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Abstract
Influenza A, an infectious viral disease affecting the lungs, is a significant public health

concern. It has already caused four pandemics in the past, and some strains are now seasonal.

Being zoonotic, the virus is transmitted to humans from birds, which are usually aquatic, and

swine and other mammals serve as intermediate hosts for its transmission. When present in

aquatic birds, the virus is asymptomatic, predicting zoonotic strains that have the potential to

cause an outbreak in humans. Gradually, this virus experiences host-adaptive mutations or

reassortments in its genome, resulting in different variants which might trigger global health

emergencies. Therefore, recognizing zoonotic strains that can cause an outbreak in humans and

their origin is the need of the hour. In this analysis, we have devised a machine learning method

to predict infectious strains of the Influenza A virus from avians/mammals to humans. The

training and validation of the 15 protein sequence was conducted on data obtained from the

Influenza Research Database. Random forest-based models using composition-based features

attained maximum AUC for the 15 proteins ranging from 0.93 to 0.98 on the validation dataset.

On training and validation datasets, the haemagglutinin (HA) protein has the highest AUC of

0.98. We have formulated an in-silico tool for the prediction of infectious strains from protein

sequences as a service to the scientific community. The best models were incorporated in our

web server named FluSPred which can be accessed freely at

“https://webs.iiitd.edu.in/raghava/fluspred/”. We expect that this research will assist in

prioritizing high-risk viral strains hereafter and analyze the risk of a novel influenza virus

emergence. This tool can be integrated with early warning systems and is beneficial for

pandemic preparedness, disease surveillance, and determining the overall public-health impact.
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Chapter 1: Introduction

Influenza A virus is responsible for causing a communicable viral disease, Influenza, which targets the

respiratory system[1]. Influenza A virus, is the only species of the genus Alphainfluenzavirus of the

virus family Orthomyxoviridae[2]. This virus has a zoonotic origin, occurring naturally among geese,

swans, and waterfowl, which are generally known as wild aquatic birds, and it is accountable for

causing avian influenza infection in domestic poultry [3]. Influenza is a viral disease characterized by

sudden elevation of body temperature, dry cough, myalgia, lethargy, fatigue, and headache [4].

Flu-related complications such as pneumonia and encephalitis, as well as myocarditis [5], can be fatal.

The prevalence of influenza infection is higher in individuals with chronic heart or lung diseases [6],

immune disorders, diabetes [7], [8], [9].

The virus when it comes near to animals, and humans, in places such as forests, and live bird markets,

genetic mixing occurs, and that enables the virus to jump the species-barrier to infect animals and

humans[10]. This is a rare phenomenon although not unknown because there have been pandemics

pertaining to this before. Mutations and reassortments originating from animal populations give rise to

novel strains. These novel strains have the capacity to circumvent the host-species barrier and cause

infections in humans[11]. As depicted in Figure 1, virus strains have the potential to infect humans and

cause outbreaks as the strains may have the prospect to overcome species barriers and infect humans,

get host-adaptive mutations and reassortments, thereby giving rise to human-to-human

transmission[12]. This can lead to a potential epidemic or pandemic, which is a cause of great health

concern.
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Figure 1: Illustration of zoonotic transmission of Influenza A virus from birds to animals. There

is cross-transmission of the virus which may lead to the virus infecting humans with severity

ranging from community transmission to disease outbreaks like epidemics and pandemics.
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The seasonal flu is recurring in nature since the virus undergoes substitution point mutations causing

their genomes to have gradual changes, a phenomenon known as antigenic drift [13]. The impact may

be minor as some people have immunity from previous exposures and vaccines are readily available,

but sometimes antibodies produced from the previous infection may not work therefore, vaccines

against these seasonal strains need to be prepared and modified on an annual basis [14]. On the other

hand, the pandemic flu is rare but has significant impacts, as people have little to no immunity from

them, which increases the risk for vulnerable and healthy populations. Reassortment of genome

segments are responsible for major antigenic changes. This phenomenon is known as antigenic shift,

which gives rise to pandemic influeza strains[15]. Viral strains experience mutations and modifications

that adapt to their host, which make them capable of infecting humans and spreading efficiently and

sustainably [16]. The haemagglutinin protein(HA) can be altered by mutations in amino acid residues,

which may enhance the affinity of the receptors for this protein[17].

Mutations or changes in the genome segments give rise to changes in the amino acid composition

which can be attributed to the viral strains being capable of infecting human hosts from avian and

mammalian reservoirs[18].

Pandemics in The Past

Influenza A is one of the most infectious sickness challenges around the world, which was responsible

for four pandemics in contemporary history. In 1918, a subtype of the H1N1 influenza virus was

driving one of the most deadly pandemics in the world with high mortality rates among children under

5 and people in their 20s to 40s. The infection had an avian origin and brought about 50 million

assessed deaths around the world [18]. The H2N2 subtype happened in East Asia from an avian source

in 1957, causing roughly 1.1 million casualties around the world [19]. In 1968, the H3N2 subtype arose

in the United States of America and had north of 1 million deaths around the world. This infection later

started spreading as the occasional influenza [20]. As of late, (H1N1)pdm09 was first noted in the

United States of America in 2009. The infection is apparent from H1N1 and had caused

151,700-575,400 demises overall in the main year of disease. It then, from that point, began circling as

seasonal influenza [21].
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Structural Biology Perspective of Influenza A

As a single-stranded and segmented RNA virus, Influenza A is characterized by having a negative

sense. Hemagglutinin(HA) and Neuraminidase(NA), which are essentially surface glycoproteins, are

the subtypes of the virus. There are 18 HA subtypes and 11 NA subtypes associated with influenza

viruses. For instance, the influenza virus HIN1 has both HA subtypes of type H1 and NA subtypes of

type N1. HIN1, H2N2, and H3N2 are mainly found in humans, while H17N10 and H18N11 can be

found in bats[22].

The influenza A subtypes that occasionally contaminate people during epidemics are H1N1, H2N2, and

H3N2. The rest are known to contaminate birds, and a few mammals like H7N7 affects horses. Point

mutations in a subtype may bring about different strains, being the essential driver of the infection's

development, where new strains surpass the old ones through "genetic drift" [22]. Assume there is a

virus having a new HA subtype, and they get reassorted to the genomic RNA fragments of the human

and avian infectious strains. All things considered, it can possibly spread human-to-human and

conceivably cause a pandemic.

The virus has a total of eight negative-stranded RNA genomic segments within its lipid bilayer

envelope. Three of the most significant segments encode PA: Polymerase Acidic Protein, PB1:

Polymerase Basic Protein 1, and PB2: Polymerase Basic Protein 2, which are the subunits of

RNA-dependent RNA Polymerase proteins. PA is the protease part of RNA-dependent RNA

Polymerase [23]. PB1 is the endonuclease part of RNA-dependent RNA Polymerase. It also plays a role

in RNA [24]. PB2 protein recognizes the mRNA cap as well as plays an important role in host tropism

as single glutamic acid residue at position 627 in avian strains gets replaced by lysine, which allows

replication of the virus in humans [23]. The segment that encodes PB1 also encodes a non-structural

protein PB1-F2. Three RNA segments encode for HA: Hemagglutinin, NA: Neuraminidase, and NP:

Nucleoprotein. HA is a surface glycoprotein that plays an important role in host tropism as sialic acid

receptors present in host cells bind with HA proteins at the surface of the viral envelope, which then

mediates the internalization of the virus. α2,6-sialic acid linkages are recognized by human strains

whereas avian strains recognize α2,3-sialic acid linkages [25], [26]. It is the primary antigen, having

high plasticity and constantly changing due to a high error rate of the viral polymerase gives rise to

antigenic drift [27]. NA is also a surface glycoprotein but it has a sialidase activity[28]. NP is an RNA

binding protein that coats the polymerases and helps in the regulation of nuclear import [29]. Out of the
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remaining two segments, the larger segment encodes M1: Matrix Protein 1, responsible for Nuclear

import regulation [30], and, M2: Matrix Protein 2, which is an ion-channel protein, also present in the

envelope as spikes. It helps in virus uncoating and assembly [30]. The smaller segment encodes NS1:

Non-structural Protein 1, responsible for suppressing the production of host mRNA [31] and NS2:

Non-structural Protein 2, helping in nuclear export [31]. Additionally, segment 2 encodes for PB1-F2

and PB1-N40. PB1-F2 is a small protein of a size of approximately 90 amino acid residues, which

synthesizes capped RNA-primed mRNA[32]. PB1-N40 is the coatomer component of a length of 718

residues[33]. Likewise, segment 3 encodes PA-N155, PA-N182, and PAX. PA-N155 and PA-N182,

11th and 13th inframe AUG codon in PA mRNA respectively, which are N-terminally truncated forms

of PA protein. They show no polymerase activity when expressed with PB1 and PB2[34]. PA-X is

responsible for modulating host immune response [34].

Figure 2: Schematic representation of Influenza A Virus with the segments and their respective

proteins and description
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Problem Statement

In this research, we have made a systematic endeavor to foster computational models to predict

zoonotic host reservoirs of novel Influenza A viral strains, whether they will be infectious to humans or

not. An open-source web server, FluSPred, alongside a standalone package, was made of the best

models. The reason for the web-server is to support foreseeing irresistible Influenza A strains reservoir

with the assistance of sequences of either of the 15 sorts of protein, to serve mainstream researchers in

anticipating the zoonotic risk of the infection as well as act as an early warning system.

Literature Review

There have been studies where protein sequences were used to determine the host tropism of the

Influenza A virus. Applying artificial neural networks to energy feature vectors from protein sequences,

generated by wavelet packet decomposition method so as to distinguish between avian and human

influenza virus[35].Another study was done to determine the avian-to-human transmission of influenza

A virus using physicochemical properties for making the computational model[36]. The features were

generated from the proteins PA, PB1, PB2, M1, NP, and NS1. Additionally, in another study, all the 11

proteins of Influenza A virus were used where amino acid composition along with physicochemical

properties like charge, polarizability, solvent accessibility, hydrophobicity, etc was taken as the features

for the machine learning-based model[37]. Identifying human adaption-associated genomic composition

of Influenza A viruses using principal component analysis and hierarchical clustering have been

developed[38]. The models were based on the composition of mono and dinucleotides, where 217549

full-length coding sequences of PA, PB1, PB2, HA, NP, and NA were used, taken from avian and

human sources.

Feature extraction methods such as position-specific scoring matrix (PSSM), word embedding, and

encoding were also used for host prediction of Influenza A virus using machine learning models[39].

Deep learning techniques like convolutional neural networks have also been used for predicting the

virus phenotype using genome sequences[40]. Word vectors of nucleotide and amino acids of influenza

A using word2vec for feature extraction were used for host prediction[41]. According to these

investigations, protein sequences play a critical role in determining the host tropism of pathogens that

cause zoonotic diseases, and modifications occur at the molecular level for the virus to be able to cross

species barriers.
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Chapter 2: Prediction

Workflow

Figure 3: Workflow from Dataset Collection to Making of the FluSPred Web-server
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Material and Methods

Dataset Preparation

The datasets were acquired from Influenza Research Database [42]. From this database, a sum of

985,720 protein sequences were extracted on 31.07.2021. These sequences were partitioned into 15

separate datasets relating to the 15 proteins that play a role in the Influenza A virus. These datasets

contain sequences of viral proteins from humans as well as mammals and birds. We eliminated the

repetitive and inadequate sequences to keep away from inclinations or biases. For each dataset, the

incomplete and duplicate sequences were removed. Only sequences from the avian, mammalian, and

human hosts were considered. The rest, including the ones from unknown hosts, were removed from the

datasets.

Positive datasets were human contagious strains and related sequences, and negative datasets were

non-human (avian and other mammalian) associated sequences. As a result of our initial cleaning, we

obtained 258790 unique protein sequences, of which 86653 were positive (for example, viral protein

sequences from humans) and 172137 were negative (for example, viral protein sequences from

non-humans). The extensive distribution of the dataset for various Influenza A proteins is given in the

table(Table 1) below.

Table 1: Distribution of positive and negative dataset for the Influenza A protein sequences

Protein Name Positive Dataset Negative Dataset Total Dataset

Polymerase Acidic Protein(PA) 7722 14651 22373

Polymerase Basic Protein 1(PB1) 6011 12407 18418

Polymerase Basic Protein 2(PB2) 7961 14165 22126

Hemagglutinin(HA) 17999 27350 45349

Nucleoprotein(NP) 3716 9031 12747

Neuraminidase(NA) 13486 20315 33801

Matrix Protein 1(M1) 1309 2937 4246

Matrix Protein 2(M2) 1706 4533 6239

Non-Structural Protein 1(NS1) 5577 10414 15991

Non-Structural Protein 2(NS2) 1376 4158 5534

PB1-F2 2298 9441 11739

PB1-N40 5028 10893 15921

PA-N155 4687 10716 15403

19



PA-N182 4422 9739 14161

PA-X 3355 11387 14742

Feature Generation

Composition-based Features

We used Pfeature to calculate amino acid composition(AAC) and dipeptide composition(DPC) for the

feature generation. Pfeature is a valuable tool for the annotation of structural and functional properties

of protein sequences[43]. Composition-based features were computed for both the AAC and DPC

models, with a feature vector length of 20 features for the former and 400 features for the latter.

AAC is the simplest feature extraction method used for the analysis of protein structures where the

composition of each residue of the protein sequence is computed, using the formula:

(i)𝐴𝐴𝐶𝑖 =  𝑅𝑖 / 𝐿 

where AACi is the amino acid composition of type i residue; Ri and L number of residues of type i and

length of the sequence, respectively.

DPC considers the composition of amino acid residues and their local order, computed using the

formula:

(ii)𝐷𝑃𝐶𝑖𝑗 =  𝐷𝑖 𝑗 𝐿 −  𝑗 

where DPCij is the composition of the dipeptide of type i for jth order. Dij and L are the numbers of

dipeptides of type i and the length of a protein sequence, respectively.

For higher-order dipeptide Dj, i is made of residue Ri and Ri+j where the value of j is 2 or more. In case

j is equal to 1 then dipeptide is called a traditional dipeptide.
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One-Hot Encoding based Features

Furthermore, one-hot encoding was another approach that we tried for feature extraction. For this

process, there needs to be equal lengths of the sequences present in the dataset. However, the protein

sequence data were of unequal lengths. As a result, we took the 0.95 quantiles of all the sequence

lengths to equalize the lengths. By maintaining that threshold value, the sequences short of that were

extended with normal repetitions until they reached the 0.95 quantiles threshold for all the sequences

present in the dataset[40]. Sequences that exceeded threshold were truncated until they reached the 0.95

quantile of all sequences mark. In one hot encoding, the sequences are numerically encoded after their

lengths are equalized. Throughout the sequence, the amino acid residues are converted into matrices of

[20 x 1]. Specifically, 20 x 1 refers to the 20 canonical residue positions of a protein, where a particular

residue is given 1 and the rest is given a value of 0. This generates a sparse matrix of

(iii)𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒 =   𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 20 

This renders a sparse matrix. Alanine, for example, is described as 10000000000000000000 in the

20-dimensional vector. Likewise, Cysteine(C) is represented as a 20-dimensional vector

001000000000000000000 in the sequences present in the dataset.

Feature Selection

A significant challenge in this study is to identify the set of critical features that will be important in in

the machine learning models. Here, after the sequence data was converted into one-hot

encoding,resultant matrix became sparse. In such cases. dimensionality reduction techniques are needed

to reduce and make a choice of the number of components to use in the model. Truncated Singular

Value Decomposition (tSVD) was used to reduce the sparse matrix into 100 principal components. This

was done by computing the explained variance[44]. This dimensionality reduction helped improve the

computation efficiency, aiding to executing the program faster as well as reduces the noise in the data.
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Machine Learning Models

The model in this analysis is a binary classification model based on machine learning algorithms, which

is a combination of K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest

(RF). An instance-based classification method, KNN relies on data points closest to an instance for

classification [45]. In KNN, the classification of each data point is differentiated by its majority vote of

the nearest neighbor based on its instances of the training variables. The RF classifier, being an

ensemble-based approach for classification[46], fits a number of decision trees in parallel, to predict the

response variable. Taking the mean of the DTs upgrades the prediction accuracy as well as its control

on the overfitting of the models[47]. SVM or Support Vector Machine is a supervised machine learning

algorithm that can be applied to both classification and regression[48]. Using the SVM algorithm, we

aim to find a hyperplane in n-dimensional space that defines distinct classes for data points. The

features of AAC, DPC, as well as One Hot Encoding, were taken into account for each protein using

SVM, RF, and KNN. These classifiers were formulated using the sci-kit learn library of Python [49].

Cross-Validation

5-fold cross-validation was conducted on each model after splitting the data into training and validation

datasets. The whole dataset for each protein was split into training and validation datasets in an 80:20

ratio, where 80% was kept for training and 20% was kept for validation. The validation dataset was

kept independent so that it can be used for external validation. Additionally, during the five-fold

cross-validation process, the training datasets were further divided into training and testing datasets. By

doing this, the entire training dataset can be broken down into five equal folds. A training dataset

consists of four folds, a testing dataset of one fold, and training itself is performed for each iteration.

The whole process is iterated five times, where every fold is given the opportunity to be used as testing

data. The mean of the results for each fold of the cross-fold validation was taken for the training dataset.

This is a standard procedure that has been used in many analyses [50],[51],[52], [53].
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Evaluation Parameters

Predictions were made using the saved model after cross-validation. This was a part of the external

validation. As a standard measure, we computed Sensitivity, Specificity, Accuracy, Matthew's

Correlation Coefficient (MCC), and Area Under the Curve (AUC) for performance evaluation of the

trained models. From the above-mentoned metrics, threshold-dependent parameters are accuracy,

sensitivity, and specificity. By plotting sensitivity vs 1-specificity, AUC is a threshold independent

parameter. The parameters are calculated by:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇
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Where TP is true positive, TN is true negative, FP is false positive and FN is false negative.
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Chapter 3: Results

Composition Based Analysis

To determine the changes in average protein compositions, we calculated the average amino acid

composition of 15 positive and negative sequences. Figure 4 portrays the compositional analysis for HA

protein sequences based on its compositional analysis. This investigation aimed to sort out the

compositional data of the proteins contrasting between the non-human and human arrangements. As

referenced previously, HA and NA proteins assume a considerable part in host tropism variations in

their genome structure is responsible for the different subtypes of Influenza A[54]. According to Figure

4, the mean composition of Lysine(K), Isoleucine (I), and Alanine (A) in the positive dataset is higher

than that in the negative dataset for HA protein, where Glycine (G), Leucine (L), Glutamic Acid (E),

and Methionine (M) are increased than those in the positive dataset.

Figure 4: Average Amino-Acid Compositional Analysis of HA Protein

Likewise, for NA protein (Figure 5), in the positive dataset, Histidine(H), Alanine(A), Glutamic

Acid(E), and Asparagine(N) have higher average compositions than Glycine(G) and Tyrosine(Y)
24



Figure 5: Average Amino-Acid Compositional Analysis of NA Protein

The compositional analysis has also been performed for the rest of the proteins, as illustrated in the

figures below. Every protein shows a distinction in the average composition between the positive and

negative datasets. The NS1 protein shown below has a higher composition of Glycine(G), Cysteine(C),

Histidine(H), Methionine(M), and Glutamine(Q) with Lysine(K), Asparagine(N), and Valine(V) being

significantly higher in the positive dataset as compared to Alanine(A), Aspartic Acid(D), Leucine(L),

Isoleucine(I) and Arginine(R) being higher in the negative dataset.
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Figure 6: Average Amino-Acid Compositional Analysis of NS1 Protein

Figure 7 describes the compositional analysis of NS2 protein where the composition of Cysteine(C) and

Proline(P) have a less impact compared to the other amino acids. Methionine(M) and Aspartic Acid(N)

apart from Glutamic Acid(E), Glycine(G), and Histidine(H) have a significant contribution in the

positive sequences compared to the negative ones including Serine(S), Threonine(T), Valine(V),

Aspartic Acid(N), Isoleucine(I).

Figure 7: Average Amino-Acid Compositional Analysis of NS2 Protein
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Both PB1 and PB2 are known to play a significant role in host tropism, as per the studies conducted

before. The positive sequences have a higher composition of Aspartic Acid(D), Aspartic Acid(N),

Isoleucine(I), and Lysine(K) whereas Leucine(L), Alanine(A), and Glutamic acid(E) are higher in the

negative dataset.

Figure 8: Average Amino-Acid Compositional Analysis of PB1 Protein

In PB2, Serine(S) and Valine(V) are significantly higher in the positive dataset compared to the

negative, where Leucine(L), Alanine(A), and Glutamic acid(E), and Glutamine(Q) are higher.
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Figure 9: Average Amino-Acid Compositional Analysis of PB2 Protein

Aspartic Acid(N), Isoleucine(I), and Lysine(K) whereas Leucine(L), and Tyrosine(Y) have a higher

composition in the positive data compared to Proline(P), Arginine(R), Serine(S), Threonine(T) in the

negative dataset.

Figure 10: Average Amino-Acid Compositional Analysis of PA Protein
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Serine(S) and Isoleucine(I), as seen in Figure 11, is much higher in the positive dataset. In the negative

dataset, Threonine(T) and Valine(V) are much higher.

Figure 11: Average Amino-Acid Compositional Analysis of M1 Protein

M2 is a small protein but it is interesting to note that even that protein can be used to predict host

tropism based on compositional features only. The difference in the average compositions of

Alanine(A), Glutamic acid(E), Phenylalanine(F), Histidine(H), and Aspartic Acid(N) in the positive

dataset and Glycine(G), Glutamine(Q), Threonine(T), Leucine(L), and Tyrosine(Y) in the negative

dataset can be a contributing factor to for host tropism.
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Figure 12: Average Amino-Acid Compositional Analysis of M2 Protein

In this analysis interestingly, non-structural proteins also show a difference in the average amino acid

compositions between the positive and negative datasets. So in a way, they also are important for host

tropism. As an example, PB1-F2 contains a remarkable amount of Glycine (G), Proline (P), and

Glutamine (Q). This is evident in Figure 13 where the composition of Cysteine (C), Glutamic Acid (E),

Lysine (K), and Leucine (L) is significantly higher in the negative dataset than it is in the positive

dataset.
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Figure 13: Average Amino-Acid Compositional Analysis of PB1F2 Protein

Similarly, Isoleucine(I), Lysine(K), and Glycine(G), are higher in positive and Leucine(L), Alanine(A),

and Glutamic acid(E) are higher in the negative dataset for PB1-N40 protein.

Figure 14: Average Amino-Acid Compositional Analysis of PB1-N40 Protein
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PA-N182 has a higher composition of Valine(V), Aspartic Acid(N), Isoleucine(I), Lysine(K) in positive

and Alanine(A), Threonine(T), Proline (P) in negative data.

Figure 15: Average Amino-Acid Compositional Analysis of PA-N182 Protein

PA-N155 has a higher composition of Aspartic Acid(N), Tyrosine(Y) in positive and a higher

composition of Proline (P), Arginine(R), and Alanine(A) in negative.
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Figure 16: Average Amino-Acid Compositional Analysis of PA-N155 Protein

Lastly, PA-X protein shows a significant difference in Isoleucine(I), Aspartic Acid(N), Leucine(L) in

positive and Asparrtic Acid(D),Glycine(G) , Proline (P), Threonine(T), Arginine(R) in negative dataset.

Figure 17: Average Amino-Acid Compositional Analysis of PA-X Protein

The compositional analysis also validates the study that composition-based features can be used to

determine the host tropism. Mutations and reassortments in the segments can have the potential to

change the underlying host-specificity of the virus. A difference in the compositions of the amino acids

which play a role in the virus is capable of crossing the species barrier to infect humans.

Motif-based Analysis

We employed MERCI software to figure out the different motifs surfacing solely in both the positive

and negative datasets [55]. It identifies and finds top K motifs that are most common in positive

sequences and are absent in negative sequences. By doing so, we added to our understanding of what

motifs are likely to be present in the positive sequences, which might explain why they are infectious.

The top 10 motifs of each of the proteins which are solely present in the positive and negative datasets

are shown in the table below:-
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Table 2: Top 10 Motifs of Each Protein Exclusive to Positive and Negative Datasets

Protein Positive Negative

PA Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

I R L P N G P P C F 10 259 A W K Q V L A E L Q D L 12 1734

I R L P N G P P C F Q 11 259 A W K Q V L A E L Q D L E 13 1728

I R L P N G P P C F Q R 12 259 L A W K Q V L A E L Q D L 13 1671

I R L P N G P P C F Q R S 13 259 L A W K Q V L A E L Q D L E 14 1665

I R L P N G P P C F Q R S K 14 259 L L A W K Q V L A E L Q D L 14 1663

I R L P N G P P C F Q R S K F 15 259 Y L L A W K Q V L A E L Q D L 15 1663

P I R L P N G P P C F 11 256 L L A W K Q V L A E L Q D L E 15 1657

P I R L P N G P P C F Q 12 256 P E Q 3 1565

P I R L P N G P P C F Q R 13 256 E P E Q 4 1563

P I R L P N G P P C F Q R S 14 256 Q R S L 4 1553

P I R L P N G P P C F Q R S K 15 256

HA Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

F L Y A Q S 6 4471 K A I D G I 6 2603

F L Y A Q S S 7 4429 Q K A I D G I 7 2601

F L Y A Q S S G 8 4429 T Q K A I D G I 8 2601

I F L Y A Q S 7 4427 S T Q K A I D G I 9 2599

Q I F L Y A Q S 8 4427 K A I D G I T 7 2594

D Q I F L Y A Q S 9 4419 Q K A I D G I T 8 2592

F L Y A Q S S G R 9 4416 T Q K A I D G I T 9 2592

K D Q I F L Y A Q S 10 4410 S T Q K A I D G I T 10 2590

F L Y A Q S S G R I 10 4396 K A I D G I T N 8 2553

F L Y A Q S S G R I T 11 4388 Q K A I D G I T N 9 2551

T Q K A I D G I T N 10 2551
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M1 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

G L K N D L L D 8 20 A S Q T R Q M V H 9 108

G L K N D L L D N 9 20 A S Q T R Q M V H A 10 108

G L K N D L L D N L 10 20 A S Q T R Q M V H A M 11 108

G L K N D L L D N L Q 11 20 A S Q T R Q M V H A M R 12 108

G L K N D L L D N L Q A 12 20 S Q T R Q M V H 8 108

G L K N D L L D N L Q A Y 13 20 S Q T R Q M V H A 9 108

G L K N D L L D N L Q A Y Q 14 20 S Q T R Q M V H A M 10 108

G L K N D L L D N L Q A Y Q K 15 20 S Q T R Q M V H A M R 11 108

H P S S S T G L K N D L L D 14 20 V A S Q T R Q M V H 10 107

H P S S S T G L K N D L L D N 15 20 V A S Q T R Q M V H A 11 107

K N D L L D 6 20 V A S Q T R Q M V H A M 12 107

V A S Q T R Q M V H A M R 13 107

M2 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

I F K 3 149 G W E C K C S 7 834

R I F K 4 147 G W E C K C S D 8 779

Y R I F K 5 143 G W E C K C S D S 9 778

I F K H 4 140 G W E C K C S D S S 10 756

I F K H G 5 140 G W E C K C S D S S D 11 749

R I F K H 5 139 G W E C K C S D S S D P 12 737

R I F K H G 6 139 P T R N G W E C K C 10 732

I F K H G L 6 138 T P T R N G W E C K C 11 728

I Y R I F K 6 137 E T P T R N G W E C K C 12 722

R I F K H G L 7 137 G W E C K C S D S S D P L 13 720
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NA Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

V V S W S K E 7 1919 K Q N E C 5 2041

D S V V S W S K E 9 1917 F K Q N E C 6 2039

S V V S W S K E 8 1917 H F K Q N E C 7 1948

V D S V V S W S K E 10 1913 L H F K Q N E C 8 1938

L V D S V V S W S K E 11 1912 T L H F K Q N E C 9 1931

V V S W S K E I 8 1878 D I N M A 5 1744

D S V V S W S K E I 10 1876 D I N M A D 6 1719

S V V S W S K E I 9 1876 D I N M A D Y 7 1706

V V S W S K E I L 9 1875 D I N M A D Y S 8 1640

V V S W S K E I L R 10 1875 I D I N M A 6 1628

NP Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

F D K A 4 107 R R D G K W M 7 2579

F D K A T 5 107 R R D G K W M R 8 2574

L P F D K A 6 107 R R D G K W M R E 9 2571

L P F D K A T 7 107 R R D G K W M R E L 10 2560

P F D K A 5 107 R R D G K W M R E L I 11 2484

P F D K A T 6 107 R R D G K W M R E L I L 12 2484

D K A T I 5 106 R D G K W M R E L I L Y D K E 15 2475

D K A T I M 6 106 R R R D G K W M 8 2454

F D K A T I 6 106 R R D G K W M R E L I L Y 13 2451

F D K A T I M 7 106 Y R R R D G K W M 9 2451

F S V Q R N L P F D K A 12 106

NS1 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

N I M L K A N F N 9 1652 Y M A 3 1077
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K N I M L K A N F N 10 1650 M A R R 4 1053

N I M L K A N F N V 10 1645 R Y M A 4 1046

K N I M L K A N F N V 11 1643 K R Y M A 5 1035

E K N I M L K A N F N 11 1627 Q K R Y M A 6 1034

E K N I M L K A N F N V 12 1620 K Q K R Y M A 7 1029

N I M L K A N F N V I 11 1599 P P K Q K R Y 7 1027

K N I M L K A N F N V I 12 1597 G P P L P P K Q K R 10 1023

N I M L K A N F N V I F 12 1595 Y M A R 4 1019

K N I M L K A N F N V I F 13 1594 L P P K Q K R Y 8 1013

P K Q K R Y M A 8 1013

P P K Q K R Y M 8 1013

NS2 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

V M R L G D L H S L Q H 12 72 I T F L 4 445

V M R L G D L H S L Q H R 13 72 L Q A 3 445

V M R L G D L H S L Q H R N 14 71 L Q A L 4 442

A V M R L G D L H S L Q H 13 68 E Q I T F L 6 441

A V M R L G D L H S L Q H R 14 68 F L Q A 4 441

A V M R L G D L H S L Q H R N 15 67 Q I T F L 5 441

V M R L G D L H S L Q H R N G 15 67 T F L Q 4 441

E A V M R L G D L H S L Q H 14 66 T F L Q A 5 441

E A V M R L G D L H S L Q H R 15 66 F E Q I T F L 7 440

G E A V M R L G D L H S L Q H 15 66 F L Q A L 5 440

I T F L Q 5 440

I T F L Q A 6 440

L Q A L Q 5 440

T F L Q A L 6 440
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PB1 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

I K K L W D Q T Q S R T 12 1680 L N R R S Y L I R A 10 413

I K K L W D Q T Q S R T G 13 1680 L N R R S Y L I R A L 11 412

I K K L W D Q T Q S R T G L 14 1680 L N R R S Y L I R A L T 12 412

I K K L W D Q T Q S R T G L L 15 1680 L N R R S Y L I R A L T L 13 411

E I K K L W D Q T Q S R T 13 1679 L N R R S Y L I R A L T L N 14 411

E I K K L W D Q T Q S R T G 14 1679 L N R R S Y L I R A L T L N T 15 411

E I K K L W D Q T Q S R T G L 15 1679 R L N R R S Y L I R A 11 381

F E I K K L W D Q T Q S R T 14 1673 Q R L N R R S Y L I R A 12 380

F E I K K L W D Q T Q S R T G 15 1673 R L N R R S Y L I R A L 12 380

S F E I K K L W D Q T Q S R T 15 1671 R L N R R S Y L I R A L T 13 380

R L N R R S Y L I R A L T L 14 380

R L N R R S Y L I R A L T L N 15 380

PB2 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

K Y P I T A D K R V T E M 13 581 A G A L A E D P D E G T A 13 343

M K Y P I T A D K R V T E M 14 581 A G A L A E D P D E G T A G 14 343

A M K Y P I T A D K R V T E M 15 578 A L A E D P D E G T A 11 343

V T E M V 5 531 A L A E D P D E G T A G 12 343

V T E M V P 6 531 G A L A E D P D E G T A 12 343

V T E M V P E 7 530 G A L A E D P D E G T A G 13 343

R V T E M V 6 527 A G A L A E D P D E G T A G V 15 342

R V T E M V P 7 527 A L A E D P D E G T A G V 13 342

V T E M V P E R 8 527 A L A E D P D E G T A G V E 14 342

V T E M V P E R N 9 527 G A L A E D P D E G T A G V 14 342

V T E M V P E R N E 10 527 G A L A E D P D E G T A G V E 15 342
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PB1-F2 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

Q I Q K L G R P S 9 694 M D H C L R T M 8 1033

Q I Q K L G R P S S 10 686 W T R L 4 993

Q I Q K L G R P S S T 11 665 R L T E 4 987

Q I Q K L G R P S S T Q 12 661 W T R L T 5 985

Q I Q K L G R P S S T Q L 13 658 R L T E H 5 972

Q I Q K L G R P S S T Q L M 14 653 L M D H C L R T M 9 949

Q I Q K L G R P S S T Q L M D 15 644 T R L T E 5 948

R G G S G R Q 7 624 W T R L T E 6 946

Q R G G S G R Q 8 622 R L T E H I 6 934

R G G S G R Q I 8 589 T R L T E H 6 933

PB1-N40 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

Q S R T 4 1310 L N R R S Y L I R A 10 352

Q S R T G 5 1310 L N R R S Y L I R A L 11 351

Q S R T G L 6 1309 L N R R S Y L I R A L T 12 350

Q S R T G L L 7 1309 L N R R S Y L I R A L T L 13 349

T Q S R T 5 1309 L N R R S Y L I R A L T L N 14 349

T Q S R T G 6 1309 L N R R S Y L I R A L T L N T 15 349

T Q S R T G L 7 1308 Q R L N R R S Y L I R A 12 322

T Q S R T G L L 8 1308 R L N R R S Y L I R A 11 322

Q T Q S R T 6 1306 Q R L N R R S Y L I R A L 13 321

Q T Q S R T G 7 1306 R L N R R S Y L I R A L 12 321

PA-N155 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

S E F N K A C E L T D S V 13 1227 A W K Q V L A E L Q D L 12 1245
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S E F N K A C E L T D S V W 14 1227 A W K Q V L A E L Q D L E 13 1239

Q S E F N K A C E L T D S V 14 1226 L A W K Q V L A E L Q D L 13 1189

Q S E F N K A C E L T D S V W 15 1226 L A W K Q V L A E L Q D L E 14 1183

S E F N K A C E L T D S V W I 15 1222 L L A W K Q V L A E L Q D L 14 1181

L R S L S S W I Q S 10 1214 Y L L A W K Q V L A E L Q D L 15 1181

L R S L S S W I Q S E 11 1214 L L A W K Q V L A E L Q D L E 15 1175

L R S L S S W I Q S E F 12 1214 P E Q 3 1066

L R S L S S W I Q S E F N 13 1213 E P E Q 4 1065

L R S L S S W I Q S E F N K 14 1212 A W K Q V L A E L Q D L E N 14 1064

PA-N182 Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

S E F N K A C E L T D S V 13 1188 A W K Q V L A E L Q D L 12 1213

S E F N K A C E L T D S V W 14 1188 A W K Q V L A E L Q D L E 13 1207

Q S E F N K A C E L T D S V 14 1187 L A W K Q V L A E L Q D L 13 1158

Q S E F N K A C E L T D S V W 15 1187 L A W K Q V L A E L Q D L E 14 1152

S E F N K A C E L T D S V W I 15 1184 L L A W K Q V L A E L Q D L 14 1150

L R S L S S W I Q S 10 1181 Y L L A W K Q V L A E L Q D L 15 1150

L R S L S S W I Q S E 11 1181 L L A W K Q V L A E L Q D L E 15 1144

L R S L S S W I Q S E F 12 1181 A W K Q V L A E L Q D L E N 14 1037

L R S L S S W I Q S E F N 13 1180 P E Q 3 1036

L R S L S S W I Q S E F N K 14 1179 E P E Q 4 1035

PA-X Motifs
Motifs
Length Occurrences Motifs

Motifs
Length Occurrences

S P A L R I L E P M W M D L 14 166 S P T K V S H R T S P A L K T 15 882

T S P A L R I L E P M W M D L 15 164 L Q E P C A G S P T K V S 13 698

S P A L R I L E P M W M D L N 15 158 K L Q E P C A G S P T K V S 14 686

L N R T A T L R A S F L K C P 15 142 L K L Q E P C A G S P T K V S 15 682
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A F R R T S P A L R 10 136 L Q E P C A G S P T K V S H 14 682

A F R R T S P A L R I 11 136 L Q E P C A G S P T K V S H R 15 675

A F R R T S P A L R I L 12 136 K L Q E P C A G S P T K V S H 15 670

A F R R T S P A L R I L E 13 136 G L L T K V S H R T S P A L K 15 360

A F R R T S P A L R I L E P 14 136 P C A G L L T K V S H R T 13 268

A F R R T S P A L R I L E P M 15 135 P C A G L L T K V S H R T S 14 268

K A F R R T S P A L R 11 135 P C A G L L T K V S H R T S P 15 268

K A F R R T S P A L R I 12 135

K A F R R T S P A L R I L 13 135

K A F R R T S P A L R I L E 14 135

K A F R R T S P A L R I L E P 15 135

Performance of Machine Learning Models

The host tropism of Influenza A virus, whether it is infectious to humans or not, has been predicted

using machine learning models for all influenza A proteins using sequence-based features such as

AAC, DPC, as well as encoding. For developing a prediction model based on protein sequence datasets,

we used SVM, RF, and KNN classifiers.

Amino Acid Composition based Models

Based on validation data, the random forest models formulated using AAC features achieved an AUC

of 0.973 with an accuracy of 97.5% for HA protein, as shown in Table 3. On both training and

validation datasets, PB1-F2 prediction models deliver the highest accuracy of > 98.8%. The following

table (Tables 3,4 and 5) below shows that the models performed similarly on the training and validation

datasets.
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Table 3: The performance of Support Vector Machine based models developed using AAC

features for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.87 0.84 0.89 0.87 0.72 0.88 0.77 0.93 0.85 0.72

HA 0.95 0.93 0.97 0.95 0.9 0.96 0.96 0.95 0.96 0.91

M1 0.82 0.81 0.83 0.82 0.56 0.82 0.52 0.95 0.73 0.55

M2 0.9 0.97 0.88 0.93 0.74 0.9 0.64 0.99 0.82 0.73

NA 0.94 0.91 0.96 0.93 0.87 0.93 0.93 0.94 0.93 0.86

NP 0.93 0.94 0.93 0.94 0.84 0.93 0.83 0.98 0.9 0.84

NS1 0.95 0.91 0.98 0.94 0.9 0.96 0.92 0.98 0.95 0.9

NS2 0.87 0.8 0.89 0.85 0.64 0.87 0.65 0.93 0.79 0.62

PB1 0.91 0.84 0.95 0.89 0.79 0.91 0.89 0.92 0.9 0.79

PB2 0.9 0.91 0.9 0.9 0.79 0.91 0.81 0.96 0.88 0.79

PB1-F2 0.99 0.98 0.98 0.98 0.92 0.89 0.98 0.98 0.94 0.92

PB1-N40 0.84 0.91 0.91 0.89 0.79 0.88 0.91 0.91 0.9 0.79

PA-N155 0.89 0.84 0.85 0.86 0.6 0.55 0.84 0.82 0.75 0.59

PA-N182 0.88 0.84 0.85 0.86 0.62 0.55 0.83 0.81 0.76 0.59

PA-X 0.87 0.93 0.93 0.91 0.8 0.84 0.93 0.93 0.9 0.8

Table 4: The performance of Random Forest-based models developed using AAC features for

training and validation datasets.

TRAINING VALIDATION

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC

PA 0.95 0.98 0.97 0.97 0.94 0.95 0.96 0.96 0.96 0.91

HA 0.96 0.99 0.98 0.97 0.95 0.98 0.97 0.97 0.97 0.94

M1 0.95 0.94 0.94 0.94 0.86 0.73 0.95 0.88 0.84 0.71

M2 0.94 0.97 0.97 0.96 0.91 0.83 0.96 0.93 0.9 0.81
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NA 0.96 0.98 0.98 0.97 0.95 0.97 0.97 0.97 0.97 0.94

NP 0.96 0.98 0.98 0.97 0.94 0.95 0.98 0.97 0.97 0.94

NS1 0.95 0.98 0.97 0.97 0.94 0.96 0.97 0.96 0.96 0.92

NS2 0.93 0.98 0.97 0.96 0.93 0.89 0.96 0.94 0.93 0.85

PB1 0.94 0.98 0.96 0.96 0.92 0.92 0.96 0.94 0.94 0.88

PB2 0.95 0.98 0.97 0.96 0.93 0.95 0.96 0.96 0.96 0.91

PB1-F2 0.99 0.99 0.99 0.99 0.96 0.92 0.99 0.98 0.96 0.94

PB1-N40 0.94 0.97 0.96 0.96 0.91 0.91 0.97 0.95 0.94 0.88

PA-N155 0.94 0.98 0.97 0.96 0.92 0.92 0.97 0.95 0.94 0.89

PA-N182 0.95 0.98 0.97 0.97 0.93 0.94 0.96 0.95 0.95 0.9

PA-X 0.95 0.98 0.97 0.96 0.92 0.86 0.98 0.95 0.92 0.86

Table 5: The performance of K-Nearest Neighbour based models developed using AAC features

for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.98 0.99 0.97 0.98 0.95 0.95 0.91 0.97 0.94 0.88

HA 0.99 0.99 0.98 0.99 0.98 0.97 0.96 0.98 0.97 0.94

M1 0.93 0.98 0.92 0.95 0.84 0.87 0.71 0.94 0.82 0.68

M2 0.96 0.99 0.95 0.97 0.9 0.92 0.8 0.97 0.88 0.8

NA 0.98 0.99 0.98 0.99 0.97 0.96 0.94 0.97 0.96 0.92

NP 0.98 0.99 0.97 0.98 0.94 0.96 0.89 0.98 0.94 0.89

NS1 0.97 0.99 0.96 0.98 0.94 0.95 0.9 0.98 0.94 0.89

NS2 0.97 0.99 0.96 0.98 0.91 0.94 0.84 0.97 0.91 0.83

PB1 0.97 0.99 0.97 0.98 0.94 0.94 0.88 0.97 0.93 0.87

PB2 0.98 0.99 0.97 0.98 0.95 0.95 0.9 0.98 0.94 0.89
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PB1-F2 0.99 0.99 0.99 0.99 0.97 0.99 0.94 0.99 0.97 0.96

PB1-N40 0.97 0.99 0.96 0.98 0.94 0.94 0.89 0.97 0.93 0.87

PA-N155 0.97 0.99 0.96 0.98 0.93 0.93 0.85 0.97 0.91 0.84

PA-N182 0.97 0.99 0.97 0.98 0.94 0.95 0.89 0.97 0.93 0.88

PA-X 0.97 0.99 0.97 0.98 0.92 0.95 0.86 0.98 0.92 0.86

Dipeptide Composition based Models

Among the composition based models, we developed several models derived from dipeptide

composition of the peptides, where the random forest classifier performed better than the rest of the

models using the same features. Both training and validation datasets gave the most accurate results to

the HA protein random forest model, which achieved a 97.7% accuracy. On the validation dataset, the

NP-based random forest model has an accuracy of 98.4% and an AUC of 0.99. The complete results are

shown in Tables 6,7 and 8.

Table 6: The performance of Support Vector Machine based models developed using DPC

features for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.95 0.9 0.98 0.94 0.89 0.95 0.97 0.94 0.96 0.9

HA 0.97 0.95 0.99 0.97 0.94 0.97 0.98 0.97 0.97 0.94

M1 0.92 0.96 0.91 0.94 0.82 0.92 0.79 0.97 0.88 0.8

M2 0.94 0.95 0.94 0.95 0.85 0.94 0.82 0.99 0.9 0.85

NA 0.97 0.95 0.98 0.97 0.94 0.97 0.98 0.97 0.97 0.94

NP 0.97 0.94 0.98 0.96 0.92 0.97 0.96 0.97 0.97 0.93

NS1 0.96 0.92 0.98 0.95 0.91 0.95 0.97 0.95 0.96 0.9

NS2 0.92 0.98 0.91 0.95 0.77 0.92 0.75 0.98 0.87 0.79

PB1 0.96 0.92 0.98 0.95 0.9 0.95 0.92 0.96 0.94 0.88
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PB2 0.96 0.92 0.98 0.95 0.91 0.96 0.97 0.95 0.96 0.91

PB1-F2 0.99 0.99 0.99 0.99 0.68 0.99 0.99 0.98 0.72 0.66

PB1-N40 0.92 0.95 0.95 0.95 0.9 0.93 0.95 0.95 0.95 0.89

PA-N155 0.86 0.94 0.94 0.92 0.86 0.95 0.94 0.94 0.94 0.87

PA-N182 0.88 0.94 0.94 0.93 0.87 0.96 0.94 0.94 0.95 0.88

PA-X 0.94 0.95 0.95 0.95 0.86 0.87 0.96 0.96 0.93 0.88

Table 7: The performance of Random Forest-based models developed using DPC features for

training and validation datasets.

TRAINING VALIDATION

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC

PA 0.96 0.99 0.97 0.97 0.94 0.97 0.97 0.97 0.97 0.93

HA 0.96 0.99 0.98 0.98 0.95 0.98 0.97 0.98 0.98 0.95

M1 0.96 0.97 0.96 0.96 0.91 0.82 0.97 0.92 0.89 0.81

M2 0.95 0.97 0.97 0.96 0.92 0.89 0.98 0.95 0.93 0.88

NA 0.96 0.99 0.98 0.98 0.96 0.98 0.97 0.97 0.97 0.94

NP 0.98 0.98 0.98 0.98 0.96 0.96 0.99 0.98 0.98 0.96

NS1 0.96 0.98 0.98 0.97 0.95 0.96 0.97 0.96 0.96 0.92

NS2 0.99 0.99 0.99 0.99 0.99 0.9 0.96 0.91 0.86 0.76

PB1 0.96 0.99 0.98 0.97 0.95 0.94 0.97 0.96 0.96 0.91

PB2 0.96 0.99 0.98 0.98 0.96 0.97 0.97 0.97 0.97 0.93

PB1-F2 0.99 0.99 0.99 0.99 0.99 0.87 0.99 0.99 0.83 0.75

PB1-N40 0.96 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92

PA-N155 0.94 0.99 0.97 0.96 0.93 0.95 0.97 0.97 0.96 0.92

PA-N182 0.95 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92

PA-X 0.95 0.98 0.98 0.97 0.93 0.94 0.98 0.97 0.96 0.92
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Table 8: The performance of K-Nearest Neighbour based models developed using DPC features

for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.99 0.99 0.98 0.99 0.97 0.96 0.95 0.97 0.96 0.92

HA 0.99 0.98 0.99 0.99 0.98 0.97 0.96 0.98 0.97 0.94

M1 0.96 0.91 0.95 0.97 0.91 0.91 0.79 0.96 0.88 0.78

M2 0.97 0.92 0.95 0.98 0.91 0.93 0.8 0.98 0.89 0.82

NA 0.99 0.99 0.98 0.99 0.98 0.97 0.95 0.98 0.96 0.93

NP 0.99 0.96 0.98 0.99 0.97 0.98 0.94 0.99 0.97 0.94

NS1 0.98 0.96 0.97 0.99 0.96 0.95 0.91 0.97 0.94 0.88

NS2 0.98 0.91 0.97 0.99 0.94 0.95 0.85 0.98 0.92 0.86

PB1 0.99 0.99 0.99 0.99 0.98 0.96 0.92 0.98 0.95 0.91

PB2 0.99 0.99 0.98 0.99 0.98 0.96 0.95 0.97 0.96 0.92

PB1-F2 0.99 0.98 0.99 0.99 0.74 0.99 0.67 0.99 0.83 0.81

PB1-N40 0.99 0.99 0.98 0.99 0.97 0.96 0.93 0.98 0.95 0.92

PA-N155 0.99 0.99 0.98 0.99 0.97 0.96 0.91 0.98 0.94 0.9

PA-N182 0.99 0.99 0.98 0.99 0.97 0.97 0.94 0.98 0.96 0.92

PA-X 0.98 0.98 0.98 0.99 0.96 0.96 0.89 0.98 0.93 0.88

One Hot Encoding-based Models

We have also used binary or one-hot encoding features for the classification of human and non-human

host sequences on being infectious to humans or not. We observed that the HA protein-based random

forests model achieved 99.5 percent accuracy and 98.3 percent AUC, respectively, in the training and
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validation data analyses. The data of validation support this by having a MCC of 0.9666 as shown in

Table 9. The complete results are provided in the following tables (Tables 9, 10 and 11).

Table 9: The performance of Support Vector Machine-based models developed using one hot

encoding feature for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.95 0.9 0.98 0.96 0.89 0.95 0.97 0.94 0.95 0.89

HA 0.96 0.94 0.97 0.96 0.92 0.96 0.95 0.96 0.96 0.92

M1 0.92 0.95 0.91 0.93 0.8 0.92 0.79 0.98 0.88 0.81

M2 0.94 0.96 0.94 0.95 0.86 0.93 0.8 0.99 0.89 0.84

NA 0.97 0.94 0.98 0.96 0.93 0.97 0.97 0.96 0.97 0.93

NP 0.97 0.93 0.98 0.96 0.92 0.96 0.95 0.97 0.96 0.92

NS1 0.97 0.93 0.98 0.96 0.92 0.96 0.95 0.97 0.96 0.92

NS2 0.95 0.87 0.97 0.92 0.86 0.94 0.91 0.95 0.93 0.85

PB1 0.95 0.91 0.97 0.94 0.89 0.94 0.92 0.95 0.94 0.87

PB2 0.95 0.91 0.98 0.95 0.9 0.95 0.96 0.95 0.96 0.9

PB1-F2 0.99 0.98 0.99 0.99 0.95 0.92 0.98 0.98 0.96 0.95

PB1-N40 0.92 0.95 0.95 0.94 0.88 0.94 0.95 0.95 0.95 0.89

PA-N155 0.84 0.93 0.93 0.91 0.84 0.94 0.93 0.93 0.93 0.85

PA-N182 0.81 0.89 0.89 0.87 0.76 0.87 0.89 0.9 0.89 0.76

PA-X 0.94 0.93 0.94 0.94 0.81 0.77 0.94 0.93 0.88 0.81

Table 10: The performance of Random Forest-based models developed using one hot encoding

feature for training and validation datasets.

TRAINING VALIDATION

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC
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PA 0.97 0.99 0.98 0.98 0.96 0.96 0.97 0.97 0.97 0.93

HA 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.97

M1 0.99 0.98 0.98 0.98 0.96 0.89 0.94 0.92 0.91 0.82

M2 0.99 0.99 0.99 0.99 0.97 0.85 0.98 0.94 0.91 0.86

NA 0.97 0.99 0.98 0.98 0.96 0.97 0.98 0.97 0.97 0.94

NP 0.99 0.98 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92

NS1 0.99 0.99 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92

NS2 0.98 0.98 0.98 0.98 0.95 0.88 0.97 0.94 0.92 0.85

PB1 0.97 0.99 0.98 0.98 0.96 0.94 0.97 0.96 0.96 0.91

PB2 0.98 0.99 0.98 0.98 0.96 0.95 0.98 0.97 0.97 0.93

PB1-F2 0.98 0.98 0.99 0.99 0.96 0.9 0.99 0.98 0.95 0.93

PB1-N40 0.97 0.98 0.98 0.97 0.95 0.95 0.97 0.96 0.96 0.91

PA-N155 0.97 0.99 0.98 0.98 0.96 0.93 0.98 0.96 0.95 0.91

PA-N182 0.82 0.94 0.9 0.88 0.77 0.85 0.91 0.89 0.88 0.75

PA-X 0.98 0.98 0.98 0.98 0.94 0.85 0.98 0.95 0.92 0.86

Table 11: The performance of K-Nearest Neighbour-based models developed using one hot

encoding feature for training and validation datasets.

TRAINING VALIDATION

Proteins Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity AUC MCC

PA 0.98 0.98 0.97 0.99 0.96 0.95 0.91 0.97 0.94 0.89

HA 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.97

M1 0.96 0.92 0.94 0.97 0.9 0.89 0.79 0.94 0.87 0.74

M2 0.97 0.9 0.96 0.98 0.92 0.92 0.79 0.97 0.88 0.8

NA 0.99 0.99 0.98 0.99 0.97 0.97 0.94 0.98 0.96 0.93

NP 0.98 0.98 0.98 0.99 0.96 0.96 0.92 0.98 0.95 0.91

48



NS1 0.98 0.98 0.98 0.99 0.96 0.96 0.92 0.98 0.95 0.91

NS2 0.97 0.91 0.97 0.98 0.93 0.94 0.85 0.98 0.91 0.84

PB1 0.98 0.97 0.97 0.99 0.95 0.96 0.91 0.98 0.94 0.9

PB2 0.98 0.93 0.97 0.99 0.96 0.96 0.92 0.98 0.95 0.9

PB1-F2 0.99 0.99 0.99 0.99 0.97 0.98 0.94 0.99 0.96 0.94

PB1-N40 0.98 0.97 0.97 0.98 0.95 0.95 0.9 0.97 0.94 0.88

PA-N155 0.98 0.96 0.97 0.98 0.94 0.95 0.88 0.98 0.93 0.87

PA-N182 0.86 0.87 0.87 0.87 0.68 0.89 0.84 0.91 0.88 0.75

PA-X 0.97 0.94 0.97 0.98 0.93 0.94 0.81 0.98 0.9 0.83

In our analysis, although HA and NA are often considered to be associated with host tropism by causing

novel variants and subtypes, they are not the sole contributors to it. The other proteins also contribute to

the host tropism, therefore, there is the scope for further research on sequence analysis or molecular

studies on them. Furthermore, we see that proteins such as NS1 and NS2 or M1 and M2 also play a

role. These proteins are encoded from the same segment, but their predictions differ. Despite sharing the

same segments, they are functionally different even though they are encoded in the same way. As a

result of this, each of the segments can be affected separately if a mutation occurs in one of them [56].

Best Model Selection

We chose not to use the random forest model using the encoding feature because the models were

expensive to compute and time-consuming, even though following dimensionality reduction. The AAC

and DPC models, on the other hand, permitted efficient execution of the models and as a result, we

chose the DPC models for inclusion in the web-server since it achieved higher evaluation parameters

than the AAC and generated features faster than the one-hot encoding of the sequences. As far as NS2

and PB1F2 are concerned, we chose the random forest model that uses AAC features because they

showed better results than the DPC models.
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Chapter 4: The FluSPred Web Server

Architecture of the Web-Server
For the benefit of the scientific research community, A webserver named “FluSPred”

(https://webs.iiitd.edu.in/raghava/fluspred/) and a standalone package

(https://github.com/raghavagps/FluSPred) has been made where, the best models for each of the 15

proteins was selected and incorporated. HTML, CSS were used for front-end structure of the web

server and styling respectively. VanillaJS was used for client-side logic. PHP and Python were used for

running the prediction scripts on the server and handling the backend tasks of the web-server. The

webserver supports all kinds of device screen sizes such as mobile, tablets and laptops, i.e. the

webserver is fully responsive.

Figure 18: The FluSPred Web Server
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Working of FluSpred
The FluSPred webserver has two modules, a) Genome and b) Protein. The module for Genome consists

of one prediction model which predicts the host tropism of Influenza A using genome sequences. The

Protein module of the web server encompasses prediction models of each of the 15 proteins. The best

models for each protein selected were incorporated into this module.

Figure 19: Protein Module of FluSPred
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In the Protein module of the webserver, selecting either of the 15 models, a single or multiple

sequences, can be used as an input in .fasta format. The user has to select the model that they want to

run and their sequences needs to be provided in the input box. For more clarity, example sequences for

each of the proteins have been added in the “Ex” buttons beside the radio buttons of their respective

models.

Figure 20: HA Model Selected and Example Sequence of the same Added in the Input Box
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When a particular model is selected by the user and clicked on the “Submit” button, FluSPred then runs

the respective model and provides the result in the form of a table which can be downloaded in .csv

format. The result comprises the prediction of the human/non-human infectious strain.

Figure 21: Result Page of HA Model using the Example Sequences
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The long-term objective of this server is to use it for research into Influenza A or public health and

pandemic surveillance.

Standalone Package

For the benefit of the scientific community, FluSPred was made freely accessible or open-source. Along

with the web-server, a standalone package was also developed. The standalone program needs three

arguments to run for the Protein module. First, the user must provide an input file in .fasta format,

which needs to be predicted. For proteins, the user must give the argument as 'P'. The second argument

asks for the type of sequences the user provided in the input file. Third, the user must specify the

protein name that the user's sequences belong to, which must be one of fifteen proteins listed below:

$ python main.py -h
loading...

usage: main.py [-h] -i INPUT -o OPTION [-pn PROTEINNAME]

Please provide following arguments to proceed

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

Input File Name: protein or genome sequence in
FASTA format

-o OPTION, --option OPTION
Select which kind of file you are giving,

Protein(P) or Genome(G)

P : Protein
G : Genome

-pn PROTEINNAME, --proteinName PROTEINNAME
This argument is only required when choosing

OPTION as protein
enter the Protein name from 15 proteins listed

below
HA :  Haemagglutinin
PA :  Polymerase Acidic
PB1 :  Polymerase Basic 1
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PB2 :  Polymerase Basic 2
NP :  Nucleoprotein
NA :  Neuraminidase
M1 :  Matrix Protein 1
M2 :  Matrix Protein 2
NS1 : Non-Structural 1
NS2 : Non-Structural 2
PB1F2 : PB1F2
PB1N40 : PB1-N40
PAN155 : PA-N155
PAN182 : PA-N182
PAX : PAX

Case Study: Evaluation of FluSPred

We conducted a study to further validate our web-server using newly retrieved sequence entries

retrieved from IRD on 24.12.2021. Additional entries were added for HA, NP, and PA-X proteins.

Redundancy was thoroughly examined for the new sequences, and those that were not in the original

dataset that was used in the models were selected. The following strains were used, as demonstrated by

the HA protein analysis: A/swine/Iowa/A02636065/2021, A/teal/Samara/Bolshechernigovsky/2021,

A/Texas/01/2021. The HA prediction model was able to analyze these sequences and predict if the

strains were infectious or not by using probability scores. For the non-infectious sequences, the scores

were very low (0.02 for A/swine/Iowa/A02636065/2021 and 0.07 for

A/teal/Samara/Bolshechernigovsky/2021 strains) compared with 0.8 for infectious sequences. NP

prediction model was validated using the sequence of the NP protein from A/Texas/01/2021 strain with

H3N2 subtype. The strain scored 0.57, indicating that it was infectious. Moreover, the strain carrying

the PA-X protein sequence was also used to test the respective protein model. With a score of 0.98, the

model also indicated that the strain was infectious.
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BLAST Analysis

An analysis based on BLAST or Basic Local Alignment Search Tool[57] was also conducted for further

evaluation of FluSPred. The dataset for few proteins (HA, NA, PB1, PB2) in .fasta format was taken

and divided into train and test files. The command makeblastdb was run to make a local library for

reference sequence. Then blastp was run where the input was given as test file and output with

hits/nohits was executed. With the results received from BLAST, evaluation metrics such as accuracy,

sensitivity, specificity, MCC and AUC were calculated. The comparison of the evaluation metrics of

both FluSPred and Blast is given in the table(Table 12) below.

Table 12: Comparison of FluSpred And BLAST Results

Method Protein Sensitivity Specificity Accuracy AUC MCC

Blast HA 0.98 0.66 0.89 0.82 0.73

FluSPred HA 0.98 0.97 0.97 0.97 0.94

Blast NA 0.96 0.91 0.93 0.93 0.87

FluSPred NA 0.97 0.97 0.97 0.97 0.94

Blast PB1 0.97 0.64 0.67 0.8 0.35

FluSPred PB1 0.92 0.96 0.94 0.94 0.88

Blast PB2 0.96 0.46 0.62 0.71 0.42

FluSPred PB2 0.95 0.96 0.96 0.96 0.91
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Chapter 5: Discussion

Approximately 2.4 billion cases illnesses pertaining to microorganisms and 2.7 million deaths are

associated with zoonotic diseases, including infections from novel agents (such as bacteria, fungi,

viruses, protozoa and pathogens) each year [58]. With increased human activity or interference, the

frequency of zoonotic diseases in humans is increasing[59],[60]. It is imperative that we identify strains

that have a high risk of causing diseases to emerge and that can motivate host acceptance of zoonotic

infections. In analyzing disease outbreaks, forecasting tools and early warning systems can now be

developed through advancements as well as improvements in technology and high-throughput

sequencing[61]. It has been attempted by scientists worldwide in the last few years to develop

computational methods to predict the progression of zoonotic diseases such as influenza, SARS,

MERS, Ebola, and rabies [62],[63, 64],[65].In humans, the frequency of zoonotic illnesses is rising as

human activity increases or human interference increases [59],[60]. The need of the hour is to identify

strains with this capability of causing disease emergence and if this can promote host permissiveness

for the spread of zoonotic infections [61].

Using computational methods, we developed models of the proteins and genome in order to predict the

zoonotic hosts of novel influenza A viruses. Sequence data was obtained from the Influenza Research

Database. The feature extraction and encoding were performed using compositional based feature

extraction. To train and validate the model, we selected the relevant features. Our compositional

analysis indicates which residues were preferred over the others in sequences from human hosts, for

each protein. The results show that simple composition based techniques can identify the important

features and aid in prediction. Of the hot encoding features, the HA protein achieved the highest AUC

of 0.991 in training datasets and 0.982 in validation datasets, using random forest models. Analyses of

the sequence data using MERCI identified important motifs that were present on the human hosts but

not on the non-human sequences. It gives us an overview of the motifs that can play a role in zoonotic

transmission. As they were not as computationally expensive as one-hot encoding features, Random

Forest models of AAC and DPC for the corresponding proteins were selected as the best models.

FluSPred, an open-source web-server that incorporates the best models of each of the 15 proteins, was

developed.

There have been several attempts by scientists all over the world to make computational models for the

prediction of zoonotic events of different pathogens. Most of the available tools are complex and do not
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have a web-server which can be used by the community. There was less focus on the role of proteins in

zoonotic transmission of Influenza A, and where used, the number of proteins considered were limited,

with a maximum consideration of 11 proteins [66]. The prediction models made by Wang et. al[36]

used only 6 influenza A proteins, which did not include HA and NA. Although historically we have

seen HA and NA being responsible for the Influenza A subtypes for the four pandemics. Also, both HA

and NA showed high outcomes on the computational models, which plainly demonstrate their

significance in zoonosis. Additionally, our models require protein or genome sequences of the virus

from the respective hosts. It does not require the sequences of the hosts, which can be cumbersome

since their limited availability[67, 68].[69]Zhang et al.[70] and Galiez et al[71] combined species and

genera to higher taxonomic groups whereas our approach takes account of the host species for each

strains of the virus. Mock et al[40]performed deep learning, which is computer expensive, on multiclass

classification of genomic data that was imbalanced, having preference on certain species over the

others. They have achieved an average accuracy of 97.46 and an AUC of 0.94 on the influenza A

dataset. On the other hand, we have performed binary classification with a focus on human and

non-human hosts, achieving a higher prediction accuracy and AUC of 98% by using simple

composition-based features, which are not computer expensive and time consuming. Li and

Sun[72]used SVM, alignment-based and without alignment based methods to predict the host of

influenza A genomic data. Their dataset was small (1200 sequences and 6 hosts), and the average

accuracy was 84%, 85.67%, and 87% for alignment based, SVM and alignment free methods

respectively [72], [40]. Our models incorporated a wide scope, i.e. 308632 of sequence data, pertaining

to 34 hosts as well as accomplished a lot higher accuracy.

With our methodical approach, we have developed a computational tool that predicts human infectious

strains of the influenza A virus based on 15 proteins. From sequence datasets provided by IRD, we

compute compositional-based descriptors/features and one hot encoding-based feature using Pfeature.

These features were used to train and validate the model. Using compositional analysis, we identify

which residues (A, I, K, E, H, G, P, Q) are most frequently observed in three major zoonotic proteins

such as HA, NA and PB1-F2. It is demonstrated that simple composition-based techniques can be used

to identify and predict important features. An analysis of the human sequences for motifs showed that

there were several important motifs not present in the non-human sequences.

Our webserver, FluSPred, is user-friendly and the first web server to incorporate all the 15 influenza A

protein prediction models all at one place. It is a machine-learning-based tool that has been trained by
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composition-based features(AAC, DPC), having models on each of the 15 proteins. The

composition-based feature extraction is simple and much faster compared to the rest of the methods

provided by others/available, and yet highly accurate, as described in the results. The simplicity in the

webserver lies with the fact that the user would only have to provide the sequence of either of the

proteins, and the models will be able to predict whether the sequence pertaining to the virus is

infectious to human hosts. The data on which our models were trained covers a huge span of time and a

vast range of influenza causing viral proteins and genomes from diverse hosts. BLAST Analysis was

also conducted on few proteins which in literature is know to be of great importance for host tropism.

The results of our models surpass the BLAST results indicating that our models can predict the

infectious strains at a higher accuracy as compared to BLAST. The purpose of this web server is to

serve the scientific community for predicting the zoonotic risk of the virus as a part of the early warning

system. To the best of our knowledge, this is the first attempt to develop a web server that has

computational models for all the 15 Influenza A proteins and genome at one place.
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Conclusion
With a history of four pandemics in the past as well as recurring seasonal influenza every year, the

need for international measures depend heavily on the investigations, analyses and researches carried

out by public health centres and other infection sites to trace the outbreak. One of the critical factors

and primary research must involve around finding out the origin or the root cause of the infectious

disease emergence. There are traces of evidence or proof that cross-species transmission or zoonotic

spillovers from animals to humans take place which can eventually lead to outbreaks. Serological

surveys of the animals prone to zoonosis living in proximity to humans and places where human and

animals can come in close contact is essential to prevent likely spillovers.

A robust disease surveillance system is of utmost importance for prompt detection of zoonotic

spillovers. This surveillance also includes detection of infectious agents while crossing the species

barrier before it starts to circulate among human populations. This would help arrest a possible

outbreak, be it epidemics or pandemics.

Here, "One Health" approach tends to play a very important role as this vision involves public health,

veterinary health, epidimeological knowledge and medical science for investigating the risks,

predisposition and mitigating any likely outbreaks. It can also help with better prevention and control

strategies. Relying completely on public health measures is not enough. Hence there should be efforts

to arrest emmerging zoonotic events at all levels. Our web server FluSPred, even if it plays a small

part, would be of great help to the communities and people in curbing such events. However, there is

still scope of more research in this area.

Future Objectives
There is scope of further research where insights can be driven on cross-species transmission which is

still unknown. Figuring out which exact position mutations are taking place which enables cross species

transmission would be a good way to start. Our models help distinguish between humans and non

humans, and which reservoir the strains belong to. However, further research can be carried out which

helps determine animal to animal transmissions, what triggers them and their effects. After all, adequate

research, management and control of emerging zoonoses will offer a possibility for containing health

risks of zoonotic infections that are of global health concern and make the world safer from emerging

and re-emerging pathogens.
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