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Abstract
Natural selection is a mechanism of evolution, and genetic mutations form the basis of

this evolutionary mechanism. With humans migrating out of Africa and inhabiting

different parts of the earth, different populations have been under different selection

pressures leading to adaptations in specific genes. Several methods have been

developed to identify these sites of selection, but there is a varying level of uniformity

among them. In this study, a unified approach for identifying sites of selection was

applied to 17 different populations belonging to the Phase III of the 1000 Genomes

Project. Combining different methods which capture different signs of selection, we

identified several single nucleotide polymorphism (SNP) under selection using a

machine learning model. We studied SNP and the populations showing high probability

scores for selection, relating the SNPs with their significant eQTLs and phenotype to

gain novel insights into the adaptations provided by them. A much in-depth analysis of

these SNPs could not only help in understanding the history of human evolution but also

generate hypotheses for better drug selection based on ethnicity.
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1. Introduction

The advancement in whole-genome sequencing has enabled us to understand the

evolutionary forces which have acted upon the modern human populations. Signals for

positive selection in genomes can be identified by detecting regions of reduced

variation, Linkage Disequilibrium (LD) patterns, shift allele frequency etc. The 1000

Genome Project is an initiative to sequence the genomes of participants of different

ethnicities from around the globe. The SNP data from these various populations can be

used to understand and identify the phenotypic differences between the populations.

There are pre-existing methods to detect strong selection in eukaryotic populations

based on LD patterns and Cross Likelihood-Ratio (CLR) tests. Still, these methods fail

when the presumptions are not met, e.g. constant population size (Koropoulis A et al.,

2020). Machine Learning-based methods can be used to train and learn on these

patterns and the summary statistics shown by the regions under selection to classify the

SNPs.
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1.1) Human Migration
Modern humans originated somewhere in the African continent between 200 to 300

thousand years ago. Two models have been proposed to explain the migration of

modern humans to the Australiasian and Eurasian regions (Posth C et al. 2016).

According to the first model, there was a single major migration out of the African

continent. According to the second model, multiple out of Africa migrations occurred,

first proposed by Lahr and Foley (Mirazo´n M et al. 1998). The first migration happened

around 100 - 90 kya from the southern route through South Arabia to Southeast Asia.

Then a second migration event from the Northern route, through the Levant, leading to

the population of the rest of Asia and Europe around 40 and 50 kya.

Figure 1: Out of Africa migration (source: Ephert 2011; CC-BY-SA-3.0)

1.2) Genetic drift and natural selection
Genetic drift is the change in allele frequencies in a population over the generations due

to random events. Unlike natural selection, genetic drift does not depend on an allele’s

beneficial effects or harmful effects. Although genetic drift happens in populations of all

sizes, its effects tend to be stronger in small populations (Gahan P. 2005).
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The bottleneck effect is one of the extreme examples of genetic drift. The population

size decreases drastically by the effects of an extreme event such as a natural disaster.

The allele frequencies in the new population might not have the same frequencies as

the prior population. The smaller population size also makes it more susceptible to

random events causing genetic drifts (Gahan P. 2005).

Natural selection, specifically positive natural selection, is when the frequencies of the

beneficial alleles increase in the population. Suppose the presence of an allele in an

organism leads to an increase in its chances of survival and reproduction. It will be more

likely that the organism will produce more offspring, which will inherit those traits than

the organisms in that same population that do not have that beneficial trait. Through

successive generations, the selected allele and nearby “hitchhiking” alleles become

much more common; this event is known as a selective sweep (Schaffner S & Sabeti P,

2008).

Figure 2: Shows a simplistic representation of different phenotypes present before and after selective an

event; different shapes refer to different phenotypes that might be present in a population. Natural

selection provides phenotypes with advantageous traits higher survival rates.

The prevalence of the lactase (LCT) gene in some humans, particularly those of

European ancestry, shows signs of natural selection in humans. Most mammals lose
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their ability to process lactose when they move on from the juvenile stage into

adulthood. In most individuals of European descent, the lactase activity persists through

their adulthood. There are two clashing theories for lactase prevalence, the

culture-historical hypothesis and the reverse-cause hypothesis (Gerbault P et al. 2011).

The first proposes that lactase prevalence developed and was consequently selected

after milk production and dairy consumption spread. The second hypothesis argues that

only populations whose frequency of lactase prevalence was high enough adopted

dairying (Gerault P et al. 2011).

1.3) Linkage Disequilibrium
Linkage disequilibrium is the non-random association of an allele to two or more loci in a

given population. LD is measured by calculating the difference between the observed

frequency and the expected frequency for a particular set of alleles. A particular set of

alleles are said to be in linkage disequilibrium if the observed frequency is much higher

or lower than the expected frequency (independent and random association).

1.4) GWAS
Genome-wide association studies are used to identify a relationship between single

nucleotide polymorphisms (SNPs) to a disease or a trait. The studies are done by

comparing the genomes of different individuals and looking for specific genetic markers

that relate to the presence of a disease.

The 1000 Genome project was an international initiative to catalogue the most common

single-nucleotide variants in the human genome from anonymised samples to be used

as a resource to study rare diseases occurring in small populations (Altshuler D et al.,

2012). In 2015 the study concluded phase III, having sampled over 2500 individuals

from 26 populations.
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Super
Population

ID Population Total
Individuals

Africa GWD Gambian in Western Division – Mandinka 113

Africa ACB African Caribbean in Barbados 96

Africa ESN Esan in Nigeria 99

Africa MSL Mende in Sierra Leone 85

Africa LWK Luhya in Webuye, Kenya 99

Africa YRI Yoruba in Ibadan, Nigeria 108

Africa ASW African ancestry in SW USA 61

East Asia JPT Japanese in Tokyo, Japan 104

East Asia CHB Han Chinese in Beijing, China 103

East Asia KHV Kinh in Ho Chi Minh City, Vietnam 99

East Asia CDX Chinese Dai in Xishuangbanna, China 93

East Asia CHS Han Chinese South, China 105

Europe CEU Central European ancestry from Utah 99

Europe GBR British from England and Scotland 91

Europe TSI Toscani in Italia 107

Europe FIN Finnish in Finland 99

Europe IBS Iberian populations in Spain 107

Table 1: The information for the 1000 genome population used in the study.

1.5) Previous work done
PopHumanScan is a database catalogue that compiles and annotates all candidate

regions under a selection of the human genome. It contains eight summary statistics for

the 22 non-admixture human populations of Phase III of the 1000 Genome Project

(Murga-Moreno J, 2019).
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Machine Learning has changed several existing fields, but only a few studies have used

machine learning and applied it to population genetics. Recently Koropoulis et al.

compared existing selection detection algorithms to various ML classifiers, which

showed that in cases where the underlying assumptions of these algorithms no longer

hold true, they perform worse, resulting in higher false-positive rates (Koropoulis et al.,

2020). The study tested classifiers such as K-nearest neighbours (KNN), Logistic

Regression (LR), Support Vector Machines (SVM), Random forests (RF) and Naive

Bayesian Classifiers, and their results show that even trivial models based on these

classifiers can outperform existing methods in certain situations.

Pybus et al. developed and applied hierarchical boosting, a machine learning

framework. Four different boosting functions were sequentially considered within a

hierarchical decision tree; the boosting function itself is a linear regression function of

the scores of individual positive selection tests (Pybus et al., 2015). The framework was

applied to three reference human populations from The 1000 Genome Project to

generate a genome-wide classification map of selective sweeps in genomic regions

(Pybus et al., 2015). Schrider, D. R., & Kern, A. D. trained a support vector machine

using empirical data using functional and nonfunctional parts of the genome, which was

able to identify purifying sweeps with high accuracy of ~88% on populations of phase I

of 1000 genome project(Schrider D R & Kern A D et al.; 2015). Compared to previous

methods, we used previously reported SNPs as our training data and used statistical

scores that do not require a genetic map as features, applying it to 17 reference

populations from the phase III of 1000 Genome Project to predict the selection in the

SNPs reported in the GWAS Catalog. Since our summary statistics do not require a

genetic map we can train our model to be SNP specific and report selection directly on

the SNPs rather than reporting genomic regions like previous methods.
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2.Machine Learning for Detecting Selection
There have been multiple methods for estimating selection. However, their results are

not consistent with each other. Moreover, due to the lack of enough number of positive

and negative control sets, it has been a non-trivial task to benchmark them properly or

judge their consistency. Here we collected a set of positively selected genomic locations

in humans and used it to develop and test our model for estimating selection. Our

approach has been to include the knowledge base of previously proposed methods and

selection identification to develop a unified approach.

2.1) Data Collection
The SNP data which is used for analysis was obtained from Phase III of The 1000

Genome Project. The 1000 Genome has SNP data from 2504 individuals, 26 different

populations and five different geographic regions. Only biallelic SNPs with a minor allele

frequency higher than 0.05 were considered for this study. The data for SNPs under

selection was obtained from PopHumanScan (https://pophumanscan.uab.cat/), which

was used to train the machine learning classifier.

Gwas catalogue was founded by National Human Genome Research Institute (NHGRI)

in 2008; it is a publicly available collection of curated genome-wide SNP-trait

associations. The Catalog contains over 6000 GWAS comprising more than 138000

variant-trait associations from > 4000 publications.

2.2) Statistics description
The selection tests performed in this study are based on the Long Haplotypes (iHS,

RSB, XP-EHH, nSL, XP-nSL), allele frequency spectrum (DDAF) and population

differentiation (FST, PBS). By using the different approaches to identify selection in SNPs

associated with the human genome, a much more complete and comprehensive

method can be achieved to identify signatures of selection occurring in the different
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populations. Site frequency spectrum based methods such as Tajima’s D and Fay and

Wu’s H were not used in this study.

2.3) Long Haplotype Scores
Extended Haplotype Homozygosity (EHH) is used to determine long-range haplotypes;

it is a reliable way to detect regions under positive selection pressure (Bomba L et al.,

2015). There is an overall reduction in the haplotype diversity if a region is under

positive selection pressure.

Cross population EHH (XP-EHH) and the ratio of (site-specific)EHHS between

populations (Rsb) are pairwise is the log-ratio of population scores computed on two

populations. Integrated haplotype homozygosity score (iHS) is the log-ratio of ancestral

EHH to derive EHH of an SNP marker.

The number of segregating sites by length (nSL), and XP-nSL being the cross-population

statistic of nSL, is another method used to identify the increasing haplotype

homozygosity which occurs when a region is under positive selection. The method is

based on the distribution of fragment lengths between sites with the distribution of the

number of segregating sites between all pairs of chromosomes and is based on the

ratio of haplotype homozygosity for ancestral allele and derived alleles (Ferrer-Admetlla

A et al. 2014).

2.4) High Allele Frequency
A relatively higher derived allele frequency might be a sign of positive selection in a

population (Wang G and Speakman J, 2016). The Difference in Derived Allele

Frequency (DDAF) between the population of interest and the other population was

carried out in two ways. Global DDAF is the difference between AF of the population

and AF in all of the 17 populations used in the study. Local DDAF is calculated between

AF of the population and the AF of each of the super populations (Africa, East-Asia &

Europe).
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2.5) Population Differences
Fixation Statistic (FST) is a summary statistic used to study the population structure in

two populations. There are many interpretations and descriptions(Cockerham 1969; Nei

1973; Hudson et al. 1992) of FST ever since it was first introduced by Sewell

Wright(Wright, 1949). According to a study(Bhatia G, 2013), Hudson’s estimator was

recommended when used to study the populations in the 1000 Genome project and

HapMap3 project. Hudson’s estimator is not sensitive to the ratio of population sizes

between two populations and also does not overestimate the FST value when compared

to Winer and Cockerham estimator or Nei’s estimator.

Population Branching Statistic (PBS) is similar to FST, but the distance is calculated from

two other populations, whereas in the case of FST it is a pairwise comparison. Both FST

and PBS have been shown to detect recent natural selection. A study conducted

comparing exomes of Danes, Chinese Hans and Tibetians, PBS was able to detect

signs of high altitude adaptation in Tibetians; the divergence between the Chinese Hans

and the people of Tibet is estimated to be only 2750 years ago (Yi X et al., 2010).

2.6) Training and test data
A dataset was made using selected SNPs reported in the PopHumanScan, as the

positive data. Random SNPs were matched and picked with the same global allele

frequencies and from the same chromosomes as the positive data to create the

negative data. Isolation forest, which is an unsupervised classifier used to identify

outliers, was used to further remove these SNPs from the negative training data if the

Isolation forest classifier classified it as an outlier. Selection in SNPs is much less

expected than being non-selected SNP; a rough ratio of 1:4 was maintained between

the positive and negative data.
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2.7) Dealing with imbalanced data
An imbalance in the training and test data was created because it is much less likely for

an SNP to be under selection than not being under any selection pressure. Class

imbalance in the training data can lead to unwanted biases in the model, e.g. a model

that only predicts the majority regardless of the input features of the sample. To avoid

this, metrics such as Area Under Curve of Receiver Operating Characteristic (AUC

ROC), balanced accuracy and Matthew’s Correlation Coefficient (MCC) were used to

benchmark the model.

After the classifier predicts the class of the sample, it can fall into 4 different categories:

True positive (TP): Correctly predicted positive samples predicted as positive.

True negative (TN): Correctly predicted negative samples predicted as negative.

False-positive (FP): Wrongly predicted negative samples predicted as positive.

False-negative (FN): Wrongly predicted positive samples predicted as negative

.

Evaluation metrics used in the study
Matthew’s correlation coefficient is a reliable statistic when dealing with binary

classification and class imbalance. MCC calculates Pearson's product-moment

correlation coefficient between the predicted values and the actual values (Chicco D &

Jurman G, 2020).

The receiver operator characteristic curve is plotted between True positive rate on the

y-axis vs False positive rate on the x-axis with varying classification thresholds.

True Positive Rate (TPR) = TP / (TP + FN)

False Positive Rate (FPR) = FP / (FP + TN)
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Stratified K-Fold cross-validation
Cross-validation is a resampling method used to evaluate the machine learning model.

K-fold cross-validation method splits the data into K subsets, 1 of the subsets is used as

the validation data, and the rest k-1 subsets are used as the training data for the model.

Stratified K-fold cross-validation maintains the original class ratio during the resampling

of the subsets.

Probability Calibration
In cases with unbalanced data, the model, on average, predicts a higher probability for

the major class than the minor class. Since the Random forest algorithm predicts a

class label, the probabilities generated by it are not calibrated to handle class

imbalance. Platt scaling is a simple linear regression-based method that is used to

transfer the calculated scores from the uncalibrated model to the calibrated probability

scores.
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3. Results and Case Studies

3.1) Baseline scores of various classifiers

From 9 other classifiers, Random Forest was picked as the final classifier for the model

since it performed best (MCC score of 0.876 and balanced accuracy score of 0.942).

Figure 3: Plot showing the Avg. Mathew’s Correlation Coefficient Score for each of the classifiers.
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Classifiers
Avg. MCC Score

(5FCV) Standard Deviation

RandomForestClassifier 0.876 0.063

XGBClassifier 0.855 0.067

LGBMClassifier 0.853 0.061

ExtraTreesClassifier 0.849 0.042

GradientBoostingClassifier 0.836 0.054

AdaBoostClassifier 0.819 0.066

SVC 0.811 0.056

DecisionTreeClassifier 0.771 0.074

LogisticRegression 0.748 0.027

Table 2: Table showing the Avg. Mathew’s Correlation Coefficient Score for each of the classifiers.

Figure 4: Plot showing the Average Balanced Accuracy Score for each of the classifiers.
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Classifiers Avg. MCC Score (5FCV) Standard Deviation

RandomForestClassifier 0.942 0.027

XGBClassifier 0.933 0.039

ExtraTreesClassifier 0.920 0.031

LGBMClassifier 0.920 0.039

GradientBoostingClassifier 0.919 0.037

SVC 0.907 0.028

AdaBoostClassifier 0.904 0.041

DecisionTreeClassifier 0.891 0.042

LogisticRegression 0.852 0.027

Table 3: Table showing the Avg. Balanced Accuracy Score for each of the classifiers.

3.2) Feature Selection & Hyperparameter Tuning

Figure 5: The graph shows Mathew’s Correlation Coefficient scores for m features (2 ≤ m ≤ 21).
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Number of
features MCC Score

Number of
features MCC Score

2 0.84404 12 0.87937

3 0.85786 13 0.87234

4 0.84935 14 0.87853

5 0.84233 15 0.88376

6 0.86546 16 0.87233

7 0.88459 17 0.88982

8 0.88557 18 0.86615

9 0.88459 19 0.89081

10 0.88982 20 0.87331

11 0.8784 21 0.89078

Table 4: The Matthew's Correlation Coefficient scores for m features (2 ≤ m ≤ 21).

To increase the accuracy of the classifier mutual information was used to rank the

features from most informative to the least informative. Matthew’s Correlation

Coefficient scores were calculated using the Random Forest Classifier in sklearn using

python. The top m features (2 ≤ m ≤ 21) were used successively, and their performance

was evaluated on unseen test data. From the 21 features, when 19 features were used

produced the highest MCC score of 0.89081.

The search space for hyperparameters of the Random Forest Classifier was tuned

using the RandomizedSearchCV, and the final values were adjusted using

GridSearchCV for the highest MCC score; both the methods are implemented in the

sklearn python package. After feature selection and hyperparameter tuning the

balanced accuracy, the score remained the same at 0.94 but the MCC score increased

to 0.89.
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Parameter Value

n_estimators 90

max_features sqrt

min_sample_leaf 1

min_sample_split 2

criterion Gini

class_weight balanced

random_state 42

Table 5: The final parameters used for the Random Forest Classifier.

3.3) Results

Figure 6: Shows the plot for ROC Curve for the Random Forest Classifier on the test data.

The final classifier showed a weighted recall score of 0.82. The Hierarchical boosting

method used in the study by Pybus et al. showed a recall of 0.985 on a dataset that

simulated recent selection on a single population with central European ancestry. The

random forest classifier used here was trained and tested on an empirical dataset

consisting of 17 different populations from 3 different super populations.
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From the 1,710,625 data points (100625 SNPs and 17 populations) given to the

classifier obtained from the GWAS Catalog. A total of 988 unique SNPs had a prediction

probability above 0.9. Europe had 66 unique SNPs, East-Asia and Africa had similar

counts at 452 and 476 unique SNPs, respectively.

Figure 7: (a) PCA plots of random 25 SNPs. (b) PCA plot of 25 SNPs with the highest probability of

selection in AFR. (c) PCA plot of 25 SNPs with the highest probability of selection in EAS. (d) PCA plot of

25 SNPs with the highest probability of selection in EUR.
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Figure 8: PCA plots of random 25 SNPs vs 25 SNPs with the highest probability of selection in each

super population.

When we plot the highest-scoring SNPs from each of the super populations and

compare them to the PCA plot of random SNPs,, thereby reducing we can observe the

drift in the random SNPs. Population-specific plots with selected SNPs show a

completely different pattern than when compared to the random SNPs; the populations

with the selected SNPs cluster together away from the other populations on which

SNPs are not selected.
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3.4) Case-Studies

Warfarin maintenance dose in East-Asian population

Figure 9: Shows a simplistic representation of warfarin interacting with the Vitamin K1 clotting pathway.

Gene SNP P-value Tissue

VKORC1 rs10871454 3.0e-47 Liver

VKORC1 rs9923231 7.7e-51 Liver

Table 6: Significant eQTLs associated with rs10871454 and rs9923231 reported in the GTEx database.

Warfarin is an anticoagulant that is used as a blood thinner to prevent cases of stroke in

the case of atrial fibrillation or deep vein thrombosis. Warfarin functions as an

antagonistic inhibitor in the vitamin K clotting pathway. Warfarin inhibits the action of

Vitamin K epoxide reductase complex and thereby reduces the activation of clotting

factors present in the blood. The classifier detected signals of selection in 3 sites

associated with the VKORC1 gene which is present on chromosome 16. SNPs

rs9923231 and rs10871454 are both C -> T mutations in the VKORC1 gene, whereas
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rs749671 is G -> A mutation. The presence of these mutations reduces the activity of

the VKORC1 gene. Therefore required warfarin maintenance dosage in the East Asian

population is much lower when compared to the Caucasian population (Lam M and

Cheung B, 2012; Li S et al., 2015).

Selection of eye colour and hair colour in European populations.

The SNPs rs12916300, rs916977 & rs12913832 were found to be selected in the

British, Central European and Finnish populations; these SNPs are associated with

eyes and hair colours. rs12916300, rs916977 & rs12913832 are mutations in the

HERC2 (Hect Domain And RCC1-Like Domain-Containing Protein 2) gene, all of which

lie on chromosome 5. rs12916300 is C -> T at position 28165345 of chromosome 5;

rs916977 is T -> C mutation at position 28268218 and rs12913832 is A -> G mutation at

position 28120472. It has been reported to have a strong association with blue eyes in

the Icelandic population(Sulem P et al., 2008). Even though the HERC2 gene does not

participate in the pigmentation pathway, it is known to disrupt the expression of OCA2

(oculocutaneous albinism II), particularly in melanocytes of the iris.

The diversity in human hair and eye colour in the Baltic region is much more diverse,

and as we move outwards from there, the hair tends to be black, and eyes tend to be

brown (Frost P, 2006). Within this region, selection signals for blue and green eyes were

observed, with signals from SNPs associated with red and blonde hair colour. The high

frequency of colour selection with the high colour diversity can only be explained by the

artificial selection in the population. The European population first settled in around 35

kya; this is not enough of a time period to get this amount of colour diversity due to

random factors such as genetic drift, founder effect, or relaxation of natural

selection(Frost P, 2006).
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Selection in Toll-Like Receptor 1 (TLR1/TLR6) in the European

population.

Toll-like receptors are part of our innate and adaptive immune system, and they are

present on the surface membrane of macrophages, dendritic cells, and natural killer

cells. TLRs are responsible for the antigen-specific adaptive immunity of the body. TLR1

and TLR6 with TLR2 have been studied to identify molecular patterns of lipoproteins

and lipoteichoic acid present on the membrane of the gram-negative bacteria

(Sadeghalvad M et al., 2021).

The bubonic plague pandemic occurring in Europe in the mid 14th century is one of the

fatal pandemics to be recorded. The plague was caused by a gram-negative bacteria

Yersinia pestis which spread due to fleas. It is estimated that the plague killed about

30% to 60% of the European population.

Figure 10: Plague outbreaks in Europe, 1347–1760 (source: Laayouni H 2014; PNAS License).
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Gene SNP P-value Tissue

TLR6 rs5743618 1.1e-18 Cultured fibroblasts

Table 7: Significant eQTLs associated with rs5743618 reported in GTEx database.

The rs5743618 SNP is a missense variant (C -> A) of the TLR1 gene which lies on

chromosome 4. The missense SNP also is also in an eQTL associated with TLR6 in

fibroblasts, which can produce TLRs (Bautista-Hernández L A et al., 2017 ). rs5743618

was reported to be under selection in three European populations, namely, Great

Britain, Central Europe, and Finland. From figure 5, we can see that Central European

countries and Great Britain have had higher mentions of the plague, which might cause

selection in the rs574318 SNP in the TLR1 gene.

Selection in Eosinophil Count in African populations.

Eosinophils is one of the granulocytes, which are proinflammatory white-blood cells.

Eosinophils play a significant role in the type-2 immune response during parasitic

infections. Apart from being present in lymph nodes and the spleen, the Eosinophils are

also found in the gastrointestinal tract, a common site to contract infections (McBrien C

& Andrew Menzies-Gow A, 2017).

SNPs rs6472241 & rs6961605, associated with Eosinophil counts, showed selection in

Gambia, Sierra Leone, and Nigeria populations. The whole European population, the

Han population from Beijing and the Japanese population, which are on a higher

latitude compared to previously mentioned populations, were not reported for selection

in these SNPs.
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Figure 11: A representation of the worldwide distribution of parasitic infections (source: Cao B & Guiton P

2018; CC-BY).

Parasitic infections are more common as we move closer to the equator since the hot

and humid climate of the tropical regions favours the growth conditions of parasitic

helminths and insects.

Gene SNP P-value Tissue

MTFR1 rs6472241 5.8e-14 Muscle - Skeletal

PDE7 rs6472241 1.1e-7 Esophagus - Mucosa

ZNF282 rs6961605 3.2e-62 Whole Blood

Table 8: Significant eQTLs associated with rs6472241 and rs6961605 reported in the GTEx database.

ZNF282 shows eQTL associated with rs6961605 in whole blood tissue. The zinc finger

protein family is part of the gene expression pathway. The G -> C transformation in

rs6472241 is linked with higher expression of the PDE7 gene in the Esophagus
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Mucosa, and the PDE (cyclic nucleotide phosphodiesterase) protein family mediates

and is responsible for the regulation of extracellular signalling. The presence of SNPs

rs6472241 also significantly increases the expression in MFTR1 (Mitochondrial Fission

Regulator 1) in the muscle cells. Studies have shown that eosinophils have about 24-36

mitochondria which is much greater than the number of mitochondria in found

neutrophils (5-6), which contributes to the flexibility of the eosinophil cell in its diverse

role in host defence (Porter L et al., 2018).
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4. Conclusion
With this study, we aimed to use the previously known SNPs under selection in different

populations and use it to identify potentially new SNPs which are under positive

selection. This machine learning model made in this study was able to identify the SNPs

under selection conditions in several different populations. The model successfully

identified mutations, such as in the case of the VKORC1 gene, which causes slower

processing of warfarin in east Asian populations or the selection in the TLR1 gene in the

European population. These mutations are well studied and have been identified before

with other methods. The model identified 2 mutations, rs6472241 and rs6961605, which

aren’t that well studied and could potentially be under selection in the western African

population. Further analysis of the SNPs identified could be done to understand the

mechanisms and the pathways of these SNPs, which could provide helpful insights into

fields like pharmacogenetics.

To improve upon this current work, larger training data with more populations would help

improve the model’s performance. Incorporating other summary statistics than the ones

used here as features for classification could make it possible to study rare diseases

and conditions; the methods currently do not produce significant results when the MAF

of an SNP is lower than 0.05, thus making it impossible to study rare diseases or

conditions with this model. Further, the model assumes that the chance of selection is

equal in all the populations, which could have been avoided if a separate model for

each population was used, provided sufficient training data was available for each of the

17 populations. Further, the model only classifies SNPs as selected or non-selected,

which might not justify the classification of certain SNPs into either category.
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