encounter-based. In

one of the recent work [101], fixed Kiosk as an extra infrastructure proposed to use

for dissemination of video content and mobile phone users routed the content be-

tween different Kiosks. Opportunity-based routing relies on adhoc meeting between

two mobile users to route mobile content and does not use any previous encounter

information to make routing decisions. One of the example for opportunity-based

routing is epidemic routing, which creates many copies of same content to max-

imize the chances of delivery ratio [149]. Encounter-based routing schemes takes

into account previous encounters, most of these schemes compute a utility metric,

which is used to make decision about forwarding content. Unlike epidemic rout-

ing, encounter-based routing schemes creates only single copy of the content during

routing to minimize resources. Some of the encounter-based schemes are EBR [116],

3R [151] and PER [171].

One of the main concern of all delay tolerant routing schemes is that multiple

relay nodes are used for routing between content source and destination. Mobile

phones are energy-starved and due to lack of appropriate incentive schemes, relay

nodes do not have any incentive to forward data. McNamara et al [110] described a
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specific application of pair-wise media sharing in urban transport such as city subway

because many mobile users often travel with each other in subway. Many of these

proposed systems are evaluated using simulators or in some cases, real world data

traces had been used for simulation. Basic architecture of MobiShare is different from

these work and it is implemented and evaluated as an end to end system. MobiShare

enables only pair-wise sharing between social contacts to avoid incentive schemes for

relay users.

4.2.3 Collaborative Content Downloading from Internet

In this subsection, we will discuss systems, which target enhanced web access per-

formance using support from multiple co-located peers. We will also highlight the

differences of already existing systems with our system Unity . Eric et al [85] de-

signed a framework for bandwidth sharing using markov decision processes while

taking other parameters such as network conditions into account. However, they

evaluated their framework only using simulation, whereas our objective is to be

build a working system.

Cool-Tether [137] presents a cloud proxy based system, which builds WiFi hotspot

using multiple smart phones in vicinity to provide high speed data rate on a laptop

client. Cool-Tether minimizes the energy consumption of smart phones by send-

ing/receiving bursty HTTP traffic coordinated by a stripper module running on the

laptop for uplink traffic and using a cloud based proxy for downlink traffic. Cool-

Tether improves upon COMBINE [29], a similar architecture proposed earlier that

attempts to increase the web access performance without giving any consideration

to energy consumed in the mobile devices. Both of these systems are different from

Unity from both the architecture perspective and the target application scenarios.

While COMBINE and CoolTether work on the assumption that all the peer devices

are owned by or closely associated with the user, in the case of Unity, all the col-
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laborating peers (devices) will benefit by downloading the mutually desired content.

Recent work, MicroCast [88] targets the specific problem of video streaming using

multiple co-located phones. Unlike Unity, MicroCast is implemented using features

of custom ROM and does not address issues, which come from implementation on

off the shelf phones.

Also, Unity uses mobility profiles to find encounter opportunities, which will be

complementary to all previous collaboration-based approaches.

4.3 Local Content Sharing Patterns

Due to bandwidth constraints and to save data costs, people tend to share files locally

using limited range technologies such as Bluetooth and WiFi. However, there is no

current research study about local content sharing patterns and preferences of mobile

users. Following are some open questions about local sharing among mobile users.

1. What is the typical file size or workload size transferred?

2. What are different types of files transferred by people?

3. How much frequently do people use local sharing methods?

We believe that the answers to above questions will lead to efficient design choices

for making content sharing mechanisms more effective.

4.3.1 Data Collection

We developed a local file sharing application called as WiFiShare for Android phones

and published it on Google play [11, 12]. WiFi have two different modes i.e. infras-

tructure and adhoc. In infrastructure mode, WiFi-enabled mobile phones require an

intermediary access point to communicate with each other. In adhoc mode, inter-

mediary access point is not required and they can communicate directly. There are
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many mobile phones, which do not support WiFi Adhoc mode (popularly called as

WiFi-Direct). However, many phones support WiFi hotspot functionality that can

convert a mobile phone as a WiFi access point. WiFiShare utilizes WiFi hotspot to

enable communication between two different phones i.e. one of the phone is used as

WiFi client and other one is used as WiFi client with access point capability. We de-

veloped a limited capability version of WiFiShare called as WiFiShare-Client, which

can only be used as a client [12] for the mobile phones without hotspot capability.

We have enabled logging in both versions of WiFiShare to understand user’s

local sharing patterns. In each data transfer session of WiFiShare , one of the

phones becomes source of content and send data to other phone i.e. content receiver.

On the content sender and receiver side, logging included data transfer session start

time, data transfer session end time, transferred file names with their respective

size information, and unique user ID information. These log files were automatically

uploaded to our server, whenever user connects to a WiFi-based Internet connection.

4.3.2 Data Analysis

The number of user installs for WiFiShare were approx. 17K in about six months.

Nearly 50% of user installs in WiFiShare came from devices, which were running

Android 2.3 and rest of them came from devices running Android 4.0 and beyond.

We have collected all the log files received in the time period from Dec 2012 to May

2013. We have found approx. 1, 65, 170 data transfer sessions from sender side logs

and 1, 84, 684 data transfer sessions from receiver side logs. It is expected that there

will be high overlap of data transfer sessions between sender and receiver side due

to redundancy in logging. In total, we have received logs from 1212 users. We did

not receive logs from other users due to lack of a WiFi connection.
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File and Session Size

WiFiShare provides option to send one or multiple files in a data transfer session. We

extracted all the file names with their respective size for each data transfer session.

Figure 4.2 shows the distribution of all the files transferred using WiFiShare . We

found that median file size transferred was 36 MB, 75th percentile was 102 MB, and

98 percentile was 702 MB. High file size indicates that users mostly share media files

among them.

Figure 4.2: CDF of file size transferred using WiFiShare

The total amount of data transferred in a single data transfer session is called

as total workload size. Figure 4.3 shows that nearly half of the sessions had a total

workload size of less than 100 MB where as nearly 8% of the time, total workload

size was greater than 600 MB. Some of the sessions had large workload size because

users transferred large size multimedia files or a complete directory containing many

files. Next, we analyzed the distribution of number of files transferred per session

from receiver side logs. Most of sessions (nearly 79%) had only one file transfer, 18%

of sessions had 2 � 5 file transfers, where as rest of them had more than five file

transfers.
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Figure 4.3: PDF of total workload size of all the sessions extracted from receiver
side logs

File Types

Figure 4.4 presents the distribution of file types in WiFiShare . In previous subsec-

tion, we found that median file size was about 38 MB and according to Figure 4.4,

approx. 44% of the files were mp4 (video) files. It means that most users use

WiFiShare to exchange videos more often than audio/songs (mp3). Surprisingly,

approx. 17% of files transferred had an extension of Android application package

(apk). However, it was due to the fact that Android does not allow exchanging of

apk files using in-built local sharing mechanisms such as Bluetooth. Nearly, 78%

of files, which were exchanged using WiFiShare were media files including audio,

images, and video.

User-specific Sessions

From WiFiShare logs, we found that how frequently users exchange content with

each other. Figure 4.5 presents the distribution of user sessions from both send

and receive logs. Nearly 50% of users had more than 6 sessions, where content has

been sent to other users and nearly 10 sessions where content was received. We have
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Figure 4.4: Distribution of file types, which were transferred using WiFiShare ,
mp4 format was the most popular among people. Numbers on the bar indicates the
percentage

found similar pattern from both send and receive logs as a large number of sessions

are redundant among them i.e. a session is recorded on a sender as well as receiver

side. Nearly 20% of users were very regular in using the application and participated

in more than 200 sessions individually.

Figure 4.5: CDF of number of file transfer sessions per user in WiFiShare using
both send and receive logs
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4.3.3 Outcomes

Logs collected from WiFiShare application gave us insights on user’s local and op-

portunistic content sharing patterns. Some of the main outcomes from the analysis

were, people transfer large size files and most of these files were multimedia. Among

multimedia, there were more videos exchanged than mp3 files. Also, we have ob-

served that users do multiple content transfer across different days.

4.4 MobiShare

Mobile users use limited range communication technologies to transfer content with

each other. This is primarily motivated from two facts i.e. due to limited bandwidth

of cellular connection and similar content interests of people who meet with each

other frequently. However, there are several real-world limitations associated with

local content sharing mechanisms, which need to be solved. Some of these limitations

are following:

1. There is no effective content search mechanism and that’s why, users do not

have any knowledge of content stored by their friends. Traditionally, delay

tolerant networks enable content search using a query routed in a network

consisting of mobile phones. However, this is impractical due to lack of partic-

ipation by relay peers, high energy consumption, etc.

2. Users have to manually keep track of their meeting time with friends for ex-

changing content and they are likely to miss many rendezvous opportunities of

content exchange due to lack of an automatic notification mechanism.

3. Users do not have any knowledge of time duration in which they will find and

receive content from their friends.
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To make local content sharing ubiquitous, we propose a system MobiShare, which

facilitates searching and local sharing of content using mobile phones. MobiShare

system has two components - mobile application running on the phones and the

cloud service. The cloud stores information about user’s social network, content

that is shared by users, and location information of mobile users. Information flow

in MobiShare can be classified as control and data. All the messages exchanged

between mobile phone and the Cloud are part of control information, where as actual

content is called data information, which is transferred using WiFi or Bluetooth.

Apart from scalable content search, the cloud sends notifications to both content

source and content requestor whenever they are in vicinity. Different steps for content

exchange in MobiShare are shown in Figure 4.6. One of the novelty of MobiShare is

that the control information is very small in size (utmost few KBs) as compared to

actual data, which can be communicated using limited bandwidth 2G connection.

Figure 4.6: Detailed system design and information flow in MobiShare
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4.4.1 System Details

In this subsection, we will describe various components, which are part of mobile

application and the Cloud in MobiShare system.

Social Network: There are following two concerns which makes a mobile user

reluctant to use a local P2P content sharing service.

1. User who owns the content has to spend resources (such as computational

resources, time, battery etc) to transfer it to interested user. Due to lack of

adequate incentives, source takes it as extra burden and typically does not

allow it.

2. The user who receives the content from an unknown source (i.e stranger) is

typically not sure about the quality or authenticity of the content. For instance,

she may fear that transferred content from an unknown source could be virus

or a malware.

MobiShare tries to remove above concerns by allowing user to share the content

within their social network only. The intuition behind using social network informa-

tion is that if users are known to each other, then they will be more willing to spend

their resources for content exchange. Also, there will be high level of trust between

socially connected people. MobiShare forms its own social network for its users, us-

ing a combination of phone contacts and Facebook friend list. For instance, users A

and B will be considered socially connected in MobiShare if they are either friends

in Facebook or have their phone number listed in each other’s mobile contacts list.

We bootstrap weights of social links using the previous communication happened be-

tween a pair of users (e.g. SMS exchange, call records, Facebook messages). These

weights further evolve when users start exchanging content with their friends.
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Shared Content: Mobile application provides user an option to select the con-

tent that she wants to share with her friends using MobiShare . Accordingly, meta

data attributes of all the selected files such as name, size, type, genre, album name,

artist name are extracted and synced to the Cloud (Refer snapshot 1 in Figure 4.7).

Mobility Profiles : MobiShare uses PlaceMap framework to build mobility

profile of users using energy-efficient and widely available location sensing frameworks

i.e. GSM (Cell ID) and WiFi (if available), which are available on feature phones

as well as smartphones. Here, we briefly describe the usage of mobility profiles as

part of MobiShare system. Since, content exchange can only happen when two users

are in close proximity, MobiShare uses the periodic location updates received from

users’ mobile phones to build mobility profiles which have fine-grained information

of all the places visited and their respective arrival and departure time.

Several studies have shown that a week worth of mobility profile can cover most

of the places, which are regularly visited by a mobile user [73]. After a week, mobile

application receives mobility profile built by the Cloud and store it locally. This

mobility profile is used as a reference point to track user’s arrival and departure time

from the places she visit. After this, location updates are sent intermittently i.e.

only when user arrives or departs from a place. If mobile application detects that

the user is visiting a new place that do not exist in mobility profile, it start sending

regular location updates to the Cloud. Intermittent location updates reduces the

energy consumption as well as as data consumption.

To detect physical proximity of the users, MobiShare need to find their presence

at same place at the same time. Whenever, a set of users are present at the same

place and at the same time, we call it as encounter or interaction between those

users. MobiShare builds a place mapping matrix between mobility profiles of users

to find similarity between places and tracks the time at which they are present at

the same place. Further, it uses historical mobility profiles to predict encounter
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(interaction) time of users who are interested in content sharing with each other. A

detailed description of encounter detection and prediction algorithms are given in

Section 4.5.

Content Search: The Cloud aggregates global information of available data,

across all users, which can be searched in real-time using mobile application. Mo-

biShare only allows searching of content within the social network of the user who

is requesting the content i.e. content requestor. After searching for the content,

the Cloud also predict encounter time between content requestor and content source

to compute the expected delivery time using the historical mobility profile of users.

MobiShare estimates expected delivery time of content from each source, which is a

difference between predicted encounter time and the time at which content search

was performed. All the content sources are ranked based on increasing expected de-

livery time to give an estimate of the time by when the content requestor can expect

the content to be delivered.

Notification and Content Sharing : Once, the Cloud detects encounter

between content source and content requestor, it send a notification (SMS) to mo-

bile application, which initiates neighbor discovery using Bluetooth or WiFi. Some

mobile OSes like Android do not permit automatic device discovery and require user

consent for security reasons, MobiShare prompts user to give permission in such

cases. If the content source or content requestor is not found in the vicinity, commu-

nication interface is switched off automatically, until a new rendezvous opportunity

arrives. Dynamically switching networking interfaces, minimizes the overall energy

consumption of MobiShare .

4.4.2 Usage Scenario

Usage Scenario: We explain the information flow in MobiShare using a usage

scenario of the system. Let Alice, Bob, and Carol be three unique mobile phone
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Figure 4.7: Snapshots of the MobiShare mobile application running on a Samsung
Galaxy Y.
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users, who are also socially connected with each other. Suppose, Alice wants to have

a video “V” but is unaware of who among her friends has this video. Following are

the steps, that Alice will follow to get the video “V”, using MobiShare:

1. Alice opens the MobiShare mobile application and searches the video “V” by

specifying a set of keywords, similar to a Google search query. (Refer Snapshot

2 in Figure 4.7)

2. The application requests the Cloud to search video “V” in the social network

of Alice and finds matches which are lexically similar to the search query.

3. Assuming that the video “V” is available with both Bob and Carol, the Cloud

predicts the encounter time of Alice with Bob and Carol by looking at mobility

profiles of all the three users. After predicting encounter time, it computes the

expected delivery time and ranks the search results based on delivery time, and

returns the sorted results to the mobile application.

4. From the returned results, Alice selects the user(s), say Bob from whom she

wants to take the video (Refer Snapshot 3 in Figure 4.7).

5. The mobile application informs the Cloud about the intent that Alice wants

to receive the “V” from Bob.

6. The cloud thereafter tracks location updates of Alice and Bob to infer the time

when they come in physical proximity and then, send notifications to both

users (Refer Snapshot 4 in Figure 4.7)

7. After reception of the notifications, both the devices starts neighbor discovery

to find each other and exchange the video “V” if the discovery is successful. If

the discovery is unsuccessful, the short range communication is switched off to

save energy and then periodically turned back on to recheck.

116



4.5 Finding Encounters

One of the core part of MobiShare is to find or predict whenever a user is expected

to meet another user, who has the desired content. PlaceMap produces mobility

profiles of the users from raw location data such as Cell ID, WiFi etc. For example,

mobility profile for user Ui and Uj will be represented as follows:

Ui = tpP1, a1, d1q, pP2, a2, d2q, ..........................pPn, an, dnqu

Uj = tpP1, a1, d1q, pP2, a2, d2q, ...........................pPn, an, dnqu

To find encounters, we need to build a mapping between places across two users’

mobility profiles. For instance, if a user Ui visits a place Pi from 9:30 to 17:30 and

another user Uj visits a place Pj from 11:00 to 18:00 and if it can be established that Pi

and Pj correspond to the same place, then for Ui and Uj, encounter place is Pi (=Pj)

and encounter time is 11:00 to 17:30. In this section, we will presents algorithms to

build place mapping, finding encounter time, and prediction of encounter period.

4.5.1 Place Mapping

In MobiShare, mobility profiles are built using heterogeneous location data sources

and that’s why, building place mapping between two users’ mobility profiles is a

challenging task. In case of WiFi based mobility profiles, place signature consist of

a set of WiFi APs observed by user. These set of WiFi APs will be similar for every

user at the same place and Tanimoto coefficient is used to find similarity between

place signatures and finally, build mapping between places [152, 91].

For GSM based mobility profile, when two users belong to the same operator,

overlapping Cell IDs of respective places is used to infer similarity between places.

We define Cluster Similarity Index (CSI) score to infer similarity between places.

CSIpPi, Pjq �
PiXPj

minp|Pi|,|Pj |q
where Pi P Ui and Pj P Uj
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CSI score between two places is defined as the ratio of number of common Cell

IDs found to the minimum of total number of Cell IDs in those places. This is the

same metric which is used for finding cluster similarity in PlaceMap . Two places

i.e. Pi and Pj are considered as same if CSIpPi, Pjq ¥ δ. We have use δ equal to

0.5, similar to PlaceMap .

If the two users belong to different operators, there will be no overlap of Cell IDs

between two user’s places because each cellular operator has a different range of Cell

IDs. We resolve this problem by taking into account Cell ID geo-coordinates, that

are fetched using Google’s GeoLocation API1. Each place signature consist of a set

of Cell IDs, we compute centroid of a place by taking average of geo-coordinates of

all Cell IDs. It is common that GeoLocation API may not geo-code all Cell IDs, we

ignore these Cell IDs while computing average of geo-coordinates.

Further, we define a metric Inter Cluster Distance (ICD), which measures the

distance between centroid of two places. To differentiate between two places, using

ICD, we need to estimate a threshold distance such that ICD ¡ threshold will imply

different places and vice-versa. We used our collected data to estimate this threshold.

We selected pairs of Cell ID clusters, that belong to two different users and calculated

ICD between them. To find, if a given pair of Cell ID clusters belong to the same

place, we use ground truth generated using WiFi based mobility profiles. Table 4.1

presents percentile values of ICD for same as well as different places in MDC dataset.

In MDC dataset, we found that if two places are same then ICD is lesser than 1000

meters in nearly 95% of instances, where as for different places, ICD is over 1000

meters in nearly 95% of instances. In our future experiments, we use 1000 meter

as a threshold to determine if two Cell ID clusters belong to the same place or a

different place. A few notable exceptions were also observed, some pairs of different

1 http://code.google.com/p/gears/wiki/GeolocationAPI
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places had very less ICD (potentially due to physical proximity of the two places)

and some pairs of of same places had ICD higher than 1000 meter (potentially due

to error from GeoLocation APIs as it is populated using crowd-sourced data).

Percentile Values
Category 5th 25th 50th 75th 95th
Same Place 64.26 205.90 344.75 580.55 1478.80

Different Place 1714.22 16229.32 35462.75 61303.93 123455

Table 4.1: Distribution of ICD with same and different places in MDC dataset. All
the percentile values are in meters.

4.5.2 Encounter Time & Duration

We describe a deterministic way of finding encounters between a pair of users. The

Cloud maintains place mapping table for every pair of users in MobiShare . Mobile

application send updates to the Cloud, whenever a user arrives or departs from a

place and it infers if a pair of users are at the same place. For instance, if there is an

intent recorded by user Ui to take content from Uj. The Cloud track location updates

of both Ui and Uj and using mobility profile information, it infers corresponding place

information. Whenever, both Ui and Uj are found to be on same place according to

place mapping table, the Cloud send notification to both users.

The Cloud in MobiShare maintains historical mobility profiles of all the users.

For every pair of users, we find the encounter time and encounter duration based

on these historical mobility profiles and the Cloud stores them for future encounter

prediction described in Section 4.5.3.

4.5.3 Encounter Prediction

MobiShare predicts future encounter time to provide users a realistic estimate of

expected content delivery time. Predicted encounter is useful in other situations

such as loss of location updates and triggered location sensing. There are many
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studies, which aim to predict next places that a user is likely to visit based on

immediate previous history of visited locations [134, 64, 148]. However, there is a

limited research on predicting the arrival time and time spent at the visited places.

Burbey et al. [45] used a WiFi dataset to show that future places can be predicted

with approx. 90% accuracy using a Markov prediction model. However, predictor

based on Markov model did not provide good accuracy for arrival time prediction

due to frequent changes in arrival patterns of a user. Burbey et al. used a sequential

predictor based on Market basket analysis for arrival time prediction. Accurate

prediction of encounter time is further complicated by the fact that even if one of

the users deviate from usual mobility (places or arrival time), it will result in wrong

encounter prediction.

We propose an encounter prediction framework that is similar to Burbey et al’s

arrival time prediction model. Our prediction model predicts the encounter time

as well as encounter duration between two users based on historical data using

two metrics. First metric is interaction score, which measures how frequently (in

terms of days) a pair of users encounter with each other. A low interaction score

for a pair of users show that there is no regularity in encounters and it is difficult

to predict. The second metric is confidence score, which measures the probability

of encounter between a pair of users in a time interval based on previous history. A

higher confidence score means that a pair of users are more likely to meet in that time

interval or vice versa. Interaction score is equivalent to support and confidence

score is equivalent to confidence metric, which are frequently used in data mining

literature [28].

Further, proposed framework takes contextual information (i.e C) into account

to use appropriate history for encounter prediction. In current implementation, Mo-

biShare uses the type of the day i.e. weekend or weekday as a context information

because a user’s mobility is typically different on a weekday and a weekend [73, 152].
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Following is the step by step description of encounter prediction framework for any

two users (say A and B).

Step 1: Generate encounter sequences for every day in historical mobility pro-

files given a context C. An encounter sequence for a given day i consist of place

mapping with encounter start and end time information represented as following:

Ei
AB = tpA.P1 Ñ B.P2, s1, e1q...........pA.Pl Ñ B.Pm, sk, ekqu

Encounter sequences for all the history days are represented as follows:

EAB = tE1
AB, E

2
AB, ..............E

k
ABu

Step 2: Compute interaction score between A and B using historical encounter

sequences.

InteractionScorepA,Bq = countOfDistinctDayspEABq
countOfOverlappingDayspMA,MBq

Here, countOfDistinctDayspEABq represents the total number of days on which

A and B had an encounter and countOfOverlappingDayspMA,MBq represents the

number of days for which historical mobility profiles exist for both A and B. If

InteractionScorepA,Bq is greater or equal to α, then proceed to next step, otherwise

stop due to in-sufficient history.

Step 3: Divide the whole day’s time into 10 minute time slots and compute

encounter frequency of A and B in each time slot. Encounter frequency is defined

as the count of number of days on which A and B were found to be together at the

same place in the given time slot. Effectively, there are 144 different time slots in a

day and it is represented as shown in Figure 4.8.

Step 4: For each time slot i, compute the confidence score as a ratio of encounter
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frequency (fi) and number of overlapping days for which mobility profiles exist for

both A and B.

ConfidenceScorepiq = fi
countOfOverlappingDayspMA,MBq

Step 5: All time slots where ConfidenceScore is greater or equal to β are

selected as predicted time slots. The consecutive time slots are merged into a single

time slot as shown in Figure 4.8. The starting time of these time slots represents

the predicted encounter time and time difference represents the encounter duration.

If all the time slots have ConfidenceScore less than β, the algorithm refuse to

predict.

Figure 4.8: Representation of different steps in encounter prediction framework

4.6 Evaluation

In this section, we present trace-based offline evaluation results of encounter predic-

tion framework using MDC dataset described in Section 3.7 and complete system

evaluation results using data collected from real-world MobiShare deployment. We

deployed MobiShare with 16 participants in New Delhi (India) including graduate

and undergraduate students for a duration of 4 weeks. Participants had subscrip-

tions from five different cellular operators. MobiShare imported Facebook friend list
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Data Total Average (per User)
Number of GSM location updates 308680 19292
Number of WiFi location updates 31873 1992

Number of shared files 1766 110
Content request intents 250 16

Number of mobile contacts 2656 166
Number of Facebook friends 5264 329

Table 4.2: Descriptive statistics about the data collected as part of MobiShare de-
ployment with 16 participants

and mobile contacts of the participants to infer their social network. On an average,

participants had about 329 facebook friends and 166 mobile contacts.

To build the mobility profile of the users, mobile application scans and logs GSM

information every 1 minutes and visible WiFi access points (APs) every 10 minutes.

WiFi location information was collected for initial training as well as for generating

ground truth. In the first week, MobiShare mobile application provides the user with

an option to automatically sync location information to the Cloud at any interval

between five to thirty minutes and after that, the sync is triggered whenever there

is a arrival or departure from a place.

MobiShare participants shared total 1766 files (average : 110) with their social

network and there were total 250 file request intents were registered during deploy-

ment. Out of 16 users, 3 users had very limited or no WiFi data. For further analysis,

we considered data of only 13 users, who had minimum three weeks of WiFi data.

4.6.1 Offline Dataset Results

Figure 4.9 presents the heatmap to visualize the number of encounter days between

every pair of users in MDC dataset. If a pair of users have at least one encounter

of 10 minutes in a day, it is termed as encounter day. We have observed that there

are few pairs of users who encounter with each other very frequently, where as a

large number of pairs meet with each other occasionally. In MDC dataset, we have

found that nearly 35% of total pairs have encountered each other at least once in
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whole data collection cycle. This observation can be correlated with real world too,

the people who are work colleagues or studies in the same school encounter nearly

every working day where as some of the encounters are occasional i.e. meeting with

friends etc. The occasional encounters do not necessarily follow any pattern and very

difficult to predict in advance.

Figure 4.9: Heatmap representing number of encounter days between different user
pairs in MDC dataset

We use a week’s encounter history for training and based on that, predict the next

day’s encounters and stay period. To evaluate the accuracy of encounter predictions,

we define following metrics.

Correct Prediction : An encounter prediction is considered to be correct if

there is at least 10 minutes of time overlap between predicted stay period and ground

truth.

Wrong Prediction : An encounter prediction is considered to be false if there

is no overlap between predicted stay period and ground truth.
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Refuse to Predict : The encounter prediction framework can refuse to predict

if there is no time interval for whom ConfidenceScore is greater than β.

Stay Prediction Error : It measures the error in predicted stay period and

ground truth for a day. An encounter prediction framework should minimize in-

stances of errors.

StayPredictionError = p1� OverlappedStayPeriod
GroundTruthStayPeriod

q�100 whereOverlappedStayPeriod

is common time period between predicted and ground truth.

Our encounter prediction framework uses interaction score to measure previous

encounters between a pair of users and confidence score to measure the probability

of an encounter in a given time interval of 10 minutes. Using empirical observations,

we have found value of α equal to 0.4 and value of β equal to 0.5. α is used to

distinguish between pair of users, who meet very frequently or occasionally and

value of β provides a confidence threshold on the encounter time intervals.

Figure 4.10: Confidence score w.r.t. a day’s timeline for two user pairs in MDC
dataset. First pair of users stay are likely to encounter during non-office hours,
whereas second pairs of users are likely to meet during office hours

In real-world, some encounters last for a long period, where as some of the en-

counters last for very short duration. Using MDC dataset, we present examples to
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show capability of confidence score metric in capturing different kind of encounter

scenarios. Figure 4.10 shows the confidence scores of two different user pairs across

a day’s timeline using a week of data. First pair of users have a low confidence score

during office hours but, they are more likely to encounter each other during early

morning, evening, night, and during lunch hours. Second pair of users are more likely

to meet during office hours because they may be working in the same office or lab.

Similarly, Figure 4.14 presents the confidence scores of three user pairs across a day’s

timeline, who meet for short intervals during the day.

Figure 4.11: Confidence score w.r.t. a day’s timeline for three user pairs in MDC
dataset. All three pairs of users are likely to meet for short periods during the day

As shown in Figure 4.12, there were nearly 82% of instances on weekdays, where

our prediction framework predicted an encounter correctly using a week’s history.

The number of correct encounter predictions were nearly 73% on weekends, lesser

than weekdays due to increased uncertainty about people’s mobility on weekends.

There were about 15% wrong predictions on weekdays and nearly 18% on weekends,

which were due to deviations in one or both users’ mobility. The number of instances

of refusal of predictions were higher in weekends due to uncertainty and confidence

score for all time intervals were less than β.

Next, we found the stay prediction errors of all the predicted instances for both
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Figure 4.12: Histogram of encounter prediction results in MDC dataset. There are
more instances of correct predictions on weekdays as compared to weekend

weekdays and weekends. Figure 4.13 presents the distribution of stay prediction

errors, nearly 60% of the instances have errors less than 20%. In some of the cases,

stay prediction errors were large due to deviations in user’s stay pattern. For instance,

a user may leave office early on some of the days and that will affect stay prediction

error.

To understand the impact of threshold of confidence score (β) on encounter pre-

diction framework, we conducted multiple experiments with α value fixed to 0.4 and

beta varying from 0.4 to 1. We found that increase in value of β decreased the number

of correct predictions and increased number of refusals of encounter prediction. If

the value of β is very high, the framework could not find enough encounter intervals

to make prediction. For instance, value of β equal to 1 require both the users to be

present at the same place in same time interval on all the history days, before it can

be considered as one of predicted encounter time intervals. Number of wrong predic-

tions were reduced marginally due to higher confidence of encounter time intervals.

A lower value of β can consider all the time intervals as predicted encounter time

and increases error in stay prediction.
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Figure 4.13: Distribution of stay prediction errors in MDC dataset. For nearly
60% of the total instances, stay prediction errors were less than 20%

Figure 4.14: Impact of confidence score threshold (β) on the encounter prediction
framework in MDC dataset

4.6.2 System Evaluation

In this section, we present end to end evaluation result of MobiShare system using the

data collected as part of deployment. We consider three different parts of MobiShare

for evaluation i.e. encounter prediction, encounter detection, and content transfer.
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Encounter Prediction

MobiShare used encounter prediction framework to provide an estimate of meeting

time between content requestor and content source. Whenever a content search is

performed using MobiShare , it predicts the expected encounter time for each content

source. All encounters were predicted with in time limit of 24 hours from time of

content search. We compared predicted encounter time of all these requests with the

ground truth using metrics described in Section 4.6.1.

Figure 4.15: Histogram of encounter prediction results in MobiShare deployment
using content search requests.

As shown in Figure 4.15, we found that encounter prediction framework was

able to predict an encounter correctly in nearly 74% instances. However, percentage

of correct predictions decreased on weekends by nearly 12%. We observed similar

patterns for encounter predictions in MobiShare as well as MDC dataset. In both

the datasets, predicting encounters were very challenging due to frequent deviations

in user’s mobility and our encounter prediction framework was only able to make

predictions for user pairs who meet frequently.
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Encounter Detection

MobiShare uses GSM information to build mobility profiles of users and finding

encounters between a pair of users who are interested in taking content from each

other. Even though, GSM information for continuous tracking is energy-efficient but

it may miss some encounter opportunities or generate notifications, when there is

no real encounter. There was no manual ground truth logged by users, we compare

encounter detection mechanism of MobiShare using the WiFi as a ground truth. We

define following metrics for comparison:

False Positive : A notification instance in MobiShare is considered as false

positive if it detects an encounter, however there is no encounter detected using

ground truth.

Detection delay : It is absolute time difference between encounter time de-

tected using MobiShare and ground truth.

In total, MobiShare generated 362 encounter notifications for 250 content re-

quests. There was no WiFi-based ground truth available, when approx. 18% of

notifications were issued. We have found that nearly 16% of notifications generated

by MobiShare were false positives. False notification were generated due to errors

in measuring place arrival originated from merging of places. We found that mean

detection delay of MobiShare was 10.14 minutes as compared to WiFi.

Content Delivery

We measured the total content delivery time, which is time difference between reg-

istration of content request intent by requestor and actual content delivery time.

Figure 4.16 shows that about 88% of the content requests, for which an encounter

was possible within a day, resulted into content delivery in less than 10 hours.
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Figure 4.16: CDF of content transfer delay for all content requests for which
encounter was possible within the deadline - nearly 88% requests results in content
exchange in less than 10 hours

4.7 Unity

In real-world, groups of socially connected people meet with each other frequently

at several places i.e. home, workplace, and even while commuting [152, 110]. Most

often, social connected and co-located people have similar content interest. For

instance, Figure 4.17 presents a heatmap to show multimedia content overlap in users

of MDC dataset. Even though, co-located people have similar interest, they download

content independently due to lack of a collaboration platform. Unfortunately, most

people use data connection (i.e. 2G) to download content, which is constrained by

limited bandwidth as well as high energy cost.

In the last sections, we have presented a system MobiShare that uses location

information to facilitate sharing of local content among different pair of users. Here,

we present a system Unity , which discovers social groups using mobility data, aggre-

gates user’s content requests, and facilitates collaboration among social connected
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Figure 4.17: Media file overlap among 38 users in publicly available MDC dataset.
User ID 14 and 15 have 133 common media files where as total 47 user pairs have at
least one common media file among them.

users in downloading a commonly desired content (workload) [84].

4.7.1 System Architecture and Details

System architecture of Unity is guided by various capabilities of commonly available

phones. Several implementation aspects are described subsequently with the design

details. Similar to MobiShare, Unity have two different parts i.e. mobile application

and the Cloud. The Cloud is used to maintain mobility profiles, social network, and

aggregating content requests. Mobile application works as a front end to the Cloud

and enables collaborative download between users whenever they are in vicinity.

Following are the various components that are part of Unity mobile application and

the Cloud. Some of these components are identical to MobiShare and we discuss

them briefly.

Social Network & Mobility Profiles

Unity take social network generated using combination of Facebook and mobile con-

tacts into consideration for facilitating collaboration among people. Mobile applica-
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Figure 4.18: System architecture of Unity , a group of mobile phones users collab-
orates with each other to download a mutually interested content

tion enables user login using Facebook, import phone contacts, and send it to the

Cloud. The Cloud stores mobility profiles of all registered users, which are created

using the location updates pushed from mobile application. The Cloud builds tem-

poral contact graph using mobility profiles of users and finds communities (groups),

who meet with each other frequently [126]. These social groups are used to help

users in finding collaborators. Similar to content request intent in MobiShare , a

user can specify an intent to collaborate with other users and Unity notifies all the

users, whenever they are in vicinity.

Aggregated Content Requests

Content requirements of a user are timely in nature. For instance, after a new

music album release, many people want to download album songs from Internet.

Unity mobile application is used to register a content request on the Cloud. The

Cloud aggregates content request from users and notifies them, whenever it find a

social group interested in downloading same content. For a user, automatic content
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(a) Home Screen (b) Device Discovery (c) Progress Status

Figure 4.19: Different screens for Unity coordinator: (a) shows the different modes and
variants of Unity, (b) Peers running Unity peer mode and (c) Transfer rate of downloading
and blocks received from other devices

request aggregation reduces the burden of manual asking and she can easily find

collaborators, who are interested in same content.

4.7.2 Mobile Application

Unity mobile application has two different modes for the participating phones i.e. a

phone can either act as a coordinator or a peer. The coordinator perform a device

discovery to find collaborators in vicinity, initiates the download, and coordinates

all the communication with the collaborators. The peer connects to the coordinator,

downloads a part of the desired workload and shares it with the coordinator. The

coordinator, within itself, also runs a peer instance to download and share part of

workload. Following are the different modules of the Unity mobile application:

User Interface

One of the main design principle of Unity mobile application is to abstract out various

complexities of the system from the user and provide a usable interface that can be

used for collaborative downloading. This module is responsible for showing different
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screens to user based on the selected mode i.e. Coordinator or Peer. Figure 4.19(a)

shows the home screen of Unity for coordinator that accepts different parameters

from the user to get started.

Controller Module

This module has different functionalities for coordinator and peer modes. It is used

to invoke different modules in both modes of mobile application. For instance, based

on user choice, it selects collaboration policy i.e Unity-Adapt or Unity-Default (de-

scribed in Section 4.7.2) and computes the download size for each peer. Additionally,

in the peer mode, it invokes local networking module on completion of download to

transfer the content to the coordinator.

Downloader Module

The main task of this module is to connect to the Internet using a cellular connection

and download desired content. This module is invoked by the controller module in

both modes, while passing URL address and byte ranges as an input. This module

also offers functionality for updates on download and cellular speed status to user

interface module to make it interactive. If download of a workload fails in between,

it restarts the download of a workload from the point it got failed.

Local Networking Module

Unity needs frequent message passing and data sharing among different peers. This

modules enables seamless data sharing and message passing between different peers

and coordinator using P2P data transfer technologies such as WiFi and Bluetooth.

This module is invoked by the controller module, whenever there is a need to do data

exchange across devices. WiFi and Bluetooth have different networking stack in the

phones and thus, require completely different and independent implementation.
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Unity-WiFi: This is a variant of Unity mobile application that uses WiFi for

local communication. WiFi (802.11) supports two different modes: Infrastructure

and Adhoc. In infrastructure mode, two or more WiFi enabled devices have to

use a intermediate WiFi access point (AP) to communicate between them because

AP is used for routing of data packets. In adhoc mode, two different devices can

directly (i.e. P2P) communicate with each other without any AP. Android started

supporting WiFi Adhoc mode after OS version 4.0, popularly called as WiFi-Direct.

There are large number of phones, with prior Android OS versions such as 2.2 or

2.3 [13]. Building our system with WiFi-Direct would have eliminated more than

70% of the total Android based phones. Further, WiFi adhoc mode results in higher

energy consumption as all the peers have to stay awake and send beacons to remain

connected.

As an alternative of WiFi adhoc mode, we use a novel utility provided by Android

called as WiFi hotspot, primarily designed for sharing the Internet connection of the

phone with other devices such as a laptop. WiFi hotspot utility is available on all

version of Android, which are running Android 2.3 or beyond. WiFi hotspot utility

uses 802.11 infrastructure mode that turns the phone into a WiFi AP and other

phones2 can connect to it. For simplicity, let us assume that coordinator is acting

as WiFi AP and all other phones connected to it are different peers. Figure 4.20

presents various control and data exchanges between a Unity coordinator and two

Unity peers, following is corresponding description:

1. The phone, which is running Unity coordinator creates WiFi AP and other

peers connect to it as clients.

2. As shown in Figure 4.20, coordinator launches device discovery to discover all

2 Android 2.3 based AP can support up to 6 connected devices whereas Android 4.0 supports up
to 7
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Figure 4.20: Sequence diagram of various control and data exchanges between different
phones in Unity-WiFi

connected peers and exchange a few control messages with them individually

to get information such as peer name. (Refer Phase 1)

3. After device discovery step, block information and URL is passed on to all the

peers using a control message and each of them start downloading their block

from Internet. By default, Android uses WiFi AP functionality for enabling

tethering and it may happen that peers start downloading using coordinator’s

data connection. To force the peers to use their own data connection, we change

the connection priority during download. (Refer Phase 2)

4. Coordinator can also check the status of block download in between by sending
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a status request.

5. On download completion, peers send their data blocks to the coordinator. On

receipt of blocks from all the peers, coordinator sends the remaining blocks to

every peer. Peers merge the received blocks with downloaded blocks to get the

complete content. (Refer Phase 3 and 4)

Coordinator, acting as WiFi AP, will be awake for whole download duration,

while the peers can operate in power saving mode (PSM) which consume negligible

energy [71] or even can turn off their WiFi to save energy when not in use. As shown

in Figure 4.18, star topology where one phone, acting as coordinator, communicates

with all the other phones results in smaller local communication bandwidth as com-

pared to the distributed architecture. Unity-WiFi requires that at least one person

in the group should have a phone with WiFi AP capability and all other phones

should have WiFi.

Unity-Bluetooth : To enable Unity mobile application on feature phones,

we developed a Bluetooth based local networking module. Bluetooth only supports

adhoc P2P connection. Coordinator runs Bluetooth server instance and the peers

run Bluetooth client instance. All control and data exchanges in Unity-Bluetooth

happen in the same order as Unity-WiFi. In the device discovery phase, each Unity

peer creates a bluetooth socket with a service record3 and listens for incoming con-

nections whereas Unity coordinator connects with them subsequently and exchanges

information such as peer name as shown in Figure 4.20. Bluetooth server stores all

the UUIDs with peer names for future communication. Unlike Unity-WiFi, it does

not require changing data priority on different peers.

3 Unity has a common service name and unique UUID number for each peer
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Collaboration Schemes

As described in controller module, Unity mobile application has two different col-

laboration schemes - Unity-Default, Unity-Adapt. Unity-Default divides the desired

workload of size d into equally sized blocks. If there are n devices participating in the

download, block size, to be downloaded by each peer, will be d{n. This scheme has

advantage in terms of fairness as all the collaborating peers will incur equal amount

of data connection expense. However, in cellular network conditions, it is usual that

some nearby peer may be experiencing poor cellular network conditions resulting

in low download rate. In such cases, this scheme will result in increased waiting

time for Unity coordinator and other peers due to the peer who is experiencing low

throughput. Our experiments show that for large downloads, this incremental wait

could be several minutes thus correspondingly increasing the energy consumption as

well.

To reduce this waiting time, Unity uses an algorithm, which adapts to changing

network conditions termed as Unity-Adapt. For a workload of size d, Unity-Adapt

divides it into equally sized blocks of size k4. Unity coordinator assigns each peer

a single block to download at a time and the peer is expected to request another

block to download whenever it finishes downloading 80% of the assigned block. Unity

coordinator will keep on allocating the blocks dynamically until all the blocks are

assigned. Thereafter, Unity peers will send all the downloaded blocks to Unity

coordinator together to minimize control overhead and frequent connections.

4.8 Evaluation

In this section, we present results from evaluation of Unity while running on Android

phones. Due to lack of a deployment, we do not provide any evaluation result from

4 Value of k in this case is typically greater than the number of collaborating devices
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the Cloud implementation. However, Unity uses Cloud-based notification mechanism

similar to MobiShare . First, we define some of the evaluation metrics for Unity. Total

download time is the time taken by Unity to collaboratively download a workload

and deliver it to all the collaborating peers. From total download time, we compute

effective download rate which is equal to workload size divided by total download

time. Our evaluation experiment consists of four Android phones, three of them

manufactured by HTC and one by Samsung. All the phones were running Android

2.3.3 OS.

4.8.1 Download Rate vs Workload Size

To evaluate download rate in Unity with varying number of collaborating devices

and varying workload sizes, we downloaded five different workloads i.e. 3 MB, 6 MB,

9 MB, 12 MB, 15 MB with default collaboration policy. Number of collaborating

devices were varied from 2, 3 and 4 for each of the workload. For each download

instance, the download rate of individual devices are computed from the time taken

by them to download the assigned workload and effective download rate of Unity

is computed. In case of Unity-WiFi with 3 devices, as shown in Figure 4.21(a),

effective download rate increases linearly with workload size. Unity download rate

is comparatively low for smaller workloads as local communication overhead for col-

laboration across different peers takes significant time. However, with increasing

workload size, this overhead becomes negligible. Similar trends were observed in the

case of Unity-WiFi when used with 4 different devices, as shown in Figure 4.21(b).

For comparison purpose, we define a baseline download rate that is equal to

the highest download rate among peer devices assuming that a given peer would

have downloaded the complete workload at the same rate as it performed while

downloading part of the workload. In the case of 4 devices, Unity-WiFi makes

download faster by a factor of approx. 1.5 for smallest workload (3 MB) and a factor

140



(a) Download rate with 3 devices (b) Download rate with 4 devices

Figure 4.21: Download rate of Unity-WiFi with different workloads and total 3 and
4 collaborating devices, D1, D2, D3, and D4 represents the individual device’s estimated
download rate.

of approx. 3 for the largest workload (15 MB), as compared to the baseline download

rate. In the case of Unity-Bluetooth with 4 devices, download rate increased by a

factor of 1.8 for the smallest workload and a factor of 2 for the largest workload as

compared to the baseline download rate (refer Figure 4.22(b)). In Unity-Bluetooth,

download rate of Unity increased marginally when workload size is increased mainly

due to the higher overhead with Bluetooth. We also observed that some of the

devices in Unity-Bluetooth experiments downloaded with a slower rate resulting in

higher total download time and smaller improvements in effective download rate.

4.8.2 Overhead Comparison

Total download time for Unity consists of workload downloading time from internet,

local sharing amongst collaborating devices and merging the shared workloads. It is

useful to accurately quantify the overhead caused by different Unity operations w.r.t.

total download time. For this purpose, we ran three instances of workload (12 MB)

using Unity and collected logs with high resolution time intervals for these activities.

Average overhead % across the 3 instances for Unity-WiFi and Unity-Bluetooth is

shown in Figure 4.23.

We observed that much of the overhead in Unity is dominated by local networking
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(a) Download rate with 3 devices (b) Download rate with 4 devices

Figure 4.22: Download rate of Unity-Bluetooth with different workloads and number
of collaborating devices, D1, D2, D3, and D4 represents the individual device’s estimated
download rate.

Figure 4.23: Overhead % comparison between Unity-WiFi and Unity-Bluetooth

module for exchanging control and data messages across different devices. As a result,

overhead % using WiFi is smaller than using Bluetooh due to the corresponding

difference in data transfer rates (WiFi: 1.5 - 2 MBps and Bluetooth: 450 � 480

KBps) [71]. This difference in data rate also explains the reason for lower increase

of download rate in Unity-Bluetooth as shown in Figure 4.22.

4.8.3 Measuring Impact of Unity-Adapt

Due to variable cellular network conditions, one or more devices may download at a

lower rate in Unity , thereby increasing the overall download time. As an instance,
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in Figure 4.22(b), device D4 downloaded with slower rate as compared to the other

3 devices. To avoid such a situation, Unity-Adapt divides the whole workload into

smaller block sizes and keeps assigning them to the collaborating peers based on their

download rate. Empirically, we found that block size equal to 1 MB works well in

Unity and used it for these experiments. With 3 collaborating devices, we gave Unity

a workload of 12 MB to download in three different instances. Across all of these

instances, average downloads rate of the three devices were 5.94 KBps, 8.14 KBps and

10.54 KBps for D1, D2 and D3 respectively. On an average, Unity without adaptation

downloaded the whole workload in approx. 692 seconds. However, when using

Unity-Adapt, total download time was reduced to approx. 505.78 seconds resulting

in approx. 27% improvement. Additionally, the workload downloaded by a peer on

an average was representative of their download rate i.e. D1 (3 MB), D2 (4 MB) and

D3 (5 MB).

4.9 Discussion

Multiple people, specifically those who have similar interests typically inferred by

social network or geographic proximity, have overlapping interests in desired content

such as multimedia songs and videos. Previous studies specifically for India showed

that even people with limited academic background transfer multimedia content over

Bluetooth [139]. However, most often people tend to download the same content

individually from Internet or relies on manual asking to their friends to get content

locally. In countries like India, more than half of mobile web users have access

to Internet using their mobile phones only and most of them uses low bandwidth

connection such as 2G. There are lack of systems, which can support collaboration

among people for content sharing as well as downloading of content from Internet.

Lack of scalability in the current local sharing mechanisms, for large number of

users and diverse content types, is addressed in this work through the proposed Mo-
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biShare system with the end goal of making content sharing ubiquitous. Unlike

previous work in opportunistic networks,MobiShare uses hybrid architecture, where

the Cloud acts as a control information gateway and facilities sharing between mobile

peers. Use of the Cloud enables scalable content search and allows content-requester

to know in real-time if she can get the desired content and in how much time. Due

to limited battery of mobile devices and lack of incentives for relay peers, MobiShare

currently only allows direct (1-hop) transfer of content between source and destina-

tion.

MobiShare used PlaceMap algorithms to build mobility profiles of the users. His-

torical mobility profiles are used to predict future encounters. Our evaluation result

showed that MobiShare can predict encounters correctly in approx 70 � 80% of in-

stances based on different contexts i.e. weekday or weekend. However, encounter

predictions do not capture many non-frequent rendezvous opportunities, which hap-

pen in real-world. MobiShare uses incoming location updates from mobile applica-

tion to detect encounters between two interested users in real-time. MobiShare used

many optimizations to minimize energy consumption such as notification mechanism

to switch appropriate interface (Bluetooth/WiFi) dynamically and triggered location

updates only, when there is an arrival or departure from a place. In our real-world

deployment with 16 users, MobiShare was able to satisfy 88% of total requests by

delivering content in less than 10 hours.

Further, we presented a system Unity that enables collaboration between co-

located and socially connected users to download mutually desired content from

Internet. Similar to MobiShare , the Cloud is used for aggregating content requests

and notifying a social group, whenever they are in vicinity. Unity is implemented as a

complete system for Android and is evaluated for effectiveness on different workload

sizes and varying number of collaborating devices. Users of Unity benefit by incurring

lower costs for data connection as well as multi-fold increase in download time.
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While current work on Unity is focused on using limited bandwidth connection

(2G) to download content from Internet, architecture and implementation of Unity

would work in the same manner if some of collaborating peers have access to high

bandwidth connection such as 3G. In such scenarios, Unity-Adapt requests peers

with higher bandwidth to download larger chunks of the content thus resulting in

further performance improvement.

Finally, proposed systems i.e. MobiShare and Unity provide an ideal social-

collaboration platform to share or download content. There is an increasing overload

of cellular data access on mobile operators [35]. As, there is large redundancy among

cellular data traffic, we believe that wide-spread use of MobiShare and Unity can

potentially solve the overload problem for mobile operators too.
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5

Aggregated Human Mobility Patterns in
Developing Countries

5.1 Introduction

In previous chapters, we have observed that user location is an integral part of an

individual’s context because it can be used to infer several key attributes of her mo-

bility i.e. places that she visits [63], frequent traveling routes, and interactions with

other people [152]. To offer personalized services, analyzing mobility characteristics

of an individual is important [55, 152], however combined location data from sev-

eral phones can provide interesting aggregated insights about movement patterns [5].

These large scale movement patterns can be used by several application scenarios

such as transportation, city infrastructure planning, and disease spread.

With the availability of massive cellular data and mobile phone users, studying

large scale mobility patterns have become easier and recently, there has been lot

of research work on using cellular data to characterize human mobility. There are

primarily two sources of location data collection using mobile phones, either using

an application running on the mobile device or from the cellular network. On the
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mobile phone end, there are various location interfaces such as GPS, WiFi, and

GSM (Cell ID) [162]. These location interfaces provide different level of accuracy

and availability. For instance, GPS provides fine-grained location of a person but do

not work in indoor environments [72]. In case of the cellular network, identifier of a

cell tower (Cell ID) is collected as part of Call Detail Records (CDRs) when a phone

connects to the network to make or receive a phone call, send or receive a SMS or

use data connection [82, 39, 69].

Both the primary sources of location data have their own trade-offs. CDRs col-

lected from cellular network provide an opportunity to perform analysis to find large

scale mobility patterns. Such large scale analysis can not be performed when data

is collected from individual’s mobile phones [52, 55]. However, there exist significant

amount of flexibility while collecting location from individual mobile phones such

as location sampling interval could be set to be high and there is less chance of

missing a place unlike CDRs. Similarly, high sampling of location information helps

in unveiling the place visiting patterns as well as accurately estimating place stay

duration.

In the past, researchers have worked on finding movement and place visiting

patterns using CDRs as well as fine-grained location data collected from individ-

ual’s mobile phones [82, 118, 63]. However, these studies have been performed with

datasets collected in developed countries such as USA and Switzerland. To the best

of our knowledge, there is no study which finds movement and place visiting pat-

terns of mobile users in developing countries. We hypothesize that human mobility

patterns in the developing countries could be different from those in the developed

world due to many reasons such as quality of transportation, socio-economic status,

and population density etc. In this chapter, we have performed a detailed charac-

terization of human mobility in a developing country using a CDR dataset. Our

analysis was targeted to answer following questions:
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1. What is the typical distance travelled by citizens in their day to day life?

2. How many people do long distance travel on weekends (holidays) as compared

to weekdays?

3. How many places are visited typically by mobile users and how many of these

places are regularly visited by them?

There is a tradeoff in finding human mobility patterns from different data sources

but, we believe that they offer complementary insights in human mobility. In addition

to answering questions and finding patterns from CDRs dataset, we have used fine-

grained data collected from individual’s phones to answer following questions:

1. How many new places are visited by participants among these two datasets?

2. How much time a participant is likely to spend on new place?

3. What is the preferred day and time to visit new places?

Finally, we have compared our findings with earlier studies done for United States

and Switzerland.

5.2 Background

In this section, we have covered related work from two dimensions i.e. mobility

patterns using CDRs, and place visiting patterns using CDRs as well as fine-grained

location datasets. Additionally, we have covered different application scenarios where

CDRs generated insights have been used.

Gonzalez et al [73] found that human mobility is highly redundant in spatial as

well as temporal dimension. Their work focussed on modeling an individual’s mobil-

ity pattern using a CDR dataset of approx 1, 00, 000 mobile users. CDR data have

also been used in diverse application scenarios such as forecasting socio-economic
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trends [69], characterizing urban areas [150], characterizing human mobility pat-

terns [39] and studying disease spread [156].

Isaacman et al analyze daily travel of people living in Newyork and Los Angeles

using a metric daily range which represents the maximum limit of distance travelled

by a person in day [81, 82]. Their work reveals several interesting patterns such as

people in Los Angeles travel twice as much as compared to New York during their

regular travel. They further observed considerable difference in people’s movement

across different days of the week (i.e. weekdays and weekends) as well as according

to different months of a year (i.e. summer or winter).

A mobile user is expected to visit several places in a given duration. Researchers

have worked on finding important places in an individual’s life using CDR data [80]

as well as fine-grained location data collected using individuals’ mobile phones [152,

160, 52]. Issacman et al [80] build algorithms to identify important places in a

person’s mobility history using CDR data. Using ground truth derived from few

volunteers, they have found that a person’s location such as “Home” and “Work”

location can be estimated with an error of about 1 mile. Using GPS data, Do et al

[63] observed that most people visit 2� 4 places every day and calendar (day/time)

has significant impact on the patterns of visited places. Additionally, there have

been significant research work on finding places from different location interfaces i.e.

GPS, WiFi, and GSM (Cell ID) and combining them with other sensors such as

accelerometer [91, 152, 56]. We have discussed them in Chapter 3.

5.3 Datasets

We have used following datasets to find mobility patterns.

1. Dataset 1 : This is a CDRs dataset, acquired as part of Orange D4D chal-
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lenge1. This dataset was collected in an African country, Ivory Cost, by one

of biggest mobile operator Orange. The original dataset contains 2.5 billion

records, calls and text messages exchanged between 5 million anonymous users

during a period 5 months (from December 2011 to April 2012). For our anal-

ysis, we analyze the mobility traces of 50, 000 people for whom, there is Cell

ID granularity level data. Even though, the complete duration of this data

is 20 weeks, however every two weeks, there is change in user IDs to preserve

privacy of mobile users. Unless and until specified, we have used the dataset

of first two weeks for our analysis. However, we have found that our findings

were consistent across all the different periods of 2 weeks in this dataset.

2. Dataset 2 : This is a self collected fine-grained location dataset in New

Delhi, India. We have developed a data collection tool for Android phones

and deployed it across 62 participants during March 2012 to November 2012.

The participants include students (graduate and undergraduate) and university

technical/administrative staff members. The participants were selected using

convenience sampling and only criteria used for recruitment was availability of

Android phone. Data connection costs were covered for all the participants for

whole duration of data collection. The complete description of this dataset has

been provided in Section 3.7.

3. Dataset 3 : It is a public dataset which was released as part of Nokia Mobile

Data Challenge (MDC) 2012 [100]. This dataset was collected in Switzerland

from 2009 to 2011 using Nokia N95 smartphones. Although, original dataset

was collected with 200 participants, they have publicly released data of only

38 participants. Dataset contains continuously collected mobility (GPS, WiFi,

GSM), social interactions (Call, SMS, Bluetooth), and phone usage (application

1 http://www.d4d.orange.com/home
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usage) data for all the participants. We have considered only mobility data for

our analysis. This dataset had about 80 million GSM records, 28 million WiFi

records and 15 million GPS records. For this dataset too, we have provided

complete description in Section 3.7.

5.4 Aggregated Movement Patterns

In this section, we analyze aggregated movement patterns of participants for all the

three datasets. For fair comparison, we compare movement patterns of dataset 1

with the earlier studies performed with CDR data [81, 82] and compare movement

patterns from dataset 2 and dataset 3 with each other. One of the metric to measure

human movement is daily range which represents the maximum distance traveled by

a person in day. For instance, if a person visits locations {C1,C2,C3,....Ck} in a day

then the daily range will be the maximum pair wise distance between these locations,

i.e.

dailyrangepdq = maximumpdistancepCi, Cjqq@i, j P p1, kq

Isaacman et al [82] used daily range to find lower bound of a persons’ travel and

even verified measurements of daily range with the ground truth provided by volun-

teers. Median daily range for a person represent the most frequent (regular) travel

that she takes most of the days i.e. home to workplace or vice-versa, where as max-

imum daily range represents the occasional large distance trips that she undertakes.

For instance, a study done in US [82] found that a person is more likely to do a long

distance travel on weekends.

5.4.1 Daily Ranges in Dataset 1

Table 5.1 shows different percentile values of median and maximum daily ranges

on weekdays and weekends across all the participants of dataset 1. We observed a
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significant variance in people’s mobility on weekends. Majority of users preferred to

stay at home during the weekends, while a small percentage of users chose to travel

large distances. Some of the main observations from our analysis are as follows:

1. On weekdays, 50th percentile of median daily range was observed to be zero

miles, which represents that more than half of participants were staying at

the same place (Cell ID) mostly. Similarly, 25th percentile of maximum daily

range is zero mile which represents that one fourth of total participants did

not moved in the whole duration of data collection (i.e. 2 weeks). However

on weekends, more than half of participants did not travel. Further, 75th

percentile of maximum daily range is 27.43 miles on weekdays and 6.96 on

weekends which shows that mobility range of many people remains limited on

weekends as compared to weekdays.

2. Median daily range values remains same up to 75th percentile on weekdays

and weekends in Table 5.1, signifying that most of people’s movement pattern

remains the same across weekdays and weekends. Higher value of 95th per-

centile in weekend median daily range suggests that some people travel farther

distances on weekends as compared to weekdays.

As described earlier, dataset 1 have 10 different time periods of two week each.

We observed that these observations are consistent across all other time periods.

5.4.2 Daily Ranges in Dataset 2 & 3

In dataset 2 and dataset 3, Cell ID information is sampled every one minute. In

dataset 1 , records are sparse as Cell ID is recorded only when a person uses the

service (i.e. call or sms). Therefore, dataset 1 may miss some of the location names

which are visited by users but did not get recorded. We have converted recorded Cell

IDs into corresponding geo-coordinates using Google’s crowdsourced database [162].
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Percentile Weekdays
Median

Weekdays
Maximum

Weekend
Median

Weekend
Maximum

5 0 0 0 0
25 0 0 0 0
50 0 4.48 0 0
75 1.47 27.43 1.65 6.96
95 43.58 469.75 229.91 466.61

Table 5.1: Median and maximum daily ranges computed from trajectories of 50, 000
users in dataset 1.

After that, we find daily range using Cell ID’s geo-coordinates for each participant.

Figure 5.1(a) presents box plot showing distribution of daily ranges of all participants

in dataset 2. The median daily range was nearly same on weekend and weekdays. A

large difference in 75th percentile suggests that people tend to stay at home during

weekends than weekdays in dataset 2. However, people who travel on weekends go

for a long distance as compared to weekdays due to high value of 95th percentile.

For dataset 3, Figure 5.1(b) show box plot of daily ranges on different types

of days for all users. The 50th, 75th, and 90th percentile daily range on weekends

are higher as compared to weekdays, which suggests that people tend to travel long

distances during weekends and this is higher than the dataset 2. This observation sug-

gest that on weekends, there are more people likely to travel in Switzerland (dataset

3 ) as compared to India (dataset 2 ) on weekends. Moreover, 50th percentile daily

range on weekday and weekends are less than 1 mile in case of dataset 2 where as it

is nearly three times larger in case of dataset 3 . This observation is consistent for

other percentiles too.

5.4.3 Weekday vs Long Distance Travel

In dataset 1, we observed that most of the people have limited movement on weekends

and some people travel long distances which is greater than their usual distance

traveled on weekdays. Further, we were interested in finding out day of the week,
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(a) (b)

Figure 5.1: (a) Box plot of daily ranges across all participants and days in dataset
2 ; (b) Box plot of daily ranges across all participants and days in dataset 3.

where people are more likely to do long distance traveling. We define long distance

travel as the maximum non zero daily range achieved by a participant in the given

time period of two weeks. For each day of the week, we count the number of users

who achieved maximum daily range. We ignored the participants whom daily range

was zero in the complete duration as they did not travel at all. As, dataset 1 is

divided into 10 different time periods, we computed the average for each weekday

across different time periods. As shown in Figure 5.2, we observed that most users

do their long distance travel either on a Friday or Saturday while Saturday being

the most preferable day. Interestingly, Sunday was one of the least preferred day for

long distance travel as very less people perform long distance travel on that day.

Due to limited number of participants in dataset 2 and dataset 3, we do not

analyze participant-specific long distance travel. Instead, we find which week days are

more preferable for long distance travels. Long distance travel could be participant-

specific, we define long distance travel as the travel which is more than 75th percentile

of a participants’ daily ranges in our analysis. Figure 5.3 shows percentage of daily

ranges which are termed as long distance travels among different days of the week.

Most of the long distance travel happens on Monday and Friday in dataset 2 where
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Figure 5.2: Weekdays vs average number of people who preferred traveling long
distance. Saturday was the most preferred day for long distance travel.

as Saturday and Sunday were the two most preferred days of long distance travel in

dataset 3. In case of dataset 2, most participants live in campus residence and they

usually go to their nearby home towns on Friday evening and return on Monday

morning, that’s why two weekdays i.e. Monday and Friday emerged out as preferred

days of long distance travel. In case of dataset 3, we believe that most people like to

travel long distances on Saturday or Sunday as they are likely to have holidays on

these two days.

5.4.4 Comparison with Existing Studies

From our analysis of dataset 1, we observed that daily travel range of people in Ivory

Coast is significantly lower than daily travel ranges reported in US cities [82]. Also, a

large number of population do not travel in their regular days (50th percentile is zero

for median daily travel range) while in all the US cities, 50th percentile for all users

was greater than 2 miles. This effect also could be attributed to some of following

reasons:

1. Cell tower density is sparse in Ivory coast as compared to US. Participants
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Figure 5.3: Weekdays vs average number of people who preferred traveling long
distance. Saturday was the most preferred day for long distance travel.

may be visiting different places but they do not get recorded due to absence of

CDR events.

2. The places to which participants travel may be very close to their home and

Cell ID do not change. For instance, many people may be living near to their

workplace.

3. There may be significantly high number of participants of a specific profiles

e.g. housewives, who do not travel regularly.

In case of Los Angeles and New York [82], it was noticed that people travel their

maximum distance on weekends i.e. Saturday and Sunday. They further considered

Friday as a part of weekend because a large number of people do long distance travel

on that day too. In our analysis, we observed that Friday and Saturday are indeed

two most preferable day for doing long distance travel with a surprising notable

exception of Sunday where less participants as compared to other weekend days do

long distance travel. In fact, number of people who traveled on Sunday is even

smaller than some of the weekdays in dataset 1.
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5.5 Aggregated Place Visiting Patterns

A person visits different places in a day and it is feasible to automatically discover

most of these places with the location information captured by mobile phones. While

number of visited places are different for every person, we are interested in analyzing

aggregated place visiting patterns across all three datasets. We have different modal-

ities of location data i.e. CDR, GSM, WiFi, and GPS in our datasets. For each of

these modalities, the place discovery algorithm should cluster Cell IDs or WiFi APs

according to physical places. However, clustering approach for each modality is dif-

ferent and expected to have varying level of accuracy. Following is a brief description

of clustering algorithms which are used to discover places:

1. CDR-based Clustering : The task of a place discovery algorithm is to cluster

Cell IDs observed by a person according to different physical places. CDR data

is very sparse and it is possible that many places, which a person visits may

not get discovered using the CDRs data. Previous studies have shown that a

user’s phone may connect to different cell towers even if she stays at the same

place [36]. We implement the algorithm presented by Isaacman et al [80] for

clustering Cell IDs which uses Hartigans leader algorithm to cluster nearby

Cell IDs with the help of a threshold distance (td). This algorithm takes into

account all the Cell IDs observed by a person in the given time period.

The inherent assumption in this algorithm is that the all the places are at

least td distance away from each other. Isaacman et al found that value of td

equal to 1 mile works well in the dataset which was collected in Newyork and

Los Angeles cities. To find a good value of td, we performed an experiment

where we varied the value of td from 0.5 mile to 5.5 mile and computed average

number of clusters for 50, 000 users. As it is seen from Figure 5.4, average

number of clusters nearly remains same, if value of td is equal or bigger than
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1.5 mile. We selected the value of td equal to 1.5 miles for further experiments.

Figure 5.4: Effect of changing td on the average number of places.

2. WiFi-based clustering : To discover places using WiFi data, we need to

cluster WiFi APs according to physical places visited by a person. The basic

assumption in WiFi-based clustering is that a person will observe different

set of WiFi APs in different places. We have used UIM clustering algorithm

presented in [152] which can cluster WiFi APs into a set of distinct places.

UIM clustering algorithm do not take signal strength into account to avoid

signal fluctuation problem and uses regularity in human movement to solve

partial scan problem [160].

3. GSM-based clustering: Unlike CDRs data, Cell IDs are logged at a fine-

grained interval (nearly 1 minute) in a mobile phone and it is less likely to miss

a place. However, clustering of Cell IDs w.r.t. physical places has challenges

such as Cell ID may change even when a user stays at the same place due

to various reasons such as network load, small time signal fading, and inter-

network (2G to 3G or vice versa) handoff. The change in Cell ID at the same

place is called as “oscillating effect” [36, 160]. To solve above challenges, we
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use Graph-based clustering algorithm (GCA ) described in Chapter 3. GCA

models the oscillating effect among Cell IDs using an undirected weighted graph

(movement graph) and then performs clustering with the help of heuristics

such as edge weights and node degree. The evaluation results, on two diverse

datasets show that GCA was able to correctly discover about 80% of places

corrected as compared to the ground truth generated using GPS/WiFi.

After finding places using above methods, we generate aggregated place visiting

patterns as follows:

5.5.1 Aggregated Place Visits in Dataset 1

We applied CDR clustering to find total places visited by different participants in

dataset 1. Due to sparseness in CDR data, it is not feasible to discover places

visited by a person on a daily basis. Therefore, we applied CDR clustering on

complete data of each participant to find places. As shown in Figure 5.5, about

29% of participants visit only one place in the whole time period. Large number of

participants (about 67%) visited at most 3 different places. Some participants visit

unusually high number of places. For instance 6% of participants visited more than

10 different places in a duration of 2 weeks. In real-world, there are some users (i.e.

taxi drivers) who are more mobile than others and visit large number of places.

In real-world, people are likely to visit many places but they may not visit all of

these places regularly. The most regular places for a person are likely to be “Home”

and “Workplace”, where she spends significantly higher amount of time as compared

to the places which are occasionally visited. Hereby, we define a metric place sup-

port value which is representative of regularity of a place in a user’s mobility. For

instance, support value of a place Pi for a given user Uk is computed as:

Support value (Uk, Pi) = Number of days on which Pi was visited by Uk/Total
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Figure 5.5: A histogram showing total number of places visited by participants in
dataset 1. While some participants visit large number of places, most of them (67%)
visit at most 3 places.

number of days for which data is available for Uk

After discovery of places, we compute a support value for each place. A place is

said to be regular place for a person if its support value is higher than a threshold (δ).

If value of δ is equal to 0.3, it means that a place is visited equal to or more than one

third of the total days. Figure 5.6 shows the histogram of number of participants

w.r.t. number of (regular) places when value of δ is fixed to 0.3. Majority of users

(approx 91% ) had at most two regular places in their mobility profile. For some

users, we did not observe any regular place which may be due to limited location

events (CDRs). Comparing Figure 5.5 with Figure 5.6, we conclude that while some

users may visit large number of places in a give duration, their regular places still

remain a few. Also, we were able to extract regular places from CDRs.

5.5.2 Aggregated Place Visits in Dataset 2 & 3

For dataset 2 and dataset 3, we find place visited by all the participants for every

day. Figure 5.7(a) shows the distribution of places visited by participants across all
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Figure 5.6: A histogram showing number of regular places visited by users. Ma-
jority of users (91%) had at most two regular locations in dataset 1.

days for two different location interfaces i.e. GSM and WiFi. On majority of days

(i.e. 83%), participants visit at most two places where as in nearly 14% days, they

visit 3 � 4 places every day in dataset 2.

In case of dataset 3, we observe a large difference in distribution of places visited

per day among WiFi and GSM. This difference comes from the fact that GSM-based

place discovery algorithm merges places which are very near to each other due to

high range of cellular towers. WiFi-based place discovery approach is able to find

two or more different places on different floors of the same building, this level of

granularity is not possible using GSM-based approach. For example, library and

academic building in a university campus will be situated near to each other and

though, WiFi-based place discovery algorithm will discover them as two different

places primarily due to limited range of WiFi APs, GSM-based clustering approach

may merge them and show it as a single place.

WiFi penetration is limited in developing countries and many places visited by

participants in dataset 2 do not have WiFi infrastructure. According to our esti-

mates, WiFi was available nearly 60% of time in the given data collection duration
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for dataset 2 , where as WiFi availability was over 90% in dataset 3 . That is why,

we don’t see a difference in places discovered by WiFi and GSM-based approach in

the case of dataset 2. However, this difference is evident in average number of places

visited in whole data collection duration. In case of dataset 2, the average number of

places visited by the participants were about 12.72 (ρ : 3.83) using WiFi data where

as 14.28 (ρ : 7.16) places were discovered using GSM data. The average number of

visited places were higher due to long duration of data collection in dataset 3 i.e.

101.31 (ρ : 50.68) places were discovered using WiFi data and 65.55 (ρ : 19.02) places

were discovered using GSM data.

(a) (b)

Figure 5.7: (a) Distribution of number of places visited by all the participants every
day in dataset 2 ; (b) Distribution of number of places visited by all the participants
every day in dataset 3.

While comparing places among datasets, participants in dataset 3 visit 3 � 4

places on more number of days as compared to dataset 2. The number of days where

a relatively high number of places (5�6) were visited came to be nearly same across

both the datasets using GSM interface. Typically in a person’s mobility history,

there are two regularly visited places i.e. “Home” and “Workplace”, that is why, for

majority of days, participants were restricted to at most 1 � 2 places.
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(a) (b)

Figure 5.8: (a) CDF of place visits on different days for all the participants in
dataset 2 and dataset 3 ; (b) CDF of place stay duration for all the participants in
dataset 2 and dataset 3.

Next, we find the day count of place visited for all the participants in complete

duration of data collection as shown in Figure 5.8(a). Most of the places (60�70%)

are visited only once and nearly 90% places were visited less than 10 times in whole

duration. These findings are consistent across both dataset 2 and dataset 3 . There

were some regular places (i.e. “Home”) in a person’s mobility which were visited

very often, evident from the long tail of CDF curve in Figure 5.8(a).

5.5.3 Infrequent Places

People are likely to visit many infrequent (new) places in their day to day life which

are only visited a few times in the given time period. These places may be shopping

center, restaurants, friend’s home, and holiday spots. Patterns emerging from visits

to these places can help in recommendation, advertising etc. In this section, we will

unveil patterns related to infrequent places in dataset 2 and dataset 3. We do not

consider dataset 1 for these experiments as it is likely that many of infrequent places

that a person visit may not get recorded by CDR events. For finding infrequent

places in dataset 2 and dataset 3, we consider all the places which have value of
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place support value less than 0.1, it means that they are visited on less than 10% of

days in whole duration.

Figure 5.8(b) presents the duration of stay for all the participants in infrequent

places. While, it is likely that participants spend significantly higher amount of time

in regular places, they spend limited time in infrequent places. The median stay

duration in case of dataset 3 using WiFi data was about 29 minutes where as it was

about 60 minutes using GSM data. We believe that this difference in median stay

duration between GSM and WiFi data is a reflection of merged places as described

in the last section. For dataset 2, the median stay duration was approx 30 minutes

for WiFi and 27 minutes for GSM. In case of dataset 3, we observed a high difference

in 90th percentile of stay duration, 158 minutes in the case of WiFi where as 540

minutes in the case of GSM. Our observations from both the datasets show that

most of the infrequent places visited by participants are only for short duration i.e.

median of the place stay duration is less than 30 minutes. However, when a person

visits farther places, it is likely that she will stay for a larger duration as shown by

90th percentile of GSM data.

As, we have observed in Figure 5.8(a), regular places are likely to be visited

on nearly all the days, where as most of infrequent places are visited only a few

times. We wanted to find out if there is a pattern in visits of infrequent places

w.r.t. different week days. Figure 5.9 presents the aggregated view of participants’

preferences about different days of week. We observed that Saturday was the most

preferred day for visiting infrequent places in both the datasets. Participants are

less likely to visit infrequent places on working days of week than weekends with

notable exception of Friday in dataset 3 and Thursday in the case of dataset 2. Also,

participants in dataset 2 are more likely to visit infrequent places on Sunday than

dataset 3.

We have observed earlier that participants spend limited amount of time (approx
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Figure 5.9: Histogram showing percentages of infrequent place visits of the partic-
ipants w.r.t. seven days of week. We have used GSM data of dataset 2 and WiFi
data of dataset 3 .

30 minutes) at infrequent places. One of the interesting questions to answer from

the dataset is to find if there is any dependency between place visited and time of

the day. In other words, at what time of the day participants are most likely to visit

infrequent places?

Figure 5.10: Percentage of infrequent place visits w.r.t. to day time across both
the datasets. We have used GSM data of dataset 2 and WiFi data of dataset 3

Figure 5.10 shows the percentage of places visited by participants across different

time intervals. We have used a time interval of one hour each, resulting in 24 different
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time intervals in a day. In dataset 2, participants are most likely to visit new places

during evening time (i.e. 18 : 00�19 : 00). However in case of dataset 3, participants

prefers to visit infrequent places during day time (i.e. 12 : 00 � 13 : 00), which

indicates that participants of dataset 3 visit new places primarily for lunch.

5.5.4 Comparison with Earlier Studies

Most participants (approx 65%) visited 4 to 6 number of important (regular) places

in the study done in Los Angeles and New York. In the case of Ivory coast dataset,

most of the users (68%) were restricted to only one place. These findings show

that mobile users in developing countries visit smaller number of places as compared

to their counterparts in US. One of the bias in the case of Ivory coast is that data

duration is only 2 weeks compared to more than 11 weeks data for US study. However,

we analyzed different time periods of data in the case of Ivory coast and found nearly

similar distribution for every time period. Also with the larger duration, number of

distinct places may rise but for a typical user’s mobility profile, number of regular

places are unlikely to change much. After comparing distribution of number of places,

our conclusion is that people in developed countries tend to visit more regular places

than those living in developing countries such as Ivory coast.

5.6 Discussion

According to MIT Technology Review [5], building techniques to analyze human

mobility patterns from location data collected using mobile phones will be amongst

breakthrough technologies in 2013. In this chapter, we found human mobility pat-

terns from two dimensions, first to find movement pattern of users and secondly, their

stay patterns using the places visited by them. Two of our datasets were collected

in developing countries i.e. India and Ivory Coast and we have compared mobility

patterns emerged from these datasets with studies done in US and Switzerland. Our

166



analysis with large-scale CDRs dataset showed that nearly half of people stay at

the same place on weekdays and even larger number of users have restricted human

mobility range on weekends. Also, a fewer number of people in developing coun-

tries were found to be traveling long distance on weekends as compared to developed

countries. Aggregated movement patterns especially on city-scale dataset can assist

in making critical policy decisions for variety of domains such as transportation.

We implemented algorithms to discover places from different kind of mobility

data such as CDRs, WiFi, and GSM. From our experiments with real-data, we

highlighted the tradeoff of using different kind of mobility data for finding places.

For instance, GSM-based approaches merges many places which are nearby but were

able to discover places, where WiFi is not available at a large scale. In CDRs data,

number of regular places visited are also smaller in developing countries as compared

to developed countries.

In case of place visiting patterns among participants in India and Switzerland,

we have found some similarities such as similar median stay duration and Satur-

day being the most preferred day of visiting infrequent places. Except Saturday,

people in India were more likely to visit infrequent places on Sunday where as in

Switzerland, it was Friday. There was a significant difference in arrival time pattern

for infrequent places i.e. most of visits to infrequent places were performed during

afternoon in Switzerland where as most of the visits were performed during evening.

The place visiting patterns are important for many applications such as advertising,

recommendations, and pollution exposure estimation.
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6

Conclusions

Sixty percent of total phones will be feature phones in 2016. Due to the absence of

many sensors and limited bandwidth connection, many feature phone users can not

use context-aware applications, which have become ubiquitous among smart phone

users. In this thesis, we described four different systems to bridge the growing gap

between feature phones and smart phones.

For Localization, we proposed CBS-based approach that removes the necessity of

war-driving or building a Cell ID database for GSM-based localization. Evaluation

using real-world traces showed that the proposed approach can provide reasonably

good accuracy, which is sufficient for many location based services. We have devel-

oped several location-aware application using CBS-based localization technique and

even built multi-modal techniques using Cell ID and GPS, which can minimize energy

consumption on smart phones. Hence, CBS-based localization is a promising solu-

tion, especially for feature phones and provides mobile users in developing countries,

an opportunity to access location based services without any extra infrastructure.

Next generation location-based services require high level information such as

places and routes, instead of raw geo-coordinates. As part of our PlaceMap system,
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we propose algorithms to discover places and routes using GSM information only,

which is energy-efficient compared to current alternatives i.e. WiFi and GPS. Our

evaluation on two long duration mobility datasets showed that proposed place recog-

nition algorithms were able to discover nearly 80% of places across both the datasets.

Also, most of the arrival and departure events from places were detected with in the

delay of 10 minutes and the median route distance error was 1.47KM . As, location-

based services require varying level of accuracy, we conclude that PlaceMap can be

used for applications, which require building level accuracy and can tolerate delay of

few minutes such as participatory sensing and mobile advertisement. Current mobile

operating systems do not provide APIs to infer and manage places, we envision that

PlaceMap can be used by future mobile applications as a building block for offering

place-based services.

Many mobile phone users still use limited bandwidth data connection and as a

result, they are forced to use local content sharing mechanisms. Using the data

collected from real users, we have found that people transfer large size files using

local sharing mechanisms and most of these files are multimedia. Among multimedia,

there were more videos exchanged than mp3 files. Our system MobiShare facilitates

local content sharing mechanisms by enabling scalable content search, encounter

prediction, and notifying interested users, whenever they are in vicinity. Results

from our deployment confirmed that use of MobiShare brings much more control,

reliability, and resource-efficiency as compared to totally distributed architecture.

Similar to MobiShare, we proposed Unity , which enables collaboration between

co-located and socially connected users to download mutually desired content from

Internet. The cloud acts as a control information gateway among different mobile

users, who are interested in collaboration. On mobile application side, Unity is

implemented as a complete system for Android and is evaluated for effectiveness on

different workload sizes and varying number of collaborating devices. Unity users
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will benefit by incurring lower costs for data connection as well as multi-fold increase

in download time, while reducing overall energy consumption. One of the side-effect

of both MobiShare and Unity is that they can potentially reduce the cellular data

load from the mobile networks by exploiting collaboration among people.

As an exploratory step, we analyzed three different mobility datasets to unveil

aggregated mobility patterns in developing countries. We found that some aspects

of people’s mobility in developing countries are different than developed countries.

We found significant differences in place visiting patterns too. We believe that move-

ment and place visiting patterns can be used by many application domains such as

transportation, city planning, and advertisement.

Finally, we believe that our learning and experiences from this thesis can help

future designers in building effective systems for both feature phones and smart

phones. Our future work will focus on collecting data from wide deployment of these

systems and making them more effective.
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personal environmental impact report, as a platform for participatory sensing
systems research. In Proceedings of the 7th international conference on Mobile
systems, applications, and services, pages 55–68. ACM, 2009.

[114] Kavitha Muthukrishnan, Maria Lijding, and Paul Havinga. P.: Towards smart
surroundings: Enabling techniques and technologies for localization. In In:
Proceedings of the First International Workshop on Location and Context-
Awareness (LoCA), SpringerVerlag, 2005.

[115] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath Sivalingam, and Jitendra
Padhye. Smartads: Bringing contextual ads to mobile apps. 2013.

[116] Samuel C Nelson, Mehedi Bakht, and Robin Kravets. Encounter-based routing
in dtns. In INFOCOM 2009, IEEE, pages 846–854. IEEE, 2009.

[117] Weiwei Ni, Jinwang Zheng, Zhihong Chong, Shan Lu, and Lei Hu. Location
privacy protection in the presence of users’ preferences. In Proceedings of the
12th international conference on Web-age information management, WAIM’11,
pages 340–352, Berlin, Heidelberg, 2011. Springer-Verlag.

[118] Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil,
and Cecilia Mascolo. A tale of many cities: universal patterns in human urban
mobility. PloS one, 7(5):e37027, 2012.

[119] Petteri Nurmi, Sourav Bhattacharya, and Joonas Kukkonen. A grid-based
algorithm for on-device gsm positioning. In Proceedings of the 12th ACM in-
ternational conference on Ubiquitous computing, pages 227–236. ACM, 2010.

181



[120] Petteri Nurmi, Sourav Bhattacharya, and Joonas Kukkonen. A grid-based
algorithm for on-device gsm positioning. In Proceedings of the 12th ACM in-
ternational conference on Ubiquitous computing, Ubicomp ’10, pages 227–236,
New York, NY, USA, 2010. ACM.

[121] Andrew Ofstad, Emmett Nicholas, Rick Szcodronski, and Romit Roy Choud-
hury. Aampl: accelerometer augmented mobile phone localization. In Proceed-
ings of the first ACM international workshop on Mobile entity localization and
tracking in GPS-less environments, MELT ’08, pages 13–18, New York, NY,
USA, 2008. ACM.

[122] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. Energy-efficient
rate-adaptive gps-based positioning for smartphones. In Proceedings of the 8th
international conference on Mobile systems, applications, and services, Mo-
biSys ’10, pages 299–314, New York, NY, USA, 2010. ACM.

[123] Jeongyeup Paek, Kyu-Han Kim, Jatinder P Singh, and Ramesh Govindan.
Energy-efficient positioning for smartphones using cell-id sequence matching.
In Proceedings of the 9th international conference on Mobile systems, applica-
tions, and services, pages 293–306. ACM, 2011.

[124] L. Perusco and K. Michael. Control, trust, privacy, and security: evaluating
location-based services. Technology and Society Magazine, IEEE, 26(1):4 –16,
spring 2007.
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