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Abstract

User requirement specification (URS) documents written in the form of free-form natural lan-
guage text contain system use-case descriptions as one of the elements in the URS. For few
application domains, some of the system use-cases in URS define services and functionality
which needs to comply with regulations pertaining to the application domain. In this paper, we
present a multi-step approach to automatically extract system use-cases from URS and construct
traceability links between system-uses and appropriate regulations in the regulatory documents.
We define lexicon-based, syntactic and semantic features to discriminate system use-cases from
other elements in the URS. We investigate the application of five semantic similarity methods
implemented in the SEMILAR semantic similarity toolkit to compute similarity between a given
system use-case with regulations in a regulatory document. We conduct a series of experiments
on real-world data obtained from software projects of a large global Information Technology (IT)
services company to validate the proposed approach. Experimental results demonstrate effec-
tiveness (accuracy of 83.3% for system use-case extraction and 72% for constructing traceability
links) and limitations of the proposed approach.
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Chapter 1

Introduction

1.1 Research Motivation

Software applications and information systems providing services to the users and supporting
business processes need to comply with the regulations related to the services and business
processes supported by them [2] [6] [12] [10] [7] [8] [9] [11] [13]. For example, information
systems in the health-care domain need to comply with Health Insurance Portability and Ac-
countability Act (HIPAA1) and applications in certain financial domain need to comply with
the Sarbanes-Oxley Act2. The need of software application compliance to laws and regulations
requires eliciting and addressing law related functional and non-functional requirements and
also maintaining traceability of specific laws with specific elements in the software artifact due
to regulatory changes [2] [6] [12] [10] [7] [8] [9] [11] [13]. Identification of elements within a
software to specific legal regulations and maintaining the traceability links (focus of the work
presented in this paper) as the system evolves is a non-trivial problem in the context of large
and complex software systems. Manual process of uncovering traceability links between soft-
ware artifacts and regulatory documents is not scalable, is tedious and error-prone due to the
large size and complexity of the software as well as the regulations. Automatic traceability link
recovery (compliance checking between software artifacts and regulatory documents) also poses
several technical challenges due to factors such as natural language text, terminology mismatches
between software domain and legal domain and ensuring adaptability to regular amendments
and revisions in regulatory documents. Compliance checking and verification and traceability
link recovery between software artifacts and regulatory documents is an area that has attracted
several researchers’ attention (refer to Section 1.2 on related work). However, the problem is not
fully solved and the work presented in his paper is motivated by the need to provide alternate
solutions and a fresh perspective to the stated problem. The specific research aims of the work
presented in this paper are the following:

1. To investigate lexicon-based, syntactic and special features for the purpose of extracting
system use-cases (for the next-step of compliance checking) from a software requirement
and design document.

2. To examine semantic-based textual similarity analysis techniques for linking elements in
the software artifact with specific laws in the regulatory documents.

1 http://www.hhs.gov/ocr/privacy/
2 http://www.soxlaw.com/
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3. To conduct an empirical study on real-world dataset obtained from an Information Tech-
nology (IT) service organization and validate the proposed model.

1.2 Related Work and Research Contributions

Extracting regulations and policies from free-form software artifacts and natural language text

in software domain is an area that has attracted several researchers’ attention. Automating the

process of linking sentences in software documents with legal requirements and documents is an

open research problem and we find few papers addressing the given problem area.

Bobkowska et al. analyze both lawyers’ and software engineers’ perspective and propose use of

common information space between software engineers and lawyers during requirements engi-

neering. The common information space will include basic knowledge of software engineering

for Lawyers, basic knowledge of law for software engineers and basic knowledge of difference

between these two. They propose collaboration of both stakeholders at the time of requirements

elicitation [2].

Breaux et al. illustrate use of semantic parameterization combined with extended methodology

to derive rights and obligations and to restate regulations text into restricted natural language

statements (RNLS). They employ manual extraction techniques using RNLS patterns to separate

the right or obligation phrase(s) from relevant constraint phrase(s). They identify conflicts

between rights and obligations [3].

Huang et al. present use of probabilistic network models in computing similarity score regu-

lations and requirements based upon the frequency and distribution of terms in the two text

segments. Every term in requirements is assigned a probabilistic weight with respect to every

term in regulations. They also propose use of machine learning approach - classification for

improving traceability links regulations and requirements [4].

Massey et al. propose a methodology to evaluate legal compliance of security requirements

using direct terminology mapping, requirements elaboration on the basis of terminology and

then finding traceability links between regulations and legal text requirements. Terminology

mapping includes finding associations between software terms and legal terms which provides a

basic level of traceability links between them. During requirements disambiguation the existence

of each term is analyzed in terms of its role and meaning. The focus of their study lies in security

and privacy of software requirements and their compliance with HIPAA regulations [6].

Maxwell et al presents an approach to analyze existing requirements for regulatory compliance

using queries to a production rule model through use of Prolog to validate existing requirements

and identify new potential requirements. Terminology mappings are found between requirements

and laws using these queries to production rule model and then preconditions are identified and

grouped into sets. Potential areas of non-compliance are then identified querying the production

rule model [7].

May et al describe sets of rules and language suitable to model the HIPAA privacy rules and a
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method to translate natural language text to these models. During translation, the difference

between the terminologies is analyzed [8].

Seresth et al present use of Recursive Object Model (ROM) use to represent technical texts

in software engineering documents. They suggest use of Expert-Comparable Contextual model

to form the dictionary of words to be used in writing the requirements and use homogenized

terminology to avoid inconsistencies [10].

Xiao et al. present use of NLP techniques and linguistic analysis including semantic and syntactic

analyses which can be used to automatically extract instances of access control policies from NL

documents. Their experiments and study is limited to access control policies only [13].

Ghaisas et al. present use of NLP techniques like syntactic and semantic analysis to extract

rules from SRS documents using Ronald Ross’ definition of rules and find rule intent patterns

in sentences. These intent patterns are then matched in business process steps to check for the

matching business process steps [5].

In context to existing work, the study presented in this paper makes the following novel contri-

butions:

1. We propose a solution to extract system-use cases from free-form URS documents using

lexicon-based, syntactic and spatial patterns or features.

2. We investigate the application of several state-of-the-art lexical and semantic based sen-

tence similarity computation algorithms for traceability link recovery between system use-

cases and regulations.

3. We conduct a series of experiments on real-world URS and regulatory documents and

present performance evaluation analysis to demonstrate the effectiveness of the proposed

approach.
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Chapter 2

Solution Approach

Figure 2.1 presents a high level architecture of our proposed solution approach. The framework

consists of three phases - (1) Manual analysis and visual inspection of URS documents to identify

syntactic, spatial and lexical features and possible combination of features for system use case

extraction. (2) Implementation of patterns identified in previous step to automate the task of

system use case extraction. (3) Automated traceability links recovery between system use cases

and the regulations using different textual similarity techniques and comparing the results of

each.

SRS Manual Analysis Feature Extraction

Syntactic
Spatial

Lexicon

SRS

OFFLINE

Classifier

Use-Cases

Regulatory Documents

Compliance
Specific Text

Traceability Link Recovery UC

Figure 2.1: Research framework
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2.1 Features Identification Using Manual Analysis

A user requirement specification (URS) document is an unstructured description of a software

system written in natural language. Apart from system use cases, URS documents may contain

various other elements of text such as title page, revision history, table of contents, definitions

of terms, diagrams, purpose and scope of document. The URS document may also have various

structural forms like tables, diagrams and enumerated text. A System Use-Case 1 is defined

as a high level description of system processes where an actor performs an action to achieve a

system’s goal and ensures that the behavior of the system is what the user requires. System

use cases are not labeled explicitly and are placed arbitrarily in a URS document surrounded

with other elements of text hence making it difficult to extract system use cases from a URS

document. The process of extracting system use cases from URS documents manually is time

consuming and monotonous. To avoid this monotonicity and speed up the process of system use

case extraction, we scan the URS documents manually to look for certain features which can be

automated to extract system use cases.

During manual analysis, we visually inspect the URS documents and identify certain features

which can distinguish a system use case from a non system use case like syntactic, spatial and

lexical features. For this purpose, we investigate a sampled set of 15 URS documents using

stratified sampling technique which are representative of the complete dataset. This sampled

dataset serves as the training set for our features’ selection process. After multiple iterations of

this document scanning, we come up with a list of features (shown in Table 2.1). These proposed

features are not not domain depepndent hence generic enough to be implemented against URS

of any domain and are efficient discriminators of system vs non-system use cases. These features

are then tested against test dataset consisting of 54 URS documents for checking their individual

accuracy and performance in system use case extraction.

2.2 Automated Extraction of System Use Cases

The second phase of our solution approach consists of implementation of features identified in

previous phase to automate the task of extraction of system use cases. We implement each

feature mentioned in Table 2.1 which are as follows:

2.2.1 Spatial Features

Based on our inspection of SRS documents, we notice that various elements of text can be

organized in different structural representations in a URS document in order of space such as

diagrammatic representation, tabular representation and enumerated text. Diagrammatically

represented use cases are accompanied with the textual description as well and hence scannning

of diagrams in SRS documents can be ignored without significant loss in system use case ex-

1http://alistair.cockburn.us/get/2465
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Table 2.1: List of discriminatory features: syntactic, spatial and lexicon-based features

# Abbr. Feature Title
Feature
Type

Remarks

F1 UCTI Use Case Table Identification Spatial Table with 2-4 columns where one col-
umn has 3-5 terms followed by another
having more than 9 terms.

F2 SUCI Process Step Use Case Identifica-
tion

Spatial-
Syntactic

Identify descriptive text using level -
’normal’ not heading & length is more
than 9 terms + syntactic check using
F8,9,10

F3 UCPI Use Case Parts Identification Spatial-
Syntactic

Identify text in bullets using level of
text and club sub-points + syntactic
check using F8,9,10.

F4 SETD Software Engineering Term Dic-
tionary

Lexicon Identify software engineering terms like
”Actor”, ”User”

F5 IDND Insurance Domain Noun Verb
Dictionary

Lexicon Identify insurance domain noun action
keywords like ”Insurer”, ”Claim”

F6 DAAD Domain Agnostic Action Verb
Dictionary

Lexicon Identify domain agnostic action verbs
like ”Submit”, ”Indicate”

F7 UIUI User Interface Use Case Identifi-
cation

Lexicon Identify user interface specific keywords
like ”Click”, ”Display”

F8 CUCI Conditional Use-Case Identifica-
tion

Syntactic (If/When/Where) Pre-condition
(Then/There) Post-condition

F9 ETUI Event-Triggered Use Case Iden-
tification

Syntactic (Once/Before/After) Pre-Activity
Post-Activity

F10 NAUI Noun Action Use Case Identifi-
cation

Spatial-
Syntactic

Identify noun-verb patterns having
more than 9 terms.

traction accuracy. Enumerated representation of text alone did not prove to be an efficient

discriminator of SUC from a non-SUC text as not all numerated texts are system use cases and

hence we propose use of enumerated text patterns in combination with other features rather

than using it as an independent feature.

UCTI

A URS document may contain several Tables inserted at various places in the document. A

System Use-Case (SUC) can be described both in the form of Tables or text which are not

Tables such as enumerated list of bullet points. The Apache POI toolkit to extract information

from Microsoft Word documents can be used to identify Tables from a word document. We

define UCTI feature to classify if a given Table is a system use-case table or not. We study

several Tables in the sample dataset and observe that SUC Tables have a certain structure

which can be exploited to distinguish it from non-SUC Tables. For example, we observe that

a SUC Table consists of 2 − 4 columns in which 1 − 2 column contains less than 5 terms of

text (the System Use-Case ID and label) and another column containing more than 9 terms

containing the system use-case description. We count the number of columns and the average

5



number of term in the rows and label it as SUC or non-SUC. Figure 2.2 shows examples of 3

Tables. Table (a) in Figure 2.2 is a SUC Table whereas Table (b) and (c) is not a SUC Table.

Table (b) of Figure 2.2 contains more than 4 columns and Table (c) contains 4 columns but

does not contain a column with more than 9 terms whereas Table (a) contains 3 columns with

2 columns containing 2 terms and third containing more than 9 terms. UCTI uses apache POI

toolkit to scan these tables and marks Table (a) as system use case and Table (b) & (c) as non

system use case.

As shown in Algorithm 1, using Apache POI toolkit we examine every segment of text as

individual paragraph and check if the segment is a tabular text or not. If text is tabular then

we check for the number of columns in the table. If number of columns is between 2−4 then we

check for columns’ content length and mark a table as system or non-system use case accordingly.

Algorithm 1 Extract system use-case tables

For every text segment
if segment is tabular then
ColCount← count number of columns in table
if ColCount ≥ 2 and ColCount ≤ 4 then

i← 0
while i ≤ ColCount do

if Coli has 2− 4 terms and Coli+1 has more than 9 terms then
”Table is a System Use Case Table”
i← i + 1

end if
end while

end if
else

”Table is not a System Use Case Table”
end if

2.2.2 Lexicon-Based Features

Based on our manual analysis of the URS documents, we observe correlation between certain

terms and insurance domain specific system use-case description. We believe presence of certain

pre-defined terms in free-form text can be exploited as discriminatory features for the purpose of

identifying and extracting system use-cases. We create four categories of lexicon: Use Case Spe-

cific Terms (USCT), Insurance-Domain Noun Terms (IDNT), Domain Agnostic Action Terms

(DAAT) and User Interface Specific Terms (UIST). Table 2.2 shows sample terms from each of

the four categories. As shown in Table 2.2, we categorize terms such as Process, Flow and Actor

as USCT and terms such as Actuary, Agent and Broker as IDNT. Terms like screen, diplay,

click let us identify user interface specific system use cases. We scanned the URS documents

and learnt that lexicon-based feature alone cannot discriminate between system use-case and

non-system use-case and needs to be used in conjunction with syntactic and spatial features to

perform the classification task.

6



UCTI Feature Check Passed
(a)

(b) Number of columns > 4 : UCTI Feature Check Failed

(c) Number of Terms in Row < Threshold : UCTI Check Failed

Figure 2.2: Example illustrating tabular form of system use case

Table 2.2: Sample terms from all the lexicons

# USCT IDNT DAAT UIST

1 Process Actuary Apply Screen

2 Flow Adjuster Collect Display

3 Define Approver Conduct Enter

4 Actor Agent Examine Select

5 Design Broker Generate Choose

6 System Cedant Maintain Option

7 Entity Claimant Modify Show

8 Goal Deceased Reject Monitor

9 Module Handler Resume Interface

10 Scenario Officer Update Button

11 Scope Viator Validate Scroll

12 User Member Indicate Icon

13 Event Company Establish Cursor

14 Step Beneficiary Explain Control

15 Case Insured Permit Edit

7



2.2.3 Syntactic Features

Based on our manual inspection of the URS documents, we notice that the syntactic structure

of the sentence can be exploited and encoded into a pattern for automatic system use-case ex-

traction. A system use-case is an action performed by an actor and we believe that general

regular-expression based patterns over part-of-speech tags can be written to automate the ex-

traction of system use cases. We annotate each term in the textual document under analysis

using a part-of-speech tagger and match the tagged output with a pre-defined syntactic pattern.

Table 2.3 shows our proposed syntactic patterns along with annotated example from the dataset.

In Table 2.3, V B denotes forms of verb, NN denotes forms of noun (actor), IN denotes use

of prepositions, WRB and RB denotes family of adverbs, MD denotes modal verbs and ”*”

denotes any number of terms (0 or more) occurring in between the mentioned POS tags.

To check for POS patterns, we first remove stopwords from the text segment under observation

and then use OpenNLP API for tagging the terms of sentence. This tagged sentence is then

checked for predefined syntactic patterns for possible matches. Syntactic patterns defined are

as follows:

CUCI

Conditional statements are statements where an action is performed on the basis of a condition

and are represented by keywords such as if-else, check whether, if and only if, unless, provided.

There exists a precondition on the basis of which a postcondition is to be done. The precondition

and postcondition need not be necessarily in this order. The regular expressions proposed by

us reflect this order interchange. Table 2.3 shows an example on the application of CUCI. As

shown in Table 2.3 pattern P2 is applied to extract the sentence consisting of if [IN], is [VB],

then [RB] and sign [VB].

Table 2.3: Illustrations of syntactic patterns in use cases

Feature Patterns Example

Conditional

P1: VB*RB*IN
If [IN] the policy is [VB] in trust then [RB]
all the trustees must sign [VB] the death
claim application.

P2: IN*VB*RB*VB

P3: VB*MD*VB Joint life policies are accepted [VB] only
[RB] if [IN] both the signatures are
available on the form.

Event-

Triggered

P4: MD*VB*IN
Case must be referred at the early stage of the
claim, after [MD] notification [VB] of
death and on [IN] receipt of death certificate.

P5: WRB*NN*VBN

Death claim is settled only when [WRB]
direct debit [NN] is suspended [VBN] to
avoid overpayment.

8



ETUI

Event triggered statements are statements where multiple actions are performed in chronological

order, one after other, and are represented by terms such as once, after, before. The patterns for

identifying event triggered statements are as shown in Table 2.3. Table 2.3 shows an example

sentence consisting of the term in bold annotated with the part-of-speech tag to illustrate the

application of the pattern.

2.2.4 Feature Combination

This section comprises of certain features’ combination which could not discriminate between a

system use case and a non-system use case when used alone. The combination of features help

in identification of system use cases written in bulleted text form, discriminating a heading from

a descriptive text and applying regular expression patterns over descriptive texts. In these sort

of system use cases, a single feature is not efficient enough in extraction. The features are as

explained in the following sections.

I

1.3.5 Process Activity: Verify Previous Withdrawals
1.3.5.1 Process Description
The policy could have been entitled for earlier withdrawals and

withdrawals could have been processed. Hence a check on the previous
withdrawals made is required.

Heading Normal Descriptive Text Sub-Heading

Figure 2.3: Example illustrating structural forms of text

SUCI

A system use case is a descriptive text and not a heading/sub-heading or any bulleted text

segment - SUCI lets us differentiate between these segments of text. In SUCI, statements are

first inspected on the basis of text segment lengths, bold, italics and level of text. The Apache

POI toolkit lets us identify the level of text in terms of standard heading levels. A descriptive

text is written in normal level of text in standard document writing process. If a text statement

is a descriptive text (more than 9 terms) and without any bold/italics effect then statement

is further inspected through the syntactic feature check F8, F9, F10. Figure 2.3 illustrates

the difference between the structurally different text segments where there is a heading, a sub-

heading and then a descriptive text. Our proposed approach scans through the text and skips

checking headings and sub-headings and moves on to identify descriptive text using levels and

9



effects of text. This descriptive text is then checked for existence of certain regular expression

pattern, if any.

UCPI

A use case can also be expressed as a bulleted point description where each point in itself may

fail to be makrked as a system use case but if the points are combined together then the complete

segment is a system use case. UCPI detects a use case written in bulleted text form as shown in

Figure 2.4. Bulleted text is recognized by its textual level in the document and the text segments

at sub-level are joined together to form a single text statement. If after joining together the

text segment contains more than 9 terms then the statement is further inspected through the

syntactic feature check F8, F9, F10. As illustrated by Figure 2.4, the text is not a use case

if considered line by line but is a valid SUC when bullet points are clubbed together. This is

identified first by combining the points together and then the statement satisfies the patterns

defined for conditional use case.

Figure 2.4: Example illustrating use case written in parts

NAUI

A noun action system use case is where an actor performs an action and can be extracted using

Noun-Verb patterns. The pattern for identifying noun-action statements is * NN * VB * where

NN represents any form of noun and VB represents any form of verb, but not helping verbs.

Before checking the text segment for existence of regular expressions, the stopwords are removed

from it. To avoid false positives in extraction, we include a length check on the statement to

be of more than 9 terms. For instance - ”The claim value will need to be adjusted to take into

account any amounts owing to the insurer in the form of loans or outstanding premiums, or

to reimburse any overpayments received”. This example sentence does not satisy our proposed

syntactic patterns because this sentence is neither conditional based not event triggered. Hence,

we need to define a feature which can capture the system use cases which are not extracted from

previously proposed features.
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2.3 Automated Traceability Links Recovery

The last phase of our solution approach is to find the traceability links between a legal system use

case and the regulations it needs to comply with. For this, we compute the textual similarity

or relation between extracted system use cases (taken as a query) and the regulations from

the regulatory authority. We use SEMILAR API [1] to implement the similarity measurement

techniques that assign each regulation a similarity score between 0 and 1 for a system use case.

The regulations are then sorted on the basis of the similarity score assigned in decreasing order

and top 5 regulations are extracted out from the regulations dataset. The top 5 regulations

matches found are then manually validated for being relevant/irrelevant to the system use case

query. As shown in Table 2.4, the system use case prompts the insured to fulfill the requirements

in support of the claim. The top three regulations found by our approach in the regulations of

IRDA are mentioned in Table 2.4. These regulations

Table 2.4: Instance of regulatory compliance of system use case

System Use Case: In order to process the deceased claim, further re-
quirements such as proof of death needs to be called for.

Relevant Regulations

A life insurance policy shall state the primary documents which are nor-
mally required to be submitted by a claimant in support of a claim.

A claim form submitted shall be accompanied by such other documents
in support of the claim as the Board may require.

Every insurer shall inform and keep informed periodically the insured on the
requirements to be fulfilled by the insured regarding lodging of a claim.

The comparison techniques used to find traceability links are as follows:

2.3.1 C1: METEOR

The Meteor evaluation metric scores regulations by aligning them to system use cases on the

basis of exact, stemmed, synonymous, and paraphrase matches between words and phrases of

text statements [1].

2.3.2 C2: Lexical

Lexical overlap technique assesses system use case and regulations and computes similarity score

by finding the number of words they have in common (lexical overlap variations). The score of

1 (or 100%) indicates that the regulation has a total overlap with system use case, whereas 0

indicates there is no match between system use case and regulation [1].
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2.3.3 C3: BLEU

BLEU metric compares n-gram of system use case with n-grams of regulations and counts the

number of matches found in n-grams of these two text segments. The matches between SUC-

Regulation pair are position independent. The number of n-gram matches found is divided by

the number of n-grams in system use case query. The resulting score varies from 0 to 1 where 0

indicates no matches found and 1 indicates perfect match [1].

Table 2.5: Example illustrating regulatory compliance of system use case

System Use Case: The policy holder has to fill in all the particulars
of the switch form and send it back to the insurance company in order
to switch policy.

Relevant Regulations Irrelevant Regulations

The policyholder shall fill in the
portability form along with the
proposal form and submit the same
to the insurance company.

A life insurance policy shall state the
primary documents which are nor-
mally required to be submitted by a
claimant in support of a claim.

On receipt of portability form, the
insurance company shall address
the existing insurance company seek-
ing necessary details of medical his-
tory and claim history of the con-
cerned policyholder.

The insurer shall furnish to the pol-
icyholder a written acknowledgment
of having registered a nomination and
may charge a fee not exceeding one ru-
pee for registering such cancellation or
change.

A policy holder desirous of port-
ing his policy to another insurance
company shall apply to such insur-
ance company, at least 45 days before
the premium renewal date of his/her
existing policy.

2.3.4 C4: CorleyMihalcea

CorleyMihalcea comparer finds similarity score between a term of system use case and terms

of regulations using any word-to-word similarity measure and finds the term in regulation with

maximum similarity score. This process is repeated for all the terms in system use case and an

idf-weighted average is then computed over all the terms. The idf-weighted average value varies

from 0 to 1 where 0 indicates no matches found and 1 indicates perfect match [1].

2.3.5 C5: LDA

Latent Dirichlet Allocation (LDA) is a probabilistic generative model where each word in a

document is generated from a distribution over words that is specific to each topic. LDA based

metric computes the dot product between vectors representing contribution to each term of the

sentences in SUC-Regulation pair [1].
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Table 2.5 shows an example of compliance of a system use case with regulations from IRDA

Act, 1938. The example illustrates a system use case in which an insured wishes to switch the

insurance policy. The Table 2.5 shows relevant regulations in the left column which need to be

complied with the system use case whereas right column shows irrelevant regulations which can

be ignored for this particular system use case. We use five similarity measurements techiques to

take this system use case as a query and the regulatory document as the search base and finds

out top 5 matching regulations with the query.
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Chapter 3

Experimental DataSet

3.1 Dataset for system use case extraction

The experimental dataset consists of URS (consisting of system use-cases) documents and reg-

ulatory documents (consisting of regulations). We obtain 69 URS documents from insurance

vertical customer application development projects of a large global IT service organization. The

organization provided us with 16 regulatory documents pertaining to the application develop-

ment projects. As shown in Table 3.1, the total number of system use-cases in the experimental

dataset is 1518. However, only some use-cases pertain to insurance specific regulatory require-

ments. We notice that the regulatory documents containing legal regulations and government

defined policies are lengthy and the average number of pages in a regulatory document is 50 and

average number of regulations per regulatory document is 48. The average number of system

use-cases per document is 22.

Table 3.1: Experimental dataset statistics

# Statistics Count
1 Num of SRS documents 69

2 Average num of pages in the SRS documents 40

3 Total num of system use-cases in dataset 1518

4 Average num of use cases per document 22

5 Num of Regulatory documents 16

6 Average num of pages in regulatory documents 50

7 Average num of regulations per document 48

3.2 Dataset for traceability links recovery

For regulatory compliance experiments, we divide our experimental dataset in three parts on the

basis of different verticals of insurance domain in the regulatory documents. Table 3.2 shows the

distribution of data in three data sets where first set constitutes of Claim Processing, Processing
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Time, Policy Premium related queries (CPRQ), second set consists of Policy Registration, Policy

Portability, Premium payment time restriction related queries (PRPQ) and third set of contains

General Provisions of health insurance, Policy Renewals related queries (GHIQ). The sysem use

cases extracted from previous step are taken as input queries in next this phase. The system

use cases are chosen from three verticals for varied experiments and the regulations are taken

from the regulatory data set available from IRDA (IRDA Act 1938).

Table 3.2: Experimental dataset for compliance detection

Abbr. Different Verticals DataSet Count

CPRQ Claim Processing, Processing
Time, Policy Premium

System Use Cases: 10
Regulations: 250

PRPQ Policy Registration, Policy
Portability, Premium payment
time restriction

System Use Cases: 10
Regulations: 250

GHIQ General Provisions of health in-
surance, Policy Renewals

System Use Cases: 06
Regulations: 250
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Chapter 4

Empirical Analysis and Performance

Evaluation

This chapter contains evaluation results of demonstration of our tools - System use case extractor

and Traceability links finder.

4.1 System Use Case Extractor Results

Table 4.1: Individual features’ accuracy results

# Feature TP TN FP FN Acc.
1 UCTI 4 (8%) 39 (83%) 1 (2%) 3 (7%) 0.91

2 SUCI 44 (54%) 36 (44%) 2 (2%) 0 (0%) 0.98

3 UCPI 15 (83%) 0 (0%) 0 (0%) 3 (17%) 0.83

4 SETD 26 (32%) 7 (9%) 0 (0%) 47 (59%) 0.41

5 IDND 68 (85%) 2 (3%) 5 (6%) 5 (6%) 0.88

6 DAAD 30 (37%) 3 (4%) 4 (5%) 43 (54%) 0.41

7 UIUI 6 (7%) 7 (9%) 0 (0%) 67 (84%) 0.16

8 CUCI 55 (69%) 5 (6%) 2 (3%) 18 (22%) 0.75

9 ETUI 67 (84%) 2 (2%) 5 (6%) 6 (8%) 0.86

10 NAUI 71 (89%) 1 (1%) 6 (7%) 2 (3%) 0.90

Table 4.1 shows demonstration results of system use case extractor for each feature when features

are used to extract system use cases independent of each other. The accuracy results of spatial

feature (F1), syntactic features (F8, F9) and combined features (F2, F3, F10) are above 75%

which reveals their ability to extract system use cases whereas lexical features (F4, F6, F7) show

relatively poor accuracy results in SUC extraction which indicates that lexicon based features

cannot be used alone to extract system use cases and need to be used in combination with other

features.

Our test data set consists of 54 documents from real projects in insurance domain. We run our

tool Sanyojan as shown in Figure 4.1 (Combining all the features together) on the documents
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Figure 4.1: User Interface for System Use Case Extractor

and the retrieved use cases are stored in separate files. Total number of use cases extracted using

our tool from the total documents is 1264. The resulting use cases are then validated manually

and checked whether the extracted use case is a valid use case or not.

To evaluate the performance, we test our tool Sanyojan against test data set. After manual

inspection of resulting system use cases we found that 96.3% (1218) of 1264 Use-Cases were

true positives (manually verified to be a system use case) remaining were false positives (falsely

marked as a system use case). 199 system use cases were misclassified as non-system use cases

(false negatives) resulting in an accuracy of our tool to be 83.3%.

4.2 Traceability Links Recovery Results

For traceability links recovery, we demonstrate comparers as mentioned in previously on three

experimental datasets (shown in Table 3.2). We run our tool Sanyojan (as shown in Figure 4.2)on

the system use cases as queries and extract top 5 regulations for every use case. The regulations

results are saved separately to validate results manually. For measuring the performance of

different techniques we used a standard metric called Average Precision.

Average precision (AP) is a single-valued measure that reflects the performance of retrieval over

all relevant documents by averaging the precision value obtained after each relevant document

is retrieved. It rewards systems that retrieve relevant documents quickly (highly ranked). The

formula for computing AP is as shown by Equation 4.1. Here, P(k) is the precision of document

k and Rel(k) indicates relevance of document k. Rel(k) value of 0 means that kth system use

case is not a valid use case whereas 1 means kth system use case is valid.

AP =

∑n
k=1 P (k)×Rel(k)

Number of relevant documents
(4.1)
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Figure 4.2: User Interface for traceability links recovery

Table 4.2: Average Precision scores of comparers for 10 use case queries of CPRQ

UC# Meteor Lexical BLEU CM LDA

1 0.3 1 0.25 0.42 0.75

2 0.5 0.75 0.35 0.08 0.69

3 0.75 0.25 0.46 0.4 0.57

4 0.75 0.18 0.25 0.23 0.68

5 0.5 0.88 0.35 0.6 0.6

6 0.28 0.67 0.5 0.56 0.73

7 0.33 0.56 0.47 0.11 0.91

8 0.67 0.7 0.47 0.56 0.8

9 0.67 0.33 0.25 0.53 0.75

10 0.28 0.5 0.07 0.56 0.56

We compute the average precision for comparison techniques against three datasets and present

the results through stacked bar chart as shown Figure 4.3 for data set CPRQ and Figure 4.4 for

data set PRPQ and AP values for the same are as shown in table 4.2. The graph reveals that

the average precision score of C5 i.e. LDA is consistent (equal height of colours) for all use cases

queries whereas other comparers are query dependent and the precision scores are also low. The

statistical analysis of AP values (Table 4.2) shows significantly efficient performance of LDA for

finding traceability links between system use cases and regulations.

To compare the performance of these comparers, we compute another standard metric Mean

Average Precision (MAP) over all 26 queries. Mean average precision for a set of queries is the

mean of the average precision scores for each query as indicated by Equation 4.2. Here, AP(q)

represents the Average Precision of comparer for query q and n represents number of queries.

MAP =

∑n
q=1AP (q)

n
(4.2)
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Figure 4.3: Stacked bar chart showing Average Precision scores of different comparers for CPRQ

Figure 4.4: Stacked bar chart showing Average Precision scores of different comparers for PRPQ

Table 4.3 shows the MAP scores for different comparers which indicates that LDA is efficient

enough and gives best results for finding traceability links between system use cases and regu-

lations amongst all comparers.

Table 4.3: Mean Average Precision scores of comparers

Meteor Lexical BLEU CM LDA

0.48 0.47 0.24 0.43 0.72
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Chapter 5

Limitations

Besides beign efficient, our approach has few limitations as follows: One limitation to our solution

approach is due to the document structure where the typical document writing standards like

heading level, bullets etc. are not followed in writing SRS, in that case our features may fail

to discriminate between SUC and non-SUC. Another limitation to our approach is from the

inconsistent tabular structure of system use cases. Figure 5.1 shows an example of system

use case table where the structure of table is not symmetric in terms of number of rows and

columns. Our algorithm fails to apply spatial feature in such cases and misclassifies the table

as a non-system use case table.

Figure 5.1: Missed System Use Case Table Example

False positives for system use case extraction are due to statements like declaration statements

written in the document. For instance - V0.4 is a final document which is issued for Business

Lead and Stakeholder sign off following a face to face walkthrough and final telecoms. This

statement satisfies Syntactic, Lexical and Spatial patterns and hence wrongly classified as system

use case although it is a sentence for internal versioning information of the document.

5.1 Discussions and Future Work

We demonstrated our tool Sanyojan over complete dataset and the results show efficiency of

our proposed approach with few limitations. The techniques proposed can still be modified in

order to improve the extraction results. The lexicons can be enriched for the domain specific
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terminology and syntactic patterns of POS tags can be refined to avoid false positives. In

addition to the features, semantic patterns can also be used to capture the structure ad writing

style of system use cases in URS documents. We learnt that since URS documents are written

in natural language, a particular system use-case can be written in multiple possible ways but

to automate the task of extraction basic norms of document writing have to be followed. If basic

norms are not followed then syntactic features will not be able to capture tabular text segments

and bulleted text segments.

For traceability links recovery, we examine various techniques including n-gram comparison,

lexical comparison and sematic analysis. We observe that semantic parameterization proves to

be an efficient comparison technique for recovering regulations for a particular system use case

but the results can be further improved using combination of comparison techniques and LSA.

In future, we hope to refine the technique to improve results for system use case extraction and

teaceability links recovery.
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Chapter 6

Conclusions

Apart from above mentioned limitations, we observe an overall accuracy of 83.3% for the sys-

tem use-case extraction step and conclude that a combination of lexicon, syntactic and spatial

feature can be used to identify system use-cases from a free-form URS document (our domain of

study is URS written in Microsoft Word belonging to Insurance domain projects). We achieve

a Mean Average Precision (MAP) of 0.72 for LDA based semantic similarity comparer and 0.48

for Meteor comparer implemented in the SEMILAR toolkit. The results of our experiments

demonstrate that an information retrieval based model in which system use-case can be for-

mulated as a query and regulations as documents can be applied for traceability link recovery

between system use-cases in URS and rules and regulations in regulatory documents.

The results retreived for the system use case extraction and traceability links recovery can fur-

ther be improved by enriching lexicons and improving the regular expression patterns used in

syntactic features.
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