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Abstract

There are many real-world problems pertaining to the need for the fusion of
information from multiple sources. Consider, for example, the problem of
demand forecasting that requires estimating the power consumption at a future
point given the available information till the current instant. At the building level
forecasting, the inputs are usually power consumption, weather(temperature,
humidity), and occupancy. This is a crucial problem in smart grids that ranges
from planning electricity generation to preventing non-technical losses. Likewise,
many such real-world examples can be cast as multi-channel information fusion
based problems. Thus, we need the techniques whereby this varied nature
of information from multiple sources can be combined/fused to predict some
value(s) that can contribute significantly to future decision making.

A bountiful of techniques have been proposed so far for multi-channel fusion,
yet hardly any of them have been addressed as an end-to-end fusion formulation.
Few of such solutions are based on techniques that include - Deep learning and
Statistical Machine Learning (SML) algorithms. However, existing solutions
related to deep learning paradigms involve Convolutional Neural Network (CNN).
The latter might not guarantee distinct filters and hence, quality representations
might not be obtained that could lead to redundancy. Secondly, CNNs are
supervised and, therefore, require large labelled datasets that are not readily
available in every other domain. Lastly, SML algorithms are largely prone
to overfitting as these heavily rely on quality of features input. Thus, end-to-
end, multi-channel, both unsupervised and supervised Convolutional Transform
Learning (CTL) based solutions are proposed that bridges all the gaps. The
problems targeted lie under multiple domains including financial, biomedical
and multiview image and text datasets.

Firstly, this dissertation proposes unsupervised multi-channel fusion solutions
to the problems in the financial domain - stock trading(trend prediction/classifi-
cation) and stock forecasting(price prediction/regression) both of which include
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time-series data. It preserves the true nature of time-series as univariate instead
of frameworks treating them as 2D matrix/image. Also, the given solution is
highly efficient in terms of training a single framework single framework and
obtaining features that can be utilized for both classification and regression tasks.
The latter benefit cannot be achieved with CNNs.

Secondly, multiple information fusion problems are solved by giving super-
vised frameworks based on CTL and deep learning paradigms. Specifically,
one of the frameworks is proposed to cater to the problem of stock trading that
eliminates the issue of dead ReLU and guarantees representations that are more
diverse helping in obtaining better performance over the state-of-art techniques.
The latter has been validated via fair comparison with CNN where the proposed
method supersedes it. Next, an information fusion solution is given that is su-
pervised jointly trained and optimized approach based on CTL and Decision
Forest (DF) for predicting Drug-Drug Interactions that could lead to Adverse
Drug Reactions (ADRs) instead of utilizing them in a piecemeal fashion.

Lastly, this thesis contributes to solve multiview clustering fusion problem
handling the challenge of data-constrained scenarios. It involves the multiview
datasets under image and text categories. A joint optimization of Deep CTL
(DCTL) and K-Means clustering is proposed. It avoids the piecemeal approach
and learns representations from clustering perspective with the help of K-Means
clustering loss.
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Chapter 1

Introduction

Information Fusion (IF) is an advanced process that involves estimation and

empowers users to asses complex situations more efficiently, effectively and

accurately. It combines information from multiple sources that can be massive,

diverse and sometimes conflicting as well. This integration produces specific and

comprehensive unified estimates about an entity, activity or event. According to

[2], IF is defined as “the study of efficient methods for automatically or semi-

automatically transforming information from different sources and points in time

into a representation that provides effective support for human or automated

decision making" . Many real-world domains raise problems pertaining to the

need for the fusion of information from multiple sources.

Let us consider the demand forecasting problem that requires estimating the

power consumption at a future point by accounting for the available information

until the current instant. Usually, in this respect, the inputs at the building

level forecasting are power consumption, weather (temperature, humidity), and
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occupancy etc. It is pertinent to solve this problem as it is a crucial aspect in smart

grids that ranges from planning electricity generation to preventing non-technical

losses. Next, we consider biomedical signal analysis where IF is required. For

example, the problem of blood pressure estimation. The inputs are usually from

two sources, namely the electrocardiogram (ECG) and pulsepleithismogram

(PPG) [3], and the goal is to estimate the systolic and diastolic pressures.

Transportation is also a domain that needs the fusion of information from

many sources to build intelligent transportation systems (ITS) [4, 5]. It is

essential to improve safety of a passenger, reduce transportation time and fuel

consumption, etc. In the same domain, the work [6] deals with the problem of

forecasting the taxi demand in the event areas. It is done by fusing the publicly

available data and time-series data using deep learning techniques.

Image fusion is another area where the information from two or more images

of an object has to be integrated into a single image that is more informative

and appropriate for visual perception or computer analysis. It is significantly

applied in medical imaging. For example, to improve the functional and spatial

information content of the PET images, the fusion of Magnetic Resonance

Imaging (MRI) and Positron Emission Tomography (PET) images using Intensity

Hue Saturation (IHS) and Retina-Inspired Models (RIM) fusion methods is

performed [7]. Multi-sensor video is also a domain that requires multi-channel

data fusion applied in the medical domain. It uses the fused video displays and

scanpath assessment for the visible and infrared side-by-side[8].
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Similarly, there are other domains that we will not discuss at length but briefly

mention where IF plays its role. Opinion mining based on sentiment analysis

[9], Stock Price prediction [10], drug-drug interaction [11], human activity

recognition [12] etc. Thus, IF is a field that offers a plethora of opportunities to

solve many impactful real-world problems.

1.1 Problem Statement

This research dissertation aims to propose efficient multi-channel fusion frame-

works that learn better representations for solving problems in the analysis

domain. There could be supervised and unsupervised learning tasks finding

applications in n-Dimensional data domains. The problems targeted under the

supervised category are regression and classification and clustering for unsu-

pervised. The aim is to offer quick decision-making to the practitioner while

dealing with information from multiple sources.

1.2 Background

IF integrates heterogeneous data from multiple sources to learn representations

that can lead to effective decision-making in future events. The challenge

comes here, like Data imperfection, inconsistency, confliction, alignment and

correlation, heterogeneity, etc. [13]. Thus, IF is an area that needs solutions

to overcome these challenges for different applications. A range of methods

have been proposed for solving the problems in IF, from probabilistic methods
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and statistical machine learning to deep learning. We will briefly discuss these

techniques covering some problems in different application domains.

1.2.1 Probabilistic approach

Several studies have used probabilistic methods. As mentioned previously, IF

finds excellent application in Intelligent Transportation Systems (ITS). According

to one of the fusion-based ITS surveys [14], most of the studies had used

probabilistic-based fusion methods since 2011 with a percentage of 46.29% (i.e.,

81 out of 135 articles studied in the survey were based on probabilistic based

fusion). It is worth mentioning that these include Kalman Filter (KF) algorithm

and its variations, e.g., Extended Kalman Filter (EKF) [15–21], Sequential

Kalman Filter (SKF) [22] etc. The kinds of applications under ITS covered here

concerning KF are car or vehicle positioning [15, 22] in a smart city, vehicle

localization [16, 19, 20], moving object detection and tracking [18], navigation

[21] etc.

Opinion Mining (OM) is another area of application where IF finds its scope

to solve real-world problems. OM is the technique that involves the task of

extracting opinions from unstructured text by combining techniques from Natural

Language Processing (NLP) and Computer Science. Here, also probabilistic

models are applied [23, 24]. The study in [25] presents an “Enterprise IF"

framework that exploits many techniques to better understand the impact on an

enterprise’s business. The latter includes client feedback and any noteworthy

news about events that could affect it. Also, sometimes involve corporate’s
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data for analysis. Thus, such a framework depends on multiple sources of

information - news sourced from platforms like Twitter and feedback sourced

from comments on discussion boards and Really Simple Syndication (RSS)

feeds from specific blogs. For this purpose, they use a “blackboard architecture"

described in [23]. It is a belief network with nodes representing propositions with

associated probability distributions and edges denoting different conditions on

nodes. The study’s authors observed a dip in sales of a given product after higher

negative feedbacks. They stated that even though their analysis was ex-post,

the unstructured data mining synchronized with sales data could have provided

insights to perform better marketing campaigns and find a better market niche

for the observed product.

Another sector that uses probabilistic Bayesian models is healthcare. With

the help of Bayesian frameworks, functional MRI, multi-variate decoding and

psychophysics, the authors in [26] demonstrated Bayesian causal inference

through hierarchical multi-sensory processes in the human brain. The Internet

of Things (IoT) is also an area where IF finds its application. Consider a smart

home, i.e., where data is collected through different sensors installed in the home.

One such problem that can be solved is knowing about the person’s occupancy

while preserving privacy. In the study [27], sensors data, including temperature,

humidity, light and CO2 are used to detect the occupancy in a room. The authors

considered each kind of readings’ Probability Density Functions (PDF) and

calculated the Probability Mass Assignment (PMA) for each parameter y to

be in class x. Next, Dempster’s combination rule was applied to combine the
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PMA value for a final decision [27]. However, Dempster-Shafer’s theory poses

difficulty in estimating mass due to which its applications are limited.

The drawback with the probabilistic models is that it is difficult to obtain a

density function and define priori probabilities. Also, when dealing with complex

and multi-variate data, we have to settle for limited performance. Further, we

cannot handle uncertainty with such solutions [28].

1.2.2 Machine Learning-based Frameworks

Traditional machine learning algorithms have also been extensively used to solve

many IF-based problems. In the study [29], the task was to classify the incorrect

driving behavior using multiple inputs, including the driver’s driving operation

behavior, steering wheel angle, brake force, and throttle position. Also, it

considers road conditions and then classifies using these inputs via the Adaboost

algorithm. In another study [30], activity recognition is performed via fusion

at two levels - feature and score fusion levels through Naive Bayes Algorithm.

One of the applications of the ITS and IOT is the vacant parking spot detection

problem in urban environments. In view of the same, the work in [31] employs

the fusion of the information from small-scale sensor-based detectors with

that obtained from exploiting the widely-deployed video surveillance camera

networks. This framework again utilizes traditional ML algorithms k-Nearest

Neighbors (kNN) and Support Vector Machine (SVM) on Histograms of Oriented

Gradients (HOG) and Gabor histograms features extracted.
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Sentiment classification is more challenging than document topic classifi-

cation as the latter has specific keywords that do not require context /emotion

to be understood as in the former case. In sentiment classification also, works

exist where fusion is performed via Naive Bayes, Maximum Entropy Classifier

and SVM where SVM superseded the other two [32]. In the healthcare sector,

consider analysing the EEG (Electroencephalogram) signal in the case of stroke

patients and classifying the stroke as ischemic stroke and hemorrhagic stroke.

The method in [33] is a multi-feature fusion method that combines wavelet

packet energy, fuzzy entropy and hierarchical theory. Further, SVM, Decision

Tree (DT) and Random Decision Forest (RDF) are used as the stroke signal

classification models.

Fault detection in motors also requires the fusion of information. In this regard,

Banerjee et al. [34] proposed a hybrid method for fault detection based on multi-

sensor data fusion with SVM, Short Term Fourier Transform (STFT) and a time

duration-based observer model. License Plate (LP) detection technique is another

fusion-based problem. It is based on multistage IF adopted for reducing the high

false alarm rate in the conventional Adaboost detector [35]. The latter is enhanced

via a color-checking module and an SVM detector that checks the image patch

for LP. Another domain of the IF application is finance, specifically, the stock

market. One such event is to predict stock price movement. In study [36],

authors gathered historical stock market data and derived technical indicators

followed by integration of Wikipedia hits and Google news data to prepare a

rich knowledge base. Using this data, the authors generated features and utilized
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three ML models - DT, SVM, and Artificial Neural Networks (ANNs) for stock

trend prediction. Also, an intelligent trading-based expert tool was presented to

assist the decision-making process on various instruments.

We can see that many domains have used IF based on traditional ML algo-

rithms. However, the issue with traditional ML is overfitting owing to their

non-linear mapping and fitting capability. Also, they are highly dependent on the

quality of features and hence may not be able to build a relation between input

and output variables.

1.2.3 Fuzzy based systems

IF solutions are also based on fuzzy logic. According to one of the surveys [37],

under topic identification and trend analysis, specifically, multimodality medical

image fusion and fuzzy-based intelligent health and medical systems accounts for

10.06% for Structural Topic Modelling (STM) research. Multi-modal medical

image fusion has emerged as a hot topic of research. For the same, the work in

[38] proposed a framework based on Structural Patch Decomposition (SPD) and

fuzzy logic technology. This framework creates a fused image by adopting a

weighted approach as a final step. Next, in Wireless Sensor Networks (WSN),

traditional weighted fuzzy logic is not adapted to raw data due to invalid data

gathered during data collection in a real-world environment. Thus, to improve

upon the same, the work in [39] uses K-Means clustering in addition to fuzzy

logic and final fusion is performed using a weighted approach.

8



Another fuzzy-based fusion approach at the feature level is adopted for in-

trusion detection in [40] that overcomes the data imperfection challenge of IF.

Under ITS, for high-speed heavy vehicles, a Global Positioning System (GPS)

based navigation method is developed by authors in [41]. The work used fuzzy

logic to fuse the GPS and odometric sensors. Next, under the same category of

ITS, to avoid congestion, the fusion framework combines the Inertial Navigation

System (INS) and the GPS [42]. It uses Extended KF (EKF) and Input-Delayed

Adaptive Neuro-Fuzzy Inference System (IDANFIS) for fusion.

Currently, telemedicine is trending which helps to monitor elderly people in

homes and detect if they fall. To detect the same, the study in [43] proposed a

data fusion approach based on fuzzy logic with a set of rules directed by medical

recommendations. Next, forecasting stock market returns is a challenging task.

It is due to the complex nature of the data. The study in [44] developed a

framework to predict daily stock price movements. The authors deployed and

integrated three data analytical prediction models: ANFIS, Artificial Neural

Networks (ANN), and SVMs.

From the above discussion, many fusion approaches in various application

domains are based on Fuzzy logic. Nevertheless, the challenge with fuzzy

systems is difficulty in setting up rules and membership for certain problems at

times.

9



1.2.4 Deep Learning based fusion approaches

Deep Learning (DL) has been widely used for analyzing multi-channel / multi-

sensor signals. It facilitates the automated learning of features versus the hand-

crafting or manual selection of features which is required in traditional machine

learning algorithms. Thus, it saves the human effort of the latter task mentioned.

Also, it can learn the complex mappings between the input and output variables

that are otherwise difficult to learn with traditional ML algorithms.

In many DL studies, all the sensors are stacked one after the other to form

a matrix using 2-D CNN to analyze the sensor signals. For example, in the

study, [12], the authors use the previously mentioned framework with input from

multiple body sensors to analyze human activity recognition. It is worth noting

that in the study [12], temporal modeling needs to be included. This shortcoming

is overcome in [45] where 2-D CNN is used on a time series window. These

windows are processed by GRU in the final step and hence time series modeling

is incorporated. Nevertheless, there is no explicit fusion framework in all the

discussed studies. Though a fusion framework was proposed in [46]; however,

the fusion happened at the feature level versus raw signal level like in [12, 45].

Traffic flow prediction is also the use case of information fusion. The study

[47] illustrates the use of a deep learning-based encoder–decoder framework

with an attention mechanism to capture the correlation between the spatial

traffic-flow images’ channels. Another study proposes a DL framework using

CNNs for object detection from moving vehicle camera images [48]. DL and IF
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combination has also been applied in detecting anomaly-based intrusion. The

authors presented a framework with three layers neural network as a classifier.

They applied five different fusion rules to verify system effectiveness [49].

The fusion has also been observed in solving problems pertaining to the

healthcare sector using DL. In [50], the authors designed multi-information

fusion convolutional bidirectional Recurrent Neural Networks (RNNs) to detect

arrhythmia automatically using ECGs (Electrocardiograms) as input. Addition-

ally, they employed the combination of CNNs and LSTMs for enriching features.

They utilized morphological and temporal information from ECG. The authors

in another work [51] provided the best adaptation for patients with irregular astig-

matism using CNNs. This fusion framework considered multiview Pentacam

images in input.

One of the approaches to the problem of video-based action recognition

requires IF [52]. It does not take as input audio data for the task, but it proposes

a fusion scheme for incorporating temporal information (processed by CNN)

and spatial information (also processed by CNN). Experiments were conducted

with different levels of early and late fusion. There are studies where multi-

channel image dataset fusion has also been investigated. In [53], a fusion

scheme is proposed for processing color and depth information (via 3-D and

2-D convolutions, respectively) with the objective of action recognition. In [54],

the authors have fused hyperspectral data (high spatial resolution) with Lidar

(depth information), subsequently giving better classification results. In [55], an

improvement in analysis tasks was observed with the help of the fusion of deeply
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learned features (from CNN) with handcrafted features via a fully connected

layer.

We see here that several studies include solutions to information fusion-based

problems via deep learning technique CNN-based frameworks. However, the

issue with CNN is that these are primarily supervised and require large labeled

datasets. But, the labeled datasets are only present in abundance for a few

domains. Hence, we need unsupervised solutions. Also, the training in CNNs

involves learning of filters. However, CNNs may not guarantee distinct filters

as any loss function involved generally does not impose any distinctiveness

constraint. CNN initializes filters randomly and depends on the non-convergence

of backpropagation algorithm to maintain the mutual difference [56]. Thus, there

is a possibility that representations/feature maps might be redundant [57]. This

has even been shown via experiments discussed later in chapters 2 and 3.

1.3 Datasets Descriptions

This thesis proposes solutions based on CTL for three types of problems under

the analysis domain - Supervised, Unsupervised and Clustering. Specifically,

the tasks dealt with are - regression, classification and multiview clustering

tasks. While proposing solutions, it was the chance to explore and apply them to

multiple datasets covering different domains of Information Fusion. It helped

us realize that the solutions are generic enough to be applied to the problems

pertaining to fusion other than those utilized in this thesis. Thus, the different
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datasets used in the problems presented in this thesis are presented below.

1.3.1 National Stock Exchange (NSE) dataset

It is a real dataset from India’s National Stock Exchange (NSE). The dataset

contains information on 150 symbols between 2014 and 2018; these stocks were

chosen after filtering out stocks with less than three years of data. The companies

available in the dataset are from various sectors such as IT (e.g., TCS, INFY),

automobile (e.g., HEROMOTOCO, TATAMOTORS), bank (e.g., HDFCBANK,

ICICIBANK), coal and petroleum (e.g., OIL, ONGC), steel (e.g., JSWSTEEL,

TATASTEEL), construction (e.g., ABIRLANUVO, ACC), public sector units

(e.g., POWERGRID, GAIL), etc. There are two signals for each sample in the

dataset BUY represented as 0 and SELL represented as 1 numerically. The

former indicates whether to buy the stock and the latter indicates to sell that

stock on any day.

1.3.2 Past 22 years stock data

This dataset consists of 15 Indian stocks that fall under the NSE and the Bombay

Stock Exchange (BSE), which are taken from publicly available Yahoo finance

symbols data. The stock symbols ending with .NS fall under NSE and with .BO

under BSE. The data comprises day-wise readings for the past 22 years, i.e.,

from 1998 - 2019. It is collected internally using the in-built python module

Web and the Yahoo API end-point. At the time of data collection, the year 2019
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was still ongoing; hence, the data was only partially available for 2019. Also,

there were some missing values for some raw features. Thus, the data for 2019

have not been used in the experiments pertaining to it for simplicity. Further,

The dataset includes stocks from multiple sectors, such as Indian consumer

products manufacturers (e.g., HINDUNILVR.NS), oil and gas (e.g., CAIRN.NS),

pharmaceuticals (e.g., AUROPHARMA.NS, DRREDDY.NS), mining and metal

industry (e.g., NATIONALUM.BO). In this dataset, we have three stock signals

BUY, HOLD and SELL represented numerically by 0, 1 and 2. The BUY and

SELL have the same roles as explained in section 1.3.1 and HOLD signifies that

we do nothing on any given day if we are signaled HOLD for that day, i.e., we

keep the stock with us and do not buy or sell for that symbol.

1.3.3 Drug-Drug Interaction Data

The DDI data is from Stanford’s Biosnap dataset, which contains a network

of 1514 DrugBank drugs representing nodes and 48514 drug-drug interactions

representing edges. This network of interactions between drugs is approved by

the U.S. Food and Drug Administration. It is assumed that all other interactions

apart from approved interactions as either known-not-to-interact or unknown.

Here, the known-to-interact interactions are numerically represented by 1 and the

others by 0. The SMILE values of the drugs are first determined using compound

IDs taken from the dataset using DrugBank.ca. Since the SMILE values are not

available for all the drugs (retrieved using DrugBank IDs), thus, the number of

the drugs in the dataset got reduced to 1368 and, accordingly, the number of
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interactions. Further, drugs that have at least 10 known-to-interact interactions

with other drugs have been processed. So, there are finally 1059 drugs and their

respective interactions considered from the dataset.

Thereafter, the bioactivity descriptors via the Signaturizer tool [58] using the

determined smile value of each drug are extracted. This tool provides bioactivity

descriptors that encode the physicochemical and structural properties of small

molecule drugs covering all the drugs present in Chemical Checker (CC). The

latter has further covered the source databases - DrugBank.ca and ChEMBl. It

has a pre-trained Siamese Neural Network via which inputting a smile value for

the drug, 25 different types of bioactivity descriptors can be inferred for the drugs

with little or no information. The descriptors are fixed-length normalized vectors

of size 128. There are broadly five categories of bioactivity descriptors labeled

as A to E (A: Chemistry, B: Targets, C: Networks, D: Cells, and E: Clinics).

Each has five sub-categories marked as A1 to A5, for example, thus 25 different

descriptors. Descriptors from A and B broad categories representing a drug’s

Chemistry and Targets, respectively, are taken. Further, specifically, the A1

and A2 sub-categories from A, representing 2D and 3D fingerprints, and the B1

sub-category from B, representing the mechanism of action of a drug are selected.

Since these are three types of bioactivity descriptors out of 25, each having 128

fixed-sized vectors, each drug has 384(128× 3) features. Thus, the final dataset

comprises 1059 unique drugs with 384 bioactivity descriptors/features for each

drug and corresponding interactions.
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1.3.4 Mutli-view datasets

Here the proposed approach was tested on various multiview clustering datasets

listed below:

• 100leaves: It contains one hundred plant species, each with 16 samples

per specie. Thus, there are 100 clusters and 1600 total samples. For each

sample, shape descriptor, fine scale margin and texture histogram are given

[59].

• Amsterdam Library of Object Images (ALOI). ALOI dataset consists of

11025 images of 100 small objects. Every image is represented using four

features namely - Color similarity, HSV, RGB, and Haralick features [60].

• Mfeat: Mfeat dataset is from the UCI repository that contains 2000 samples

of handwritten digits (0-9). Each image of this dataset is represented using

six different features [59].

• WebKB: It consists of 203 web pages with four classes collected from

computer science departments of various universities. Each web page is

attributed by the page’s content, hyperlink’s anchor text of the hyperlink

and its title text [59].

The complete statistics of all the datasets mentioned above can be referred from

Table 1.1.
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Table 1.1: Statistics of the considered MVC datasets

Datasets #Samples #Classes #Views

100leaves 1600 100 3

WebKB 203 4 3

Mfeat 2000 10 6

ALOI 11025 100 4

1.4 Research Contributions

This thesis has three main objectives: 1. To propose more accurate algorithms for

IF than state of the art; 2. To propose an unsupervised algorithm, unlike CNNs

that are largely supervised, thus eliminating the need for large labeled datasets;

and 3. To propose methods that ensure that the learned filters are distinct and

hence the representations learned are more interpretable after fusion.

Our contributions towards these objectives are as follows:

First, an unsupervised fusion framework has been proposed based on CTL

(CTL). The excellent learning ability of convolutional filters for data analysis is

well acknowledged [61–66]. The success of convolutive features owes to CNN.

However, CNN cannot perform learning tasks in an unsupervised fashion. In

recent work, it is shown that such shortcomings can be addressed by adopting

a CTL approach, where convolutional filters are learned in an unsupervised

manner [56, 67]. Therefore, the proposed framework is (i) a deep version of

CTL (DCTL); (ii) an unsupervised fusion formulation taking advantage of the

proposed CTL representation; (iii) filters learned are distinct and hence more
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interpretable representations are obtained. The proposed techniques, ConFuse

[68] and DeConFuse [69], have been applied to the problems of stock forecasting

and trading. Comparison with state-of-the-art methods (based on CNN and

LSTM network) shows the superiority of our approaches for performing reliable

feature extraction.

Second, two supervised frameworks have been proposed that are based on

DCTL. The former offer all the benefits of the CTL approach discussed previ-

ously. Additionally, the first framework called SuperDeConFuse [57] is such

that it facilitated the removal of the non-linear activation located between the

multi-channel convolution layers and the fully-connected layers, as well as the

one located between the latter and the output layer, thus, handling the problem

of a dead neuron. This removal was compensated by introducing a suitable

regularization on the aforementioned layer outputs and filters during the training

phase. Further, this technique has been applied to the problem of Stock Fore-

casting. Next, the second supervised framework called - DeConDFFuse [70] is

also based on CTL and learns representations guided by joint optimization of

Multi-channel DCTL based networks and Decision Forest (DF) rather than a

piecemeal approach.

Lastly, a multiview clustering fusion framework based on CTL has been

proposed that takes multiview data as input namely DeConFCluster [71]. The

framework jointly trains DCTL networks and the K-Means clustering module;

thus, the representations are distinct and more effective as these are also guided

by K-Means loss. It gives superior clustering performance than the state-of-the-
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arts.

For the quick reference, the summary of all the proposed models are given in

Table 1.2 and each one’s Advantages and Disadvantages are discussed in Table

1.3. More details of each of these models are discussed in subsequent chapters.

Table 1.2: Summary of all proposed frameworks

Learning Proposed Research Dataset Application

Technique Model objective Used Problem

Unsupervised ConFuse & 1.,2.,3. Yahoo Symbol 1. Stock Trading

DeConFuse Finance Data 2. Stock Forecasting

Supervised SuperDeConFuse 1.,3. NSE and BSE Stock Trading

Stocks (15)

DeConDFFuse 1.,3. Drug Drug Drug Drug

Interaction Interaction Prediction

Unsupervised DeConFCluster 1.,2.,3. 1. 100leaves Multi View

2. ALOI Clustering

3. Mfeat

4. WebKB

Table 1.3: Pros and Cons of all proposed frameworks

Proposed Advantages Disadvantages

Model

ConFuse 1. Meets Research objectives shallow architecture
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2. Avoids Retraining a network

for different tasks Classification

and Regression

DeConFuse same as above -

3. It is a deep architecture

SuperDeConFuse 1. Meets Research objectives Takes more time

2. performed better than CNN

for the given problem

in training than CNN

DeConDFFuse 1. Meets Research objectives Currently handles case

2. Jointly optimizes Decision Forest when two drugs are

versus piecemeal approach, thus administered together

representations are guided by both when in in real scenario

CTL based fusion and Decision more than two drugs

Forest can be used

DeConFCluster 1. Meet Research Objectives less performant for

2. avoids additional overhead easy-to-cluster datasets

of learning weights of decoder compared to benchmarks

as it is with encoder-decoder

framework used in MVC generally

3. avoided overfitting in

data-constrained scenarios where

#data instance is low and #classes
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are high

4. Performed well for difficult

datasets compared to

benchmarks

1.5 Acronyms

Let’s introduce here all the acronyms used in the following chapters for the quick

reference to them at one place. Those are as follow:

Table 1.4: Acronyms with full forms used in chapters

Acronym Full Form

ADAM Adaptive Moment Estimation

ADR Adverse Drug Reaction

ALOI Amsterdam Library of Object Images

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AR Annualized Returns

ARCH Autoregressive Conditional Heteroskedasticity

ARI Adjusted Rand Index

ARMA Autoregressive Moving Average

AUC Area Under Curve

BSE Bombay Stock Exchange
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CC Chemical Checker

CCA Canonical Correlation Analysis

CE Cross Entropy

CMM Convex Mixture Model

CNN Convolutional Neural Networks

CoMVC Contrastive Multi-View Clustering

CTL Convolutional Transform Learning

DCTL Deep Convolutional Transform Learning

DCDF DeConDFFuse

DCKM Deep Convolutional K-Means Clustering

DDI Drug-Drug Interaction

DEMVC Deep Embedded Multiview Clustering

DF Decision Forest

DL Deep Learning

DNDF Deep Neural Decision Forest

DT Decision Tree

ECG Electrocardiogram

EEG Electroencephalogram

EKF Extended Kalman Filter

EM Expectation Maximization

EMA Exponential Moving Average

ETF Exchange Traded Fund

FCN Fully Convolutional Network
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GARCH Generalized Autoregressive Conditional Heteroskedasticity

GCN Graph Convolutional Network

GMC Graph-based Multi-view Clustering

GNN Graph Neural Network

GPS Global Positioning System

GRU Gated Recurrent Unit

HOG Histograms of Oriented Gradients

HSV Hue, Saturation, and Value

IDANFIS Input-Delayed Adaptive Neuro-Fuzzy Inference System

IF Information Fusion

IOT Internet of Things

IHS Intensity Hue Saturation

IT Information Technology

ITS Intelligent Transportation Systems

kNN k-Nearest Neighbors

KF Kalman Filter

KG Knowledge Graphs

KGNN Knowledge Graph Neural Network

LP License Plate

LSTM Long Short Term Memory

MAE Mean Absolute error

MACD Moving Average Convergence and Divergence

MCGL Graph Learning for Multiview Clustering
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MFNN Multi-Filters Neural Networks

ML Machine Learning

MRI Magnetic Resonance Imaging

MVC Multiview Clustering

NAV Net Asset Value

NLP Natural Language Processing

NMF Non-Negative Matrix Factorization

NMI Normalized Mutual Information

NSE National Stock Exchange

OM Opinion Mining

PDF Probability Density Functions

PET Positron Emission Tomography

PMA Probability Mass Assignment

RDF Random Decision Forest

RGB Red, Green and Blue

RIM Retina-Inspired Models

RNN Recurrent Neural Network

RMSE Root Mean Squared Error

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

RRA-MVC Reconsidering Representation Alignment for Multi-view Clustering

RSS Really Simple Syndication

SDCF SuperDeConFuse
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SELU Scaled Exponential Linear Unit

SGD Stochastic Gradient Descent

SIG Similarity Induced Graph

SiMVC Simple baseline Multi-View Clustering

SKF Sequential Kalman Filtering

SPD Structural Patch Decomposition

SSL Self Supervised Learning

STFT Short Term Fourier Transform

STM Structural Topic Modelling

SVC Single View Clustering

SVM Support Vector Machine

TA Technical Analysis

TL Transform Learning

UCI University of California Irvine

WSN Wireless Sensor Networks
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Chapter 2

Unsupervised multi-channel CTL based

fusion frameworks -ConFuse(shallow) and

DeConFuse(Deep)

Deep Learning (DL) paradigms currently solve several problems. Most of the

frameworks in DL are based on CNNs that are largely supervised. For supervised

learning, the labeled data are needed in abundance, which is in dearth for some

domains. Also, CNNs cannot perform learning tasks in an unsupervised fashion.

The other shortcoming of CNNs, as discussed previously in Chapter 1, is that

these may not guarantee learning distinct filters; thus, representations/feature

maps might be redundant. It is due to random initialization of filters in CNNs

and thus, the latter depends on the non-convergence of the backpropagation

algorithm to maintain the mutual difference [56]. This redundancy is further

checked experimentally and its details can be referred in this Chapter and Chapter

3 later. Additionally, it has been observed that the problems concerning time-
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series data in stock forecasting are treated as a 2-D image matrix versus univariate

data, which is the true nature of time-series. We will learn about the said issue

in more detail in this chapter in subsequent sections. Thus, there is a need for a

solution that can resolve these issues.

This chapter introduces unsupervised fusion frameworks based on Convolu-

tional Transform Learning (CTL). The great learning ability of convolutional

filters for data analysis is well acknowledged [61–66]. The convolutive features’

success is due to the Convolutional Neural Network (CNN). Nevertheless, as

mentioned previously, CNN cannot perform learning tasks in an unsupervised

fashion. However, the said shortcoming can be addressed by adopting a recently

established Convolutional Transform Learning (CTL) approach, where convolu-

tional filters are learned in an unsupervised fashion. The framework discussed in

this chapter is (i) a shallow and a deep versions of the CTL approach; (ii) has an

unsupervised fusion formulation taking advantage of the representations learned

via CTL and fused via TL; (iii) is a mathematically sounded optimization strategy

for performing the learning task; and (iv) learns distinct filters that consequently

learn more interpretable non-redundant representations, unlike CNNs.

The proposed frameworks are namely - ConFuse (shallow) and DeConFuse

(deep) and are applied to the problems of stock forecasting and trading. Compari-

son with state-of-the-art methods (based on CNN and LSTM network) shows the

superiority of the proposed approaches for performing reliable feature extraction.

This chapter is organized into sections, with the first section 2.1 discussing the

related work and proposed algorithm in section 2.2. The experimental evalua-
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tions and results are discussed in sections 2.3 and 2.4 respectively, followed by

discussion in 2.5.

2.1 Literature Review

2.1.1 CNN for Time Series Analysis

Let us briefly review and discuss CNN-based methods for time series analysis.

For a more detailed review, the interested reader can peruse [72]. In this section,

the main focus are on the studies about stock forecasting as it is the use case for

experimental validation.

The traditional choice for processing time series with a neural network is

to adopt a recurrent neural network (RNN) architecture. Variants of RNN like

Long-Short Term Memory (LSTM) [73] and Gated Recurrent Unit (GRU) [74]

have been proposed. However, due to the complexity of training such networks

via backpropagation through time, these have been progressively replaced with

1D CNN [75]. For example, in [76], a generic time series analysis framework

was built based on LSTM, with assessed performance on the UCR time series

classification datasets [77]. The later study from the same group [78], based on

1D CNN, showed considerable improvement over the prior model on the same

datasets.

Many studies convert 1D time series data into a matrix form to use 2D

CNNs [79–81]. Each matrix column corresponds to a subset of the 1D series
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within a given time window, and the resulting matrix is processed as an image.

The 2D CNN model has been prevalent in stock forecasting. In [81], the said

techniques have been used on stock prices for forecasting. A slightly different

input is used in [82]: instead of using the standard stock variables (open, close,

high, low and NAV), it uses high frequency data for forecasting major points of

inflection in the financial market. In another work [83], a similar approach is

used for modeling Exchange Traded Fund (ETF). It has been seen that the 2D

CNN model performs the same as LSTM or the standard multi-layer perceptron

[84, 85]. The apparent lack of performance improvement in the aforementioned

studies may be due to an incorrect choice of CNN model since an inherently 1D

time series is modeled as an image.

Another learning paradigm known as Self-Supervised Learning (SSL) based

models are also emerging currently when no labels for the data are available.

In all such techniques, initially, the data is unsupervised which is eventually

turned supervised by predicting the pseudo labels and then training happens.

There are few works that utilize and propose solutions based on it for stock

trading prediction [86–89]. However, such techniques are resource intense and

just like CNNs, these SSL based learning paradigms do not have distinctiveness

guarantees.

2.1.2 Convolutional Transform Learning

Convolutional Transform Learning (CTL) has been introduced in a previous

seminal paper [56]. Since the proposed framework is based on the said recent
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work, it is presented in detail to make it self-contained. CTL learns a set of

filters (tm)1≤m≤M operated on observed samples
(
s(k)

)
1≤k≤K

to generate a set of

features (x(k)m )1≤m≤M,1≤k≤K . Formally, the inherent learning model is expressed

through convolution operations defined as

(∀m ∈ {1, . . . ,M} ,∀k ∈ {1, . . . , K}) tm ∗ s(k) = x(k)m . (2.1)

Following the original study on transform learning [90], a sparsity penalty

was imposed on the features for improving representation ability and limiting

overfitting issues. Moreover, the non-negativity constraint was imposed on the

features in the same line as CNN models. Training then consisted of learning the

data’s convolutional filters and representation coefficients. This was expressed

as the following optimization problem

minimize
(tm)m,(x

(k)
m )m,k

1

2

K∑
k=1

M∑
m=1

(
∥tm ∗ s(k) − x(k)m ∥22 + ψ(x(k)m )

)
+ µ

M∑
m=1

∥tm∥22 − λ log det ([t1|. . . |tM ]), (2.2)

where ψ is a suitable penalization function. Note that the regularization term

“µ ∥·∥2F − λ log det” ensured that the learned filters were distinct, which was not

guaranteed in CNN. Let us introduce the matrix notation

T ∗ S −X =


t1 ∗ s(1) − x

(1)
1 . . . tM ∗ s(1) − x

(1)
M

... . . . ...

t1 ∗ s(K) − x
(K)
1 . . . tM ∗ s(K) − x

(K)
M

 (2.3)
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where T =

[
t1 . . . tM

]
, S =

[
s(1) . . . s(K)

]⊤
, andX =

[
x
(k)
1 . . . x

(k)
M

]
1≤k≤K

.

The cost function in Problem (2.2) could be compactly rewritten as1 as the sum

of logarithms of its singular values.

F (T,X) =
1

2
∥T ∗ S −X∥2F +Ψ(X) + µ ∥T∥2F − λ log det (T ) , (2.4)

where Ψ applied the penalty term ψ column-wise on X .

A local minimizer to (2.4) could be reached efficiently using the alternating

proximal algorithm [91–93], which alternates between proximal updates on

variables T and X . More precisely, set a Hilbert space (H, ∥·∥), and define the

proximity operator [85] at x̃ ∈ H of a proper lower-semi-continuous convex

function φ : H →]−∞,+∞] as

proxφ(x̃) = argmin
x∈H

φ(x) +
1

2
∥x− x̃∥2 . (2.5)

Then, the alternating proximal algorithm reads

For n = 0, 1, ... T [n+1] = proxγ1F (·,X [n])

(
T [n]

)
X [n+1] = proxγ2F (T [n+1],·)

(
X [n]

) (2.6)

with initializations T [0], X [0] and γ1, γ2 positive constants. For more details on

the derivations and the convergence guarantees, the readers can refer to [56].
1Note that T is not necessarily a square matrix. By abuse of notation, the “log-det” of a rectangular matrix was defined
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2.1.3 Updates of T

2.2 Proposed Formulations - ConFuse and DeConFuse

2.2.1 ConFuse: Convolutional Transform Learning Fusion Framework For Multi-Channel

Data Analysis

The novel approach ConFuse2 for the unsupervised construction of representation

features of multi-channel data is presented in this section. A natural strategy

was to learn, for each channel c ∈ {1, . . . , C}, a distinct set of convolutional

filters (T (c))1≤c≤C and associated features (X(c))1≤c≤C , by solving a CTL-based

formulation:

minimize
T (c),X(c)

1

2

K∑
k=1

(
∥S(c)

k T (c) − X
(c)
k ∥2F+Ψ(X

(c)
k )

)
+ µ∥T (c)∥2F−λ log det(T (c)). (2.7)

Then, the learned channel-wise features were stacked asXk = [X
(1)
k

⊤
|. . . |X(C)

k

⊤
]⊤

for each k, and fused by a transform learning procedure acting as a fully-

connected layer:

minimize
T̃ ,Z

1

2

K∑
k=1

∥T̃Xk − Zk∥2F + ι+(Z)

+ µ∥T̃∥2F−λ log det(T̃ ), (2.8)

2P. Gupta, J. Maggu, A. Majumdar, E. Chouzenoux and G. Chierchia, “ConFuse: Convolutional Transform Learning Fusion
Framework For Multi-Channel Data Analysis," 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam,
Netherlands, 2021, pp. 1986-1990, doi: 10.23919/Eusipco47968.2020.9287506.
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where T̃ denoted the fusion stage transform (not assumed to be convolutional),

Z is the row-wise concatenation of the fusion stage features (Zk)1≤k≤K , and ι+

is the indicator function for positive orthant, equals to zero if all the entries of Z

are non-negative, and +∞ otherwise. Such non-negativity constraint allowed us

to avoid trivial solutions.

However, the disjoint resolution of Problems (2.7) and (2.8) might lead to

unstable solutions that were too sensitive to initialization. Therefore, an alterna-

tive strategy was proposed where all the variables are learned in an end-to-end

fashion by solving a joint optimization problem. To this aim, it was relied on

the key property that the solution (X̂(c))1≤c≤C of the CTL problem assuming

fixed filters (T (c))1≤c≤C could be reformulated as the simple application of an

element-wise activation function, that is, for every k ∈ {1, . . . , K},

X̂k(T ) =
[
X̂

(c)
k (T )

]
1≤c≤C

=
[
Φ(S

(c)
k T (c))

]
1≤c≤C

, (2.9)

with Φ the proximity operator of Ψ [94]. For example, if Ψ was the indicator

function of the positive orthant, then Φ identified with the famous rectified linear

unit (ReLU) activation function. Many other examples are provided in [94].

Consequently, it was proposed to plug Equation (2.9) into Problem (2.8), leading
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to the final ConFuse formulation:

minimize
T,T̃ ,Z

1

2

K∑
k=1

∥T̃ X̂k(T )− Zk∥2F + ι+(Z) + µ∥T̃∥2F

+ µ∥T∥2F−λ
(
log det(T̃ ) +

C∑
c=1

log det(T (c))
)
. (2.10)

Although Problem (2.10) was still nonconvex, this new formulation had two

notable advantages. First, it was remarked that, as soon as the involved activation

function was smooth, all terms of the cost function in (2.10) were differentiable,

except the indicator function. Thus, the accelerated stochastic projected gradient

descent, Adam, from [95] could be employed. The latter used automatic differ-

entiation and stochastic approximations to deal with large datasets efficiently.

Second, any (sub-)differentiable activation function Φ could be plugged into the

proposed model (2.9), for instance, Scaled Exponential Linear Unit (SELU) [96],

or Leaky ReLU [97]. This flexibility played a key role in the performance, as

shown in the experimental section.

An example of the structure of the learned ConFuse architecture is shown

in Figure 2.1. Note that the proposed approach was completely unsupervised.

Specifically, it replaced supervision by explicitly learning the features Z, on

which the non-negativity constraint was imposed to avoid trivial solutions. Re-

garding the representation filters stacked in matrices (T, T̃ ), the log-det regu-

larization imposed a full rank on those. Thus, it helped to enforce the diversity

and to prevent the degenerate solution (T = 0, X = 0, T̃ = 0, Z = 0). The

Frobenius regularization ensured that the matrices entries remain bounded.
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Figure 2.1: General view of the ConFuse architecture. C = 5 represents the number of DeepCTL networks/channels,
F c
1 = 5× 1 is the filter size and M c

1 = 4 is the number of filters for all the channels.

2.2.2 DeConFuse: a deep convolutional transform-based unsupervised fusion framework

In this framework, the ConFuse architecture was extended with more Convolu-

tional layers based on CTL and called it as - DeConFuse3. Here, there were as

many Transforms as the number of CTL Layers. Thus, a different set of con-

volutional filters T (c)
1 , . . . , T

(c)
L and features X(c)

1 , . . . , X
(c)
L were learned. These

learned deep features can be computed by stacking many such layers

(∀ℓ ∈ {1, . . . , L− 1}) Xℓ = ϕℓ(Tℓ ∗Xℓ−1), (2.11)
3P. Gupta, J. Maggu, A. Majumdar, E. Chouzenoux and G. Chierchia, “DeConFuse: a deep convolutional transform-based

unsupervised fusion framework". EURASIP J. Adv. Signal Process. 2020, 26 (2020). https://doi.org/10.1186/s13634-020-00684-
5
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where X0 = S and ϕℓ a given activation function for layer ℓ. Further, these

features were processed in the same manner as in the ConFuse architecture, i.e.,

with fusion transform T̃ and common representation Z learned subsequently.

This led to the joint optimization problem

minimize
T,X,T̃ ,Z

Ffusion(T̃ , Z,X) +
C∑
c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c) |S(c))︸ ︷︷ ︸

J(T,X,T̃ ,Z)

(2.12)

where

Fconv(T1, . . . , TL, X |S) = 1

2
∥TL ∗ ϕL−1(TL−1 ∗ . . . ϕ1(T1 ∗ S))−X∥2F

+Ψ(X) +
L∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ)). (2.13)

and

Ffusion(T̃ , Z,X) =
1

2

∥∥∥Z −
C∑
c=1

flat(X(c))T̃c

∥∥∥2
F
+ ι+(Z)

+
C∑
c=1

(
µ∥T̃c∥2F−λ log det(T̃c)

)
,

(2.14)

where the operator “flat” transformed X(c) into a matrix where each row con-

tained the “flattened” features of a sample. The complete architecture is shown

in Figure 2.2.

2.2.3 Optimization Algorithm for the frameworks

As for the solution of Problems (2.10) and (2.12), it was remarked that all terms

of the cost function are differentiable, except the indicator function of the non-
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Figure 2.2: General view of the DeConFuse architecture. C = 5 represents the number of DeepCTL networks/chan-
nels, L = 2 is the number of DCTL layers, M c

ℓ is the filter size and F c
ℓ is the number of filters of the respective

layer ℓ and channel c.

negativity constraint. Therefore, it was possible to find a local minimizer to

(2.10) and (2.12) by employing the projected gradient descent, whose iterations

read

For n = 0, 1, ...

T [n+1] = T [n] − γ∇TJ(T
[n], X [n], T̃ [n], Z [n])

X [n+1] = P+(X
[n] − γ∇XJ(T

[n], X [n], T̃ [n], Z [n]))

T̃ [n+1] = T̃ [n] − γ∇T̃J(T
[n], X [n], T̃ [n], Z [n])

Z [n+1] = P+(Z
[n] − γ∇ZJ(T

[n], X [n], T̃ [n], Z [n]))

(2.15)
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with initialization T [0], X [0], T̃ [0], Z [0], γ > 0, and P+ = max{·, 0}. In practice,

the accelerated strategies [98] were used within each step of this algorithm to

speed up learning.

There are two notable advantages of the proposed optimization approach.

Firstly, it was relied on automatic differentiation [99] and stochastic gradient

approximations to efficiently solve Problem (2.10). Secondly, it was not limited

to ReLU activation in equations (2.9) and (2.11), but instead, more advanced

ones were used, such as SELU [96]. It can be observed from Tables 2.3 and 2.5

that although the ReLU activation performed better in the case of the ConFuse,

however, in the case of DeConFuse, it was SELU that performed better. As

the convolution layer was added, more resultant values from convolution with

filters were believed to be negative. Since the ReLU activation function sets

the negative values to zero, the values were not that distinct compared to those

obtained via SELU. The latter does not set negative values to zero but near zero

[96] and hence prevents dead neuron issue also unlike ReLU. It proved beneficial

for performance, as shown by the numerical results in section 2.3.

2.3 Experimental Evaluation

Experiments were conducted for both frameworks on the real-world problems of

stock forecasting and Trading. The problem of stock forecasting is a regression

problem aiming at estimating the price of a stock at a future date (the next

day for the given problem) given inputs till the current date. Stock trading is a
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classification problem, where the decision to buy or sell a stock has to be taken

at each time. The two problems are related by the fact that simple logic dictates

that if the price of a stock at a later date is expected to increase, the stock must

be bought, and if the stock price is expected to go down, the stock must be sold.

Five raw inputs were used for both tasks, namely open price, close price,

high price, low price and net asset value (NAV). One could compute technical

indicators based on the raw inputs [81] but, in keeping with the essence of true

representation learning, it was deliberately chosen to stay with those raw values.

Each of the five inputs was processed by a separate 1D processing pipeline.

Each of the pipelines produced a flattened output. The flattened outputs were

then concatenated and fed into the Transform Learning layer acting as the fully

connected layer (Fig. 2.2) for fusion. While the processing pipeline ended

here (unsupervised), the benchmark techniques were supervised and had an

output node. The node was binary (buy/sell) for classification and real-valued

for regression. The comparison with state-of-the-art time series analysis models,

namely TimeNet [76] and ConvTimeNet [78] was carried out. In the former,

the individual processing pipelines are based on LSTM and 1D CNN in the

latter. The complete architectural details and hyperparameters for ConFuse and

DeConFuse are in Table 2.1.
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Table 2.1: Description of compared models with hyperparameters

Method Architecture Description Other Parameters

ConFuse 5×

{
layer1: 1D Conv(1, 4, 5, 1, 2)1

Activation (e.g., ReLU)

1 × layer2: Transform Learning

Learning Rate = 0.001,
µ = 0.01, λ = 0.0001
Optimizer Used: Adam
**with parameters**
(β1, β2) = (0.9, 0.999),
weight_decay = 5e-5,
epsilon = 1e-8

DeConFuse 5×


layer1 : 1D Conv(1, 4, 5, 1, 2)1

Maxpool(2, 2)2

SELU
layer2 : 1D Conv(5, 8, 3, 1, 1)1

layer3 : Fully Connected

ConvTimeNet 5×



layer1 : 1D Convolution(1, 32, 9, 1, 4)1

Batch Normalization + SELU
layer2 : 1D Convolution(32, 32, 3, 1, 1)1

Batch Normalization + SELU + SC3

layer3 : 1D Convolution(32, 64, 9, 1, 4)1

Batch Normalization + SELU
layer4 : 1D Convolution(64, 64, 3, 1, 1)1

Batch Normalization + SELU + SC3

layer3 : Global Average Pooling

layer4 : Fully Connected
For Trading, added layer5 : Softmax

For Forecasting:
Learning Rate = 0.001,
For Trading:
Learning Rate = 0.0001,
Optimizer Used: Adam
**with parameters**
(β1, β2) = (0.9, 0.999),
weight_decay = 1e-4,
epsilon = 1e-8

TimeNet 5×

{
layer1 : LSTM unit(1, 12, 2, T rue)4

layer2 : Global Average Pooling

layer3 : Fully Connected
For Trading, added layer4 : Softmax

For Forecasting:
Learning Rate = 0.001,
For Trading:
Learning Rate = 0.0005,
Optimizer Used: Adam
**with parameters**
(β1, β2) = (0.9, 0.999),
weight_decay = 5e-5,
epsilon = 1e-8

1 (in_planes, out_planes, kernel_size, stride, padding)
2 (kernel_size, stride)
3 SC - Skip-Connection
4 (input_size,hidden_size,#layers,bidirectional)

2.4 Results and Analysis

The frameworks have been applied on the NSE dataset of 150 symbols, as also

described in section 1.3.1. For DeConFuse, TimeNet and ConvTimeNet, the
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Table 2.2: Forecasting Results (MAE)

Method Open Close High Low NAV
ConFuse-SELU 0.011 0.023 0.017 0.017 0.447
ConFuse-ReLU 0.009 0.021 0.014 0.014 0.445
ConFuse-PReLU 0.007 0.017 0.012 0.013 0.434
ConFuse-
LeakyReLU

0.007 0.017 0.012 0.013 0.427

ConFuse-Tanh 0.258 0.259 0.258 0.259 0.488
ConFuse-Sigmoid 0.227 0.227 0.227 0.227 0.482
ConvTimeNet 1.551 1.554 1.535 1.567 2.357
TimeNet 0.295 0.295 0.294 0.296 0.511

architectures were tuned to yield the best performance and randomly initialized

the weights for each stock’s training.

2.4.1 Stock Forecasting – Regression

Firstly, the experiments were performed with the stock forecasting problem. Next,

the generated unsupervised features were fed from the proposed architecture into

an external regressor - ridge regression. Evaluation was carried out regarding

mean absolute error (MAE) between the predicted and actual stock prices for all

150 stocks. Root Mean Squared Error(RMSE) could also have been computed in

place of MAE but MAE was chosen here as MAE has lower sample variance and

is more interpretable than RMSE. The MAE for individual stocks is computed

for each of close price, open price, high price, low price and net asset value.
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Results Analysis for ConFuse

The testing was done with six different activation functions for ConFuse. 4 For a

concise summary of results, Table 2.3 shows the average values over all stocks.

Table 2.3: Summary Forecasting Results (MAE) with ConFuse

Method Open Close High Low NAV

ConFuse-SELU 0.011 0.023 0.017 0.017 0.447

ConFuse-ReLU 0.009 0.021 0.014 0.014 0.445

ConFuse-PReLU 0.007 0.017 0.012 0.013 0.434

ConFuse-

LeakyReLU

0.007 0.017 0.012 0.013 0.427

ConFuse-Tanh 0.258 0.259 0.258 0.259 0.488

ConFuse-Sigmoid 0.227 0.227 0.227 0.227 0.482

ConvTimeNet 1.551 1.554 1.535 1.567 2.357

TimeNet 0.295 0.295 0.294 0.296 0.511

It was found that the results for the stock forecasting problem were excep-

tionally good. For most tested activation functions, ConFuse has MAE more

than one order of magnitude lower than the state-of-the-arts. The regression

performance was also plotted in the Figure 2.3 for the two randomly chosen

stocks. Here, it was clearly observed that the output close prices were very

closely predicted to the actual close prices versus the benchmarks.
4The gradients of SELU, RELU, PRELU, and Leaky RELU are not defined in zero. It is customary to consider any valid

sub-gradient value instead. When resorting to this strategy, no practical convergence issues with the ADAM algorithm were
found.
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(a) AMARAJABAT (b) JSWENERGY

Figure 2.3: Stock Forecasting Performance with ConFuse

Results Analysis for DeConFuse

Summary results are presented in Table 2.4. Interested readers can see the

detailed results for all 150 stocks from the paper [69], Appendix section. Table

2.4 shows that the MAE values reached for the proposed DeConFuse solution for

the four first prices (open, close, high, low) are extremely good for all of the 150

stocks. Regarding NAV prediction, the proposed method performed extremely

well for 128 stocks. For the remaining 22 stocks, there are 13 stocks, highlighted

in red, for which DeConFuse did not give the lowest MAE, but it was still very

close to the best results given by the TimeNet approach.

Table 2.4: Summary Forecasting Results (MAE) with DeConFuse

Method Open Close High Low NAV

DeConFuse 0.007 0.016 0.012 0.013 0.410

ConvTimeNet 1.550 1.550 1.530 1.560 2.350

TimeNet 0.295 0.295 0.294 0.295 0.511

It can be observed that with both shallow (ConFuse) and Deep (DeConFuse)

versions of the proposed frameworks, the forecasting performance is better than
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the stat-of-the-arts. Further, going deep did better than the shallow version for a

few predicted prices.

2.4.2 Stock Trading – Classification

Next, the Stock Trading, i.e., classification performance was evaluated. For

this purpose, the features/representations Z were fed to the external classifier -

Random Decision Forest (RDF). The results were reported in terms of metrics

- precision, recall, F1 score, and area under the ROC curve (AUC). From the

financial viewpoint, annualized returns (AR) were also calculated using the

predicted trading signals/labels and true trading signals/labels named Predicted

AR and True AR respectively. The latter metric is important from the perspective

of understanding the quality of predictions in financial terms as well. This value

indicates the geometric average of an investment’s earnings in a year. Thus, the

more it is, better is the quality of predictions. To calculate the same, the starting

capital used for every stock was Rs. 1,00,000 and the transaction charges were

Rs 10. Each of these metrics is explained below :

• Accuracy : the fraction of total samples that are correctly classified.

Accuracy =
#correct identified samples

Total#samples
(2.16)

i.e.

Accuracy =

∑m
i=1

TPi+TNi

TPi+TNi+FNi+FPi

m
(2.17)

where TPi = True Positives, TNi = True Negatives, FPi = False Positives,
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FNi = False Negatives, m is the total number of classes in the dataset, and i

ranges from 1 to m.

• Precision : also known as the positive predictive value (PPV), measures the

accuracy of a predicted positive outcome, i.e., how accurate the model is

for predicting positive values.

Precision or PPV =
TP

TP + FP
(2.18)

• Recall : represents the sensitivity of a model and is useful for ascertaining

the strength of a model to predict positive outcomes.

Recall or Sensitivity =
TP

TP + FN
(2.19)

• F1 Score : calculated using a weighted harmonic mean between precision

and recall. For the classification of positive instances, it helps to understand

the trade off between correctness and coverage.

Fβ = (1 + β2) ∗ Precision×Recall

(β2 × Precision) +Recall
(2.20)

here β = 1

• ROC AUC : ROC curve (receiver operating characteristic curve) is a graph

showing the performance of a classification model at all classification thresh-

olds. This curve plots two parameters: True Positive Rate (TPR) and False

Positive Rate (FPR). Here TPR is a synonym for recall and is therefore

defined same as Recall mathematically.
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False Positive Rate (FPR) is defined as follows:

FPR =
FP

FP + TN
(2.21)

AUC stands for “Area under the ROC Curve." That is, AUC measures the

entire two-dimensional area underneath the entire ROC curve.

• AR : indicates the geometric average of an investment’s earnings in a year.

AR =

(
TotalMoney

StartCapital

) 1
n

− Transactioncharges. (2.22)

Here, transaction charges = Rs. 10/- and Start Capital = Rs. 1,00,000/-

Results Analysis for ConFuse

The results can be referred from Table 2.5. For the stock trading problem,

ConFuse outperformed the benchmarks with two activation functions, namely

SELU and ReLU, and reached a similar performance to the benchmarks with the

other activation functions.
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Table 2.5: Trading Results with ConFuse

Method Precis. Recall F1 AUC AR

ConFuse-SELU 0.524 0.777 0.619 0.543 17.898

ConFuse-RELU 0.505 0.648 0.556 0.523 18.112

ConFuse-PRELU 0.491 0.601 0.528 0.506 19.091

ConFuse-

LeakyRELU

0.496 0.602 0.531 0.511 19.150

ConFuse-Tanh 0.469 0.560 0.493 0.497 19.002

ConFuse-Sigmoid 0.487 0.584 0.513 0.498 20.540

ConvTimeNet 0.457 0.507 0.413 0.524 19.410

TimeNet 0.469 0.648 0.496 0.513 18.764

Results Analysis for DeConFuse

The classification performance in detail for all 150 symbols can be referred from

the paper Appendix Section. Certain results from that table are highlighted in

bold or red. The first set of results, marked in bold, are the ones where one of

the techniques for each metric gave the best performance for each stock. The

proposed solution DeConFuse gave the best results for 89 stocks for a precision

score, 85 stocks for a recall score, 125 stocks for F1 score, 91 stocks for the

AUC measure, and 56 stocks in the case of the AR metric.

The other set marked in red highlighted the cases where DeConfuse did not

perform the best but performed nearly equal (here, a difference of a maximum

of 0.05 in the metric is considered) to the best performance given by one of the

benchmarks, i.e., DeConFuse gave the next best performance. It was noticed that

there are 24 stocks for which DeConFuse gave the next best precision metric

47



value. Likewise, 18 stocks in case of a recall, 22 stocks for F1 score, 26 stocks

for AUC values, and 1 stock in case of AR. Overall, DeConFuse reached a

very satisfying performance over the benchmark techniques. The trading results

summary corroborates the same in Table 2.6.

Table 2.6: Summary Trading Results with DeConFuse

Method Precision Recall F1

Score

AUC MAE

AR

DeConFuse 0.520 0.810 0.628 0.543 17.350

ConvTimeNet 0.510 0.457 0.413 0.524 19.410

TimeNet 0.470 0.648 0.490 0.513 18.760

2.4.3 Convergence Study

Some empirical convergence plots of Adam were also shown that can be seen in

Figure 2.4 when using ConFuse and DeConFuse with SELU, which depicted

the practical stability of the end-to-end training method.

Further, the representations both channel-wise i.e.,Xc and final fused represen-

tation Z, were analyzed for one of the random stocks; here it is ANDHRABANK.

The visualizations are displayed in Figure 2.5 for one sample of the mentioned

stock. It can be seen from the figure that the heatmaps for all the channel-wise

features Xc and fused features Z are less redundant and have more variations.

Thus, it can be implied that one of the factors for this variation could be distinct

filters that are learned and transform data to produce the varied representations.
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(a) Loss Plot with ConFuse

(b) Loss Plot with DeConFuse

Figure 2.4: Loss Plots with a) ConFuse and b) DeConFuse

(a) Channel X1

Close Price
(b) Channel X2

Open Price
(c) Channel X3

High Price
(d) Channel X4

Low Price
(e) Channel X5

Net Asset Value
(f) Channel Z -
Fused features

Figure 2.5: Visualization of channel-wise features Xc and fused representations Z for DeConFuse for one sample of
stock ANDHRABANK (with 8× 2 as the shape of the features obtained for each channel Xc and flattened features
of shape 40× 1 for Z)

49



2.5 Discussion

Shallow and deep fusion based end-to-end frameworks for processing 1D multi-

channel data were proposed. Unlike other deep learning models, these frame-

works are unsupervised. These are based on a novel deep version of the recently

proposed CTL model. The proposed models have been applied for stock fore-

casting and trading problems leading to very good performance. The overall

framework is generic enough to handle other multi-channel fusion problems as

well.

The advantage of the proposed frameworks is their ability to learn in an

unsupervised fashion. For example, consider the problem that is addressed. For

traditional deep learning-based models, one needs to re-train deep networks for

regression and classification. But here the learned final features can be reused,

without the requirement of re-training, for specific tasks. This has advantages

in other areas as well. For example, one can either do ischemia detection, i.e.,

detect whether one is having a stroke at the current time instant (from EEG); or

one can do ischemia prediction, i.e., forecast if a stroke is going to happen. In

standard deep learning, two networks need to be re-trained and tuned to tackle

these two problems. With these proposed methods, there is no need for this

double effort.

Since the stock data is quite volatile, therefore, a minor improvement matters

in the problems pertaining to this domain. Thus, the better results with the

proposed frameworks than the benchmarks is beneficial for the system. However,
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the AUC ROC values can be improved further in the future as those have the

scope of improvement in this case of two classes problem. Also, in the the future,

the framework can be extended for semi-supervised formulations. It is believed

that the semi-supervised formulation will be of immense practical importance.
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Chapter 3

Supervised multi-channel fusion

frameworks - SuperDeConFuse and

DeConDFFuse

In the last chapter, the unsupervised frameworks based on CTL were discussed

that bridged all the gaps that CNNs have. However, the question that comes

next is - if we have labeled datasets, are the CNNs based models sufficient

for supervised learning? It has been observed that CNNs have emerged as the

recommended solution in many such scenarios. But the issue with CNN is that

the supervised learning through them does not ensure distinct filters; hence,

the feature maps might have redundancy. Additionally, there is a dead neuron

problem with CNNs which is encountered with the kind of activation function

chosen with it and mostly happens when ReLU is used. A dead neuron can be

considered a natural Dropout. Further, due to dead neurons, there could be a

bigger problem. Let’s say if every neuron in a specific hidden layer is dead; it
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cuts the gradient to the previous layer resulting in zero gradients to the layers

behind it. Thus, the weights would not be updated and the learning will be

improper. It can be fixed using lower learning rates, so the big gradient doesn’t

set a big negative weight and bias in a ReLU neuron. Another solution is to use

other activation functions like Leaky ReLU. It allows the neurons outside the

active interval to leak some gradient backward. But sometimes, the resolves just

discussed do not work in certain scenarios.

Therefore, these two issues discussed above open up the scope for developing

supervised frameworks that can combinely tackle them. In the previous chapter,

the success of unsupervised frameworks based on CTL was observed. This

chapter also presents two multi-channel supervised frameworks based on CTL.

The first one is SuperDeConFuse, a multi-channel fusion framework that jointly

trains and optimizes multiple CTL based channels and cross-entropy loss. Thus,

representations are not learned just via CTL but also directed by classification

loss - Cross Entropy. It has been applied to the stock trading problem. The other

framework is named - DeConDFFuse combines and jointly trains DeConFuse

and Decision Forest (DF). It deals with the drug-drug interaction problem. Here,

the representations are learned via CTL and DF, which yields better performance

than the state-of-the-arts. Both frameworks are explained in the subsequent

sections.
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3.1 SuperDeConFuse: A supervised deep convolutional transform based

fusion framework for financial trading systems

3.1.1 Literature Review - Stock Trading

Information Fusion based techniques, in general, have been discussed in chapter

1. Now, let’s briefly review here some of the works that have proposed solutions

for the Stock Trading problem. The problem of stock trading has been one of the

most difficult problems for researchers in finance data processing and speculators.

Struggles are mainly due to the uncertainties and noises of the samples. These

samples are generated as a consequence of historical market behaviors.

In literature, different methodologies have been applied to the stock data for

predicting future trading strategies (e.g., buy and sell decisions). These include

statistical methods, machine learning algorithms like Support Vector Machine

(SVM) and Artificial Neural Networks (ANN), feature extraction approaches,

deep learning models (e.g., CNN, LSTM) and self-supervised learning based

techniques that are briefly reviewed in this section.

Statistical methods are probably the methods that are universally used for

predicting financial stock trading strategies. In particular, many studies rely on

the use of sequential statistical models, such as ARMA [100], ARCH [101],

GARCH [102] and [103], Kalman filter [104]. Feature-based techniques are also

considered state-of-the-art. Technical indicators like Exponential moving average

(EMA), Moving average convergence and divergence (MACD), Williams %R,

54



etc., have been used in past studies to extract the features from the data [105].

Text mining can also be used to process financial analysis from newspapers

[106]. The features are then input to machine learning models, for example,

SVM, ANN and kNN [107].

Further studies have proposed hybrid machine learning models using multiple

base classifiers operating on a common input and a meta classifier learning from

base classifiers’ outputs to obtain more precise stock return and risk predictions.

Strategies such as Bagging, Boosting and AdaBoost can be applied to create

diversity in classifier combinations [108, 109]. For example, a hybrid weighted

SVM and weighted KNN model for predicting stock market indices is proposed

in [110]. Another study [111] combines the statistical and probabilistic Bayesian

Learning and the machine learning model ANN for the same. However, in all

the aforementioned techniques, the relationship built between historical data

and future value prediction may lack interpretation because of their “black-box"

property. Thus, the performance of these methods is directly related to the quality

of the features. Moreover, overfitting is a major issue with machine learning

techniques due to their non-linear mapping and fitting capability.

Deep learning based models have also been extensively used for solving

stock forecasting problems. Recurrent Neural Networks (RNNs) are considered

the most appropriate models for time-series analysis. LSTM is one such RNN

that is regarded as the memory-mimicking model. The work in [112] uses

LSTM on the technical indicators for the prediction. However, despite the great

performance obtained, the time complexity of training RNN via backpropagation
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has encouraged the users to search for more tractable models and solutions.

CNNs constitute another important deep learning model, besides RNNs,

which have been used profusely and performed well in stock time-series forecast-

ing, especially 2-D CNNs. The studies pertaining to CNNs [79–85] have been

discussed in the previous chapter in section 2.1.1. It is observed that there is a

lack of performance improvement may be owing to the incorrect choice of the

CNN model since these studies model an inherently 1D time series as an image.

Another learning paradigm known as Self-Supervised Learning (SSL) based

models are also emerging currently when no labels for the data are available.

In all such techniques, initially the data is unsupervised which is eventually

turned supervised by predicting the pseudo labels and then training happens.

There are few works that utilizes and proposes solutions based on it for stock

trading prediction [86–89]. However, such techniques are resource intense and

just like CNNs, these SSL based learning paradigms do not have distinctiveness

guarantees.

3.1.2 Proposed Formulation

A novel supervised framework for multi-channel data representation learning

is discussed in this section. A crucial element of the latter is the recently intro-

duced CTL [56]. The details of CTL have already been covered in 2.1.2. Also,

extending it to the deep versions and the fusion part is covered with DeConFuse

described in section 2.2.2. Now, let’s move to the proposed framework which
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is an extension of these approaches to handle a multi-layer architecture that is

called as - SuperDeConFuse (SDCF)1 architecture.

This framework took the channels of input data samples to separate branches

of CTL layers, leading to multiple sets of channel-wise features. The features

obtained were thus decoupled. In order to couple (i.e., fuse) them, these were

concatenated and passed to a fully-connected layer, which yielded a set of distinct

coupled features via transform learning. These features were then fed to another

linear fully-connected layer. The obtained features that were finally inputted

to the softmax layer which yielded probabilities for the classes. The complete

architecture is shown in Figure 3.1.

Figure 3.1: General SuperDeConfuse Architecture. The architecture is tested for L = 1, 2, 3, 4 layers and C = 5.
Here M1

1 × 1, . . . ,MC
L × 1 represents the kernel size used in each layer ℓ ∈ {1, . . . , L}. Here, maxpooling is not

performed after layer 4 due to the small window size/input sequence length.

As the data considered is multi-channel, a different set of convolutional filters
1P. Gupta, A. Majumdar, E. Chouzenoux, G. Chierchia, SuperDeConFuse: A supervised deep convolutional transform based

fusion framework for financial trading systems, Expert Systems with Applications, Volume 169, 2021, 114206, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2020.114206
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T
(c)
1 , . . . , T

(c)
L and features X(c) were learned for each channel c ∈ {1, . . . , C}.

The linear transform (not convolutional) were also learned and calculated T̃ =

(T̃c)1≤c≤C to fuse the channel-wise features X = (X(c))1≤c≤C , along with the

corresponding fused features Z at the same time. The latter task was carried out

by the cost function

Ffusion(T̃ , Z,X) =
1

2

∥∥∥Z −
C∑
c=1

flat(X(c))T̃c

∥∥∥2
F
+Ψ(Z)+

C∑
c=1

(
µ
∥∥∥T̃c∥∥∥2

F
− λ log det(T̃c)

) (3.1)

where the operator “flat" transforms X(c) into a matrix where each row contains

the “flattened" features of a sample. Further, the weight matrix θ of a multiclass

classifier was learned which took the input features Z and yielded the class

probabilities. The cross-entropy (CE) loss associated with the final classification

is given by

FCE(θ, Z | y) =
K∑
k=1

log
( V∑

v=1

ez
⊤
k (θv−θyk )

)
, (3.2)

where V is the number of classes, θv is the v-th column of matrix θ, z⊤k is the

k-th row of matrix Z, and yk ∈ {1, . . . , V } is the label of the k-th sample.

Conclusively, the proposed formulation aimed at jointly training the channel-

wise convolutional filters T (c)
l , the fusion coefficients T̃ , and the multiclass

classifier θ in an end-to-end fashion. The features X and Z were explicitly

learned subjected to the regularization Ψ so as to avoid the problem of dead

neurons. Moreover, the “log-det" regularization on both T (c)
l and T̃ broke the
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symmetry and enforced the diversity in the learned transforms. In contrast, the

Frobenius regularization kept the transform coefficients bounded.

3.1.3 Optimization algorithm

It was chosen to find a local minimizer to the non-convex Problem (2.10) through

the projected (sub)gradient descent, whose iterations read:

For n = 0, 1, ...

T [n+1] = T [n] − γ∇TJ(T
[n], X [n], T̃ [n], Z [n], θ[n])

X [n+1] = P+(X
[n] − γ∇XJ(T

[n], X [n], T̃ [n], Z [n], θ[n]))

T̃ [n+1] = T̃ [n] − γ∇T̃J(T
[n], X [n], T̃ [n], Z [n], θ[n])

Z [n+1] = P+(Z
[n] − γ∇ZJ(T

[n], X [n], T̃ [n], Z [n], θ[n]))

θ[n+1] = θ[n] − γ∇θJ(T
[n], X [n], T̃ [n], Z [n], θ[n])

(3.3)

with P+ = max{·, 0} (applied element-wise). It was initialized with some

random matrices T [0], X [0], T̃ [0], Z [0], θ[0] and a suitable step size γ > 0 was

chosen. The gradient step was numerically evaluated with the accelerated scheme

initially introduced for the ADAM method in [95]. The advantages of this

optimization method have been discussed in the previous chapter 2.
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3.1.4 Preprocessing

Before proceeding with the experimental setup, the labeling process for the

dataset and training details are discussed here. The specifics of the dataset can

be referred from the section 1.3.2.

3.1.4.1 Labeling Process

In the labeling phase, the labels were manually assigned to the daily close prices

as Buy (0), Hold (1) and Sell (2). The labels were determined by performing a

grid search on the list of holding percentages to identify the percentage change

for which the stocks should be held to maximize the annualized returns for the

company. Algorithm 1 gave the details of the labeling process.

3.1.4.2 Training Details

In general, the sliding walk forward validation technique is used as the cross-

validation technique in the case of time-series data, also shown in Figure 3.2. As

can be seen from Figure 3.2, ten years of data for training have been used and

the subsequent one year of data for testing, i.e., the stock data from 1998-2007

was for training and the year 2008 for testing. Then the training window was

slid by one year which implied that it was next trained from 1999-2008 and

tested on the following year 2009 data and this period is called the horizon.

In summary, it was trained for ten years, tested for the next year, slid it by a

one year horizon, and again trained and tested it until 2018. Thus, 11 years
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Algorithm 1: Labelling Method

1 Input : CP - Array of
2 Parameter : X - array of K holding percentages,
3 NUMDAYS - number of days for the current symbol or len(CP)
4 Labels - 2D array of size K x NUMDAYS
5 Output : FinalLabels - Labelled Dataset for S

1: AR = [ ] //it is of size K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: for n = 0, . . . , NUMDAY S − 1 do
4: change = abs((CP [n+ 1]− CP [n]/CP [n]) ∗ 100) //where CP[n+1] is the next day closing

price
5: if change > X[k] then
6: if CP [n+ 1] > CP [n] then
7: label == “Sell"
8: else
9: label == “Buy"

10: end if
11: else
12: label == “Hold"
13: end if
14: Labels[k].append(label)
15: end for
16: ar = AnnualisedReturn(Labels[k],CP)
17: AR.append(ar)
18: end for
19: maxAr = Max(AR), maxIndex = index(Max(AR))
20: HoldPercentage = X[maxIndex]
21: FinalLabels = Labels[maxIndex]
22: return FinalLabels
23: Repeat all steps till 22 for all the Stocks/Symbols in the dataset.

of data from 2008 - 2018 were used as test data. This way, there were 11

models and the set of hyperparameters were selected that gave the best results

across all 11 models. The set of hyperparameters that were tuned includes µ, λ,

kernel sizes, number of filters/kernels, learning rate, weight decay of the Adam

optimizer, batch size, and number of epochs. Additionally, the weights for each

stock’s training were randomly initialized. It appeared here as a very efficient

technique to analyze the robustness of the architecture. In other words, the model

performance was calculated every time a year’s data became available for testing
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and used the previous year’s test data for training. The training and the test data

were standardized using Normalizer from the Python library as prices and the

NAV features/channels have a varied range of values.

Figure 3.2: Sliding walk-forward validation technique used for hyperparameters tuning

3.1.5 Experimental Evaluation

The experiments were carried out on the real-world problem of stock trading.

Stock trading is a classification problem, where the decision whether to buy or

hold or sell a stock has to be taken at each time. The problem makes a decision

that if the price of a stock at a later date is expected to increase, the stock must

be bought; and if the stock price is expected to go down, the stock must be sold;

and if there is no change in the price then it should be held, i.e., do nothing until

the price increases. This was done in a way to maximize the annualized returns

from the stock for the company’s profit, as mentioned in the labeling process.

Five raw inputs were used: open price, close price, high, low and net asset

value (NAV). It was chosen to stay with the raw values. However, one could

compute technical indicators based on the raw inputs [105] but raw values
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allowed here to keep up with the essence of the true nature of representation

learning. Each of the five inputs was processed by a separate 1D processing

pipeline. Each pipeline produced a flattened output (Figure 3.1). These flattened

outputs were then concatenated and fed for fusion into the Transform Learning

layer acting as the fully connected layer (Figure 3.1). Further, this is connected

to another linear fully connected layer and finally, there was a softmax function.

The softmax function gave the classification output which consisted of the class

probabilities for the three classes (BUY, HOLD and SELL).

The architecture was extended by adding CTL layers upto four layers resulting

in four different deep SDCF architectures. The details for all four architectures

are briefed in Table 3.1. Maxpooling halves the input sequence length/window

size/Time Steps with every operation. Thus, after three layers, the size was

getting reduced to the value that restricted us from using maxpooling operation

after the 4th CTL layer; hence, the architecture with 4 CTL layers of SDCF will

not have maxpooling operation after layer 4. This was due to the small window

size. Also, for making predictions on any day, the past ten days were analyzed

through the model labeled as Time Steps shown in Figure 3.1. Additionally, the

stock trading signal was not predicted for the first ten days of every test year to

avoid data leak.
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Table 3.1: Hyperparameters for the different instances of the proposed SDCF network (see Figure 3.1 for the
general overview) used in the experimental section.

Method Architecture Description Other Parameters

SDCF 1L

5×


layer1 : 1D Conv(1, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer2 : Fully Connected (TL)3

layer3 : Fully Connected (Linear)

Softmax

LearningRate = 0.001,

λ = 0.01, µ = 0.0001

epochs = 100,

Optimizer Used: Adam

**with parameters**

(β1, β2) = (0.9, 0.999),

weight_decay = 1e-4,

epsilon = 1e-8

SDCF 2L

5×



layer1 : 1D Conv(1, 8, 3, 1, 1)1

SELU + Maxpool(2, 2)2

layer2 : 1D Conv(8, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer3 : Fully Connected (TL)3

layer4 : Fully Connected (Linear)

Softmax

SDCF 3L

5×



layer1 : 1D Conv(1, 4, 11, 1, 5)1

SELU + Maxpool(2, 2)2

layer2 : 1D Conv(4, 8, 7, 1, 3)1

SELU + Maxpool(2, 2)2

layer3 : 1D Conv(8, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer4 : Fully Connected (TL)3

layer5 : Fully Connected (Linear)

Softmax
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SDCF 4L

5×



layer1 : 1D Conv(1, 4, 13, 1, 6)1

SELU + Maxpool(2, 2)2

layer2 : 1D Conv(4, 8, 11, 1, 5)1

SELU + Maxpool(2, 2)2

layer3 : 1D Conv(8, 16, 9, 1, 4)1

SELU + Maxpool(2, 2)2

layer4 : 1D Conv(16, 32, 5, 1, 2)1

layer5 : Fully Connected (TL)3

layer6 : Fully Connected (Linear)

Softmax

1 (in_planes, out_planes, kernel_size, stride, padding)

2 (kernel_size, stride)

3 TL - Transform Learning

L - #CTL layers

The comparison was made with three state-of-the-art time series based analy-

sis models, out of which two techniques presented the models proposed specifi-

cally for financial stock trading - CNN-TA [105] and MFNN [113]; and the last

technique presented a generic model for time-series based data - FCN (Fully

Convolutional Network) [75]. The latter was used to understand how generic the

proposed model was when compared against both specific stock trading based

and general time-series models. In all the techniques, processing pipelines were

based on CNN. Other than CNN, MFNN [113] was also based on the RNN type

of network - LSTM. In [105], the data used was not raw but processed as techni-

cal indicator values and passed as an image, hence using 2D CNN, whereas, in

FCN [75], the data was processed via 1D CNN. The same hyperparameters for
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the benchmark techniques were used as given in the study, except for FCN which

was best tuned for the used dataset. It was also compared to the simple CNN

with the architecture same as that of proposed framework, i.e., 3 convolutional

layers deep architecture and used the same hyperparameters too, except the

kernel sizes of F1 = 11, F2 = 9 and F3 = 7 for the convolutional layers ℓ = 1, 2

and 3 (padding size is Fℓ/2). The difference lied in the objective function of

the convolutional learning in both the techniques, i.e., 3 layers deep SDCF and

3 layers deep and simple 1D CNN. This was done to analyze the performance

difference between the two supervised learning techniques. Additionally, the

architecture for CNN was having 3 convolutional layers since the results were

best with 3 convolutional layers and depleted after that.

3.1.6 Results and Analysis

The predictions from every year totaling 11 years were saved, and the metrics

were computed to analyze the performance of the SDCF model. Two sets of

metrics were computed here, namely (i) classification metrics and (ii) financial

metrics.

(i) Classification Metrics - this set of metrics includes class-wise F1 score,

Precision and Recall to assess the performance from a classification point

of view. Also, the weighted F1 Score, Precision and Recall to account for

the class imbalance for every stock were calculated. Note that, in such a

case, the F1 score is not equivalent to the harmonic mean of Precision and
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Recall since it is weighted.

(ii) Financial Metrics - Additionally, the evaluation of the performance of the

proposed framework and state-of-the-art was carried out from the finan-

cial point of view. For the same purpose, Annualized Returns(AR) were

computed using the predictions from all the models. The AR value was

calculated the same way as mentioned in [105]. The starting capital was

Rs 10,00,00,000.0, and transaction charges were Rs 10. Indian currency

was used to calculate the AR values since the dataset had all Indian stocks.

Note, however, that the chosen metric was versatile and could be used to

evaluate the model in any currency depending on the stocks analyzed.

3.1.6.1 Classification Analysis

As mentioned previously, let’s first look at the Classification performance of

the proposed models. The framework was tested for shallow - 1 CTL layer and

deeper versions - 2, 3 and 4 CTL layers. The generated features from the fully

connected layers are passed to the softmax after which the probabilities for all the

classes were obtained. The one with the maximum probability was selected as

the predicted label. The performance was calculated for every class. Specifically,

F1 Score, Precision and Recall metrics are computed for BUY, HOLD and SELL

classes. Here, the summary results for each of the classes - BUY, SELL and

HOLD signals to understand class wise results are given in the Tables 3.2, 3.4

and 3.3 and the global results from 3.5. The detailed results can be referred to

from the tables in Appendix section .
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Certain results are highlighted in bold or red. In the first set of results

marked bold, one or more techniques for each metric give the best/greater

than or equal performance. Analyzing it in detail, it is found that there are

8 stocks for which the proposed model performed greater than or equal to

when compared with benchmark techniques for F1 score in the case of the

BUY class. Following the same, it is found that the SDCF gave greater than

or equal to performance for 13 stocks for precision and 5 stocks for recall

metrics under the BUY class. Similarly, 7 stocks for the F1 score, 7 stocks

for precision and 5 stocks for recall in the HOLD class and 7 stocks for the F1

score, 11 stocks for precision and 6 stocks for recall in the case of the SELL

class. It was further analyzed to understand the performance difference between

the supervised learning techniques, specifically, performance with CNN and

the proposed model. It was found that CNN gave greater than or equal to

performance for 2 stocks for each metric under the BUY class. Similarly, there

are 6, 1 and 9 stocks for the HOLD class and 2 stocks each for the metrics F1

score, precision and recall under the SELL class.

Additionally, the other set of results in red indicates the performance where

one of the proposed model versions gave the similar/next best performance

under 0.02 error difference - err_dif (let’s say) after one of the benchmarks, i.e.,

0.0 < err_dif ≤ 0.02. Adhering to the same, it was observed that for the BUY

class, there is 1 stock each for metrics F1 score, precision and recall, respectively.

Likewise, for the HOLD class, there are 7, 4 and 5 stocks for F1 score, precision

and recall metrics, respectively; and for the SELL class, 1 stock each for F1
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score and recall metrics. Although the results for CNN haven’t been highlighted

when it gave similar/next-best performance but the statistics for the same are

presented here. Analyzing for CNN, there are 2 and 3 stocks for F1 score and

precision under the HOLD class. Observing these statistics, they indicate that

the performance with the proposed model is better than CNN for all three BUY,

HOLD and SELL classes.
Table 3.2: Summary of BUY Class Classification Results for Stock Trading

Method
Avg. BUY

F1 Score

Avg. BUY

Precision

Avg. BUY

Recall

SDCF 1L 0.0645 0.2182 0.0475

SDCF 2L 0.0916 0.2356 0.0683

SDCF 3L 0.1091 0.2205 0.0854

SDCF 4L 0.1566 0.3242 0.1355

CNN 0.0688 0.1179 0.0551

FCN 0.0758 0.1446 0.0617

CNN-TA 0.1205 0.1611 0.1263

MFNN 0.0881 0.1672 0.2401
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Table 3.3: Summary of HOLD Class Classification Results for Stock Trading

Method
Avg. HOLD

F1 Score

Avg. HOLD

Precision

Avg. HOLD

Recall

SDCF 1L 0.7983 0.7091 0.9446

SDCF 2L 0.7912 0.7113 0.9164

SDCF 3L 0.7813 0.7113 0.8842

SDCF 4L 0.6684 0.5950 0.7960

CNN 0.7909 0.7090 0.9239

FCN 0.7825 0.7119 0.9051

CNN-TA 0.7686 0.7142 0.8557

MFNN 0.5161 0.6425 0.5718

Table 3.4: Summary of SELL Class Classification Results for Stock Trading

Method
Avg. SELL

F1 Score

Avg. SELL

Precision

Avg. SELL

Recall

SDCF 1L 0.0423 0.1778 0.0285

SDCF 2L 0.0650 0.1752 0.0503

SDCF 3L 0.0759 0.1574 0.0635

SDCF 4L 0.1410 0.2139 0.1250

CNN 0.0481 0.0946 0.0379

FCN 0.0742 0.1658 0.0802

CNN-TA 0.0679 0.1768 0.0487

MFNN 0.0633 0.1034 0.1734

From the summary results in the above displayed tables, the average metric

values for which the model gave the best performance are average F1 score and

precision for the BUY class, average F1 score and recall for the HOLD class,

and average F1 score and precision for the SELL class, where the F1 score is an
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important metric, as it is the harmonic mean of precision and recall. It is the best

with the proposed model - SDCF for all three classes.

As it can be observed, the performance for the HOLD class decreased when

increasing the number of layers for the SDCF model. However, it can also be

seen that there is an increase in correct identification for BUY and SELL points

despite the fact that BUY and SELL points appear extremely less in the case

of every stock as compared to HOLD points. The latter identification capacity

is actually more crucial for the financial system as it directly influenced the

financial gains or losses. Moreover, the overall individual class performance

indicated that the model captured all three classes, i.e., BUY, HOLD and SELL

well.

This was also indicated in the confusion matrices, given for each of the SDCF

framework’s shallow and deeper versions in Figure 3.3. With an increase in

layers, the model started to identify the BUY and SELL points more correctly.

The HOLD signal had more false positives with shallow architecture (SDCF 1L)

that decreased with the increase in layer number, which was essential for the

system in order to classify other class points correctly. Additionally, the overall

performance of the proposed model was better than the CNN.
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(a) CTL 1Layer (b) CTL 2Layers

(c) CTL 3Layers (d) CTL 4Layers

Figure 3.3: Confusion matrices corresponding to the different number of CTL layers of the architecture: a) 1 layer
of CTL (shallow version), b) 2 layers of CTL (deep version), c) 3 layers of CTL (deep version) and d) 4 layers of
CTL (deep version) where 0 - BUY, 1 - HOLD, 2 - SELL signals.

To better analyze the framework performance, the weighted F1 score, preci-

sion and recall metric values were calculated for all the stocks under consider-

ation. The reason for computing weighted values was to incorporate the class

imbalance for every stock. The detailed results can be referred from the appendix

section of the paper [57] and summary results are given in Table 3.5. Again,

the results comprised two sets of values marked in bold or red with the same

err_dif of 0.02. There are 6, 9, and 5 stocks concerning the metrics F1 score,

precision and recall for which the model performed greater than or equal to the

performance given by the state-of-the-arts. Also, there are 6, 3 and 6 stocks for

the metrics F1 score, precision and recall, respectively, for which the model gave
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the next best performance under 0.02 err_dif. Although the BUY and SELL

classes’ performance with the 4 CTL Layers deep architecture is better than

the benchmarks compared against, the overall performance from the average

weighted metric is suggestive of the good performance with the 3 layers deep

architecture classification wise. This is also suggested by the financial results

explained later.

Again analyzing explicitly for CNN, there are 4, 2 and 7 stocks with greater

than or equal performance; and 3, 2 and 3 stocks under similar/next best per-

formance for the F1 score, precision and recall metrics, respectively. As can

be referenced from the statistics presented here, the proposed model is giving

better results with greater than or equal and the next best/similar performances

except for the number of stocks for recall metric are slightly more with CNN

under greater than or equal to performance. However, the next best performance

statistic for the recall metric is much better than CNN. Overall performance on

average is good with the proposed model as compared to the benchmarks and

CNN which can also be referred from Table 3.5. For a deeper understanding of

the aforementioned statistics, please refer to Table from [57].
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Table 3.5: Summary of Weighted Classification Results for Stock Trading

Method
Avg.

F1 Score

Avg.

Precision

Avg.

Recall

SDCF 1L 0.6169 0.6216 0.6941

SDCF 2L 0.6229 0.6207 0.6867

SDCF 3L 0.6250 0.6146 0.6784

SDCF 4L 0.5345 0.5464 0.5890

CNN 0.6182 0.5907 0.6898

FCN 0.6090 0.6079 0.6725

CNN-TA 0.6148 0.6161 0.6575

MFNN 0.4162 0.5509 0.4676

3.1.6.2 Financial Analysis

It is imperative to analyze the performance from a financial perspective to

understand the quality of predictions made by the SDCF model. For this, as

explained earlier, the AR values were calculated with the predictions generated

by each technique for every stock over 11 years. The AR values were also

calculated with the True labels for every stock over the same period. Finally,

the absolute difference/error between the AR values from Predictions and the

AR values from True labels was computed. The absolute difference values were

averaged for all the stocks yielding the so-called Mean Absolute Error. The

detailed results are given in Table from the paper [57]. With the proposed model,

5 stocks have the best performance whereas with CNN-TA, there is 1 stock and

2 stocks under MFNN and FCN. Overall, the performance is good with the

proposed model as also evident from the summary results in Table 3.6 where
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there is a mean of the absolute difference/error(MAE) between the True AR and

Predicted AR. Also, there are 3 stocks for which the proposed model gave an

equal performance as the other benchmark techniques. Here, this set of results

illustrated that, despite the higher capability of identifying the BUY and SELL

points with 4 layers deep CTL, the AR values are better predicted with the 3

layers deep CTL framework.

With respect to CNN, there are only 2 stocks for which CNN performs better

than any benchmarks and the proposed models and 3 stocks for which it gave

an equal performance. Thus, from the combined (greater than or equal to and

next best / similar), average classification and financial results, the CNN results

are less performant than the proposed model. This also indicated that the quality

of predictions made with the SDCF model is better than CNN as the identified

class labels give AR values quite close to the True AR values. This remained

true for all the benchmarks. The statistics presented here can be deduced from

Table in [57] for complete understanding.
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Table 3.6: Summary of Financial Results for Stock Trading

Method MAE AR

SDCF 1L 22.5613

SDCF 2L 20.7227

SDCF 3L 20.5067

SDCF 4L 22.8287

CNN 21.1140

FCN 23.7720

CNN-TA 22.1380

MFNN 22.3040

To further understand the better supervised learning for both regular CNN and

the SDCF framework, the channel-wiseXc features for both frameworks obtained

after the last maxpool layer for the 3 convolutional layers deep framework were

visualized. The following Figure 3.4 shows the visualizations of the features for

one sample of the stock ‘BSELINFRA.BO’.
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Features generated by the proposed SDCF network.

Features generated by a standard CNN with a similar architecture.

(a) Channel X1

Close Price
(b) Channel X2

Open Price
(c) Channel X3

High Price
(d) Channel X4 Low
Price

(e) Channel X5

NAV

Figure 3.4: Visualization of channel-wise features Xc for SDCF versus a standard CNN for one sample of stock
BSELINFRA.BO (with 16× 1 as the shape of the features obtained and resized to 8× 2 for better visualization)
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As seen from Figure 3.4, the heatmap for each channel corresponding to

the prices(Close, Open, High and Low) show no variation in the case of CNN

compared to the SDCF architecture. While it shows some variations for the

features learned corresponding to NAV, the features are still better learned with

SDCF. Also, the darker the color in the heatmap, the more it is indicative of

the larger negative exponent values. In the case of CNN, hence, the values are

very very small that are almost diminishing to zero. This also corroborated

the fact that the filters learned with the proposed model are distinct due to the

"log-det" term added which further gives different features with significantly

less redundancy. Thus, the visualizations of these channel-wise features are also

supportive of better supervised training with the SDCF framework than CNN.

3.1.6.3 Ablation Studies

‘ In this section, the ablation study performed is discussed. The network was

trained in a piecemeal fashion here. The motive for performing this study was

to understand the behavior of the network without the benefit of joint training.

Since it is piecemeal, it was carried out in two parts. In the first part, the network

learned the representations Z in an unsupervised manner with the following

objective function:

Ffusion(T̃ , Z,X) =
1

2

∥∥∥Z −
C∑
c=1

flat(X(c))T̃c

∥∥∥2
F
+Ψ(Z)+

C∑
c=1

(
µ
∥∥∥T̃c∥∥∥2

F
− λ log det(T̃c)

) (3.4)
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It is the same as present in equation 3.1 and hence all the variables here mean

the same. Then these learned Z’s are fed into the shallow single-layer neural

network with the cross-entropy loss at the end separately, i.e.

FCE(θ, Z | y) =
K∑
k=1

log
( V∑

v=1

ez
⊤
k (θv−θyk )

)
, (3.5)

It is also followed from the previously mentioned objective terms given by

equation 3.2 and thus, all variables mean the same. However, the difference is

that here θ is not learned jointly with Z, but two separate pipelines learn each of

these variables individually. Also, the hyperparameters used for both parts are

the same as the ones used in the proposed architecture with the Adam optimizer.

The results corresponding to classification and financial analysis are given under

heading piecemeal in tables 3.7, 3.8, 3.9, 3.10 and 3.11 respectively.

Table 3.7: Ablation Study performance for BUY Class

Method
Avg. BUY

F1 Score

Avg. BUY

Precision

Avg. BUY

Recall

SDCF 1L 0.0645 0.2182 0.0475

SDCF 2L 0.0916 0.2356 0.0683

SDCF 3L 0.1091 0.2205 0.0854

SDCF 4L 0.1566 0.3242 0.1355

piecemeal 0.0449 0.1593 0.0379
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Table 3.8: Ablation Study performance for HOLD Class

Method
Avg. HOLD

F1 Score

Avg. HOLD

Precision

Avg. HOLD

Recall

SDCF 1L 0.7983 0.7091 0.9446

SDCF 2L 0.7912 0.7113 0.9164

SDCF 3L 0.7813 0.7113 0.8842

SDCF 4L 0.6684 0.5950 0.7960

piecemeal 0.8002 0.7048 0.9592

Table 3.9: Ablation Study performance for SELL Class

Method
Avg. SELL

F1 Score

Avg. SELL

Precision

Avg. SELL

Recall

SDCF 1L 0.0423 0.1778 0.0285

SDCF 2L 0.0650 0.1752 0.0503

SDCF 3L 0.0759 0.1574 0.0635

SDCF 4L 0.1410 0.2139 0.1250

piecemeal 0.0221 0.1230 0.0127

Table 3.10: Ablation Study performance weighted results

Method
Avg.

F1 Score

Avg.

Precision

Avg.

Recall

SDCF 1L 0.6169 0.6216 0.6941

SDCF 2L 0.6229 0.6207 0.6867

SDCF 3L 0.6250 0.6146 0.6784

SDCF 4L 0.5345 0.5464 0.5890

piecemeal 0.6090 0.6002 0.6954
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Table 3.11: Ablation Study Financial Results

Method MAE AR

SDCF 1L 22.5613

SDCF 2L 20.7227

SDCF 3L 20.5067

SDCF 4L 22.8287

piecemeal 23.4073

From the results in tables 3.7, 3.8, 3.9, 3.10 and 3.11, it can be clearly seen that

the piecemeal version did not perform well as compared to the proposed solution

except for the HOLD class and Recall value for weighted summary results under

Classification performance category. The exception in results, however, have

values only slightly better than the proposed ones. Despite the slightly higher

results, the piecemeal approach did not recognize BUY and SELL points as

efficiently as the proposed method - SDCF, which is critical for the system. It,

thus, also suggests that the joint supervised solution involving cross-entropy loss

guided the better representation learning. Therefore, the proposed solution’s joint

training is justified and important for the system to recognize critical points BUY

and SELL as well as appropriately recognizing HOLD points efficiently that are

comparable with other state-of-the-arts, CNNs, and piecemeal approaches.

In order to test the proposed architecture’s capability further, the experiments

for two additional window sizes, namely 5 and 20 have been performed. In

order to avoid extensive space utilization, only the comparative summary re-

sults are presented here - Weighted F1 Score(Classification Metric) and MAE
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AR(Financial metric) in Table 3.12 for window sizes 5 and 20 along with the

summarized results for window size 10. The proposed method yielded the best

results on an aggregate. Even though CNN-TA yielded better AR for a solo

case (window size 20), it did not reach better results in terms of weighted F1 for

the same scenario. Furthermore, CNN-TA couldn’t be run for all small window

sizes (such as 5), hence cannot be deemed as an all-purpose go-to method. Small

window sizes are crucial for highly non-stationary stocks and the inability of a

technique to handle such stocks is a major shortcoming. Overall, the proposed

model performed better than benchmarks and CNN both classification-wise and

financially; specifically, it gave the best performance with 3 CTL layers deep

SDCF framework of all the 4 SDCF architectures. The empirical convergence

plots were also displayed for a few stocks, namely INDRAMEDCO.BO and

NATIONALUM.BO in Figure 3.5 for both shallow and deeper versions. It can

be seen that the training loss decreased to the point of stability for each example

considered.
Table 3.12: Comparative Summary Results for Stock Trading for window sizes 5,10,20

Method Window Size 5 Window Size 10 Window Size 20
F1 MAE AR F1 MAE AR F1 MAE AR

SDCF 1L 0.6141 22.4947 0.6169 22.5613 0.6194 22.4453
SDCF 2L 0.6148 24.3820 0.6229 20.7227 0.6242 25.0200
SDCF 3L 0.6207 20.9193 0.6250 20.5067 0.6262 25.7667
SDCF 4L 0.6157 21.5427 0.5345 22.8287 0.6254 26.1007

CNN 0.6095 22.0113 0.6182 21.1140 0.6217 22.9560
FCN 0.6131 23.3107 0.6090 23.7720 0.6120 24.2233

CNN-TA* - - 0.6148 22.1380 0.6246 20.3820
MFNN 0.4105 23.4820 0.4162 22.3040 0.4869 23.2620
*CNN-TA cannot be run for window size 5 due to its inherent structure
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(a) CTL 1 layer (b) CTL 2 layers

(c) CTL 3 layers (d) CTL 4 layers

Figure 3.5: Evolution of the loss during training for a few stock examples of the proposed model with (a) CTL 1
layer, (b) CTL 2 layers, (c) CTL 3 layers and (d) CTL 4 layers.
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3.2 DeConDFFuse : Predicting Drug-Drug Interaction using joint Deep

Convolutional Transform Learning and Decision Forest fusion frame-

work

Let’s move on to the next supervised framework - DeConDFFuse 2, which is

again based on CTL. Briefly, the framework jointly trains CTL based network

pipelines, fuses them with TL and passes lastly via DF. The technique has been

applied to Drug-Drug Interaction prediction. Drug-Drug interactions (DDIs)

are the adverse changes or effects, or reactions of one drug due to the recent

concurrent use of another drug(s). For example, the drug Ceftriaxone should

be avoided in children less than 28 days old if they are receiving or expected to

receive IV calcium-containing products. Indeed, it might lead to neonatal deaths

resulting from crystalline deposits in the lungs and kidneys, as reported in [114].

Such reaction from DDIs is known as adverse drug reactions (ADRs). ADRs

are responsible for the threat to a person’s life and inadvertently increase overall

healthcare costs.

According to the studies [115, 116], ADRs contribute to more than 20% of

clinical trial failures and are considered the highest load in the modern drug

discovery process. Serious ADRs can cause severe disability and even death in

patients. Also, from study [116], it is observed that approximately 3.6% of all

hospital admissions are caused by ADRs in Europe. Up to 10% of patients in

European hospitals experience an ADR among those patients. From a financial
2P. Gupta, A. Majumdar, E. Chouzenoux and G. Chierchia, “DeConDFFuse : Predicting Drug-Drug Interaction using joint

Deep Convolutional Transform Learning and Decision Forest fusion framework". Expert Systems with Applications, Volume
227, 2023, 120238, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.120238
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perspective, the annual financial cost of drug-related morbidity in the United

States (US) was estimated at $528.4 billion in 2016, equivalent to 16% of total

US healthcare expenditures that year [117]. It, thus, becomes pertinent to identify,

in an exhaustive manner, the DDIs that could cause ADRs. This might not avoid

all unanticipated drug interactions, but it can help lower the drug development

costs and optimize the drug design process [118].

3.2.1 Literature Review - DDI

DDIs identification is considered a non-trivial problem from the research perspec-

tive to be solved in the pharmacology discipline. Many different computational

strategies have been investigated in the literature, which are discussed below. Sev-

eral families of methods can be identified, relying either on statistical machine

learning models, graph models, deep learning models and matrix factorization

models.

3.2.1.1 Statistical Machine Learning based frameworks

The work [119] proposes similarity-based models that compute similarity scores

between drug features like chemical structures, side-effects, targets, pathways,

etc. and thereafter performs a probabilistic inference of the DDIs. Researchers

have explored Bayesian learning models [120] under statistical learning paradigms.

Another work [121] uses a sparse feature learning ensemble method with lin-

ear regularization utilizing four drug features - chemical substructures, targets,
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enzymes and pathways. In [122], ML algorithms like Naive Bayes, Decision

Tree, Random Forest, Logistic Regression, and XGBoost were used with cross-

validation with input as SMILE values and interaction features based on CYP450

group.

As also discussed in the previous chapter, all the aforementioned studies

utilize statistical machine learning whose performance might depend highly

on the quality of features used; thus, it becomes pertinent to explore multiple

features than restrict them to some set. Furthermore, overfitting stays a significant

issue with these techniques due to their restrictive non-linear mapping and fitting

capability.

3.2.1.2 Graph-based frameworks

Graph-based embedding techniques are also gaining momentum in DDIs pre-

diction. With the advent of the availability of biomedical data, researchers are

moving toward KGs to populate and complete the available biomedical informa-

tion. It is done with the help of the large structured databases and texts available

publicly [123]. Some works have used the combination of DDI matrix and KG

followed by applying ML algorithms [123].

3.2.1.3 Deep Learning based frameworks

Deep Learning is another effective modeling technique that is extensively used

in solving most real-world problems these days. It has emerged to be helpful in
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the said DDI prediction as well. In [124], the proposed framework integrates the

multi-relational and relation-aware network structure representations. Finally,

the integrated representations via concatenation are passed through the neural

network to get the final DDI predictions. The study [125] proposes attention-

based RNNs - LSTM for DDI prediction. In [126], the work utilizes deep Neural

Networks based on attention technique for predicting DDIs with features from

multiple networks learned using graph embedding techniques.

Further studies are combining KGs and DL to predict DDIs. In the study

[127], the DDI matrix and KG form the input to the DL network with CNN and

LSTM. KG is input to the network through learned embeddings like ComplEx,

TransE, RDF2Vec, etc.

3.2.1.4 Matrix Factorization and multi-modal techniques

Let us also mention recent studies that present matrix factorization as the solution

to predict DDIs [128, 129]. Here, the input is the DDI matrix and the similarity

scores between the drugs. The pair for which the DDI is to be predicted is

treated as a missing value; hence, it is imputed using the inputted similarity

scores. Then some works use the Triple Matrix Factorization also [130, 131].

Some researchers have even proposed multi-modal techniques to predict DDIs.

The study that used this technique learned the unified drug representations from

multiple drug feature networks simultaneously using multi-modal deep auto-

encoders. Then, they applied four operators on the learned drug embeddings to

represent drug-drug pairs, and finally, they used an RF classifier to train models
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for predicting DDIs [132].

Several aforementioned studies are based on different categories like similarity-

based, network-based, graph-based, etc., but none guarantees the distinctive

Learning of features.

3.2.2 Proposed Formulation

In this section, the proposed work is discussed. A fusion framework is presented

that combined the benefits of the recently established multi-channel, unsuper-

vised, fusion-based representation learning framework - DeConFuse [69] and

jointly optimized a decision forest with the binary decision that gives the final

DDI Predictions. Such a solution has been successfully used before in Deep

Neural Decision Forest (DNDF) framework [1]. Also, it is already known that

DeConFuse architecture is unsupervised. The aim was to propose a supervised

version of this architecture. The recently established supervised version of this

framework, namely SuperDeConfuse [57] is just explained in previous few sec-

tions. However, the supervision in SuperDeConFuse was incorporated by using

cross entropy loss in the optimization objective and softmax at the end of its

architecture. Here, the goal was to guide the supervision through a random

decision forest. The proposed solution did not utilize features/representations

from CNN but instead from the DeConFuse network based on deep CTL through

linear transform learning. The latter’s advantage was that it promoted distinct

filters/transforms, which was not guaranteed with CNNs. Such a benefit helped

in learning distinct and interpretable representations. These representations were
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further guided by the predictions from the decision forest, whose parameters

are jointly optimized. This joint optimization was helpful as the representa-

tions learned are guided not only by deep CTL and fusion objectives but also

by decision forests. Thus, the representations that would have been fed to the

Decision Forest (DF) just like a normal input to it were learned better by its

feedback during backpropagation of error to the previous layers’ neurons in the

joint end-to-end solution that was not available with the piecemeal approach.

Further, thus, this double guided (deep CTL based fusion + DF) supervised

learned representations helped correctly identify many known-to-interact (1)

DDIs, as corroborated by the experimental results discussed in section 3.2.4 later.

The details of the DeConFuse network can be referred from Chapter 2. Let’s

briefly discuss the latter framework - DNDF and, finally, mention the details of

the combined fusion framework.

3.2.2.1 DNDF Framework

The DNDF framework from [1] is introduced in this section, which is the last

brick of the DDI pipeline. It is different from conventional deep neural networks

as it outputs the final predictions from the decision forest, and their split (decision

nodes) and leaf (prediction) nodes’ parameters are jointly and globally optimized.

The technique is stochastic and differentiable, thus giving a backpropagation

compatible version of decision trees that guides the representation learning in

lower layers of deep CNNs. This reduced the uncertainty on routing decisions of

a sample taken at the split nodes, such that the globally defined loss function is
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minimized. For the leaf nodes, the optimal predictions are achieved by reducing

the convex objective function, which does not require step size selection. Further,

the objective function is explained briefly.

Decision Trees with Stochastic Routing

Consider a classification problem with input space χ and finite output space

Y . A decision tree comprises decision (or split) and prediction (or leaf) nodes.

Decision nodes, let’s say, indexed by N are internal nodes of the tree, and

prediction nodes are indexed by L, i.e., terminal/leaf nodes of the tree. Each

prediction node ℓ ∈ L is associated with a probability distribution πℓ = (πℓy)y∈Y .

Each decision node n ∈ N is assigned a decision function dn(·; θ) : χ→ [ 0, 1]

parameterized by θ, which routes the samples along the tree branches. When a

sample x ∈ χ reaches a decision node n, it will be directed to the left or right sub-

tree based on the output of the function dn(x; θ). Here, it is a probabilistic routing

where the routing direction is the output of a Bernoulli random variable with

mean dn(x; θ). As the sample ends in a leaf node ℓ, the related tree prediction

is given by the class-label distribution πℓ = (πℓy)y∈Y . In the case of stochastic

routings, the leaf predictions will be averaged by the probability of reaching the

leaf. Thus, the final prediction for a sample x from tree D with decision nodes

parameterized by θ is given as:

(∀y ∈ Y ) PD[ y | x, θ, π] =
∑
ℓ∈L

πℓy µℓ(x | θ) (3.6)
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where π = (πℓ)ℓ∈L. Here above, µℓ(x | θ) is regarded as the routing function

providing the probability that sample x will reach leaf ℓ. Note that Σℓµℓ(x |

θ) = 1 for any x ∈ χ.

For an explicit form for the routing function, the following binary relations

that depend on the tree’s structure are given as: ℓ↙ n, which is true if ℓ belongs

to the left sub-tree of node n, and n↘ ℓ, which is true if ℓ belongs to the right

sub-tree of node n. Hence, these relations can be exploited to express µℓ as:

µℓ(x | θ) =
∏
n∈N

dn(x; θ)
1ℓ↙n d̄n(x; θ) (3.7)

where d̄n(x; θ) = 1− dn(x; θ), and 1P is an indicator function conditioned on

the argument P . Although the product in (3.7) runs over all nodes; however, only

decision nodes along the path from the root node to the leaf ℓ contribute to µℓ,

because for all other nodes 1ℓ↙n and 1n↘ℓ will be both 0 (with the assumption

00 = 1). See Figure 3.6.

Figure 3.6: Each node n ∈ N of the tree performs routing decisions via function dn(·). The black path shows an
exemplary routing of a sample x along a tree to reach leaf ℓ4, which has probability µℓ4 = d1(x)d̄2(x)d̄5(x). Image
taken from [1].

Decision functions deliver a stochastic routing with decision functions defined
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as follows:

dn(x; θ) = σ(fn(x; θ)), (3.8)

where σ(x) = (1 + e−x)−1 is the sigmoid function, and fn(·; θ) : χ → R is a

real-valued function depending on the sample and the parameterization θ.

A forest is an ensemble of decision trees F = {D1, . . . , Dk}, which delivers

a prediction for a sample x by averaging the output of each tree, i.e.

(∀y ∈ Y ) PF [y | x, θ, π] = 1

k

k∑
h=1

PDh
[y | x, θ, π]. (3.9)

Note that the tree parameters are omitted for notational convenience.

Learning Trees by Back-Propagation

Learning a decision tree, for which the model is explained in the previous

sections, requires estimating the decision node parameterizations θ and the leaf

predictions π. The parameters θ are estimated using the Minimum Empirical

Risk principle with respect to a given data set T ⊂ χ × Y under the log-loss

(also known as the cross-entropy loss), i.e., minimizers of the following risk term

are searched:

Ftree(θ; π; T ) =
1

|T |
∑

(x,y)∈T

− log(PD[y | x, θ, π]) (3.10)

The forest is learned by considering the ensemble of trees F , where all trees

can possibly share the parameters in θ. Still, each tree can have a different struc-
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ture with a different set of decision functions and independent leaf predictions

π. The illustration of the forest of decision trees taking the parameters θ and

computing routing decisions and prediction nodes probabilities can be referred

to from Figure 3.7. Thus, for the forest, the empirical risk is minimized as:

Fforest(θ; π; T ) =
1

|T |
∑

(x,y)∈T

− log(PF [y | x, θ, π]). (3.11)

Figure 3.7: illustration of how to implement a deep neural decision forest (DNDF). Top: Deep CNN with a variable
number of layers, subsumed via parameters θ. FC block: Fully Connected layer used to provide functions fn(·; θ),
described in Equ. 3.8. Each output of fn is brought in correspondence with a split node in a tree, eventually
producing the routing (split) decisions dn(x) = σ(fn(x)). The order of the assignments of output units to decision
nodes can be arbitrary (the one shown allows a simple visualization). The circles at the bottom correspond to leaf
nodes, holding probability distributions πℓ. Image taken from [1].

A two-step optimization strategy minimizes the above function, with alternate

updates of θ and π explained in further sections.

Learning decision nodes

Each function fn is parameterized by theta on which all decision functions

depend as shown in equation 3.8. To minimize the risk term with respect to
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theta for a given π by employing Stochastic Gradient Descent (SGD) approach.

The update is given as :

θ(t+1) = θ(t) − η
∂R

∂θ
(θ(t), π;B)

= θ(t) − η

|B|
∑

(x,y)∈B

∂L

∂θ
(θ(t), π; , x, y)

(3.12)

where η > 0 is a learning rate and B ⊆ T is a random subset or mini-batch. A

momentum term was also used to smooth out the gradients’ variations not shown

explicitly. The gradient of the loss L with respect to θ can be decomposed by the

chain rule as follows :

∂L

∂θ
(θ, π; , x, y) =

∑
n∈N

∂L(θ, π; , x, y)

∂fn(x; θ)

∂fn(x; θ)

∂θ
(3.13)

The gradient term that depended on decision forest was given by

∂L

∂fn(x; θ
(θ, π; , x, y) = dn(x; θ)Anr

− d̄n(x; θ)Anl
, (3.14)

Here nl and nr represent left and right children of node n respectively, and Am

for a node m ∈ N is defined as :

Am =

∑
l∈Lm

πlyµl(x|θ)
PT [y|x, θ, π]

(3.15)

with Lm ∈ L denoted the set of leaves held by the sub-tree rooted in node m.
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Learning prediction nodes

After the understanding of learning θ from previous section, let’s learn about

prediction nodes. The risk term in 3.10 with respect to π when θ is fixed was

learnt which is a convex optimization problem with a global solution. Here, all

the leaf nodes were estimated jointly. The iterations for the updates read as :

π
(t+1)
ly

=
1

Z
(t)
l

∑
(x,y′)∈T

1y=y′π
(t)
ly
(x|θ)

PT [y|x, θ, π(t)]
(3.16)

for all l ∈ L and y ∈ Y , where Z(t)
l was a normalizing factor so that∑

y π
(t+1)
y = 1. Initial π(0) is random, typically π0ly = |Y |−1. Here, the update

of π was interleaved with a whole epoch of stochastic updates of θ.

3.2.2.2 Combined Proposed Framework DeConDFFuse - DeConFuse and Decision Forest

The proposed framework combined the frameworks DeConFuse explained in

the previous chapter 2 and DNDF in section 3.2.2.1, respectively. Specifically,

instead of utilizing the features from a CNN network, it was proposed to inherit

the representations learned from the DeConFuse network to peruse them in the

decision forest, i.e., the decision forest was jointly trained and optimized within

the DeConFuse network. The DeConFuse network learned the channel-wise

representations corresponding to each drug in a drug pair, that is X(c) with

c ∈ {1, 2}, and finally learned common representation Z from X(c) where the

fusion happened. Here, there was no positivity constraint on Z and only on
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channel-wise representations X(c).

The representation Z was passed to the DF, where it applied the features

mask, i.e., randomly selected the features from the representation that would

participate in the decision tree’s routing process which fed those selected features

to the linear fully connected layer parameterized by θ, i.e., given by the function

fn(x; θn) = θ⊤n x. The number of features involved was provided by the feature

ratio. After that, the sigmoid activation was applied as given in Eq. 3.8. Then the

routing function was computed, and the prediction probabilities were calculated.

Thus, the prediction probabilities having a probability for each class for each tree

were likewise obtained. Finally, the probabilities from all the trees of the Forest

F were averaged to get the outcome probability for each of the classes 0 and 1 in

this case. The negative log-likelihood loss was computed and back-propagated,

which guided the representation learning of the DeConFuse framework and

Learning of the parameters θ. The objective function for this framework that

combined the idea of DeConFuse and DF can be deduced from 2.10 and 3.11:

minimize
T,X,T̃ ,Z,θ,π

Ffusion(T̃ , Z,X) +
C∑
c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c) |S(c)) + Fforest(θ; π; TZ).︸ ︷︷ ︸

J(T,X,T̃ ,Z,θ,π)

(3.17)

Hereabove, the dataset TZ was built with the learned features Z and the known

labels. Note that there was no positivity constraint anymore on the learned

representations Z.
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3.2.3 Experimental Setup

The experiments were conducted on the drug-drug interaction dataset comprising

the DDI matrix and bioactivity descriptors/feature vectors for each drug as

explained in section 1.3.3. The DDI matrix dataset was divided into training and

testing datasets. All the drugs are kept in the training data so that there are 95

samples per drug. Further, out of 95 samples, there are 60% of 1 interactions for

each drug (not exceeding half of the 95, i.e., min (60% of 1 interactions, 95//2)),

and the remaining are the samples from 0 interactions. The remaining samples of

0 and 1 interactions per drug are kept in testing data. All the training and test data

samples from each interaction category per drug are selected randomly. Also,

only one pair of interactions are kept from either the upper or lower triangle of

the DDI matrix. Thus, each training and testing sample is the drug pair and its

corresponding interaction value, which is called as a label. Approximately there

are 1Lac training samples and 4Lac testing samples.

A drug pair was passed as a input to a sample during training. For each drug in

a pair, 1D feature vectors, i.e., bioactivity descriptors, were fed to the individual

channel/network based on deep CTL, where L = 2 represents the number of CTL

layers. Thus, the input S gathered the bioactivity descriptors/1D feature vectors

of size 384 for each channel corresponding to each drug. Since there were 1D

feature vectors for each drug in the drug pair, thus, 1D convolutions were used in

each deep CTL network. The two networks’ learned features/representationsX(c)

were flattened and concatenated. Then these features were passed to the linear
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Transform learning layer that acted as a fully connected layer where transform T̃

and common representation Z were learned. Further, the learned representation

Z were selectively sent by applying the feature mask to the decision forest. The

final predictions were outputted by averaging the predictions from each tree in

the decision forest.

The complete architecture is shown in Figure 3.8 and all the architectural and

hyperparameter details are given in Table 3.13. In the set of hyperparameters,

the atom ratio signified the number of features to be kept in the representation Z;

and the feature ratio meant the randomly selected number of features from the

representation Z that would participate in the routing decision function of each

tree parameterized by θ.
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Figure 3.8: DDI prediction using combined DeConFuse and decision forest architecture- DeConDFFuse. Here
C = 2, the number of networks/channels via each of which a drug in the drug pair is passed along with its bioactivity
descriptors/ features vector, respectively.

The results were compared with three state-of-the-arts/benchmark techniques,

namely:

• KGNN: This technique was used to build the Knowledge Graph (KG)

and passes the DDI matrix and KG to the Graph Neural Network (GNN).

It focused on neighborhood sampling and aggregates entities and their
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Table 3.13: DDI Prediction DeConDFFuse Architec-
ture Details

Parameter Value
Layer Wise Hyperparameters

Layer1 - Convolution (CTL) (1,16,3,1,1)1

Maxpool (2,2)2

Layer2 - Convolution (CTL) (1,32,3,1,1)1

Maxpool (2,2)2

atom ratio 0.75
Decision Forest Hyperparameters

#Trees 90
tree depth 10

feature ratio 0.5
Other Model Hyperparameters

Epochs 75
Learning Rate 0.01

µ 1e-05
λ 0.0001

batch size 4096
weight decay 1e-05
Optimizer Hyperparameters

Optimizer Used Adam
Ams grad True

Learning rate 0.01
betas (0.9, 0.999)
eps 1e-08

1 (in_planes, out_planes, kernel_size, stride,
padding)

2 (kernel_size, stride)

neighborhood representation into a single vector in 3 ways - sum, concat,

and neighbor [133].

• Conv-LSTM: This technique used the DDI matrix and KG as the input to

the DL network with a CNN and LSTM. KG was input to the network in the

form of learned embeddings like ComplEx, TransE, RDF2Vec, etc. [127].

It is compared against the embedding that gave the best results in this work,

i.e., ComplEx embedding.

• Graph Embedding DDI: This technique used KG and DDI matrix as input
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but experiments with many different types of embedding techniques. Then

each of these embeddings, one by one, was passed to machine learning tech-

niques like Random Decision Forest (RF), Gaussian Naive Bayes (GNB),

and Logistic Regression (LR) [123]. Here also, the embedding type Skip

Gram was used, which gave the best results in their study.

For all three benchmarks - KGNN, KG Conv-LSTM, and Graph Embedding

DDI- the same DrugBank IDs were used as present in the considered training

and testing samples. Since these methods relied on KGs, the bioactivity descrip-

tors/features were not used but recreated KG and embeddings for the dataset

used to run these benchmarks.

3.2.4 Results and Analysis

The prediction results were evaluated using the classification metrics - AUPRC,

AUC_ROC, F1 Score, Precision, Recall, and Accuracy. Except AUPRC, all other

metrics have been explained previously in the chapter 2. Thus, here AUPRC is

only explained as:

AUPRC : it is the area under the graph constructed by calculating and plotting

the precision against the recall for a single classifier at a variety of thresholds.

The higher the AUPRC score, the better a classifier performs for the given task. It

summarizes a precision-recall curve as the weighted mean of precision achieved

at each threshold, with the increase in recall from the previous threshold used as

the weight. Thus, it is a kind of weighted-average precision across all thresholds.
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All the metrics were computed except Accuracy as weighted metrics since

there was a huge class imbalance between 0 and 1 labels. The following Table

3.14 contains the values of the said evaluation metrics:
Table 3.14: DDI Prediction Results

Method Sub Accuracy F1 Precision Recall AUC AUPRC

Method ROC

KGNN Sum 85.8168 89.5672 95.0392 85.8168 82.6508 18.6945

Concat 86.9723 90.2730 95.0375 86.9723 83.5235 19.8427

Neighbor 81.7908 86.9563 94.1900 81.7908 74.379 10.7655

Conv-LSTM - 86.4785 89.3325 92.5174 86.4785 49.597 3.8164

ComplEx

Graph DDI GNB 95.8015 94.0807 92.5087 95.8015 50.1899 3.8546

Skip Gram LR 96.1235 94.2236 92.3973 96.1235 50.0603 3.8583

RF 96.1235 94.2236 92.3973 96.1235 50.0934 3.8439

DeConDFFuse - 90.7422 92.7777 95.9478 90.7422 91.4453 34.0847

(Ours)

Also, confusion matrices for each method were computed. They are displayed

in Figure 3.9.

From Table 3.14, it is seen that benchmark Graph DDI gave the best val-

ues in terms of Accuracy, F1 Score and Recall, and the proposed method for

Precision, AUC ROC, and AUPRC. However, no single Benchmark worked

well in terms of all the classification metrics used for evaluation. In fact, the

next best performance in terms of Accuracy and F1 was given by the proposed

method. Despite the highest F1, Accuracy, and recall values, Graph DDI failed

to achieve the highest values for AUC -ROC and AUPRC, which are considered
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(a) KGNN - Sum (b) KGNN - Concat (c) KGNN - Aggregate

(d) Conv-LSTM (e) Graph DDI-GNB (f) Graph DDI-LR

(g) Graph DDI-RF (h) Proposed method - DeConDF-
Fuse

Figure 3.9: Confusion matrices for different benchmarks and the proposed method- DeConDFFuse

more relevant and important metrics for the performance evaluation in the case

of binary classification. The reason for the same can be observed with the help

of the confusion matrices in Figure 3.9.

Here, it can be seen that with the proposed method, the highest number of

known-to-interact interactions (1) have been predicted correctly than any other

benchmarks. Also, except for Graph DDI, the False positives, i.e., classifying
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0 as 1, were lesser with the proposed method than the other two benchmarks.

Here, the former task of classifying the known-to-interact drug interactions is

more important to prevent ADRs, as explained before and which Graph DDI

did not achieve at all or was nearly negligible. Thus, with the proposed method,

the former task of identifying known-to-interact interactions was accomplished

better than any other benchmark. For the false positives, too, it gave good

performance compared to the other benchmarks except for graph DDI. The latter

is the reason why Graph DDI has three metric values higher than the proposed

method. With the proposed approach, though the number of False positives was

higher than Graph DDI, however, it was not necessary that these False positives

were completely incorrect. The reason is that the 0 interactions did not signify

no interaction between those two drugs. It meant either known-not-to-interact or

unknown.

In summary, Graph DDI classified almost all 0 (known-not-to-interact or

unknown) interactions correctly; still, it did not correctly classify 1 (known-to-

interact) interactions that were against the study’s objective, i.e., to identify the

known-to-interact DDIs to avoid ADRs. With the proposed method, both types

of interactions were classified reasonably well. It was also the stable method

corroborated by the classification metrics, as it gave good performance in all the

metrics. Hence, the proposed framework performed superior to the benchmarks.

Additionally, the comparison was done among representations/features learned

from benchmarks and the proposed framework - DeConDFFuse (DCDF). The

proposed method performed better due to the kind of representations/features
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learned from the CTL based network. Each of the benchmarks was carefully ex-

amined. In KGNN, Knowledge Graph features, different aggregation techniques

and Graph Neural Network are utilized. The latter had a lot of parameters and

computation cost since the neural network connects neurons in each layer with

every neuron in the preceding and consecutive layers. Also, it had no distinc-

tiveness guarantee for the kind of weights learned. The poorest performance

from Graph DDI was due to a lack of learning ability of the traditional machine

learning algorithms utilized in this framework after learning the embeddings

from KG. Lastly, with the Conv-LSTM framework, all the disadvantages of CNN

discussed in section 3.2.1.3 are applicable. Thus, the representations learned

with it might have redundancy leading to inferior performance. Therefore, from

overall performance, it could be concluded that the representations learned from

the proposed method were better than the benchmarks.

The optimizer used for updating all the parameters of the framework except

probability distribution π of the decision forest is Adam, which uses the auto-

matic differentiation in PyTorch for gradient computation. The hyperparameters

like learning rate, betas, and eps, etc. associated with it are mentioned in Table

3.13. Loss plots were also plotted with the proposed technique, which can be

referred to from Figure 3.10. It can be seen that with Adam optimizer, the

proposed solution converged to the point of stability.
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Figure 3.10: Loss plot with the proposed method - DeConDFFuse.

3.2.4.1 Ablation study

The experiments were further carried out to understand the architecture in detail.

It involved the performance comparison between the proposed joint model

- DeConDFFuse and the piecemeal version. The latter trained to learn the

representations Z in an unsupervised manner versus a supervised way. Next,

these learned representations Z are fed to the separate module Random Decision

Forest where Z are treated as regular input to the system along with the labels.

The hyperparameters for DCTL networks are the same as the proposed solution.

However, for the RDF part, the hyperparameters were best tuned and were set

to values: #trees = 5, tree_depth = 70 and randomstate = 11. The two

systems’ performance was evaluated using the same metrics and are reported in

Table 3.15 below.
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Table 3.15: Comparative Results with DeConDFFuse and Piecemeal approaches

Method Sub Accuracy F1 Precision Recall AUC AUPRC

Method ROC

DeConDFFuse - 90.7422 92.7777 95.9478 90.7422 91.4453 34.0847

(Ours)

piecemeal - 89.2075 91.1640 93.3055 89.3005 62.9022 6.9772

From the above table, it can be clearly seen that the performance of the

proposed solution is better than the piecemeal version. Further, it can be better

visualized with the help of the confusion matrices given below in Fig. 3.11.

(a) Proposed method - DeConDF-
Fuse

(b) Piecemeal

Figure 3.11: Confusion matrices for the proposed method - DeConDFFuse and Piecemeal approach

On comparing the two versions, i.e., the proposed framework with the piece-

meal approach, it can be clearly seen that the piecemeal version is not as good

as the proposed method in predicting known-to-interact interactions labeled by

1. Although the performance concerning predicting interactions labeled by 0

is slightly better than the piecemeal version; however, the critical point is to

predict the known-to-interact interactions (1) that are responsible for ADRs.

The latter is poorly predicted with the piecemeal approach compared to the

proposed approach. Computation metric wise too, the results are better with the
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proposed model. It can be concluded that the joint optimization and training

of Decision Forest (DF) with the DCTL-based fusion networks in the proposed

solution results in better representations due to added guidance from the DF that

is missing in the piecemeal version. This added guidance is the backpropagation

of the error from DF classifier to the previous neurons which is missing in the

piecemeal approach where the input, i.e., representations Z are treated as normal

input without feedback to the system.

3.3 Discussion

So, two supervised frameworks - SuperDeConFuse (SDCF) and DeConDFFuse

(DCDF) are discussed- both based on CTL and extended DeConFuse in this chap-

ter. First, the SuperDeConFuse network was discussed, a deep fusion end-to-end

framework for processing stock trading data, leading to very good performance.

In particular, the classification results are better with the proposed SDCF model

than with the 1-D CNN approach. Also, the features Xc visualized for each chan-

nel and each method indicated better feature learning with SDCF. The results

have shown that the presented solution (SDCF) is superior to CNN and other

state-of-the- art techniques in this problem. Additionally, the framework handled

the dead neuron problem via positivity constraint.

Currently, the shortcoming of the model is that it takes slightly more time

than CNN for its training. Thus, techniques will be investigated that reduce the

time complexity of the proposed framework to make it more efficient from this
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viewpoint in the future.

The purpose of this framework was to show by means of several experiments

that it is an effective tool for predicting stocks. However, stock price prediction

might be seen as a too rudimentary problem in financial analytics. As a next

step, it will be to investigate the use of the proposed algorithm to study if it can

emulate (human) expert-like suggestions. For example, fund managers suggest

‘buy stock XYZ at a price ABC’ or ‘sell stock ZYX at a price CBA.’ It will

be interesting to see if this algorithm can make such predictions given a time

horizon in the future. If possible, in the future, the present algorithm will be

extended to emulate more abstract financial operations such as ‘hedging (longs

and shorts)’.

Secondly, DeConDFFuse was introduced, which is based on the proposed De-

ConFuse framework and combined it with Decision Forest previously established

in the DNDF framework. This framework is a deep supervised fusion end-to-end

framework for processing 1D multi-channel drug data. Unlike other deep learn-

ing models that separately use conventional machine learning algorithms like

RDF, the proposed framework is jointly optimized and is not piecemeal. It has

been applied for the binary classification task of DDI prediction leading to good

performance. The advantages of the proposed framework are the benefits of CTL

based networks. That is, it helped learn non-redundant common representation

for the problem where there are two drugs in a drug pair that is also guided

by the jointly optimized Decision Forest loss. Reasonably well performance is

achieved compared to the state-of-the-art(s).

108



In the future, there is a scope to improve performance by reducing the number

of false positives. Also, the current solution to the DDI problem considers the

event when two drugs are administered together. However, a combination of more

than two drugs is routinely used. Thus, another extension will be the capability

of the proposed framework to handle more than two drugs combinations in the

future. This can be done with the proposed architecture by increasing the number

of channels per increase in the number of drugs. Lastly, although the proposed

architecture has been applied to drug-drug interaction, it is flexible enough to be

applied to other biomedical interaction problems. In the future, other areas can

be explored such as drug-target prediction [134–136], protein-protein interaction

[137–139] and drug repositioning [140].

In summary, both the frameworks - SuperDeConFuse and DeConDFFuse

presented are the supervised versions of CTL jointly trained and optimized by

cross-entropy loss and decision forest, respectively. Both performed well in

their respective problems by leveraging CTL’s benefits. However, each of the

proposed frameworks offers scope for improvement as discussed above for each

separately.
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Chapter 4

Multiview Clustering Framework based on

CTL - DeConFCluster

With the rapid increase in data collection sources and volume, the exploration

of multiview data has become popular. Multiview data is referred to as the

data collected from the same data source but with different angles or different

perspectives. For example, the same news is advertised or published in different

media with different content; the same statement is labeled with different tags

by different individuals, and the same image is captured using different features.

Multiview data is richer and more informative but more complex than single-view

data. In multiview data, the data belonging to each view has information related

to different contexts and also has some complementary information. Clustering

is a category of unsupervised learning approach in which the data instances are

grouped into several groups or clusters based on the various features of the data

instances. Thus, multiview data clustering requires exploring and integrating

multiple views of the data to perform the grouping of data instances in possible
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clusters.

Multiview data knowledge extraction is vital in big data mining and analytics

nowadays. In this regard, many recent works suggest CNN based clustering

objectives. These generally lie on the encoder-decoder framework. In such a

work, the clustering loss is included after the encoder network, which ensues

the problem of additional training of a decoder network and hence, incurs extra

learning of weights. In data-constrained scenarios, this can make the model

prone to overfitting. Also, some works learn representations independently and

apply clustering algorithms like K-Means in a piecemeal fashion which may lead

to representations being less effective for clustering task.

The success of CTL based unsupervised and supervised frameworks for

performing classification and regression tasks have been already witnessed in

last few chapters. In this chapter, an unsupervised multi-channel multiview

clustering framework based on Deep Convolutional Transform Learning (DCTL)

- DeConFCluster is introduced that bridges all the gaps mentioned earlier, namely

1. it avoids additional decoder training,

2. it learns distinct transforms and

3. it learns representations from joint training of deep CTL multiview layers

and K-Means algorithm.

The proposed framework is evaluated on four standard multiview clustering

datasets. The results demonstrate that the proposed framework outperforms the
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state-of-the-art multiview deep clustering approaches. This chapter is further

organized into sections, with the first section 4.1 discussing the current related

works for MVC. Next, the proposed formulation is explained in section 4.2.

The experimental evaluations and results are discussed in sections 4.3 and 4.4

respectively, followed by a brief discussion in section 4.5.

4.1 Literature Review

Multiview clustering clusters subjects into subgroups using multiview data and

has gained significant attention rapidly as it caters to solving real-world problems

that fall under big data analytics. Recently many solutions have been proposed to

perform the same. These are broadly classified into two categories generative and

discriminative approaches. The generative approaches try to learn the underlying

data distribution. These use generative models with each model representing the

individual view and then find the clustering solution. In contrast, discriminative

approaches seek to optimize an objective function with pairwise similarities.

The average similarity in intra-clusters and inter-clusters is minimized and maxi-

mized respectively [141]. The former usually includes expectation maximization

and mixture models. The latter, being larger in number, can be further catego-

rized into sub-categories like multiview spectral clustering, multiview subspace

clustering, multiview non-negative matrix factorization clustering, multi-kernel

clustering, Canonical Correlation Analysis (CCA), etc. [141].

In generative approaches, the work in [142] assumes independent views and
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adopts multinomial distribution for the document clustering problem. Similarly,

based on different assumptions and criteria, two versions of the multiview EM al-

gorithm for finite mixture models are proposed in [143]. Using Convex Mixture

Models (CMMs) for single-view clustering, the multiview version proposed in

[144] could find the global optimum. It also avoided the initialization and local

optima problems of standard mixture models, as the latter requires multiple EM

algorithms executions. The major issue with EM based algorithms is their slow

convergence, and convergence to local optima. The second issue in EM based

algorithms is that in some scenarios, the E-step and M-step could be unman-

ageable analytically since it requires both forward and backward probabilities

versus the numerical optimization that requires only forward probability.

Next, let’s discuss the multiview spectral clustering method in discriminative

approaches. This method obtains a common clustering result and assumes that

the same or similar eigenvector matrix is shared among all views. There are

two characteristic methods. First is co-training spectral clustering [145–148]

when both labeled and unlabelled data are available. Second is co-regularized

spectral clustering [149, 150], which is a semi-supervised learning technique.

The objective function generally requires the difference between the predictor

functions of the two views to be minimized.

There are methodologies based on subspace clustering in the multiview data

[151–153]. It requires finding the underlying low dimensional common subspace

from each view which is, in general, obtained by making each of the view’s

coefficient matrix as similar as possible. The other works suggest Non-Negative
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Matrix Factorization (NMF) that seeks two non-negative matrix factors called

basis and indicator. In the case of MVC, some studies point to learning a

common indicator matrix across each view [154, 155] for NMF. Some works

propose using multiview K-Means clustering to deal with the extensive data.

These works use K-Means as it is computationally less expensive than eigen-

decomposition. In [156], authors proposed a multiview K-Means clustering

method that adopted a common indicator matrix across different views. Besides

Non-negative Matrix Factorization (NMF), the authors in [157] introduced a

categorical utility function to measure the similarity between the indicator matrix

from each view and the common indicator matrix and proposed a consensus

based MVC method.

Also, there are methods in which direct view combination via a kernel is used

as a common approach to perform MVC. Usually, it is done by designating a

kernel for each view and then combining these kernels in a convex combination

[158–160]. Another technique - CCA combines multiple views after projection

[161, 162]. All methods mentioned earlier have achieved satisfactory perfor-

mance for the clustering task. But, it may be challenging to handle the data

with high-dimensional features and nonlinear property using the above stated

methods since they majorly adopt shallow and linear embedding functions to

reveal the intrinsic structure of the multiview data.

Recently, graph based MVC has also gained momentum. The authors in

[59] proposed a solution wherein the graph matrices of multiple views are

combined into a unified graph matrix by generating the Similarity Induced Graph
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(SIG) matrices for all the available views. Then the rank constraint on the

graph Laplacian matrix is applied, and the number of connected components are

produced from the unified graph, which gives the final number of clusters.

Deep learning has emerged as a highly utilized technique to solve almost all

real-world problems and is used in the case of MVC. In [163], multiple autoen-

coders are utilized for multiview data to generate multiple latent representations

and apply heterogeneous graph learning to fuse the generated latent represen-

tations followed by the K-Means network for the final clusters. Further, in the

study [164], based on autoencoders, Deep Embedded Multiview Clustering with

collaborative training (DEMVC) is proposed. It utilizes complementary and

consensus information from multiple views and collaboratively learns the deep

latent feature representations and clustering assignments.

A Graph Neural Network (GNN) [165] is applied to deep representation-

based MVC to completely benefit from the features embedded in the attributed

multiview graph data. Further, the work in [166] used Graph Convolutional

Network (GCN) as an encoder with the most reliable view as input. In another

study, multiple GCN decoders capture the view-consistent low-dimensional

feature representation among different views [167]. Here, the issue is with the

additional weights training incurred from the decoder network, which could lead

to overfitting in data-constrained scenarios [168]. Also, another shortcoming

of existing solutions is due to CNN. Additionally, CNN ends up in a trivial

solution without an output. Employing Deconvolutional layers is the lone way to

prevent the trivial solution. However, even using the mentioned solution, there
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are chances of over-fitting. Further, CNNs do not guarantee the distinct learning

of filters that may lead to redundant representations/features which may reduce

the performance of the task at hand.

The work in [169] embedded K-Means clustering in the Transform Learning

framework and trained in a joint end-to-end fashion. Also, DCTL was utilized

to perform clustering by jointly training it with K-Means to perform single-

view clustering [168]. On the contrary, in this chapter, an MVC framework is

introduced that jointly trains and optimizes DeConFuse and K-Means clustering

modules in this work. It is named as DeConFCluster and it overcomes the

aforementioned shortcomings.

4.2 Proposed Formulation - DeConFCluster: Deep Convolutional Trans-

form Learning based Multiview Clustering Fusion Framework

In this section, the proposed work is discussed. The proposed framework is an

unsupervised multi-channel fusion framework called DeConFCluster to perform

MVC. It extends the previously established works - Deep CTL based K-Means

clustering framework [168] utilized for single-view clustering and DeConFuse

framework for MVC. The latter framework has already been discussed in Chapter

2. Next, there is a brief discussion of the other prior method mentioned and

finally, the proposed formulation is explained in subsequent sections.
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Figure 4.1: DCKM architecture. L represents number of DCTL layers, M c
l - filter size and F c

l - #filters of the
respective layer l and channel c.

4.2.1 Deep CTL Based K-Means Clustering Framework

This framework extended the Deep CTL (DCTL) approach by adding the K-

Means loss at the end. The DCTL approach from Section 2.2.2 explained in

Chapter 2 was extended by jointly training and optimizing it with K-Means to

perform single-view clustering [168]. The loss formulation after embedding with

the K-Means clustering loss [170], was:

minimize
T1,...,TL,X,H

Fconv(T1, . . . , TL, X |S) + β ∥X −XH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

. (4.1)

Here, X is the representation learned, S is the input, β > 0 is the regulariza-

tion weight associated with the K-Means clustering loss, and H is the matrix of

binary indicator variables such that an entry hij = 1 if xj belongs to cluster i

and 0 otherwise. The architecture is summarized in Fig. 4.1.
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4.2.2 Proposed Formulation

Here, the proposed unsupervised fusion framework - DeConFCluster1 is dis-

cussed. Previously, the framework DCKM [168] combined DCTL [67] with

K-Means for Single View Clustering (SVC). In contrast, a multiview clustering

task is targeted here. Hence, DeConFCluster was a multi-channel clustering

framework that extended DeConFuse Network [69] based on DCTL by embed-

ding the K-Means clustering loss as was done in DCKM [168]. Here, fusion was

happening that was not present in DCKM. It jointly trained and globally opti-

mized DeConFuse Network and K-Means module. There were as many channels

as the number of views in any of the considered datasets, i.e., C = V . Each

channel was processed based on the DCTL network. This amounted to learning

distinct transforms (Tc)1≤c≤C and thus, distinct and interpretable representation

(Xc)1≤c≤C , for each channel input (Sc)1≤c≤C . These channel wise representa-

tions were further fused using TL [90] to learn a common representation Z and

transform T̃ . This completed the first module of the architecture. The repre-

sentations are then fed as input to the second part of the framework K-Means

clustering module that gives the clustering results. Thus, the representations

learned are also guided by the K-Means loss. The learning problem reads:

minimize
T,X,T̃ ,Z,H

Ffusion(T̃ , Z,X) +
C∑
c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c) |S(c))+

β∥Z − ZH⊤(HH⊤)−1H∥2F

(4.2)

1P.Gupta, A. Goel, A. Majumdar, E. Chouzenoux and G. Chierchia, “DeConFCluster: Deep Convolutional Transform
Learning based Multiview Clustering Fusion Framework". 2023. Submitted in IEEE TNNLS
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The complete architecture of the DeConFCluster is summarized in the Fig. 4.2

Figure 4.2: Overview of the proposed DeConFCluster architecture. C represents the number of DeepCTL network-
s/channels, L is the number of DCTL layers, M c

ℓ is the filter size and F c
ℓ is the number of filters of the respective

layer ℓ and channel c.

All the variables were learned in an end-to-end fashion. Typically, SGD could

be used as an optimizer for all the variables except H . This latter variable was

updated directly via K-Means clustering [170] at each iteration using the current

Z estimate as an input.

4.3 Experimental Setup

In this section, the performance of the proposed approach is illustrated on various

multiview clustering datasets - 100leaves, ALOI, Mfeat and WebKB which have

been already discussed in the section 1.3.4. Next, let us explain the network

architecture. The network’s pipeline consisted of multiple channels wherein
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each channel was designated for one of the views of the multiview dataset. Then

the representations were learned from these channels’ networks that gave the

individual view’s contribution. Further, these representations were flattened and

concatenated to pass through a fully connected layer learned via TL. Here, the

common representation was learned across all channels’ representations that

provided the cross-channel information or shared information from each view.

Finally, clusters were obtained by inputting the representation into the K-Means

module. The pipeline is shown in Fig. 4.2. The Stochastic Gradient Descent

(SGD) algorithm was used as the optimizer and λ = 0.01, µ = 0.0001 and weight

decay as 0.001 for all datasets. There was also another hyperparameter - feature_-

ratio that indicated the percentage of features kept in the final representation Z.

All other hyperparameters’ values are grid-searched and the ones that gave best

results are set as the final values. These values can be referred from Table 4.1.
Table 4.1: DeConFCluster hyperparameters for MVC Datasets

Parameter 100leaves WebKB Mfeat ALOI
Batch size 1600 203 128 11025

Epochs 25 25 40 25
Learning Rate 5e-6 1e-4 1e-4 5e-6
Kernel Sizes1 (3,3,3) (3,3,3) (5,3,3) (3,3,3)

#Filters2 (4,8,16) (4,8,16) (2,4,8) (4,8,16)
feature_ratio 0.15 0.15 0.25 0.25

β3 1.0 0.5 0.8 0.5
1 Kernel sizes for DCTL layers 1,2,3
2 #Filters for DCTL layers 1,2,3
3 K-Means loss regularizer

The results were compared with four state-of-art works. These are briefly

described here that are as follow:

• MCGL: it was a graph based learning method. Starting graphs were learned
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using different views’ data points that were further optimized with a rank

constraint on the Laplacian matrix. Next, optimized graphs were integrated

into a global graph. The graph was learned with the same rank constraint

on its Laplacian matrix. Cluster indicators were obtained from the global

graph only without conducting any graph cut technique and the K-Means

clustering [171].

• GMC: in this approach, each view was weighted and the SIG matrices and

the unified graph matrix were jointly learned [59]. The latter was obtained

by the fusion of the graph matrices of each view.

• DEMVC: this method proposed a framework based on autoencoders. It

utilized complementary and consensus information from multiple views and

learned the deep latent feature representations and clustering assignments

in a collaborative manner [164].

• RRA-MVC: this technique proposed a simple baseline model (SiMVC)

that aligned the distributions of the views. Further, it added the contrastive

module and selective views alignment by prioritizing the views and, thus,

improved the baseline model’s performance calling it as CoMVC framework

[172]. Therefore, the experiments were conducted with the CoMVC part

only that gave the best results.
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4.4 Results and Analysis

It is generally presumed that that the quantity of clusters is already established

while conducting experiments. In such cases, various metrics, including accuracy,

Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI), are

commonly employed [173, 174]. Thus, the evaluation of the proposed model’s

performance was carried out using these three metrics.

Some of the metrics are described below:

• Normalized Mutual Information (NMI): This metric computes the normal-

ized measure of similarity between the labels of same data instances. The

range of NMI is [0, 1] where 0 signifies no correlation and 1 signifies the

perfect correlation. The formula is given by:

NMI =
I(l, c)

max(H(l), H(c))
(4.3)

where I(l,c) denotes the mutual information between the true label l and the

assigned cluster c and H denotes the entropy.

• Adjusted Rand Index (ARI): ARI measures the similarity between two

clusters by considering all pairs of data instances that are assigned to the

same or different clusters in the actual and predicted labels. The range of

ARI is [−1, 1]. The higher the ARI value, the better is the clustering.

ARI =
(RI − E)

(max(RI)− E)
(4.4)
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where RI = Rand Index and E is the Expected Rand Index Value for random

clusterings. These are:

RI =
(a+ b)(

n
2

) (4.5)

where a = the number of times a pair of elements belongs to the same cluster

across two clustering methods, b = the number of times a pair of elements

belong to different clusters across two clustering methods and
(
n
2

)
is the

number of unordered pairs in a set of n elements. Here, max(RI) = 1.

and

E = (
∑

(

(
ni
2

)
)×

∑
(

(
nj
2

)
))/(

(
N

2

)
) (4.6)

where ni is the number of samples in cluster i and nj is the number of

samples in cluster j.

The results of the proposed model and benchmarks on all four datasets are

reported in Table 4.2. It can be observed from Table 4.2 that for all datasets, the

proposed model has shown better performance than the state-of-the-arts except

for NMI values for Mfeat and ALOI datasets and ARI in the case of ALOI. It is

worth noting that the proposed technique performed well in the case of WebKB

and ALOI, both of which had fewer samples than the number of clusters to be

identified. In the case of Mfeat and ALOI, it reached good Accuracy and ARI

values for Mfeat. Thus, the proposed method performed well for challenging

datasets and slightly worse for easier ones. The overall performance of the

proposed approach was better than the state-of-the-arts.

Also, the convergence plot for all the datasets were plotted that can be referred
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Table 4.2: Clustering Results. All the metrics in (%)

Models 100leaves WebKB Mfeat ALOI
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

MCGL 81.06 91.30 51.50 54.19 8.60 4.01 85.30 90.55 83.13 46.25 66.57 4.41
GMC 82.38 92.92 49.74 76.35 41.64 42.80 88.20 90.50 85.02 57.05 73.50 43.05

DEMVC 6.69 24.53 0.60 49.75 10.05 8.43 46.45 37.53 24.59 13.52 41.30 8.45
RRA-MVC 73.25 92.56 71.58 40.89 13.43 9.22 81.20 83.19 74.36 55.22 80.79 49.34
Proposed 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84

to from Fig. 4.3. Using SGD as an optimizer, it could be clearly inferred that the

given solution converged to the point of stability. The SGD parameters, such as

mini-batch size and learning rate, are given in Table 4.1 for all the considered

datasets.

Figure 4.3: Loss Plots

4.4.1 Ablation studies

This section shows the results corresponding to the three ablation studies per-

formed for all the datasets. The first experiment conducted was with changing

the values of the regularizers λ and µ associated with the penalty terms log-det

and Frobenius norms in both CTL and TL equations 2.11 and 2.14 respectively.
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Figure 4.4: Ablation Studies Result Plots on λ, µ

The set of values taken as a combination for both the penalty regularizers are -

((10−2, 10−4), (10−2, 10−3), (10−3, 10−4), (10−3, 10−5),

(10−4, 10−5)). The results can be referred from Table 4.3. These were also

displayed graphically for all three metrics Accuracy, NMI and ARI in Fig. 4.4.

It can be clearly concluded from the results that the penalization terms play

an essential role in our formulation. Although, while changing the values of

regularizers for these penalizations, the change is robust for three of the datasets

used from the performance evaluation perspective. However, the depleted results

for Mfeat for lower values of these regularizers demonstrate that they help to

learn better representations and hence should be the part of the formulation.

Table 4.3: Ablation Studies Results on λ, µ

Value 100leaves (β = 1.0) WebKB (β = 0.5) Mfeat (β = 0.8) ALOI (β = 0.5)

(λ, µ) Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI
(10−2, 10−4) 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84
(10−2, 10−3) 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84
(10−3, 10−4) 91.13 96.59 88.01 80.79 54.98 52.02 94.70 89.49 88.66 58.95 79.75 46.84
(10−3, 10−5) 91.13 96.59 88.01 80.79 54.98 52.02 94.70 89.49 88.66 58.95 79.75 46.84
(10−4, 10−5) 91.13 96.59 88.01 80.79 54.98 52.02 91.80 86.24 83.74 58.95 79.75 46.84

Secondly, the experiments were carried out with the regularizer β associated

with K-Means clustering loss in the equation 4.2. The set of values for β lie in
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Figure 4.5: Ablation Studies Result Plots on K-Means Regularizer

range [0, 1], specifically, these are (0.0, 0.1, 0.3, 0.5, 0.8, 1.0). The results were

represented results both in text and graphically that can be referred from Table

4.4 and Fig. 4.5 respectively. It could be observed that for all the datasets,

in general, the K-Means regularizer β ≥ 0.5 gave better performance. This

signified that K-Means loss was an important term associated with the final

objective function. It helped in learning better representations as guided by it

and was thus responsible for better clustering performance.

Table 4.4: Ablation Studies Results on K-Means Regularizer

Value 100leaves WebKB Mfeat ALOI
β Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

0.0 89.56 96.17 86.50 77.83 44.47 52.57 91.10 85.37 82.15 55.27 78.34 41.16
0.1 89.69 96.62 87.26 77.83 44.47 52.57 94.65 89.39 88.51 54.15 78.41 41.49
0.3 87.75 96.05 84.96 77.83 44.47 52.57 94.45 89.18 88.08 53.72 77.87 38.65
0.5 88.69 95.91 85.30 80.79 54.98 52.02 91.35 85.57 82.79 58.95 79.75 46.84
0.8 86.56 95.76 84.24 80.79 52.05 52.81 95.00 89.22 89.89 54.20 78.61 40.80
1.0 91.13 96.59 88.01 80.79 51.32 53.24 81.60 85.62 78.46 55.31 79.40 42.89

The second experiment inference was also validated by the third experiment

conducted, where the results were computed using piecemeal version of the pro-

posed model. It means that first the learned representations from the DeConFuse

network were learned separately and subsequently passed these representations

via the K-Means clustering module to get the final clusters, i.e., here β = 0. The
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results could be referred from Table 4.5. Here, it was clearly inferred that the

joint optimization of the DeConFuse and K-Means clustering module is better

than the piecemeal approach.

Table 4.5: Ablation Studies Results on Piecemeal and Proposed Formulation

Methods 100leaves WebKB Mfeat ALOI
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

Piecemeal 89.56 96.17 86.50 77.83 44.47 52.57 91.10 85.37 82.15 55.27 78.34 41.16
Proposed 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84

4.5 Discussion

In this chapter, a novel unsupervised multi-channel fusion clustering framework

based on Deep Convolutional Transform Learning named DeConFCluster is

discussed. The proposed framework jointly trains the DCTL based DeConFuse

and K-Means clustering modules in an end-to-end fashion. The advantage of this

framework is that it does not have the additional overhead of learning the weights

of decoder or deconvolutional layers, which is the case in existing multiview

clustering approaches. Secondly, the framework avoided overfitting even in

data-constrained scenarios where the number of data instances is low and the

number of classes is high, for example, in the case of 100leaves and WebKB, the

proposed framework performed well compared to benchmarks.

Another advantage of this framework is that it promotes diversity among

filters and thus, in turn, helps to learn more interpretable filters that are further

guided by K-Means loss. Therefore, due to these advantages, the proposed

framework DeConFCluster, evaluated on the four standard multiview datasets,
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demonstrated higher clustering scores as compared to the current state-of-the-art

MVC frameworks. However, for a few metrics in the case of Mfeat and ALOI

datasets, the performance of the method needs to be improved which can be

worked upon in the future.
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Chapter 5

Conclusion

The proposed works in this thesis focused on modeling various prediction prob-

lems in the field of Information Fusion as multi-channel fusion problems. The

frameworks proposed are based on the recently established technique CTL and

hence are variants that deal in the analysis domain, covering both unsupervised

and supervised learning paradigms.

5.1 Summary of Contribution

In this section, the chapter-wise contributions are briefly summarized in the area

of Information Fusion, giving a bird’s eye view of the dissertation.

5.1.1 Unsupervised multi-channel CTL based fusion frameworks - ConFuse(shallow) and

DeConFuse(Deep)

In this part of the dissertation, an unsupervised multi-channel fusion framework is

modeled as both shallow and deep architectures based on CTL, namely - ConFuse
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and DeConFuse, respectively. These frameworks are applied to the problem of

Stock trading (classification) and forecasting (regression) and obtained good

performance successfully. Since the data is time-series, the framework treated

the data as univariate versus 2D matrix/image, as discussed in that chapter. It

also guaranteed distinct filters and produced more interpretable representations.

The most significant advantage of this framework was that it avoided the effort of

re-training the network which is required with most other techniques, especially

CNNs. In summary, the same representations were utilized for both regression

and classification tasks without requiring them to be learned separately through

different trainings.

5.1.2 Supervised multi-channel fusion frameworks - SuperDeConFuse and DeConDFFuse

This chapter presented the supervised multi-channel fusion frameworks based

on CTL. The first framework involved fusion that happened via TL over the

representations learned from individual CTL based channels. Further, there was

a linear fully connected layer followed by the cross-entropy loss. The framework

is called as - SuperDeConFuse (SDCF). It is applied to the Stock trading data.

The performance of the proposed technique showed that the proposed method

worked well versus the state-of-the-art. The non-negativity constraint on the

fused representation learned, i.e., Z helped to eliminate the problem of dead

neurons and did not require us to employ activation function between the last

convolutional layer and fully connected layer, i.e., fusion layer learned via TL

versus the required in CNNs. All the other advantages, like distinct filters and
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interpretable representations, etc., are also present here since they are based on

CTL and TL. It has been even compared with the representations learned from

CNNs and found that the features and results from the proposed frameworks are

better than those from CNNs.

The other framework that is discussed in this chapter is DeConDFFuse which

extended the DeConFuse network and jointly trained and optimized it with De-

cision Forest (DF). Again, all the benefits of CTL are applicable here as well.

The representations/features learned are guided by DF apart from CTL. The

framework is applied to the Drug-Drug Interaction (DDI) problem that predicts

two kinds of interactions - known-to-interact (1) and known-no-to-interact or un-

known solving a fundamental issue to prevent Adverse Drug Reactions (ADRs).

The contribution of this model is that it utilizes DF in a joint framework which is

generally used in a piecemeal fashion. The chances of missing any important

information are there in the latter. Additionally, it extracted individual and cross-

channel features of the drugs finding out the most relevant features of the drugs

that interact with each other. The results from this framework are superior to

benchmarks indicating the benefit of employing it for the DDI prediction task.

5.1.3 Multiview Clustering Framework based on CTL - DeConFCluster

Lastly, multiview clustering performing framework - DeConFCluster is explained

in chapter 4. It is an unsupervised multiview multi-channel fusion framework that

performs multiview clustering task utilizing representations from the fusion of the
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individual view’s representations; thus, it learns individual view information and

then learns cross-channel information via fusion. The framework comprised a

DeConFuse network and a K-means module that are jointly trained and optimized.

Therefore, representations learned are beneficial since those have the advantages

of CTL and are well-guided through the K-Means loss also. The same is observed

in terms of performance from the experimental results too. Furthermore, the

framework prevented the additional training from the decoder network that is

generally applied in the case of multiview clustering approaches. Besides the

said advantage, the framework also avoided overfitting even in data-constrained

scenarios where the number of data instances is low and the number of classes is

high.

5.2 Future Work

It is believed that the algorithms proposed are generic and can be used not only

in the kind of problems discussed throughout this dissertation but also in other

research fields where one can formulate the problem to be solved as a multi-

channel fusion problem. Both supervised and unsupervised frameworks have

been proposed; thus, the proposed frameworks can solve both genres’ problems.

At the application level, the unsupervised and supervised frameworks were

applied for stock prediction problems that required day-wise predictions. How-

ever, in future, it is desired to experiment with the proposed frameworks at more

micro-level predictions in stock, i.e., at minute-level prediction of signals - BUY
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and SELL. Also, the proposed solutions have dealt with 1D data so far and, thus,

used 1D Convolutions. Therefore, it encourages to explore these frameworks to

be applied to problems that involve 2D or multidimensional data. For example,

a hyperspectral image and an RGB image can be used to perform fusion to

estimate dense depth maps from the sparse maps. Thus, such a fusion using

these frameworks find their application in drones.

Likewise, the supervised learning framework - DeConDFFuse is utilized for

DDI prediction, but it is believed that it can also be used to predict different types

of associations in bio-informatics like - drug-virus, drug-target, protein-protein,

etc. Also, the problem targeted currently involves two drugs administered

together, whereas many times, more than two are administered together in a real

scenario. The latter can be easily done with the proposed network.

Similarly, in this thesis, unsupervised frameworks - ConFuse and DeConFuse-

are developed to extract features for performing dual tasks of regression and

classification. However, apart from these tasks, it is worthy to analyze if such

features from the framework can be successfully utilized in other applications as

well, like anomaly detection. Anomaly detection requires finding and identifying

outliers to prevent fraud, adversary attacks, network intrusions, etc., that can

compromise any organization’s future or invades an individual’s privacy. Further,

it can be even utilized to extract such features to find clusters to segment cus-

tomers pertaining to a particular market. In all such applications, one can analyze

the data available and extract meaningful representations to perform the men-

tioned tasks using the proposed framework. Also, unsupervised (ConFuse and
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DeConFuse) and supervised frameworks (SuperDeConFuse and DeConDFFuse)

can be employed in another application of Human Activity Recognition.

Additionally, the multiview clustering framework performs clustering on

views that are similar in nature. Nevertheless, it can even be considered extending

this framework to apply to multi-modal datasets involving multiple modalities

like image, text, video, and audio information. For example, Caltech-UCSD

Birds-200-2011, shortly called as CUB-200-2011 dataset, contains image and

text information.

Lastly, it is intended to implement techniques following a semi-supervised

learning paradigm. Semi-supervised learning based formulations will hold

immense importance as these will help perform tasks involving partially labeled

data. It basically reduces expenses on manual annotation and cuts down on data

preparation time which is significant as unlabeled data is available in abundance.
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