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Abstract 

Microbes are minute, unicellular, multicellular organisms, such as bacteria, algae, fungi, 

viruses and protozoans, that can be only visible through the microscope. These can be 

infectious as well as non-infectious in nature. The ability of the infectious agent to cause 

diseases in the host cell is known as pathogenicity, while the ability of the pathogen to infect 

or cause damage to the host tissues is determined by the virulence factors. According to Centers 

for Diseases Control and Prevention reports, various infectious diseases such as COVID-19, 

tuberculosis, measles, and influenza are responsible for causing morbidity in the human 

population. Microbial pathogens pose an alarming threat to the healthcare sector worldwide. 

These micro-organisms cause severe diseases that lead to high mortality and morbidity rate. 

The rise in re-emergence of life-threatening infectious diseases and increasing incidence of 

antibiotic-resistant strains of the pathogens poses a danger to the healthcare sector.  In the past, 

several studies reported that many distinct pathogenic micro-organisms share the common 

mechanisms of causing the infections to the host cell. Virulence factors of these pathogens play 

an important role in host-pathogen interactions and disease-mechanism. These factors include 

invasion, colonization and damage to the host cell, which contribute to pathogenicity. Thus, 

virulence factors are major drug/vaccine targets for designing therapeutic molecules against 

these pathogens. Some pathogenic micro-organisms release several molecules which cause 

damage to the host cell, induce the infection and evoke the diseases. These molecules include 

toxins released by certain pathogens to cause toxicity and induce allergic reactions in the host 

cell. Advances in various technologies led to the explosive growth of experimentally verified 

proteomic data related to virulence factors, which is available in the form of repositories. Thus, 

the present thesis focuses on utilising the publicly available experimentally verified data to 

develop computational tools to identify the potential virulence factors and pathogenicity 

associated with pathogens, such as toxicity and allergenicity, and to design the therapeutic 

molecules against them. 

Taking this into consideration, we aimed to develop in-silico models to explore, predict and 

identify the potential virulence factors of pathogens. We build a machine learning-based 

method named ‘VirFacPred’ to identify novel virulence factors to aid the clinicians and 

scientific community. The best performing model achieved the maximum area under the 

receiver operating characteristic curve 0.97 with Matthews correlation coefficient 0.77 on the 

dataset. The best machine learning models have been implemented in the web server, which 
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allows the prediction, designing, mapping and motif search for the virulent proteins of the 

pathogens.  

To address the pathogenicity caused by the pathogenic organisms to the host cell, such as 

toxicity and allergy, we have developed “ToxinPred2” and “AlgPred 2.0” that will facilitate 

the identification of toxic and allergic proteins. Toxins are one of the major virulence factors 

that play a crucial role in damaging the host cell. We have developed a highly accurate method, 

ToxinPred2, for predicting toxins with better precision. We have integrated a hybrid method 

that combines three approaches, i.e., similarity-, motif-, and composition-based machine 

learning model, which achieved a maximum area under the receiver operating characteristic 

curve around 0.99 with Matthews correlation coefficient 0.91 on the dataset. We have provided 

the standalone version of the method, which can be freely accessed at GitHub. This is a general 

method developed for predicting the toxicity of proteins regardless of their source of origin. 

On the other hand, a method called “AlgPred 2.0” has been developed for identifying allergenic 

proteins with high accuracy that allows the prediction of allergens, designing of non-allergenic 

proteins, mapping of IgE epitope, motif search and BLAST search. The ensemble approach, 

i.e., similarity-, motif-, and composition-based machine learning model, has been used for 

predicting allergenic protein by combining prediction scores. The best model achieved 

maximum performance in terms of area under the receiver operating characteristic curve 0.98 

with Matthews correlation coefficient 0.85 on the dataset.  

Besides proteins and peptides, some chemical compounds are known to induce allergic 

reactions to the host cell, known as chemical allergy. A therapeutic molecule may cause side 

effects due to its allergic potential. A first attempt has been made to develop the method using 

machine learning techniques that can predict the allergenic potential of chemicals. To aid the 

scientific community, we developed a novel method named “ChAlPred” that allows to predict 

and design the chemicals with allergenic properties. Our fingerprint-based analysis suggests 

that certain chemical fingerprints such as PubChemFP129 and GraphFP1014 are abundant in 

allergic compounds. We have also identified the FDA-approved drugs causing allergic 

symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole) using our best model incorporated 

in the web server.  

In summary, attempts have been made to develop in-silico models that can be used to design 

directly/indirectly therapeutic molecules against disease-causing agents. To facilitate the 

scientific community, web-based services and standalone software have been developed.   
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1.1 Background 

Micro-organisms are tiny, living, microscopic organisms that are omnipresent and cannot be 

seen by naked eyes. These organisms can be unicellular, multicellular, prokaryotes and 

eukaryotes, such as bacteria, algae, fungi, viruses and protozoans (InformedHealth.org, 2006). 

Based on the ability of these micro-organisms to cause harm to the host cell, they are classified 

as pathogens and non-pathogens. Pathogenic micro-organisms are capable of causing an 

infection, hence leading to disease to the host cell, whereas non-pathogenic micro-organisms 

are harmless, and do not cause any infection or disease (Piglowski, 2019). The competence of 

the infectious agent to cause diseases in the host cell is known as pathogenicity or infectivity. 

Whereas the ability of the pathogen to infect or cause damage to the host tissues is determined 

by the virulence factors (VFs). To induce the infection, the pathogenic microbes invade the 

host cells, multiply their growth and cause damage to the host organism. The capacity of the 

microbe to cause mild or severe, or acute infection depends on its relative pathogenicity 

(Shapiro-Ilan et al., 2005). Pathogenic microbes include Bacillus anthracis, Influenza virus, 

Candida albicans, cyanobacteria, Plasmodium spp., whereas Escherichia coli, Lactobacillus 

acidophilus, Brevibacterium linens fall under the category of non-pathogenic microbes. 

Infectious diseases caused by pathogenic micro-organisms are the leading cause of mortality 

worldwide. As per the report by the Centers for Diseases Control and Prevention (CDC), there 

are various infectious diseases, such as COVID-19, tuberculosis, measles, and influenza, which 

are responsible for causing morbidity in the human population (CDC, 2021), (ECDC, 2022). 

The rise in re-emergence of life-threatening infectious diseases and increasing incidence of 

antibiotic-resistant strains of the pathogens poses a danger to the healthcare sector. Many past 

studies state that although many distinct pathogenic micro-organisms are present in the 

environment, they share the common mechanisms of causing the infections to the host cell. For 

instance, different pathogenic bacteria have similar processes for attaching to the host 

membrane, penetrating it, causing damage, evading the host immune response, and establishing 

the infection. VFs play a very significant role in enhancing the pathogenicity of pathogens. 

Figure 1.1 depicts the various aspects needed by the pathogenic micro-organism to establish 

the infection using its various virulence factors and releasing certain responses such as toxicity 

and allergy (pathogenicity) to the host cell. The first step for causing the infection is binding 

the pathogen to the host outer membrane, for which adhesin proteins play a crucial role. After 

that, burrowing into the cell, also known as penetration or invasion inside the host cell, is 

mediated by invasion factors present in the pathogen and followed by colonising within the 
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host cell using the colonization factors. Some pathogenic micro-organisms use immune evasion 

strategies, and some suppress the immune response to escape from the host's defence 

mechanism and survive within the cell. Thus leading to pathogenic reactions such as exploiting 

the normal functioning by damaging the cell, causing toxicity and allergic responses. The 

mechanism of microbial pathogenesis is shown in Figure 1.1. To understand the pathogenicity 

of the micro-organism, it is necessary to have a more comprehensive understanding of various 

molecular mechanisms associated with the virulence of the pathogen because the ability of the 

pathogenic micro-organism is directly related to its virulence (Peterson, 1996).   

 

 
Figure 1.1: The mechanism of microbial pathogenesis 

 

1.2 Virulence 
There are millions of microbial species present, out of which very few are known to cause 

diseases (Blackwell, 2011). The micro-organisms that cause disease in humans and other 

organisms are pathogenic in nature. Interaction of these pathogenic microbes is the result of a 

parasitic relationship with the host, which results in causing the disease to the host organism 



 4 

(Casadevall & Pirofski, 2000). Survival and growth of the micro-organism causing infection 

and damage to the host cell are the two processes required by the pathogens to cause 

pathogenicity (Peterson, 1996), (Balloux & van Dorp, 2017). Immune evasion factors are the 

essential aspect of causing infection and are required for the survival of the pathogens inside 

the host cells (Hilleman, 2004). To become infectious, the pathogen needs to cause damage to 

the host. Other than these, VFs play a significant role that can immediately cause damage to 

the host organism (Peterson, 1996), (Sharma, Dhasmana, et al., 2017). VFs are the molecules 

synthesized by micro-organisms, especially pathogens which include bacteria, viruses, 

protozoans and fungi (Peterson, 1996), (Shapiro-Ilan et al., 2005). These factors enhance the 

tendency of pathogens to cause diseases in different host organisms. They are classified into 

different groups based on their functions and mechanism of causing disease.  

 

1.2.1 Adherence factors  

Adhesins are the molecules involved in the attachment of the pathogen to the host cell, which 

is extensively found in the pathogenic microbes (Berne et al., 2015). Commensal microbes 

primarily reside within the mucus, at some distance from the anti-microbial peptide secreting 

epithelial cells. This helps the pathogen remain in intimate contact with the host cell, which is 

required to manipulate and invade it (Gallo & Hooper, 2012). Streptococcus mutans is a gram-

positive bacterium which causes human dental caries. It uses Adhesin P1 protein to adhere to 

the tooth surface (Sullan et al., 2015). Viruses such as the Influenza virus adhere to the sialic 

acid present on the host's membrane of respiratory and intestinal cells using its spike protein 

hemagglutinin, infecting the host with influenza (Matrosovich et al., 2015), (Dou et al., 2018). 

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an adhesin protein 

present in a protozoan Plasmodium falciparum that causes malaria in humans, which is used 

to adhere with endothelial cells (Senczuk et al., 2001). Hyphal wall protein 1 (HWP1) is a vital 

adhesin protein expressed by various Candida species (Abastabar et al., 2016).  

 

1.2.2 Invasion factors 

Invasion into the host cell and tissues are usually described as one of the defining activities of 

the pathogenic microbes (Ribet & Cossart, 2015). Some bacteria invade the host cell by 

distorting the outer membrane and triggering endocytosis (Dalle et al., 2010). After invading 

the cell, it releases certain enzymes and toxins. For example, Staphylococcus aureus uses 

enzymes like Hyaluronidase S (Ibberson et al., 2014) and Bacillus anthracis uses enzymes like 

Phospholipase C (Titball, 1993) to invade the host cell by disrupting its outer cell membrane 
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(Pomerantsev et al., 2003). Many pathogens invade by entering the bloodstream, releasing 

toxins in the bloodstream leading to sepsis and can even lead to pus formation (Minasyan, 

2019). 

 

1.2.3 Colonization factors (Growth in the host cell) 

After invasion inside the host cells and tissues, the next step is colonising, which is mediated 

by colonisation factors. These factors help the pathogen to colonise within the host cell (Ribet 

& Cossart, 2015). Streptococcus pneumoniae colonises the respiratory tract and causes major 

respiratory and invasive diseases (Green et al., 2021).  

 

1.2.4 Immuno-evasion 

Immuno-evasion helps the pathogens to evade the host immune response by escaping from 

being recognised by the innate and adaptive immune response (Finlay & McFadden, 2006). 

Some classes of pathogenic species have developed various immune-evasion strategies, such 

as suppressing their recognition via immunogenic surface receptors present on the outer 

membrane of the host cell, i.e., pathogen-associated molecular patterns (PAMPs) (Mogensen, 

2009). Certain bacteria like Helicobacter pylori and Porphyromonas gingivalis synthesize an 

altered form of lipopolysaccharides (LPS) which helps them not being recognised by the host 

immune system (Hornef et al., 2002). Few fungal pathogens coat them with capsules or even 

from the molecules derived from the host itself to escape the immune response (Latge & 

Beauvais, 2014), (van de Veerdonk et al., 2008). For example, capsular polysaccharides shield 

the pathogens from the host's defense mechanism (Chai et al., 2009).  

 
1.2.5 Immunosuppression 

Immunosuppression is the obstruction of host immune response by some effector proteins, 

which is the popular strategy in pathogenic microbes (Peterson, 1996). These effector proteins 

mainly interact with host molecules to manipulate the host cell in favor of the pathogen 

(Rajamuthiah & Mylonakis, 2014). Effector proteins may include invasins which trigger 

receptor-mediated host cytoskeleton rearrangements and induce endocytosis (Phan et al., 

2007). Traversing the host membrane is very crucial for the action of the effector molecules 

(Pizarro-Cerda & Cossart, 2006).  
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1.2.6 Damage to the host cell 

Toxins 

Toxins are the virulence factors that exploit the normal functions of the host cell by 

constraining the essential processes to facilitate pathogenic infection (do Vale et al., 2016). To 

resist the host defense mechanism, some pathogens secrete various toxins that target innate 

immune cells, specifically neutrophils and macrophages, hence obliterating a key component 

of the host immune response (do Vale et al., 2016). Toxins can be of two types: endotoxins and 

exotoxins. The LPS present in the outer cell wall of the Gram-negative bacteria is a classical 

example of endotoxins. Lipid A component of LPS triggers the inflammatory response of the 

host immune system causing fever, severe changes in blood pressure, lethal shock, and multi-

organ failure, which can even lead to death (Peterson, 1996). 

Certain pathogenic bacterial species produce various types of protein toxins and enzymes, 

which fall under the category of exotoxins (Popoff, 2018). This includes a wide variety of 

toxins such as cytotoxins, neurotoxins, and enterotoxins. Exotoxins can be grouped into three 

categories: intracellular targeting, membrane disrupting, and superantigens (Peterson, 1996), 

(Spaulding et al., 2013).  

Some examples of intracellular targeting exotoxins are diphtheria toxins produced by the gram-

positive bacteria Corynebacterium diphtheriae (Murphy, 1996). Cholera toxin is 

an enterotoxin produced by the gram-negative bacterium Vibrio cholerae (Reidl & Klose, 

2002). Botulinum toxin (also known as Botox) is a neurotoxin produced by the gram-positive 

bacterium Clostridium botulinum (Nigam & Nigam, 2010). Tetanus toxin is produced by the 

gram-positive bacterium Clostridium tetani (George et al., 2022). These toxins inhibit protein 

synthesis, hence killing the host cell.  

Membrane disrupting exotoxins obstruct the outer cell membrane of the host cell by forming 

pores in the membrane (Los et al., 2013). For instance, leukocidins (lysis of white blood cells) 

(Spaan et al., 2017), hemolysins (lysis of red blood cells) (Dinges et al., 2000), streptolysins of 

Streptococcus pyogenes (Molloy et al., 2011), pneumolysin of Streptococcus pneumoniae 

(Hirst et al., 2004) and an alpha-toxin produced by Staphylococcus aureus are pore-forming 

exotoxins which cause the leakage of cytoplasmic contents leading to the cell death (Seilie & 

Bubeck Wardenburg, 2017). Superantigens are the class of exotoxins that elicit a strong 

immune response, hence activating the immune cells to excessively release the cytokines 

leading to a cytokine storm (Proft & Fraser, 2003), (Popugailo et al., 2019). One example of 

superantigen exotoxin is toxic shock syndrome caused due to the colonization of 

Staphylococcus aureus (Xu & McCormick, 2012).  
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Exoenzymes 

Some pathogenic microbes can directly cause damage to the host cells by secreting factors like 

toxins, hydrolytic enzymes, and physical forces during host cell invasion or escape (Mayer et 

al., 2013). Secreted factors include hydrolytic enzymes like proteases or lipases and toxins in 

the form of small metabolites or peptides that poison the host cell and causes tissue damage 

(Scharf et al., 2014).   

 

1.2.7 Siderophores 

Siderophores are the small chemical compounds or secondary metabolites that help pathogens 

in the uptake of iron (chelation) or obtain nutrition from the host cell (Ahmed & Holmstrom, 

2014). The secretion of siderophores by many pathogenic species is considered an important 

virulence factor (Peterson, 1996). Based on the chemical moiety involved in the iron chelation, 

there are four types of siderophores. These are catecholates (enterobactin), hydroxamates 

(ferrioxamine B, alcaligin), carboxylates (rhizobactin, rhizoferrin) and phenolates (pyochelin) 

(Kramer et al., 2020). Some of the examples of siderophores are enterochelin produced 

by Escherichia coli (Scholz & Greenberg, 2015), pyochelin from Pseudomonas aeruginosa 

(Ross-Gillespie et al., 2015), ornibactin from Burkholderia cenocepacia (Sathe et al., 2019) 

and vibrioferrin from Vibrio species (Cordero et al., 2012).  

 
1.3 Pathogenicity caused by virulence factors 

After the successful attachment, invasion, and multiplying within the host cell, the pathogenic 

micro-organisms secrete certain molecules which cause damage to the host cell, induce the 

infection and evoke the diseases. These molecules include toxins released by certain pathogens 

to cause toxicity and induce allergic reactions in the host cell.  
 

1.3.1 Toxicity  

Toxins are substances that have the potential to cause deleterious effects on living organisms. 

They are naturally present in plants or can be produced by animals (snakes, spiders, cone snails) 

and different types of microbes (such as bacteria and fungi to enhance their pathogenicity) 

(Clark et al., 2019). When toxins enter the body in any form, they can cause fatal illnesses or 

death. Generally, toxins can be categorized into endotoxins and exotoxins. Endotoxins such as 

LPS (Raetz & Whitfield, 2002) and exotoxins like tetanus toxin, botulinum toxin, and 

mycotoxin can cause immense inflammation (Pasechnik et al., 1992), (Nigam & Nigam, 2010). 

It induces the degranulation of mast cells and basophils as a part of the immune response, 
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causing the release of inflammatory mediators. These mediators include cytokines, 

interleukins, and histamine, which cause or lead to allergic symptoms like fever, skin rashes, 

septic shock, and other diseases (Mukai et al., 2018). Proteins and peptides are naturally 

occurring molecules that play various functions and processes in the body that are essential to 

sustain cellular mechanisms (Shaji & Patole, 2008). Their aberrant activity has been involved 

in several pathological conditions such as cancer, neurodegenerative disorders and diabetes 

(Bruno et al., 2013). Thus, using them as therapeutic agents is regarded as a promising way to 

fight against a variety of diseases. In recent years, they have the potential to revolutionize 

medical therapy and are the preferred choice over small molecules and antibodies due to their 

high target specificity, tissue penetration, high biological activity and inexpensive (Bruno et 

al., 2013). However, there are certain prime concerns in the development of proteins/peptide-

based drug discovery, such as toxicity, immunogenicity and stability (Otvos & Wade, 2014). 

Due to this, the assessment of toxic properties of protein/peptide is of great necessity.  

 

1.3.2 Allergenicity 

Several studies have also shown the correlation between microbial colonization and allergic 

diseases. Allergy is an exaggerated immune response caused by foreign substances called 

allergens. Certain microbial species like Staphylococcus aureus, Streptococcus pneumoniae, 

Alternaria, Aspergillus and Influenza virus are known to cause severe allergic inflammation 

(Nordengrun et al., 2018). Moreover, allergens like dust mites, pollens, and many others, 

induce the Type I hypersensitivity reactions which elicit IgE antibodies. This allergic reaction 

results in the release of inflammatory mediators, such as histamine, cytokines from mast cells 

and basophils (Masoli et al., 2004), which affects the population at a large scale, particularly 

in skin sensitization (Sutton & Gould, 1993), (Broadfield et al., 2002). Also, there is a wide 

range of molecules that can pose a threat as allergens, including biological molecules like 

proteins and peptides or some chemical compounds (Sharma et al., 2020), (Dang & Lawrence, 

2014), (Goodman et al., 2005). Other than that, molecules like lipids (Del Moral & Martinez-

Naves, 2017), carbohydrates (Commins & Platts-Mills, 2010), nucleic acid (mRNA vaccines) 

(Rubin, 2021) and some engineered nanoparticles (Alsaleh & Brown, 2020) can also stimulate 

some specific allergic reactions like asthma, food allergies and chronic kidney disease, 

respectively. 
 

 



 9 

1.4 Designing of therapeutic molecules 
Increasing reports of drug resistance are becoming more common, posing a severe threat to 

world healthcare. There is a critical need for new and more effective medicinal drugs to be 

discovered. Therapeutic agents have attracted much attention from researchers as a safe and 

effective alternative because of their high efficacies, low toxicity, strong cell penetration, and 

ease of production. Therapeutic molecules could be proteins, peptides and small chemicals 

used to treat several fatal illnesses. These molecules could act as potential drug and vaccine 

targets. Over the last few decades, significant progress has been made in the development of 

computational resources to accelerate the process of drug and vaccine discovery. Several 

properties of therapeutic molecules such as half-life, toxicity, allergenicity, haemolytic, 

antimicrobial, and cell-penetrating properties need to be evaluated before being released to the 

market.  

In the past, various repositories and in-silico tools have been developed to maintain and predict 

the essential properties of the therapeutic molecules. CAMP (Waghu et al., 2014), AVPdb 

(Qureshi et al., 2014), SATPdb (Singh et al., 2016), CPPsite (Gautam et al., 2012), TumorHoPe 

(Kapoor et al., 2012) and Hemolytik (Gautam et al., 2014) are some of the databases that 

comprehend the information about different properties of therapeutic molecules. 

Computational tools like ToxinPred (Gupta et al., 2015), AlgPred (Saha & Raghava, 2006a), 

PlifePred (Mathur et al., 2018), AHTPin (Kumar et al., 2015) and HemoPI (Chaudhary et al., 

2016) have been developed to predict the pharmacologically important properties of the 

molecules, such as toxicity, allergenicity, half-life, anti-hypertensive and haemolytic, 

respectively. These prediction methods aid not only in the development of peptides and 

chemical analogues with better physicochemical features but also in the screening of libraries 

for the desired therapeutic property. The most effective method for identifying novel 

therapeutic molecules is computational screening, followed by in-vitro and in-vivo studies. 
 

1.5 Origin of proposal 
Several attempts have been made in the past to identify the novel virulence factors of the 

pathogens, their mechanism of causing diseases, and how to use these factors as potential drug 

targets. Efforts have been made to study the specific virulence factors of the pathogens, such 

as SPAAN, a method developed to predict the adhesin proteins, which play a significant role 

in the virulence of the pathogens (Sachdeva et al., 2005). Some are developed for specific 

organisms like MAAP, a method for predicting adhesin proteins for malarial parasites (Ansari 
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et al., 2008). Likewise, limited attempts have been made to study the toxicity caused by the 

virulence factors of the pathogenic organisms. After the invasion of pathogenic micro-

organisms into the host cell, microbes release certain toxins to damage the cell. Various 

methods are available that can be used to predict the toxicity caused by a certain group of 

organisms, such as BTXpred (Saha & Raghava, 2007a) and NTXpred (Saha & Raghava, 

2007b) developed for classifying the toxins of bacterial origin and neurotoxins, respectively. 

Other methods like ClanTox (Naamati et al., 2009), SpiderP (Wong et al., 2013), and TOXIFY 

(Cole & Brewer, 2019) are developed to identify the toxins of certain animal origin. After 

releasing the toxins into the cells, it induces intense inflammation, hence causing allergic 

symptoms. Several studies have also shown the correlation between microbial colonization and 

allergic diseases, and some of the virulent factors are responsible for causing allergic reactions. 

Allergy can be caused by proteins, peptides, small chemical compounds and other molecules 

like lipids and carbohydrates. There are several tools and methods developed in the past for the 

prediction of allergy caused by proteins and peptides, but no attempt has been made to predict 

the allergy caused by small chemical compounds. Keeping all these limitations in mind, the 

present study provides the in-silico approach that can be used to identify the virulence factors 

against all the pathogenic micro-organisms. Also, it provides the tools with state-of-the-art 

techniques to predict the toxic and allergenic proteins along with the prediction of allergenicity 

caused by the small chemical compounds. Besides, it also includes the methods to design the 

therapeutic molecules against the virulence factors, toxicity and allergenicity caused by 

proteins, peptides and small molecules. 

 

1.6 Objectives of the thesis 
To overcome the above-discussed shortcomings, we have put an effort to study the virulence 

factors and their mechanism related to causing toxicity and allergenicity to the host cell. The 

present study primarily focuses on the identification of virulence factors of the pathogens, 

which is an important aspect to understand the host-pathogen interactions and disease-

mechanism. Therefore, these molecular determinants of virulence can be used as promising 

targets for developing novel anti-virulence drugs. The first aim of this study is designing the 

drug targets against disease-causing pathogens based on virulence factors without killing or 

inhibiting environment-friendly bacteria. Secondly, to study the toxicity caused by different 

organisms, we have developed the tool named “ToxinPred2”, which can be used to predict the 

toxicity of the protein sequences. Apart from that, to study the mechanism of allergy caused by 
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proteins, we have developed the method “AlgPred 2.0”. In addition to proteins, allergy is also 

caused by chemical compounds, known as chemical allergy. So, to address this problem, we 

have developed a novel method to predict the allergenic potential of chemicals and employed 

in the form of a web server name “ChAlPred”. Based on this, the following objectives have 

been framed: 

• A prediction method for the classification of virulent and non-virulent proteins 

• An updated in-silico method for classifying toxins and designing non-toxic proteins 

• An improved method for predicting allergenic proteins and mapping of IgE epitopes 

• A computational method for the prediction of chemical allergens and designing of non-

allergenic compounds 

 

The outline of the thesis is depicted in Figure 1.2.  

 
Figure 1.2: The overall workflow of the study 
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1.7 Organization of the chapters 
The thesis is organized into seven chapters containing the information discussed below: 

 

 

Figure 1.3: Organization of thesis and title of the chapters  

 

Chapter 1 – This chapter introduces the virulence of the pathogens along with a description of 

all the associated factors. This is followed by a brief information of the toxicity caused due to 

these virulence factors. It also discusses the allergy caused by proteins and the small chemical 

compounds. At the end of the chapter, the organization and the overall objectives undertaken 

in the thesis are elaborated. 

 

Chapter 2 – This chapter reviews the existing and published literature. The existing knowledge 

on the virulence factors of the pathogens, followed by toxicity and allergenicity caused by 

them, has been discussed. The emphasis has been laid on the limitations and challenges of the 

current methods. Overall, this chapter explains the motivation behind this study. 

 

Chapter 3 – This chapter describes the first objective of the thesis, which is the development 

of machine learning-based model for the classification of virulent proteins of various 

pathogens. This study describes a method developed to classify the protein sequence as virulent 

Chapter1 Introduction

Chapter 2 Review of Literature

Chapter 3 A prediction method for the classification of virulent and non-
virulent proteins

Chapter 4 An updated in-silico method for classifying toxins and designing 
non-toxic proteins

Chapter 5 An improved method for predicting allergenic proteins and 
mapping of IgE epitopes 

Chapter 6 A computational method for the prediction of chemical allergens 
and designing non-allergenic compounds

Chapter 7 Summary
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and non-virulent. A web server “VirFacPred” has also been developed that allows the 

prediction of virulent proteins along with similarity-based search using BLAST, motifs and 

designing of therapeutic proteins against them. 

 

Chapter 4 – This chapter is the second objective of the thesis, which deals with the prediction 

of toxic proteins. It is a general method that can be used to classify toxic and non-toxic proteins 

irrespective of its source of origin. This chapter also explains the “ToxinPred2” web server that 

allows the prediction of toxins, designing non-toxic proteins, scanning for the motifs, and 

similarity-based search using the BLAST module. 

 

Chapter 5 – This chapter explains the third objective of the thesis, which is an improved 

method developed for the prediction of allergenic proteins. We have built an in-silico tool for 

the classification of allergenic proteins and the mapping of IgE epitopes. A web server, 

“AlgPred 2.0”, has also been developed that allows the prediction of allergens, designing, 

mapping of IgE epitopes, motifs and BLAST search. 

 

Chapter 6 – This chapter corresponds to the fourth objective of the thesis. This describes the 

novel method “ChAlPred” developed for predicting chemical allergens and designing chemical 

analogs with desired allergenicity. To aid the research community, this method has been 

deployed as a smart-device compatible web server that allows to predict and design the 

chemicals with allergenic properties. 

 

Chapter 7 – This chapter provides the overall summary of the work and concludes by providing 

a holistic view of the thesis and explains the contribution of the work in the area of immune-

informatics.  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

Chapter 2 
 

Review of Literature 
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2.1 Virulence factors as a drug/vaccine target 
 
Infectious diseases caused by various pathogenic micro-organisms such as bacteria, viruses, 

fungi and protozoans are among the leading causes of death globally. In addition to the re-

occurrence of fatal infectious diseases, there is an increment in the antimicrobial-resistant 

strains of the pathogenic organisms, leading to the emergence of new diseases and is an 

alarming threat to the healthcare sector and the well-being. Research in the past has stated the 

fact that there are several pathogenic species present in the environment, but the underlying 

mechanism of causing diseases is found to be common among them. For instance, many 

pathogenic microbial species share common mechanisms from establishing the contact to the 

host cell causing infection. Various bacteria, viruses, fungi and other pathogenic species have 

the same abilities to adhere, invade, colonize, damage the host cell and evade and suppress the 

host immune response (Weiss, 2002), (Poulin & Combes, 1999). Some of the examples of 

virulence factors that are possessed by most of the pathogens to infect the host cell are adhesins, 

invasins, colonizing factors, immune-evasion, immune-suppression, acquisition of the 

nutrients from the host cell, siderophores, toxins and enzymes which contribute to 

pathogenicity (Cross, 2008), (Casadevall & Pirofski, 2009). Thus, virulence factors are major 

drug/vaccine targets for designing therapeutic molecules against these pathogens. Advances in 

various technologies led to the explosive growth of experimentally verified proteomic data 

related to virulence factors, which is available in the form of repositories. Therefore, these 

molecules can also be used in vaccine formulations for priming the host immune system to 

generate the antibodies in advance so that it can neutralize the effect of pathogens after their 

encounter to the host cell (Casadevall & Pirofski, 2009) (Casadevall & Pirofski, 1999).  

 

To become a potential drug/vaccine target, virulence factors of the pathogens should meet up 

several criteria, such as it should be crucial for the survival of the pathogen and do not have 

any similarity with respect to functions of the host. Also, the target should be ‘druggable’ so 

that the ligand molecule can alter its function and should be stable, with rare or no point of 

mutation. It is essential to keep these factors in mind while opting for a suitable drug/vaccine 

target for efficient anti-microbial drug/vaccine discovery (Silver, 2011). Anti-virulence 

approaches are proven to be highly compelling in the treatment of the infectious diseases 

caused by pathogenic species while reducing drug resistance. Drugs that target the virulence 

factors or mechanism associated with them, such as adhesion, invasion, damaging the host cell, 
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releasing toxins, causing allergy, suppress the pathogenesis without hampering the normal 

functioning of the host cell (Rasko & Sperandio, 2010).  

 

2.2 Traditional approaches to identify virulence factors 

With the advancements in technology, genomics and proteomics have transformed biological 

research. Sequencing the whole genome of the pathogenic strains has opened a window of 

opportunities to identify the putative virulence factors via sequence analysis (Russ & Lampel, 

2005). These findings are used for the development of novel computational tools and methods. 

There are a few bioinformatics-based approaches which are commonly used for the 

identification of the virulence factors, such as: 

 

2.2.1 Sequence similarity-based search: This is a standard approach which is used in 

sequence analysis. In this, the query sequence is searched against the sequences in the database 

of all the proteins with similar functions. This concept can be used to identify the orthologues 

of virulence factors with known functions. The popular algorithm widely used for sequence 

similarity is the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990). It 

provides a heuristic search against a query protein sequence. Virulence factors like adhesin 

proteins of micro-organisms like Escherichia coli (Pichel et al., 2000), Mycoplasma pneumonia 

(Nakane et al., 2011), Rickettsial species (Renesto et al., 2006), Mycoplasma agalactiae 

(Fleury et al., 2002) and Leptospira interrogans (Palaniappan et al., 2002) have been identified 

using the BLAST algorithm.  

 

2.2.2 Motif-based search: The motif is a recurring pattern of amino acids or nucleotides that 

occur in protein or DNA, respectively (D'Haeseleer, 2006). In general, motifs can act as a 

unique signature for a protein sequence and can be used to detect proteins with similar 

functional roles. Hence, motifs can also be used to identify the virulence factors in various 

pathogens, as described in Table 2.1. 

 

 

 

 

 

 



 17 

Table 2.1: List of motifs associated with adhesion proteins of various pathogens reported in 

previous studies 

Motif Description 
Virulence 

factor 
Pathogen Reference 

C-terminal GPI-

motif  

Glycosylphosphatidylinositol- 

modified (GPI) proteins linked to 

plasma membrane via pre- formed 

GPI anchor 

Adhesion Fungi (Candida 
albicans) 

(De Groot et al., 

2003), (Richard 

& Plaine, 2007) 

HExxH motif 

containing 

metalloprotease 

adhesins 

Zinc binding sequence motif His-Glu-

Xaa-Xaa-His 
Adhesion 

Bacteria 

(Treponema 

pallidum) 

(Houston et al., 

2011) 

RGD, SGxG motif 

Arginine-glycine-aspartic acid (RGD) 

and glycosaminoglycan binding site 

(SGXG) motifs present in 

autotransporter family proteins 

pertactin (Prn) 

Adhesion  

Bacteria 

(Bordetella 

pertussis) 

(Bokhari et al., 

2012) 

FxxN, GGA (I, L, V) 

Tetrapeptide motifs FxxN and GGA 

(I, L, V) present in polymorphic 

membrane protein family (Pmp) 

Adhesion 

Bacteria 

(Chlamydia 

pneumonia) 

(Molleken et 

al., 2010) 

 

2.2.3 Signal sequence: It is also known as signal or leader peptide, which is a short peptide 

usually located at N-terminal and occasionally at C-terminal of the protein, which directs the 

protein towards the secretory pathway. A study conducted by Champion et al. shows that in 

Mycobacterium tuberculosis, virulence factor secretion is promoted by C-terminal signal 

peptide (Champion et al., 2006). Adhesins are the proteins attached to the membrane that 

normally have N-terminal signal peptide, which mediates its translocation to the endoplasmic 

reticulum (Lee & Schneewind, 2001). Hence, this information regarding N-terminal and C-

terminal signal sequences can be used to identify the putative adhesin proteins. A 

computational tool like PrediSi is developed to predict the signal peptides (Hiller et al., 2004). 

Along with this, SignalP 6.0 recent method developed in 2022 predicts the signal peptides from 

the protein sequences (Teufel et al., 2022).   

 
2.2.4 Transmembrane domains: These are the membrane-spanning protein domains which 

traverse across the integral membrane. These domains are predominantly alpha-helices which 

are packed closely to form a mesh-like structure and can also adopt different conformations. 

Some adhesin proteins that do not have a leader peptide sequence are known as ‘anchorless 

adhesins’. Such adhesin proteins have the transmembrane domain, and the prediction of these 
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domains could be used to identify these virulent proteins. Various methods such as TOPPER 

(Deng et al., 2013), TOPCONS (Tsirigos et al., 2015), TMHMM (Krogh et al., 2001), AllesTM 

(Honigschmid et al., 2020) are some of the popular tools which are used for the prediction of 

transmembrane proteins. These approaches can also be used to identify the putative virulence 

factors. 

 

2.2.5 Protein domains: These are the conserved region of the protein chain that folds 

separately and are stable, functional unit (Phillips, 1966). The function of the whole protein 

sequence is determined by these conserved domains. Some of the virulence factors have well-

annotated domains, and the presence of these domains can be used to predict the new virulence 

factors of the pathogens. There are various computational tools and databases which store the 

information related to these domains, such as the Conserved Domain Database (Marchler-

Bauer et al., 2013), NCBI Conserved Domain Search 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and InterPro (Blum et al., 2021). 

These resources can be used to predict the function of the query sequence based on the presence 

of known virulence factors associated with domains. Table 2.2 shows some of the known 

conserved domains of the virulence factors of pathogens. 

 

Table 2.2: List of conserved domains in adhesin proteins of pathogens 

Conserved Domain Virulence Factor Pathogen Reference 

PA14 domain 

Toxins, enzymes, 

adhesins and signaling 

molecules 

Bacteria 
(Rigden et 

al., 2004) 

YadA collagen-binding 

domain 
Adhesin Bacteria (Yersinia enterocolitica) 

(Nummelin 

et al., 2004) 

Fibrinogen-binding 

domain (CadF protein) 
Adhesin 

Bacteria 

(Campylobacter jejuni) 

(Konkel et 

al., 2005) 

ALS_N domain Adhesin Fungi (Candida albicans) 
(Phan et al., 

2007) 

GLEYA domain Adhesin 
Fission yeasts (Schizosaccharomyces pombe 

and Schizosaccharomyces japonicus) 

(Linder & 

Gustafsson, 

2008) 

Gingipain domain Adhesin Bacteria (Porphyromonas gingivalis) 
(Li et al., 

2010) 

 

 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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2.3 Identification of virulence factors 

 

2.3.1 Available databases for virulence factors 

There are various computational repositories and databases that have been developed for the 

identification of VFs of various pathogens. Some databases are pathogen-specific, some cover 

VFs of many pathogenic species and are tabulated in Table 2.3. Pathogens-specific VF 

repositories like virulence factor database (VFDB), developed by Chen et al., is a well-

annotated and comprehensive database of known VFs in bacteria. It also stores the information 

of other genes and proteins that play a significant role in enhancing the virulence of the bacteria 

(Chen et al., 2005). VFanalyzer is an automatic pipeline provided by the VFDB group to 

identify known as well as potential VFs from the genomes of bacterial species (Liu et al., 2019). 

DFVF is a database of VFs of fungal pathogens known to cause infectious diseases in plant 

and animal hosts (Lu et al., 2012). Pathosystems Resource Integration Center (PATRIC) is a 

curation, integration and visualization of bacterial VFs (Snyder et al., 2007), (Davis et al., 

2020). ProtVirDB is a database that holds the information of unique virulent proteins of 

protozoan species (Ramana & Gupta, 2009). Examples of resources that stores the information 

of VFs irrespective of the pathogenic species include, Victors a knowledgebase that contains 

the manually curated data regarding the VFs of various pathogenic species such as bacteria, 

virus, parasite and fungus (Sayers et al., 2019). MvirDB is a centralized microbial data 

warehouse that comprises all the information from different resources on a single platform. It 

includes information regarding VFs, toxin proteins, and antibiotic resistance genes from eight 

open-source databases for various microbial species (Zhou et al., 2007). Pathogen-host 

interactions database (PHI-base) catalogues pathogenicity, virulence, and effector genes from 

bacterial, protist and fungal pathogens that infect insects, plants, animals and human hosts 

(Urban et al., 2020). Apart from the above-discussed databases and repositories, UniProtKB 

and Swiss-Prot are the knowledgebases that are the central hub containing the information of 

proteins along with their function, description, structure, modifications with a more accurate 

and high level of annotation (UniProt, 2021), (Bairoch & Apweiler, 1997). 
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Table 2.3: List of databases developed for maintaining information regarding VFs of various 

pathogenic species 
Name (Year) Description (Weblink) Working Status 

MvirDB (2007) 
Database of microbial virulent, toxin proteins and antibiotic resistance 

genes (http://mvirdb.llnl.gov) 
No 

ProtVirDB (2009) 
Database of protozoan virulent proteins 

(http://bioinfo.icgeb.res.in/protvirdb/) 
Yes 

DFVF (2012) 
Database of VFs for fungal species  

(http://sysbio.unl.edu/DFVF/) 
Yes 

VFDB (2019) 
Database of VFs for bacterial species  

(http://www.mgc.ac.cn/VFs/) 
Yes 

PATRIC (2020) 
Curation, integration and visualization of bacterial VFs 

(https://www.patricbrc.org) 
Yes 

PHI-base (2020) 
Pathogen-host interaction database  

(http://www.phi-base.org) 
Yes 

UniProtKB/ Swiss-

Prot (2021) 

Database of protein sequence and functional information 

(https://www.uniprot.org) 
Yes 

 

2.3.2 Computational resources for virulence factors 

Efforts have been made in the past to create data-driven techniques for predicting VFs of the 

pathogens that can be used as drug and vaccine targets. Some of the in-silico methods and tools 

that are developed for the identification of VFs are listed in Table 2.4. The majority of available 

tools are extensively specialized for identifying specific virulence factors of certain pathogens. 

For instance, VICMPred, proposed by Saha et al., is developed to predict the major functions 

of gram-negative bacterial proteins from their amino acid sequences (Saha & Raghava, 2006b). 

MAAP is a method for predicting the adhesins and adhesin-like proteins for malarial parasites 

(Ansari et al., 2008). Another pathogen-specific methods, such as FaaPred (Ramana & Gupta, 

2010) and FungalRV (Chaudhuri et al., 2011), have been developed specifically to predict the 

adhesins and adhesin-like proteins for fungal species. Some methods have been developed to 

predict the virulent proteins and associated factors irrespective of their pathogenic species. 

SPAAN, a neural network-based method, has been developed to classify the pathogens' 

adhesins and adhesins-like proteins (Sachdeva et al., 2005). VirulentPred has been developed 

to predict the bacterial virulent protein sequences (Garg & Gupta, 2008). MP3 is a tool that 

predicts pathogenic proteins using genomic and metagenomic data (Gupta et al., 2014). 

PathoFact is a metagenomic data pipeline for predicting virulence factors and antibiotic 

resistance genes (de Nies et al., 2021). 

 

http://mvirdb.llnl.gov/
http://bioinfo.icgeb.res.in/protvirdb/
http://sysbio.unl.edu/DFVF/
http://www.mgc.ac.cn/VFs/
https://www.patricbrc.org/
http://www.phi-base.org/
https://www.uniprot.org/
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Table 2.4: List of in-silico tools developed for predicting VFs of various pathogenic species 
Name  

(Year) 

Description 

(Weblink) 

Virulence 

Factor 
Pathogen 

SPAAN (2005) 
Classification of adhesins and adhesins-like proteins of the 

pathogens (ftp://203.195.151.45) 
Adhesins All pathogens 

VICMPred 

(2006) 

A method to predict the major functions of proteins of gram-

negative bacteria  

(https://webs.iiitd.edu.in/raghava/vicmpred/) 

All Bacteria 

MAAP (2007) 
A method for the identification of adhesins of malarial 

parasite (https://maap.igib.res.in) 
Adhesins 

Malarial 

Parasite 

VirulentPred 

(2008) 

Prediction of the bacterial virulent protein 

(http://bioinfo.icgeb.res.in/virulent/) 
All Bacteria 

FaaPred (2010) 
A method for the identification of adhesins of fungal species 

(http://bioinfo.icgeb.res.in/faap/faap.html) 
Adhesins Fungi 

FungalRV 

(2011) 

Fungal adhesins prediction method 

(https://fungalrv.igib.res.in) 
Adhesins Fungi 

MP3 (2014) 

Prediction of pathogenic proteins using genomic and 

metagenomic data 

(http://metagenomics.iiserb.ac.in/mp3/) 

All Bacteria 

PathoFact 

(2021) 

Pipeline for the prediction of VFs, toxins and antimicrobial 

resistance genes  

(https://git-r3lab.uni.lu/laura.denies/PathoFact/) 

All Bacteria 

 

2.4 Identification of toxicity  

Toxins are one of the major virulence factors that play a crucial role in damaging the host cell.  

Some pathogenic microbes can directly cause damage to the host cells by secreting factors like 

toxins, hydrolytic enzymes, and physical forces during host cell invasion or escape (Mayer et 

al., 2013). Secreted factors include hydrolytic enzymes like proteases or lipases and toxins in 

the form of small metabolites or peptides that poison the host cell and cause tissue damage 

(Scharf et al., 2014). In general, toxins can be of two types: endotoxins and exotoxins. With 

the advent of highly accurate and cost-effective methods, the scientific community has adopted 

data-driven computational methods, such as databases and machine learning techniques, to 

curate the information regarding toxins and predict the toxicity of the molecules (Pérez Santín 

E, 2021).  

 

2.4.1 Databases for proteins and chemical toxicity 

Various databases have been created to assist the scientific community during the last few 

decades. These databases provide a variety of information regarding the toxicity of the 

ftp://203.195.151.45/
https://webs.iiitd.edu.in/raghava/vicmpred/
https://maap.igib.res.in/
http://bioinfo.icgeb.res.in/virulent/
http://bioinfo.icgeb.res.in/faap/faap.html
https://fungalrv.igib.res.in/
http://metagenomics.iiserb.ac.in/mp3/
https://git-r3lab.uni.lu/laura.denies/PathoFact/
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molecules, such as hazardous chemicals, newly synthesized chemical compounds, and 

proteins. Table 2.5 enlists the databases for the toxicity of the chemical compounds and 

proteins.  

 

Table 2.5: List of repositories developed for maintaining information for the toxicity of the 

chemical compounds and proteins 
Name 

(Year) 
Description (Weblink) Reference 

Databases for toxic chemical compounds  

Distributed Structure  

Searchable Toxicity  

(DSSTox) (2002) 

Database providing information about chemical structures as well as their 

toxicity (https://www.epa.gov/chemical-research/distributed-structure-

searchable-toxicity-dsstox-database) 

(Richard & 

Williams, 

2002) 

SuperToxic  (2008) 
Comprehensive database of toxic compounds 

(http://bioinformatics.charite.de/supertoxic) 

(Schmidt et al., 

2009) 

Toxin and Toxin 

Target Database 

(T3DB) or  

Toxic Exposome 

Database (2010) 

Database that stores the detailed information of toxins along with its target 

data (http://www.t3db.ca) 

(Lim et al., 

2010) 

Chemical Entities of 

Biological Interest 

(ChEBI) (2010) 

Database focused on small chemical compounds 

(https://www.ebi.ac.uk/chebi/) 

(de Matos et 

al., 2010) 

Toxicity Reference 

Database (ToxRefDB) 

(2019) 

Database containing the structural information of toxic compounds  
(Watford et al., 

2019) 

Comparative 

Toxicogenomics  

Database (CTD) 

(2020) 

Database containing the toxicological information for chemicals, genes, 

phenotypes and diseases (http://ctdbase.org/) 

(Davis et al., 

2021) 

Tox 21 (2020) Database cataloguing the information of around 8500 chemical compounds - 

RISCTOX 
A comprehensive database on toxic and hazardous substances 

(https://risctox.istas.net/en/) 
- 

Exposure Forecaster 

Database 

(ExpoCastDB) 

EPA’s database for aggregating chemical exposure information - 

Databases for toxic proteins molecules 

ArachnoServer (2009) Repository of protein toxins from spiders (http://www.arachnoserver.org) 
(Wood et al., 

2009) 

DBETH (2012) 
Database of bacterial exotoxins for human 

(http://www.hpppi.iicb.res.in/btox/) 

(Chakraborty et 

al., 2012) 

https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
http://bioinformatics.charite.de/supertoxic
http://www.t3db.ca/
https://www.ebi.ac.uk/chebi/
http://ctdbase.org/
https://risctox.istas.net/en/
http://www.arachnoserver.org/
http://www.hpppi.iicb.res.in/btox/
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BtoxDB (2015) 
A comprehensive database of protein structural data on toxin–antitoxin 

systems (http://www.gurupi.uft.edu.br/btoxdb) 

(Barbosa et al., 

2015) 

TASmania (2019) 
Database of bacterial toxin-antitoxin systems 

(https://shiny.bioinformatics.unibe.ch/apps/tasmania/) 

(Akarsu et al., 

2019) 

 

2.4.2 Computational tools for proteins and chemical toxicity 

Over the years, a plethora of research work has been published to study the toxicity of 

chemicals, namely DeepTox (Mayr A, 2016), ProTox-II (Banerjee et al., 2018) and eToxPred 

(Pu et al., 2019). The majority of available tools are extensively specialized for toxins of certain 

animal origins; for instance, the prediction methods named BTXpred (Saha & Raghava, 2007a) 

and NTXpred (Saha & Raghava, 2007b) were developed for the classification of bacterial 

toxins and neurotoxins, respectively. ClanTox, developed by Naamati et al., is a classifier of 

animal toxins from their primary protein sequences (Naamati et al., 2009). Another method, 

SpiderP, has been developed to predict the propeptide cleavage sites in spider toxins (Wong et 

al., 2013). Similarly, ToxClassifier was developed by Gacesa et al. to identify venom toxins 

(Gacesa R, 2016). Deep learning-based methods such as TOXIFY can be used to classify 

animal venom proteins from non-toxic proteins (Cole & Brewer, 2019), whereas ToxDL can 

be used to assess the protein toxicity of animal origin (Pan et al., 2021).  

In 2013, Gupta et al. proposed a general method ToxinPred for predicting the toxicity of 

peptides and proteins irrespective of their source. This method is heavily used by the research 

community to predict the toxicity of proteins/peptides. It is an SVM-based method that utilizes 

several features like amino acid composition (AAC), dipeptide composition (DPC) and finding 

toxic motifs/ regions derived from the sequences (Gupta, Kapoor, et al., 2013). NNTox is a 

machine learning method to detect the toxicity of protein-based on several gene ontology 

annotations (Jain & Kihara, 2019). Recently, deep learning-based tools such as ATSE (Wei et 

al., 2021) and ToxIBLT (Wei et al., 2022) were developed by Wei et al. for the prediction of 

protein/peptide toxicity using structural, evolutionary and physicochemical properties of the 

sequences. In addition, a number of methods have been developed for predicting the specific 

type of toxicity, like hemo-toxicity. In Table 2.6, we provide a comprehensive list of toxicity 

prediction methods.  

 

 

 

http://www.gurupi.uft.edu.br/btoxdb
https://shiny.bioinformatics.unibe.ch/apps/tasmania/
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Table 2.6: List of computational tools developed for predicting wide range of toxicity of 

peptides, proteins and small molecules 

Tools Year Description (Weblink) 

Tools for predicting toxicity of chemical compounds 

ToxiPred  2016 Prediction of aqueous toxicity of small chemical molecules 
(https://webs.iiitd.edu.in/raghava/toxipred/) 

HemoPI  2016 
Prediction of hemolytic or hemotoxic nature of peptides  
(https://webs.iiitd.edu.in/raghava/hemopi/) 

DeepTox  2016 
Prediction of chemical compounds using deep learning 
(http://www.bioinf.jku.at/research/DeepTox/) 

HemoPred  2017 
Predicting the hemolytic activity of peptides 
(http://codes.bio/hemopred/) 

ToxiM  2017 
Prediction of toxicity of small molecules 
(http://metagenomics.iiserb.ac.in/ToxiM/) 

CLC-Pred 2018 
Prediction of the cytotoxicity of a chemical compound 
(http://way2drug.com/Cell-line/) 

ProTox-II 2018 
Prediction of toxicity of chemicals 
(http://tox.charite.de/protox_II) 

eToxPred  2019 To predict the toxicity of drug candidates  
(https://github.com/pulimeng/etoxpred) 

HLPpred 2020 
Prediction of hemolytic peptides and its activity 
(http://thegleelab.org/HLPpred-Fuse) 

Tools for predicting toxicity of proteins and peptides 

BTXpred 2007 Classification of bacterial toxins (exotoxins and endotoxins) 
(https://webs.iiitd.edu.in/raghava/btxpred/) 

NTXpred 2007 Prediction of neurotoxins (https://webs.iiitd.edu.in/raghava/ntxpred/) 

ClanTox 2009 Classification of animal toxins from their primary protein sequences 
(http://www.clantox.cs.huji.ac.il) 

SpiderP 2013 Prediction of the propeptide cleavage sites in spider toxins 
(http://www.arachnoserver.org/spiderP.html) 

ToxClassifier 2016 Prediction of venom toxins from other proteins 
(http://bioserv7.bioinfo.pbf.hr/ToxClassifier/) 

TOXIFY 2019 Deep learning approach for the classification of animal venom proteins  
(https://www.github.com/tijeco/toxify) 

https://webs.iiitd.edu.in/raghava/toxipred/
https://webs.iiitd.edu.in/raghava/hemopi/
http://www.bioinf.jku.at/research/DeepTox/
http://codes.bio/hemopred/
http://metagenomics.iiserb.ac.in/ToxiM/
http://way2drug.com/Cell-line/
http://tox.charite.de/protox_II
https://github.com/pulimeng/etoxpred
http://thegleelab.org/HLPpred-Fuse
https://webs.iiitd.edu.in/raghava/btxpred/
https://webs.iiitd.edu.in/raghava/ntxpred/
http://www.clantox.cs.huji.ac.il/
http://www.arachnoserver.org/spiderP.html
http://bioserv7.bioinfo.pbf.hr/ToxClassifier/
https://www.github.com/tijeco/toxify
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NNTox 2019 Detection of protein toxicity based on gene ontology annotations 
(http://www.github.com/kiharalab/NNTox) 

ToxDL 2020 Prediction of toxic proteins from animal species like snakes and spiders 
(http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/)  

ATSE 2021 Prediction of peptide toxicity with their structural and evolutionary information 
(http://server.malab.cn/ATSE) 

ToxIBLT 2022 A deep learning approach for the prediction of peptide toxicity using information 
bottleneck and transfer learning (http://server.wei-group.net/ToxIBTL)  

 

2.5 Identification of allergenicity 

Several studies have also shown the correlation between microbial colonization and allergic 

diseases. Allergy is an exaggerated immune response caused by foreign substances called 

allergens. In some instances, virulent factors are responsible for allergy, which is the 

hypersensitivity of the immune system. In addition to protein, allergy is also caused by 

chemical compounds, known as chemical allergy. A therapeutic molecule may cause side 

effects due to its allergic potential. Based on this, there are various tools and data repositories 

which maintain the information regarding the allergenic proteins and chemical compounds.  
 

2.5.1 Repositories for proteins and chemical allergens  

A substantial number of allergenic proteins and chemicals have been found and characterised 

in the last few decades. As a result, various databases are developed to aggregate the available 

scattered information. The World Health Organization /International Union of Immunological 

Societies (WHO/IUIS) Allergen Nomenclature database maintains the systematic and 

unambiguous nomenclature for proteins that induce IgE-mediated allergies in humans. 

AllergenOnline is a repository that provides a peer-reviewed list of allergens (Goodman et al., 

2016). Comprehensive Protein Allergen Resource (COMPARE) database stores the 

information of protein sequences of known allergens (van Ree et al., 2021). AllerBase is a 

knowledgebase that integrates the data of allergens, its sequences, and IgE epitope binding 

affinity on a single platform (Kadam et al., 2017). Structural Database of Allergenic Proteins 

(SDAP) incorporates the information of allergenic protein sequences along with other tools 

(Ivanciuc et al., 2003). The Immune Epitope Database (IEDB) is a well-known and widely 

used database that catalogs experimental data of B and T cell epitopes studied in different hosts 

with respect to various diseases like allergy, autoimmune and infectious diseases (Dhanda et 

al., 2019). The Database of Allergen Families (AllFam) provides the classification of the 

http://www.github.com/kiharalab/NNTox
http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/
http://server.malab.cn/ATSE
http://server.wei-group.net/ToxIBTL
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allergens into the known protein families (Radauer et al., 2008). ChEMBL is a manually 

curated database of bioactive molecules with drug-like properties (Bento et al., 2014). 

DrugBank Online is a comprehensive, open-access database that contains information on drugs 

and drug targets (Wishart et al., 2018). Table 2.7 enlists the databases developed for the 

proteins and chemical allergens.  

 

Table 2.7: List of databases developed for the proteins and chemical allergens 
Name Year Weblink Working Status 

WHO/IUIS Allergen 

Nomenclature 
2000 http://allergen.org   Yes 

SDAP 2003 https://fermi.utmb.edu Yes 

AllFam 2007 https://www.meduniwien.ac.at/allfam/  Yes 

ChEMBL 2014 https://www.ebi.ac.uk/chembl/ Yes 

AllergenOnline 2016 http://www.allergenonline.org Yes 

COMPARE 2017 https://comparedatabase.org Yes 

AllerBase 2017 http://bioinfo.unipune.ac.in/AllerBase/Home.html Yes 

IEDB 2019 https://www.iedb.org Yes 

DrugBank Online 2018 https://go.drugbank.com Yes 

 

2.5.2 In-silico tools for proteins and chemical allergens 

Several computational tools and methods have been developed for the prediction of allergenic 

proteins. However, limited efforts have been made to develop a method or tool to predict the 

allergenicity of chemicals causing the allergy. Below is a brief description of the methods 

developed for the prediction of allergenic proteins. A hybrid method AlgPred (Saha & 

Raghava, 2006a), was developed that combines the different approaches for predicting 

allergenic proteins. AllerTool is a method which combines a similarity-based approach for 

predicting allergenicity and allergic cross-reactivity in proteins (Zhang et al., 2007). 

AllerHunter was developed for predicting allergenic proteins, where models were developed 

using SVM-pairwise sequence similarity (Muh et al., 2009). AllerTOP and its updated version, 

AllerTOPv2, have been developed to classify the allergenic and non-allergenic proteins 

(Dimitrov et al., 2013), (Dimitrov, Bangov, et al., 2014). In the case of PREAL, models were 

developed to predict the allergenic protein using biochemical and physicochemical properties 

(Wang et al., 2013). AllergenFP is a method that incorporates descriptor-based fingerprints for 

developing prediction models (Dimitrov, Naneva, et al., 2014). AllerCatPro has been 

developed for predicting the allergenicity potential of a protein from its sequence and 3D 

http://allergen.org/
https://fermi.utmb.edu/
https://www.meduniwien.ac.at/allfam/
https://www.ebi.ac.uk/chembl/
http://www.allergenonline.org/
https://comparedatabase.org/
http://bioinfo.unipune.ac.in/AllerBase/Home.html
https://www.iedb.org/
https://go.drugbank.com/
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epitope mapping (Maurer-Stroh et al., 2019). Table 2.8 enlists the in-silico methods developed 

to predict the allergenic proteins.  

 

Table 2.8: List of in-silico methods developed for the prediction of allergenic proteins 
Name Year Weblink Working Status 

AlgPred 2006 https://webs.iiitd.edu.in/raghava/algpred/  Yes 

AllerTool 2007 http://research.i2r.a-star.edu.sg/AllerTool/  No 

AllerHunter 2009 http://tiger.dbs.nus.edu.sg/AllerHunter  No 

AllerTOPv2 2013 http://www.ddg-pharmfac.net/AllerTOP/  Yes 

PREAL 2013 http://gmobl.sjtu.edu.cn/PREAL/index.php  No 

AllergenFP 2014 http://ddg-pharmfac.net/AllergenFP/  Yes 

AllerCatPro 2019 https://allercatpro.bii.a-star.edu.sg  Yes 

 

2.6 Conclusion 

Virulence factors play an important role in enhancing the pathogenicity of the pathogenic 

micro-organisms. Multiple studies in the past have revealed that virulent proteins and other 

associated factors can be used as potential drug and vaccine candidates. In-silico tools and 

methods for the prediction of virulent, toxic and allergenic proteins irrespective of their sources 

are not available. Hence, proper identification of these factors involved in the virulence as well 

as pathogenicity, such as toxicity and allergenicity, is the need of an hour to develop proper 

therapeutics against the pathogens. 
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3.1 Introduction 

Virulence factors are the molecules synthesized by pathogenic micro-organisms. They have 

the tendency to cause diseases in different host organisms. They are of several types, such as 

adhesins, colonization factors, invasions, immune-evasion, immunosuppression, toxins, 

capsular polysaccharides and siderophores (Peterson, 1996), (Zheng et al., 2012), (Sharma, 

Dhasmana, et al., 2017). Growth is essential but not always required throughout the pathogen’s 

life. Dormant phase, also known as transient non-replicative phase, can be beneficial for the 

pathogen, which helps in the persistence of microbe within the host organism (Rittershaus et 

al., 2013), (Fanning & Mitchell, 2012). It is the common tendency for moderate or no growth 

of the pathogen associated with resistance to antibiotics and biocides (Brown & Barker, 1999). 

To grow inside the human host, it is required by the pathogen to take up and metabolize the 

host-derived nutrients (Ene et al., 2014). Adhesins are the molecules that are involved in the 

attachment of the pathogen to the host cell, and these are extensively found on the pathogenic 

microbes. Commensal microbes primarily reside within the mucus, with some distance from 

the anti-microbial peptide secreting epithelial cells. This helps the pathogen to remain in 

intimate contact with the host cell, which is required to manipulate and invade it.  

 
Figure 3.1: Major virulence factors involved in the pathogenesis 

 
Invasion into the host cell and tissues are usually described as one of the defining activities of 

the pathogenic microbes (Ribet & Cossart, 2015). Some bacteria invade the host cell by 
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distorting the outer membrane and triggering endocytosis (Dalle et al., 2010). After invasion 

inside the host cells and tissues, the next step is colonizing, which is mediated by colonization 

factors. Immuno-evasion helps the pathogen to evade the host immune response by escaping 

from being recognized by immunogenic surface receptors present on the outer membrane of 

the host cell, i.e., PAMPs (Latge & Beauvais, 2014), (van de Veerdonk et al., 2008), (Lata & 

Raghava, 2008). For example, capsular polysaccharides shield the pathogens from the defense 

mechanism of the host (Chai et al., 2009), (Kaur et al., 2019). Immunosuppression is the 

obstruction of host immune response by some effector proteins, a popular strategy in 

pathogenic microbes. These effector proteins mainly interact with host molecules to manipulate 

the host cell in favor of the pathogen. Effector proteins may include invasins which trigger 

receptor-mediated host cytoskeleton rearrangements and induce endocytosis (Phan et al., 

2007). Traversing the host membrane is very crucial for the action of the effector molecules. 

Some pathogenic microbes can directly cause damage to the host cells by secreting factors like 

toxins, hydrolytic enzymes, and physical forces during host cell invasion or escape (Mayer et 

al., 2013). Secreted factors include hydrolytic enzymes like proteases or lipases and toxins in 

the form of small metabolites or peptides that poison the host cell and causes tissue damage 

(Scharf et al., 2014). Virulence factors of the pathogens are depicted in Figure 3.1. 

Over the years, limited attempts have been made for the prediction of virulent proteins of the 

pathogens. The majority of available tools are extensively specialized for certain virulence 

factors of a certain pathogen. To fill this gap, we have made an attempt to develop a highly 

accurate method for predicting virulent proteins. Most of the methods are developed on small 

datasets. To address this limitation, we have proposed a method named “VirFacPred” to 

classify the virulent and non-virulent protein sequences. Models developed in this study have 

been trained and evaluated on the latest dataset consisting of 7058 virulent sequences. In 

addition, several features have been integrated into VirFacPred, which enhance the 

performance of the model with high precision. 

3.2 Materials & methods 

3.2.1 Dataset compilation 

The dataset used in this study is compiled from different databases, such as VFDB (Liu et al., 

2019) and Victors (Sayers et al., 2019). Besides this, we also extracted data from UniProt 

release 2021_04 (released on 17 November 2021) (UniProt, 2021) using various other terms 

related to the virulence of the pathogens, such as virulence, adhesin, adhesion, adherence, 



 31 

toxin, invasion, and capsule. It is challenging to obtain a negative dataset where experimentally 

validated data is not readily available. Thus, in this study, we carefully extracted and assigned 

non-virulent proteins from UniProt. We extracted 565 918 proteins using the query ‘NOT 

virulence proteins AND reviewed:yes’; these proteins were assigned as a negative dataset. In 

this study, we have only taken the proteins which are reviewed and manually annotated. All 

the protein sequences comprising ‘BJOUXZ’, and non-virulent sequences similar to virulent 

sequences were removed. After all the pre-processing, 7058 sequences were referred to as 

positive dataset, and 462 844 sequences were called as negative dataset. After that, CD-HIT 

(Li & Godzik, 2006) with 40% sequence identity was applied to both datasets. It leads to a 

reduced number of sequences for positive and negative datasets. After applying CD-HIT, the 

positive dataset is reduced to 4714 sequences from 7058, whereas the negative dataset is 

reduced to 89310 sequences from 462 844. In the study, we have created two datasets: Main 

Dataset: It contains 7058 virulent and 7058 non-virulent proteins redundant sequences. 

Alternate Dataset: It contains 4714 virulent and 4714 non-virulent proteins. In case of main 

dataset, we have not remove redundant virulent proteins, the aim was to train our model on 

largest possible dataset. In case of alternate dataset, redundant virulent protein has been 

removed, the aim was to train our model on non-redundant dataset to follow standard practice 

in the field of classification. The construction of the datasets are shown in Figure 3.2 

 
Figure 3.2: Creation of datasets followed in the study 
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3.2.2 Generation of protein features 

We have generated more than 9000 features using the well-known feature extraction method, 

Pfeature (Pande A, 2019). We have employed a composition-based module of Pfeature to 

compute 9529 features which are further used for developing machine learning models. The 

detailed information of each feature, along with the length of the vector, is tabulated in Table 

3.1 . 

 
Table 3.1: List of all the computed features along with their vector length 

Name of the Feature Feature vector 
length 

Amino acid composition (AAC) 20 

Amphiphilic pseudo amino acid composition (APAAC) 23 

Atom composition (ATC) 5 

Bond composition (BTC) 4 

Composition enhanced Transition Distribution (CTD) 189 

Conjoint Triad Calculation (CTC) 343 

Dipeptide composition (DPC) 400 

Distance distribution of residue (DDOR) 20 

Physicochemical Properties Composition (PCP) 30 

Pseudo amino acid composition (PAAC) 21 

Quasi-sequence order (QSO) 42 

Residue Repeat Information (RRI) 20 

Shannon Entropy of Physicochemical Property (SPC) 25 

Shannon Entropy of Residues (SER) 20 

Shannon-Entropy of Protein (SEP) 1 

Tripeptide composition (TPC) 8000 

3.2.3 BLAST for similarity search 

BLAST is used to identify the virulent proteins based on the similarity of a protein with virulent 

and non-virulent sequences (Altschul et al., 1990). The BLAST search module was developed, 

where the query sequences were searched against the database of virulent and non-virulent 

proteins. The performance of the method was evaluated according to various E-value 

thresholds.  

 

3.2.4 Motif analysis 

The motifs corresponding to virulent proteins were extracted using Motif-EmeRging and with 

Classes-Identification (MERCI) program (Vens et al., 2011).  
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3.2.5 Feature selection and ranking 

Past studies have shown that all the features generated are not important; hence it is necessary 

to select the relevant features from an extensive feature set. For this, the SVC-L1-based feature 

selection technique was used to fetch the significant features (Sharma et al., 2021). We have 

selected 132 features for the main dataset and 91 for the alternate dataset from 9529 features. 

Moreover, feature ranking was done using a decision tree-based algorithm, Light Gradient 

Boosting Machine (LightGBM), to rank the selected features (Sharma et al., 2021). The 

obtained top-ranked features were used to build the different machine learning prediction 

models in both datasets, respectively (Sharma et al., 2022).  

 

3.2.6 Machine learning models  

In the current study, different machine learning techniques have been used for the classification 

of virulent and non-virulent protein sequences. We used Logistic Regression (LR), k-nearest 

neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), XGBoost (XGB), 

Support Vector Classifier (SVC), and Random Forest (RF) based techniques for the 

classification.  

 

3.2.7 Evaluation parameters 

We have also applied 5-fold cross-validation (CV) on 80% of training data for the internal 

training, testing and model evaluation. The performance of machine learning models was 

evaluated using the standard evaluation parameters such as sensitivity (Sens), specificity 

(Spec), accuracy (Acc), Matthews correlation coefficient (MCC) and area under the receiver 

operating characteristic (AUC). 

 

3.2.8 Hybrid approach  

We have also applied a hybrid approach to enhance the accuracy of the prediction model. For 

this, the following three techniques have been integrated: (i) similarity-based approach using 

BLAST, (ii) motif-based approach using MERCI and (iii) Machine learning-based techniques. 

An ensemble BLAST (top five hits) was initially used to classify the given protein sequence at 

E-value of 10-6. The score of ‘+0.5’ was allotted for virulent proteins, ‘-0.5’ for non-virulent 

proteins and ‘0’ for no prediction. Next, using MERCI based approach, the same protein 

sequence was classified. The score of ‘+0.5’ was allotted if the motif was present and ‘0’ if the 

motif was absent. Finally, for developing the hybrid approach, we have computed the overall 

score, which has been obtained by integrating the scores of these three methods. The protein 
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sequence is categorized as virulent and non-virulent based on the overall score at different 

threshold values. The overall workflow of the methodology is depicted in Figure 3.3. 

 
Figure 3.3: Complete methodology used for predicting virulent factors 

 

3.3 Results  

 

3.3.1 Compositional analysis 
The amino acid composition (AAC) was computed for virulent and non-virulent proteins. We 

observed that the average AAC of residues such as alanine, glycine, isoleucine, and leucine are 

higher in the virulent sequences. In contrast, cysteine, glutamate, proline and serine are 

abundant in the non-virulent sequences. Figure 3.4 depicts the comparison of average AAC for 

virulent and non-virulent proteins. 
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Figure 3.4: Shows amino acid composition of virulent and non-virulent proteins 

3.3.2 Similarity search-based prediction  

We have applied an ensemble of top five hits to reduce the false prediction. For the main 

dataset, the number of correct hits (sensitivity) increased from 17.25% to 21.62% for the 

training dataset and from 18.91% to 23.26% for the validation dataset with E-value ranging 

from 10−6 to 10–1. This also increases the number of wrong hits (error), as shown in Table 3.2.  

 

Table 3.2: The performance of BLAST-based search on main dataset  

E-
value 

Training Validation 

Virulent Non-virulent Virulent Non-virulent 

Correct 
hits (Sens) 

Wrong 
hits 

(error) 

Correct 
hits (spec) 

Wrong 
hits 

(error) 

Correct 
hits (Sens) 

Wrong 
hits 

(error) 

Correct 
hits (spec) 

Wrong 
hits 

(error) 

10-6 1948 
(17.25%) 

97  
(0.86%) 486 (4.3%) 226  

(2%) 
534 

(18.91%) 
41  

(1.45%) 
159 

(5.63%) 
55  

(1.95%) 

10-5 2033  
(18%) 

106 
(0.94%) 

539 
(4.77%) 

238 
(2.11%) 

554 
(19.62%) 

45  
(1.59%) 

173 
(6.13%) 

56  
(1.98%) 

10-4 2128 
(18.85%) 

123 
(1.09%) 

588 
(5.21%) 

262 
(2.32%) 

578 
(20.47%) 

48  
(1.7%) 

186 
(6.59%) 

64  
(2.27%) 

10-3 2213 
(19.6%) 

136  
(1.2%) 

650 
(5.76%) 

290 
(2.57%) 

599 
(21.21%) 

54  
(1.91%) 

206 
(7.29%) 

73  
(2.58%) 

10-2 2322 
(20.56%) 

169  
(1.5%) 

738 
(6.54%) 

320 
(2.83%) 

623 
(22.06%) 

58  
(2.05%) 

233 
(8.25%) 

76  
(2.69%) 

10-1 2441 
(21.62%) 

197 
(1.74%) 

859 
(7.61%) 

353 
(3.13%) 

657 
(23.26%) 

73  
(2.58%) 

267 
(9.45%) 

88  
(3.12%) 

 

3.3.3 Performance of prediction models 

 

3.3.3.1 Composition-based features 

The features including AAC of virulent and non-virulent were computed to develop several 

machine learning models. The RF-based model was observed to perform relatively well 
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compared to other models for both datasets. For main dataset, it achieved a maximum AUC of 

0.83 and 0.84 on training and validation datasets, respectively. For the alternate dataset, model 

attained AUC of 0.77 and 0.78 on training and validation datasets, respectively (Table 3.3).  

 

Table 3.3: The performance of ML-based models developed using amino acid composition 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 63.49 64.14 63.82 0.69 0.28 61.67 65.76 63.70 0.71 0.28 

RF 74.68 73.89 74.28 0.83 0.49 75.25 74.47 74.86 0.84 0.50 

LR 67.46 68.30 67.88 0.74 0.36 67.37 68.69 68.02 0.74 0.36 

XGB 72.36 72.53 72.44 0.80 0.45 72.15 73.97 73.05 0.81 0.46 

KNN 70.49 72.03 71.26 0.80 0.43 71.03 72.90 71.96 0.80 0.44 

GNB 66.87 66.57 66.72 0.72 0.33 68.14 67.83 67.99 0.73 0.36 

SVC 74.38 74.56 74.47 0.82 0.49 73.84 75.39 74.61 0.83 0.49 

Alternate Dataset 

DT 61.65 61.36 61.51 0.66 0.23 64.95 61.72 63.31 0.68 0.27 

RF 70.14 69.88 70.01 0.77 0.41 70.54 69.25 69.88 0.78 0.40 

LR 67.34 65.57 66.46 0.72 0.33 68.82 65.27 67.02 0.73 0.34 

XGB 68.47 69.67 69.07 0.76 0.38 66.24 69.67 67.98 0.75 0.36 

KNN 67.79 69.32 68.55 0.76 0.37 66.77 70.71 68.77 0.76 0.38 

GNB 66.07 65.62 65.85 0.71 0.32 64.52 63.60 64.05 0.70 0.28 

SVC 70.24 69.80 70.02 0.76 0.40 70.54 70.61 70.57 0.76 0.41 

 

3.3.3.2 Models using selected features  

The reduced features 132 (main dataset) and 91 (alternate dataset) were used to develop 

different classification models on both datasets. The performance of these models is illustrated 

in Table 3.4. It is clearly shown in the table that the RF-based model performed better for both 

datasets.  

 

Table 3.4: The performance of ML-based models developed using selected features 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 61.76 61.88 61.82 0.66 0.24 65.75 62.20 63.99 0.69 0.28 

RF 74.02 76.17 75.10 0.84 0.50 71.82 77.60 74.68 0.84 0.50 



 37 

LR 72.64 72.35 72.49 0.79 0.45 71.31 73.47 72.38 0.79 0.45 

XGB 73.58 73.94 73.76 0.82 0.48 71.38 75.54 73.44 0.82 0.47 

KNN 60.95 61.05 61.00 0.66 0.22 58.79 63.48 61.12 0.66 0.22 

GNB 69.09 68.23 68.66 0.75 0.37 67.79 69.12 68.45 0.75 0.37 

Alternate Dataset  

DT 59.83 59.37 59.60 0.64 0.19 58.39 59.00 58.70 0.63 0.17 

RF 70.80 72.11 71.45 0.79 0.43 69.57 71.23 70.41 0.78 0.41 

LR 71.56 70.30 70.94 0.77 0.42 70.32 69.67 69.99 0.76 0.41 

XGB 71.22 70.22 70.72 0.78 0.41 67.74 69.04 68.40 0.76 0.37 

KNN 55.21 58.38 56.79 0.60 0.14 53.76 56.28 55.04 0.57 0.11 

GNB 67.76 67.83 67.79 0.74 0.36 66.02 71.03 68.56 0.74 0.37 

 

3.3.3.3 Motif-based approach 

The motifs such as ‘LSSGLRI, KDDAAG, SAKDDA and SGLRIN’ are solely found in 

virulent proteins. Composition-based models (AAC) built using different ML techniques were 

integrated with the MERCI approach. The performance of the combined approach 

(ML+MERCI) for both datasets is shown in Table 3.5. 

 

Table 3.5: The performance of motif-based approach when combined with machine learning  

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 76.17 72.83 74.50 0.83 0.49 76.58 73.32 74.97 0.84 0.50 

SVC 69.43 78.62 74.04 0.82 0.48 69.27 79.46 74.33 0.83 0.49 

XGB 75.30 70.19 72.74 0.80 0.46 75.25 71.04 73.16 0.81 0.46 

KNN 64.78 77.00 70.90 0.80 0.42 65.68 77.89 71.74 0.80 0.44 

LR 71.06 66.30 68.68 0.74 0.37 71.45 65.76 68.63 0.75 0.37 

GNB 60.68 72.05 66.37 0.72 0.33 61.81 72.61 67.17 0.73 0.35 

DT 65.81 62.20 64.00 0.69 0.28 65.82 63.91 64.87 0.71 0.30 

Alternate Dataset 

RF 74.50 66.37 70.45 0.78 0.41 75.05 66.32 70.63 0.79 0.42 

SVC 66.44 73.76 70.09 0.77 0.40 66.02 74.58 70.36 0.77 0.41 

KNN 78.75 60.72 69.77 0.77 0.40 78.82 61.93 70.26 0.77 0.41 

XGB 73.41 65.94 69.69 0.77 0.40 70.97 66.00 68.45 0.76 0.37 

LR 69.82 64.66 67.25 0.73 0.35 71.51 64.12 67.76 0.74 0.36 

GNB 71.32 61.60 66.47 0.72 0.33 70.65 59.52 65.01 0.71 0.30 

DT 65.51 58.68 62.11 0.67 0.24 68.28 59.83 64.00 0.69 0.28 
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3.3.3.4 BLAST-based model 

The similarity search approach BLAST and ML-based models were synergized to build an 

enhanced method. The BLAST search was initially implemented for a query sequence; if a 

BLAST hit was obtained, the query sequence was assigned as virulent and non-virulent based 

on the BLAST result. If no hit is obtained, then the composition-based model is utilized to 

predict the same sequence. Table 3.6 shows the performance of BLAST when combined with 

ML.  

 

Table 3.6: The performance of BLAST when combined with machine learning  

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 
KNN 85.73 88.21 86.97 0.96 0.74 87.48 88.59 88.03 0.96 0.76 
RF 88.89 86.33 87.61 0.96 0.75 89.81 87.16 88.49 0.97 0.77 
LR 83.71 89.36 86.54 0.95 0.73 84.74 90.01 87.36 0.95 0.75 
SVC 85.88 90.13 88.01 0.95 0.76 87.06 90.87 88.95 0.96 0.78 
XGB 85.08 88.95 87.02 0.95 0.74 87.20 89.8 88.49 0.95 0.77 
GNB 81.83 86.42 84.13 0.93 0.68 82.63 86.73 84.67 0.94 0.69 
DT 81.37 84.21 82.79 0.91 0.66 82.28 85.95 84.1 0.93 0.68 

Alternate Dataset 

KNN 87.45 76.21 81.85 0.92 0.64 89.78 79.92 84.78 0.94 0.71 

RF 84.17 79.94 82.06 0.92 0.64 86.77 82.22 84.46 0.94 0.69 

SVC 79.71 85.55 82.62 0.92 0.65 82.15 88.61 85.42 0.94 0.71 

LR 82.48 77.86 80.18 0.91 0.61 85.48 80.65 83.03 0.93 0.66 

XGB 84.06 79.54 81.81 0.91 0.64 85.05 82.32 83.67 0.93 0.67 

GNB 81.21 77.78 79.51 0.89 0.59 84.09 79.39 81.71 0.92 0.64 

DT 80.26 74.53 77.41 0.87 0.55 84.19 78.14 81.12 0.91 0.62 

 

3.3.3.5 Models using hybrid approach 

In order to overcome the limitations of individual methods, different approaches have been 

integrated. These approaches were used to predict the virulent proteins with better 

performance. AAC-based ML model is combined with BLAST-based similarity and MERCI-

based motif approaches. First, proteins were classified using ensemble BLAST at E-value of 

10−6 followed by MERCI approach. The protein sequences left unpredicted by these two 

approaches are predicted by an ML-based model. The performance of the hybrid method is 

significantly improved, which is not achievable by using all these methods independently. The 

performance of the hybrid method is shown in Table 3.7. RF-based model performed best for 
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both the datasets on training and validation datasets. It achieved AUC of 0.96 and 0.97 (main 

dataset) and AUC of 0.92 and 0.94 (alternate dataset) on training and validation dataset.  

 

Table 3.7: The performance of hybrid method combining machine learning, BLAST and 

MERCI 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

KNN 85.73 88.22 86.98 0.96 0.74 87.55 88.59 88.07 0.96 0.76 

RF 88.89 86.37 87.63 0.96 0.75 89.87 87.16 88.53 0.97 0.77 

LR 83.73 89.64 86.69 0.95 0.74 84.81 90.23 87.51 0.95 0.75 

SVC 85.88 90.15 88.02 0.95 0.76 87.13 90.87 88.99 0.96 0.78 

XGB 85.08 89.01 87.04 0.95 0.74 87.27 89.8 88.53 0.95 0.77 

GNB 81.85 86.42 84.14 0.93 0.68 82.71 86.73 84.71 0.94 0.69 

DT 81.37 84.31 82.84 0.91 0.66 82.35 86.02 84.17 0.93 0.68 

Alternate Dataset 

KNN 89.89 80.02 84.89 0.94 0.71 87.58 76.37 81.99 0.92 0.64 

RF 84.28 80.02 82.15 0.92 0.64 86.88 82.32 84.57 0.94 0.69 

SVC 79.97 85.63 82.79 0.92 0.66 82.37 88.71 85.58 0.94 0.71 

LR 82.58 78.34 80.47 0.91 0.61 85.59 81.28 83.42 0.93 0.67 

XGB 84.28 79.56 81.93 0.92 0.64 85.16 82.53 83.83 0.93 0.68 

GNB 81.45 77.94 79.72 0.89 0.59 84.19 79.62 81.87 0.92 0.64 

DT 80.51 74.77 77.65 0.87 0.55 84.41 78.45 81.39 0.91 0.63 

 

3.3.3.6 Best models developed in the study 

The performance of the best classification models developed using the different features is 

listed in Table 3.8 . 

Table 3.8: List of the features along with the performance of the best machine learning 

algorithm 

Method Features ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 
Composition 
based features 

AAC 
RF 74.68 73.89 74.28 0.83 0.49 75.25 74.47 74.86 0.84 0.5 

Feature 
Selection 

132 
features 

RF 74.02 76.17 75.10 0.84 0.5 71.82 77.6 74.68 0.84 0.5 

Motif based 
approach 

Motifs + 
AAC 

RF 76.17 72.83 74.50 0.83 0.49 76.58 73.32 74.97 0.84 0.5 

BLAST based 
approach 

BLAST + 
AAC 

RF 88.89 86.33 87.61 0.96 0.75 89.81 87.16 88.49 0.97 0.77 

Hybrid 
approach 

BLAST + 
Motifs + 
AAC 

RF 88.89 86.37 87.63 0.96 0.75 89.87 87.16 88.53 0.97 0.77 
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3.4 Web-based service 

A freely accessible web server named “VirFacPred” 

(https://webs.iiitd.edu.in/raghava/virfacpred/) has been developed to predict the virulent 

proteins. The key modules such as (i) prediction, (ii) design, (iii) motif scan, (iv) BLAST search 

and (v) Download are integrated into the web server. Prediction: It permits the user to submit 

the single as well as multiple protein sequences in FASTA format. This module can efficiently 

classify virulent and non-virulent proteins based on our two best performing models, i.e., 

Model-1 (AAC-based RF approach) and Model-2 (hybrid approach). Design: It generates all 

the possible mutants corresponding to a protein by mutating a single residue at a time. Motif 

scan: It uses MERCI software to detect the motifs present in the virulent protein sequences. It 

also maps or scans the motifs in the query protein sequence given by the user and distinguishes 

them as virulent and non-virulent. BLAST search: It assists the user to perform a similarity-

based search using BLAST against a virulent and non-virulent protein database. Download: 

Using this module, the user can download the python-based standalone package as well as the 

dataset used in the study.  

 

3.5 Benchmarking with previous methods 
It is necessary to benchmark the existing methods with our new proposed method VirFacPred. 

Our model outperformed the various baseline methods such as SPAAN, VICMPred, 

VirulentPred, and MP3. For instance, SPAAN is a neural network-based software specifically 

for predicting adhesins and adhesins-like proteins of the pathogens. It has attained a sensitivity 

of 89% and specificity of 100% on the dataset. The method named VICMPred, developed by 

Saha et al. is an SVM-based classification approach that classifies bacterial proteins into four 

different functional classes: virulence factors, information molecule, cellular process and 

metabolism molecules, and has achieved an accuracy of 70.75%. VirulentPred, another SVM-

based method developed by Garg et al., predicts the virulent proteins of bacterial pathogens. It 

has attained AUC of 0.86 with MCC of 0.64. Our method VirFacPred is trained on a larger 

dataset containing 7058 virulent and non-virulent proteins. Our hybrid approach was 

implemented, combining AAC-based RF model, similarity-based search using BLAST, and 

motif search by MERCI. It achieved AUC of 0.97 and MCC of 0.77 with balanced sensitivity 

and specificity. The comparison of VirFacPred with existing methods is shown in Table 3.9. 

 

 

https://webs.iiitd.edu.in/raghava/virfacpred/
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Table 3.9: Comparison of proposed method VirFacPred with existing methods 

Method Type of method Pathogen Type Sens Spec Acc AUC MCC 

VirFacPred General  All pathogens 89.87 87.16 88.53 0.97 0.77 

FungalRV Specific Fungus NA NA NA NA 0.87 

FaaPred Specific Fungus 82.66 86.8 86.05 NA 0.61 

VirulentPred General  All pathogens 82.00 81.50 81.80 0.86 0.64 

MAAP Specific Malarial parasite NA NA NA NA 0.80–0.904 

VICMPred Specific Bacteria NA NA 70.75 NA NA 

SPAAN General All pathogens 89.00 100 NA NA NA 

3.6 Discussion & conclusion  

The human body has an environment that is needed by any pathogen to grow and survive. The 

attributes required for survival and growth in this particular environment are generally 

considered as virulence factors. These virulence factors play a significant role in favor of the 

pathogen both during the pathogenesis and growth phase. It protects the microbe from the 

mammalian body temperature and helps escape phagocytosis. In a broader sense, virulence 

factors are necessary for the survival of the pathogen. Direct action of the virulence factors into 

the host response leads to the disruption of the host homeostasis, leading to disease. Thus, there 

is a dire need to determine the virulence property of the proteins produced by different 

pathogens. In the present study, we have proposed a method named VirFacPred for predicting 

virulent and non-virulent proteins irrespective of their source. The similarity-based search 

using BLAST has been carried out to identify query sequences. If a query protein sequence is 

similar to a known protein, then the same function is assigned to that query protein. It has been 

observed from Table 3.2 that BLAST can identify some virulent proteins with the probability 

of correct prediction of more than 23%, with an extremely low error rate. The result suggests 

that BLAST produces a substantial number of no hits; thus, it cannot be used to predict the 

unknown protein that is not similar to known virulent and non-virulent proteins. In order to 

overcome this constraint, a hybrid model was developed using AAC-based ML model, BLAST 

and MERCI. The highest performance is attained using a hybrid model with maximum 

accuracy, as shown in Table 3.7. In this study, we created a web-based platform for users to 

classify virulent and non-virulent proteins. We have provided a freely accessible web server 

and a standalone package of “VirFacPred” to assist the scientific community working on 

protein therapeutics. 
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3.7 Limitation of the study 

In this study, we have proposed a highly accurate method for predicting virulent proteins. 

However, this is a general method developed for predicting the virulent proteins irrespective 

of the specific pathogen. We have considered all the pathogens and have tried to develop a 

generalised method on latest dataset with high precision. 
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4.1 Introduction 

Proteins and peptides are naturally occurring molecules that play various functions and 

processes in the body that are essential to sustain cellular mechanisms (Shaji & Patole, 2008). 

Their aberrant activity has been involved in several pathological conditions such as cancer, 

neurodegenerative disorders and diabetes. Thus, using them as therapeutic agents is a 

promising way to fight against various diseases. In recent years, they have the potential to 

revolutionize medical therapy as well as a preferred choice over small molecules and antibodies 

due to their high target specificity, tissue penetration, high biological activity and inexpensive 

(Bruno et al., 2013). However, there are certain prime concerns in the development of 

protein/peptide-based drug discovery, such as toxicity, immunogenicity and stability (Otvos & 

Wade, 2014). Due to this, the assessment of toxic properties of proteins/peptides is of great 

necessity.  

 
Figure 4.1: Source of toxins and their effects on humans (10.1093/bib/bbac174) 

 

Toxins are naturally occurring poisonous substances that have the ability to cause harm to other 

organisms. It can be of plant, animal origin or released by several types of microbes (Clark et 

al., 2019). It can cause deadly diseases or death when it enters the body. A variety of toxins 

from certain animals can lead to several lethal effects, such as scorpion venom can 

overstimulate neuronal signalling leading to paralysis (Petricevich, 2010). Further, snake 

venom could be neurotoxic, causing neuromuscular paralysis as well as haemotoxic damaging 
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the circulatory system and leading to acute tissue damage (Casewell et al., 2020), (Slagboom 

et al., 2017). The various effects of toxins from different sources are depicted in Figure 4.1.  

Conventional experimental techniques are used to evaluate the toxicity of unknown proteins, 

peptides and chemical compounds. However, these approaches are laborious, cost-intensive 

and involve animal testing for in-vivo assessment. These impediments lead to an inclination 

towards the applicability of in-silico techniques (Sharma N, 2021). With the advent of highly 

accurate and cost-effective methods, the scientific community has adopted data-driven 

computational methods, such as machine learning techniques, to predict the toxicity of 

molecules (Pérez Santín E, 2021). In this study, we have attempted to develop a highly accurate 

method for predicting the toxicity of large proteins, which will complement our previous 

method ToxinPred. Although, ToxinPred is highly accurate and used widely by the scientific 

community, but there are several constraints that necessitate improvement. ToxinPred was 

trained on 1805 toxic peptides where the maximum length was 35 amino acids. Thus, 

ToxinPred is suitable only for peptides or small peptides of length up to 50 amino acids but not 

suitable for large proteins. To address these limitations, we have proposed the updated method 

named “ToxinPred2” to classify the toxic and non-toxic protein sequences, which is trained 

and evaluated on large proteins/toxins. Models developed in this study have been trained and 

evaluated on the latest dataset consisting of 8233 toxic sequences. In addition, several features 

have been integrated into ToxinPred2, which enhance the performance of the model with high 

precision. 

 
4.2 Materials & methods 
 
4.2.1 Dataset collection 

The dataset was retrieved from UniProt release 2021_03 (released on 2 June 2021) (UniProt, 

2021) using different keywords for obtaining toxic and non-toxic proteins/peptides. We 

extracted 9940 toxic proteins using the keyword ‘toxin AND reviewed:yes’. All protein 

sequences comprising ‘BJOUXZ’, less than 35 amino acids and non-toxic sequences similar 

to toxic sequences were discarded. Ultimately, we obtained 8233 toxic sequences, referred to 

as a positive dataset. The compilation of experimentally validated or well-annotated toxic 

peptides is possible, whereas it is challenging to obtain non-toxic peptides. Therefore, we have 

extracted the negative dataset from Swiss-Prot (Bairoch & Apweiler, 2000) using keywords 

'NOT toxin NOT allergen AND reviewed: yes' and obtained 554 145 proteins. In the present 

study, we have considered proteins that are reviewed and manually curated. From this data, we 
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have discarded the sequences with length less than 35 amino acids and non-standard characters.  

Hence, we proceeded with 460 257 non-toxic sequences as a negative dataset. The creation of 

datasets is depicted in Figure 4.2.  

 

 
Figure 4.2: Compilation of datasets for developing toxin prediction method 

(10.1093/bib/bbac174) 
 

After that, CD-HIT software (Li & Godzik, 2006) was applied to both datasets at 40% sequence 

identity. It leads to a reduced number of sequences for positive and negative datasets. After 

applying CD-HIT, the positive dataset is reduced to 1924 sequences from 8233, whereas the 

negative dataset is reduced to 88263 sequences from 460 257. We have created three datasets 

based on the number of toxic and non-toxic protein sequences, as described below: 
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(a) Main dataset: This dataset contains 8233 toxic (obtained after pre-processing of positive 

data) and 8233 non-toxic (randomly selected from 88263 negative data obtained after CD-HIT) 

protein sequences. 

(b) Alternate dataset: This dataset contains 1924 toxic (obtained after applying CD-HIT on 

8233 positive data) and 1924 non-toxic (randomly selected from 88263 sequences obtained 

after CD-HIT) non-redundant protein sequences. No two proteins have more than 40% 

sequence similarity in this dataset. 

(c) Realistic dataset (Ten times Negative Dataset): This dataset consists of 1924 toxic and 

19240 non-toxic protein sequences. These toxic sequences are same as those used in the 

alternate dataset, where no two proteins have more than 40% similarity. The non-toxic protein 

sequences were randomly selected from non-redundant 88263 non-toxic sequences obtained 

after applying CD-HIT.   

 
4.2.2 BLAST-based similarity search 

In this study, we have used BLAST to identify toxins based on the similarity of a protein 

sequence with toxic and non-toxic sequences (Altschul et al., 1990). The similarity-based 

search module was created in which the query sequences were searched against the database 

of toxins and non-toxins. The performance of the method was assessed based on the various E-

value cutoffs.  

 

4.2.3 Scanning of motifs  

The toxic proteins were searched for the motifs using MERCI tool, a program to locate motifs 

in any sequence (Vens et al., 2011). Motif analysis provides the information related to recurring 

patterns present in the toxic sequences.  

 

4.2.4 Feature generation 

We have used a standalone tool, Pfeature, to generate a wide range of features such as 

composition and evolutionary information-based features (Pande A, 2019). Using a 

composition-based feature module of Pfeature, a vector of 9163 features was calculated against 

each sequence for all three datasets. To extract the evolutionary information for a given protein, 

Position-specific scoring matrix (PSSM) composition was calculated using Position-Specific 

Iterated BLAST (PSI-BLAST) (Altschul et al., 1997).  
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4.2.5 Feature selection and ranking 

It has been shown in previous studies that all the features are not significant. Thus, selecting 

the relevant features from a larger set of features is a major challenge. In this study, we have 

used the SVC-L1-based feature selection technique to select the significant features from the 

high-dimensional feature set (Sharma et al., 2021). Using this method, we have listed important 

features for all three datasets from the pool of 9163 features. Out of that, 129 features were 

selected for the main dataset, 32 for the alternate dataset and 52 for the realistic dataset. Further, 

a feature-selector tool was utilized for ranking the top key features. It uses a decision tree-based 

algorithm called the LGBM to rank the feature frequently used to split the data across all trees 

(Sharma et al., 2021). The obtained top-ranked features were used to build the different 

machine learning prediction models in all three datasets.  

 

4.2.6 Machine learning techniques  

Several machine learning techniques have been used to discriminate toxic from non-toxic 

proteins. RF, LR, GNB, DT, KNN, XGB, and SVC were implemented to develop the 

classification models.  

 

4.2.7 Performance evaluation parameters 

These classifiers were optimized using various hyper-parameters, and the best results were 

included. We have also applied a 5-fold CV on 80% of training data for the internal training, 

testing and model evaluation. The performance of machine learning models was evaluated 

using the standard evaluation parameters such as sensitivity, specificity, accuracy, MCC and 

AUC. The complete workflow of ToxinPred2 is depicted in Figure 4.3. 

 

4.2.8 Combined approach  

In this study, we have also implemented a combined approach to enhance the prediction of the 

model. The hybrid approach is the weighted scoring method, in which the score is computed 

by integrating three different methods (i) similarity-based approach using BLAST, (ii) motif-

based approach using MERCI and (iii) ML-based technique. First, the given protein sequence 

was classified using BLAST at E-value of 10−6. We assigned the weight of ‘+0.5’ for the 

positive predictions (toxic proteins), ‘−0.5’ for negative predictions (non-toxic proteins) and 

‘0’ for no hits. Second, the same protein sequence was classified using MERCI. We assigned 

the score of ‘+0.5’ if the motifs were found and ‘0’ if the motifs were not found. In the case of 

a combined approach, scores obtained from three methods (i.e., BLAST, MERCI and ML 
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scores) were combined to compute the overall score. Based on the overall score at different 

threshold values, the protein sequence is categorized as toxic and non-toxic. This hybrid 

approach has been extensively employed in several studies (Sharma et al., 2020), (Gupta, 

Kapoor, et al., 2013). 

 

 
Figure 4.3: Flowchart depicting the overall architecture of ToxinPred2 

(10.1093/bib/bbac174) 

 

4.3 Results  

 

4.3.1 Compositional analysis 
In the study, AAC for both toxic and non-toxic proteins was computed. We found that the 

average AAC of amino acid residues such as cysteine, glycine, lysine, and tryptophan are 

abundant in the toxic sequences, whereas alanine, glutamate, isoleucine, leucine and serine are 

higher in the non-toxic sequences. Also, we have compared the average AAC between the 

peptides and proteins of ToxinPred and ToxinPred2, respectively. It was observed that peptides 

of ToxinPred are exceptionally rich in cysteine and proline. In contrast, the proteins of 
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ToxinPred2 are rich in lysine and valine. The comparison of average AAC between ToxinPred 

and ToxinPred2 is depicted in Figure 4.4. 

 

 
Figure 4.4: Shows amino acid composition of toxic peptides in ToxinPred, toxins in 

ToxinPred2 and non-toxins (10.1093/bib/bbac174) 

 

It has been shown in the literature that toxic peptides/proteins are rich in cysteine amino-acid. 

A subunit of pertussis toxin is rich in cysteine residue which forms disulfide bonds and is 

responsible for binding to the specific cell surface receptors  (Burns et al., 1989). Another study 

by Zhu et al., has shown that if amino acids (cysteine or lysine) are accumulated in high 

concentrations, the protein may be toxic to the other organisms (Zhu et al., 2004) (Kishor et 

al., 2020). Eisenhut et al., have stated that higher concentration of glycine is very toxic and can 

lead to inhibition or even death in bacteria, plants and humans (Eisenhut et al., 2007). Figure 

4.4 clearly shows that peptides as well as proteins which are rich in cysteine, glycine and  

tryptophan amino acid are toxic in nature, and this information can be used as a feature that 

can be employed for distinguishing non-toxic proteins. 

 

4.3.2 BLAST-based analysis 

We have implemented an ensemble of top five hits to reduce the false prediction. For the main 

dataset, the number of correct hits (sensitivity) increased from 35% to 38.79% for the training 

dataset and from 36.44% to 40.23% for the validation dataset, with E-value ranging from 10−6 

to 10–1. This also leads to an increase in the number of wrong hits (error), as shown in Table 

4.1.  
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Table 4.1: The performance of BLAST-based model on main dataset  

E-
valu

e 

Training Validation 

Toxins Non-toxins Toxins Non-toxins 

Correct 
hits (Sens) 

Wrong 
hits 

(error) 

Correct 
hits (Spec) 

Wrong 
hits 

(error) 

Correct 
hits (Sens) 

Wrong hits 
(error) 

Correct 
hits (Spec) 

Wrong 
hits 

(error) 
10-6 4610  

(35%) 
68  

(0.52%) 
610  

(4.63%) 
137  

(1.04%) 
1201 

(36.44%) 
16  

(0.49%) 
182  

(5.52%) 
42  

(1.27%) 
10-5 4681  

(35.54%) 
71  

(0.54%) 
662  

(5.03%) 
146  

(1.11%) 
1224  

(37.14%) 
17  

(0.52%) 
198  

(6.01%) 
45  

(1.37%) 
10-4 4762  

(36.16%) 
77  

(0.58%) 
735  

(5.58%) 
157  

(1.19%) 
1251  

(37.96%) 
19  

(0.58%) 
212  

(6.43%) 
51  

(1.55%) 
10-3 4869  

(36.97%) 
87  

(0.66%) 
812  

(6.17%) 
174  

(1.32%) 
1271  

(38.56%) 
24  

(0.73%) 
248 

 (7.52%) 
55  

(1.67%) 
10-2 4976  

(37.78%) 
102  

(0.77%) 
900  

(6.83%) 
192  

(1.46%) 
1293  

(39.23%) 
28  

(0.85%) 
271  

(8.22%) 
61  

(1.85%) 
10-1 5109  

(38.79%) 
124  

(0.94%) 
1034  

(7.85%) 
214  

(1.62%) 
1326  

(40.23%) 
35 

(1.06%) 
319  

(9.68%) 
72  

(2.18%) 
 

 
4.3.3 Performance of ML-based models 

 

4.3.3.1 Models using composition 

The features including AAC of toxins and non-toxins were computed to develop several 

machine learning models. For the main dataset, it was observed that RF-based models 

performed quite well when compared to other models and achieved a maximum AUC of 0.93 

and 0.92 on training and validation datasets, respectively. For the alternate dataset, RF-based 

model attained AUC of 0.76 and 0.75 on training and validation dataset, respectively. In the 

case of a realistic dataset, it was found that the model based on XGB obtained AUC of 0.75 

and 0.74 for training and validation dataset, respectively (Table 4.2).  

 

Table 4.2: The performance of machine learning-based techniques developed using amino acid 

composition 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 77.19 77.90 77.55 0.85 0.55 75.73 80.52 78.13 0.85 0.56 

RF 86.59 86.15 86.37 0.93 0.73 86.47 84.10 85.29 0.92 0.71 

LR 75.54 75.11 75.32 0.84 0.51 75.61 73.30 74.45 0.84 0.49 

XGB 83.55 83.98 83.77 0.91 0.68 82.34 82.77 82.56 0.91 0.65 

KNN 82.60 81.72 82.16 0.91 0.64 82.40 82.16 82.28 0.90 0.65 
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GNB 75.22 74.49 74.85 0.83 0.50 74.76 73.60 74.18 0.82 0.48 

SVC 84.39 84.63 84.51 0.92 0.69 83.62 82.16 82.89 0.91 0.66 

Alternate Dataset 

DT 62.14 59.61 60.88 0.66 0.22 58.85 55.47 57.16 0.64 0.14 

RF 68.64 68.96 68.80 0.76 0.38 64.32 67.97 66.15 0.75 0.32 

LR 63.05 62.14 62.60 0.70 0.25 63.02 62.76 62.89 0.69 0.26 

XGB 67.53 69.29 68.41 0.75 0.37 66.93 65.89 66.41 0.73 0.33 

KNN 65.33 66.17 65.75 0.73 0.32 61.20 63.54 62.37 0.70 0.25 

GNB 61.88 61.30 61.59 0.69 0.23 59.64 65.10 62.37 0.69 0.25 

SVC 65.02 64.55 64.77 0.72 0.30 63.02 66.41 64.71 0.71 0.29 

Realistic Dataset 

DT 60.84 58.97 59.14 0.65 0.12 71.62 47.25 49.46 0.65 0.11 

RF 71.04 68.71 68.92 0.78 0.24 67.97 68.06 68.05 0.77 0.22 

LR 62.60 63.82 63.71 0.71 0.16 63.54 62.89 62.95 0.69 0.16 

XGB 67.14 68.04 67.95 0.75 0.21 68.75 66.50 66.71 0.75 0.21 

KNN 67.86 65.72 65.92 0.74 0.21 65.89 62.99 63.26 0.72 0.17 

GNB 63.77 60.92 61.17 0.70 0.14 63.28 61.33 61.51 0.70 0.14 

SVC 77.86 51.29 53.71 0.74 0.17 83.85 40.88 44.78 0.73 0.15 
 

4.3.3.2 PSSM-based models 

The PSSM profiles based on evolutionary information were also generated for protein 

sequences and used to develop ML-based models. We found that XGB achieved AUC of 0.94 

on training and 0.93 on validation for the main dataset.  Further, for an alternate dataset, RF-

based model attained AUC of 0.80 on training and 0.79 on the validation dataset. For the 

realistic dataset, XGB performed better and obtained the maximum AUC of 0.80 on training 

and 0.79 on validation (Table 4.3). 

 

Table 4.3: The performance of machine learning-based techniques developed using PSSM 

profiles  

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 75.41 75.85 75.63 0.82 0.51 75.00 75.12 75.06 0.82 0.50 

RF 86.52 86.65 86.58 0.94 0.73 85.19 85.80 85.50 0.93 0.71 

LR 82.17 81.85 82.01 0.90 0.64 81.13 80.58 80.86 0.90 0.62 

XGB 86.96 86.62 86.79 0.94 0.74 85.98 86.17 86.07 0.93 0.72 

KNN 84.18 84.19 84.18 0.92 0.68 82.65 83.92 83.28 0.92 0.67 
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GNB 73.06 74.82 73.94 0.82 0.48 72.03 74.03 73.03 0.81 0.46 

SVC 79.73 79.20 79.46 0.88 0.59 78.58 80.22 79.40 0.87 0.59 

Alternate Dataset 

DT 61.88 64.35 63.12 0.68 0.26 56.77 63.28 60.03 0.66 0.20 

RF 71.69 71.95 71.82 0.80 0.44 72.14 70.83 71.48 0.79 0.43 

LR 68.64 68.83 68.73 0.76 0.38 69.27 70.83 70.05 0.76 0.40 

XGB 69.03 70.00 69.51 0.78 0.39 68.75 69.79 69.27 0.77 0.39 

KNN 69.48 70.13 69.81 0.76 0.40 67.97 70.05 69.01 0.76 0.38 

GNB 62.27 62.34 62.31 0.65 0.25 62.50 65.37 63.93 0.66 0.28 

SVC 65.91 66.43 66.17 0.72 0.32 66.93 69.53 68.23 0.73 0.37 

Realistic Dataset 

DT 63.96 62.01 62.18 0.68 0.15 57.81 63.36 62.85 0.64 0.13 

RF 71.23 75.36 74.99 0.81 0.30 69.01 76.51 75.83 0.81 0.29 

LR 68.90 69.04 69.02 0.77 0.23 69.27 69.80 69.75 0.77 0.24 

XGB 71.88 70.42 70.54 0.80 0.26 71.62 71.23 71.27 0.79 0.26 

KNN 71.04 68.23 68.49 0.77 0.24 72.92 65.93 66.56 0.77 0.23 

GNB 61.95 61.95 61.95 0.65 0.14 62.50 61.95 62.00 0.64 0.14 

SVC 67.21 64.66 64.90 0.74 0.19 63.54 65.39 65.22 0.72 0.17 

 

4.3.3.3 Selected features  

The reduced features 129 (main dataset), 32 (alternate dataset) and 52 (realistic dataset) were 

used to develop different classification models on all the three datasets. The performance of 

these models is illustrated in Table 4.4. It is clearly shown in the table that RF-based model 

performed better in all three datasets.  
 

Table 4.4: The performance of machine learning-based techniques developed using selected 

features 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 76.55 76.46 76.51 0.84 0.53 75.85 75.61 75.73 0.82 0.52 

RF 86.27 86.29 86.28 0.94 0.73 85.50 86.35 85.92 0.93 0.72 

LR 80.64 80.50 80.57 0.89 0.61 79.19 82.16 80.67 0.88 0.61 

XGB 86.21 85.83 86.02 0.93 0.72 84.41 86.77 85.59 0.93 0.71 

KNN 78.53 79.04 78.79 0.86 0.58 76.88 79.43 78.16 0.86 0.56 

GNB 67.46 85.95 76.71 0.82 0.54 66.14 85.68 75.91 0.81 0.53 

Alternate Dataset 
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DT 63.25 61.30 62.27 0.68 0.25 67.19 48.96 58.07 0.64 0.16 

RF 70.71 70.58 70.65 0.79 0.41 70.31 69.79 70.05 0.77 0.40 

LR 66.88 66.36 66.62 0.74 0.33 66.67 66.93 66.80 0.73 0.34 

XGB 68.70 67.53 68.12 0.76 0.36 68.75 71.62 70.18 0.76 0.40 

KNN 65.97 65.65 65.81 0.70 0.32 62.51 65.10 63.80 0.70 0.28 

GNB 64.22 64.29 64.25 0.71 0.29 64.84 64.84 64.84 0.71 0.30 

Realistic Dataset  

DT 63.31 60.89 61.11 0.69 0.14 54.17 66.29 65.19 0.66 0.12 

RF 73.44 68.98 69.39 0.80 0.26 71.35 68.66 68.90 0.79 0.24 

LR 67.01 67.80 67.72 0.75 0.21 64.58 66.79 66.59 0.74 0.19 

XGB 66.75 71.12 70.72 0.77 0.23 67.19 70.66 70.35 0.77 0.23 

KNN 63.64 66.89 66.59 0.70 0.18 57.81 65.41 64.72 0.67 0.14 

GNB 50.07 82.69 79.72 0.71 0.23 47.92 81.91 78.83 0.70 0.21 

 
 

4.3.3.4 Motif-based models  

The motifs such as ‘GCYCG, MKTLL, TLLLTL and LLLTLV’ are solely found in toxic 

proteins. Composition-based models (AAC) built using different ML techniques were 

integrated with the MERCI approach. The performance of the combined approach 

(ML+MERCI) for all three datasets is shown in Table 4.5. 

 

Table 4.5: The performance of motif-based approach when combined with machine learning 

techniques 

Main Dataset 

  
ML 

Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 75.46 80.90 78.18 0.85 0.56 74.15 83.13 78.64 0.85 0.58 

GNB 72.12 79.56 75.84 0.83 0.52 72.76 79.37 76.06 0.82 0.52 

KNN 81.72 83.40 82.56 0.91 0.65 81.74 84.16 82.95 0.90 0.66 

LR 74.02 78.76 76.39 0.84 0.53 74.21 77.00 75.61 0.84 0.51 

RF 84.60 89.36 86.98 0.94 0.74 84.59 87.93 86.26 0.93 0.73 

SVC 85.24 82.20 83.72 0.92 0.68 84.59 80.40 82.49 0.91 0.65 

XGB 83.28 84.53 83.90 0.92 0.68 81.80 83.50 82.65 0.91 0.65 

Alternate Dataset 

DT 69.55 52.53 61.04 0.69 0.22 66.15 51.30 58.72 0.67 0.18 

GNB 60.91 66.49 63.70 0.72 0.27 60.16 69.01 64.58 0.72 0.29 

KNN 58.57 75.39 66.98 0.74 0.35 55.21 73.70 64.45 0.72 0.29 
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LR 57.08 71.69 64.38 0.72 0.29 57.55 74.48 66.02 0.72 0.33 

RF 64.55 76.49 70.52 0.78 0.41 59.90 76.82 68.36 0.77 0.37 

SVC 57.86 75.58 66.72 0.75 0.34 56.25 80.21 68.23 0.74 0.38 

XGB 62.08 78.18 70.13 0.77 0.41 61.46 73.96 67.71 0.76 0.36 

Realistic Dataset 

DT 66.88 52.03 53.38 0.67 0.11 72.66 47.38 49.67 0.67 0.12 

GNB 47.53 84.65 81.27 0.71 0.24 44.53 84.17 80.58 0.71 0.21 

KNN 56.10 79.54 77.41 0.75 0.24 55.21 76.53 74.60 0.73 0.21 

LR 55.26 73.40 71.75 0.72 0.18 55.21 72.30 70.75 0.71 0.17 

RF 60.65 81.63 79.72 0.79 0.29 56.51 82.10 79.77 0.77 0.27 

SVC 35.52 95.86 90.37 0.75 0.35 34.12 95.92 90.31 0.74 0.34 

XGB 55.20 82.56 80.07 0.76 0.27 54.69 81.94 79.47 0.76 0.26 

 

4.3.3.5 BLAST-based models 

To build an enhanced method, the similarity search approach BLAST and ML-based models 

were synergized. The BLAST search was initially implemented for a query sequence; if a 

BLAST hit was obtained, the query sequence was assigned as toxin and non-toxin based on 

the BLAST result. If there is no hit obtained, then the composition-based model is utilized to 

predict the same sequence. Table 4.6 shows the performance of BLAST when combined with 

machine learning techniques.  

 

Table 4.6: The performance of BLAST when combined with machine learning techniques 

Main Dataset 

  
ML 

Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 88.63 91.77 90.20 0.97 0.81 88.53 90.59 89.56 0.97 0.79 

GNB 94.08 91.19 92.63 0.96 0.85 94.91 91.57 93.23 0.96 0.87 

KNN 93.53 95.22 94.37 0.98 0.89 94.05 95.57 94.81 0.98 0.91 

LR 93.65 92.44 93.04 0.98 0.86 94.72 92.61 93.66 0.98 0.87 

RF 93.85 96.14 95.02 0.98 0.91 94.36 95.75 95.05 0.99 0.92 

SVC 91.69 91.47 91.58 0.98 0.83 91.14 90.78 90.96 0.98 0.82 

XGB 94.73 93.35 94.04 0.98 0.88 95.02 93.14 94.08 0.98 0.88 

Alternate Dataset 

DT 73.90 77.92 75.91 0.83 0.52 72.41 77.61 75.01 0.83 0.51 

GNB 74.87 78.83 76.85 0.84 0.54 74.74 80.21 77.47 0.85 0.55 

KNN 73.70 82.53 78.12 0.88 0.56 72.41 81.25 76.82 0.88 0.54 

LR 75.91 77.21 76.56 0.87 0.53 75.01 78.91 76.95 0.87 0.54 

RF 79.61 80.45 80.03 0.89 0.61 75.78 82.03 78.91 0.89 0.58 
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SVC 76.75 79.42 78.08 0.88 0.56 75.01 82.81 78.91 0.88 0.58 

XGB 78.57 82.27 80.42 0.89 0.61 76.31 80.73 78.52 0.89 0.57 

Realistic Dataset 

DT 83.25 77.20 77.75 0.91 0.39 87.24 78.31 79.11 0.92 0.42 

GNB 78.44 89.22 88.24 0.92 0.52 77.60 89.5 88.42 0.93 0.52 

KNN 77.08 90.81 89.56 0.94 0.54 78.65 90.67 89.58 0.95 0.55 

LR 81.11 86.64 86.14 0.94 0.49 82.03 87.32 86.84 0.94 0.51 

RF 83.12 90.11 89.47 0.95 0.57 81.77 91.19 90.34 0.96 0.58 

SVC 69.87 97.08 94.61 0.94 0.67 71.88 97.14 94.85 0.95 0.69 

XGB 80.39 90.61 89.68 0.94 0.56 80.47 91.40 90.41 0.95 0.58 

 
4.3.3.6 Models using combined approach 

Ultimately, multiple approaches were integrated in order to overcome the limitations of 

individual methods. These approaches were developed to detect the toxins with better 

precision. A composition-based model is combined with BLAST- and MERCI-based 

approaches. Initially, proteins were classified using ensemble BLAST at E-value of 10−6, led 

by MERCI approach. The ML-based model then predicts the protein sequences not predicted 

by these two approaches. The combined approach significantly enhanced the coverage and 

accuracy, which is not feasible by using all these methods individually. The performance of 

the combined approach has improved by integrating all these methods, as shown in Table 4.7. 

RF-based model performs best for all three datasets on training and validation datasets. It 

achieved AUC of 0.98 and 0.99 (main dataset), AUC of 0.90 and 0.90 (alternate dataset) and 

AUC of 0.95 and 0.96 (realistic dataset) on training and validation dataset.  

 

Table 4.7: The performance of combined method integrating machine learning, BLAST and 

MERCI techniques 

Main Dataset 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 88.64 91.81 90.23 0.97 0.80 88.59 90.59 89.59 0.97 0.79 

GNB 94.08 91.19 92.63 0.96 0.85 94.91 91.57 93.23 0.96 0.87 

KNN 93.53 95.22 94.37 0.98 0.89 94.05 95.57 94.81 0.98 0.90 

LR 92.26 95.99 94.12 0.98 0.88 93.33 95.81 94.57 0.98 0.89 

RF 92.95 97.65 95.31 0.98 0.91 93.69 97.39 95.54 0.99 0.91 

SVC 91.69 91.63 91.66 0.98 0.83 91.14 90.96 91.05 0.98 0.82 

XGB 94.73 93.35 94.04 0.98 0.88 95.02 93.14 94.08 0.98 0.88 

Alternate Dataset 

DT 74.42 78.31 76.36 0.84 0.53 73.71 78.12 75.91 0.85 0.52 
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GNB 75.39 79.16 77.27 0.85 0.55 76.04 80.73 78.39 0.86 0.57 

KNN 73.96 82.66 78.31 0.88 0.57 73.96 81.51 77.73 0.89 0.56 

LR 76.11 77.34 76.72 0.87 0.53 76.04 79.43 77.73 0.88 0.56 

RF 79.94 80.52 80.23 0.90 0.61 76.82 82.55 79.69 0.90 0.59 

SVC 77.08 79.55 78.31 0.89 0.57 76.30 83.59 79.95 0.89 0.61 

XGB 78.90 82.53 80.71 0.89 0.61 77.08 81.25 79.17 0.90 0.58 

Realistic Dataset 

DT 83.25 77.44 77.97 0.91 0.39 87.24 78.56 79.35 0.92 0.42 

GNB 78.44 89.24 88.26 0.93 0.52 77.60 89.51 88.42 0.93 0.52 

KNN 77.08 90.92 89.66 0.94 0.54 78.65 90.77 89.67 0.95 0.55 

LR 81.11 86.73 86.22 0.94 0.49 82.03 87.37 86.89 0.94 0.51 

RF 83.12 90.16 89.52 0.95 0.57 81.77 91.22 90.36 0.96 0.58 

SVC 69.94 97.11 94.63 0.95 0.67 71.88 97.17 94.87 0.95 0.69 

XGB 80.45 90.68 89.75 0.94 0.56 80.47 91.42 90.43 0.95 0.58 
 

 

4.3.3.7 Best models of the study 

The performance of the best classification models developed using the different features is 

listed in Table 4.8 . 

 

Table 4.8: The list of the features used in the study with the best performing ML models 

Method Features ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

Composition 
based 
features 

AAC RF 86.59 86.15 86.37 0.93 0.73 86.47 84.11 85.29 0.92 0.71 

PSSM based 
features 

PSSM 
profiles 

XGB 86.96 86.62 86.79 0.94 0.74 85.98 86.17 86.07 0.93 0.72 

Feature 
Selection 

132 
features 

RF 86.27 86.29 86.28 0.94 0.73 85.51 86.35 85.92 0.93 0.72 

Motif based 
approach 

Motifs + 
AAC 

RF 84.61 89.36 86.98 0.94 0.74 84.59 87.93 86.26 0.93 0.73 

BLAST 
based 
approach 

BLAST + 
AAC 

RF 93.85 96.14 95.02 0.98 0.91 94.36 95.75 95.05 0.99 0.92 

Hybrid 
approach 

BLAST + 
Motifs + 
AAC 

RF 92.95 97.65 95.31 0.98 0.91 93.69 97.39 95.54 0.99 0.91 

 

4.4 Web server and standalone software package 

A web server, ToxinPred2 (https://webs.iiitd.edu.in/raghava/toxinpred2/), has been developed 

for predicting toxic proteins. We have executed our two best performing models, i.e., Model-

1 (AAC-based RF approach) and Model-2 (hybrid approach). Both the models are trained on 

https://webs.iiitd.edu.in/raghava/toxinpred2/
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the main dataset for predicting toxins. The major modules such as (i) prediction, (ii) design, 

(iii) motif scan, (iv) BLAST search and (v) Download are integrated into the web server. The 

‘prediction module’ permits the user to submit the single and multiple protein sequences in 

FASTA format. This module can efficiently classify toxic and non-toxic proteins. The ‘design 

module’ is developed for generating all possible mutants of a protein by mutating a single 

residue at a time. The developed models were then used for predicting each mutated sequence 

as toxic or non-toxic protein. Using our webserver, user can design the non-toxic proteins and 

which can be used for further studies. The ‘motif scan module’ uses MERCI software to 

identify the motifs exclusively present in the toxic protein sequences. It also maps or scans the 

motifs in the query protein sequence given by the user and distinguishes them as toxin and non-

toxin. The ‘BLAST search module’ aids the user to carry out a similarity-based search using 

BLAST against toxins and non-toxins database. The web server is built with a responsive 

HTML template and browser compatibility for various operating systems. To facilitate the 

users to predict toxins, we have also developed a python based standalone package of 

ToxinPred2, which can be accessed from ‘Download’ module of the web server.  

 

4.5 Comparison with other methods 
It is important to compare the performance of the proposed method with existing methods to 

justify the development of the new method. We have shown the comparison of the performance 

of a proposed method, ToxinPred2 and other existing methods as reported in the literature in 

Table 4.8. ToxinPred2 outperforms other existing methods under the heading ‘Performance of 

existing methods reported in the literature’. In order to provide an unbiased comparison, we 

have computed the performance of ToxinPred2 on the validation dataset used in existing 

methods. As shown in Table 4.9, under the heading ‘Performance of ToxinPred2 on validation 

dataset of existing methods’, ToxinPred2 obtained AUC 0.96, 0.99 and 0.99 for protein datasets 

used in ToxClassifer, TOXIFY, and ToxDL, respectively. Our proposed method achieves AUC 

0.94 on peptide datasets used in ToxinPred and ATSE, which are lower than their original 

performance. It is because ToxinPred2 is developed/trained for proteins not for peptides. We 

also attempted to evaluate the performance of existing methods on validation data (main 

dataset) of ToxinPred2. Since the dataset has larger protein sequences, the peptide toxicity 

prediction methods (ToxinPred, ToxIBLT and ATSE) cannot be implemented. Moreover, we 

could not predict the toxicity of proteins in the validation dataset of ToxinPred2 using ToxDL 

and ToxClassifier due to the limitations of their web services (one is non-functional, and 
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another allows a maximum of 10 sequences per submission for prediction). We used a 

standalone version of TOXIFY to predict the toxicity of proteins in validation dataset of 

ToxinPred2. It has predicted the toxicity of only 2617 out of 3296 protein sequences, which 

have length up to 500 amino acids. As shown in Table 4.9, under the heading ‘Performance of 

existing methods on validation dataset of ToxinPred2’, it achieved AUC 0.88, which is lower 

than the performance reported by ToxinPred2 on the same dataset. This comparison 

demonstrates the importance of the newly proposed method in the field of toxicity prediction.  

 
Table 4.9: Comparison of proposed method ToxinPred2 with existing methods 

Method Type of Dataset used Sensitivity Specificity Accuracy AUC MCC 

ToxinPred2 All types of toxins (Proteins) 93.69 97.39 95.54 0.99 0.91 

Performance of existing methods reported in the literature 

ToxinPred All types of toxins (Peptides) 93.80 94.85 94.50 0.98 0.88 

ToxClassifier Animal venom toxins (Proteins) 96.70 99.80 99.70 NA 0.89 

TOXIFY Animal venom toxins (Proteins) 96.00 76.00 86.00 NA 0.74 

ToxDL Animal toxins (Proteins) NA NA NA 0.98 0.79 

ATSE Toxic peptides 96.50 94.00 95.20 0.97 0.90 

Performance of ToxinPred2 on validation dataset of existing methods 

ToxinPred Toxic peptides 97.73 45.73 63.12 0.94 0.44 

ToxClassifier Toxic proteins 97.15 77.54 87.38 0.96 0.76 

TOXIFY Toxic proteins 96.48 92.71 94.59 0.99 0.89 

ToxDL Toxic proteins 100 88.81 89.74 0.99 0.63 

ATSE Toxic peptides 96.65 58.21 76.03 0.94 0.58 

Performance of existing methods on validation dataset of ToxinPred2 

TOXIFY Toxic proteins 68.94 97.94 81.85 0.88 0.68 

 

4.6 Discussion & conclusion 
One of the major challenges in the field of protein/peptide-based therapeutics is to identify 

toxic regions in a protein. There is a dire need to determine the toxic potential of newly 

synthesized proteins. Experimental techniques for determining toxicity proteins are costly and 

time-consuming. Thus, there is a need to develop computer-aided techniques for predicting the 

toxicity of proteins/peptides with high precision. In order to facilitate the scientific community, 

our group developed a method, ToxinPred, for predicting and designing toxic peptides. It is 

heavily used by the scientific community in the field of therapeutic peptides. This tool has been 

developed mainly for peptides as models have been trained on peptides having length up to 35 

amino acids. In order to complement ToxinPred, we proposed a new method, ToxinPred2, for 

predicting the toxicity of proteins. In the present study, three datasets were created: main, 
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alternate and realistic datasets curated from Swiss-Prot. The main dataset consists of 8233 toxic 

and non-toxic proteins, alternate dataset contains 1924 non-redundant toxic and non-toxic 

proteins. Realistic dataset was generated to create realistic conditions in which negative data is 

multiple folds than positive data. Thus, 1924 toxic and 19240 non-toxic proteins were used in 

realistic dataset.  

Various features for the protein sequences were computed using Pfeature tool. The relevant 

features were further selected and ranked using the SVC-L1 and feature-selector tool, 

respectively. Our compositional analysis exhibited that cysteine, glycine, lysine and tryptophan 

are dominant in toxic proteins in comparison to non-toxic proteins. It is noteworthy that the 

composition-based features are among the top selected features. This suggests that these 

features can be used to distinguish between toxic and non-toxic proteins. Furthermore, we have 

implemented the BLAST, a widely used tool to annotate any query protein sequence. If the 

query protein sequence shows high similarity with a known protein function, it designates the 

same function to the query protein. As shown in Table 4.1, BLAST has correctly identified 

some toxins with a probability of correct prediction of more than 40%, with a very low error 

rate. Thereby, it can be inferred that BLAST is generating a large number of no hits; hence it 

fails when the unknown protein has no similarity with toxins and non-toxins. Combined model 

was developed using ML models (AAC), BLAST and MERCI to overcome this limitation. We 

have achieved the highest performance with balanced sensitivity and specificity and higher 

accuracy, as shown in Table 4.7.  

In the present study, we have provided a comprehensive platform where users can classify toxic 

and non-toxic proteins/peptides. To facilitate the scientific community and promote 

widespread usage of the proposed prediction method, we have provided a freely accessible web 

server and a standalone package of ToxinPred2. In the web server, we have incorporated the 

best performing model for correctly predicting the toxins and non-toxins. However, one of the 

limitations of our method is that it can classify toxins and non-toxins regardless of their source 

of origin. We hope that the researchers will extensively use our prediction method for designing 

improved and accurate protein/peptide-based therapeutics against various diseases. 

 
4.7 Limitation of the study 

In this study, we have made an attempt to develop the user friendly method that can be used to 

classify the toxic and non-toxic proteins. However, it is general method it can classify toxins 

and non-toxins regardless of their source of origin.  
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5.1 Introduction 

Allergy is the abnormal behaviour of the immune system against foreign substances called 

allergens. It involves a series of many reactions, which trigger various symptoms like allergic 

asthma, rhinitis, skin reactions, and difficulty in breathing that can lead to death. The rise in 

the occurrence of allergic diseases in the last few years has not only enhanced the costs of 

treatment but also adversely affected the quality of life of a large population (Obermeyer & 

Ferreira, 2005). Allergens like dust mites, pollens, and many others induce Type I 

hypersensitive reactions, which elicit IgE antibodies. This allergic reaction results in the release 

of inflammatory mediators, such as histamine, cytokines from mast cells and basophils (Masoli 

et al., 2004), which affects the population at large scale, particularly skin sensitization (Sutton 

& Gould, 1993), (Broadfield et al., 2002).   

Sensitization is the first encounter of allergen, which develops the hypersensitivity, while the 

second encounter of the same allergen leads to the effector response. Type I hypersensitivity is 

mediated by immunoglobulin E (IgE), which is produced to act against allergens. Allergens 

induce the Type I hypersensitivity reaction, which sets off the production of allergen-specific 

IgE epitopes. These epitopes bind to the mast cell and basophils, known as the sensitization of 

mast cells and basophils. Re-exposure of the allergens to sensitized mast cells and basophils 

(which are already coated with IgE antibodies) leads to the degranulation and release of 

mediators and inflammatory molecules like histamine, leukotriene, etc., which leads from a 

mild allergic reaction to sudden death from anaphylactic shock (Mak TW, 2014). Overall 

processing of allergen, activation of IgE antibodies and release of histamine is shown in Figure 

5.1. The guideline issued by Food and Agriculture Organization fails to identify allergens with 

high precision due to a large number of false-positive predictions (FAO/WHO, 2001) 

(FAO/WHO, 2003). Earlier methods developed before 2005 can be classified in the following 

categories; i) similarity search, ii) supervised learning-based models, and iii) motif-based 

approaches. 

In 2006, a hybrid method AlgPred (Saha & Raghava, 2006a), was developed that combines the 

following approaches for predicting allergenic proteins; i) SVM-based model, ii) mapping of 

IgE epitopes, iii) MEME/MAST motifs (Bailey & Elkan, 1994), (Bailey & Gribskov, 1998), 

and iv) BLAST-based similarity search (Camacho et al., 2009). This method combines the 

power of different approaches, and it outperformed all methods developed before 2006. 

Following is a brief description of methods developed in the last 14 years. AllerTool is an 

SVM-based method developed in 2007; it combines a similarity-based approach for predicting 
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allergenicity and allergic cross-reactivity in proteins (Zhang et al., 2007). AllerHunter was 

developed in 2009 on 1356 allergenic proteins, where models were developed using SVM-

pairwise sequence similarity (Muh et al., 2009). In 2013, AllerTOP was developed on 2210 

allergens, and its updated version, AllerTOPv2, has been developed on 2427 allergens 

(Dimitrov et al., 2013), (Dimitrov, Bangov, et al., 2014). In the case of PREAL, an SVM-based 

model was developed on the 1176 allergenic protein using biochemical and physicochemical 

properties (Wang et al., 2013). In 2014, AllergenFP was developed on a dataset of 2427 

allergens that incorporates descriptor-based fingerprints for developing prediction models 

(Dimitrov, Naneva, et al., 2014). Recently, AllerCatPro has been developed on 4180 allergens 

for predicting the allergenicity potential of a protein from its sequence and 3D epitope mapping 

(Maurer-Stroh et al., 2019). 

 

 

Figure 5.1: Mechanism showing processing of allergen, activation of IgE antibodies and 
release of histamine (10.1093/bib/bbaa294) 

 
These allergen prediction methods are heavily used by the scientific community, particularly 

by experimental researchers in designing proteins with desired allergenicity. These methods 

have their limitations that include; i) most of the methods have been developed on small 

datasets, ii) redundant proteins in the dataset, iii) no mapping of IgE epitopes, iv) motif 

information not incorporated. In order to complement existing methods in serving the research 

community, in this study, we made a systematic attempt to improve our method AlgPred (Saha 

& Raghava, 2006a). 
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In this study, we proposed the prediction method to classify the allergenic and non-allergenic 

protein sequences, AlgPred 2.0, an improved version of AlgPred developed in 2006. AlgPred 

combined four different methods to predict the allergens. In contrast, in  AlgPred 2.0, we have 

incorporated a number of new features to improve the performance of the method using the 

state of art techniques. In addition to the large dataset used for training our models, we have 

incorporated the following features. AlgPred 2.0 allows users to map 10451 experimentally 

validated IgE epitopes on a protein sequence instead of 178 epitopes in AlgPred. In this study, 

we have also used evolutionary information for building in-silico models where the 

evolutionary information was derived from PSSM profiles generated using PSI-BLAST. We 

also introduced a new approach for using BLAST called ensemble of BLAST hits, where the 

prediction of allergens is based on the top five hits. In the previous method, AlgPred, we had 

used only SVM using AAC, whereas, in AlgPred 2.0, we used several machine learning 

techniques, including RF, SVM, KNN, MLP, and DT. In order to map IgE epitopes on proteins, 

we used BLAST and MERCI software in AlgPred 2.0. In summary, AlgPred 2.0 is a hybrid 

method that combines most of the existing approaches to identify allergens with high accuracy.  

 

5.2 Materials & methods 

 

5.2.1 Compilation of dataset 
The dataset used in this study was compiled from various databases and repositories, namely, 

COMPARE (2018 allergens) (https://comparedatabase.org), Allergen Online (2078 allergens) 

(Goodman et al., 2016), AlgPred (Saha & Raghava, 2006a), AllerTop (2427 allergens and 2427 

non-allergens) (Dimitrov et al., 2013) and Swiss-Prot (1078 allergens with the query ‘allergen 

AND reviewed:yes’ (UniProt, 2021). All proteins containing non-standard characters (i.e. 

BJOUXZ) or less than 50 amino acids or non-allergen sequences similar to allergen sequences 

were removed. Finally, we got 10 075 allergen sequences, which we called a positive dataset.  

For obtaining a negative dataset, we extracted 545 820 proteins using the query ‘NOT allergen 

NOT cancer NOT allergenic AND reviewed: yes’; these proteins were assigned as non-

allergens. We got 533 719 non-allergenic sequences after removing sequences having less than 

50 amino acids and containing the non-standard characters. We randomly pick up 10 075 non-

allergenic sequences from 533 719 non-allergenic sequences. Finally, we got a dataset that 

contains 10 075 allergenic and 10 075 non-allergenic sequences.  

 

https://comparedatabase.org/
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5.2.2 Creation of non-redundant dataset 

One should remove the redundancy among proteins in a dataset to develop a robust method. In 

the past, researchers have created non-redundant datasets at different levels of similarity from 

30% to 100%. One of the major reasons to create a non-redundant dataset is to remove similar 

sequences among proteins in training and testing datasets. Unfortunately, the removal of 

redundant sequences also reduces the size of the dataset. In a previous study, we introduced 

the concept of data partitioning to create non-redundant training and testing datasets without 

reducing the size of the dataset (Saha & Raghava, 2006a). In this study, we also used the same 

approach to partition data in training and testing datasets, where no protein in the training set 

had more than 40% similarity with any protein in the test dataset. First, clusters were created 

using CD-HIT (Li & Godzik, 2006) software at a 40% sequence similarity for the positive 

dataset (allergens) as well as for the negative dataset (non-allergens). Second, clusters obtained 

for both allergens and non-allergens datasets were divided into 80% training data and 20% 

validation data. The clusters in training data (both for positive and negative data) were further 

fractionated into five sets such that all proteins of a given cluster are kept in one set, and 

sequences in one set do not have any similarity with sequences of other sets. It results in five 

positive sets and five negative sets. The 20% validation set also consists of positive and 

negative clusters that are not present in the training data. 

 

5.2.3 Dataset of IgE epitopes  

The epitopes were obtained from various sources that include IEDB (15 046) (Vita et al., 2019), 

AllerBase (863) (Kadam et al., 2017), and IgPred (2341) (Gupta, Ansari, et al., 2013). The non-

IgE epitopes were obtained from IEDB (381 396) and IgPred (35 219). Finally, we got 10 451 

IgE epitopes and 307 866 non-IgE epitopes after removing redundant epitopes and epitopes 

having less than five and more than 50 amino acids.   

 

5.2.4 BLAST for similarity search 

The similarity-based search module was developed using the blastp suite of BLAST+ version 

2.7.1 (Camacho et al., 2009), where the query sequences were hit against the database of 

allergens and non-allergens. This study used two strategies to identify allergens: (i) top hit of 

BLAST and (ii) ensemble of top five hits of BLAST. 
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5.2.5 Motif scanning 

The motif is a recurring pattern of amino acids or nucleotides occurring in protein or DNA. In 

this study, we used MEME/MAST and MERCI software to find out the motifs from 

experimentally validated IgE epitopes (Bailey & Elkan, 1994), (Vens et al., 2011). 

 

5.2.6 Protein features 

Residue information of the protein was used in the form of AAC and DPC for developing ML 

models. The web server ‘Pfeature’ was used for this purpose (Pande A, 2019). Evolutionary 

information of the protein in the form of PSSM profiles was also computed. 

 

5.2.7 Machine learning models  

Different classification models such as RF, SVM, DT, KNN and MLP were implemented using 

sklearn package from python. GridSearchCV was used for the optimization of hyper-

parameters. Protein features such as AAC and PSSM-400 were used as fixed-length vectors 

for training and testing models. A 5-fold CV was used to evaluate the models using different 

performance measures. The complete architecture of AlgPred 2.0 is shown in Figure 5.2.  

 

 
Figure 5.2: Flowchart shows the overall architecture of AlgPred 2.0 (10.1093/bib/bbaa294) 
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5.2.8 Evaluation of performance  

A 5-fold CV was used to evaluate the performance of the prediction models developed in this 

study. A training set was formed by combining four negative and four positive sets, while the 

corresponding test set was formed by combining the remaining positive and negative sets. This 

method is repeated five times to ensure that the combination of a positive set and a negative 

set is used as a test set only once. These five training and testing sets were used for developing 

learning-based prediction models. Models were then evaluated by performing predictions on 

the unseen validation set. Threshold independent parameters such as sensitivity, specificity, 

accuracy, and MCC; and dependent parameter viz. AUC value, was used to evaluate the 

performance of the models.  

 

5.2.9 Hybrid approach for classification 

In order to improve the accuracy of classifying allergenic and non-allergenic proteins, we 

implemented a hybrid approach as used in AlgPred and other state-of-the-art methods. In 

AlgPred 2.0, we have also applied a hybrid approach. Here, the following three techniques 

have been combined: (i) similarity-based approach using BLAST, (ii) motif-based approach 

using MERCI and (iii) ML-based technique. First, the given protein sequence was classified 

using BLAST at E-value of 10-6. We assigned the score of ‘+0.5’ for the correct positive 

predictions (allergenic proteins), ‘-0.5’ for correct negative predictions (non-allergenic 

proteins) and ‘0’ for no hits. Second, the same protein sequence was classified using MERCI. 

We assigned the score of ‘+0.5’ if the motifs were found and ‘0’ if the motifs were not found. 

In the case of a hybrid approach, scores obtained from three methods (i.e., BLAST, MERCI 

and ML scores) were combined to compute the overall score. This overall score of the hybrid 

approach was used for assigning the protein as allergenic and non-allergenic protein at different 

thresholds. 

 

5.3 Results 
 

5.3.1 Prediction based on similarity  
BLAST is the widely used software for similarity search. Hence, we have implemented the 

BLAST to segregate the allergens and non-allergens. We have implemented a 5-fold CV to 

avoid the biasness, in which the proteins in the one set, i.e., test set, were searched against the 

five datasets using the BLAST at various E-value cut-offs. This process is repeated five times 
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so that each set gets the chance to be the test set once to cover all the proteins in the dataset. 

As exhibited in Table 5.1, the number of correctly predicted allergens (sensitivity) increased 

from 57.3% to 63.68% and 43.57% to 47.00% for the training dataset and validation dataset, 

respectively, with E-value from 10-6 to 10-1. The sensitivity is directly proportional to the error 

(% of non-allergens) with the increase of E-values. A similar trend is followed by the non-

allergens; the specificity varied from 11.32% to 19.26% and 13.10% to 22.28% in training and 

validation dataset, respectively, with an increase in the error from 1.33% to 1.89% and 1.19% 

and 1.74%, for E-value from 10-6 to 10-1. The maximum overall accuracies achieved using 

BLAST method are 41.47% and 34.64% for training and validation dataset, respectively, due 

to the significant number of no hits. The overall performance of BLAST is too poor due to a 

large number of no hits; it means BLAST alone cannot be used for predicting allergenic 

proteins, as represented in Table 5.1. 

 
Table 5.1: Shows the results of similarity-based search developed using top five hits of BLAST  

E-
value 

Training Validation 

Allergens Non-allergens Allergens Non-allergens 

Correct 
hits (Sens) 

Wrong 
hits  

(Error) 

Correct 
hits (Spec) 

Wrong 
hits  

(Error) 

Correct 
hits (Sens) 

Wrong 
hits  

(Error) 

Correct 
hits (Spec) 

Wrong hits 
Error 

10-6 
4618 

(57.3%) 
164 

 (2.03%) 
912 

(11.32%) 
107  

(1.33%) 
878 

(43.57%) 
48  

(2.38%) 
264 

(13.1%) 
24  

(1.19%) 

10-5 
4665 

(57.88%) 
174  

(2.16%) 
1001 

(12.42%) 
111  

(1.38%) 
883 

(43.82%) 
48  

(2.38%) 
284 

(14.09%) 
24  

(1.19%) 

10-4 
4772 

(59.21%) 
189  

(2.34%) 
1093 

(13.56%) 
120  

(1.49%) 
887 

(44.02%) 
50  

(2.48%) 
311 

(15.43%) 
24  

(1.19%) 

10-3 
4940 

(61.29%) 
216  

(2.68%) 
1201 

(14.9%) 
127  

(1.58%) 
899 

(44.62%) 
52  

(2.58%) 
342 

(16.97%) 
24  

(1.19%) 

10-2 
5056 

(62.73%) 
264  

(3.28%) 
1349 

(16.74%) 
135  

(1.67%) 
913 

(45.31%) 
55  

(2.73%) 
383 

(19.01%) 
28  

(1.39%) 

10-1 
5133 

(63.68%) 
291  

(3.61%) 
1552 

(19.26%) 
152  

(1.89%) 
947 (47%) 

70  
(3.47%) 

449 
(22.28%) 

35  
(1.74%) 

 

5.3.2 Mapping of IgE epitopes 

It is known that a protein containing an IgE epitope is an allergen, as IgE epitopes are 

responsible for allergenicity. It has been observed in the case of AlgPred that only a few 

allergen sequences can be mapped on IgE epitopes.  Thus in this study, we used a similarity-

based approach for searching IgE epitopes in a protein sequence. As described in materials and 

methods, we used BLAST to search a protein against a database of IgE epitopes. As shown in 

Figure 5.3, the sensitivity increased from 55.3% to 72.99%, with E-value from 10-6 to 10-1, 

implying that the allergens have similarities with IgE epitopes.  Interestingly, this technique 
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has a low rate of false-positive or error  (i.e., 0.03% to 0.66%). This technique can be used to 

assign allergens based on the BLAST hit of a protein against IgE epitopes. We integrated this 

technique into our web server to facilitate users to hit their protein against the database of IgE 

epitopes. In addition to BLAST-based mapping, we also used MERCI software to map IgE 

epitopes on a protein. In this case, IgE specific motifs that are exclusively found in the IgE 

epitope were discovered using MERCI software. Finally, we search these IgE specific motifs 

in a query protein. Though this technique was only able to identify 1% of allergens, but the 

false prediction was nearly negligible. 

 
Figure 5.3: Shows the performance of BLAST with change in E-value  

(x-axis shows E-value; y-axis shows the percentage of coverage) 
 

5.3.3 Motif-based prediction  

 

MEME/MAST 

We identified motifs using MEME software from proteins in the training set. Then MAST 

module was used to search for matches to a set of motifs in the test set. This process is repeated 

five times to obtain the performance of MEME/MAST on the training dataset. As shown in 

Figure 5.4, sensitivity increases from 21.64% to 41.89% on the training dataset and from 

10.52% to 36.97% on the validation dataset, respectively, at E-value ranging from 0.001 to 

100. Although the sensitivity increased with an increase in E-value, the percentage of the wrong 

assignment of non-allergens to allergens also increased from 2.07% to 17.95% on the training 

dataset and 1.49% to 19.9% on the validation dataset, respectively. This depicts that motif-

based approach alone is insufficient to discriminate between allergens and non-allergens. 
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Figure 5.4: Shows the performance of MEME/MAST with change in E-value 

(x-axis shows E-value; y-axis shows the percentage of coverage) 
 

MERCI 

We used MERCI suite to identify the motifs/patterns present in allergens and non-allergens. 

Here, we have extracted motifs present exclusively in experimentally validated IgE epitopes 

and searched for these motifs in allergens and non-allergens protein sequences. Some motifs 

exclusively present in IgE epitopes and allergens are ‘QQQFPQQ, FPQQQF, PQQQFP, and 

PYPQQ’ etc. Out of 10 075 allergens proteins, 105 sequences were found to have the IgE 

motifs, and out of 10 075 non-allergens proteins, only 2 sequences have shown the motifs 

similar to IgE motifs. 

 

5.3.4 Composition-based models 

Firstly, we compute the AAC of allergen and non-allergen proteins. Several ML models (such 

as RF, SVM, KNN, MLP, and DT) implemented to achieve maximum performance. To achieve 

maximum accuracy with nearly equal sensitivity and specificity, we optimize several ML 

models by tuning the different parameters. RF model achieved maximum AUC 0.93 and 0.92 

with balanced sensitivity and specificity on the training and validation dataset. The SVM-based 

model achieves reasonable performance compared to other ML models with AUC on training 

(0.89) and validation (0.90) dataset, as represented in Table 5.2.  
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Table 5.2: Shows the results of ML-based models developed using amino acid composition 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 89.16 82.7 85.93 0.93 0.72 84.52 83.62 84.07 0.92 0.68 

SVM 85.89 79.9 82.9 0.89 0.66 87.79 77.92 82.85 0.9 0.66 

KNN 85.57 79.26 82.41 0.9 0.65 85.11 79.95 82.53 0.9 0.65 

MLP 81.81 80.79 81.3 0.89 0.63 85.76 76.67 81.22 0.89 0.63 

DT 73.75 78.31 76.03 0.82 0.52 54.24 82.78 68.51 0.74 0.39 

 

5.3.5 PSSM-based models  

In order to compute evolutionary information of protein sequences, we generate PSSM profiles 

to develop several machine learning models based on positional and composition information 

of the allergen and non-allergen proteins. RF performs best among various ML models with 

balanced sensitivity and specificity. RF-based model attained maximum performance with 

AUC of 0.94, MCC of 0.76, and accuracy of 87.74% on the training and AUC of 0.92, MCC 

of 0.67, and accuracy of 83.33% on the validation dataset. The comprehensive performance of 

other machine learning models is represented in Table 5.3.    

 
Table 5.3: Shows the results of ML-based models developed using PSSM profiles 

PSSM 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 85.79 89.68 87.74 0.94 0.76 78.56 88.09 83.33 0.92 0.67 

KNN 84.23 88.11 86.17 0.93 0.72 79.06 88.39 83.72 0.91 0.68 

MLP 82.84 86.74 84.79 0.93 0.70 77.52 89.93 83.72 0.91 0.68 

SVM 82.72 84.89 83.80 0.91 0.68 83.77 84.37 84.07 0.90 0.68 

DT 59.03 84.27 71.65 0.73 0.45 46.80 86.75 66.77 0.68 0.37 

 
5.3.6 ML+Motif-based models 

MEME/MAST approach was combined with different ML approaches. As shown in Table 5.4, 

RF-based model performs best among various ML techniques. It achieves AUC (0.93 and 

0.92), MCC (0.72 and 0.68), and accuracy of (85.99% and 84.22%) on training and validation 

dataset, which is quite higher compared to other models. The input feature combines the 

probability scores generated by machine learning after computing AAC and scores of 

MEME/MAST. Similarly, MERCI approach was also combined with ML approach. Further, 

several ML models were implemented by taking probability scores after computing AAC and 
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MERCI as input features. Results have shown that the RF-based model outperforms other 

models; we achieve maximum accuracy, AUC and MCC of 86%, 0.93, and 0.72; 84%, 0.93, 

and 0.69 on training and validation dataset. The performance of both approaches is shown in 

Table 5.4. 

 

Table 5.4: Shows the results of motif-based approach when combined with ML 
MAST+ML 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 89.34 82.64 85.99 0.93 0.72 84.81 83.62 84.22 0.92 0.68 

KNN 79.73 85.48 82.61 0.90 0.65 78.81 86.05 82.43 0.90 0.65 

SVM 81.40 80.26 80.83 0.89 0.62 87.94 77.92 82.93 0.90 0.66 

MLP 78.96 80.09 79.52 0.88 0.59 86.05 76.67 81.36 0.90 0.63 

DT 72.88 73.2 73.04 0.80 0.46 66.45 67.39 66.92 0.75 0.34 

MERCI+ML 

RF 88.96 82.64 85.80 0.93 0.72 85.51 83.62 84.57 0.93 0.69 

KNN 85.57 79.26 82.41 0.91 0.65 85.81 79.95 82.88 0.90 0.66 

SVM 81.14 80.26 80.7 0.89 0.61 88.49 77.92 83.2 0.91 0.67 

MLP 78.41 80.09 79.25 0.87 0.59 86.75 76.67 81.71 0.90 0.64 

DT 69.52 73.2 71.36 0.77 0.43 65.66 67.39 66.53 0.74 0.33 

 

5.3.7 ML+BLAST-based models  

In order to combine the power of the similarity search approach BLAST and machine learning-

based models, we developed a method using these approaches. Firstly, the BLAST search was 

performed for a query sequence; if we got a BLAST hit, we assigned the query sequence based 

on the BLAST result. A composition-based model is used to predict allergenic and non-

allergenic proteins if there is no hit. The performance of our RF-based model improved 

significantly from AUC 0.93 to 0.99 on the training dataset and AUC 0.92 to 0.98 on the 

validation dataset. We also combine the BLAST search with machine learning-based models 

developed using the PSSM profile. Table 5.5 shows the performance of different machine 

learning classifiers corresponding to the combination of BLAST+AAC and BLAST+PSSM for 

training and validation dataset.  
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Table 5.5: The performance of BLAST-based approach when combined with AAC and PSSM 

profiles 

BLAST+AAC 

ML 
Training Validation 

Sens Spec ACC AUC MCC Sens Spec ACC AUC MCC 

RF 93.10 95.36 94.23 0.99 0.88 88.44 95.09 91.76 0.98 0.84 

SVM 91.55 85.22 88.39 0.96 0.77 95.83 83.97 89.90 0.97 0.80 

KNN 94.47 90.45 92.46 0.98 0.85 93.35 91.46 92.41 0.97 0.85 

MLP 88.86 92.84 90.85 0.96 0.82 88.19 92.51 90.35 0.96 0.81 

DT 85.94 88.54 87.24 0.93 0.75 84.07 88.93 86.50 0.93 0.73 

BLAST+PSSM 
RF 93.59 94.29 93.94 0.99 0.88 87.79 93.25 90.52 0.97 0.81 

KNN 93.28 92.47 92.87 0.98 0.86 87.05 93.25 90.15 0.97 0.8 

MLP 93.78 93.25 93.52 0.98 0.87 87.54 94.99 91.27 0.97 0.83 

SVM 86.95 89.54 88.24 0.94 0.77 88.19 93.5 90.84 0.97 0.82 

DT 80.05 90.38 85.22 0.9 0.71 78.56 91.36 84.96 0.91 0.71 

 

5.3.8 Hybrid model 

We develop a hybrid model intending to improve the performance of the allergen prediction 

method. In the hybrid approach, we combine two or more methods to overcome the limitation 

of independent models. Here, we have combined a composition-based model with BLAST and 

MERCI-based approaches. In order to integrate all three approaches, proteins were first 

classified using BLAST at E-value of 10-6 followed by MERCI and the proteins not classified 

by either method were predicted using machine learning. The hybrid method improved the 

coverage, which was previously missing using all the methods separately. As shown in Table 

5.6, the performance of the hybrid method improved when all the methods were combined. 

The best performing model was RF-based model with an accuracy of 94.23%, AUC of 0.99 

and MCC of 0.88 on training dataset and accuracy of 92.26%, AUC of 0.98 and MCC of 0.85 

on validation dataset, which is relatively high as compared to the other existing models. 

 
Table 5.6: The performance of hybrid method combining ML using amino acid composition, 

BLAST and MERCI 

ML 
Training dataset Validation dataset 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 93.01±0.02 95.36±0.03 94.23±0.02 0.99±0.01 0.88±0.04 89.43 95.09 92.26 0.98 0.85 

KNN 94.47±0.02 90.45±0.01 92.46±0.02 0.98±0.01 
 

0.85±0.03 94.04 91.46 92.75 0.97 0.86 

SVM 91.55±0.04 85.22±0.05 88.39±0.06 0.97±0.01 
 

0.77±0.09 96.53 83.97 90.25 0.97 0.81 
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MLP 90.33±0.03 90.22±0.03 90.28±0.03 0.96±0.03 0.81±0.05 90.82 89.33 90.07 0.96 0.81 

DT 86.43±0.05 88.54±0.06 87.48±0.06 0.93±0.02 0.75±0.09 85.06 88.93 87.01 0.93 0.74 

 
5.3.9 Best models developed in the study 

The performance of the best classification models developed using the different features is 

listed in Table 5.7 . 

 

Table 5.7: List of the features used to develop AlgPred 2.0 along with the best performing ML 

models 

Method Features ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

Composition 
based features 

AAC RF 89.16 82.7 85.93 0.93 0.72 84.52 83.62 84.07 0.92 0.68 

PSSM based 
features 

PSSM 
profiles RF 85.79 89.68 87.74 0.94 0.76 78.56 88.09 83.33 0.92 0.67 

MEME/MAST 
Motifs + 
AAC 

RF 89.34 82.64 85.99 0.93 0.72 84.81 83.62 84.22 0.92 0.68 

MERCI 
Motifs + 
AAC 

RF 88.96 82.64 85.8 0.93 0.72 85.51 83.62 84.57 0.93 0.69 

BLAST based 
approach 

BLAST 
+ AAC 

RF 93.1 95.36 94.23 0.99 0.88 88.44 95.09 91.76 0.98 0.84 

BLAST based 
approach 

BLAST 
+ PSSM 

RF 93.59 94.29 93.94 0.99 0.88 87.79 93.25 90.52 0.97 0.81 

Hybrid 
approach 

BLAST 
+ Motifs 
+ AAC 

RF 93.01 95.36 94.23 0.99 0.88 89.43 95.09 92.26 0.98 0.85 

 
5.4 Comparison with existing methods 

It is important to benchmark existing methods with our method. Unfortunately, most of the 

methods have been developed using different datasets; thus, it is unfair to compare their 

performance with each other. AllerCatPro was developed on 4,180 unique allergenic proteins, 

but the dataset contains the proteins which have 70% or more sequence identity with each other 

(Maurer-Stroh et al., 2019). AllerTOP v2 was developed using 2427 allergens and 2427 non-

allergens; in this method, the dataset used for building the model was redundant (Dimitrov, 

Bangov, et al., 2014). The methods mentioned above have not been evaluated on the 

independent or external dataset. Recently, a state-of-the-art method, AllerHunter, has been 

developed, which uses both internal (5-fold) and external CV. In this study, they used 1356 

allergens and 13449 non-allergens for developing prediction models (Muh et al., 2009). 

AllerHunter achieved a maximum MCC of 0.738 on an external dataset that contains 129 

allergens and 1314 non-allergens. Our hybrid approach achieved a maximum MCC of 0.88 on 

training and 0.85 on validation dataset. We have also validated our method on the independent 
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dataset. The dataset consists of 297 positive proteins added recently in COMPARE and Swiss-

Prot (not used in our study while training, testing and validation). Out of 297 positive proteins, 

280 were correctly predicted by our method using the hybrid approach. Thus, our method also 

achieved high performance (accuracy of 94.28%) on an independent dataset that indicates the 

reliability of AlgPred 2.0. The comparison of AlgPred 2.0 with other existing methods is shown 

in Table 5.8.    

 

Table 5.8: Comparison of AlgPred 2.0 with existing methods 

Methods Dataset Sens Spec Acc AUC MCC 
Web server 

Working 
AlgPred 2.0 20150 93.1 95.36 94.23 0.99±0.01 0.88 Yes 

AlgPred 1278 88.87 81.86 85.02 NA 0.7053 Yes 

AllerCatPro 4180  100 67.00 84.00 NA NA Yes 

AllerTOPv2 4854 86.70 90.70 88.70 NA 0.775 Yes 

AllerTOP 4420 87.60 78.00 82.80 NA 0.671 No 

AllerHunter 14805 83.70 96.40 95.30 0.928±0.004 0.738 No 

AllerTool 1274 86.00 86.00 NA 0.90 NA No 

AllergenFP 4854 86.80 89.10 87.90 NA 0.759 Yes 

 

5.5 Web server & standalone software 
A web server AlgPred 2.0 (https://webs.iiitd.edu.in/raghava/algpred2/), has been developed for 

predicting allergenic proteins. It integrates five major modules; i) Prediction, ii) IgE epitope 

mapping, iii) Design, iv) Motif scan, and v) BLAST search. The ‘Prediction module’ allows 

users to submit the protein sequences in FASTA format to predict the allergenic and non-

allergenic proteins. In this module, the hybrid approach and RF-based model using AAC have 

been integrated. The ‘IgE epitope mapping module’ facilitates the users to map the IgE epitope 

on a query protein sequence. The ‘Design module’ is developed for generating all possible 

mutants of a protein by mutating a single residue at a time. The ‘Motif scan module’ allows to 

scan or map motifs in the protein sequence given by the user. To derive the motifs, it uses two 

software, MEME/MAST and MERCI. The ‘BLAST search module’ facilitates the users to 

perform a similarity-based search using BLAST against allergen and non-allergen database and 

IgE epitopes database. The web server has been designed using a responsive HTML template 

and browser compatibility for different OS systems. To facilitate the users to predict allergens, 

we developed a standalone version of AlgPred 2.0, which is available at 

https://github.com/raghavagps/algpred2. 

 

https://webs.iiitd.edu.in/raghava/algpred2/index.html
https://github.com/raghavagps/algpred2
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5.6 Discussion & conclusion 

For the last five decades, there has been a rise in the prevalence of allergic diseases worldwide. 

These diseases include allergic rhinitis, drug allergy, food allergy, skin allergy and insect 

allergy, amongst many others. While the modern lifestyle and industrialization have been 

deemed as a cause of these diseases, there is still a lack of measures to curb this crucial issue. 
To this endeavour, several in-silico methods/techniques have been developed in the past that 

could be used to assess the allergenicity of proteins. Each method has its own merits and 

limitations. In the present study, we have developed an updated method of our previous 

methods called AlgPred, which combines a wide range of approaches that include SVM-based 

models, BLAST and mapping of IgE epitopes. One of the major limitations of AlgPred is that 

it was trained on limited data (i.e., 578 allergens, 700 non-allergens and 183 IgE epitopes) due 

to lack of data. In the last 14 years, a number of allergens and IgE epitopes have been 

discovered. Thus, there is a need to update AlgPred using recent advances in the field of 

immunology. In the present study, we have developed models using 10 075 allergens and 10 

075 non-allergens. In addition, 10 451 IgE epitopes were used to identify antigenic regions in 

proteins. 

The study also shows that similarity-based search, i.e., BLAST, and motif prediction-based 

models performed poorly when used individually due to a large number of no hits, as shown 

in Table 5.1 and Figure 5.3. To overcome this limitation, we developed machine learning 

models using various classifiers. Composition-based descriptors and evolutionary information 

based descriptors were employed as features since the allergenicity property has been widely 

accredited to the protein sequence. We developed hybrid models to combine the power of 

similarity search-based technique and ML-based models. As shown in Table 5.6, we got the 

highest performance on both training and testing datasets. Apart from the significant prediction 

accuracy, we also highlighted the distinction of our current method over the previously 

developed AlgPred in various contexts. The utilization of a more extensive dataset, MERCI-

based prediction model, voting-based BLAST similarity search, evolutionary information as 

protein descriptors, and use of a wide range of ML classifiers are a few significant 

improvements. To facilitate the scientific community and promote extensive public usage of 

the proposed prediction method, we have also provided a free web server, AlgPred 2.0 

(https://webs.iiitd.edu.in/raghava/algpred2/) as well as standalone version is provided at 

(https://github.com/raghavagps/algpred2). We believe our method would aid in more accurate 

https://webs.iiitd.edu.in/raghava/algpred2/
https://github.com/raghavagps/algpred2
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recognition of allergenic proteins and thereby bring a significant improvement in the field of 

allergy research and therapy. 

 
5.7 Limitation of the study 

In this study, we proposed the prediction method AlgPred 2.0 to classify the allergenic and 

non-allergenic protein sequences. This method that has been trained on the largest dataset and 

also combines most of the existing approaches to identify allergens with high accuracy. The 

dataset in this study has been collected from various databases consisting different sources, 

such as microbes, fish, plants and animals,. So, the limitation of the method is that it can only 

predict the protein as allergenic without specifying its source and type of allergy it can cause.  
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6.1 Introduction 

Allergy is an inappropriate reaction of the immune response when it misidentifies a harmless 

foreign substance as a threat (Sharma et al., 2020), (Dimitrov, Bangov, et al., 2014), (Zhang et 

al., 2007). These foreign substances are known as allergens, triggering various allergic 

reactions and leading to various allergic diseases. Different types of aeroallergens (e.g., 

pollens, spores, dust mites), food allergens (e.g., eggs, peanuts, tree nuts, genetically modified 

foods), and chemical allergens in personal care products (e.g., fragrances in the skin and hair 

care products, dyes, creams) (Maurer-Stroh et al., 2019), (Sharma et al., 2020) can lead to 

allergic symptoms such as allergic asthma, rhinitis, skin reactions and anaphylaxis. It involves 

a series of allergic reactions from mild symptoms like itchy skin, rashes, facial swelling, 

irritation of the eyes leading to watery eyes and nose to severe symptoms like shortness of 

breath, lack of consciousness, weak pulse, nausea, vomiting, which can even lead to death if 

untreated (U.S. FDA, 2020), (Mak TW, 2014). 
There is a wide variety of molecules that can pose a threat as allergens, including biological 

molecules like proteins and peptides (Dang & Lawrence, 2014), (Goodman et al., 2016) or 

some chemical compounds (Kimber et al., 2010). Other than that, molecules like lipids (Del 

Moral & Martinez-Naves, 2017), carbohydrates (Commins & Platts-Mills, 2010), nucleic acid 

(mRNA vaccines) (Rubin, 2021) and some engineered nanoparticles (Alsaleh & Brown, 2020) 

can also stimulate some specific allergic reactions like asthma, food allergies and chronic 

kidney disease, respectively. 

In day-to-day life, the human body is exposed to innumerable chemical substances, including 

natural or organic compounds, pharmaceuticals, cosmetic products (such as makeup, soaps, 

perfumes, lotions, hair dyes etc.), various other chemicals (such as preservatives in food, metals 

in the jewellery) (Sharma, Srivastava, et al., 2017). Multiple new chemical entities are also 

introduced every year for designing new drugs or other purposes (Banerjee et al., 2016). Many 

of these chemical products are known to provoke allergic reactions, causing skin sensitization 

in some people, which results in skin or contact dermatitis. Some may cause the sensitization 

of the respiratory tract leading to occupational asthma, which can be lethal (Kimber et al., 

2011). The allergic reaction caused by small chemical compounds is developed in two phases, 

i.e., (i) Sensitization or Induction and (ii) Elicitation. The mechanism of allergy caused by 

chemical allergens is depicted in Figure 6.1.  
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Figure 6.1: The mechanism of the allergy caused by chemical allergens 

(10.1016/j.compbiomed.2021.104746) 
 
The protein/peptide allergen and chemical toxicity prediction tools and databases are widely 

used by the scientific community in designing the drug molecules with desired properties. 

However, limited efforts have been made to develop a method or tool to predict the 

allergenicity of chemicals causing allergy. In order to help the researchers to study the 

allergenicity of the chemical molecules, it is the first time we have made an attempt to develop 

a computational method named ChAlPred (Chemical Allergen Prediction) for predicting the 

chemical allergens. To create the dataset, we extracted the information of allergenic and non-

allergenic chemicals from different resources and applied various machine learning approaches 

to develop the classification models. Our best models have been integrated into the web server, 

which can be freely accessible at https://webs.iiitd.edu.in/raghava/chalpred/. 

 
6.2 Materials & methods 
 
6.2.1 Dataset collection 

In this study, we have collected allergenic and non-allergenic chemical compounds from IEDB 

(Vita et al., 2019) and Chemical Entities of Biological Interest (ChEBI) database (Hastings et 

https://webs.iiitd.edu.in/raghava/chalpred/
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al., 2016). We obtain a total of 519 unique chemical compounds having allergenic properties 

from IEDB and ChEBI. On the other hand, we have taken 2211 non-allergenic chemical 

compounds with a filter of non-peptidic; No IgE; No histamine; No hypersensitivity; No 

allergy; No cancer collected from IEDB database. The chemical compounds with allergenic 

properties were considered as a positive dataset (allergens), and the compounds having non-

allergenic properties were taken as a negative dataset (non-allergens).  

 

6.2.2 Generation of descriptors 

The chemical descriptors/features of allergen and non-allergen chemical compounds were 

computed using PaDEL software (Yap, 2011). It can compute a number of molecular 

descriptors, such as 2D, 3D and different types of fingerprints for a single chemical compound. 

It has computed 729 2D descriptors, 431 3D descriptors, and 16092 binary fingerprint-based 

(FP) descriptors for the 403 allergen and 1074 non-allergen chemical compounds. These 2D, 

3D, and FP descriptor files were further used to develop different machine learning models. 

 

6.2.3 Feature selection 

In this study, we have used PaDEL software to compute the 2D, 3D and Fingerprint based 

features for the chemical compounds. It has computed 729 2D descriptors, 431 3D descriptors, 

and 16092 binary fingerprint-based descriptors for the 403 allergen and 1074 non-allergen 

chemical compounds. As the number of features computed is very large, so we have used 

various feature selection techniques to select the significant set of features. We used the 

variance threshold-based, correlation-based, and SVC-L1-based feature selection techniques. 

First, low-variance features were removed using VarianceThreshold feature selection method 

from the sklearn package (Pedregosa F, 2011), to remove those features with small value 

changes. Second, correlation-based feature selection method was used to remove the features 

having a correlation >=0.6. To further reduce the vector size, we have applied SVC-L1 method. 

Finally, we get the most important feature set, i.e., 14 descriptors out of 34 descriptors for 2D, 

6 out of 8 descriptors for 3D and 22 FP descriptors out of 957. 

 

6.2.4 Machine learning techniques  

In the current study, different machine learning techniques have been used to classify allergen 

and non-allergen chemical compounds. We used LR, KNN, DT, GNB, XGB, SVC, and RF-

based techniques for the classification.  
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6.2.5 Criteria for evaluating performance 

We have also applied a 5-fold CV on 80% of training data for the internal training, testing and 

model evaluation. The performance of machine learning models was evaluated using the 

standard evaluation parameters such as sensitivity, specificity, accuracy, MCC and AUC. 

Figure 6.2 shows the comprehensive framework of the study. 

 

 
Figure 6.2: Shows the overall methodology used for developing method for chemical 

allergen prediction (10.1016/j.compbiomed.2021.104746) 
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6.3 Results 
 
6.3.1 Performance of machine learning-based models  

After computing various 2D, 3D and FP descriptors of the allergen and non-allergen chemical 

compounds, we have used these features to develop the ML models.  

 

6.3.1.1 Models using 2D descriptors 

The models developed using these ML techniques were optimized by tuning different 

parameters. For 14 (2D) descriptors, it was observed that the model based on the XGB 

algorithm performed better than other classifiers and achieved maximum AUC of 0.89 and 

0.89 on the training and validation datasets, respectively (Table 6.1). 

 

Table 6.1: The performance of machine learning-based models developed using 14 (2D) 

descriptors 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

XGB 81.68 82.10 81.99 0.89 0.59 80.25 76.64 77.63 0.89 0.52 

KNN 81.37 81.99 81.82 0.89 0.59 81.48 79.91 80.34 0.88 0.57 

RF 81.99 81.29 81.48 0.89 0.59 83.95 81.31 82.03 0.90 0.60 

LR 80.12 81.05 80.80 0.88 0.57 81.48 77.57 78.64 0.87 0.54 

DT 79.50 79.65 79.61 0.85 0.55 67.90 76.62 74.24 0.80 0.41 

GNB 78.57 78.36 78.42 0.86 0.52 81.48 77.57 78.64 0.86 0.54 

SVC 78.26 77.78 77.91 0.87 0.52 85.18 78.04 80.00 0.88 0.58 

 

6.3.1.2 Models using 3D descriptors 

For 6 (3D) descriptors, a model based on the RF algorithm performed better than others and 

achieved a maximum AUC of 0.88 and 0.85 on the training and validation datasets, 

respectively. The result for 3D features is shown in Table 6.2. 

 

Table 6.2: The performance of machine learning-based models developed using 6 (3D) 

descriptors 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 79.14 78.69 78.81 0.88 0.53 75.32 81.19 79.66 0.85 0.53 

KNN 77.61 77.87 77.78 0.85 0.51 68.83 80.73 77.63 0.83 0.47 

XGB 76.67 76.11 76.27 0.86 0.48 77.92 79.36 78.98 0.85 0.52 
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SVC 73.32 72.25 72.54 0.81 0.41 62.34 73.85 70.85 0.77 0.33 

LR 68.41 71.31 70.51 0.73 0.36 70.13 72.48 71.86 0.76 0.38 

GNB 68.41 70.61 70.00 0.75 0.36 64.93 73.39 71.17 0.75 0.35 

DT 69.33 68.38 68.64 0.76 0.34 71.43 60.55 63.39 0.72 0.28 

 

6.3.1.3 Models using FP descriptors 

The machine learning model developed for 22 (FP) descriptors, a model based on the RF 

algorithm outperformed other classifiers and achieved maximum AUC of 0.92 and 0.92 on the 

training and validation datasets, respectively. The result for FP features is shown in Table 6.3. 

  

Table 6.3: The performance of machine learning-based models developed using 22 (FP) 

descriptors 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 85.06 85.11 85.09 0.92 0.66 86.67 85.52 85.81 0.92 0.67 

XGB 85.37 85.11 85.18 0.92 0.66 85.33 85.52 85.47 0.89 0.66 

LR 83.84 83.82 83.83 0.91 0.64 81.33 81.45 81.42 0.86 0.58 

SVC 83.54 83.01 83.15 0.91 0.62 82.67 80.54 81.08 0.86 0.58 

KNN 82.93 83.12 83.06 0.91 0.62 85.33 80.54 81.76 0.87 0.60 

GNB 79.57 79.37 79.42 0.88 0.55 70.67 81.45 78.72 0.83 0.45 

DT 79.88 78.90 79.17 0.86 0.54 77.33 76.92 77.03 0.83 0.45 

 

6.3.1.4 Models using hybrid features 

Another ML-based model was developed by combining all three types of descriptors, i.e., 2D, 

3D and FP. A total of 42 features were used for machine learning. It was shown that the RF-

based model had achieved a maximum AUC of 0.94 and 0.93 on the training and validation 

datasets, respectively. As there were only 6 (3D) descriptors, we have excluded them and have 

developed the model with only 36 features (14 (2D) and 22 (FP) descriptors). The obtained 

results show that there was no significant change in the performance of the model. The RF-

based model has achieved an AUC of 0.94 on the training dataset and 0.93 on the validation 

dataset. The results of machine learning models combining all three descriptors and excluding 

3D descriptors are shown in Table 6.4.  
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Table 6.4: The performance of machine learning-based hybrid models developed after 

combining all descriptors 

42 (2D+3D+FP) Descriptors 

ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 85.63 86.00 85.90 0.94 0.68 87.95 82.55 84.07 0.93 0.66 

SVC 84.06 84.01 84.03 0.91 0.64 93.98 78.77 83.05 0.92 0.66 

KNN 84.06 83.66 83.77 0.92 0.63 80.72 81.60 81.36 0.92 0.58 

XGB 83.75 83.78 83.77 0.92 0.63 85.54 79.72 81.36 0.92 0.60 

LR 83.75 83.08 83.26 0.91 0.62 85.54 82.08 83.05 0.89 0.63 

GNB 84.06 79.70 80.88 0.89 0.59 73.49 83.02 80.34 0.87 0.54 

DT 79.06 78.76 78.85 0.87 0.53 81.93 80.66 81.02 0.88 0.58 

36 (2D+FP) Descriptors 

RF 87.5 87.28 87.34 0.94 0.71 84.34 83.02 83.39 0.93 0.63 

XGB 85.01 84.95 84.96 0.93 0.66 81.93 81.13 81.36 0.91 0.59 

LR 84.06 84.48 84.37 0.91 0.64 84.34 83.96 84.07 0.90 0.64 

KNN 83.44 84.13 83.94 0.93 0.63 81.93 82.08 82.03 0.91 0.60 

SVC 84.06 83.08 83.35 0.90 0.63 86.75 81.60 83.05 0.91 0.63 

GNB 84.06 79.00 80.37 0.88 0.58 77.11 83.96 82.03 0.88 0.58 

DT 80.02 79.00 79.27 0.86 0.54 86.75 76.89 79.66 0.88 0.58 

 
 
6.3.1.5 Best models of the study 

The performance of the best classification models developed using the different features is 

listed in Table 6.5. 

 

Table 6.5: List of the features used to develop ChAlPred along with the best performing ML 

models 

Method Features ML 
Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

Chemical 
descriptors 

14 (2D) 
descriptors 

XGB 81.68 82.1 81.99 0.89 0.59 80.25 76.64 77.63 0.89 0.52 

Chemical 
descriptors 

6 (3D) 
descriptors 

RF 79.14 78.69 78.81 0.88 0.53 75.32 81.19 79.66 0.85 0.53 

Chemical 
descriptors 

22 (FP) 
descriptors RF 85.06 85.11 85.09 0.92 0.66 86.67 85.52 85.81 0.92 0.67 

Feature 
selection 

42 
(2D+3D+FP) 
descriptors 

RF 85.63 86 85.9 0.94 0.68 87.95 82.55 84.07 0.93 0.66 

Hybrid 
approach 

36 (2D+FP) 
descriptors RF 87.5 87.28 87.34 0.94 0.71 84.34 83.02 83.39 0.93 0.63 
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6.3.1.6 Fingerprints-based analysis 

In order to understand the importance of each FP in classifying allergens and non-allergens, 

we have computed the prediction ability of each FP. We used our in-house scripts to check the 

discrimination ability of fingerprint-based descriptors calculated by PaDEL. We ranked the 

FPs according to their probabilities for correctly classifying the chemical as allergen and non-

allergen. Based on ranking, we identified the most important 20 FPs. Ten FPs are highly present 

in allergens and were called positive FPs, whereas other 10 which are highly present in non-

allergens were called negative FPs. Figure 6.3 depicts the frequency of top 10 positive and 10 

negative FPs in allergens and non-allergens. These 10 positive FPs are highly abundant in 

allergens but negligible in non-allergens. Similarly, 10 negative FPs are highly abundant in 

non-allergens but negligible in allergens.  

 

 
 

Figure 6.3: Shows the frequency of top 10 positive/ negative fingerprints in allergens and 
non-allergens (10.1016/j.compbiomed.2021.104746) 

 
The description of top 10 positive and 10 negative FPs in allergens and non-allergens is 
presented in Table 6.6.  

Table 6.6: Description of top 10 positive and negative fingerprints in allergens and non-
allergens 

Finger 
prints 

Fingerprint 
Name 

Frequency Descriptor Class Description 

Positive 
FP 

PubchemFP129  38.82% Pubchem FP >= 1 any ring size 4 

MACCSFP11  38.82% MACCS FP MACCS keys 

PubchemFP131  38.51% Pubchem FP 
>= 1 saturated or aromatic nitrogen-
containing ring size 4 

PubchemFP132  38.51% Pubchem FP 
>= 1 saturated or aromatic heteroatom-
containing ring size 4 

MACCSFP8  38.51% MACCS FP MACCS keys 
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KRFP4557  34.47% Klekota-Roth FP O=CNCCNC=O 

GraphFP143  34.16% CDK graph only FP 
Specialized version of the Fingerprinter which 
does not take bond orders into account 

GraphFP1014  37.27% CDK graph only FP 
Specialized version of the Fingerprinter which 
does not take bond orders into account 

GraphFP110 34.78% CDK graph only FP 
Specialized version of the Fingerprinter which 
does not take bond orders into account 

GraphFP267  31.06% CDK graph only FP Specialized version of the Fingerprinter which 
does not take bond orders into account 

Negative 
FP 

SubFP281  57.04% Substructure FP 
[OX2;$([r5]1@C@C@C(O)@C1),$([r6]1@
C@C@C(O)@C(O)@C1)] 

KRFP3160  53.67% Klekota-Roth FP C1CCOCC1 

KRFP4817  37.83% Klekota-Roth FP OCC1OCC(O)C(O)C1O 

KRFP4284  25.26% Klekota-Roth FP NCC(O)CO 

PubchemFP195 25.26% Pubchem FP 
>= 3 saturated or aromatic heteroatom-
containing ring size 6 

KRFP4225  24.91% Klekota-Roth FP NC(CO)CO 

KRFP4823  24.91% Klekota-Roth FP OCCCNC=O 

KRFP890  24.10% Klekota-Roth FP [!#1][NH]C(=O)[CH3] 

KRFP3947  23.86% Klekota-Roth FP CNCC(O)CO 

KRFP3784  23.52% Klekota-Roth FP CCNCC(O)CO 

 
6.4 Case study 
To identify the FDA-approved drugs that can cause allergic reactions, we have downloaded a 

total of 2675 FDA drug molecules from the DrugBank Database (Wishart et al., 2018). Out of 

2675, we have only considered 1102 drugs that are approved. From 1102 drug molecules, the 

2D structures were available only for 842 drugs. Finally, we have the structures of 842 FDA-

approved drug molecules, which were used to identify which drug molecules could be 

allergenic and non-allergenic. We have used the hybrid model of the Predict module on the 

“ChAlPred” web server. The prediction was made using the default parameters. The hybrid 

model has predicted 114 drug molecules to be allergenic. Several studies also support our 

findings that some of these drugs can cause allergy in the patient when administered. We have 

identified 20 drug molecules that are used to cure some diseases but also tend to cause allergic 

symptoms. Table 6.7 depicts the information of the drug molecules which cause some allergic 

reactions. 
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Table 6.7: FDA-approved drug molecules predicted by our server (ChAlPred) causing allergic 

symptoms 

Drug Bank ID FDA-Approved Drugs Prediction Allergic symptoms 

DB01112 Cefuroxime Allergen Anaphylactic reaction  
(Del Villar-Guerra et al., 2016)  

DB00859 Penicillamine Allergen Skin allergy  
(Zhu et al., 2020)  

DB01007 Tioconazole Allergen Contact hypersensitivity 
(Heikkila et al., 1996) 

DB06209 Prasugrel Allergen Hypersensitivity skin reaction  
(Kim et al., 2014) 

DB01330 Cefotetan Allergen Cefotetan-induced anaphylaxis 
(Nam et al., 2015) 

 
6.5 Web server interface 

We have developed a user-friendly web server named ChAlPred for the prediction of chemicals 

as allergens and non-allergens. In this server, we have provided the three modules: (i) Predict, 

(ii) Draw and (iii) Analog design module. The Predict module allows the user to submit the 

chemical compounds in different formats, such as SMILE, SDF and MOL formats, to predict 

whether the chemical could be allergenic or non-allergenic. The Draw module allows the user 

to draw or modify a molecule in an interactive way using Ketcher (Life Science open Source, 

2021) and submit the molecule to predict whether the modified compounds will be allergenic 

or not. The Analog design module can be used to generate analogs based upon a combination 

of a given scaffold, building blocks and linkers. The server subsequently predicts the generated 

analogs as allergenic or non-allergenic. The web server has been designed using a responsive 

HTML template and browser compatibility for different OS systems. 

 
6.6 Discussion & conclusion 

One of the major challenges in the field of drug discovery is the side effect or adverse reactions 

of drugs. In the past, a number of drugs have already been withdrawn from the market due to 

their adverse effects. A wide range of toxicities are responsible for the side effects of drugs; it 

may be cytotoxicity, immuno-toxicity, hemo-toxicity, liver toxicity or allergenicity (Yang et 

al., 2018). Identification of toxicity is a costly, time-consuming and tedious task. Thus, there 

is a need to predict these toxicities using in-silico methods. Numerous tools have been 

developed to estimate the toxicity of the chemicals using different methodologies, such as The 

Toxicity Estimation Software Tool (TEST).  It uses Quantitative Structure-Activity 

Relationships (QSAR) to estimate the toxicity of chemicals (U.S. EPA, 2020). VegaQSAR, 
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Toxtree (Patlewicz et al., 2008), and PreADMET are the other tools based on the QSAR model 

for toxicity prediction of the chemical molecules. ML-based tools such as ToxiM, developed 

by Sharma et al., predict the toxicity and toxicity-related properties of small chemical 

molecules using ML approaches (Sharma, Srivastava, et al., 2017), ProTox-II (Banerjee et al., 

2018). 

In contrast, no tool has been developed for predicting the allergenicity of chemicals. In this 

work, we have collected chemical compounds with their well-defined molecular descriptors 

utilizing publicly available databases such as IEDB and ChEBI. The data yielded several 

descriptors, which were reduced using various feature selection methods. We sorted the most 

important feature set, i.e., 14 for 2D, 6 for 3D and 22 for FP descriptors. Based on these selected 

features (14 2D and 22 FP), we have successfully employed several ML approaches and found 

that RF attained the highest AUC of 0.94 and 0.93 in the training as well as validation dataset. 

In addition, fingerprints-based analysis suggests that two positive FPs, i.e., PubChemFP129 

(Extended Smallest Set of Smallest Rings (ESSSR) ring set >= 1 any ring size 4) and 

GraphFP1014 are highly present in allergenic chemical compounds, and three negative FPs, 

i.e., Klekota-Roth fingerprints (KRFP890 (!#1NHC(=O)CH3, KRFP3160 (C1CCOCC1)) and 

Substructure fingerprint (SubFP281 

OX2;$(r51@C@C@C(O)@C1),$(r61@C@C@C(O)@C(O)@C1))  are abundant in non-

allergenic chemical compounds. FDA-approved drug analysis has shown that few drugs used 

to treat certain diseases are also causing allergies as a side effect. Literature evidence has shown 

that the administration of FDA-approved drugs such as Cefuroxime (Del Villar-Guerra et al., 

2016), Spironolactone (Ghislain et al., 2004), Penicillamine (Zhu et al., 2020) can cause 

allergic reactions like skin allergies, anaphylactic reactions, hypersensitivity. For instance, a 

case report has shown that 60 year old patient was experiencing an anaphylactic reaction after 

being given the antibiotic cefuroxime (Gu et al., 2019). Another report by Kinsara has shown 

that Spironolactone, a potassium sparing diuretic, was given to a patient diagnosed with 

idiopathic cardiomyopathy, and he developed macular rashes on both the arms (Kinsara AJ, 

2018). A clinical study by Zhu et al. reported that the patients with Wilson disease were given 

D-penicillamine medication at first, but later they developed neurological symptoms as well as 

allergies (Zhu et al., 2020). 

We can see that these medications can cause a variety of allergic reactions in patients, some of 

which can be fatal. To prevent these problems, there is a dire need to predict the allergenicity 

of chemical compounds before using them for treatment purposes. Eventually, we built a freely 

available web server, namely ChAlPred, for predicting allergenic and non-allergenic chemical 
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compounds using ML techniques based on their 2D, 3D and FP molecular descriptors. We 

hope that this study will be helpful in the future for designing drug molecules with no allergenic 

properties.  

  
6.7 Limitation of the study 

Various methods have been developed to predict the allergenicity of the proteins, but there is 

no method to study the allergenicity of the chemical molecules. So, in this study, we have made 

an attempt to develop a novel computational method named ChAlPred (Chemical Allergen 

Prediction) for predicting chemical allergens. Being the first of its kind, the limitation of the 

study is the small dataset. We have used 403 allergenic and 1074 non-allergenic chemical 

compounds obtained from IEDB database. There is a need for sufficient data size to develop 

an accurate and reliable method. In this study, a systematic attempt has been made to develop 

the best possible models in the present scenario. 
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Microbial infections are one of the leading causes of high mortality and morbidity throughout 

the globe. Virulence factors associated with the pathogens play a vital role in establishing the 

interaction with the host as well as causing the disease to the host. Proteins related to the 

virulence factors are often intended as drug and vaccine targets for designing therapeutic 

molecules against pathogenic micro-organisms. However, increasing antibiotics and drug 

resistance poses a major challenge in the development of novel drugs. To combat this issue, 

there is an urgent need to accelerate the discovery of new antibiotics, identification of novel 

therapeutic targets and pharmacological compounds with unique mechanisms of action. 

Advances in various technologies led to the explosive growth of experimentally verified 

proteomic data related to virulence factors, which is available in the form of repositories. 

Computational approaches can be developed using the available data and can be utilised in 

prior detection of putative drug and vaccine targets to save time as well as money. Thus overall 

work focuses in developing computational tools for designing the therapeutic molecules 

against the virulent factors of pathogens.  

Chapter 2 provides a glimpse of the traditional and conventional approaches used to identify 

the virulence factors and how these factors can be used as potential drug and vaccine 

candidates. In this chapter, we have discussed the computational resources, repositories, 

knowledgebase and in-silico tools that have been developed till now to store the information 

regarding the virulence factors. Apart from that, tools and databases developed for retrieving 

the information about toxins, allergy caused by proteins and chemicals have also been 

discussed. 

Chapter 3 deals with the development of a web resource for the identification of putative 

virulence factors of various pathogens. The identification of virulence-associated factors is of 

utmost importance and is of great immunological interest. These factors can be used as 

potential drug and vaccine candidates to treat various microbial infections. Thus, to aid the 

clinicians and scientific community, we have developed a machine learning-based method 

named “VirFacPred” for the identification of novel virulence factors. The method has been 

trained, tested and evaluated on two datasets curated from the recent release of the Swiss-Prot. 

The main dataset contains 7058 positive and 7058 negative sequences, whereas the alternate 

dataset consists of 4714 virulent and 4714 non-virulent sequences. To provide unbiased 

evaluation, we performed internal validation on 80% of the data and external validation on the 

remaining 20% of data. More than 9000 features were generated for both datasets, and a feature 
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selection technique was also implemented to compute the best feature set. Firstly, a similarity-

based search using BLAST was performed against the dataset, and virulent factors were 

predicted based on the level of similarity with known sequences. Secondly, MERCI-based 

motif search was implemented to identify the motifs which are exclusively present in virulent 

proteins. Thirdly, several prediction models have been developed using a wide range of 

machine learning techniques. Finally, a hybrid method that combines all three approaches has 

been developed to attain the maximum performance of the model with balanced sensitivity and 

specificity. Our best model achieved the maximum AUC around 0.97 with MCC 0.77 on the 

validation dataset. Moreover, we developed models on the alternate dataset as well. The best 

machine learning models have been implemented in the web server named “VirFacPred” 

(https://webs.iiitd.edu.in/raghava/virfacpred/), which allows the prediction, mapping, motif 

search for the virulent proteins of the pathogens as well as designing non-virulent proteins.  

Chapter 4 mainly discusses about toxins, which are one of the major virulence factors that play 

a crucial role in damaging the host cell. Proteins/peptides have shown to be promising 

therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in 

protein/peptide-based therapy. In order to address this problem, a highly accurate method, 

ToxinPred2, has been developed for predicting toxins with high precision. This is an update of 

ToxinPred developed mainly for predicting the toxicity of peptides and small proteins. The 

method has been trained, tested and evaluated on three datasets curated from the recent release 

of the Swiss-Prot. To provide unbiased evaluation, we performed internal validation on 80% 

of the data and external validation on the remaining 20% of data. We have implemented the 

following techniques for predicting protein toxicity; (i) BLAST-based similarity, (ii) MERCI-

based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved 

a high probability of correct prediction with poor sensitivity/coverage, whereas models based 

on machine-learning techniques achieved balance sensitivity and specificity with reasonably 

high accuracy. Finally, we developed a hybrid method that combined all three approaches and 

achieved a maximum AUC around 0.99 with MCC 0.91 on the validation dataset. In addition, 

we developed models on alternate and realistic datasets. The best machine learning models 

have been implemented in the web server named “ToxinPred2”, which is available at 

https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at 

https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting 

the toxicity of proteins regardless of their source of origin.  

https://webs.iiitd.edu.in/raghava/virfacpred/
https://webs.iiitd.edu.in/raghava/toxinpred2/
https://github.com/raghavagps/toxinpred2
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Chapter 5 focuses on the virulent factors which are responsible for allergy, which is the 

hypersensitivity of the immune system. To address this problem, a method called AlgPred 2.0 

has been developed for identifying allergenic proteins with high accuracy. AlgPred 2.0 is a 

web server developed for predicting allergenic proteins and allergenic regions in a protein. It 

is an updated version of AlgPred developed in 2006. The dataset used for training, testing and 

validation consist of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 

experimentally validated IgE epitopes were used to identify antigenic regions in a protein. All 

models were trained on 80% of data called training dataset, and the performance of models was 

evaluated using 5-fold CV technique. The performance of the final model trained on the 

training dataset was evaluated on 20% of data called validation dataset; no two proteins in any 

two sets have more than 40% similarity. First, a BLAST search was performed against the 

dataset, and allergens were predicted based on the level of similarity with known allergens. 

Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict 

allergens based on their presence in a protein. Third, motif-based approaches like multiple EM 

for motif elicitation/motif alignment and search tools have been used to predict allergens. 

Fourth, allergen prediction models have been developed using a wide range of machine 

learning techniques. Finally, the ensemble approach has been used for predicting allergenic 

protein by combining prediction scores of different approaches. Our best model achieved 

maximum performance in terms of AUC 0.98 with MCC 0.85 on the validation dataset. A web 

server AlgPred 2.0, has been developed that allows the prediction of allergens, designing of 

non-allergenic proteins, mapping of IgE epitope, motif and BLAST search 

(https://webs.iiitd.edu.in/raghava/algpred2/), and a standalone software package is available at 

(https://github.com/raghavagps/algpred2).  

Chapter 6 describes that in addition to protein and peptides, allergy is also caused by chemical 

compounds, known as chemical allergy. A therapeutic molecule may cause side effects due to 

its allergic potential. In the past, various methods have been generated for predicting the 

allergenicity of proteins and peptides. In contrast, there is no method that can predict the 

allergenic potential of chemicals. In order to overcome this issue, a novel method ChAlPred 

has been developed for predicting chemical allergens and designing chemical analogs with 

desired allergenicity. In this study, we have used 403 allergenic and 1074 non-allergenic 

chemical compounds obtained from the IEDB database. The PaDEL software was used to 

compute the molecular descriptors of the chemical compounds to develop different prediction 

models. All the models were trained and tested on the 80% training data and evaluated on the 

https://webs.iiitd.edu.in/raghava/algpred2/
https://github.com/raghavagps/algpred2
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20% validation data using the 2D, 3D and FP descriptors. We have developed different 

prediction models using several machine learning approaches. It was observed that the RF-

based model developed using hybrid descriptors performed the best and achieved the maximum 

accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of the 

dataset indicates that certain chemical fingerprints are more abundant in allergens that include 

PubChemFP129 and GraphFP1014. We have also predicted the allergenicity potential of FDA-

approved drugs using our best model and identified the drugs causing allergic symptoms (e.g., 

Cefuroxime, Spironolactone, Tioconazole). Our results agreed with the allergenicity of these 

drugs reported in the literature. In summary, attempts have been made to develop in-silico 

models that can be used to design directly/indirectly therapeutic molecules against disease-

causing agents. To facilitate the scientific community, we developed a smart-device compatible 

web server ChAlPred (https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and 

design the chemicals with allergenic properties. 

The work presented in the thesis addresses various computational tools and methods developed 

for the identification of virulence factors as well as other factors associated with them. 

Computationally identified virulence factors, toxic proteins, allergenic proteins and chemical 

allergens can be utilised for developing drugs and vaccines against various infections. We 

anticipate that our findings will aid the clinicians, researchers, scientific community, and 

general public to understand the mechanism and develop better therapeutic approaches.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://webs.iiitd.edu.in/raghava/chalpred/


 
 
 
 
 
 
 

Bibliography 



 97 

Abastabar, M., Hosseinpoor, S., Hedayati, M. T., Shokohi, T., Valadan, R., Mirhendi, H., 
Mohammadi, R., Aghili, S. R., Rahimi, N., Aslani, N., Haghani, I., & Gholami, S. 
(2016). Hyphal wall protein 1 gene: A potential marker for the identification of different 
Candida species and phylogenetic analysis. Curr Med Mycol, 2(4), 1-8. 
https://doi.org/10.18869/acadpub.cmm.2.4.1  

Ahmed, E., & Holmstrom, S. J. (2014). Siderophores in environmental research: roles and 
applications. Microb Biotechnol, 7(3), 196-208. https://doi.org/10.1111/1751-
7915.12117  

Akarsu, H., Bordes, P., Mansour, M., Bigot, D. J., Genevaux, P., & Falquet, L. (2019). 
TASmania: A bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol, 15(4), 
e1006946. https://doi.org/10.1371/journal.pcbi.1006946  

Alsaleh, N. B., & Brown, J. M. (2020). Engineered Nanomaterials and Type I Allergic 
Hypersensitivity Reactions. Front Immunol, 11, 222. 
https://doi.org/10.3389/fimmu.2020.00222  

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local 
alignment search tool. J Mol Biol, 215(3), 403-410. https://doi.org/10.1016/S0022-
2836(05)80360-2  

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. 
J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic Acids Res, 25(17), 3389-3402. 
https://doi.org/10.1093/nar/25.17.3389  

Ansari, F. A., Kumar, N., Bala Subramanyam, M., Gnanamani, M., & Ramachandran, S. 
(2008). MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins, 70(3), 
659-666. https://doi.org/10.1002/prot.21568  

Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 2, 28-36. 
https://www.ncbi.nlm.nih.gov/pubmed/7584402  

Bailey, T. L., & Gribskov, M. (1998). Combining evidence using p-values: application to 
sequence homology searches. Bioinformatics, 14(1), 48-54. 
https://doi.org/10.1093/bioinformatics/14.1.48  

Bairoch, A., & Apweiler, R. (1997). The SWISS-PROT protein sequence data bank and its 
supplement TrEMBL. Nucleic Acids Res, 25(1), 31-36. 
https://doi.org/10.1093/nar/25.1.31  

Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000. Nucleic Acids Res, 28(1), 45-48. 
https://doi.org/10.1093/nar/28.1.45  

Balloux, F., & van Dorp, L. (2017). Q&A: What are pathogens, and what have they done to 
and for us? BMC Biol, 15(1), 91. https://doi.org/10.1186/s12915-017-0433-z  

Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for 
the prediction of toxicity of chemicals. Nucleic Acids Res, 46(W1), W257-W263. 
https://doi.org/10.1093/nar/gky318  

Banerjee, P., Siramshetty, V. B., Drwal, M. N., & Preissner, R. (2016). Computational methods 
for prediction of in vitro effects of new chemical structures. J Cheminform, 8, 51. 
https://doi.org/10.1186/s13321-016-0162-2  

Barbosa, L. C., Garrido, S. S., & Marchetto, R. (2015). BtoxDB: a comprehensive database of 
protein structural data on toxin-antitoxin systems. Comput Biol Med, 58, 146-153. 
https://doi.org/10.1016/j.compbiomed.2015.01.010  

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Kruger, F. A., 
Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R., & 



 98 

Overington, J. P. (2014). The ChEMBL bioactivity database: an update. Nucleic Acids 
Res, 42(Database issue), D1083-1090. https://doi.org/10.1093/nar/gkt1031  

Berne, C., Ducret, A., Hardy, G. G., & Brun, Y. V. (2015). Adhesins Involved in Attachment 
to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol Spectr, 3(4). 
https://doi.org/10.1128/microbiolspec.MB-0018-2015  

Blackwell, M. (2011). The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot, 98(3), 426-438. 
https://doi.org/10.3732/ajb.1000298  

Blum, M., Chang, H. Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., 
Paysan-Lafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G. A., Williams, L., 
Bork, P., Bridge, A., Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., . . . Finn, 
R. D. (2021). The InterPro protein families and domains database: 20 years on. Nucleic 
Acids Res, 49(D1), D344-D354. https://doi.org/10.1093/nar/gkaa977  

Bokhari, H., Bilal, I., & Zafar, S. (2012). BapC autotransporter protein of Bordetella pertussis 
is an adhesion factor. J Basic Microbiol, 52(4), 390-396. 
https://doi.org/10.1002/jobm.201100188  

Broadfield, E., McKeever, T. M., Scrivener, S., Venn, A., Lewis, S. A., & Britton, J. (2002). 
Increase in the prevalence of allergen skin sensitization in successive birth cohorts. J 
Allergy Clin Immunol, 109(6), 969-974. https://doi.org/10.1067/mai.2002.124772  

Brown, M. R., & Barker, J. (1999). Unexplored reservoirs of pathogenic bacteria: protozoa and 
biofilms. Trends Microbiol, 7(1), 46-50. https://doi.org/10.1016/s0966-
842x(98)01425-5  

Bruno, B. J., Miller, G. D., & Lim, C. S. (2013). Basics and recent advances in peptide and 
protein drug delivery. Ther Deliv, 4(11), 1443-1467. https://doi.org/10.4155/tde.13.104 

Burns, D. L., & Manclark, C. R. (1989). Role of cysteine 41 of the A subunit of pertussis 
toxin. The Journal of biological chemistry, 264(1), 564–568. 

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, 
T. L. (2009). BLAST+: architecture and applications. BMC bioinformatics, 10, 421. 
https://doi.org/10.1186/1471-2105-10-421  

Casadevall, A., & Pirofski, L. A. (1999). Host-pathogen interactions: redefining the basic 
concepts of virulence and pathogenicity. Infect Immun, 67(8), 3703-3713. 
https://doi.org/10.1128/IAI.67.8.3703-3713.1999  

Casadevall, A., & Pirofski, L. A. (2000). Host-pathogen interactions: basic concepts of 
microbial commensalism, colonization, infection, and disease. Infect Immun, 68(12), 
6511-6518. https://doi.org/10.1128/IAI.68.12.6511-6518.2000  

Casadevall, A., & Pirofski, L. A. (2009). Virulence factors and their mechanisms of action: the 
view from a damage-response framework. J Water Health, 7 Suppl 1, S2-S18. 
https://doi.org/10.2166/wh.2009.036  

Casewell, N. R., Jackson, T. N. W., Laustsen, A. H., & Sunagar, K. (2020). Causes and 
Consequences of Snake Venom Variation. Trends Pharmacol Sci, 41(8), 570-581. 
https://doi.org/10.1016/j.tips.2020.05.006  

CDC. (2021, September 13, 2021). Infectious Disease. Retrieved 09 June from 
https://www.cdc.gov/nchs/fastats/infectious-disease.htm 

Chai, L. Y., Netea, M. G., Vonk, A. G., & Kullberg, B. J. (2009). Fungal strategies for 
overcoming host innate immune response. Med Mycol, 47(3), 227-236. 
https://doi.org/10.1080/13693780802209082  

Chakraborty, A., Ghosh, S., Chowdhary, G., Maulik, U., & Chakrabarti, S. (2012). DBETH: a 
Database of Bacterial Exotoxins for Human. Nucleic Acids Res, 40(Database issue), 
D615-620. https://doi.org/10.1093/nar/gkr942  



 99 

Champion, P. A., Stanley, S. A., Champion, M. M., Brown, E. J., & Cox, J. S. (2006). C-
terminal signal sequence promotes virulence factor secretion in Mycobacterium 
tuberculosis. Science, 313(5793), 1632-1636. https://doi.org/10.1126/science.1131167  

Chaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., 
Varshney, G. C., & Raghava, G. P. (2016). A Web Server and Mobile App for 
Computing Hemolytic Potency of Peptides. Sci Rep, 6, 22843. 
https://doi.org/10.1038/srep22843  

Chaudhuri, R., Ansari, F. A., Raghunandanan, M. V., & Ramachandran, S. (2011). FungalRV: 
adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC 
genomics, 12, 192. https://doi.org/10.1186/1471-2164-12-192  

Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: a reference 
database for bacterial virulence factors. Nucleic Acids Res, 33(Database issue), D325-
328. https://doi.org/10.1093/nar/gki008  

Clark, G. C., Casewell, N. R., Elliott, C. T., Harvey, A. L., Jamieson, A. G., Strong, P. N., & 
Turner, A. D. (2019). Friends or Foes? Emerging Impacts of Biological Toxins. Trends 
Biochem Sci, 44(4), 365-379. https://doi.org/10.1016/j.tibs.2018.12.004  

Cole, T. J., & Brewer, M. S. (2019). TOXIFY: a deep learning approach to classify animal 
venom proteins. PeerJ, 7, e7200. https://doi.org/10.7717/peerj.7200  

Commins, S. P., & Platts-Mills, T. A. (2010). Allergenicity of carbohydrates and their role in 
anaphylactic events. Curr Allergy Asthma Rep, 10(1), 29-33. 
https://doi.org/10.1007/s11882-009-0079-1  

Cordero, O. X., Ventouras, L. A., DeLong, E. F., & Polz, M. F. (2012). Public good dynamics 
drive evolution of iron acquisition strategies in natural bacterioplankton populations. 
Proc Natl Acad Sci U S A, 109(49), 20059-20064. 
https://doi.org/10.1073/pnas.1213344109  

Cross, A. S. (2008). What is a virulence factor? Crit Care, 12(6), 196. 
https://doi.org/10.1186/cc7127  

D'Haeseleer, P. (2006). What are DNA sequence motifs? Nat Biotechnol, 24(4), 423-425. 
https://doi.org/10.1038/nbt0406-423  

Dalle, F., Wachtler, B., L'Ollivier, C., Holland, G., Bannert, N., Wilson, D., Labruere, C., 
Bonnin, A., & Hube, B. (2010). Cellular interactions of Candida albicans with human 
oral epithelial cells and enterocytes. Cell Microbiol, 12(2), 248-271. 
https://doi.org/10.1111/j.1462-5822.2009.01394.x  

Dang, H. X., & Lawrence, C. B. (2014). Allerdictor: fast allergen prediction using text 
classification techniques. Bioinformatics, 30(8), 1120-1128. 
https://doi.org/10.1093/bioinformatics/btu004  

Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., Wiegers, J., Wiegers, T. C., & 
Mattingly, C. J. (2021). Comparative Toxicogenomics Database (CTD): update 2021. 
Nucleic Acids Res, 49(D1), D1138-D1143. https://doi.org/10.1093/nar/gkaa891  

Davis, J. J., Wattam, A. R., Aziz, R. K., Brettin, T., Butler, R., Butler, R. M., Chlenski, P., 
Conrad, N., Dickerman, A., Dietrich, E. M., Gabbard, J. L., Gerdes, S., Guard, A., 
Kenyon, R. W., Machi, D., Mao, C., Murphy-Olson, D., Nguyen, M., Nordberg, E. K., 
. . . Stevens, R. (2020). The PATRIC Bioinformatics Resource Center: expanding data 
and analysis capabilities. Nucleic Acids Res, 48(D1), D606-D612. 
https://doi.org/10.1093/nar/gkz943  

De Groot, P. W., Hellingwerf, K. J., & Klis, F. M. (2003). Genome-wide identification of 
fungal GPI proteins. Yeast, 20(9), 781-796. https://doi.org/10.1002/yea.1007  

de Matos, P., Alcantara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I., Turner, 
S., & Steinbeck, C. (2010). Chemical Entities of Biological Interest: an update. Nucleic 
Acids Res, 38(Database issue), D249-254. https://doi.org/10.1093/nar/gkp886  



 100 

de Nies, L., Lopes, S., Busi, S. B., Galata, V., Heintz-Buschart, A., Laczny, C. C., May, P., & 
Wilmes, P. (2021). PathoFact: a pipeline for the prediction of virulence factors and 
antimicrobial resistance genes in metagenomic data. Microbiome, 9(1), 49. 
https://doi.org/10.1186/s40168-020-00993-9  

Del Moral, M. G., & Martinez-Naves, E. (2017). The Role of Lipids in Development of 
Allergic Responses. Immune Netw, 17(3), 133-143. 
https://doi.org/10.4110/in.2017.17.3.133  

Del Villar-Guerra, P., Moreno Vicente-Arche, B., Castrillo Bustamante, S., & Santana 
Rodriguez, C. (2016). Anaphylactic reaction due to cefuroxime axetil: A rare cause of 
anaphylaxis. Int J Immunopathol Pharmacol, 29(4), 731-733. 
https://doi.org/10.1177/0394632016664529  

Deng, X., Liu, Q., Hu, Y., & Deng, Y. (2013). TOPPER: topology prediction of transmembrane 
protein based on evidential reasoning. ScientificWorldJournal, 2013, 123731. 
https://doi.org/10.1155/2013/123731  

Dhanda, S. K., Mahajan, S., Paul, S., Yan, Z., Kim, H., Jespersen, M. C., Jurtz, V., Andreatta, 
M., Greenbaum, J. A., Marcatili, P., Sette, A., Nielsen, M., & Peters, B. (2019). IEDB-
AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 47(W1), 
W502-W506. https://doi.org/10.1093/nar/gkz452  

Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2--a server for 
in silico prediction of allergens. J Mol Model, 20(6), 2278. 
https://doi.org/10.1007/s00894-014-2278-5  

Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP--a server for in silico 
prediction of allergens. BMC bioinformatics, 14 Suppl 6, S4. 
https://doi.org/10.1186/1471-2105-14-S6-S4  

Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: allergenicity 
prediction by descriptor fingerprints. Bioinformatics, 30(6), 846-851. 
https://doi.org/10.1093/bioinformatics/btt619  

Dinges, M. M., Orwin, P. M., & Schlievert, P. M. (2000). Exotoxins of Staphylococcus aureus. 
Clin Microbiol Rev, 13(1), 16-34, table of contents. 
https://doi.org/10.1128/CMR.13.1.16  

do Vale, A., Cabanes, D., & Sousa, S. (2016). Bacterial Toxins as Pathogen Weapons Against 
Phagocytes. Front Microbiol, 7, 42. https://doi.org/10.3389/fmicb.2016.00042  

Dou, D., Revol, R., Ostbye, H., Wang, H., & Daniels, R. (2018). Influenza A Virus Cell Entry, 
Replication, Virion Assembly and Movement. Front Immunol, 9, 1581. 
https://doi.org/10.3389/fimmu.2018.01581  

ECDC. (2022, 24 Mar 2022). Tuberculosis remains one of the deadliest infectious diseases 
worldwide, warns new report https://www.ecdc.europa.eu/en/news-
events/tuberculosis-remains-one-deadliest-infectious-diseases-worldwide-warns-new-
report 

Eisenhut, M., Bauwe, H., & Hagemann, M. (2007). Glycine accumulation is toxic for the 
cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by 
supplementation with magnesium ions. FEMS microbiology letters, 277(2), 232–237. 
https://doi.org/10.1111/j.1574-6968.2007.00960.x 

Ene, I. V., Brunke, S., Brown, A. J., & Hube, B. (2014). Metabolism in fungal pathogenesis. 
Cold Spring Harb Perspect Med, 4(12), a019695. 
https://doi.org/10.1101/cshperspect.a019695  

Fanning, S., & Mitchell, A. P. (2012). Fungal biofilms. PLoS Pathog, 8(4), e1002585. 
https://doi.org/10.1371/journal.ppat.1002585  

FAO/WHO. (2001). Evaluation of allergenicity of genetically modified foods.Report of a Joint 
FAO/WHO Expert Consultation on Allergenicity of Foods Derived from 



 101 

Biotechnology. 
http://www.fao.org/fileadmin/templates/agns/pdf/topics/ec_jan2001.pdf 

FAO/WHO. (2003). Joint FAO/WHO Food Standards Programme Codex Alimentarius 
Commission. Report of the Fourth Session of the Codex Ad Hoc Intergovernmental 
Task Force on Foods Derived from Biotechnology, . 
http://www.fao.org/fileadmin/user_upload/gmfp/resources/al0334ae.pdf 

Finlay, B. B., & McFadden, G. (2006). Anti-immunology: evasion of the host immune system 
by bacterial and viral pathogens. Cell, 124(4), 767-782. 
https://doi.org/10.1016/j.cell.2006.01.034  

Fleury, B., Bergonier, D., Berthelot, X., Peterhans, E., Frey, J., & Vilei, E. M. (2002). 
Characterization of P40, a cytadhesin of Mycoplasma agalactiae. Infect Immun, 70(10), 
5612-5621. https://doi.org/10.1128/IAI.70.10.5612-5621.2002  

Gacesa R, B. D., Long PF. (2016). Machine learning can differentiate venom toxins from other 
proteins having non-toxic physiological functions. PeerJ Computer Science, 2:e90. 
https://doi.org/https://doi.org/10.7717/peerj-cs.90  

Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine. 
Nat Rev Immunol, 12(7), 503-516. https://doi.org/10.1038/nri3228  

Garg, A., & Gupta, D. (2008). VirulentPred: a SVM based prediction method for virulent 
proteins in bacterial pathogens. BMC bioinformatics, 9, 62. 
https://doi.org/10.1186/1471-2105-9-62  

Gautam, A., Chaudhary, K., Singh, S., Joshi, A., Anand, P., Tuknait, A., Mathur, D., Varshney, 
G. C., & Raghava, G. P. (2014). Hemolytik: a database of experimentally determined 
hemolytic and non-hemolytic peptides. Nucleic Acids Res, 42(Database issue), D444-
449. https://doi.org/10.1093/nar/gkt1008  

Gautam, A., Singh, H., Tyagi, A., Chaudhary, K., Kumar, R., Kapoor, P., & Raghava, G. P. 
(2012). CPPsite: a curated database of cell penetrating peptides. Database (Oxford), 
2012, bas015. https://doi.org/10.1093/database/bas015  

George, E. K., De Jesus, O., & Vivekanandan, R. (2022). Clostridium Tetani. In StatPearls. 
https://www.ncbi.nlm.nih.gov/pubmed/29494091  

Ghislain, P. D., Bodarwe, A. D., Vanderdonckt, O., Tennstedt, D., Marot, L., & Lachapelle, J. 
M. (2004). Drug-induced eosinophilia and multisystemic failure with positive patch-
test reaction to spironolactone: DRESS syndrome. Acta Derm Venereol, 84(1), 65-68. 
https://doi.org/10.1080/00015550310005915  

Goodman, R. E., Ebisawa, M., Ferreira, F., Sampson, H. A., van Ree, R., Vieths, S., Baumert, 
J. L., Bohle, B., Lalithambika, S., Wise, J., & Taylor, S. L. (2016). AllergenOnline: A 
peer-reviewed, curated allergen database to assess novel food proteins for potential 
cross-reactivity. Mol Nutr Food Res, 60(5), 1183-1198. 
https://doi.org/10.1002/mnfr.201500769  

Goodman, R. E., Hefle, S. L., Taylor, S. L., & van Ree, R. (2005). Assessing genetically 
modified crops to minimize the risk of increased food allergy: a review. Int Arch 
Allergy Immunol, 137(2), 153-166. https://doi.org/10.1159/000086314  

Green, A. E., Howarth, D., Chaguza, C., Echlin, H., Langendonk, R. F., Munro, C., Barton, T. 
E., Hinton, J. C. D., Bentley, S. D., Rosch, J. W., & Neill, D. R. (2021). Pneumococcal 
Colonization and Virulence Factors Identified Via Experimental Evolution in Infection 
Models. Mol Biol Evol, 38(6), 2209-2226. https://doi.org/10.1093/molbev/msab018  

Gu, J., Liu, S., & Zhi, Y. (2019). Cefuroxime-induced anaphylaxis with prominent central 
nervous system manifestations: A case report. J Int Med Res, 47(2), 1010-1014. 
https://doi.org/10.1177/0300060518814118  



 102 

Gupta, A., Kapil, R., Dhakan, D. B., & Sharma, V. K. (2014). MP3: a software tool for the 
prediction of pathogenic proteins in genomic and metagenomic data. PLoS ONE, 9(4), 
e93907. https://doi.org/10.1371/journal.pone.0093907  

Gupta, S., Ansari, H. R., Gautam, A., Open Source Drug Discovery, C., & Raghava, G. P. 
(2013). Identification of B-cell epitopes in an antigen for inducing specific class of 
antibodies. Biol Direct, 8, 27. https://doi.org/10.1186/1745-6150-8-27  

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery, 
C., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and 
proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957  

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2015). 
Peptide toxicity prediction. Methods Mol Biol, 1268, 143-157. 
https://doi.org/10.1007/978-1-4939-2285-7_7  

Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., 
Swainston, N., Mendes, P., & Steinbeck, C. (2016). ChEBI in 2016: Improved services 
and an expanding collection of metabolites. Nucleic Acids Res, 44(D1), D1214-1219. 
https://doi.org/10.1093/nar/gkv1031  

Heikkila, H., Stubb, S., & Reitamo, S. (1996). A study of 72 patients with contact allergy to 
tioconazole. Br J Dermatol, 134(4), 678-680. https://doi.org/10.1111/j.1365-
2133.1996.tb06969.x  

Hilleman, M. R. (2004). Strategies and mechanisms for host and pathogen survival in acute 
and persistent viral infections. Proc Natl Acad Sci U S A, 101 Suppl 2, 14560-14566. 
https://doi.org/10.1073/pnas.0404758101  

Hiller, K., Grote, A., Scheer, M., Munch, R., & Jahn, D. (2004). PrediSi: prediction of signal 
peptides and their cleavage positions. Nucleic Acids Res, 32(Web Server issue), W375-
379. https://doi.org/10.1093/nar/gkh378  

Hirst, R. A., Kadioglu, A., O'Callaghan, C., & Andrew, P. W. (2004). The role of pneumolysin 
in pneumococcal pneumonia and meningitis. Clin Exp Immunol, 138(2), 195-201. 
https://doi.org/10.1111/j.1365-2249.2004.02611.x  

Honigschmid, P., Breimann, S., Weigl, M., & Frishman, D. (2020). AllesTM: predicting 
multiple structural features of transmembrane proteins. BMC bioinformatics, 21(1), 
242. https://doi.org/10.1186/s12859-020-03581-8  

Hornef, M. W., Wick, M. J., Rhen, M., & Normark, S. (2002). Bacterial strategies for 
overcoming host innate and adaptive immune responses. Nat Immunol, 3(11), 1033-
1040. https://doi.org/10.1038/ni1102-1033  

Houston, S., Hof, R., Francescutti, T., Hawkes, A., Boulanger, M. J., & Cameron, C. E. (2011). 
Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin 
Tp0751. Infect Immun, 79(3), 1386-1398. https://doi.org/10.1128/IAI.01083-10  

Ibberson, C. B., Jones, C. L., Singh, S., Wise, M. C., Hart, M. E., Zurawski, D. V., & Horswill, 
A. R. (2014). Staphylococcus aureus hyaluronidase is a CodY-regulated virulence 
factor. Infect Immun, 82(10), 4253-4264. https://doi.org/10.1128/IAI.01710-14  

InformedHealth.org. (2006). What are microbes? Institute for Quality and Efficiency in Health 
Care (IQWiG), Cologne, Germany. https://www.ncbi.nlm.nih.gov/books/NBK279387/  

Ivanciuc, O., Schein, C. H., & Braun, W. (2003). SDAP: database and computational tools for 
allergenic proteins. Nucleic Acids Res, 31(1), 359-362. 
https://doi.org/10.1093/nar/gkg010  

Jain, A., & Kihara, D. (2019). NNTox: Gene Ontology-Based Protein Toxicity Prediction 
Using Neural Network. Sci Rep, 9(1), 17923. https://doi.org/10.1038/s41598-019-
54405-6  



 103 

Kadam, K., Karbhal, R., Jayaraman, V. K., Sawant, S., & Kulkarni-Kale, U. (2017). AllerBase: 
a comprehensive allergen knowledgebase. Database (Oxford), 2017. 
https://doi.org/10.1093/database/bax066  

Kapoor, P., Singh, H., Gautam, A., Chaudhary, K., Kumar, R., & Raghava, G. P. (2012). 
TumorHoPe: a database of tumor homing peptides. PLoS ONE, 7(4), e35187. 
https://doi.org/10.1371/journal.pone.0035187  

Kaur, D., Patiyal, S., Sharma, N., Usmani, S. S., & Raghava, G. P. S. (2019). PRRDB 2.0: a 
comprehensive database of pattern-recognition receptors and their ligands. Database 
(Oxford), 2019. https://doi.org/10.1093/database/baz076  

Kinsara AJ (2018). Spironolactone - Induced Rash: A Case Report and Review. Journal of 
Clinical Cardiology and Diagnostics, Volume 1(Issue 2), 1-2.  

Kim, S. H., Park, S. D., Baek, Y. S., Lee, S. Y., Shin, S. H., Woo, S. I., Kim, D. H., & Kwan, 
J. (2014). Prasugrel-induced hypersensitivity skin reaction. Korean Circ J, 44(5), 355-
357. https://doi.org/10.4070/kcj.2014.44.5.355  

Kimber, I., Basketter, D. A., & Dearman, R. J. (2010). Chemical allergens--what are the issues? 
Toxicology, 268(3), 139-142. https://doi.org/10.1016/j.tox.2009.07.015  

Kimber, I., Basketter, D. A., Gerberick, G. F., Ryan, C. A., & Dearman, R. J. (2011). Chemical 
allergy: translating biology into hazard characterization. Toxicol Sci, 120 Suppl 1, 
S238-268. https://doi.org/10.1093/toxsci/kfq346  

Kishor, P., Suravajhala, R., Rajasheker, G., Marka, N., Shridhar, K. K., Dhulala, D., Scinthia, 
K. P., Divya, K., Doma, M., Edupuganti, S., Suravajhala, P., & Polavarapu, R. (2020). 
Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, 
Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their 
Regulation. Frontiers in plant science, 11, 546213. 
https://doi.org/10.3389/fpls.2020.546213 

Konkel, M. E., Christensen, J. E., Keech, A. M., Monteville, M. R., Klena, J. D., & Garvis, S. 
G. (2005). Identification of a fibronectin-binding domain within the Campylobacter 
jejuni CadF protein. Mol Microbiol, 57(4), 1022-1035. https://doi.org/10.1111/j.1365-
2958.2005.04744.x  

Kramer, J., Ozkaya, O., & Kummerli, R. (2020). Bacterial siderophores in community and host 
interactions. Nat Rev Microbiol, 18(3), 152-163. https://doi.org/10.1038/s41579-019-
0284-4  

Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting 
transmembrane protein topology with a hidden Markov model: application to complete 
genomes. J Mol Biol, 305(3), 567-580. https://doi.org/10.1006/jmbi.2000.4315  

Kumar, R., Chaudhary, K., Singh Chauhan, J., Nagpal, G., Kumar, R., Sharma, M., & Raghava, 
G. P. (2015). An in silico platform for predicting, screening and designing of 
antihypertensive peptides. Sci Rep, 5, 12512. https://doi.org/10.1038/srep12512  

Lata, S., & Raghava, G. P. (2008). PRRDB: a comprehensive database of pattern-recognition 
receptors and their ligands. BMC genomics, 9, 180. https://doi.org/10.1186/1471-2164-
9-180  

Latge, J. P., & Beauvais, A. (2014). Functional duality of the cell wall. Curr Opin Microbiol, 
20, 111-117. https://doi.org/10.1016/j.mib.2014.05.009  

Lee, V. T., & Schneewind, O. (2001). Protein secretion and the pathogenesis of bacterial 
infections. Genes Dev, 15(14), 1725-1752. https://doi.org/10.1101/gad.896801  

Li, N., Yun, P., Nadkarni, M. A., Ghadikolaee, N. B., Nguyen, K. A., Lee, M., Hunter, N., & 
Collyer, C. A. (2010). Structure determination and analysis of a haemolytic gingipain 
adhesin domain from Porphyromonas gingivalis. Mol Microbiol, 76(4), 861-873. 
https://doi.org/10.1111/j.1365-2958.2010.07123.x  



 104 

Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. 
https://doi.org/10.1093/bioinformatics/btl158  

Life Sciences Open Source, Ketcher 2.0 (2021). 
https://lifescience.opensource.epam.com/ketcher/index.html#ketcher-2-0 

Lim, E., Pon, A., Djoumbou, Y., Knox, C., Shrivastava, S., Guo, A. C., Neveu, V., & Wishart, 
D. S. (2010). T3DB: a comprehensively annotated database of common toxins and their 
targets. Nucleic Acids Res, 38(Database issue), D781-786. 
https://doi.org/10.1093/nar/gkp934  

Linder, T., & Gustafsson, C. M. (2008). Molecular phylogenetics of ascomycotal adhesins--a 
novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal Genet 
Biol, 45(4), 485-497. https://doi.org/10.1016/j.fgb.2007.08.002  

Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: a comparative 
pathogenomic platform with an interactive web interface. Nucleic Acids Res, 47(D1), 
D687-D692. https://doi.org/10.1093/nar/gky1080  

Los, F. C., Randis, T. M., Aroian, R. V., & Ratner, A. J. (2013). Role of pore-forming toxins 
in bacterial infectious diseases. Microbiol Mol Biol Rev, 77(2), 173-207. 
https://doi.org/10.1128/MMBR.00052-12  

Lu, T., Yao, B., & Zhang, C. (2012). DFVF: database of fungal virulence factors. Database 
(Oxford), 2012, bas032. https://doi.org/10.1093/database/bas032  

Mak TW, S. M., Jett BD. (2014). Immune hypersensitivity. In: Primer to the Immune Response. 
https://www.elsevier.com/books/primer-to-the-immune-response/mak/978-0-12-
385245-8  

Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M. K., Geer, L. Y., Geer, R. C., 
Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Lu, S., Marchler, 
G. H., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., & Bryant, S. H. (2013). 
CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res, 
41(Database issue), D348-352. https://doi.org/10.1093/nar/gks1243  

Masoli, M., Fabian, D., Holt, S., Beasley, R., & Global Initiative for Asthma, P. (2004). The 
global burden of asthma: executive summary of the GINA Dissemination Committee 
report. Allergy, 59(5), 469-478. https://doi.org/10.1111/j.1398-9995.2004.00526.x  

Mathur, D., Singh, S., Mehta, A., Agrawal, P., & Raghava, G. P. S. (2018). In silico approaches 
for predicting the half-life of natural and modified peptides in blood. PLoS ONE, 13(6), 
e0196829. https://doi.org/10.1371/journal.pone.0196829  

Matrosovich, M., Herrler, G., & Klenk, H. D. (2015). Sialic Acid Receptors of Viruses. Top 
Curr Chem, 367, 1-28. https://doi.org/10.1007/128_2013_466  

Maurer-Stroh, S., Krutz, N. L., Kern, P. S., Gunalan, V., Nguyen, M. N., Limviphuvadh, V., 
Eisenhaber, F., & Gerberick, G. F. (2019). AllerCatPro-prediction of protein 
allergenicity potential from the protein sequence. Bioinformatics, 35(17), 3020-3027. 
https://doi.org/10.1093/bioinformatics/btz029  

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. 
Virulence, 4(2), 119-128. https://doi.org/10.4161/viru.22913  

Mayr A, K. G., Unterthiner T and Hochreiter S. (2016). DeepTox: Toxicity Prediction using 
Deep Learning. Front. Environ. Sci., 3(80). https://doi.org/10.3389/fenvs.2015.00080  

Minasyan, H. (2019). Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma 
Resusc Emerg Med, 27(1), 19. https://doi.org/10.1186/s13049-019-0596-4  

Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune 
defenses. Clin Microbiol Rev, 22(2), 240-273, Table of Contents. 
https://doi.org/10.1128/CMR.00046-08  



 105 

Molleken, K., Schmidt, E., & Hegemann, J. H. (2010). Members of the Pmp protein family of 
Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide 
motifs. Mol Microbiol, 78(4), 1004-1017. https://doi.org/10.1111/j.1365-
2958.2010.07386.x  

Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A., & Ross, R. P. (2011). Streptolysin S-
like virulence factors: the continuing sagA. Nat Rev Microbiol, 9(9), 670-681. 
https://doi.org/10.1038/nrmicro2624  

Muh, H. C., Tong, J. C., & Tammi, M. T. (2009). AllerHunter: a SVM-pairwise system for 
assessment of allergenicity and allergic cross-reactivity in proteins. PLoS ONE, 4(6), 
e5861. https://doi.org/10.1371/journal.pone.0005861  

Mukai, K., Tsai, M., Saito, H., & Galli, S. J. (2018). Mast cells as sources of cytokines, 
chemokines, and growth factors. Immunol Rev, 282(1), 121-150. 
https://doi.org/10.1111/imr.12634  

Murphy, J. R. (1996). Corynebacterium Diphtheriae. In th & S. Baron (Eds.), Medical 
Microbiology. https://www.ncbi.nlm.nih.gov/pubmed/21413281  

Naamati, G., Askenazi, M., & Linial, M. (2009). ClanTox: a classifier of short animal toxins. 
Nucleic Acids Res, 37(Web Server issue), W363-368. 
https://doi.org/10.1093/nar/gkp299  

Nakane, D., Adan-Kubo, J., Kenri, T., & Miyata, M. (2011). Isolation and characterization of 
P1 adhesin, a leg protein of the gliding bacterium Mycoplasma pneumoniae. J 
Bacteriol, 193(3), 715-722. https://doi.org/10.1128/JB.00796-10  

Nam, Y. H., Hwang, E. K., Ban, G. Y., Jin, H. J., Yoo, H. S., Shin, Y. S., Ye, Y. M., Nahm, D. 
H., Park, H. S., & Lee, S. K. (2015). Immunologic evaluation of patients with cefotetan-
induced anaphylaxis. Allergy Asthma Immunol Res, 7(3), 301-303. 
https://doi.org/10.4168/aair.2015.7.3.301  

Nigam, P. K., & Nigam, A. (2010). Botulinum toxin. Indian J Dermatol, 55(1), 8-14. 
https://doi.org/10.4103/0019-5154.60343  

Nordengrun, M., Michalik, S., Volker, U., Broker, B. M., & Gomez-Gascon, L. (2018). The 
quest for bacterial allergens. Int J Med Microbiol, 308(6), 738-750. 
https://doi.org/10.1016/j.ijmm.2018.04.003  

Nummelin, H., Merckel, M. C., Leo, J. C., Lankinen, H., Skurnik, M., & Goldman, A. (2004). 
The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed 
parallel beta-roll. EMBO J, 23(4), 701-711. https://doi.org/10.1038/sj.emboj.7600100  

Obermeyer, G., & Ferreira, F. (2005). Can we predict or avoid the allergenic potential of 
genetically modified organisms? Int Arch Allergy Immunol, 137(2), 151-152. 
https://doi.org/10.1159/000086313  

Otvos, L., Jr., & Wade, J. D. (2014). Current challenges in peptide-based drug discovery. Front 
Chem, 2, 62. https://doi.org/10.3389/fchem.2014.00062  

Palaniappan, R. U., Chang, Y. F., Jusuf, S. S., Artiushin, S., Timoney, J. F., McDonough, S. 
P., Barr, S. C., Divers, T. J., Simpson, K. W., McDonough, P. L., & Mohammed, H. O. 
(2002). Cloning and molecular characterization of an immunogenic LigA protein of 
Leptospira interrogans. Infect Immun, 70(11), 5924-5930. 
https://doi.org/10.1128/IAI.70.11.5924-5930.2002  

Pan, X., Zuallaert, J., Wang, X., Shen, H. B., Campos, E. P., Marushchak, D. O., & De Neve, 
W. (2021). ToxDL: deep learning using primary structure and domain embeddings for 
assessing protein toxicity. Bioinformatics, 36(21), 5159-5168. 
https://doi.org/10.1093/bioinformatics/btaa656  

Pande A, P. S., Lathwal A, et al. (2019). Computing wide range of protein/peptide features 
from their sequence and structure. bioRxiv.  



 106 

Pasechnik, V. A., Shone, C. C., & Hambleton, P. (1992). Purification of bacterial exotoxins. 
The case of botulinum, tetanus, anthrax, pertussis and cholera toxins. Bioseparation, 
3(5), 267-283. https://www.ncbi.nlm.nih.gov/pubmed/1369426  

Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P., & Aleksiev, B. (2008). An evaluation 
of the implementation of the Cramer classification scheme in the Toxtree software. SAR 
QSAR Environ Res, 19(5-6), 495-524. https://doi.org/10.1080/10629360802083871  

Pedregosa F, V. G., Gramfort A, Michel V,  Thirion B,  Grisel O,  Blondel M, Prettenhofer P,  
Weiss R,  Dubourg V. (2011). Scikit-learn: Machine learning in Python. Journal of 
Machine Learning Research, 12, 2825-2830. 
http://jmlr.org/papers/v12/pedregosa11a.html  
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