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Abstract

Autonomous aerial vehicles (AAVs) are extensively used in civilian and military applications like aerial

surveying, search and rescue, transportation, border patrolling, etc. In most applications, achieving the

objectives using a single AAV is difficult. Hence, multiple cooperative AAVs are used to accomplish

the mission quickly and efficiently. However, achieving cooperation is challenging in real-world scenar-

ios due to the uncertainties in obtaining other vehicle states (position, velocity, etc.) and measurement

information. The constraints, such as limited sensor range and availability, noises, and environmental

disturbances, must be handled properly to obtain an efficient system. In this thesis, we provide solutions

for a three-agent and four-agent pursuit-evasion problem, path planning under localization constraints,

and tracking ground vehicles for cinematography purposes. The optimal control commands for the coop-

erative agents in each of these problems are found using the nonlinear model predictive control (NMPC)

framework. We analyze the theoretical properties of the proposed solutions and show the performance

through numerical simulations. Brief explanations of the proposed solutions are given in the following

paragraphs.

Chapter 2 presents a cooperative target defense guidance strategy using a nonlinear model predictive

control (NMPC) framework for a target-attacker-defender (TAD) problem. The TAD problem consists

of an attacker and a cooperative target-defender pair. The attacker’s objective is to capture the target,

whereas the target-defender team acts together such that the defender can intercept the attacker and

ensure target survival. We assume that the cooperative target-defender pair do not have perfect knowledge

of the attacker states, and hence the states are estimated using an extended Kalman filter (EKF). The

capture analysis based on the Apollonius circles is performed to identify the target survival regions. The

efficacy of the NMPC-based solution is evaluated through extensive numerical simulations, and hardware

experiments performed using ground rovers. We also compare our approach against previous studies,

iv



which use the command to line of sight (CLOS), and augmented command to line of sight (A-CLOS)

guidance strategies.

Chapter 3 presents a cooperative target defense strategy using nonlinear model-predictive control

(NMPC) framework for a two–target two–attacker (2T2A) problem. Each attacker needs to capture a

designated target individually. The objective of the two targets is to cooperate such that they lure the

two attackers into a collision. We assume that the targets do not have perfect knowledge of the attacker

states, and hence they estimate the attacker states using EKF. The NMPC scheme computes closed-loop

optimal control commands for the targets while satisfying state and control constraints. Theoretical

analysis is carried out to determine escape regions that will lead to the targets’ survival or capture.

Numerical simulations are carried out to evaluate the performance of the proposed NMPC-based strategy

for different scenarios validating the theoretical results.

From Chapters 2 and 3, we observe that the NMPC-based solution offers robustness to the different

unknown attacker models and has better performance than the CLOS and A-CLOS based strategies.

With the help of escape zone maps, it is now possible to identify the outcome of the games beforehand.

Also, the experimental results proved that the proposed online-feedback scheme is a suitable alternative

to conventional optimal control techniques for real-world scenarios.

In Chapter 4, we solve a joint cooperative localization and path planning problem for a group of

autonomous aerial vehicles (AAVs) using nonlinear model predictive control (NMPC). The vehicles do

not have access to global satellite navigation systems (GNSS). A moving horizon estimator (MHE) is

used to estimate the states with the help of relative bearing information to known landmarks and other

vehicles. The goal of NMPC is to devise optimal paths for each vehicle between a given source and

destination while maintaining desired localization accuracy. The localization error covariance of the

vehicles for the NMPC prediction window was calculated using an approximate analytical expression

based on the relation between the covariance and path lengths to the landmarks. We show that a ve-

hicle’s position accuracy is inversely proportional to the path length to the landmarks. The use of this

analytical expression reduces the computation requirement of NMPC compared to the traditional method

of propagating and estimating covariances using an extended Kalman filter (EKF). Finally, we present

numerical simulation results that validate the proposed approach for different numbers of vehicles and

landmark configurations. The proposed framework is useful in the area of urban mobility, where many
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autonomous aerial vehicles fly through urban areas with buildings and other structures performing tasks

such as cargo delivery. The proposed framework allows these AAVs to localize themselves cooperatively

in the absence of GNSS signals since, in urban canyons, the accuracy of GNSS is affected by phenomena

such as multipath.

In Chapter 5, we introduce a learning-based nonlinear model predictive control (L-NMPC) scheme

for the iterative task of filming race cars using gimbaled cameras mounted on autonomous aerial vehicles

(AAVs). The controller is capable of avoiding inter-vehicle collisions and the environmental obstacles

that block the path of the AAVs. It also ensures that the cars always lie in the field of views (FOVs)

of the cameras while satisfying the control and state constraints. The controller is able to learn from

the previous iterations and improve the tracking performance with the help of reinforcement learning

(RL). Simulation results are given to demonstrate the efficacy of the proposed learning-based control

scheme. The proposed scheme helps reduce manual effort in tuning weights for the cost components of

the NMPC. Also, with the help of RL-tuned weights, the NMPC scheme gives tight tracking of the cars

even in environments containing obstacles.

Finally, in Chapter 6, we conclude the thesis by providing the inferences from the various experi-

ments and simulations for different problems discussed in Chapters 2-5. The main extensions for the

NMPC framework discussed in the thesis are to broaden the framework to three dimensions taking the

terrain map and urban environments into account. The current NMPC solver suffers from a high value

of computation time for such complex environments with a large number of agents. Hence, for real-

time implementation, we would like to drive our approach toward the use of fast-MPC based solvers for

speeding up the computations. In the future, we would like to use the actual dynamics for the agents

instead of point-mass models. Also, environmental challenges like wind disturbances could be taken

into effect when formulating the control law for the agents. A detailed description of future directions

for each problem is given at the end of this chapter.

In summary, this thesis focuses on developing solutions for different applications – pursuit- evasion

games, path planning under uncertainty, and cinematography using the NMPC framework. We analyze

the theoretical properties of the proposed solution and show the performance through simulations and

experiments.
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Nomenclature

A, T,D attacker, target, and defender

x, y position coordinates of the agents in the Cartesian frame

t time

v velocity of the agent

α or ψ heading angle (yaw) of the agent

v̄T maximum velocity of the target

θ line-of-sight angle between the agents or nodes

ξ line-of-sight angle between the defender and the attacker

R, r distance between the agents or nodes

vR component of the relative velocity along the A− T LOS

vθ component of the relative velocity perpendicular to the A− T LOS

vr component of the relative velocity along the A−D LOS

vξ component of the relative velocity perpendicular to the A−D LOS

τh prediction horizon for the continuous-time NMPC

X state vector

U,U−, U+ or ω,ω−,ω+ control vector and its lower and upper bounds

PC space of piece-wise continuous function

ux, uy velocity components of the target in x and y directions

e safe distance of the target from the attacker

k or j discrete time

f prediction model for the NMPC or EKF

J cost function for the nonlinear model predictive control

∇FX Jacobian of f with respect to X

h measurement model for the extended Kalman filter
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∇HX Jacobian of h with respect to X

z measurement vector

z̃ predicted measurement vector

q process noise

µ measurement noise

P estimation covariance matrix

ν innovation parameter or vertex of a graph

K Kalman gain

Q state covariance matrix or Q-value for RL

Σ or Γ measurement covariance matrix

aA, aD lateral accelerations of the attacker and the defender

xc, yc center coordinates of the Apollonius circle

rAT , rAD radii of the attacker-target and the attacker-defender Apollonius circles

dc distance between the centers of the A−D and A− T Apollonius circles

γAT , γAD speed ratios of the target to the attacker and the defender to the attacker

Ze, Zc escape zone for the target and capture zone for the target

σ standard deviation of the estimation error

κ proportionality constant of the pure-pursuit guidance law

N navigation constant of the PN law or the prediction horizon for discrete-NMPC

Rc, rc capture radii

A1, A2, T1, T2 attacker-1, attacker-2, target-1, and target-2

u1, u2 control commands computed for the targets T1 and T2

w1, w2, w3, w4, w5,W weights of the cost function

dA1T1, dA2T2 radii of the A1− T1 and the A2− T2 Apollonius circles

γA1T1, γA2T2 speed ratios of T1 to A1 and T2 to A2

Y set of all points on the y−axis

Y1 set of all points on the A1− T1 Apollonius circle

Y2 set of all points on the A2− T2 Apollonius circle

∅ null set

y1, y1 interception points of A1− T1 Apollonius circle with the y−axis

y2, y2 interception points of A2− T2 Apollonius circle with the y−axis

S source location

D destination
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nv number of vehicles

nl number of landmarks

G,G graphs

V node set

E edge set

ne number of edges

ϕ path in a graph

ϵ edge in a graph

Ts sampling time used for discretization

m current time step

NE estimation horizon

X̂ estimated states

Rs circular sensor range

ω angular velocity of the agent

O observability matrix

I identity matrix

i AAV and car index

n number of AAVs and cars

θA pitch angle of AAV

qA, rA pitch and yaw rates of the AAV

ϕG, θG, ψG roll, pitch, and yaw angles of the gimbal

pG, qG, rG angular rates of the gimbal

vC linear velocity of the car

rC angular velocity of the car

ψC heading angle of the car

no number of obstacles

RA radius of the AAV

Ro radius of the obstacle

xo, yo coordinates of the center of the obstacle

Do Euclidean distance between the AAV and the obstacle

xF , yF center of the FOV

a, b major and minor axis of the FOV ellipse

V FOV , HFOV vertical and horizontal FOV of the camera
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(s, aRL) state-action pair

αRL learning rate

γRL discount factor

rRL reward function

λ epsilon decay rate

Acronyms

AAV Autonomous aerial vehicle

NMPC Nonlinear model predictive control

TAD Target-attacker-defender

EKF Extended Kalman filter

LOS Line-of-sight

CLOS Command to line-of-sight

A-CLOS Augmented command to line-of-sight

2T2A Two–target two–attacker

GNSS Global satellite navigation systems

MHE Moving horizon estimator

L-NMPC Learning-based nonlinear model predictive control

FOV Field of view

RL Reinforcement learning

ILC Iterative learning control

MIMO Multi-input multi-output

PN Proportional navigation

PP Pure pursuit

GCS Ground control station

ROS Robotic operating system

RPMG Relative position measurement graph
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Chapter 1

Introduction

Autonomous aerial vehicles (AAVs) are used in several applications like search and rescue, smart mu-

nition interception, cinematography, etc. Multiple agents that cooperate help to accomplish tasks more

efficiently and quickly than single, individually acting agents. Developing optimal cooperative control

strategies for these agents is difficult due to the lack of model information, localization constraints, and

disturbances produced by dynamic environments. In this thesis, we use nonlinear predictive control

(NMPC) as a common framework to solve different problems arising in defense and civilian applica-

tions. NMPC was selected due to its feedback structure, which allows online computation and inherent

disturbance rejection to some extent. Also, if the prediction horizon is suitably selected, the solutions

tend to be near optimal. NMPC uses a nonlinear model of the system and can also handle nonlinear cost

functions and constraints. Hence, the design flexibility of NMPC is more compared to the schemes such

as linear quadratic regulator (LQR), which uses a linear model and cost function, and the absence of

inherent input and state constraints satisfaction.

First, we venture into the area of pursuit-evasion games, which has several applications in the civilian

and defense sectors. We start with a three-agent pursuit-evasion problem involving a target, an attacker,

and a defender agent, where the objective is to determine the control signals of the target and the defender

such that the target escapes from the attacker. We are interested in the cooperative aspect that comes from

adding a third agent (defender) to the general pursuer-evader game. Then we extend this formulation to

a four-agent game with two targets and two attackers, where the objective of the targets is to cooperate

and move such that the two attackers collide with each other. Here, we use the cooperative aspect of the

targets to win the game without the need for any external defenders.
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We then move on to the problem of cooperative path planning for agents with localization constraints.

Multi-agent cooperative localization is important in the future of urban air mobility, where many AAVs,

such as cargo drones, will be operating in dense cities where GNSS availability is weak. In such cases,

relative measurements from known features, such as a mobile phone tower, can be used for localization.

Here, we decided to switch to the moving horizon estimation (MHE) framework instead of EKF due

to its nonlinear model handling capabilities. Using a nonlinear model will provide better estimation

accuracy compared to the linearized versions. The objective is to ensure that a group of AAVs reach their

respective goal locations. The vehicles localize using known landmarks and other nearby vehicles. The

path from the source to the goal should be such that the vehicles cover enough landmarks along the way

to maintain localization accuracy.

Finally, we present a learning-based NMPC (L-NMPC) strategy to accurately film a car race using

autonomous aerial vehicles (AAVs). Here, we try to improve the NMPC scheme by eliminating some of

its drawbacks by combining it with reinforcement learning (RL). The problem of filming a circuit race

was chosen due to its iterative nature. The weights for the NMPC cost function were tuned using an

online Q-learning approach. This helps in getting accurate tracking of the cars even in the presence of

obstacles. The following sections provide an overview of the control of multi-agent systems and detailed

explanations of the problems under consideration.

1.1 Control techniques for multi-agent systems

Multi-agent systems theory focuses on developing control laws for various tasks, such as consensus

and formation control [1–3], coverage control [4, 5], target tracking [6–8], optimization [9], and esti-

mation [10]. The control techniques for multi-agent systems can be mainly classified into three types;

centralized [11], decentralized [12], and distributed [13]. In the centralized scheme, the multi-agent sys-

tem is controlled using a single entity with high processing capability. Obviously, this strategy suffers

from scalability issues since the computational complexity increases with the number of agents. The de-

centralized control scheme uses independent agents with local controllers. This type of scheme performs

less than the centralized scheme since the agents do not possess global information. The distributed

control scheme reduces the computation requirement by sharing information only with the neighboring

agents.

Optimal control is one of the most widely used control techniques for multi-agent systems [14]. In

[9], a distributed computation model for optimizing a sum of convex objective functions corresponding to
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multiple agents is studied. The formulated optimization problem is solved using a distributed subgradient

method. An inverse optimality formulation that considers the interplays between the communication

graph topology and the agent dynamics is considered in [15]. In [16], an optimal control framework for

persistent monitoring problems is given, where the objective is to control the motion of multiple agents

to minimize an uncertainty metric.

Over the last decades, model predictive control (MPC) has become the control technology of choice

for controlling complex, dynamic, multi-agent systems [17, 18]. In [19], a non-cooperative distributed

model predictive control algorithm for tracking constant references is proposed. The algorithm was tested

by experiments performed on a quadruple tank process. In [20], a model predictive control algorithm to

generate non-colliding trajectories for multiple robots is discussed. Also, an event-triggered re-planning

strategy is proposed to account for disturbances. A tube-based NMPC scheme for a general class of

uncertain nonlinear multi-agent systems is developed in [21]. The paper focuses on the problem of

robust navigation of a multi-agent system using only local information under input constraints. In [22],

a robust-MPC strategy for solving the problem of observation of multiple moving targets by cooperating

mobile robots is presented. The optimization is based on linear mixed-logic dynamic models with flexible

weights. An NMPC-based approach for target perception using a group of mobile robots is given in

[23]. The robots also maintain a desired formation when following the target. The multi-robot collision

avoidance problem in unknown environments is solved using MPC in [24]. The proposed system works

based on the information-seeking theory and cooperative observations. In [25], a cooperative particle

swarm optimization-based MPC scheme is proposed to solve the formation control problem of multiple

nonholonomic mobile robots. The algorithm is used to find a Nash equilibrium between the multiple

robots.

The following sections present solutions to some challenging problems involving multi-agent sys-

tems using nonlinear model predictive control.

1.2 Three-agent and four-agent pursuit-evasion problems

Pursuit-evasion problems are useful in several important security applications [26]. These problems

consist of two agents, (i) pursuer agent (P) and (ii) evader agent (E). The objective of the pursuer is

to capture the evader, while the evader wants to avoid capture. The most common application of such

problems is when an aircraft tries to evade an incoming missile. A broad survey on pursuit-evasion differ-

ential games is given in [27], and several other studies can be found that analyze problems with a single
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pursuer-evader pair [28,29], single pursuer against multiple evaders [30,31], and multiple pursuers and a

single evader [32–35]. In [28], collision cones are used for analyzing pursuit-evasion games between two

objects of arbitrary shapes. A spacecraft pursuit-evasion game is formulated as a two-player zero-sum

differential game in [29] and is solved using the linear quadratic differential game theory. Breakwell

and Hagedorn [30] use a constant-speed coplanar model with unlimited turn rates to formulate a simple

geometrical solution for the problem of point capture of two successive evaders in minimum total time.

In [31], a single-pursuer, two-evader differential game is formulated with a cost functional that repre-

sents the increased cost to the pursuer when presented with multiple potentially dangerous targets. Pan

et al. [32] study a game played in a convex domain with an exit through which the evader may escape.

The strategy is based on the Voronoi diagrams. In [33], a reachability-based approach is adopted to

deal with the pursuit-evasion differential game between one evader and multiple pursuers in the presence

of dynamic environmental disturbances. A cooperative pursuit strategy using overlapping Apollonius

circles around the evader is presented in [34] to capture the high-speed evader using multiple pursuers.

In [35], state feedback capture strategies and an evader strategy which yields a lower bound on his time-

to-capture, are devised using a geometric method for a multi-pursuer single-evader problem.

In the presence of multiple agents, cooperation among them becomes important. One such problem

where there are multiple agents is the three-agent target-attacker-defender (TAD) problem. The TAD

problem consists of an agent named the attacker (A), who pursues to capture the second agent known

as the target (T ), and the third agent, called the defender (D), tries to help the target by intercepting

the attacker before it reaches the target. The target and the defender act as a team, and this cooperation

enables the target to maneuver in such a way that the defender is able to intercept the attacker promptly.

The TAD problem was introduced by Isaacs in [36] and was discussed in detail by various re-

searchers [37–43]. Diverse approaches were taken to tackle this problem, including line-of-sight (LOS)

guidance [37,38], linear quadratic regulator [39,44], and optimal game theoretical solutions [42,43,45].

In [46], the TAD problem is solved using optimal control theory wherein the optimal heading angles for

the target-defender team are determined, assuming that the attacker implements a conventional missile

guidance law such as proportional navigation (PN) or pure pursuit guidance (PP). Another optimal con-

trol formulation with bounded controls is given in [47]. In [48], a nonlinear guidance strategy using the

sliding mode control technique is proposed for various scenarios involving an attacking missile, a target

aircraft, and a defender missile. In [49], the TAD problem is solved using a simple geometrical approach

referred to as the triangle guidance, which was also extended to multiple attacker scenarios. The TAD

solution using optimal control theory with escape regions for the target is given in [50]. Weiss et al. [51]
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proposed two guidance algorithms for the TAD problem. The first one is a combined guidance algorithm

for the attacker that simultaneously achieves evasion from the defender and pursuit of the target. The

second is a cooperative guidance algorithm for the target-defender pair to enable target escape and the

interception of the attacker by the defender. In [52], a three-agent formulation different from the clas-

sical TAD problem is presented where a navigating aircraft pursues a target and simultaneously tries to

avoid an incoming bleeding-energy missile that is assigned to defend the target. In [53], a multiplayer

TAD problem is discussed, where Lyapunov-based control strategies are derived for the players using

approximations of the minimum and maximum functions. The solutions obtained through analysis of

different agent combinations are utilized to pair defenders with attackers to maximize the number of

attackers captured. In [54], the approach does not require perfect knowledge of the states as the agents

estimate through the range and heading measurements using an EKF. Manyam et al. [55] presented a

path-planning problem modeled as a TAD involving two cooperative agents in an adversarial environ-

ment. The second vehicle helps the first vehicle complete a mission by defending against any attackers

along the path.

A natural extension of the three-agent problem is the four-agent problem. Casbeer et al. [56] intro-

duce a four-agent game by introducing an additional defender to the TAD game proposed in [50]. Garcia

et al. [57] presented an assignment problem for a multi-pursuer multi-evader differential game, where

optimal assignments of pursuers to evaders are studied. Tan et al. [58] developed a state-dependent-

Riccati-equation (SDRE) based approach to lure the two pursuers into collision for the two targets’

survival. The approach does not present any theoretical analysis of whether the targets will survive or

not.

In the two-target two-attacker (2T2A) problem, there is no need for external defenders to protect the

targets. The objective of the targets is to move in such a manner that they force the attacker pursuing

the other target to act as a defender. We advance the 2T2A problem formulation to use NMPC for the

computation of optimal control commands. We show that the 2T2A problem can be formulated in such

a way that the outcome is determined by the initial positions of the attackers and the targets. To facilitate

this outcome, we analyze in detail the escape region for the targets theoretically.

The approaches presented in [37–43] assume that (i) perfect information about attacker states and

guidance laws employed by it are known, by which closed-form solutions were developed, and (ii) the

target is always at motion, generally with constant speed. In this work, we relax the above assumptions

by using a control scheme that combines the NMPC with attacker state estimation using an EKF. The

attacker positions, headings, and controls are estimated, whereas the velocities are assumed to be known.

10



We also consider the case in which the target has the freedom to move or not to move. This modifi-

cation is significant for applications like aerial surveillance, communication relaying, etc., where some

information needs to be acquired from hostile environments by hovering over the prescribed location. In

such situations, the defender can protect the target from any attacking agents while allowing the target

to continue its mission. The escape regions are only given for the constant speed target case in [42],

which also assumes that the attacker and the defender have equal velocities. We extend the analysis for

the variable target velocity case and relax the assumption of equal velocities for the attacker and the

defender. Since the NMPC computes control commands based on the current state estimates, it provides

the flexibility to adapt to situations where the attacker can be intelligent. This adaption is not possible in

the case of open-loop optimal control formulations where the solution is predetermined [41, 45, 47, 56].

The formulations which use closed-loop solutions [58–60] linearize the system resulting in approxima-

tion errors. Our approach is based on the nonlinear model of the system. Also, the inherent constraint

handling of NMPC helps to design controls that strictly adhere to the specified bounds. The NMPC also

has the advantage of combining optimality with real-world implementability, whereas the conventional

missile guidance laws are either sub-optimal or difficult to implement.

Now we move on from pursuit-evasion problems to a different set of problems in cooperative lo-

calization and path planning for autonomous agents used in urban air mobility. Here, instead of EKF,

we introduce a moving horizon estimation (MHE) scheme for the state estimation due to its advantages

explained in later paragraphs.

1.3 Cooperative Path Planning with Localization Constraints

Urban air mobility (UAM) is expected to have highly automated, cooperative, passenger, and cargo-

carrying aerial vehicles in urban areas [61], and the use of autonomous aerial vehicles (AAVs) for various

activities are expected to rise substantially in the near future [62]. Cargo delivery drones operate in

urban canyons with high-rise buildings and other obstructions, which calls for significant localization

accuracy. However, operating in such environments poses an additional challenge in localization since

Global navigation satellite systems (GNSS) are unreliable in such scenarios. A solution to this problem is

to use alternate localization schemes such as relative localization [63,64], vision-based methods [65,66],

and ultra-wide-band (UWB) localization schemes [67,68]. As the urban airspace is expected to contain a

large number of AAVs, relative localization between vehicles can also be used in addition to localization

with respect to known landmarks.

11



Cooperative path planning with localization constraints involves the following components: (i) local-

ization – vehicles estimate their position by using relative measurements obtained with respect to other

vehicles or landmarks, and (ii) cooperative path planning – localization constraints have to be considered

while planning the optimal path from source to destination, and hence the agents must cooperate with

each other to generate motion commands that improve the localization accuracy of the entire group while

reducing the path length to reach their destination. Several works have studied the problem separately.

For instance, [69–80] on cooperative localization and [81–84] on path planning. However, the collection

of works on cooperative path planning with localization constraints is limited, which we will review

below.

Bopardikar et al. [85] presented a graph-based probabilistic roadmap approach to tackle the path

planning problem subject to localization constraints. A time-optimal path planner satisfying the covari-

ance bounds was given in [86] using a swarm optimization technique coupled with a rabbit-carrot-based

path follower. An approach to optimally place landmarks to satisfy localization constraints was proposed

in [87]. The algorithm computes an optimal path for the vehicle and the locations where the landmarks

should be placed. A localizability-constrained path planning method for autonomous vehicles which

takes into account the laser range finder (LRF) sensor model of the vehicle, is proposed in [88] to main-

tain a satisfactory level of localizability throughout the path. Yang et al. [89] present a multi-objective

motion planning algorithm in which the vehicle tries to balance the objectives of navigating to the way-

point and reducing its position estimate uncertainty. In [90], a nonlinear model predictive control scheme

was used to find optimal paths that ensured the required localization accuracy for a group of cooperative

UAVs without analysis.

Urban air mobility calls for improved localization accuracy due to its innate nature involving close

structures, narrow pathways, and a large number of vehicles. Moving horizon estimation (MHE) has been

suggested as an alternative to EKF for increasing the accuracy of nonlinear estimation problems [91–93].

Erunsal et al. [94] proposed an approach combining NMPC and pose-graph-MHE for 3D formation

control of micro aerial vehicles with relative sensing capability. In [95], a decentralized MHE technique

is proposed for networked navigation with packet dropouts.

In this thesis, we extend the work in [90] and propose a complete cooperative localization and

path planning framework with moving horizon estimation (MHE) for estimating the vehicle position and

a nonlinear model predictive control (NMPC) framework for cooperative path planning, and a closed

formulation for covariance calculation to predicting the uncertainty. This framework uses a nonlinear

vehicle model in both the controller and the estimator, which mitigates the linearization errors. The
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analytical expression used for the covariance calculation speeds up the computations and is derived by

exploiting the relationship between the vehicle-landmark path lengths to the localization uncertainty. In

most of the literature for multi-agent systems, the studies are formulated either as a control problem

or an estimation problem [70, 72–74, 92]. We propose a method that combines both and looks at the

multi-agent problem in a holistic sense.

Previous studies [74, 82, 83] used algorithms that were not optimal and were based on conventional

path planners, whereas nonlinear model predictive control (NMPC) provides optimal paths while satis-

fying imposed state and input constraints. The feedback and re-planing at each step help find accurate

solutions in dynamically changing environments like moving landmarks. Also, most of the works based

on graph-based planning give discrete (node-to-node) paths [85]. Our design gives a continuous path,

eliminating the shortcomings of former approaches. The agent connectivity is maintained by ensuring

nonzero eigenvalue of the graph Laplacian in [96] and [97]. We also use a Laplacian matrix-based so-

lution, but we calculate Laplacian matrices for each vehicle instead of forming a single matrix for the

whole group. This helps in identifying connectivity at an individual level, and each vehicle can decide

to maintain, lose, or gain connections depending on their covariance estimates. This is not possible in

the single matrix case because a single vehicle with more connections will increase the Laplacian, even

though the other vehicles may be out of the required number of connections. Another advantage of

the proposed scheme is that we relax the constraint of always maintaining connections with two land-

marks [87] since sometimes it might be impossible to obtain a solution in environments with a lower

number of landmarks. Also, if the observability condition is violated for a short time, the vehicles would

be able to re-localize if it comes in the vicinity of another landmark. So we formulate a condition in

the controller that tries to increase connections with the landmarks only if the estimation covariance of

the vehicle increase beyond a given threshold. This formulation helps in obtaining solutions to the path

planning problem while ensuring the required localization accuracy. The works on path planning with

localization constraints [86–89] consider only single vehicles and fixed landmarks in most cases, whereas

our approach includes multiple vehicles, and each vehicle is considered a moving landmark. Since the

NMPC computes predictions for a time window, the anticipated covariances need to be calculated for

the entire prediction horizon. Existing methods of propagating covariance through an EKF-like update

equation will drastically increase the computation time since it involves the calculation of Jacobians, and

for long prediction horizons, this will result in a significant increase in the computation time. Hence, an

approximate analytic expression was derived for finding the vehicles’ estimation covariances by analyz-

ing how the path lengths between the vehicles and the landmarks in the relative position measurement

graph (RPMG) affect the covariance values.
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Next, we present a learning-based control strategy by combining reinforcement learning (RL) and

NMPC to leverage the advantages of both methods and eliminate their individual shortcomings. The

learning-based NMPC (L-NMPC) is applied for the control problem of gimbaled camera-mounted AAVs

filming race cars.

1.4 Learning-based NMPC Framework for Car Racing Cinematography

Using AAVs

The problem of persistent tracking, wherein one agent tries to always maintain another mobile agent

within its field of view (FOV), is an interesting problem studied by many researchers. Persistent tracking

is mostly used in the domain of aerial-to-ground settings, where an autonomous aerial vehicle (AAV)

tracks a ground vehicle. Choi and Kim [98] presented a guidance law for target tracking using AAV for

persistent monitoring with the use of a monocular-vision sensor. In [99], AAV rendezvous and standoff

tracking guidance laws against a moving target are presented using a differential geometry approach. A

control strategy based on lateral guidance law was proposed in [100] to visually track a ground target

with a fixed-wing AAV. The approach aims at reaching a given target view angle, which is determined

on the basis of simple geometric considerations. In [101], a framework for moving vehicle detection,

tracking, and geolocating is proposed, which uses a monocular camera, a GPS receiver, and inertial

measurement units (IMUs). A solution to the problem of ground target tracking using an AAV with

control input constraints is given in [102]. In order to achieve precise target tracking, a saturated heading

rate controller based on a guidance vector field is proposed.

Since the last decade, AAVs have been used for a wide range of applications, with aerial videography

being the most popular. Despite being a topic of interest, the research on filming a moving object,

considering realistic constraints and obstacle avoidance, is inadequate. Bonatti et al. [103] proposed

a complete system for real-time aerial cinematography that combines a vision-based target estimation

and a 3D signed-distance mapping for occlusion estimation. A framework for the AAV to maintain

a horizontal circular orbit about the target with a predefined radius is proposed in [104]. In [105],

Quintero and Hespanha designed optimization-based strategies using game theory for a pair of fixed-

wing AAVs and showed that the visibility could be improved by using a gimbaled camera. The author

assumed that AAVs could only fly at a fixed altitude in an obstacle-free environment. Optimization-

based methods such as the greedy method and informed tree search were explored with the presence of

obstacles and visibility constraints by Theodorakopoulos and Lacroix [106]. However, the approach is
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restricted to 2D environments only. Vision-based air-to-ground target tracking problem was solved with

stochastically optimized guidance law in urban environments while maximizing the navigation accuracy

in [107]. Altan and Hacıoglu [108], and Mali et al. [109] proposed a model predictive control strategy for

a target tracking AAV in an obstacle-free environment. The approach presented in [109] was advanced

in [110] by including obstacles in the environment, visibility constraints due to the limited field of view

of the camera, and visibility obstruction due to the obstacles. These constraints increase the complexity

of the multi-objective optimization problem and make the tuning of NMPC weights a tedious task.

Iterative learning control (ILC) is the control strategy that allows the controller to learn from the pre-

vious iteration and increase the future performance of the system while rejecting periodic disturbances.

ILC can be applied to systems that repeat certain tasks over time, and each repetition is known as an

“iteration” or a “trial” where the system starts at the same initial conditions. ILC is exhaustively stud-

ied in literature [111–113]. ILC follows a model-free control strategy that inherently has limitations on

constraint handling. Combining ILC with a model-based approach such as nonlinear model predictive

control (NMPC) can compensate for the unavailability of an accurate model of the system or unmea-

sured disturbances and increases the performance of the system while respecting the imposed control

and state constraints. The concept of integrating the ILC with MPC has been explored in [114], where

the author proposed a control technique called batch-MPC (BMPC) for a time-varying MIMO system.

The effectiveness of the approach was shown through experimental results. In [115], Lee and Lee proved

that the tracking error of the BMPC converges to zero as the number of iterations increases. In [116], a

nonlinear model predictive controller based on iterative learning control was proposed, where the NMPC

is designed for disturbance rejection and the ILC to minimize the errors occurring at each iteration. The

authors proved that the steady-state tracking error converges to zero as the number of iterations goes

to infinity. Artificial intelligence techniques such as model-free reinforcement learning (RL) are con-

sidered one of the best options to learn from the previous iterations [117]. The authors proposed an

approach where RL was used to learn the length of the prediction horizon of MPC and show the increase

in resulting performance. In [118], an algorithm that combines methods from RL and MPC is given for

building energy management. A formulation combining system identification with RL-based MPC is

proposed in [119, 120]. The approach learns the parameters of the MPC using RL in order to optimize

performance and fits the observed model using system identification. In [121], a learning-based MPC

scheme is proposed for adaptive optimal control of discrete-time nonlinear systems under stochastic dis-

turbances. In [122], the use of RL to tune the MPC scheme, which guarantees stability and safety, is

proposed. In the works [123] and [124], authors used the RL technique to tune the weights of the MPC

objective function. An iterative learning control guided RL scheme for batch processes is given in [125].
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This combined scheme has the capability to optimize the policy network faster and also improves the

robustness of the control system.

We use the idea behind iterative learning control to develop an RL-based NMPC scheme. The learn-

ing part is done by RL, and the control part is done using NMPC. Deviating from the previous studies

of [117, 123, 124], which consider non-repetitive tasks, we are interested in the repetitive task of film-

ing a circuit race of autonomous robot-race cars with the use of gimbaled fixed-wing and quadrotor

autonomous aerial vehicles (AAVs). We extend the formulation given in [110] for this purpose by com-

bining a reinforcement learning approach to auto-tune the weights to get the optimal performance. We

use the repetitive nature of the race to train the RL-agent (AAV) online, and the control system perfor-

mance increases over time and converges to the optimal value. Previous studies on the learning-based

MPC used offline training to tune the MPC parameters [123, 124]. Also, the RL was used to learn a

constant set of weights, which will then be used for the entire duration of the actual mission. We propose

to use time-varying weights, which will give the perfect balance for the cost function, and we learn these

weights on the fly, i.e., the training takes place online in the actual mission, and after each iteration, the

performance of the controller increases, and the weights converges to the optimal value over time. We

identify this advancement as the main contribution of this work.

1.5 Contributions

The main contributions of this thesis are

Three-agent and four-agent pursuit-evasion problems

1. NMPC formulation for the TAD and 2T2A problems with relaxed assumptions on the attacker

states and guidance laws. We do not assume complete knowledge of the state information of the

attackers.

2. A variable velocity target case for the TAD problem where the target moves only when necessary.

Previous studies only considered either a stationary target or a moving target.

3. Theoretical analysis of the escape regions for the proposed three-agent problem for the constant

speed target and the variable velocity target and for the four-agent 2T2A problem.

4. Validation of the real-world implementability of the NMPC scheme through hardware experiments
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conducted using ground rovers.

Cooperative localization and path planning problem

5. A complete framework for control and estimation of multi-vehicle cooperative path planning prob-

lem with localization constraints using NMPC and MHE. The vehicle states are estimated using

MHE based on the relative bearing measurements with respect to the nearby landmarks and ve-

hicles. The paths from source locations to goal locations for the vehicles are found in real-time

by the NMPC, considering the constraint that the estimation covariances should not go above a

selected threshold.

6. An analysis was conducted to find the relation of path lengths between vehicles and landmarks on

the estimation covariance. Based on this analysis, an approximate closed-form analytical expres-

sion for computing the localization error covariance was derived.

7. Evaluation of the proposed joint cooperative path planning with localization constraints framework

through numerical simulations for different configurations of landmarks, vehicles, horizon lengths,

and sensing ranges.

8. Comparison of cooperative and non-cooperative vehicles, and MHE-based estimation against EKF-

based framework.

Learning-based NMPC tracking problem

9. A learning-based NMPC scheme considering a 3D path with obstacle avoidance for the tracking

and filming of race cars using gimbaled camera-mounted AAVs.

10. The NMPC cost function contains adaptive time-varying weights, whereas the previous formula-

tions used constant weights.

11. The weights of the NMPC cost function are tuned using an RL scheme instead of manual tuning.

12. Previous studies used the weights learned offline. We propose an online learning approach where

the weights are learned and improved from each iteration of the race.
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1.6 Organization of the Thesis

The proposed nonlinear model predictive control strategy for the active defense of the target in a TAD

problem is presented in Chapter 2. Cooperative control commands for the target-defender pair are com-

puted using NMPC. The attacker states are estimated using an EKF. An analysis for finding the escape

regions for the target and a comparison against the CLOS and A-CLOS formulations are given.

The pursuit-evasion framework is extended to four agents in Chapter 3. In this chapter, we propose a

cooperative strategy based on NMPC for the active defense of the targets in a two–targets two–attackers

(2T2A) problem. The theoretical analysis using the Apollonius circles given in Chapter 2 is extended to

determine the escape region for the targets.

In Chapter 4, we move on to the domain of localization and path planning and propose a nonlinear

model predictive control scheme combined with moving horizon estimation (MHE) to aid the cooperative

localization of a group of AAVs in transit. The controller uses an approximate analytical expression for

calculating the expected covariance of the vehicles, which is derived using theoretical analysis conducted

using the observability graphs.

In Chapter 5, we try to improve the performance of the NMPC scheme by combining it with the

reinforcement learning technique. The proposed learning-based NMPC controller is used for the tracking

and filming of race cars using gimbaled camera-mounted AAVs.

Finally, in Chapter 6, we present the conclusions obtained from the results, the limitations, and the

future directions of the work.
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Chapter 2

NMPC Framework For Cooperative

Three-Agent Target Defense Game

2.1 Introduction

Consider a scenario shown in Fig. 2.1 where a quadcopter is hovering above an enemy territory to capture

images. During this process, any attack towards the quadcopter can be intercepted by the defender which

is fired from nearby allies so that the quadcopter gets enough time to complete the mission. Here, the

target is stationary when performing the mission and will move only when necessary. The condition in

which the target moves is explained later in this chapter in Sec. 2.3.1. This three-agent problem consisting

of an attacker and a cooperating target-defender team has several applications like aerial surveillance,

communication relaying, etc., where some information needs to be acquired in hostile environments at

prescribed locations. In such situations, the defender tries to defend the target from attacking agents.

Figure 2.1: Target-Attacker-Defender scenario
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2.2 Problem formulation

Consider an attacker A pursuing a target T while the defender D aims to intercept the attacker before

A intercepts T as shown in Fig. 2.2. The attacker acts individually, whereas the target and the defender

cooperate to form a team. Our objective is to find the optimal control commands for the target-defender

team so that the target escapes and the attacker is intercepted. Computing these inputs is not trivial since

the attacker states need to be estimated, and the turn rates of the target-defender team are constrained.

The game is formulated in a 2D Cartesian space, assuming that the altitude of the agents remains constant

throughout the engagement. All the variables are defined with respect to the inertial reference shown in

Fig. 2.2. Several assumptions are considered in this article, which are listed below.

2.2.1 Assumptions

Assumption 1. The agents have point mass, and hence we consider the kinematic equations only.

Assumption 2. The target-defender team does not have information about the attacker states. They are

estimated, whereas the attacker’s velocity is assumed to be known.

Assumption 3. The attacker always follows the target.

Assumption 4. The discrete process and measurement noises q(k) and µ(k) are additive, and zero mean

white Gaussian.

Assumption 5. The target-defender team has the capability to measure the ranges and the LOS angles

defined in the inertial frame shown in Fig. 2.2.

2.2.2 System model

The equations of motion for the agents are given as [126]

ẋA (t) = vA cosαA (t), (2.1)

ẏA (t) = vA sinαA (t) , (2.2)

ẋT (t) = vT (t) cosαT (t) , (2.3)

ẏT (t) = vT (t) sinαT (t) , (2.4)

ẋD (t) = vD cosαD (t) , (2.5)

ẏD (t) = vD sinαD (t) , (2.6)
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Figure 2.2: Attacker-Target-Defender engagement geometry for a three-agent problem.

where xA(t), yA(t), xT (t), yT (t), xD(t), yD(t) are the x and y positions of the attacker, the target, and

the defender respectively. vA, vT (t) and vD are the velocities of the attacker, the target, and the defender,

respectively. vA, vD are assumed to be constant, and vT (t) is bounded by vT (t) ∈ [0, v̄T ]. Similarly,

αA (t) , αT (t) andαD (t) are the heading angles of the attacker, the target, and the defender, respectively.

All the states, heading angles of the agents, and the velocity of the target are changing with respect to

time t, and the notation (t) is omitted in the rest of the document for simplicity. Previous studies [41,

46] assume that the attacker uses a predefined guidance law. However, an intelligent attacker can use

unknown guidance laws, and hence, we assume that the exact attacker guidance law is not known to the

target-defender team.
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Figure 2.3: NMPC scheme for determining the control commands for the three-agent problem.

2.2.3 Engagement Geometry

Consider the three-agent engagement geometry shown in Fig. 2.2. The relative motion of the three agents

can be modeled as [126]

vR = Ṙ = vT cos (αT − θ)− vA cos (αA − θ) , (2.7)

vθ = Rθ̇ = vT sin (αT − θ)− vA sin (αA − θ) , (2.8)

vr = ṙ = vD cos (αD − ξ)− vA cos (αA − ξ) , (2.9)

vξ = rξ̇ = vD sin (αD − ξ)− vA sin (αA − ξ) , (2.10)

R =

√
(xT − xA)

2 + (yT − yA)
2, (2.11)

θ = arctan

(
yT − yA
xT − xA

)
, (2.12)

r =

√
(xD − xA)

2 + (yD − yA)
2, (2.13)

ξ = arctan

(
yD − yA
xD − xA

)
, (2.14)

α̇A = Nθ̇, (2.15)

where θ is the line-of-sight (LOS) angle between the target and the attacker, ξ is the LOS angle between

the defender and the attacker, R is the distance between the attacker and the target, and r is the distance

between the defender and the attacker. vR and vθ are the components of the relative velocity along

the A − T LOS and perpendicular to the A − T LOS. vr and vξ are the components of the relative

velocity along the A−D LOS and perpendicular to the A−D LOS. The attacker model is defined using

proportional navigation (PN) guidance law with navigation constant N .
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2.3 Nonlinear model predictive control design

Nonlinear model predictive control (NMPC) is based on determining optimal future actions of an agent

or a system for a finite time horizon. The main component of the NMPC framework is the mathematical

model of the three-agent system (2.17). For each time step t, the optimal control inputs are computed

using this model for the horizon [t, t+ τh], where τh is the specified look-ahead window. After applying

the first value from the computed control sequence to the real system, the resulting output from the

system is feed-backed to the controller, and the process is continued [127]. We propose to use NMPC

to compute the cooperative control commands for the target-defender team. The attacker states are

estimated with the help of measurements available to the T − D team. Fig. 2.3 shows the proposed

NMPC strategy, which also includes the state estimator for the attacker in the feedback loop in addition

to the general NMPC structure. The NMPC block is the core component of the scheme, which contains

the mathematical model of the system and a numerical optimizer. Process block represents the system

involving the agents, and the estimator block contains the EKF.

2.3.1 Objective function

We propose a strategy wherein the target-defender team uses NMPC to compute the control commands so

that the objective of target evasion from the attacker while the defender intercepts the attacker is achieved.

We consider two types of target maneuvers: 1) constant speed target with only heading change, and 2)

variable velocity target. The variable velocity target implies that the target can move or stop based on

predefined conditions.

The NMPC problem can be stated as follows:

min
ux,uy ,α̇D∈PC(t,t+τh)

J(X,U, t),

J(X,U, t) =

∫ t+τh

t

[(
u2x + u2y

)
+ r +max(0, e−R)

]
dt, (2.16)

subject to:

Ẋ = f (X,U, t) , (2.17)

U ∈
[
U−, U+

]
, (2.18)√

u2x + u2y ≤ v̄T , (2.19)
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Figure 2.4: Definition of the safe distance of the target from the attacker.

where X = {xA, yA, xT , yT , xD, yD, αA, αT , αD} are the states, U = {ux, uy, α̇D} are the control

inputs, U− and U+ are the lower and upper bounds of U , PC(t, t+ τh) denotes the space of piece-wise

continuous function defined over the time interval [t, t+ τh], and the target velocity is bounded by v̄T .

In NMPC, we need to apply the first value of the computed control sequence to the system. Since there

is no notion of a ‘first value’ for a continuous signal, the assumption of piece-wise continuity for the

control inputs is taken. We define a threshold, e, which is the safe distance of the target from the attacker

as shown in Fig. 2.4. The target should move only if this safe distance is violated. For including the

variable velocity characteristic of the target, the state equations (2.3) and (2.4) are modified as

ẋT = ux, (2.20)

ẏT = uy, (2.21)

where ux, uy are the velocity components of the target in x and y directions, respectively, which will

also act as the control inputs for the target. The target heading angle αT can be written in terms of the

control inputs as

αT = arctan

(
uy
ux

)
. (2.22)

The attacker states are unknown, and we estimate these states using an extended Kalman filter (EKF).
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2.3.2 Estimation of the attacker states using EKF

An extended Kalman filter (EKF) is used to estimate the attacker’s position and course angle. The EKF

is formulated as [128],

Model

XA(k) = fA (XA(k − 1), k) + q(k), (2.23)

z(k) = h (XA(k), k) + µ(k), (2.24)

Prediction

XA(k|k − 1) = fA(XA(k − 1|k − 1), k)∆t (2.25)

+XA(k − 1|k − 1),

P (k|k − 1) = ∇FXAP (k − 1|k − 1)∇F ′
XA

+Q, (2.26)

z(k|k − 1) = h(XA(k|k − 1)), (2.27)

Update

XA(k|k) = XA(k|k − 1) +K(k)ν(k), (2.28)

P (k|k) = P (k|k − 1)−K(k)S(k)K ′(k), (2.29)

ν(k) = z(k)− z(k|k − 1), (2.30)

K(k) = P (k|k − 1)∇H ′
XA
S−1(k), (2.31)

S(k) = ∇HXAP (k|k − 1)∇H ′
XA

+Σ, (2.32)

where, XA(k) and z(k) represent the attacker state model and measurement model respectively, and

P (k) is the covariance matrix. q(k) and µ(k) are the process and measurement noises with covariance

Q and Σ respectively. ν(k) is called as the innovation parameter, and K(k) is the Kalman gain. The

attacker states {xA, yA, αA} and control aA need to be estimated, hence the prediction model is defined

as:

fA =


ẋA

ẏA

α̇A

ȧA

 =


vA cosαA

vA sinαA

aA
vA

−aA

 , (2.33)
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and the Jacobian of fA is

∇FXA =


0 0 −vA sinαA 0

0 0 vA cosαA 0

0 0 0 1
vA

0 0 0 −1

 . (2.34)

We model the attacker control input similar to [129,130], where estimated target acceleration was treated

as an unknown input to the nonlinear 2D missile-target engagement system. According to Assumption 5,

the measurement model for R, r, θ and ξ is given as

h =



√
(xT − xA)

2 + (yT − yA)
2√

(xD − xA)
2 + (yD − yA)

2

tan−1
(
yT−yA
xT−xA

)
tan−1

(
yD−yA
xD−xA

)


. (2.35)

The Jacobian of the measurement model is given by

∇HXA =



−(xT−xA)√
(xT−xA)2+(yT−yA)2

−(yT−yA)√
(xT−xA)2+(yT−yA)2

0 0

−(xD−xA)√
(xD−xA)2+(yD−yA)2

−(yD−yA)√
(xD−xA)2+(yD−yA)2

0 0

yT−yA
(xT−xA)2+(yT−yA)2

−(xT−xA)
(xT−xA)2+(yT−yA)2

0 0

yD−yA
(xD−xA)2+(yD−yA)2

−(xD−xA)
(xD−xA)2+(yD−yA)2

0 0


. (2.36)

Note that if the EKF estimates become unbounded, the NMPC solution will get unbounded as well.

A solution to keep the estimation errors bounded is to add extra constraints to the NMPC formulation

to ensure the covariance of the EKF is bounded by satisfying the observability conditions [90, 131, 132].

However, it will ‘degrade’ the control to obtain more accurate state estimates, and a balance between

the different objectives would be required. Here, we assume that the system is always observable and

the measurements are available irrespective of the positions of the agents (no limitations on the sensor

range). Hence, we do not provide any additional constraints to ensure system stability.

2.4 Escape region

The ability to capture or escape depends on the initial conditions of the engagement geometry. We

present an analysis based on the Apollonius circle concept to determine the escape and capture zones
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for the target-defender team. For the analysis, we assume that the agents are initially pointing in the

right direction, and they take optimal straight-line trajectories. Initially, we will assume that the attacker–

defender agents have equal speed and then relax with the assumption to show how the zones are modified.

2.4.1 Assumptions

Assumption 6. The target is slower than the attacker. Otherwise, the target will always evade the

attacker, and the defender’s role will become insignificant.

Assumption 7. The speed of the defender is greater than or equal to the speed of the target. This is

a valid assumption since, in real-world scenarios, the target is usually a slow-moving aircraft and the

defender is a missile.

2.4.2 Constant speed target

We consider a modified reference frame as shown in Fig. 2.5, where T,A,D represent the positions

of the target, the attacker, and the defender, respectively. The x−axis is defined as the line joining the

attacker and the defender, A and D. The y−axis is defined as the perpendicular bisector of the line

segment AD.

Definition 1. Apollonius circle: the concept of the Apollonius circle in pursuit-evasion games was ini-

tially proposed by Isaacs [36]. Consider a pursuer and an evader with the motion kinematics similar

to the one defined in (2.1),(2.2) in the Cartesian plane. The Apollonius circle for the pursuer-evader

engagement is the locus of points that take equal time for the evader and the pursuer to reach.

Lemma 1. The Apollonius circle for the modified reference frame of the A − D engagement geometry

is the y−axis [36].

Proof. The modified reference frame for the A−D engagement is shown in Fig. 2.5. The center of the

Apollonius circle formed by A−D is

(xc, yc)AD =

(
xD − γ2ADxA
1− γ2AD

,
yD − γ2ADyA
1− γ2AD

)
, (2.37)

where γAD is the speed ratio of the defender to the attacker, γAD = vD
vA

. Since the x−axis is defined as
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Figure 2.5: Modified TAD reference frame.

Figure 2.6: Example Apollonius circle for A− T engagement.
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the line joining A and D, yA and yD will always be zero. Therefore, equation (2.37) becomes

(xc, yc)AD =

(
xD − γ2ADxA
1− γ2AD

, 0

)
. (2.38)

The radius of the Apollonius circle for A−D engagement geometry is given by

rAD =
γAD (xD − xA)

1− γ2AD
. (2.39)

Since the attacker and the defender have equal speed, γAD = 1. According to equations (2.38)-(2.39),

the Apollonius circle for the A−D case will become the y−axis in Fig. 2.5. □

Lemma 2. The defender would be able to intercept the attacker only if the A − T circle intercepts the

y−axis.

Proof. Consider the Apollonius circle of A − T engagement. The center and radius of the Apollonius

circle for A− T engagement geometry are given as

(xc, yc)AT =

(
xT − γ2ATxA
1− γ2AT

,
yT

1− γ2AT

)
, (2.40)

and

rAT =
γAT

√
(xT − xA)

2 + y2T

1− γ2AT
. (2.41)

Fig. 2.6 represents the Apollonius circle for the A − T engagement. The circle represents the points at

which the attacker and the target can reach simultaneously, leading to the target capture. Similarly, the

A−D circle represents the points the attacker and the defender can reach simultaneously. If the A−D

circle does not have an intersection point with the A − T circle, it means that the attacker can move

on to points the defender can not reach and safely capture the target. If there is a common intersection

point between A− T and A−D circles, then the target can lure the attacker to that common point, and

the defender would be able to intercept the attacker. Since the y−axis represents the A−D Apollonius

circle, the defender would be able to intercept the attacker only if the A−T circle intercepts the y−axis.

□

It is possible to map the target escape zone by examining if the condition given in Lemma. 2 is

satisfied or not. In the following theorem, we find the expression for the locus of points that divides the

Cartesian plane into the target escape and capture zones.
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Theorem 1. The escape region for the target can be represented by a curve given by

x2

γ2ATx
2
A

− y2(
1− γ2AT

)
x2A

= 1, (2.42)

that divides the Cartesian plane into two zones, Ze and Zc, where Ze is the escape zone for the target

and Zc is the capture zone for the target [42].

Proof. The defender would be able to intercept the attacker before it captures the target only if theA−T

Apollonius circle intercepts the A −D Apollonius circle, which is the y−axis, according to Lemma. 1

and Lemma. 2. The radius of the A− T circle is given by (2.41), and the x−coordinate of its center is

xcAT =
1

1− γ2AT

(
xT − γ2ATxA

)
. (2.43)

For the A− T circle to intercept the y−axis, rAT should be greater than xcAT .

γAT

√
(xT − xA)

2 + y2T

1− γ2AT
>

1

1− γ2AT

(
xT − γ2ATxA

)
, (2.44)

xT − γ2ATxA < γAT

√
(xT − xA)

2 + y2T , (2.45)

x2A(
xT
γAT

)2 +
y2T(√

1−γ2AT
γAT

xT

)2 > 1. (2.46)

To obtain the curve that defines the escape zone, we equate (2.46) to 1. The modified equation is

x2A(
xT
γAT

)2 +
y2T(√

1−γ2AT
γAT

xT

)2 = 1, (2.47)

substituting xT , yT with x, y, we get the equation for the locus of points that divides the plane as

x2A(
x
γAT

)2 +
y2(√

1−γ2AT
γAT

x

)2 = 1, (2.48)

which can be rearranged into
x2

γ2ATx
2
A

− y2(
1− γ2AT

)
x2A

= 1. (2.49)

□

Fig. 2.7 shows the curve dividing the plane into two zones. If the target’s initial position lies in the
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Figure 2.7: Escape zone for the constant speed target, T . Ze is the escape zone and Zc is the capture
zone.

escape zone Ze, the A− T Apollonius circle will intercept the y−axis, and hence, the target can lure the

attacker into crossing the y−axis and allow the defender to intercept it. If the target lies in the capture

zone Zc, it would be captured before crossing the y−axis. Fig. 2.8 shows the family of dividing curves

for different values of γAT , 0 < γAT < 1. It can be seen that as the speed ratio γAT increases, the area

of the target escape zone increases since a target with higher velocity has more chance of escaping the

attacker.

2.4.3 Stationary target

In the case of a stationary target that does not move throughout the engagement, the A − T speed ratio

γAT = 0. Hence, the center and radius of the A − T Apollonius circle given by equations (2.40) and

(2.41) can be modified as

(xc, yc)AT = (xT , yT ) , (2.50)

and

rAT = 0, (2.51)

which means the Apollonius circle will shrink to become the target point itself. According to Lemma. 2,

the target would be able to escape only if the A − T Apollonius circle intercepts the y−axis. Hence,
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Figure 2.9: Escape zone for the stationary target, T . Ze is the escape zone and Zc is the capture zone.

applying the condition for the A− T circle to intercept the y−axis, which is rAT > xcAT , we get

0 > xT , (2.52)

and after substituting x for xT and changing the inequality sign to equality for obtaining the dividing

curve, we get

x = 0, (2.53)

which is the equation for the y−axis. Hence, for the stationary target case, the curve that divides the

space into the escape and the capture zones is the y−axis itself, as shown in Fig. 2.9.
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2.4.4 Variable target velocity

For analyzing this case, consider Fig. 2.10a. The target, attacker, and defender initial positions are

given as (xA, yA), (xD, yD), and (xT , yT ). The target is in motion only when the attacker violates the

safe distance e. Let (xeA, y
e
A) and (xeD, y

e
D) be the coordinates of the attacker and the defender when

||T −A|| = e. We now create a new reference frame x′ − y′ as shown in the figure, where

ϕ = arctan

(
yeA − yeD
xeA − xeD

)
, and (2.54)

x0, y0 =

(
xeA + xeD

2
,
yeA + yeD

2

)
. (2.55)

The coordinates from the x− y frame can be transformed into x′ − y′ frame as follows

x′A = (xeA − x0) cosϕ+ (yeA − y0) sinϕ, (2.56)

y′A = (yeA − y0) cosϕ− (xeA − x0) sinϕ, (2.57)

x′D = (xeD − x0) cosϕ+ (yeD − y0) sinϕ, (2.58)

y′D = (yeD − y0) cosϕ− (xeD − x0) sinϕ, (2.59)

x′T = (xT − x0) cosϕ+ (yT − y0) sinϕ, (2.60)

y′T = (yT − y0) cosϕ− (xT − x0) sinϕ. (2.61)

Fig. 2.10b shows the agent representations in the re-defined x′ − y′ frame.

Consider an example case where the initial conditions are selected as (xA, yA) = (0.5, 0), (xD, yD) =

(−0.5, 0), γAT = 0.5, and e = 1
2R. From equation (2.46), the escape zone for the target is given in

Fig. 2.11. The variable target velocity case can be subdivided into three sub-cases, (i) if the target is

always moving with the maximum allowed speed as given in Sec. 2.4.2. In this case, the dashed curve

represents the division of the plane into the escape and the capture zones. (ii) If the target is always sta-

tionary as given in Sec. 2.4.3, the division will be represented by the y−axis. The target escape zone will

be left of the y−axis, and the capture zone will be on the right side of the y−axis. This is due to the fact

that the interception of the attacker by the defender can only occur at the y−axis, and if the target does

not move, it has to be on the left side of the y−axis in order to lure the attacker into crossing the y−axis

so that the defender can intercept it. (iii) If the target is initially at rest and starts moving with maximum

velocity after the safe distance e is violated. For this case, the solid curve represents the division of the

space into the two zones, the target escape zone, Z ′
e, and the target capture zone, Z ′

c. After the target
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(a)

(b)

Figure 2.10: Configurations in a new reference frame for the variable velocity target. (a) Modified
reference frame (figure not to scale). (b) Agent representations in the new x′ − y′ frame.
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Figure 2.11: Escape zone for the variable velocity target, T . The dashed curve represents the constant
speed case, the solid curve the variable velocity case, and the y−axis represents the boundary for the
stationary target.

starts moving, the engagement is similar to the constant speed target case given in Sec. 2.4.2, and the

conditions given in Lemma. 2 can be used to map the escape region for the target.

Deriving an analytical expression for this solid curve is very difficult, unlike the constant speed case,

since at each initial target position, a new reference frame needs to be formed, which depends on the

instantaneous position of the defender (xeD, y
e
D), which is the solution of a differential equation. Hence,

the escape and the capture zone are obtained through numerical analysis for the variable target velocity

case. For each initial position of the target in the x − y frame, the coordinates for the origin and the

rotation of the x′ − y′ frame are calculated, and the agents are represented in the x′ − y′ frame. After

that, the condition (2.46) is used in the x′ − y′ frame to check if the target will escape or not.

2.4.5 Different speeds for attacker and defender

Now, we relax the assumption that the attacker and the defender have equal speed and perform the

analysis for cases where γAD > 0, γAD ̸= 1.
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2.4.5.1 Constant speed target case

Extending Lemma 2 for general cases, we can see that the curve that separates the escape region from

the capture region is the locus of points where the A − T Apollonius circle is tangential to the A − D

Apollonius circle. This condition can be written as

dc = rAD + rAT , (2.62)

where dc is the distance between the centers of the A − D and A − T Apollonius circles, rAD is the

radius of the A − D circle, and rAT is the radius of the A − T circle respectively. Now, we substitute

and expand the terms in equation (2.62) as follows

√
(xcAD − xcAT )

2 + (ycAD − ycAT )
2 =

γAD(xD − xA)

1− γ2AD
+
γAT

√
(xT − xA)2 + y2T

1− γ2AT
, (2.63)(

xD − γ2ADxA
1− γ2AD

−
xT − γ2ATxA
1− γ2AT

)2

+

(
yT

1− γ2AT

)2

=γAD(xD − xA)

1− γ2AD
+
γAT

√
(xT − xA)2 + y2T

1− γ2AT

2

. (2.64)

After some algebraic manipulations and substituting x, y for xT , yT , and xD = −xA, we get the follow-

ing quartic equation

c23y
4 + (2c2c3x

2 + 2c3c4x+ 2c3c0 − c21)y
2 + c22x

4 + c24x
2 + c20 + 2c4c0x

+ 2c2c4x
3 + 2c2c0x

2 − c21x
2 + 2c21xAx− c21x

2
A = 0, (2.65)

where

c0 = x2A − 2γ2ADx
2
A + γ4ADx

2
A − 5γ2ATx

2
A + 8γ2ATγ

2
ADx

2
A−

γ4ADγ
2
ATx

2
A + 4γ4ATx

2
A − 4γ4ATγ

2
ADx

2
A − 2γ2ADγ

2
ATxA,

c1 = −4γATγADxA + 4γ3ATγADxA + 4γATγ
3
ADxA−

4γ3ADγ
3
ATxA,

c2 = 1− γ2AT − 2γ2AD + 2γ2ATγ
2
AT + γ4AD − γ4ADγ

2
AT ,

c3 = 1− γ2AT − 2γ2AD + 2γ2ADγ
2
AT + γ4AD − γ4ADγ

2
AT ,

c4 = 2xA − 2γ2ATxA − 2γ4ADxA + 2γ2ATγ
4
ADxA.
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Figure 2.12: Example plots of the escape region for a constant speed target when γAD < 1. (a) Apollo-
nius circles of A−D and A− T engagements at the target escape boundary. (b) The curve that divides
the plane into escape and capture regions for the target.

The solutions for the equation (2.65) is given by

y21 =
−b+

√
b2 − 4ac

2a
, (2.66)

y22 =
−b−

√
b2 − 4ac

2a
, (2.67)

where

a = c23,

b = 2c2c3x
2 + 2c3c4x+ 2c3c0 − c21,

c = c22x
4 + c24x

2 + c20 + 2c4c0x+ 2c2c4x
3 + 2c2c0x

2

− c21x
2 + 2c21xAx− c21x

2
A.

When γAD < 1, the A−T circle will be outer-tangential to the A−D circle at the escape boundary

of the target as shown in Fig. 2.12a, and the solution to be used is given by equation (2.66). An example

curve that divides the x− y plane into the target escape and capture zones is shown in Fig. 2.12b.

When γAD > 1, the A−T circle will be inner-tangential to the A−D circle at the escape boundary

of the target as shown in Fig. 2.13a, and the solution to be used is given by equation (2.67). An example

curve that divides the x− y plane into the target escape and capture zones is shown in Fig. 2.13b. It can

be seen that the target capture zone is reduced to a closed space beyond which the target escapes. This

phenomenon is due to the speed advantage of the defender over the attacker.
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Figure 2.13: Example plots of the escape region for a constant speed target when γAD > 1. (a) Apollo-
nius circles of A−D and A− T engagements at the target escape boundary. (b) The curve that divides
the plane into escape and capture regions for the target.

2.4.5.2 Stationary target case

Since the A − T Apollonius circle is the target point itself as given by equations (2.50) and (2.51), the

curve that divides the plane into the target escape and capture zones will be the A−D Apollonius circle.

When γAD < 1, the target escape zone will be inside the A −D circle, and when γAD > 1, the target

escape zone will be outside the A−D circle. An example for both cases is shown in Fig. 2.14.

2.4.5.3 Variable target velocity case

This case needs to be numerically computed similar to the analysis given in Sec. 2.4.4. The only differ-

ence here is that instead of checking if the A−T Apollonius circle crosses the y−axis, we need to check

if the A− T circle crosses the A−D circle. An example for the curve that divides the x− y plane into

the target escape and capture zones is shown in Fig. 2.15.

2.4.6 Escape region based on the estimated states (stochastic escape region)

The analysis presented in Sec. 2.4.2 is based on ideal conditions with a deterministic system, and the true

position values of the agents are known. Nevertheless, the analysis can easily be converted to include

stochasticity and attacker state estimation. The EKF formulated in Sec. 2.3.2 allows the attacker states

to be estimated precisely within the ±3σ bounds. If the worst case (for the target) of −3σ is considered,
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Figure 2.14: Example plots of the escape region for a stationary target when γAD ̸= 1. The A − D
Apollonius circle divides the plane into the target escape zone, ze and capture zone, zc. (a) When
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Figure 2.15: Example plots of the escape region for a variable velocity target when γAD ̸= 1. (a) When
γAD < 1 (b) when γAD > 1.
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Figure 2.16: Stochastic escape zone for the constant speed target, T . Ze is the escape zone and Zc is the
capture zone.

the dividing curve shifts a little to the left, reducing the escape zone of the target as shown in Fig. 2.16.

A similar analysis can be performed on all the other target speed cases given in the thesis, and the

corresponding results are not included here to avoid redundancy.

2.5 Simulation results

The efficacy of the proposed NMPC scheme is evaluated through extensive numerical simulations. The

simulations were performed using MATLAB R2017b and VirtualArena [133] on an Ubuntu 16.04, Intel

i5 PC with 8GB RAM running at 2.4GHz. Initially, we present the results for the constant speed target

case followed by the variable target velocity case.

2.5.1 Simulation setup

The look-ahead window for the NMPC was selected as 6 steps to balance the computation time and the

performance, with a sampling time of 0.05 s, which makes the prediction window τh = 0.3 s for all
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constant speed target variable velocity target
parameter escape capture parameter escape escape capture

e not violated e violated
(xA, yA) (m) (50,50) (50,50) (xA, yA) (m) (50,0) (50,0) (50,0)
(xT , yT ) (m) (25,30) (60,130) (xT , yT ) (m) (-50,100) (10,100) (100,100)
(xD, yD) (m) (0,0) (0,0) (xD, yD) (m) (-50,0) (-50,0) (-50,0)
αA (rad) -2.2 0.78 αA (rad) 1.57 3.14 1.57
αT (rad) -2.2 0.78 ux (m/s) 0 0 0
αD (rad) 0.78 0.78 uy (m/s) 0 0 0
vA (m/s) 4 4 αD (rad) 0.78 0 0
vT (m/s) 2 2 vA (m/s) 4 4 4
vD (m/s) 4 4 vD (m/s) 4 4 4

Table 2.1: Initial parameters for the agents in TAD simulation with equal speed for the attacker and the
defender.

simulations. The covariance matrices Q and Σ for the EKF are selected as

Q =


0.1 0 0 0

0 0.1 0 0

0 0 0.01 0

0 0 0 0.1

 ,Σ =


0.1 0 0 0

0 0.1 0 0

0 0 0.01 0

0 0 0 0.01

 .

For the simulation purpose, the attacker switches the guidance law between pure pursuit (PP) and pro-

portional navigation (PN) at each second. This technique is opted in order to show that the attacker is

intelligent and also the efficacy of the proposed NMPC scheme against unknown attacker guidance laws.

Note that the attacker guidance law is not known to the target-defender team. The PP guidance law is

given as [134] aA = −κ (αA − θ) , and the PN guidance is given as [126] aA = NvAθ̇. The navigation

constant, N = 3, is taken for the PN guidance law and κ = 2 for the PP law. Rc = 1m and rc = 1m

are the attacker-target and the attacker-defender capture radii. The angular velocity of the defender is

constrained to −0.5 ≤ α̇D ≤ 0.5 rad/s considering the real-world implementation constraints. The max-

imum velocity of the target is also constrained to v̄T ≤ 2m/s to keep the A − T speed ratio γAT < 1.

Initial conditions of the agents are given in Table 2.1, Fig. 2.17, 2.20, 2.24, 2.27, 2.30, and 2.33.

2.5.2 Constant speed target

Given the initial engagement geometry, we can say whether the target will be captured or not using the

analysis given in Sec. 2.4.2. We validate this claim through simulation for the initial configuration given

in Fig. 2.17. The initial positions of the attacker and the defender are selected asA(35, 0) andD(−35, 0).
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Figure 2.17: Initial agent configurations for the constant speed target case.

The A−D speed ratio, γAD = 1, and the A− T speed ratio, γAT = 0.5.

2.5.2.1 Target escape case

The initial position of the target is selected inside the escape zone Ze and is represented by Te(3.5, 3.5)

in Fig. 2.17. The initial conditions for the simulation are given in Table 2.1 escape column of the constant

speed case. The agent trajectories are shown in Fig. 2.18a, and the evolution of the distances (R and r)

between the agents are shown in Fig. 2.18b. Since the attacker guidance law is changing over time, we

represent this change by using different color sequences in the plot, PP in red and PN in cyan. Even with

the attacker guidance law switching from PP and PN, the defender was able to intercept the attacker and

mitigate the target capture. The optimal control inputs determined by the NMPC are given in Fig. 2.18c.

It can be seen that the bounds on the angular velocity of the defender were strictly followed. Fig. 2.18d

shows the errors in the estimates of the attacker position and heading angle. The errors are low and stay

within the 3σ bounds calculated using the corresponding covariances from the matrix P , which implies

that the estimator performance is satisfactory.
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Figure 2.18: Target escape scenario for the constant speed target. (a) Trajectories of the agents. (b)
Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error in the
attacker state estimates.
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Figure 2.19: Target capture scenario for the constant speed target. (a) Trajectories of the agents. (b)
Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error in the
attacker state estimates.

2.5.2.2 Target capture case

The initial position of the target is selected inside Zc and is represented by Tc(100, 50) in Fig. 2.17. The

simulation parameters are shown in Table 2.1 capture column of the constant speed target. The agent

trajectories and the evolution of the distances for this scenario are shown in Fig. 2.19a and Fig. 2.19b.

The attacker captured the target before the defender could intercept the attacker. It can be seen from

Fig. 2.19b that the distance between the attacker and the defender remained almost constant since they

have equal velocities and are on a tail-chase engagement. The optimal control inputs and the error in

attacker states are given in Fig. 2.19c and Fig. 2.19d, respectively. The target velocity stays constant

at the specified value of 2 m/s throughout the engagement. The estimator performance was satisfactory

since the errors never crossed the upper and lower covariance bounds.
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Figure 2.20: Initial agent configurations for the variable velocity target case. The dashed curve represents
the constant speed case, the solid curve the variable velocity case, and the y−axis represents the boundary
for the stationary target.

2.5.3 Variable target velocity case

The analysis given for the variable velocity target in Sec. 2.4.4 is validated using the initial configurations

given in Fig. 2.20. The initial positions of the attacker and the defender are selected as A(0.5, 0) and

D(−0.5, 0). The A−D speed ratio, γAD = 1, and the A− T speed ratio, γAT = 0.5. The safe distance

parameter e is selected as half of the initial distance between the target and the attacker.

2.5.3.1 Target escape case where safe distance is not violated

The target escape scenario for the variable velocity target case, where the safe distance parameter e is

not violated, is considered. The initial position of the target is selected inside the escape zone, Z ′
e, and

is represented by Te(−0.5, 1) in Fig. 2.20. The agent trajectories and the evolution of the distances for

this scenario are shown in Fig. 2.21a and Fig. 2.21b. It can be seen from the figures that the target is

stationary since the attacker was intercepted by the defender before e is violated. It is evident that the

target’s control inputs would be zero for this case, which is verified in Fig. 2.21c. The defender’s angular

velocity is also almost zero due to the nearly straight line path taken by the agent. Fig. 2.21d shows the

errors in the estimates of the attacker position and heading angle. The errors are low and stay within the

3σ bounds.
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Figure 2.21: Target escape scenario for the variable velocity target where e is not violated. (a) Trajecto-
ries of the agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC.
(d) Error in the attacker state estimates.
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Figure 2.22: Target escape scenario for the variable velocity target where e is violated. (a) Trajectories
of the agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d)
Error in the attacker state estimates.

2.5.3.2 Target escape case where safe distance is violated

The target escape scenario for the variable velocity target case, where the safe distance parameter e is

violated, is considered here. The initial position of the target is selected inside the escape zone, Z ′
e, and

is represented by Tee(0.1, 1) in Fig. 2.20. The agent trajectories and the evolution of the distances for

this scenario are shown in Fig. 2.22a and Fig. 2.22b. It can be seen from the figures that the target started

moving when e was about to be violated, and the target’s control inputs became nonzero, as shown in

Fig. 2.22c. It can be seen from Fig. 2.22b that the slope of R was decreasing at a constant rate, and the

rate decreased when the target started moving. Fig. 2.22d shows the errors in the estimates of the attacker

position and heading angle, which is very low and stays within the 3σ bounds.
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Figure 2.23: Target capture scenario for the variable velocity target. (a) Trajectories of the agents. (b)
Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error in the
attacker state estimates.

2.5.3.3 Target capture case

The initial position of the target is selected inside the capture zone, Z ′
c, and is represented by Tc(1, 1) in

Fig. 2.20. The agent trajectories and the evolution of distances between the agents are shown in Fig. 2.23a

and Fig. 2.23b, respectively. The optimal control inputs determined by the NMPC for the target and the

defender are shown in Fig. 2.23c. It can be seen that the target’s control inputs become nonzero only

after the safe distance e was about to be violated. The target then moves with the maximum allowed

velocity and tries to maintain R > e. The target was captured as the defender failed to intercept the

attacker. Like the other simulations, the estimated errors were below the 3σ bounds. Fig. 2.23d shows

the errors in estimated states, which is well below the 3σ bounds.
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2.5.4 Unequal attacker–defender speed ratio case

Simulations were carried out with different configurations (constant speed and variable velocity target,

A −D speed ratio γAD < 1 and γAD > 1). The A − T speed ratio is selected as γAT = 0.5. The safe

distance parameter e is selected as half of the initial distance between the target and the attacker.

x

y

AD

Figure 2.24: Initial agent configurations for the variable velocity target case, γAD = 1.5.

2.5.4.1 Variable velocity target, Target escape case, γAD = 1.5

The initial position of the target is selected inside the escape zone, Ze, and is represented by Te(2.5, 3)

in Fig. 2.24. The agent trajectories and the evolution of the distances for this scenario are shown in

Fig. 2.25a and Fig. 2.25b. The safe distance e was violated, and hence the target’s control inputs became

nonzero, as shown in Fig. 2.25c. The distance between the attacker and the defender goes to zero in

Fig. 2.25b, confirming the A − D interception. Fig. 2.25d shows the errors in the estimates of the

attacker states, which is within the acceptable tolerance range.

2.5.4.2 Variable velocity target, Target capture case, γAD = 1.5

The initial position of the target is selected inside the capture zone, Zc, and is represented by Tc(2.5, 1) in

Fig. 2.24. The agent trajectories and the evolution of distances between the agents are shown in Fig. 2.26a

and Fig. 2.26b respectively. The optimal control inputs determined by the NMPC for the target and the
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Figure 2.25: Target escape scenario for the variable velocity target, γAD = 1.5 (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.
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Figure 2.26: Target capture scenario for the variable velocity target, γAD = 1.5. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.

defender are shown in Fig. 2.26c. Even though the control inputs became nonzero after the safe distance

e was violated, the target failed to escape since the defender was unable to intercept the attacker. The

estimator performance was satisfactory, as seen in Fig. 2.26d.

2.5.4.3 Constant speed target, Target escape case, γAD = 0.8

The initial position of the target is selected inside the escape zone, Ze, and is represented by Te in

Fig. 2.27. The agent trajectories and the evolution of the distances for this scenario are shown in

Fig. 2.28a and Fig. 2.28b. The target moves at a constant speed away from the attacker. Hence, control

commands are nearly constant, as shown in Fig. 2.28c. At the initial stages, some oscillations can be

seen in the defender’s input as it tries to align itself with the attacker’s course. The distance between
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Figure 2.27: Initial agent configurations for the constant speed target case, γAD = 0.8

the attacker and the defender goes to zero, as shown in Fig. 2.28b since the attacker was intercepted.

Fig. 2.28d shows the errors in the estimates of the attacker states, which is well within the acceptable

tolerance range.

2.5.4.4 Constant speed target, Target capture case, γAD = 0.8

The initial position of the target is selected inside the capture zone, Zc, and is represented by Tc in

Fig. 2.27. The agent trajectories and the evolution of distances between the agents are shown in Fig. 2.29a

and Fig. 2.29b respectively. The target was captured even though it tried to escape by taking a zig-zag

trajectory. Since the defender was in a tail chase scenario with a higher-speed attacker, it was not able to

intercept the attacker. This can be seen in Fig. 2.29b that the distance r does not decrease and is nearly

constant. The optimal control inputs determined by the NMPC for the target and the defender are shown

in Fig. 2.29c. Identifiable changes can be seen in the target controls due to its zig-zag trajectory. The

estimator performance was satisfactory, as seen in Fig. 2.29d, and the failure of the defender was not due

to estimation errors.
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Figure 2.28: Target escape scenario for the constant speed target, γAD = 0.8. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.
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Figure 2.29: Target capture scenario for the constant speed target, γAD = 0.8. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.
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Figure 2.30: Initial agent configurations for the constant speed target case, γAD = 1.5

2.5.4.5 Constant speed target, Target escape case, γAD = 1.5

The initial position of the target is selected inside the escape zone, Ze and is represented by Te in

Fig. 2.30. The agent trajectories and the evolution of the distances for this scenario are shown in

Fig. 2.31a and Fig. 2.31b. The target initially moves away from the attacker and then takes a slight

left turn to make the interception of the attacker easy for the defender. Hence, we can see a change in

control commands after the initial stage, as shown in Fig. 2.31c. The distance between the attacker and

the defender goes to zero, as shown in Fig. 2.31b confirming the interception of the attacker. Fig. 2.31d

shows the errors in the estimates of the attacker states, which is bounded by σ.

2.5.4.6 Constant speed target, Target capture case, γAD = 1.5

The initial position of the target is selected inside the capture zone, Zc, and is represented by Tc in

Fig. 2.30. The agent trajectories and the evolution of distances between the agents are shown in Fig. 2.32a

and Fig. 2.32b respectively. The target was captured even though it tried to escape by taking an ‘S’-

shaped trajectory. Even though the defender is faster than the attacker, it was not able to intercept the

attacker due to the high initial separation between them. This can be seen in Fig. 2.32b that the distance r

is decreasing to zero, and the defender was close to intercepting the attacker. The optimal control inputs

determined by the NMPC for the target and the defender are shown in Fig. 2.32c. Intermittent changes
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Figure 2.31: Target escape scenario for the constant speed target, γAD = 1.5. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.
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Figure 2.32: Target capture scenario for the constant speed target, γAD = 1.5. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.

in the target controls are due to the ’S’-shaped trajectory taken by the target. The estimator performance

was satisfactory in this case also, and the errors are shown in Fig. 2.32d.

2.5.4.7 Variable velocity target, Target escape case, γAD = 0.8

The initial position of the target is selected inside the escape zone, Ze, and is represented by Te in

Fig. 2.33. The agent trajectories and the evolution of the distances for this scenario are shown in

Fig. 2.34a and Fig. 2.34b. The attacker was intercepted by the defender before it could breach the safe

radius. Hence, the target stayed in its position to perform its mission. Since the safe distance e was not

violated, the target’s control inputs stayed near zero, as shown in Fig. 2.34c. The distance between the
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Figure 2.33: Initial agent configurations for the variable velocity target case, γAD = 0.8.

attacker and the defender goes to zero in Fig. 2.34b, confirming the A−D interception. The distance R

was reduced at a constant rate since the target was stationary. Fig. 2.34d shows the errors in the estimates

of the attacker states, which is within the ±σ bounds.

2.5.4.8 Variable velocity target, Target capture case, γAD = 0.8

The initial position of the target is selected inside the capture zone, Zc, and is represented by Tc in

Fig. 2.33. The agent trajectories and the evolution of distances between the agents are shown in Fig. 2.35a

and Fig. 2.35b respectively. The target started moving when the safe distance was violated. It can be seen

that there is a change in slope in the distance plot R due to the target motion. The defender could not

intercept the attacker since it was chasing an agent with a higher velocity. This is evident from Fig. 2.35b

since the value of r is almost constant. The optimal control inputs determined by the NMPC for the

target and the defender are shown in Fig. 2.35c. The control values for the target rose to the maximum

when the safe distance was violated. The estimator performance was satisfactory in this case also, as

seen in Fig. 2.35d.
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Figure 2.34: Target escape scenario for the variable velocity target, γAD = 0.8 (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.

Comparison
parameter NMPC A-CLOS CLOS

(xA, yA) (m) (0,5000) (0,5000) (0,5000)
(xT , yT ) (m) (0,0) (0,0) (0,0)
(xD, yD) (m) (0,0) (0,0) (0,0)
αA (rad) -1.57 -1.57 -1.57
αT (rad) 0 0 0
αD (rad) 1.57 1.57 1.57
vA (m/s) 600 600 600
vT (m/s) 200 200 200
vD (m/s) 600 600 600

Table 2.2: Initial parameters for the agents for the comparison with the A-CLOS and CLOS guidance
laws.
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Figure 2.35: Target capture scenario for the variable velocity target, γAD = 0.8. (a) Trajectories of the
agents. (b) Distance between the agents. (c) Optimal control inputs determined by the NMPC. (d) Error
in the attacker state estimates.
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Figure 2.36: Initial agent configurations for the comparison of CLOS, A-CLOS, and NMPC.

Parameter NMPC A-CLOS CLOS
interception time (s) 4.0 4.3 4.5
avg. control effort (m/s2) 350.97 3.38e+03 1.11e+04
avg. computation time / iteration 0.0374 0.0018 0.0038

Table 2.3: Performance comparison between NMPC, A-CLOS, and CLOS.

2.5.5 Comparison with CLOS and A-CLOS guidance laws

The proposed NMPC scheme for the three-agent pursuit-evasion problem was compared with existing

solutions which use a command to line-of-sight (CLOS) guidance [37] and a modified CLOS guidance,

called A-CLOS law [38], for the calculation of control input for the defender. The three-agent system

was simulated with the same initial conditions as given in Table 2.2 and was compared with the solutions

given by the CLOS and the A-CLOS guidance laws.

Velocities of the agents were selected as vT = 200m/s, vA = 600m/s and vD = 600m/s respectively

to match the parameters given in [37]. The initial positions of the agents are shown in Fig. 2.36. The

target and the defender start from the same initial position, and the target moves with constant speed. The

initial position of the target lies in the escape zone Ze. The agent trajectories for the CLOS, A-CLOSG,

and the NMPC for the selected scenario are given in Fig. 2.37a. The computed control input for the

defender, which is the lateral acceleration, is given in Fig. 2.37b for all the approaches. The simulation

61



0 100 200 300 400 500 600 700 800 900

X(m)

-1000

0

1000

2000

3000

4000

5000

Y
(m

)

Target-CLOS

Attacker-CLOS

Defender-CLOS

Target-ACLOS

Attacker-ACLOS

Defender-ACLOS

Target-NMPC

Attacker-NMPC

Defender-NMPC

NMPC

ACLOS

CLOS

(a)

0 1 2 3 4 5

t (s)

-400

-350

-300

-250

-200

-150

-100

-50

0

50

a
D

 (
m

/s
2

)

CLOS

ACLOS

NMPC

(b)

Figure 2.37: Performance comparison of the NMPC, CLOS, and the A-CLOS. (a) Agent trajectories
with CLOS, A-CLOS, and NMPC. (b) Control effort comparison for the CLOS, A-CLOS, and NMPC.

results show that the NMPC outperformed the CLOS and A-CLOS with lower interception time and

average control effort, as seen from Table 2.3. Even though the NMPC has a higher computation time

compared to the CLOS and A-CLOS, it should be considered as a trade-off between computation time

and efficiency. Nevertheless, the proposed NMPC scheme is real-time implementable according to our

experience [54].

2.5.6 Experimental results

The efficacy of the proposed NMPC scheme was validated through implementation on ground rovers.

Three ground rovers were used as the target, the attacker, and the defender. Initially, Software-In-The-

Loop (SITL) simulations were performed, which mimic real-world conditions. Each rover has a Pixhawk

autopilot, a GPS receiver, and a Raspberry Pi onboard computer. GPS was used for localization, and

the onboard computer was used for connecting the rover to the local network. The experimental setup

uses Robotic Operating System (ROS) in a single-master-multiple-slave configuration, where a Ground

Control Station (GCS) is the ROS master, and each rover is configured as a ROS slave. MAVROS was

used as the inter-vehicle communication framework. The experimental setup is shown in Fig. 2.38.

The velocities of the agents were selected as vA = 0.4m/s, v̄T = 0.3m/s, and vD = 0.5m/s. The

control inputs were selected as linear and angular velocity commands. ROS-MATLAB toolkit was used

for interfacing ROS and MATLAB. The ROS node, written in MATLAB, publishes command velocities

and subscribes to feedback topics from all the agents. The command velocities are computed in real-
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Figure 2.38: Experimental setup
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Figure 2.39: Experimental results. (a) Rover trajectories (b) Rover control inputs.
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(a) (b) (c)

(d) (e) (f)

Figure 2.40: Snapshots from the experiment. (a) Initial setup with a safe radius of 2 m (b) Rovers moving
(c) Target started moving as the safe radius was breached (d) Defender intercepts the attacker (e) Initial
setup with a safe radius of 0.5 m (f) Defender intercepts the attacker before the safe radius was violated.

time using NMPC. Multiple scenarios were tested to evaluate the performance of the proposed strategy,

and one selected experimental result is given in Fig. 2.39. The rover trajectories shown in Fig. 2.39a

represent the variable velocity target case. The target stays still initially and moves only when the safe

distance is about to be breached. The control inputs for the agents are shown in Fig. 2.39b. Defender

input rises after some time to change its course to align with the attacker. The target velocity became

non-zero when the safe distance was violated, and the target started moving.

Some snapshots from the experiments are discussed next. Fig. 2.40a shows the initial setup for

variable velocity target case with a safe radius of 2 m. Fig. 2.40b shows the rovers in motion. The target

stays stationary. The attacker is moving toward the target, and the defender is moving toward the attacker.

In Fig. 2.40c, we can see that the safe distance was violated, and the target started moving to escape from

the attacker. Fig. 2.40d shows the final stage where the defender intercepted the attacker, and the target

escaped. Next, the setup is changed with a smaller safe radius of 0.5 m, as shown in Fig. 2.40e. In this

case, the defender intercepted the attacker before the safe distance was violated. Hence, the target stayed

stationary throughout the experiment, as shown in Fig. 2.40f. A video of the experimental results can be

found at https://youtu.be/IuvKP1vifh0.
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2.6 Conclusions

A nonlinear model predictive control strategy was proposed for the active defense of the target in a

TAD game. The formulation involves computing control commands for a cooperative target-defender

pair against an individually acting attacker. The state information of the attacker was assumed to be

unknown and was estimated using an EKF. An analysis using the Apollonius circles was conducted

to determine the escape regions for the target, and the same was verified using simulations conducted

for various scenarios. The nonlinear online feedback scheme designed using the NMPC was found to

be effective in achieving the objectives while respecting the imposed constraints. The performance of

the NMPC strategy was compared against CLOS and A-CLOS, and the results showed that the NMPC

outperformed both the CLOS and A-CLOS based strategies. We have also experimentally demonstrated

the efficacy and real-time implementability of the proposed approach using three rovers outdoors.

The main limitation of the proposed NMPC scheme is the increase in the computational burden for

longer prediction horizons. Although reducing the horizon helps in real-time implementation, it makes

the solution sub-optimal. Also, we have yet to define any clear rule for selecting the safe distance

parameter, e. More analysis is required to find the best value for e under different scenarios. The

current work has limitations due to assumption (1), which can be relaxed, and a more realistic analysis

can be performed. Also, it is possible to broaden the framework to three dimensions taking the terrain

map into account and including obstacles in urban environments. The major challenge in formulating

differential games in 3D compared to the 2D case is the tractability of analytic solutions. The use of

intersection spheres is required instead of Apollonius circles. Also, extra control inputs are required

since each agent’s azimuth and elevations need to be controlled. This makes the dynamics more non-

linear, computationally intensive to optimize, and hard to find the escape regions for the agents in the

game. The recent works [135, 136] show promising results on how to tackle these issues.
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Chapter 3

NMPC-Based Cooperative Strategy To

Lure Two Attackers Into Collision By Two

Targets

3.1 Introduction

Here we consider a pursuit-evasion problem involving a pair of attackers (A1, A2) pursuing a pair of

targets (T1, T2) as shown in Fig. 3.1. We call this the two–targets two–attackers (2T2A) problem, where

the objective of the target pair is to maneuver in such a way that the attackers collide with each other,

ensuring the survival of the targets. The target pair is cooperative, whereas the attackers act individually.

This type of scenario often occurs in the real world when heat-seeker missiles are fired to intercept the

targets (an airplane or helicopter). The missiles simply follow the heat source (target) and generally do

not cooperate with other missiles, whereas the targets can cooperate and devise a plan to escape.
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Figure 3.1: Four-agent engagement geometry. A1 and A2 are the attackers, T1 and T2 are the targets.
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3.2 Problem formulation

The engagement geometry of the four agents is shown in Fig. 3.1. The equations of motion of the four

agents can be written as [58, 126]

ẋi(t) = vi cosαi(t), (3.1)

ẏi(t) = vi sinαi(t), (3.2)

where i = {T1, T2, A1, A2}, vT1, vT2 are the velocities of the targets, vA1, vA2 are the velocities of the

attackers, αT1 (t) , αT2 (t) are the heading angles of the respective targets, and αA1 (t) , αA2 (t) are the

heading angles of the respective attackers. The velocities of the attackers and the targets are assumed to

be constant. All the states and heading angles of the agents are changing with respect to time t, and the

notation (t) is omitted in the rest of the document for readability. The equations governing the relative

motion of the four agents can be written as [58, 126]

Ṙ = vA2 cos (αA2 − θ1)− vA1 cos (αA1 − θ1) , (3.3)

ṙ1 = vT1 cos (αT1 − θ2)− vA1 cos (αA1 − θ2) , (3.4)

ṙ2 = vT2 cos (αT2 − θ3)− vA2 cos (αA2 − θ3) , (3.5)

θ̇1 =
1

R
(vA2 sin (αA2 − θ1)− vA1 sin (αA1 − θ1)) , (3.6)

θ̇2 =
1

r1
(vT1 sin (αT1 − θ2)− vA1 sin (αA1 − θ2)) , (3.7)

θ̇3 =
1

r2
(vT2 sin (αT2 − θ3)− vA2 sin (αA2 − θ3)) , (3.8)

α̇A1 = −κ (αA1 − θ2) /vA1, (3.9)

α̇A2 = −κ (αA2 − θ3) /vA2, (3.10)

α̇T1 = u1, (3.11)

α̇T2 = u2, (3.12)

where θ1, θ2, θ3 are the line-of-sight (LOS) angles betweenA1−A2, T1−A1, and T2−A2 respectively.

R is the distance between the attackers A1 and A2, r1 is the distance between A1 and T1 while r2 is

the distance between A2 and T2. The attacker model is defined using pure-pursuit (PP) guidance law

with proportionality constant κ. u1 and u2 are the control inputs of T1 and T2. The angles δ and λ are
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Figure 3.2: Block diagram of the proposed NMPC scheme with EKF for the 2T2A problem.

defined as [58]

δ = αA1 − θ1, (3.13)

λ = π + (αA2 − θ1) . (3.14)

We will now formulate the NMPC framework for solving the 2T2A problem using the defined state

model and the equations of motion.

3.3 NMPC formulation

We propose a strategy wherein the target team uses an NMPC scheme to compute their control com-

mands so as to lure the attackers into a collision course. Fig. 3.2 shows the structure of the proposed

NMPC scheme. The main components of the controller are a mathematical model of the system (3.1)-

(3.12), a nonlinear convex optimizer, a cost function, and physical constraints on the states and controls.

The plant represents the four-agent system, and the EKF estimates the attacker states. The receding

horizon approach combined with state feedback helps in re-planning the control sequence to counter the

uncertainties involved in real-world systems.

To make the attackers collide, we need to minimize the distance between them (R) and the angles
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δ, λ to keep their velocity vectors on the A1 − A2 line-of-sight (LOS). The distances r1 and r2 should

be maximized so that the targets can evade the attackers. The objective function for the NMPC can be

formulated as follows:

min
u1,u2∈PC(t,t+τh)

J,

J =

∫ t+τh

t

(
w1R

2 + w2δ
2 + w3λ

2 − w4r
2
1 − w5r

2
2

)
dt, (3.15)

subject to:

Ẋ = f (X,U, t) , (3.16)

U ∈
[
U−, U+

]
, (3.17)

where X = {xT1, yT1, xT2, yT2, xA1, yA1, xA2, yA2, R, r1, r2, θ1, θ2, θ3, αA1, αA2, αT1, αT2} are the

states, and U = {u1, u2} are the control commands computed for the targets T1 and T2. The U−

and U+ are the lower and upper bounds of U , PC(t, t+ τh) denotes the space of piece-wise continuous

function defined over the time interval [t, t+ τh], and wi,i=1...5 are the weights. The weights should be

tuned to ensure zero miss distance between the attackers. If the values of w2, w3 are too high compared

to the weight w1, it will result in non-zero miss distance, whereas too low values for w2, w3 will increase

the risk of attackers capturing the targets. The values of w4, w5 should not be too high since the primary

objective is to make the attackers collide. Since the attacker states are unknown to the target pair, they

are estimated using an EKF.

Extended Kalman Filter

The structure of the EKF is defined similarly to Sec. 2.3.2. The attacker states {xA1, yA1, αA1, xA2, yA2, αA2}

and controls {aA1, aA2} need to be estimated, hence the estimation model is represented with dynam-
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ics [129, 130]

fA =



ẋA1

ẏA1

ẋA2

ẏA2

α̇A1

α̇A2

ȧA1

ȧA2



=



vA1 cosαA1

vA1 sinαA1

vA2 cosαA2

vA2 sinαA2

aA1
vA1

aA2
vA2

−aA1

−aA2



, (3.18)

and the Jacobian of fA is ∇FXA = [08×4 F8×4], where

F =



−vA1 sinαA1 0 0 0

vA1 cosαA1 0 0 0

0 −vA2 sinαA2 0 0

0 vA2 cosαA2 0 0

0 0 1
vA1

0

0 0 0 1
vA2

0 0 −1 0

0 0 0 −1



. (3.19)

We assume that the quantities R, r1, r2, θ1, θ2 and θ3 can be measured and the measurement model

is given as

h =



√
(xT1 − xA1)

2 + (yT1 − yA1)
2√

(xT2 − xA2)
2 + (yT2 − yA2)

2√
(xA2 − xA1)

2 + (yA2 − yA1)
2

tan−1
(
yT1−yA1
xT1−xA1

)
tan−1

(
yT2−yA2
xT2−xA2

)
tan−1

(
yA2−yA1
xA2−xA1

)


. (3.20)
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The Jacobian of the measurement model is given by ∇HXA = [H6×4 06×4], where

H =



−(xT1−xA1)
r1

−(yT1−yA1)
r1

0 0

0 0 −(xT2−xA2)
r2

−(yT2−yA2)
r2

−(xA2−xA1)
R

−(yA2−yA1)
R

xA2−xA1
R

yA2−yA1
R

yT1−yA1

r21

−(xT1−xA1)
r21

0 0

0 0 yT2−yA2

r22

−(xT2−xA2)
r22

yA2−yA1

R2
−(xA2−xA1)

R2
−(yA2−yA1)

R2
xA2−xA1

R2


. (3.21)

The NMPC scheme for the 2T2A problem formulated so far does not give us the answer to the

question of whether the targets would be captured or not, given the initial positions of the attackers and

the targets. In reality, the formulation would give optimal trajectories for the target survival only in a

subset of the complete problem, where the targets are guaranteed to be successful. In the next section,

we derive the conditions that would help us determine the answer to the escape problem.

3.4 Escape region

We now analyze the 2T2A problem to see if the outcome of the target capture or escape could be deter-

mined by the initial positions of the agents. The NMPC control law defined in Sec. 3.3 is independent

of the results derived in this section. We use the concept of Apollonius circles to determine the escape

region for the targets in the Cartesian plane subject to the following assumptions.

Assumption 8. The attackers are identical with equal speeds.

Assumption 9. The targets have equal speed and are slower than the attackers. Otherwise, the targets

can always evade the attackers.

Assumption 10. The attackers are assumed to pursue the targets closer to them at time t = 0. i.e.,

xT1(t = 0) > 0 and xT2(t = 0) < 0. Once the attacker-target pair is assigned, they remain the same

for all future times.

To make the analysis easier, we modify the engagement geometry reference frame, as shown in

Fig. 3.3a. The x−axis is defined as the line joining the coordinates of the attackers, A1 and A2, and

the y−axis is defined as the perpendicular bisector of the line segment A1A2, where A1, A2, T1, T2

represent the positions of the attackers and the targets respectively.
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Figure 3.3: Modified reference frame considering the line joining A1 and A2 as the x-axis.

Lemma 3. The locus of points where the attackers A1 and A2 can reach simultaneously is represented

by the y−axis in the modified reference frame.

Proof. Based on Assumption 8, the locus of points where the two agents can reach simultaneously is

the orthogonal bisector of the line segment joining the agents [36]. Since y−axis is defined as the

orthogonal bisector of the line segment A1A2, it is the locus of points where the attackers A1 and A2

can reach simultaneously.

Fig. 3.3b represents an example Apollonius circle for the A1−T1 engagement, and Fig. 3.3c for the

A2 − T2 engagement. Apollonius circles represent the locus of points where the two agents can reach

simultaneously. For example, in Fig. 3.3b, the interior of the Apollonius circle is the set of positions

that T1 can reach before A1, the points on the circle can be reached by A1 and T1 simultaneously, and

A1 reaches the exterior positions before T1. The Apollonius circle for the A1− T1 engagement can be

constructed using the center and radius given by [36]

(xc, yc)A1T1 =

(
xT1 − γ2A1T1xA1

1− γ2A1T1
,

yT1
1− γ2A1T1

)
, (3.22)

and

dA1T1 =
γA1T1

√
(xT1 − xA1)

2 + y2T1

1− γ2A1T1
, (3.23)

where γA1T1 is the speed ratio defined by γA1T1 = vT1
vA1

, and similarly the Apollonius circle for the

A2− T2 engagement is constructed using the center and radius given by

(xc, yc)A2T2 =

(
xT2 − γ2A2T2xA2

1− γ2A2T2
,

yT2
1− γ2A2T2

)
, (3.24)
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and

dA2T2 =
γA2T2

√
(xT2 − xA2)

2 + y2T2

1− γ2A2T2
, (3.25)

where γA2T2 is the speed ratio defined by γA2T2 = vT2
vA2

. Now, let us state the theorem for finding the

target escape region for the 2T2A problem.

Theorem 2. The escape region for the targets exists if and only if the two Apollonius circles defined by

A1 − T1 and A2 − T2 engagement have a common interception point with the y−axis. i.e., the target

pair will be able to successfully lure the attackers into a collision if and only if the following conditions

are satisfied:

1. Y1 ∩ Y ̸= ∅,

2. Y2 ∩ Y ̸= ∅,

3. Y1 ∩ Y2 ̸= ∅,

where Y is the set of all points on the y−axis, Y1 is the set of all points on theA1−T1 Apollonius circle,

Y2 is the set of all points on the A2− T2 Apollonius circle, and ∅ is the null set.

Proof. For finding the escape region for the targets, the 2T2A problem is divided into two sub-problems

containing three agents each. More information on the three-agent problem is given in [54]. These new

sub-problems will contain (i) attackers A1–A2 and target T1 and (ii) attackers A1–A2 and target T2.

First, consider the A1 − A2 − T1 problem. The A1 − T1 circle represents the points at which A1

and T1 can reach simultaneously, and the y−axis represents the points at which A1 and A2 can reach

simultaneously. According to Lemma 3, A2 will collide with the A1 only if the A1 − T1 Apollonius

circle intercepts the y−axis. If Y1 ∩ Y = ∅, then T1 will be captured by A1 before it can cross the

y−axis and escape. Therefore 1) Y1 ∩ Y ̸= ∅ must be satisfied.

Next, consider the A1 − A2 − T2 problem. Similarly to the previous case, we can see that if

Y2 ∩ Y = ∅, then T2 will be captured by A2 before it can cross the y−axis and escape. Therefore

2) Y2 ∩ Y ̸= ∅ must be satisfied.

Finally, we consider the complete A1 − A2 − T1 − T2 problem. Since each target depends on the

other attacker for survival, the A1− T1 and A2− T2 circles should intercept each other on the y− axis

for A1 − A2 collision. Otherwise, if Y1 ∩ Y2 = ∅, even if conditions 1 and 2 are satisfied, A1 and A2
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will cross the y−axis at different points, and hence they will not collide. Therefore, for the attackers to

collide and the targets to escape, conditions 1, 2, and 3 should be simultaneously satisfied.

Remark 1. Theorem 2 is devised assuming optimal play by the agents. Also, it does not consider the

headings of the targets and the attackers. The escape region would be much larger if the attackers were

initially pointing away from the targets and had bounded yaw rates.

From Fig. 3.4a, the equation of the A1− T1 Apollonius circle can be written as

(
x−

(
xT1 − γ2A1T1xA1

1− γ2A1T1

))2

+

(
y −

(
yT1 − γ2A1T1yA1

1− γ2A1T1

))2

=γA1T1
√

(xT1 − xA1)
2 + (yT1 − yA1)

2

1− γ2A1T1

2

. (3.26)

Since A1 lies on the x−axis, yA1 = 0. For finding the intersection points of A1 − T1 circle with the

y−axis, we put x = 0, and the following expression is obtained.

y2 − 2y

(
yT1

1− γ2A1T1

)
+

(
xT1 − γ2A1T1xA1

1− γ2A1T1

)2

+

(
yT1

1− γ2A1T1

)2

−
γ2A1T1

(
(xT1 − xA1)

2 + y2T1

)
(
1− γ2A1T1

)2 = 0. (3.27)

Interception points of A1 − T1 Apollonius circle with the y−axis are the solutions of this quadratic

equation (3.27) and are represented by y1 and y
1
. Similarly, the interception points of A2 − T2 Apol-

lonius circle with the y−axis can be represented using y2 and y
2
. The escape region for the targets can

be mapped by verifying the conditions given in Theorem 2 by analyzing the positions of y−intercepts:

y1, y1, y2, and y
2
.

Consider an example agent configuration shown in Fig. 3.4a. The initial positions of the agents

and the escape region for the targets are shown in Fig. 3.4b. The agent speed ratios were taken as

γA1T1 = γA2T2 = 0.5 and the initial position of T2 was varied between −1500 < xT2 < 0 and

0 < yT2 < 2500. At each selected initial point of T2, the conditions stated in Theorem 2 was checked

by comparing the y−intercepts: y1, y1, y2, and y
2
, and finally, the dividing curve was drawn. If the T2’s

initial position lies inside the escape region, then the targets would escape, and if it lies outside of the

escape region, the targets would be captured.
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Figure 3.4: (a) Apollonius circles for the 2T2A problem. (b) Escape region for the targets. (c) Stochastic
escape zone for the targets. The dashed red line shows the change in the escape region due to uncertainty
in attacker positions.

Stochastic escape region

The above analysis assumes the true position of the attackers. If the attacker state estimation is consid-

ered, the escape region will shrink or expand based on the estimation error. This change can be quan-

tified using ±3σ bounds of the EKF. For example, consider an initial configuration given in Fig. 3.4c

with the initial position of T2 varied between −20 < xT2 < 0 and 0 < yT2 < 25. Taking a

conservative approach with −3σ = 5m for the attackers and solving equation (3.27), we obtain a

reduced escape region as shown in Fig. 3.4c. The initial positions of the agents were selected as

xA1 = 6, yA1 = 0, xA2 = −6, yA2 = 0, xT1 = 1.5, yT1 = 6. It is difficult to obtain deterministic

escape regions while taking the state estimation into account, and it is a topic for future research.

3.5 Results and Discussion

3.5.1 Simulation setting

The simulations were carried out using CasADi(3.5.5)-Python(3.8) [137] on an Ubuntu 20.04 system

with Intel i5-7200U CPU and 8GB RAM. The horizon, τh is 2.5 s for all simulations (prediction window

of 50 steps with a sampling time of 0.05 s). The continuous kinematics (3.15),(3.16) were discretized

and integrated using the RK4 method. The optimal control problem was converted to an optimiza-

tion problem using the multiple-shooting method and was solved using the interior point optimization

(IPOPT) library available in CasADi. The following options were used in the optimizer max_iter :

2000, acceptable_tol : 1e−8, acceptable_obj_change_tol : 1e−6, warm_start_init_point : yes. The

average computation time taken for each NMPC re-planing step was 0.1 s. The state covariance matrix
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Q and the measurement covariance matrix Σ for the EKF are selected as

Q =



0.1 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0

0 0 0 0.1 0 0 0 0

0 0 0 0 0.01 0 0 0

0 0 0 0 0 0.01 0 0

0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0.1



,

Σ =



0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.01 0 0

0 0 0 0 0.01 0

0 0 0 0 0 0.01


.

The capture radii is Rc = 1m, r1c = 1m, and r2c = 1m. The weights were selected as w1 =

30, w2 = w3 = 60, w4 = w5 = 1. Due to practical considerations on the turn rate, the angular velocities

are constrained to −0.785 ≤ {α̇T1, α̇T2} ≤ 0.785 rad/s. The velocities of the agents are taken as

vA1, vA2 = 60m/s and vT1, vT2 = 30 m/s. Proportionality constant for the attacker model, κ = 3.

3.5.2 An example scenario

We consider an engagement scenario as shown in Fig. 3.5a. The figure shows the agent trajectories

for an initial configuration of xT1 = 100, yT1 = 300, xT2 = −100, yT2 = 310, xA1 = 150, yA1 =

0, xA2 = −150, yA2 = 0. In the simulation, we use an optimal guidance law (PN) [126] given by

aA1 = NvA1θ̇A1T1, aA2 = NvA2θ̇A2T2, N = 3 for the attackers. The target pair was able to lure the

attackers into a collision successfully even though the attackers used a guidance law (PN) different from

the NMPC model (PP). The evolution of distances between the agents is shown in Fig. 3.5b. The distance

between the attackers went to zero, confirming the collision. Control commands computed by NMPC

for the target pair are shown in Fig. 3.5c. It can be seen that the input constraints have been satisfied.

The estimator performance is shown in Fig. 3.6. The estimation errors in attacker positions are very low
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Figure 3.5: An example scenario of the four-agent 2T2A problem. (a) The trajectories of the two targets
and the two attackers. (b) Distance between different agents. (c) Control profile of the target pair.
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Figure 3.8: (a) Agent trajectories for an example escape scenario. (b) Distance between the agents (es-
cape). (c) Agent trajectories for an example capture scenario. (d) Distance between the agents (capture).
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and stay within the 3σ bounds.

3.5.3 Examples to validate the theoretical analysis

We now show two examples based on the escape region given in Fig. 3.4b. We fix the positions for the

attackers and T1, while the T2 position is changed in the simulations. First, the initial position of T2

is selected inside the escape region as xT2 = −100, yT2 = 1000 and is represented by T2e in Fig. 3.7.

The agent trajectories are shown in Fig. 3.8a, where we can see the attackers colliding. Fig. 3.8b shows

the distance (R) between the attackers converging to zero, while the attacker-target distances remain

positive. Control commands for the target pair are shown in Fig. 3.5c. The shape of the input graph is

similar for the targets since they are executing similar trajectories in opposite directions. The control

values respect the defined bounds. The estimation errors in attacker positions are given in Fig. 3.9c. It

can be seen that the errors in x and y positions of both the attackers are very low and is well within the

σ bounds.

Next, the initial position of T2 is considered outside the escape region as xT2 = −1000, yT2 = 2000

and is represented by T2c in Fig. 3.7. Under this initial condition, Fig. 3.8c shows that one of the targets

was captured, and as the engagement continues, the other target will also be captured. Fig. 3.8d shows

the distance between the agents. We can see that the distance betweenA1 and T1, represented by r1 goes

to zero, confirming the capture of T1 by A1. Hence, the attackers won in this scenario as expected. The

distance between the attackers, R is seen decreasing since the targets tried to make them on a collision

course. But, it does not reach zero since one of the targets was captured by an attacker just before the

attackers were about to collide. The distance r2 is decreasing steadily, and eventually, the target T2 will

also be captured by A2. Although the targets lost the game, the controller and the estimator performed

satisfactorily, as seen in Fig. 3.5c and Fig. 3.9c. Some oscillations can be seen in the control command

of T1 at the end since it desperately tries to avoid capture. The failure of the targets was not due to the

estimation errors, as we can see from Fig. 3.9c. The errors are very low and are well within bounds.

3.6 Conclusions

In this work, we proposed a cooperative strategy based on NMPC for the active defense of the targets in a

two–targets two–attackers (2T2A) problem. Theoretical analysis using Apollonius circles was performed

to determine whether the targets would escape or not, given the initial conditions of the attackers and
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Figure 3.9: (a) Control profile of the agents (escape). (b) Control profile of the agents (capture). (c)
Estimation errors (escape). (d) Estimation errors (capture).

82



the targets. The efficacy of the proposed scheme was validated using numerical simulations. The results

show the ability of the NMPC to determine control commands satisfying the state and control constraints.

Also, the integration of the EKF with the NMPC performed well, as the estimation errors are within the

3σ bounds. The results also support the theoretical analysis.
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Chapter 4

Multi-AAV Cooperative Path Planning

using NMPC with Localization

Constraints

4.1 Introduction

We consider a scenario where a group of AAVs needs to navigate from their source location (S) to their

destination (D), as shown in Fig. 4.1a. These vehicles need to transit in a GPS-denied area, and we

assume that any kind of GNSS is not available. In such scenarios, known landmarks or other vehicles

in the area can be used for relative localization using range or bearing measurements. This structure

involving landmarks and vehicles can be modeled as a dynamic relative position measurement graph

(RPMG) [138] with vehicles and landmarks as nodes and connections/measurements as edges.

Previous studies show that for cooperative localization to work, each vehicle should have a direct or

indirect path to at least two known landmarks [139]. This condition is very limiting in environments with

a low number of landmarks. Hence in this chapter, we find a relationship between vehicle uncertainty

and path length to the landmarks and then use that relationship to formulate and solve an NMPC problem

to guarantee that the covariance does not exceed a specified threshold and desired localization accuracy

is achieved while performing individual missions. A moving horizon estimation (MHE) scheme is used

to estimate the vehicle states.
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Figure 4.1: (a) Path planning scenario. (b) Relative position measurement graph with vehicles and
landmarks as nodes and measurements as edges.

4.2 Problem formulation

Definition 2. A relative position measurement graph (RPMG) for nv(t) vehicles with nl(t) landmarks

is a graph Gnlnv(t) ≜ {Vnlnv(t), E
nl
nv(t)}, where Vnlnv is the node set consisting of nv(t) vehicle nodes

and nl(t) landmark nodes (which makes a total of nv(t) + nl(t) nodes), and Enlnv(t) is the edge set

representing available relative measurements. The number of edges is denoted by ne(t) = |Enlnv(t)|. The

graph is time-varying since the number of nodes will change depending on the number of connections

possible due to the sensor range and availability of measurements.

Definition 3. A path from a vehicle node to a landmark node is a finite sequence of edges that joins

a sequence of distinct vertices between them. Let G ≜ {V, E , ϕ} be a graph. A path ϕ from vertex i

to vertex j is a sequence of edges {ϵ1, ϵ2, . . . , ϵn−1} for which there is a sequence of distinct vertices

{ν1, ν2, . . . , νn} such that ϕ ≜ {ν1, νn} where ν1 = i and νn = j.

An example RPMG (G3
5 with ne = 7) is shown in Fig. 4.1b. A path from the vehicle 5 to the

landmark a is represented by the edge set ϕ ≜ {ϵ6, ϵ5, ϵ3} which can also be represented using the

vertices as 5 − 4 − 2 − a. A graphical representation of the proposed solution using NMPC combined

with MHE to tackle the cooperative localization and path planning problem is shown in Fig. 4.2. The

optimal path is different from the shortest path since the latter may not satisfy localization constraints.

The components of the block diagram are explained in the subsequent sections. In the first step of the

control scheme, vehicle states are estimated by the MHE block using available measurements from the

sensors (Sec. 4.3). The second step is the calculation of estimation covariances for the NMPC prediction

window, which is accomplished by the covariance calculator block that contains the derived analytical
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Figure 4.2: Block diagram and a graphical representation of the proposed NMPC-MHE control scheme
for the localization and path planning problem.

expression (Sec. 4.4). In the third and final step, the NMPC controller computes the control actions for

the vehicles (Sec. 4.5).

4.3 Moving horizon estimation

Moving horizon estimation (MHE) uses optimization techniques to determine state trajectories that best

fit a series of measurements acquired over a finite time interval. It uses the exact nonlinear models of

the available measurements and system dynamics for estimation. Also, there is another advantage of

including the state/control constraints in the formulation, which helps in bounding the estimates. Like

NMPC, MHE also has three main components, 1) an internal dynamic model of the process, 2) a history

of past measurements, and 3) an optimization cost function over the estimation horizon.

The model used for estimation is given as:

X(k) = f (X(k − 1),ω(k), k) + q(k), (4.1)

z̃(k) = h (X(k),ω(k), k) + µ(k), (4.2)

where, f(·) and h(·) represent the nonlinear functions of states and observations, respectively. X(k),

ω(k), and z̃(k) are the predicted system states, controls, and measurements at the kth time instant. The

vectors q(k) and µ(k) are the process and measurement noises which are assumed to be additive and
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zero mean white Gaussian noises with covariance Q and Γ respectively. f(·) is defined as

f =



x1(k)

y1(k)

ψ1(k)
...

xnv(k)

ynv(k)

ψnv(k)


=



x1(k − 1) + Tsv cosψ1(k − 1)

y1(k − 1) + Tsv sinψ1(k − 1)

ψ1(k − 1) + Tsω1(k − 1)
...

xnv(k − 1) + Tsv cosψnv(k − 1)

ynv(k − 1) + Tsv sinψnv(k − 1)

ψnv(k − 1) + Tsωnv(k − 1)


, (4.3)

where Ts is the sampling time used for discretization, v the linear velocity, ψ the heading angle, and ω

the angular velocity.

Let m be the current time step, NE is the estimation horizon, and we denote τ = m − NE for

simplicity. We formulate the moving horizon estimation problem

min
X

J,

J = ∥Xτ − X̂τ∥2P−1
τ

+

m∑
k=τ

∥h(Xk)− zk∥2Γ−1 , (4.4)

subject to:

Xk+1 = f(Xk,ωk), (4.5)

X ∈
[
X−, X+

]
, (4.6)

ω ∈
[
ω−,ω+

]
, (4.7)

where X̂ is the estimated states, P is the estimation covariance matrix, zk is the actual measurement, and

Γ is the measurement covariance. X−, X+ are the lower and upper bounds on the states, and ω−,ω+

are the lower and upper bounds of controls. The norms in the cost function are quadratic norms of the

form ||x||P = (xTPx)1/2. Only the estimates of the current time step will be feedbacked to the NMPC

controller. ie., X̂m = Xm. It is assumed that each vehicle can measure relative bearing to other vehicles

and landmarks using a sensor (such as LiDar or radar) with a circular range, Rs. We do not consider

sensor occlusions. Relative bearing from the ith vehicle to the jth vehicle or landmark is given by the

measurement model:

h(X) = tan−1

(
yj − yi
xj − xi

)
− ψi. (4.8)
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The first term in (4.4) is known as the arrival cost, and it plays an important role in stabilizing the

estimator. It penalizes the deviation of the first state in the moving horizon window and its previous

estimate X̂τ . The weighting matrix P is the covariance matrix given by [140]

Pk+1 = Q+∇FX(Pk − Pk∇HT
X(∇HXPk∇HT

X + Γ)−1∇HXPk)∇F TX , (4.9)

where Q is the state covariance matrix, and ∇FX ,∇HX are the Jacobians of f and h. The second term

in (4.4) penalizes the change in predicted measurements h(Xk) from the actual measurements zk.

Now, we look into the stability of the moving horizon estimator. The following assumptions are

required to prove the stability result.

Assumption 11. The initial state X0 and the control input ω are such that, for any noise q, the system

trajectory X lies in a compact set χ and ω in a compact set U .

Assumption 12. The functions f and h are C2 functions w.r.t X on co(χ) for every ω ∈ U , where co(χ)

is the convex closure of χ.

The observation map for a horizon NE + 1 can be defined as

FNE (X,ω, q) =



h(Xτ )

h ◦ f τ (Xτ )

·

·

·

h ◦ fm−1 ◦ · · ·f τ (Xτ )


, (4.10)

where ◦ is function composition. Then it is possible to re-write equation (4.2) as

zτ = FNE (X,ω, q) + µτ , (4.11)

and modify the cost function as

Jm(Xτ,X̂τ
) = ∥Xτ − X̂τ∥2Pτ + ∥FNE (Xτ , ωτ , qτ )− zτ∥2Γ, (4.12)

where, Γ = INE+1 ⊗ Γ−1, where ⊗ is the Kronecker product.

Now, let’s consider the following remarks:
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Remark 2. System (4.1), (4.2) is said to be observable in NE + 1 steps if there exists a K-function ϕ(·)

such that ϕ
(
∥x1 − x2∥2

)
≤ ∥FNE (x1, ω, 0)− FNE (x2, ω, 0)∥2, ∀x1, x2 ∈ χ and ∀ω ∈ UNE .

Remark 3. If the observability matrix ∂FNE (X,ω,0)
∂X has full rank, then the system is said to be observable

in NE + 1 steps with finite sensitivity 1/δ if the K-function ϕ(·) satisfies the following condition

δ = inf
x1,x2∈χ;x1 ̸=x2

ϕ
(
∥x1 − x2∥2

)
∥x1 − x2∥2

≥ 0. (4.13)

Let kf be an upper bound on the Lipschitz constant of f(X,ω) w.r.t X on χ for every ω ∈ U and P

is diagonal with P = pIn, p > 0. Let

rµ = max
µ∈M

∥µ∥2, (4.14)

where M is a compact set with 0 ∈M .

The stability of the estimator is proved using the results from [140–143]. Consider the cost function

defined as:

J = ∥Xτ − X̂τ∥2Pτ +
m∑
k=τ

∥h(Xk)− zk∥2Γ−1 , (4.15)

then we can state the following theorem [142, 143].

Theorem 3. If the Assumptions 11,12 are satisfied and the Remarks 2,3 hold, then there exists an upper

bound defined by

∥Xτ − X̂τ∥2 ≤ ζτ , (4.16)

where ζm is found using the equation

ζm+1 =

(
c1kfp

p+ c2δ

)
ζm +

(
c3

p+ c2δ

)
rµ, (4.17)

c1, c2, and c3 are positive constants. Let

a(p, δ) =
c1kfp

(p+ c2δ)
, (4.18)

and if p is selected such that a(p, δ) < 1, then the dynamics of (4.17) is asymptotically stable.

Proof. A summary of the proof given by [142] is detailed here for completeness. The proof is based on

defining upper and lower bounds on the optimal cost J∗
m, which is the cost corresponding to an optimal
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estimate X̂∗
τ . First, the upper bound on J∗

m should be defined. Let us define Xo
m as the true value of the

state X at time m and assume that Γ = I . We have that

J∗
m ≤ ∥Xo

τ −X∗
τ ∥2Pτ +

m∑
k=τ

∥FNE (Xo
k)− zk∥2, (4.19)

which can be modified as

J∗
m ≤ ∥Xo

τ −X∗
τ ∥2Pτ + C, (4.20)

where C is a positive constant (please see Lemma. 1 from [142]). Next, the upper bound on J∗
m is

defined. We can write

∥FNE (Xo
τ )− FNE (X̂τ )∥2 = ∥[zτ − FNE (X̂τ )]− [zτ − FNE (Xo

τ )]∥2,

∥FNE (Xo
τ )− FNE (X̂τ )∥2 ≤ 2∥zτ − FNE (X̂τ )∥2 + 2∥zτ − FNE (Xo

τ )]∥2,

∥zτ − FNE (X̂τ )∥2 ≥ 1

2
∥FNE (Xo

τ )− FNE (X̂τ )∥2 − ∥zτ − FNE (Xo
τ )]∥2.

From (4.20), we can write

∥zτ − FNE (Xo
τ )]∥2 < C. (4.21)

Hence, we obtain

∥zτ − FNE (X̂τ )∥2 ≥
1

2
∥FNE (Xo

τ )− FNE (X̂τ )∥2 − C.

By using a similar procedure, we can write

∥X∗
τ − X̂τ∥2 ≥

1

2
∥Xo

τ − X̂τ∥2 − ∥Xo
τ −X∗

τ ∥2.

Now the upper bound can be defined as

J∗
m ≥ 1

2
∥Xo

τ − X̂∗
τ ∥2Pτ +

1

2
∥FNE (Xo

τ )− FNE (X̂∗
τ )∥2 − ∥Xo

τ −X∗
τ ∥2Pτ − C. (4.22)

Now, by combining the bounds (4.20) and (4.22), and rewriting we get

1

2
∥Xo

τ − X̂∗
τ ∥2Pτ +

1

2
∥FNE (Xo

τ )− FNE (X̂∗
τ )∥2 ≤ 2∥Xo

τ −X∗
τ ∥2Pτ + 2C.
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According to the Remarks 2 and 3, the above equation can be written as

∥FNE (Xo
τ )− FNE (X̂∗

τ )∥2 = ϕ
(
∥Xo

τ − X̂∗
τ ∥2
)
,

and

δ∥Xo
τ − X̂∗

τ ∥2 ≤ ϕ
(
∥Xo

τ − X̂∗
τ ∥2
)
.

Now, it is possible to define the bound on the estimation error as

∥Xo
τ − X̂∗

τ ∥2 ≤
4p

p+ δ
∥Xo

τ −X∗
τ ∥2 +

4

p+ δ
C.

Using the Lipschitz continuity of f(·), it can be written that

∥Xo
τ −X∗

τ ∥2 = 2kf∥Xo
τ−1 − X̂∗

τ−1∥2 + 2rµ.

Hence,

∥Xo
τ − X̂∗

τ ∥2 ≤ ζτ .

It can also be deduced that if ζm < ζm−1 and a(p, δ) < 1, then ζm tends to β
1−a(p,δ) as m −→ +∞

(please see Theorem 1 from [141]), where β =
(

c3
p+c2δ

)
rµ.

Now let’s check if the Assumptions 11,12 and the Remarks 2,3 hold for the system (4.4). From

equations (4.5)-(4.7), it can be seen that the Assumption 11 is satisfied. Assumption 12 also holds since

(4.3) and (4.8) are C2 functions. The observability conditions given in Remarks 2,3 will be satisfied

if the vehicles have connections to at least two landmarks [139]. We will be discussing how to ensure

this condition to hold in Sec. 4.5. P is selected as equal to the covariance matrix P , which is positive

semi-definite. Hence, according to Theorem 3, ∥Xτ − X̂τ∥2 is bounded by a positive value ζτ .

The following section presents the derivation of the analytical expression for calculating the state

error covariance/estimation covariance matrix (P ) using the path information. The covariance P is a

measure of uncertainty in the estimated states, given that the models are accurate. This result will be

later used for predicting covariances for the NMPC cost function.
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4.4 Covariance (P ) calculation

Consider an example configuration of two vehicles as shown in Fig. 4.3a(i), where the vehicles are

represented by 1 and 2 and two landmarks by a and b. In order to understand how the paths/connections

/measurements from a landmark to a vehicle influence the uncertainty of the vehicle states, we consider

each landmark separately and analyze it. Consider the segment a− 1− 2 of the graph in Fig. 4.3a(i), as

shown in Fig. 4.3a(ii). The observability matrix for the system can be written as

O =

oa1 0

o12 −o12

 , (4.23)

where oa1, o12, and −o12 are the derivatives of the measurements with respect to the vehicle states.

For example, oa1 is the derivative of the measurement between the landmark a and the vehicle-1 with

respect to the vehicle-1. Since there is no measurement between the landmark a and the vehicle-2, the

corresponding entry (O12) is zero. Note that the size ofO depends on the number of edges, and it may not

be a square matrix. Assuming the measurement covariance matrix Γ = I , and zero-mean white Gaussian

noise, the observability Grammian is defined as OTΓ−1O, and the covariance matrix P is written as

P ≤ (OTΓ−1O)−1, (4.24)

≤

 1
oa12

1
oa12

1
oa12

1
o122

+ 1
oa12

 . (4.25)

The first element of the P matrix corresponds to the vehicle-1 connecting to the landmark a, hence oa1

(let us discard the square and fraction for easy understanding). The element 1
o122

+ 1
oa12

of the P matrix

corresponds to the vehicle-2. Observing that it is connected to the landmark a through vehicle-1, we can

see both oa1 and o12 is present in the entry. Next, we consider the section 1 − 2 − b of the graph, as

shown in Fig. 4.3a(iii). The observability and covariance matrices for the system are written as

O =

 0 ob2

o12 −o12

 , P ≤

 1
o122

+ 1
ob22

1
ob22

1
ob22

1
ob22

 . (4.26)

The first element of P indicates that vehicle-1 is connected to the landmark b through vehicle-2. The last

entry shows that vehicle-2 is directly connected to the landmark b, and hence only ob2 is present.

Next, we extend similar analysis for a three vehicle configuration as shown in Fig. 4.3b(i). Consider

the section 3 − a − 1 − 2 of the graph, shown in Fig. 4.3b(ii). The observability matrix and covariance
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Figure 4.3: (a) Different configurations of two vehicles and two landmarks. (b) Different configuration of
the system with 3 vehicles and 2 landmarks (c) Notations for a general multi-vehicle-landmark RPMG.

matrix P for this configuration are

O =


oa1 0 0

o12 −o12 0

0 0 oa3

 , (4.27)

P ≤


1

oa12
1

oa12
0

1
oa12

1
o122

+ 1
oa12

0

0 0 1
oa32

 . (4.28)

The first element of the P matrix contains only oa1 since the vehicle-1 is directly connected to the

landmark a. The vehicle-2 is connected to the landmark a through vehicle-1. Hence both oa1 and o12

can be seen in the corresponding entry of the P matrix. Since vehicle-3 is directly connected to the

landmark, the last element of P contains only oa3 as expected. Now, let us take the section 1− 2− b− 3

of the graph, shown in Fig. 4.3b(iii). The observability and covariance matrices are given by

O =


0 ob2 0

o12 −o12 0

0 0 ob3

 , (4.29)

P ≤


1

o122
+ 1

ob22
1

ob22
0

1
ob22

1
ob22

0

0 0 1
ob32

 . (4.30)

Vehicle-2 and vehicle-3 are directly connected to the landmark b. Therefore, the corresponding entries in

the P matrix contain only ob2 and ob3. The vehicle-1 is connected to the landmark b through vehicle-2,

and this information is clearly reflected in the first entry of P .

Using the above example configuration analysis, we can further extend the analysis to a general
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result with nv vehicle and nl landmarks as shown in Fig. 4.3c. The landmarks are represented using

stars, and the vehicles are represented using triangles. All the vehicles are denoted by i, i + 1, . . . , nv,

landmarks as j, j + 1, . . . , nl, and edges connecting the vehicles and landmarks as ϵs, ϵs+1, . . . , ϵne ,

where i =j =s = 1. The observability vector associated with an edge/measurement is represented using

ϵ with the edge number as a subscript for simplicity. For example, the observability vector between

landmark-j and vehicle-i, oji is represented by ϵs. Now, the following theorem for a general RPMG can

be stated.

Theorem 4. The covariance associated with the vehicle-i, i = 1, . . . , nv, due to the landmark-j, j =

1, . . . , nl, is given by

pij ≤
∑
s∈S

1

ϵs
, (4.31)

where s = 1, . . . , ne, S is the set of edges that forms a path from vehicle-i to the landmark-j, nv is the

number of vehicles, nl is the number of landmarks, and ne is the number of edges in the RPMG.

Proof. The covariances associated with each vehicle for a two-vehicle-two-landmark configuration are

given by equations (4.25) and (4.26), followed by three vehicles in (4.28) and (4.30). The relation

given in Theorem 4 is clearly reflected in the elements of the corresponding covariance matrices. The

generalization to nv vehicles and nl landmarks is straightforward from the previous analysis.

However, we prove the theorem through contradiction. Consider Fig. 4.3b(ii). According to Theo-

rem 4, the term/edge 1
oa12

should be present in p2a. Suppose we write the P matrix without that term.

The new P matrix and the original P matrix found by observability analysis given by (4.28) are written

side-by-side, showing only the element corresponding to p2a.


· · · · · · · · ·

· · · 1
o122

· · ·

· · · · · · · · ·

 ,

· · · · · · · · ·

· · · 1
o122

+ 1
oa12

· · ·

· · · · · · · · ·

 . (4.32)

The new OTO matrix for the system found by inverting the first P matrix will be

OTO =


oa14

−o122+oa12
o122oa12

o122−oa12 0

o122oa12

o122−oa12
o122oa12

−o122+oa12 0

0 0 1
oa32

 , (4.33)
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which contradicts with the OTO matrix derived from equation (4.28), which is


o122 + oa12 −o122 0

−o122 o122 0

0 0 oa32

 . (4.34)

Similarly, if an additional term 1
oa32

is present in p2a, the corresponding OTO matrix for the system will

be

OTO =


oa12 + o122oa32

o122+oa32
o122oa32

o122+oa32
0

− o122oa32

o122+oa32
o122oa32

o122+oa32
0

0 0 oa32

 , (4.35)

which also contradicts with the OTO matrix given in (4.34). Hence, the relation given in Theorem 4 is

always true.

The following corollaries can be written from Theorem 4.

Corollary 1. If there is more than one path from a landmark to a vehicle, and these paths are numbered

from 1 to gij , where gij is the total number of paths from the landmark-j to the vehicle-i, then the total

covariance of the vehicle is given by

pij ≤
gij∑
γ=1

pγij , (4.36)

where i = 1, . . . , nv, j = 1, . . . , nl, and pγij is the covariance of the vehicle-i due to the landmark-j

considering only the path-γ.

Corollary 2. If there is more than one landmark connected to a vehicle, then the covariance of the

vehicle is given by

pi ≤
∑
j∈J

pij , (4.37)

where i = 1, . . . , nv, j = 1, . . . , nl, and J is the set of landmarks connected to the vehicle-i.

Proof. The method to calculate covariances for Corollary 1 and 2 is given in Theorem 4. The summation

is based on the properties of the information matrix given as follows [144, 145]

If X = (X1, X2, . . . , Xn) and X1, X2, . . . , Xn are independent random variables, then IX(α) =
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IX1(α) + IX2(α) + . . . IXn(α), where Ix(α) is the information matrix defined as

Ix(α) = Eα

[(
∂

∂α
log f(X|α)

)2
]
= Varα

(
∂

∂α
log f(X|α)

)
.

Since

f(x|α) =
n∏
i=1

fi(xi|α),

where fi(·|α) is the pdf of Xi,

Var

[
∂

∂α
log f(X|α)

]
=

n∑
i=1

Var

[
∂

∂α
log fi(Xi|α)

]
,

IX(α) =
n∑
i=1

IXi(α).

Since covariance is the inverse of information, we can find the total covariance associated with each

vehicle by adding the components from all the paths and landmarks.

In the next sub-sections, we show how this information can be used to analyze the evolution of

covariance in multi-vehicle-landmark systems with range and bearing measurements.

4.4.1 Range measurements

Even though we consider bearing-only measurements in our problem formulation since the range mea-

surements are hard to obtain from a practical perspective, we start the analysis with the range measure-

ments since it is less complex and easier to understand. We then extend the obtained results to the bearing

measurement case.

Consider the configuration given in Fig. 4.3(a). The vehicle kinematics are defined as

ẋi = v cosψi,

ẏi = v sinψi, (4.38)
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where i = 1, 2 with range measurements

h1a =
√
(x1 − xa)2 + (y1 − ya)2, (4.39)

h12 =
√
(x1 − x2)2 + (y1 − y2)2, (4.40)

h2b =
√
(x2 − xb)2 + (y2 − yb)2, (4.41)

and we derive the observability matrix using the Lie derivatives [138]. To simplify the representation

we denote x1a = (x1 − xa), x12 = (x1 − x2), x2b = (x2 − xb), y1a = (y1 − ya), y12 = (y1 − y2),

y2b = (y2 − yb). Define

fL =


cosψ1

sinψ1

cosψ2

sinψ2

 , (4.42)

and the vehicle kinematics can be represented as

Ẋ = vfL. (4.43)

The gradient of zeroth order Lie derivatives are given as

H1a =
[
x1a
R1a

y1a
R1a

0 0
]
, H2b =

[
0 0 x2b

R2b

y2b
R2b

]
,

H12 =
[
x12
R12

y12
R12

−(x12)
R12

−(y12)
R12

]
,

where R(·) is the distance between nodes. The gradient of first order Lie derivatives is given as

∂

∂X

(
∂h1a
∂X

· f
)

=



(y1a)2Cψ1−(x1a)(y1a)Sψ1

R3
1a

(x1a)2Sψ1−(x1a)(y1a)Cψ1

R3
1a

0

0



′

,

∂

∂X

(
∂h2b
∂X

· f
)

=



0

0

(y2b)
2Cψ2+(−x2b)(y2b)Sψ2

R3
2b

(x2b)
2Sψ2+(−y2b)(x2b)Cψ2

R3
2b



′

,
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∂

∂X

(
∂h12
∂X

· f
)

=



−2(y12)S(
∆ψ−

2
)((x12)C(∆ψ

+

2
)+(y12)S(

∆ψ+

2
))

R3
12

2(x12)S(
∆ψ−

2
)((x12)C(∆ψ

+

2
)+(y12)S(

∆ψ+

2
))

R3
12

2(y12)S(
∆ψ−

2
)((x12)C(∆ψ

+

2
)+(y12)S(

∆ψ+

2
))

R3
12

−2(x12)S(
∆ψ−

2
)((x12)C(∆ψ

+

2
)+(y12)S(

∆ψ+

2
))

R3
12



′

,

where sin and cos are abbreviated as S and C, ∆ψ− = ψ1 − ψ2, and ∆ψ+ = ψ1 + ψ2.

The observability matrix is formed by vertically stacking the Lie derivatives of each measurement up

to the first order as

O =

∇L0

∇L1

 , (4.44)

where L0 and L1 are the zeroth and first order Lie derivatives respectively. The covariance matrix P is

found by inverting OTO with the assumption of Γ = I .

The standard deviation in x direction for the first vehicle can be found by taking the square root of

the first element of the P matrix,

σx1 =
√
P (1, 1). (4.45)

Similarly, the standard deviation in the y direction and the combined position uncertainty can be found

as

σy1 =
√
P (2, 2), (4.46)

σp1 =
√
σ2x1 + σ2y1 . (4.47)

Since the derived P matrix is very large with several terms, we consider some simplifying assump-

tions to formulate an approximate relation. All the distance terms were substituted with a single average

value. The ratios of relative distances between the nodes were converted to trigonometric equivalents

and substituted with an average of line-of-sight (LOS) angles between them. The resulting relation is

given as

σp1 =

√
2

3
+R2

g csc
2 (ψ1 − θg), (4.48)

where Rg, θg are the average values of the distances and the LOS angles. csc is the short form for

cosec. It is evident from the relation that the covariance of the vehicle depends on the distances from

the landmarks and the LOS angles to them. As the distance increases, the covariance also increases.
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Similarly, σp of other vehicles can also be found.

4.4.2 Bearing measurements

Let’s extend the vehicle model to contain three states. The new model is given as

ẋi = v cosψi,

ẏ1 = v sinψi,

ψ̇i = ωi,

where vehicle i = 1, 2. With the same configuration as in Fig. 4.3(a), define bearing measurement

equations as

ha1 = arctan

(
ya − y1
xa − x1

)
− ψ1, (4.49)

hb2 = arctan

(
yb − y2
xb − x2

)
− ψ2, (4.50)

h12 = arctan

(
y1 − y2
x1 − x2

)
− ψ2, (4.51)

h21 = arctan

(
y2 − y1
x2 − x1

)
− ψ1, (4.52)

the gradient of zeroth order Lie derivatives are given as

Ha1 =
[
−(y1−ya)

R2
a1

x1−xa
R2
a1

−1 0 0 0
]
, (4.53)

Hb2 =
[
0 0 0 −(y2−yb)

R2
b2

x2−xb
R2
b2

−1
]
, (4.54)

H12 =
[
y2−y1
R2

12

x1−x2
R2

12
0 y1−y2

R2
12

x2−x1
R2

12
−1
]
, (4.55)

H21 =
[
y2−y1
R2

21

x1−x2
R2

21
−1 y1−y2

R2
21

x2−x1
R2

21
0
]
, (4.56)
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using the geometry, the equations are changed to make it in terms of the line-of-sight (LOS) angles (θ)

between the nodes as follows

Ha1 =
[
sin θa1
Ra1

− cos θa1
Ra1

−1 0 0 0
]
, (4.57)

Hb2 =
[
0 0 0 sin θb2

Rb2
− cos θb2
Rb2

−1
]
, (4.58)

H12 =
[
− sin θ12
R12

cos θ12
R12

0 sin θ12
R12

− cos θ12
R12

−1
]
, (4.59)

H21 =
[
sin θ21
R21

− cos θ21
R21

−1 − sin θ21
R21

cos θ21
R21

0
]
. (4.60)

Define

fv =
[
cosψ1 sinψ1 0 cosψ2 sinψ2 0

]′
,

fω1 =
[
0 0 1 0 0 0

]′
,

fω2 =
[
0 0 0 0 0 1

]′
,

and the dynamics can be represented as

Ẋ =

Ẋ1

Ẋ2

 = fvv + fω1ω1 + fω2ω2, (4.61)

and a similar procedure to the range measurement case is followed to find the first order Lie derivatives,

observability grammian, and covariance matrix P . The covariance in the position of the first vehicle is

given by

σ2p1 =
9

2
R2
g

(
1 +

R2
g

2 +R2
g + 2 cos(2(ψ1 − θg))

)
+ (R2

g +R4
g) csc

2(ψ1 − θg). (4.62)

Similarly, σp of other vehicles can also be found. This approximate closed form covariance is used in

the NMPC as Step 2 in Fig. 4.2(a).

The next section presents the complete NMPC formulation combining the MHE scheme given in

Sec. 4.3 and the uncertainty results derived from the analysis given in Sec. 4.4.
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4.5 NMPC formulation

NMPC is a state-of-the-art technique for real-time optimal control. At each time step, the constrained

optimization problem is solved based on the plant model for a finite time horizon, and the procedure

is repeated with states updated through feedback in the next iteration [146]. Fig. 4.2 shows the block

diagram of the NMPC scheme used in this paper. The optimal control sequence is computed for the

prediction horizon τh, from which only the first action is applied to the system at each time step.

A point mass kinematic model is considered for the vehicles. We assume that the altitude and veloc-

ities of the AAVs remain constant during transit. The general kinematic model is given as

Ẋ =



v cosψ1

v sinψ1

ω1

...

v cosψnv

v sinψnv

ωnv


, (4.63)

where v is the linear velocity, ψ the heading angle, ω the angular velocity, and nv is the number of

vehicles.

The objective function of the NMPC is defined as

min
ω1···ωnv∈PC(t,t+τh)

J,

J =

∫ t+τh

t

nv∑
i=1

[C1i +WiC2i ] , (4.64)

subject to:

Ẋ = f(X,ω),

X ∈
[
X−, X+

]
,

ω ∈
[
ω−,ω+

]
,

where

C1i = (xi − xDi)
2 + (yi − yDi)

2, (4.65)
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is the cost associated with minimizing the distance between the vehicle and the destination. (xi, yi) is the

position of the ith vehicle and (xDi , yDi) are their respective destination points. X−, X+ are the lower

and upper bounds on the states, ω− and ω+ are the lower and upper bounds of ω, and PC(t, t + τh)

denotes the space of piece-wise continuous function defined over the time interval [t, t+ τh]. C2i is the

cost to ensure the estimation covariance is within a bound. It is defined as:

C2i =


0, if λi ≥ η.

(η − λi)
2, otherwise.

(4.66)

where η is a tuning parameter related to the number of connections required. Increasing η will result in

vehicles moving closer to the landmarks and increasing the connections. For satisfactory localization,

observability conditions should be satisfied, which require connections with at least two landmarks [139].

Hence, the value of η should be selected as η ≥ 2. The parameter λi is the second smallest eigenvalue

of the Laplacian matrix, which is formed as:

Li(X) = ∆i(X)−Ai(X), (4.67)

where Ai(X) is the adjacency matrix defined similar to [97] as

Aimn =


e

−κ(||Rmn||−ρ)
Rs−ρ , ||Rmn|| ≤ Rs.

0, ||Rmn|| > Rs.

(4.68)

and ∆i(X) is a diagonal matrix with elements

∆imm =
N∑
n=1

Aimn (4.69)

wherem,n = 1 toN , andN is the number of nodes of the graph connecting the vehicles and landmarks.

κ is a constant that determines the convergence rate of the exponential function, and ρ is used to set a

minimum distance between the landmarks and the vehicles to avoid collisions. ||Rmn|| is the distance

between the mth and nth nodes, and Rs is the sensor range of the vehicles. This formulation of the

adjacency matrices, rather than updating it with binary values, helps drive the vehicles closer to the

landmarks than just maintaining the connections by keeping them in the sensor range. Also, reducing the

distance between the landmarks and the vehicles helps decrease the estimation covariance, as explained

in sec. 4.4. The maximum value λi can take is equal to the number of connections of each vehicle, and
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this insight is used in formulating (4.66).

The weight Wi associated with C2i is defined in the following way

Wi =


W, if 3σpi ≥ σc.

0, otherwise.
(4.70)

where σpi is the standard deviation in the estimated position of the ith vehicle and the constant σc is the

specified critical value. This adaptive weight formulation is used to obtain a trade-off between the two

objectives. σpis are calculated using the expression

σ2pi =
9

2
R2
g

(
1 +

R2
g

2 +R2
g + 2 cos(2(ψi − θg))

)
+ (R2

g +R4
g) csc

2(ψi − θg), (4.71)

which is explained in detail in section 4.4.2. The terms C1 and C2 of the objective function (4.64) is

normalized as follows:

C1(t) =

(
C1(t)−min(C1(t))

max(C1(t))−min(C1(t))

)
, (4.72)

C2(t) =

(
C2(t)−min(C2(t))

max(C2(t))−min(C2(t))

)
. (4.73)

The NMPC objective function given equation (4.64) uses the expressions given in equations (4.65) (4.66)

(4.70) (4.72), and equation (4.73). The NMPC objective function is solved along with state and control

constraints.

4.6 Results and Discussion

Extensive numerical simulations were carried out to validate the proposed scheme using CasADi(3.5.5)-

Python(3.8) [137]. Optimizations for the NMPC and the MHE were carried out using the interior-point

optimizer IPOPT similar to the previous chapters. We use the total path length and average estimation

error as metrics for analyzing the performance of the proposed approach. We perform the following

analysis (i) the effect of horizon length in the NMPC on the path length and estimation error, (ii) the

effect of cooperation, (iii) comparison with the approach proposed in [90] and (iv) effect of increasing

the number of vehicles in the region to 10. Before presenting the analysis, we will describe the simulation

setting.
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4.6.1 Simulation setup

We consider an environment of 200 m × 200 m, where 20 landmarks are randomly placed. Each vehicle

starts at a given location and has a desired goal location. The vehicles have a constant velocity of

5 m/s. The angular velocities of the agents are constrained by [−π/2, π/2] rad/s due to the practical

considerations on the turn rate of the agents. The value of η is selected as 2, and the values of κ and ρ are

selected as 5 and 0.5, respectively. The weight W is selected as 10000, sensor range of the vehicles, Rs

= 50 m, and σc = 3 m. The measurement noise covariance matrix Γ is selected as a nΓ × nΓ matrix with

0.01 in its diagonals, where nΓ is the number of received measurements. Each time step is 0.1s for all

the simulations. The simulations were carried out on an Ubuntu 18.04, Intel i9 workstation with 64GB

RAM.

4.6.2 Effect of NMPC horizon length

In NMPC, the horizon length plays a key role between path optimality and computational time. The

larger the horizon, the better the path obtained at the cost of increased computational time. This effect

can be seen in Fig. 4.4a, where the computation time for the prediction horizon of τh = 1 s is 0.056 s;

however, the paths are not optimal. With the increase in τh to 15 s, there is a significant improvement

in the path of vehicle 1 at an increased computational time of 0.42 s per iteration. With further increase

in horizon length to τh = 40 s, the average time to compute an iteration is 3.43 s, but the obtained path

length for the vehicles is near-optimal. The path length for τh = 25 s is close to that obtained with

τh = 40 but takes only 1.2 s.

Further, we conducted Monte-Carlo simulations to see the effect of τh on a larger number of simu-

lations for a given number of landmarks (20). For each value of τh, 25 simulations were performed by

randomly placing the landmarks. We will use the maximum time taken (Tmax) by a vehicle to reach the

given destination as the mission time for that simulation. From Fig. 4.5(a), we can see that the computa-

tion time for τh = 1 s is very less, but the average Tmax is high as shown in 4.5(b). Note that, on average,

Tmax for τh = 25 s and τh = 40 s are almost similar, however, τh = 25 takes far less time. Hence we

consider τh = 25 s for the rest of the simulations.
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4.6.3 Effect of number of landmarks (nl) and sensing range Rs

The number of landmarks and the sensing range of the vehicles play a role in the ability of the proposed

approach to determine the path. Considering τh = 25, we conducted simulations with various numbers

of landmarks (5,10,15, and 20) and varying the sensing range from 10 m to 50 m. For each combination

of landmark and sensing range, 25 simulations were performed by randomly placing the landmarks. In

total, 500 simulations were carried out. Figure 4.5(c) shows the percentage of successful mission bar

plots. Each simulation was given 100 seconds, and if the simulation was completed within this time,

the mission was assumed to be accomplished. Each stack of bars corresponds to a given landmark for

varying Rs. When the number of landmarks is less and the sensing range is less, then finding paths

is difficult. This aspect can be seen in Fig. 4.5(c) for nl = 5. As Rs increases, the mission success

improves. This is natural as the vehicle can detect landmarks due to increased sensing range. Similarly,

as we increase the number of landmarks for a given Rs, we can see improvement in the mission success

rate. For Rs = 10 (blue bars), we can see that the success rate improves from 8% to 76% as the number

of landmarks increases from 5 to 20. With a higher sensing range, we can always achieve complete

success, as shown for Rs = 50 (green bars) in the figure for any number of landmarks. This study shows

that we need to select nl and Rs appropriately for an improved mission success rate.

4.6.4 Effect of cooperation

One of the main contributions of this work is to show that with cooperation, the vehicles can jointly

determine minimal distance paths to their goal locations while meeting localization accuracy. To show

the effect of cooperation, we consider a specific scenario as shown in Fig. 4.6, where the landmarks are

located at the top of the scenario. Two simulations were carried out with five vehicles, in which one

scenario involved cooperative vehicles and the other without cooperation. We consider τh = 25 s, and

Rs = 30 m. The trajectories taken by the vehicles in both cases are shown in Fig. 4.6. It can be seen from

Fig. 4.6(a) that the vehicles with cooperation determined a shorter path since they used adjacent vehicles

for localization, whereas the non-cooperative vehicles took a longer path to go near the landmarks for

localization, as shown in Fig. 4.6(b). The estimation errors are a bit high for the cooperative case due to

the mutual localization of the vehicles.
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Figure 4.4: The average computational time taken per iteration for different τh. (a) 0.05 s (b) 0.42 s (c)
1.21 s (d) 3.43 s.
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4.6.5 MHE vs EKF

The performance of the MHE estimator was compared against a standard EKF formulation to validate

the superiority of the proposed scheme. In Fig. 4.2, the step 1 sub-block of the MHE is replaced by the

EKF. The horizon length for the MHE is selected as Ne = 20, and all other initial parameters are taken

the same for the MHE and the EKF. The estimated trajectories of the vehicles, true trajectories, and the

errors in position for both the MHE and the EKF are given in Fig. 4.7. It can be seen that the estimation

errors are less for the MHE, and it is also more stable compared to the EKF. The vehicles’ mean square

error (MSE) for the MHE is 0.46 m, and that with the EKF is 0.79 m. The computation time required for

the MHE is 1.21 s, while the EKF takes 1.10 s. Although the MHE takes 9% more computational time

than the EKF, its accuracy is 72% better than the EKF.

4.6.6 10 vehicles

To test the performance of the scheme for larger systems, a scenario involving ten vehicles in a 500 m ×

500 m plane with all the vehicles moving at a velocity of 10 m/s was considered. Multiple simulations

were carried out with random configurations of the landmarks, initial positions, and goal points. Two

example results are shown in Fig. 4.8. It can be seen that the estimator performance was satisfactory since

the actual states and the estimated states are well aligned for all ten vehicles. The average computation

time per iteration was 7.25 s due to the increase in the size of the state matrix for 10 vehicles.

4.7 Conclusions

A nonlinear model predictive control scheme combined with moving horizon estimation was proposed to

aid the cooperative localization of a group of AAVs in transit. The controller used an approximate ana-

lytical expression for calculating the expected covariance of the vehicles through the prediction horizon,

which was derived using the insights obtained from analyzing the observability and the path information

from the landmark-vehicle graph. The controller determined near-optimal paths for the vehicles while

satisfying various state and localization constraints. We analyzed through simulations the role of pre-

diction horizon on the optimality of the vehicle paths and the required computation time. The proposed

moving horizon estimator also outperformed the EKF with lower estimation error values at a small

additional computation time. A comparison was performed between cooperative and non-cooperative

vehicles to show the significance of cooperation in determining paths under localization constraints.
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Chapter 5

Learning-based NMPC Framework for

Car Racing Cinematography Using AAVs

5.1 Introduction

Here, we are interested in the repetitive task of filming autonomous robot race cars with the use of

gimbaled fixed-wing and quadrotor autonomous aerial vehicles (AAVs), as illustrated in Fig. 5.1. Com-

petitions involving robots are becoming increasingly familiar with hobbyists, students, and researchers

for demonstrating cutting-edge technology or entertainment. The races are conducted in indoor and out-

door settings with varying degrees of difficulty. We are interested in the outdoor races where the tracks

are situated in large metropolitan cities. This kind of environment makes the aerial videography of the

race very difficult. The cityscape cluttered with buildings and other infrastructures create obstructions

for the free movement of the AAVs and, in some cases, occludes the camera field of view (FOV). This

problem can be modeled as a target-tracking problem with obstacle avoidance, where the objective is to

minimize the tracking errors while respecting the imposed physical constraints. Since the races usually

have multiple numbers of cars, it is not possible to tightly follow and film all the cars using a single

AAV since the field of view of the camera has limitations. Also, the cars might not move side by side;

rather, one car might go ahead, and the other might fall behind. In situations like these, multiple AAVs

are required. Also, using a quadrotor in the mix helps in better tracking and collision avoidance since

quadrotors have the ability to hover in the air.
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Figure 5.1: Abstract representation of a race track showing a car filmed by an AAV.

5.2 Learning-Based NMPC

We assume that the cars and the AAVs start at the same initial conditions for all iterations (laps of the

race), and the cars follow the same trajectory for all iterations. The control, state, and gimbal parameters

are constrained to mimic a realistic scenario. We propose the use of NMPC for control since it can easily

handle state and input constraints. Tuning the weights for a multi-objective cost function is a tedious

task. Hence, the RL technique is used to learn the weights of the components of the cost function. The

combined RL-NMPC scheme, which we refer to as learning-based NMPC (L-NMPC) from here onward,

results in precise tracking of the cars due to the perfect balance of the weights in the objective function.

A block diagram showing the proposed L-NMPC scheme is given in Fig. 5.2. The state parameters

of the AAVs, gimbals, and cars are given to the NMPC block as feedback. Computed control commands

from the NMPC block are applied to the AAV-gimbal system. The weights required in the NMPC cost

function are calculated by the RL block.

5.2.1 System kinematics

We use a discrete-time model to represent the motion of the gimbaled AAVs. The state vector of a single

AAV is represented by XA ∈ R5 and the evolution of the states over the time step j is written as

XA,j+1 = XA,j + f(XA,j , UA,j)Ts, (5.1)

112



Figure 5.2: Block diagram of the proposed RL-based Learning-NMPC framework.

where Ts is the sampling time, XA,j = [xAj , yAj , zAj , θAj , ψAj ]
T and UA,j = [vAj , qAj , rAj ]

T are the

state and control vector of the AAV. Omitting the time subscript j for readability, the function f(XA, UA)

is defined as:

f(XA, UA) =



vA cosψA cos θA

vA sinψA cos θA

vA sin θA

qA

rA


, (5.2)

where (xA, yA, zA) is the location coordinates of the AAV in Cartesian frame, θA and ψA are pitch and

heading (yaw) angles, respectively. vA represents the linear velocity of the AAV, and qA and rA represent

the pitch and yaw rates, respectively.

A 3-DoF gimbal is attached to the AAV with the assumption that the center of the camera co-inside

with the center of gravity of the AAV. The kinematics of the gimbal is defined as

XG,j+1 = XG,j + f(XG,j , UG,j)Ts, (5.3)

where XG = [ϕG, θG, ψG]
T and UG = [pG, qG, rG]

T . The function f(XG, UG) is defined as:

f(XG, UG) =


pG

qG

rG

 , (5.4)
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where ϕG, θG, ψG are the roll, pitch, and yaw angles of the gimbal, and pG, qG, rG are the corresponding

angular rates.

We assume that the race track is flat and the car moves only in a 2D plane. We also assume that the

linear velocity vC , angular velocity rC , and heading angle ψC along with the location coordinates of the

cars (xC , yC) are available to the AAVs. A standard Kalman filter can be used if the car states are not

directly available. The kinematic model of the car is given as

XC,j+1 = XC,j + f(XC,j , UC,j)Ts, (5.5)

where XC = [xC , yC , ψC ]
T and UC = [vC , rC ]

T . The function f(XC , UC) is given by

f(XC , UC) =


vC cosψC

vC sinψC

rC

 . (5.6)

The states of AAV, gimbal, and car are combined to formulate a joint state vector given by

X =


XA

XG

XC

 . (5.7)

5.2.2 Cost function

NMPC is used to determine the optimal control inputs for the AAVs and the gimbals such that the AAVs

can film the cars without physically colliding with the obstacles and other AAVs and always keep the

cars within the camera FOVs.

The cost function is defined as:

min
Uj

J(Xj , Uj),

J(Xj , Uj) =

j+N∑
k=j

n∑
i=1

W1,i,kf1(Xi,k) +W2,i,kf2(Xi,k), (5.8)
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subject to:

Xi,j+1 = f(Xi,j , Ui,j), (5.9)

Xi,j ∈ [X−
i , X

+
i ], (5.10)

Ui,j ∈ [U−
i , U

+
i ], (5.11)

−
[
Do,i,k − (RAi +Ro,k)

]
≤ 0, k = 1, 2 . . . , no, (5.12)

−
[
DA,i,k − (RAi +RA,k)

]
≤ 0, i, k = 1, . . . , n, i ̸= k, (5.13)

where n is the number of AAVs and cars, Uj = [vA,j , pA,j , rA,j , pG,j , qG,j , rG,j ]
T is the combined

control vector of the AAV and the gimbal, W1 and W2 are the weighting coefficients, X−, X+ are

the lower and upper bounds on the states, and U−, U+ are the lower and upper bounds of the control

inputs, respectively. The constraints (5.12),(5.13) are added to incorporate the obstacle and inter-collision

avoidance capability for the AAVs. The parameter DA,i,k is the distance between the AAVs and Do,i,k

is the Euclidean distance between the center of the projection of the ith AAV on the XY-plane and the

center of projection of the kth obstacle on the XY-plane given by

Do,i,k =
√
(xAi − xo,k)2 + (yAi − yo,k)2, k = 1, 2, . . . , no, i = 1, . . . , n, (5.14)

where no is the number of obstacles present, RA is the radius of the AAV, Ro,k is the radius of the kth

obstacle, and xo,k, yo,k are the coordinates of the center of the kth obstacle on the XY-plane as shown in

Fig. 5.3.

The components of the cost function, f1(X) and f2(X), are defined as follows (AAV index i is

omitted for readability).

f1(X): for accurately tracking the car, it is desired that the horizontal projection of the AAV stays

aligned with the x, y coordinates of the car. Hence, f1 is defined as the distance between the AAV and

the car in the XY plane:

f1(X) =
√

(xA − xC)2 + (yA − yC)2, (5.15)

It might not be possible to make this function zero for all instances of time because of the difference in

the speed of the AAV and the car. Since the fixed-wing AAVs do not have hover capability, they will

start circling on top of the car to minimize the distance in the XY plane.

f2(X): this cost component makes sure that the car is within the FOV (Field Of View) of the camera,
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Figure 5.3: Obstacle avoidance of the AAV.

Figure 5.4: Illustration showing the FOV ellipse of the gimbaled camera, the race car and the AAV.
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which is modeled as an ellipse.

f2(X) = Λ1(xC − xF )
2 + Λ2(xC − xF )(yC − yF ) + Λ3(yC − yF )

2 − 1, (5.16)

where (xF , yF ) is the center of the FOV calculated as follows:

xF = a+ xA + zA tan(θG − V FOV/2), (5.17)

yF = b+ yA + zA tan(ϕG −HFOV/2), (5.18)

where a and b are the major and minor axis of the FOV ellipse, defined as

a =
1

2

(
zA tan (θG + V FOV/2)− zA tan (θG − V FOV/2)

)
, (5.19)

b =
1

2

(
zA tan (ϕG +HFOV/2)− zA tan (ϕG −HFOV/2)

)
. (5.20)

The parameters V FOV and HFOV are the vertical and horizontal field of view of the camera,

which is available in the camera specifications. The coefficients Λ1, Λ2, and Λ3 are defined as:

Λ1 =
cos2 ψG
a2

+
sin2 ψG
b2

, (5.21)

Λ2 = 2 cosψG sinψG

(
1

a2
− 1

b2

)
, (5.22)

Λ3 =
sin2 ψG
a2

+
cos2 ψG
b2

. (5.23)

The cost component (5.16) gives a negative value when the car is within the FOV and a positive value

if the car is outside of the FOV. The aforementioned parameters are illustrated in Fig. 5.4.

5.3 Reinforcement Learning

RL is a nature-inspired, experience-based learning method with three main components: state, action,

and reward. The RL agent makes a selection among the possible actions, observes the state and reward

obtained for the corresponding action, and makes future actions to maximize the reward [147]. The
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selection of actions has two modes, exploration, and exploitation. In exploration, the agent searches for

actions that will give a higher reward, and in exploitation, the same action is used to increase the sum

of rewards. Striking a balance between these two modes is the key to increasing the performance of the

agent.

In this work, we used the constant alpha Q-learning algorithm for learning the weights for each

iteration (lap) of the race. The Q-update rule for the constant alpha is given by [147] as:

Qnew(sj , aRL,j) = Q(sj , aRL,j) + αRL

(
rRL,j + γRLmax

aRL
Q(sj+1, aRL)−Q(sj , aRL,j)

)
, (5.24)

where Qnew is the updated Q-value of the state-action pair (sj , aRL,j) while αRL and γRL are the learn-

ing rate and the discount factor, respectively. Q(sj , aRL,j) is the old Q-value, and maxaRL Q(sj+1, aRL)

represents the estimate of the optimal future value.

We consider each lap of the race as an RL episode. The state space s is the same as the NMPC state

vector X . The action space aRL is defined as the NMPC weight set (W1,1,W1,2, . . . ,Wn,1,Wn,2) where

W1,W2 ∈ [1, 100]. The reward is defined as the reciprocal of the tracking errors given by

rRL =
1

error
=

1∑n
i=1

√
(xFi − xCi)

2 + (yFi − yCi)
2
, (5.25)

The reward function gives a higher reward when the distance between the cars and the center of the FOVs

is less.

Action selection is governed by the ε-greedy method where epsilon decay is defined as exponential

decay formula given as:

ε = εmin + (εmax − εmin)e
−λepisode, (5.26)

where λ is the epsilon decay rate while εmin and εmax are the maximum and minimum values of ε.

5.4 Results and Discussion

The performance of L-NMPC for filming the race-cars was evaluated through numerous simulations

with race tracks of different configurations, and the selected results are analyzed in this section. The

NMPC algorithm was implemented using the CasADi(3.5.5)-python(3.8) [148] framework, and a custom
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AAV constraints Gimbal constraints
variable min max variable min max
zA(m) 75 150 ϕG(rad) −π/6 π/6
θA(rad) -0.2618 0.2618 θG(rad) −π/6 π/6
vA(m/s) 14 30 ψG(rad) −π/2 π/2
pA(rad/s) −π/30 π/30 pG(rad/s) −π/30 π/30
rA(rad/s) −π/21 π/21 qG(rad/s) −π/30 π/30

rG(rad/s) −π/30 π/30

Table 5.1: Constraints on the AAV-gimbal system.

reinforcement learning environment was created using the OpenAI Gym [149] library. First, we present

simulation results for a single AAV-race car pair and then move on to a multi-vehicle simulation.

5.4.1 Simulation setup

The sampling time for the NMPC is selected as Ts = 0.2 s, and the length of the prediction horizon N =

15 for all simulations. The cars move with a constant speed of vC = 12 m/s, and the track is surrounded by

ten cylindrical obstacles with a radius of 50 m and a height of 120 m. In order to balance the exploration

and exploitation, ε-greedy method with εmin = 0.03, εmax = 1.0, and ε-decay rate λ = 0.008 were used.

Learning rate was selected as α = 0.95 and discount factor γ = 0.85. The RL parameters were selected

in a way that the agent can learn with a low number of episodes, where each episode has 2000 NMPC

steps. The simulations consisted of 500 episodes of training for the single vehicle simulations and 100

episodes for multi-vehicle simulations, which were carried out on an Intel i7 workstation with 16 GB of

RAM.

5.4.2 Single AAV-race car pair

The initial positions of the car and the AAV are selected as (xC , yC) = (100,150) and (xA, yA, zA) =

(99,150,80), respectively. The bounds on the states and controls are given in Table 5.1. At the beginning

of the race, the RL agent explores some random actions (weight set), and they are passed to the NMPC

cost function. The NMPC finds the optimal control inputs for the AAV-gimbal system with the received

weight set and the error values. Here, the NMPC framework is considered as the RL environment, which

gives the reward to the RL agent. The agent updates the Q-table with the weights for the corresponding

NMPC step, and the iterative process is continued to get the best actions.

Consider Fig. 5.5. It shows the optimal trajectory of the AAV obtained using the proposed L-NMPC
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Figure 5.5: Different views of the AAV tracking the car. The trajectories of the RL-trained agent (blue)
and the untrained agent (red) are shown. The FOVs of the agents at intermittent time steps are also given.
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(a)

(b)

Figure 5.6: Weights for the NMPC cost function obtained through the learning process: (a) W1 which
regulates the term f1(X) defined in (5.15), (b) W2 which regulates the term f2(X) defined in (5.16).

Figure 5.7: Top view of the track showing the trajectories of the center of FOV of RL-trained and
untrained agents and the car trajectory.
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Figure 5.8: Control actions of L-NMPC: (a) Linear velocity of AAV, (b) Pitch rate of AAV, (c) Yaw rate
of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the gimbal.

Figure 5.9: Control actions of untrained NMPC: (a) Linear velocity of AAV, (b) Pitch rate of AAV, (c)
Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the gimbal.
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scheme. It is also compared with an agent using a standard NMPC scheme with constant pre-defined

weights (W1 = 1,W2 = 1). It can be seen that the RL-trained AAV was able to track the car while

avoiding collision with the obstacles. The performance of the trained AAV is better than the untrained

AAV, as shown in Fig. 5.7. The error between the trajectory of the car and the center of FOV of the AAV

is lower for the RL agent. The untrained agent intermittently lost track of the car while the proposed

scheme delivered precise tracking. The center of FOV of the untrained agent is moving closer to the

obstacles in some places since the AAV deviated far away on the outside to avoid the obstacles. The

weights obtained from the optimal RL episode are shown in Fig. 5.6. It is to be noted that the rapid

switching of weights does not put any strain on the physical system since they are not actuating signals.

The control inputs for the AAVs and the gimbals computed by the L-NMPC and the standard NMPC

are shown in Figures 5.8 and 5.9 respectively. The number of spikes in the linear velocity is lower for

the RL-trained AAV compared to the untrained one, as shown in Fig. 5.8(a) and Fig. 5.9(a), respectively.

This helps the trained AAV to film the car with more precision while roaming smoothly in the urban

environment. A similar trend is visible in the other control inputs of the AAV and the gimbal as well.

In all the cases, the rates are well within the specified constraints. The pitch rate of the AAV is not

changing frequently since the change in altitude is required only for flying over obstacles. The yaw

rate is frequently changing since the AAV cannot make sudden changes in direction due to the turn rate

constraints. It can be seen that the value frequently saturates at the specified limit.

The error between the car trajectory and the center of FOV of the trained and untrained AAVs are

shown in Fig. 5.10(a). Intermittent spikes of large error can be seen for the untrained AAV, meaning that

the tracking failed on multiple occasions. The RL-trained AAV showed excellent performance in keeping

the tracking error to a minimum. The sum of errors for an entire lap of the race is given in Fig. 5.10(b).

It can be seen that the L-NMPC method provided a 70% reduction in the overall lap error compared to

the standard.

5.4.3 Multiple AAVs and Cars

Now we consider simulations involving multiple AAVs and cars. We consider three cars and AAVs,

among which two are fixed wings and one is a quadrotor. The quadrotor has hovering capability. Hence,

the lower bound on its linear velocity is set to zero in the simulations. We do not consider altitude change

for AAVs to make the problem less complex and to reduce the computation requirement. Hence, the

AAVs fly at a constant altitude of 200 m. All the other values remain the same as given in Table 5.1. The
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(a)

(b)

Figure 5.10: Error between the center of FOV and the car trajectory for the trained and untrained agents.
(a) Instantaneous error. (b) Total error.
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initial positions of the cars and the AAVs are selected as (xC , yC)1 = (100,150), (xC , yC)2 = (150,200),

(xC , yC)3 = (200,250), (xA, yA, zA)1 = (99,150,200), (xA, yA, zA)2 = (145,200,200), and (xA, yA, zA)3

= (195,250,200), respectively, where the quadrotor is represented by the index ‘1,’ and the fixed-wings

are represented by ‘2,3’.

Fig. 5.11 shows the optimal trajectory of the AAVs obtained using the proposed L-NMPC scheme.

It is also compared with agents using a standard NMPC scheme with constant pre-defined weights. It

can be seen that the RL-trained AAVs were able to track the cars while avoiding collision with the

obstacles and with other AAVs. The relative distance between the AAVs is given in Fig. 5.12. The

control inputs for the AAVs computed by the L-NMPC and the standard NMPC for all the AAVs are

shown in Figures 5.13-5.18. The number of spikes in the linear velocity is lower for the RL-trained

fixed-wing AAVs compared to the untrained ones. A similar trend is visible in gimbal controls as well.

The pitch rates for the AAVs are almost zero since the altitude is constant. The characteristics of the

quadrotor seem to be a bit similar for the trained and untrained agents. The reason for this trend is

unknown and requires further investigation.

The error between the car trajectories and the center of FOVs of the trained and untrained AAVs

are shown in Figures. 5.19-5.21. The total of all three AAV errors is given in Fig. 5.22. As expected,

intermittent spikes of large error can be seen for the untrained AAVs, and the sum of errors is lower for

all three trained AAVs. It can be seen from Fig. 5.22 that the RL-trained AAVs performed far better

than the untrained ones, and the errors were reduced drastically. It can be seen that the L-NMPC method

provided a 50% reduction in the overall lap error compared to the standard.

5.5 Conclusions

In this chapter, we presented a Learning-NMPC strategy for filming robot cars using gimbaled AAVs,

where the AAVs increase their tracking performance iteratively using the Q-learning RL algorithm. The

time-varying weights for each time step are learned to balance the NMPC cost components, resulting in

an optimal balance between the multiple NMPC objectives. The proposed control scheme was found to

be effective in minimizing the overall tracking errors in the race. The L-NMPC strategy was also able

to handle the state and control constraints of the AAV-gimbal system and provided obstacle avoidance

capability. Simulation results showed that the L-NMPC framework could increase the filming accuracy

by approximately 60% compared to a standard NMPC scheme.
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(a)

(b)

Figure 5.11: The trajectories of the AAVs and the cars. a) RL-trained agents b) untrained agents.

126



Figure 5.12: Relative distance between the AAVs.

Figure 5.13: Control actions of the quadrotor with L-NMPC: (a) Linear velocity of AAV, (b) Pitch rate
of AAV, (c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the
gimbal.
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Figure 5.14: Control actions of untrained quadrotor: (a) Linear velocity of AAV, (b) Pitch rate of AAV,
(c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the gimbal.

Figure 5.15: Control actions of fixed-wing-1 with L-NMPC: (a) Linear velocity of AAV, (b) Pitch rate
of AAV, (c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the
gimbal.
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Figure 5.16: Control actions of untrained fixed-wing-1: (a) Linear velocity of AAV, (b) Pitch rate of
AAV, (c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the
gimbal.
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Figure 5.17: Control actions of fixed-wing-2 with L-NMPC: (a) Linear velocity of AAV, (b) Pitch rate
of AAV, (c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of the gimbal, (f) Yaw rate of the
gimbal.

Figure 5.18: Control actions of untrained fixed-wing-2: (a) Linear velocity of AAV, (b) Pitch rate of AAV,
(c) Yaw rate of AAV, (d) Roll rate of the gimbal, (e) Pitch rate of gimbal, (f) Yaw rate of the gimbal.
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(a)

(b)

Figure 5.19: Error between the center of FOV and the car trajectory for the trained and untrained quadro-
tors. (a) Instantaneous error. (b) Total error.
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(a)

(b)

Figure 5.20: Error between the center of FOV and the car trajectory for the trained and untrained fixed-
wing-1. (a) Instantaneous error. (b) Total error.
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(a)

(b)

Figure 5.21: Error between the center of FOV and the car trajectory for the trained and untrained fixed-
wing-2. (a) Instantaneous error. (b) Total error.
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(a)

(b)

Figure 5.22: Total error between the center of FOVs and the cars for the trained and untrained AAVs. (a)
Instantaneous error. (b) Total error.
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Chapter 6

Conclusions and Future work

A nonlinear model predictive control strategy was proposed for the active defense of the target in a

TAD problem in Chapter 2. Cooperative control commands were computed using NMPC for a target-

defender pair against an individually acting attacker. The attacker states were estimated using an EKF.

An analysis conducted using the Apollonius circles revealed the escape regions for the target, which was

verified using simulations. The proposed scheme was found to be effective in achieving the objectives

while respecting the imposed state and control constraints. The performance of the NMPC strategy was

compared against CLOS and A-CLOS formulations, and the results showed that the NMPC outperformed

both the CLOS and A-CLOS based strategies.

The pursuit-evasion framework was extended to four agents in Chapter 3. In this chapter, we pro-

posed a cooperative strategy based on NMPC for the active defense of the targets in a two–targets two–

attackers (2T2A) problem. The theoretical analysis using Apollonius circles given in Chapter 2 was

extended to determine the escape region for the targets. The efficacy of the proposed scheme was val-

idated using numerical simulations. The results verify the performance of the integrated EKF with the

NMPC and also support the theoretical analysis.

From the analysis, it was found that the outcome of target escape or capture could be predicted based

on the initial positions of the agents. This information will help the strategy planners to correctly position

their defensive or offensive assets. Also, the thesis encourages the use of NMPC as a possible substitute

for conventional control techniques due to its real-time implimentability, feedback structure, and superior

performance.

In Chapter 4, we proposed a nonlinear model predictive control scheme combined with moving hori-
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zon estimation (MHE) to aid the cooperative localization of a group of AAVs in transit. The controller

used an approximate analytical expression for calculating the expected covariance of the vehicles, which

was derived using theoretical analysis conducted using the observability graphs. Near-optimal paths

were found for the vehicles while satisfying various state and localization constraints. Simulations were

conducted to analyze the role of the prediction horizon on the optimality of the vehicle paths and the

required computation time. The proposed moving horizon estimator was compared with the EKF. MHE

outperformed the EKF with lower estimation error values at a short additional computation time. A

comparison between cooperative and non-cooperative vehicles revealed the significance of cooperation

in determining paths under localization constraints. The proposed scheme can make huge impacts in the

area of urban air mobility. Precise localization is very important for vehicles flying in cities. The thesis

proposes a complete framework for vehicles to suitably plan their paths while maintaining localization

accuracy through cooperation and the use of existing features instead of relying on GNSS.

Finally, in Chapter 5, we combined the reinforcement learning technique with the NMPC to create a

learning-based controller for the tracking of cars using gimbaled AAVs. The weights of the cost function

were learned online using the information obtained from the iterations of the race. The proposed L-

NMPC scheme was found to have better tracking performance than a standard NMPC scheme with

manually tuned weights. The proposed scheme can be used in general for any persistent monitoring

applications of iterative nature. Not only it helps reduce the human workload in tuning the weights but it

also improves the performance compared to manual tuning.

The main limitation of this thesis is the use of point-mass models and simple kinematic equations for

the agents. According to the application and the agent type, corresponding dynamics could be used to

increase the performance of the formulations. The use of actual dynamics will also put extra constraints

on the system states and control inputs. The NMPC is capable of handling these difficulties, and we

plan to take this into effect for our future work. Other possible extensions for the different problems are

explained in the following section.

Future work

Possible extensions for the three-agent problem discussed in Chapter 2 are to broaden the framework to

three dimensions taking the terrain map into account. Also, if urban environments are considered, then

obstacle avoidance constraints need to be included for the agents. The current NMPC solver suffers from

a high value of computation time. If 3D environments with obstacle avoidance constraints are considered,
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or the number of agents is increased to formulate a multi-pursuer multi-evader problem, the computation

requirement will increase drastically, preventing real-time implementation. Hence, we would like to

drive our approach toward the use of fast-MPC based solvers for speeding up the computations in the

proposed strategy.

There can be several extensions of the work proposed in Chapter 3. The formulation can be extended

to 3D, considering the altitude information. The existing 2T2A problem can be developed into a gen-

eral framework consisting of multiple attackers, targets, and defenders. The agent assignments, which

attacker should pursue which target and which defender should intercept which attacker, can be modeled

and solved as a task assignment problem. Another extension is to relax some of the assumptions on agent

velocities like keeping the attacker velocity v̇A constant, v̇A = 0, but vA is not known, or even the case

where agent velocities are not constant. We would also like to do a formal analysis of the NMPC stability

and the implications of the EKF on the stability.

The approach proposed in Chapter 4 can be extended in several directions. One potential extension

is to determine how many landmarks are sufficient for a given vehicle to reach the destination while

satisfying localization constraints. A limitation of inter-vehicle localization is that the errors propagate

from vehicle to vehicle since the relative position reference is estimated and not a known true value like

the landmarks. This problem can only be overcome by ensuring that the reference vehicle is always

connected to the number of landmarks required for maintaining near-true accuracy. Finding the exact

number of landmarks and their positions required for finding a feasible trajectory with a given source

and destination points, the number of vehicles, and the size of the area under consideration is still an

open problem for research. Also, since the urban environment contains a lot of buildings and other

obstructions, another prospect is to incorporate obstacle avoidance techniques into the path planning

algorithm. The current approach uses centralized schemes for estimation and control. The use of de-

centralized schemes will distribute the computation requirement and increase the speed of computation.

Experimental validation is another direction to implement the algorithms in real-world vehicles.

The L-NMPC framework proposed in Chapter 5 can be improved in many directions. Since a race

car usually does not move at a constant speed, a variable velocity race car can be considered for the target

tracking problem. Also, wind disturbances should be taken into effect when formulating the control law

for AAVs. More complex race tracks with hairpin bends and sharp turns will make the problem more

challenging and interesting. The problem can also be converted to a real-time assignment problem, where

the AAVs switch their corresponding targets to meet certain constraints, such as collision avoidance, or

to improve the overall tracking performance. More simulations consisting of different configurations are
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required to find in-depth the cooperative aspects of the AAVs.
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