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Abstract

Face recognition under controlled and constrained scenarios have reached a significant level of

maturity with respect to performance and reliability. However, under unconstrained and un-

controlled settings, current state-of-the-art face recognition systems fail to yield a consistent

level of performance. In recent years, several countries have experienced a high number of

terrorist attacks, events of public unrest and cross border intrusions. As a preventive and inves-

tigative measure, governments around the world have installed surveillance cameras in public

places such as railway and bus stations, airports, shopping malls, and so on. Images acquired

from these cameras (probes) are captured in an unconstrained and non-cooperative environment,

hence their quality in terms of resolution, illumination, pose, spectrum and so on may vary heav-

ily. Images captured by these cameras are matched with a background database which contain

images collected from government records such as passport, driving licenses and so on. Such

images (gallery) have much better and consistent quality. The matching of poor quality probes

with good quality gallery images is a challenging problem, which involves utilizing auxiliary

information (such as depth maps), improving the quality of the captured images, learning of

heterogeneity aware models and matching to optimize the top-k identification accuracy. This

dissertation attempts to develop effective algorithms for face recognition in unconstrained and

non-cooperative scenarios where images captured are either in low resolution and/or in NIR

(Near-Infrared) with low quality and inherent noise due to the in-the-wild image capture setup

commonly encountered in surveillance settings.

The first contribution is primarily aimed at utilizing auxiliary sources of information for train-

ing a shared representation for face recognition in unconstrained environments. Low cost depth

sensors have opened new avenues for their usage in video surveillance scenarios. The depth

information has been utilized in most RGB-D face recognition methods by fusing it with RGB

information which results in enhanced recognition performance. However, in real world surveil-

lance scenarios, cameras are placed at a distance too large for low cost depth sensors to capture

good quality depth information. Such poor quality depth information may not contribute sig-

nificantly to face recognition. The first contribution is on learning a shared representation of

RGB and depth information using a reconstruction based deep neural network. The proposed

network, once trained in offline mode, can generate the shared representation of RGB and depth

using only the RGB image. This feature rich representation is then utilized for face identifica-

tion. This allows the framework to be used in scenarios where low quality or no depth image is



captured. Experiments on two real-world RGB-D datasets, namely Kasparov and IIITD RGB-D,

show the efficacy of the proposed method.

The second contribution proposes a Generative Adversarial Network (GAN) based approach to

learn an image to image transformation model for enhancing the resolution of a face image.

Unsupervised GAN based transformation methods in their native formulation might alter useful

discriminative information in the transformed face images. This affects the performance of

face recognition algorithms when applied on the transformed images. We propose a Supervised

Resolution Enhancement and Recognition Network (SUPREAR-NET), which does not corrupt

the useful class-specific information of the face image and transforms a low resolution probe

image into a high resolution one, followed by effective matching with the gallery using a trained

discriminative model. We show the results for cross-resolution face recognition on three datasets

including the FaceSurv face dataset, containing poor quality low resolution videos captured at a

standoff distance up to 10 meters from the camera.

The next three contributions propose novel deep metric learning algorithms, that have been uti-

lized to learn discriminative and generalizable models which are effective for classifying unseen

classes. The third contribution addresses one of the most challenging scenarios of face recog-

nition that is matching images in presence of multiple covariates such as cross-spectral and

cross-resolution. Law enforcement agencies across the world face this arduous task for which

the existing face recognition algorithms do not yield the desired level of performance. In this

work, we propose a Subclass Heterogeneity Aware Loss (SHEAL) to train a deep convolutional

neural network model such that it produces embeddings suitable for heterogeneous face recog-

nition. The performance of the proposed SHEAL function is evaluated on databases in terms of

the recognition performance as well as convergence in time and epochs.

In the fourth contribution, a novel noise tolerant deep metric learning algorithm is proposed.

The proposed method, termed as Density Aware Metric Learning, enforces the model to learn

embeddings that are pulled towards the most dense region of the clusters for each class. It

is achieved by iteratively shifting the estimate of the center towards the dense region of the

cluster thereby leading to faster convergence and higher generalizability. In addition to this,

the approach is robust to noisy samples in the training data, often present as outliers. The

fifth contribution presents an elegant solution for enhancing the top-k recognition performance

under the purview of deep metric learning. The algorithm first uses a clustering algorithm to

identify superclusters, which are made of classes that are similar and are mapped close to each

other in the embedding space. The compactness of these superclusters are then enhanced while

protecting the discriminative properties of the individual classes, which results in improved

top-k matching performance during testing. Results on five datasets, including the challenging

SCface database, show that these solutions outperform other traditional and recent deep metric

learning algorithms.
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Chapter 1

Introduction

Face recognition is the science of matching and correctly identifying a person. Face has been

used as one of the foremost identifying traits of an individual from time immemorial. Hu-

mans posseses extraordinary capability to remember and identify each other by faces. Although

humans do it with an ease, computer scientists, since the last five decades, have been trying to

imbibe this capability in automated systems. In recent years there has been a massive increase in

interest in the field of face recognition, which led to a large number of face recognition methods

appearing in the literature. There has been sufficient progress in face recognition [7] in con-

strained environments. However, most of the real world images are not taken in constrained en-

vironments, thus the focus of the research community in this area moved on to semi-constrained

and unconstrained scenarios (Figure 1.1). In semi constrained scenarios [8] (Figure 1.1, 2nd

row), the pose, illumination, expression of the face may vary to some extent. Such images can

be found in several applications on social media, human-computer interaction and so on. On the

other hand, recent applications require to perform under highly unconstrained and uncooperative

situations (Figure 1.1, 3rd row). In these scenarios, illumination, pose, expression, distance of

the subject from the camera, disguise and other environmental factors will not be in our control.

Thus, modern face recognition methods are mostly focused on constrained and semi-constrained

environments which has yielded several methods which are pose [8], [9], rotation [10], illumina-

tion [11], resolution, distance [12], spectrum, occlusion [13], age, disguise [14], and expression

invariant.

One of the most challenging scenarios for unconstrained face recognition is faced by security

agencies worldwide as surveillance cameras are widely used for detecting suspects and prevent-

ing intrusion. A study [16] conducted by the British Security Industry Authority (BSIA) esti-

mated that UK has has 5.9 million CCTV cameras, thus there is one camera for every 11 people.

Due to the distance of the surveillance camera from the subjects, the effective resolution of the

1
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FIGURE 1.1: Representative images for constrained (ORL database [15]) (1st row), semi-
constrained (CMU-MultiPIE [8]) (2nd row) and unconstrained scenarios (SCface database [3])

(3rd row) for face recognition.

face is not large enough for modern state of the art systems to accurately identify the individ-

ual. The FBI introduced a next generation [17] identification system where face would be used

as the foremost biometric trait for identification. As of June 2016, the FBI has a background

database of 411 million face images [18] from driver license, visa, passport databases and so

on. Such a system could also be used by private enterprises for background searches other than

law enforcement. When we consider 24-h surveillance, ensuring equivalent illumination condi-

tions throughout is not possible. Since face recognition is heavily affected by illumination, such

cameras switch to infrared (IR) mode at night. A major challenge in surveillance applications

is identification from IR images captured in very low visible illumination. Very often security

agencies might have a watch-list photograph of the suspect in the form of a high resolution vis-

ible spectrum image. This has to be matched with a surveillance video in real time as shown in

Fig.2. Thus, the problem becomes all the more challenging due to fact that a cross-spectral face

matching adds to the already existing problem of matching surveillance quality low resolution

images with high quality enrolled gallery images.

Although a few methods [19–21] exist for such applications, a truly unconstrained environment
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Boston Bombings (2013)                                        Brussels Airport Attack (2016) 

FIGURE 1.2: Images showing aftermath of bombings that took place in Boston and Brussels in
2013 and 2016 respectively. Recently, due to rising instances of terrorist activities and miscre-
ants, CCTV cameras have been installed at many public places to equip the law enforcement

agencies against such activities.

will challenge any existing surveillance system. State of the art systems for multiple face track-

ing and recognition using surveillance cameras fail to produce good detection and recognition

performance in real world surveillance situations. VeriLook Surveillance SDK, a commercial

video surveillance system, can detect, track and recognize multiple faces at the same time in

live video. Though it is considered as one of the state of art tools, it has several operational

constraints [18] regarding video quality (minimum 10 frames/second), camera resolution for

face enrollment (minimum 1 megapixel), face posture (about 180 degrees of roll, 20 degrees of

pitch and 45 degrees of yaw), and minimal facial expression, occlusion and illumination varia-

tions. If these constraints are not met, facial recognition by this commercial matcher becomes a

challenge. Other unconstrained settings like pose, illumination, expression, occlusion and dis-

guise would make the problem even more difficult and challenging. It is a prevalent concept that

addressing such challenges also depend heavily on tackling several system level issues [20] as

well. Quality of cameras, focal length, quality of NIR illuminators and shutter speed (for tack-

ling motion blur) are some of the system level issues that have to be addressed. Moreover face

detection, tracking and dealing with uncooperative subjects also are the challenges encountered

with respect to data acquisition from subjects. Developing methods for tackling each of these

issues is challenging when it comes to real world unconstrained environments. Therefore, it is

our belief that there is a huge scope and prospect for developing new face recognition methods

for such applications. The problem of 24-hour surveillance has led the researchers to explore

spectrum other than the visible spectrum. In this chapter, we review and discuss the issues of

face recognition for surveillance applications. We also provide insights into existing state of the

art methods and study the gaps in the existing literature. We conclude with some research di-

rections along with and overview of the salient contributions of this thesis for providing suitable

solutions to this problem.



On Heterogeneous Face Recognition 4

1.1 Challenges for Face Recognition in Unconstrained Scenarios

Facial recognition for frontal and near frontal images has been massively investigated for the

last three decades. The research community has attempted to address mainly three challenges,

namely pose, illumination and expression [7]. Such applications have been widely used and

deployed for access control, authentication, and so on. Recently, as explained in the previ-

ous section, due to the insurgence of security threats all over the world, face recognition from

surveillance cameras has become an inevitability. In such a scenario there are several challenges

that are faced both from system and algorithmic points of view. Since face is probably the most

intrusive biometric trait that can be acquired over a distance, it is highly desirable to develop

quality methods to tackle this problem.

The main challenges for face recognition in surveillance scenarios are discussed below :

1.1.1 Image Acquisition Issues

There are several issues at the system level for face recognition especially in surveillance con-

ditions. A typical video surveillance system is comprised of an elaborate setup comprising of

several cameras, a system to process and match the images along with a repository of gallery

images. Several of the system issues discussed here also arise in a closely related problem of

face recognition at a distance [22].

The quality of images captured using the cameras has a huge impact on face recognition sys-

tems [23, 24]. In a typical surveillance setting the camera is expected to be several meters away

from the potential subject, who may be moving away or towards the camera, which mimics a

perfect non-cooperative image acquisition scenario. Very often these systems are used for covert

surveillance, where the subject is not aware of the fact that he is being photographed. Very often

such images are noisy, out of focus and the problem is aggravated by introduction of uncon-

trolled pose, expression and illumination. Figure 1.3 shows an image of a man caught on the

surveillance camera punching a toddler on his face, the image is of very low quality. This is

an actual case reported recently in Bakersfield, USA where the surveillance cameras helped the

police catch an offender.

Low Resolution: CCTV cameras are typically kept at a distance which helps in getting a wide

angle of view over a public area and hence serves the purpose of surveillance, but hampers

the facial recognition performance due to several reasons [22]. The inherent distance of the

surveillance camera from the subject results in the acquisition of a low resolution image of

the subject. On the other hand gallery images are acquired in controlled sceanrios with a high

quality camera. This results in a problem for the facial recognition system to match it with a

high resolution gallery image. Thus better cameras with very high resolution may solve the
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FIGURE 1.3: Low quality image due to rapidly moving subject with uncontrolled pose and
illumination. Image source: Youtube

FIGURE 1.4: A typical multiple setup with several NIR illuminators to cover a large field of
view. Image source: bbc.com, Image creator: Getty Images.

problem to some extent. Although using very high resolution images may decrease the speed of

face detection.

Out of Focus: Although the focus is conceptually a point, most cameras have a small extent

within which the focus lies. This region is known as the blur circle [22]. In most cases of FRAD,

the subject is situated outside this region, which results in image blur. The subjects can be at

various distances from the surveillance camera, due to which the camera may find it difficult to

adjust the focus quickly for rapidly moving subjects. Moreover, the subject can be well beyond

the focal limit of the camera, which will result in a low quality and blurry image.

Height of the Camera: The height of the camera is a major issue in surveillance systems. In

order to cover most user’s heights, the camera needs to be at a particular height. The issue here

is that the facial image of tall people will be different than that of short people when the height

of the camera is fixed. Multiple camera systems can also be used as shown in Fig. 1.4.

In such cases there two options for the face recognition systems to effectively use the multiple
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FIGURE 1.5: The area within the DOF appears sharp clear. Image Source: Handbook of
Remote Biometrics.[22]

FIGURE 1.6: Field of view. Image source: photographytalk.com

cameras. The first option is to merge the images from the multiple cameras which is a prepro-

cessing task. The second option is to use multiple images independently. The second way has

been used in most papers [25] to tackle the problem. This method [25] is an extension of [26],

by updating the objective function to incorporate multiple frames. This can be carried forward to

create a generalization for multiple cameras. The image formation model used in the objective

function takes into account the blurring function of the camera which is a point spread func-

tion. For multiple cameras, different blurring functions are taken into account. Each image also

would have different regularization parameters depending on which camera was used to acquire

that image.

Depth of Field and Field of View: Depth of field (DOF) in a scene is the range between the

nearest and farthest object between which objects will appear sharp in an image. It is the area

around the focal point where objects appear sharp and clear as shown in Fig 1.5. The DOF for a

lens is not symmetric and has separate formulations for the DOF in front of the focal plane and

behind the focal plane.

On the other hand the field of view (FOV) does not depend on the distance, rather is dependent

on the focal length and the effective resolution of the camera. FOV is defined as the magnitude

of the observable scene that can be captured (Fig 1.6) by the camera in good quality. A large

FOV is necessary especially for non-cooperative subjects and allows to get more frames on the

target as they cross the FOV of the camera.
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FIGURE 1.7: VIS-NIR face matching problem. Images are crowd-sourced from the internet.

1.1.2 Cross-Spectral Face Matching

Existing legacy datasets have the images acquired in visible spectrum under controlled illumi-

nation conditions. These images are used to enroll a user in a biometric identification/authen-

tication system. Probe/Querry images however may be captured under completely different

illumination conditions. Very often Near-Infrared (NIR) images are acquired by cameras when

the amount of visible illumination is not good enough. These NIR images, would now have to

be matched with visible (VIS) light images which were acquired during user enrollment. It has

been observed that VIR-NIR face matching is a problem [27] due to different spectral proper-

ties of VIS and NIR images and thus it is important to develop efficient methods for doing the

same. This problem becomes more challenging when probe images are of a lower resolution in

addition to being in NIR spectrum.

1.1.3 Improper Alignment

Face detection and tracking is challenging problem in low resolution images. Detecting facial

fiducial points also becomes an increasingly difficult problem in such low quality images. Thus it

results in inaccurate face registration and alignment, which severely affects the facial recognition

performance.

1.1.4 Dimensional and Quality Mismatch

The gallery images for most facial recognition systems are of high quality acquired in controlled

imaging conditions in high resolution. The probe images when acquired in surveillance condi-

tions are expected to be of much lower quality and resolution. Matching higher resolution and

good quality images to low quality images is an extremely challenging problem. In Figure 1.9

we can see a representative illustration of the problem. Due to such mismatch feature extraction



On Heterogeneous Face Recognition 8

FIGURE 1.8: Out of focus problem: Facial features are not adequate for recognition. Image
source: [22]

FIGURE 1.9: Dimensional and quality mismatch: (a) high resolution gallery image, (b) low
resolution probe in visible spectrum (c) low resolution near-infrared probe image. Images

sourced from the SCface dataset [3]

is difficult. Features that work for high quality images [28–31] might not be good enough for

low quality images. Thus resolution robust features have been developed for such images. This

is still an open research problem and much more needs to be done to solve it.

1.2 Solutions for FR in Unconstrained Scenarios

Face recognition in an unconstrained/survelliance scenario is compounded by several inherent

challenges such as low resolution and quality, cross-spectral matching, motion blur, out of focus

and so on. Additionally, due to the non-cooperative nature of the users, problems such as pose,

expression and illumination are also introduced. This results in images of poor quality, low

resolution and in variable spectrums. Most methods introduced for face recognition in surveil-

lance scenarios have approached it from mainly two problem setups, namely, cross-resolution
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face recognition and cross-spectral face recognition. The covariates of pose, illumination, ex-

pression and image quality is implied in both of these problem setups. Since face is probably

the most intrusive biometric trait that can be acquired over a distance, it is highly desirable to

develop quality methods to tackle this problem.

Thus, it can be inferred that the problem of face recognition in such a complex scenario consist-

ing of multiple covariates at a time, cannot be tackled at a single level rather several approaches

at multiple levels are required to mitigate these challenges. In view of the current understand-

ing of this problem, we divide the methods of tackling the challenges of this problem in the

following levels.

1.2.1 Image Acquisition Level for Heterogeneous FR

In order to have a system which gives good recognition performance on face images acquired

in-the-wild, several sensor level issues needs to be addressed. The most prolific issue in Face

Recognition at a Distance (FRAD) is image resolution and quality. The cameras frequently

used in such tasks are known as PTZ (Pan-Tilt-Zoom) cameras, which has a large field of view.

Such a large field of view is essential for covering as much of the scene as possible, especially

for deployment in public places. The drawback is that, the effective resolution of the faces

captured are very low. A sensor level solution to this problem is using a higher resolution

camera, however in such a case the process of face detection would be slower, since a larger

number of pixels needs to be processed. Another major issue in surveillance cameras is the

’out of focus’ problem. The sensor level solution is to use a camera which has a large focal

range and blur circle. Lastly, motion blur is another sensor level issue in surveillance cameras.

Since such cameras encompass a completely non-coperative imaging environment, very often

the subjects are in motion and thus motion blur may occur. One of the remedies for this is to

use a camera which can capture videos at a higher frame rate. If the camera is only capable of

taking images, then a higher shutter speed may decrease the chances of motion blur for heavily

moving subjects.

The above are some of the commonly used measures for mitigating the system level challenges.

Another way of addressing the same would be to use an additional channel of data such as depth

maps. The following subsection illustrates how this additional data may help us in improved

face recognition performance in unconstrained scenarios.

RGB-D Face Imaging

In unconstrained scenarios, covariates like pose, illumination, expression, distance, resolution,

occlusion and so on are introduced. Most face recognition methods utilize 2D images. It has



On Heterogeneous Face Recognition 10

((A))

((B))

FIGURE 1.10: RGB and depth images: (a) in controlled conditions (IIITD RGB-D database
[35]) and (b) with large standoff distance and uncontrolled conditions (Kasparov database [36]).

been shown that in the presence of covariates like pose, illumination, expression and occlu-

sion 3D images yield enhanced recognition performance [32–34] than their 2D counterpart. 3D

images can capture facial features in great detail which contributes to high recognition perfor-

mance. 3D images can be captured in two ways namely passive and active sensing. Passive

sensing involves developing a 3D model of a scene by reconstructing shape information from

several 2D images captured by multiple cameras from different viewpoints. The need of multiple

cameras for developing a 3D model makes it an expensive option when compared to acquiring

2D images. On the other hand active sensing involves using sensors to measure the time taken

for the illumination pattern to reflect back to develop an accurate 3D model of the scene. In most

3D cameras it uses a laser beam and also requires nanosecond level precision to work with rea-

sonable accuracy. Most commercial 3D cameras which work with passive sensing, the range of

accurate sensing is small and does not work well if the subjects are on the move in the scene. In

a surveillance scenario both the distance and the movement of subjects would be unconstrained.

In addition to this the cost of the acquisition process also needs to be lower if it is to be applied

on a large scale. A 3D model is processed and stored in the form of a polygon mesh. The size

of such data is much larger than a 2D image. Storage and processing of such large quantities of

data would be a challenge for real time applications like surveillance.

An alternative to 3D is to use pseudo-3D information in the form of RGB-D images. It does

not provide a true 3D mesh, but the depth information is provided in the form of a depth map



On Heterogeneous Face Recognition 11

which gives per-pixel depth value of the scene. This depth map however does not provide a

very accurate distance of each pixel from the sensor but gives more discriminative information

when used along with the RGB image of the same scene. It has been shown [37] that, this

depth information, can enhance the performance of face recognition algorithms. This has led

to the development of several RGB-D based face recognition methods [38–44] in constrained

scenarios. Fig. 2.1(a) shows some RGB images and their corresponding depth maps acquired in

constrained scenarios.

This showcases the potential of RGB-D images for usage in unconstrained environments as

well. However, in unconstrained scenarios the quality of depth information acquired by low

cost sensors like the Microsoft Kinect would be of a much poorer quality than acquired in

constrained scenarios. Thus using RGB-D images in unconstrained environments is challenging

and requires development of new algorithms that can utilize the low quality depth information.

Most RGB-D face recognition algorithms, needs both the RGB and the depth image during

testing. However, as shown in Fig 2.1(b) when face images are acquired from a larger standoff

distance (more than 2 meters) the depth image is of very poor quality. In such cases all the

conventional RGB-D face recognition algorithms would yield poor performance as they depend

on the quality of the depth image while testing. In some cases the depth image is not acquired

at all. In such cases conventional RGB-D face recognition algorithms would not be able to

perform any testing. We present an algorithm that does not need depth image during testing.

Our proposed method learns a shared representation from RGB (in grayscale) and depth data

and uses only RGB (in grayscale) data during testing. This is an advantage over conventional

RGB-D recognition algorithms.

Recently, RGB-D images have also been utilized in surveillance scenarios for applications such

as person tracking [45] and person re-identification [46, 47]. The advent of new sensors like

Microsoft Kinect [48] and Asus Xtion PRO LIVE [49] has presented a cost effective way of

obtaining RGB-D images and thus presents a scalable solution for deployment in surveillance

scenarios. These sensors do not explicitly record the depth information using a depth sensor,

rather it uses an IR (Infrared) camera and an IR projector for capturing the depth information of

a scene. A speckle dot pattern is cast by the IR projector on to the scene, which is captured by

the IR camera in the form of reflected IR speckles. This method of capturing depth is known as

structured-light 3D surface imaging [50].

However, RGB-D face recognition in unconstrained scenarios like surveillance is challenging.

Surveillance cameras need to operate under varying illumination conditions. The standoff dis-

tance of the subject from the camera is usually large. In addition to this, other covariates like
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pose, expression and occlusion are also introduced. Thus, RGB-D face recognition in surveil-

lance scenarios is a difficult problem and largely unexplored in literature. Recently the Kas-

pAROV [36] database was used to perform RGB-D face recognition [51] which is the first RGB-

D database captured in unconstrained and surveillance conditions. As shown in Fig. 2.1(b) when

an RGB-D face image is acquired from a larger standoff distance (more than 2 meters) the depth

map acquired is of very poor quality. Due to this the performance of conventional RGB-D face

recognition algorithms on such RGB-D images would be severely affected. It has been shown

in [51] that a conventional RGB-D face recognition algorithm [35] which gives excellent per-

formance on constrained RGB-D images (Fig. 2.1(a)) performs poorly when applied on RGB-D

images (acquired under surveillance conditions) of the KaspAROV database (Fig. 2.1(b)).

In addition to face recognition, RGB-D images have been used in face detection [52], object

detection and segmentation [53], object recognition [54], 3D modeling [55], gender recogni-

tion [56], object discovery [57], human action recognition [58], head pose estimation [59], face

anti-spoofing [60] and so on.

1.2.2 Image Level Solutions for Heterogeneous FR

At the image level the only measure that can be taken to improve face recognition in an uncon-

strained scenario is to improve the quality of the image. Some of the classical methods that have

been utilized to improve image quality is superresolution and hallucination. There have been

a plethora of methods proposed for general image superresolution, however all of them would

not be helpful in this case, due to the fact that the minute discriminative information present in

the face image needs to be restored during the process of quality/resolution improvement. Re-

cently, with the advent of Generative Adversarial Networks (GANs), improved image to image

translation algorithms have been proposed which showcases excellent quality and resolution im-

provement at the image level. Next, we illustrate the effect of resolution on the performance of

a typical face recognition system. thereafter we discuss the popular methods for increasing the

resolution and quality of images using superresolution/hallucination and GAN based methods.

The Effect of Resolution on FR Performance A digital image is made of of several pixels.

Spatial resolution of an image is known as the number of pixels per unit area. At times it is also

measured by the total number of pixels in an image. Higher resolution images are expected to

encompass much more detail about the scene it captures. A typical face recognition application

is expected to have a high resolution gallery image, the probe image can be of a much lower

resolution, depending on the camera which is used for acquisition of the probe image. Alike

other image recognition applications, face recognition is expected to produce much better results

with a higher resolution probe image. The imaging resolution is limited by two major factors, the

camera sensor and the standoff distance of the subject from the camera. Most modern sensors are
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FIGURE 1.11: Matching high resolution gallery image with low resolution probe by adjusting
the resolution. Image source: [26]

either a Charge-Coupled Device(CCD) or a CMOS active-pixel sensor. The size of the sensor

or the number of sensing elements per unit area determine the spatial resolution of the image.

Due to some of these limitations the acquired pixel may be of a lower resolution than the gallery

image of the subject enrolled in the system. In such a case we face the problem of matching

a lower resolution probe image with a higher resolution gallery image. In the context of face

recognition this problem is known as cross resolution face matching. The use case scenarios

where such problems might be faced has already been discussed in the earlier sections. In this

section we would discuss how to tackle and mitigate this problem.

Superresolution: One of the ways of tackling this problem is to bring both the gallery and the

probe image to the same resolution. As shown in Figure. 1.11, this can be done in two ways,

either by applying super-resolution on the probe image to increase its resolution and make it

at par with the gallery images, or downsample the gallery image. Several methods have been

proposed in literature for the same. We will however restrain our discussion mostly on those

methods that are suitable for face images.

Traditional Methods for Super-resolution: There have been a lot of methods proposed to learn

the correspondence between the low resolution image and its high resolution version, by using

a training set which contained a set of low resolution and their corresponding high resolution

versions. Face hallucination proposed by Baker and Kanade [61], was specifically proposed for

super-resolution of face images. It used such a training set and learned a MAP based conditional



On Heterogeneous Face Recognition 14

probability objective function. The probability of the high resolution image given the low res-

olution image was computed by learning the likelihood and the prior from the training image

pairs. The priors used were known as gradient based priors. Since then there has been several

methods proposed for face hallucination.

Recognition oriented Super-resolution for Low Resolution Face Recognition: The first

method which proposed a simultaneous super resolution and recognition technique was by

Hennings-Yeomans et al. [26]. The objective function for finding a high resolution version

of a given low resolution probe image has two components. Firstly reducing the error between

the given low resolution probe and the simulated low resolution image of the corresponding

super resolved high resolution image. Secondly it takes into account the difference between the

ideal representation for the class to which the probe image belongs and the features of the super

resolved probe image.

Deep Learning Methods for Image Super-Resolution: The first method to use a con-

volutional neural network model for the problem of image super-resolution was proposed in

[62]. The paper is probably the first one to propose a deep learning solution for image super-

resolution. It uses a convolutional neural network to learn an end to end mapping between

low resolution and high resolution images. It contains three stages namely, patch extraction

and representation, non linear mapping and reconstruction. The first stage is analogous to the

convolution operation, the second stage is the pooling operation. The network proposed in the

paper contains one convolutional and pooling layer, however then can be multiple layers used

for superior performance. The paper also shows that with a few training iterations the average

test PSNR values are much higher than bicubic interpolation and sparse coding based methods

for super-resolution. There have been several other works which has used CNNs for image

superresolution.

Image to Image Translation using Generative Adversarial Networks (GANs) Recently with

the advent of GANs, generating synthetic data have been performed with high reliability and

excellent performance. One of the foremost applications of such algorithms is to train a deep

learning model for image to image translation, which can be utilized to transform low resolution

image into their high resolution counterparts.

A GAN [63] is a deep network which consists of a generator G and a discriminator D, where θg
and θd are the parameters of the generator and discriminator respectively. The generator network

G produces a synthetic image from a noise distribution pz , and the discriminator network D is

trained to distinguish between a synthetic image G(z) and a real image x sampled from the

distribution of real images pdata. It is formulated as follows:

minθgmaxθd [Ex∈pdata logDθd(x) + Ez∈pz log(1−Dθd(Gθg(z)))] (1.1)
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TheG andD models are trained alternatively by updating the parameters. The parameter update

of the generator is given by

∇θg
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and that of the discriminator is given by
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(1.3)

where, m is the size of the minibatch used. The initial model of GANs [63] allowed the gener-

ation of synthetic images from noise. The applicability of such models is in data augmentation

which has resulted in generation of large amount of training data for better and robust training

of classifiers.

Image Translation using Conditional GANs: The original GAN model was extended to Con-

ditional GANs [64], in order to utilize GANs for translating images from one domain to another.

It allows both the generator and the discriminator to be conditioned on an extra information y

which can be either the class label of the sample or any extra auxiliary information. Such models

can be formulated as:

minθgmaxθd [Ex∈pdata logDθd(x|y) + Ez∈pz log(1−Dθd(Gθg(z|y)))] (1.4)

The conditional GAN model is formulated for image to image translation by Isola et al. [65]. It

can be modeled as a mapping function G : {p, z} → q where p and q are sets of images of the

source and target modalities respectively and z is a noise vector. It can be formulated as follows:

ϕGAN (G,D) = [Ep,k∈pdata logDθd(p,k)+Ez∈pz ;p,x∈pdata log(1−Dθd(x, Gθg(p, z)))] (1.5)

The generator can also be conditioned on an extra constraint ϕl1 (G) which is the l1 difference

of the input images p and output images q. The final objective function of the above model is

as follows:

G∗ = minθgmaxθd [ϕGAN (G,D) + ϕl1 (G)] (1.6)

The l1 constraint makes the output images (from the generator) consistent with the structural

properties of the target image. The drawback of such a model is that it is trained only on the

goal of transforming the image from one modality into another. As a byproduct of such a

transformation, discriminative information in the images (which are important for classifying

the image) might get distorted. Thus, a supervised version of the above model is proposed and

is utilized to train a GAN for translating face images from the source to the target modality. It



On Heterogeneous Face Recognition 16

ensures that the class of the generated image is consistent with that of the input image of the

source domain.

There have been significant advances in the investigation of Generative Adversarial Networks

and are applied in various applications such as image generation [66–69], image to image trans-

lation [65, 70, 71], social network analysis [72, 73] image superresolution [74], 3D shape model-

ing [75], text to image synthesis [76], image style transfer [77, 78], and texture synthesis [79]. In

this paper, the focus is particularly on image to image translation, which is one of the most popu-

lar applications of GANs. Most image to image translation methods using GANs [65, 70, 71, 80]

can transform an image from the source domain to the target domain effectively. Isola et al. [65]

proposed one of the first image to image translation based methods using GANs. They used a

generator which received a random noise and the source domain image as input. The discrim-

inator was given a pair of images (real and fake) as input and it had to discriminate between a

real-real and a real-fake pair. This was extended in [70] by introducing a cycle consistency loss

for unpaired image to image translation. Yi et al. [71] used a dual-learning [81] based formula-

tion to train a GAN model for unpaired image to image translation. These methods only focus

on the domain transfer, and do not take into account that important discriminative information

may be distorted during the process of domain translation.

1.2.3 Feature Level Solutions for Heterogeneous FR

At the feature level, algorithms have been proposed to train effective models which can produce

discriminative features in the embedding space of the model. Prior to the popularity of deep

learning, such methods were mostly based on discriminative learning and feature transforma-

tion based methods. Such methods, broadly known as structure based methods, aim to project

both the low resolution/quality probe and the high resolution/quality gallery into a common sub-

space, where they can be efficiently matched. The popularity of deep learning contributed to this

advancement by the development of novel and effective loss functions that is focused primarily

on the feature space. These methods, known as Deep Metric Learning (DML), update the pa-

rameters of the model such that it produces more feature rich representations in the embedding

space of the model. In case of face recognition in unconstrained scenarios, these loss functions

provide a huge impetus for the improvement of algorithms for the same. Deep Metric Learn-

ing (DML) algorithms allows us to train discriminative classifiers even on databases containing

insufficient training data.

In addition to traditional structure based methods, this section establishes DML as an effective

technique for training highly discriminative models, for face recognition from low quality and/or

NIR images captured in surveillance scenarios.
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Structure Based Methods: The most traditional class of methods for face recognition from

low quality images, are structure based methods. These approaches map the high resolution

gallery images and the low resolution probe images into a common feature space, where they

can be matched. Matching the low resolution and the high resolution images directly in the input

feature space is not possible due to difference in dimensionality and/or spectrum of the images.

Moreover, due to considerable difference in quality such matching would not yield acceptable

results. These methods learn this kind of mapping which is then used to map both the HR and

LR images and then matching is performed in the transformed space.

Bhatt et. al. [23] proposed a co-transfer learning framework for cross-resolution face recognition

problem. In a transfer learning framework there is notion of a source and a target domain.

For cross-resolution face recognition the source domain consists of high resolution face images

and the target domain has low resolution face images. It is not difficult to have a well trained

classifier in the source domain due to the abundance of labeled high resolution face images,

but doing the same for low resolution images is a difficult task. The scarcity of labeled low

resolution images makes it difficult to have a well trained classifier on such images. This paper

was the one of first ones to propose a framework which uses both transfer learning and co-

training to transfer knowledge from the source to the target domain. The base classifier used

is support vector machines. This method uses two views (features) of the data for utilizing the

co-training on the unlabelled probe data instances. It utilizes unlabelled target domain probe

data instances by classifying them using two ensemble prediction functions (one for each view),

which uses a weighted combination of the source and the target domain classifier to predict a

pseudo-label. These data instances are then used to retrain the target domain classifier.

Two notable methods. [82, 83] uses multidimensional scaling to embed both the HR gallery

images and LR probe images into a space where their distances would closely approximate the

situation if both the images were in high resolution. This method does not require to bring HR

and LR images to the same resolution for matching. Since HR and LR images are of different

dimensions two different weight matrices (for LR and HR) needs to be learnt. The training data

consists of HR and corresponding LR images. The objective function for learning the transfor-

mation functions tries to minimize the error between the distance between the representation of

the images in the transformed space and the representation of the images in the images if they

were in high resolution. The objective function also contains a class separability function so

as to improve discriminability of the images in the transformed space. The class separability

term ensures that distance between the transformed feature representations of the same subject

is small compared to that of different subjects. The iterative majorization algorithm is used to

minimize this objective function.

A similar method [84], was proposed which can match face images across resolution, pose and

illumination. It uses SIFT [30] descriptors from 15 spatial fiducial keypoints as features to learn
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the transformation of HR frontal gallery images and LR arbitrary-pose-illuminated images into

a common subspace using Multidimensional scaling. During training the features are extracted

from facial keypoints which are extracted by STASM [85]. During testing SIFT features can

be extracted from the entire face image and the learned transformation function is used to map

the features into the transformed space, where the stereo cost is computed between transformed

gallery and probe images by using the algorithm by Criminisi et al. [86].

Recently in [87] an approach for matching LR images to HR images was proposed, where cou-

pled mappings were learnt to map both the LR and the HR images to a unified latent subspace

so that they can be matched efficiently. A local optimization problem is formulated, which

contains three components, namely, consistency of LR/HR images, interclass distance and intr-

aclass distance. The coupled mappings are solved by solving an eigen-decomposition. Then, a

formulation is proposed to combine all the local geometries into a global structure as shown in

[87].

Deep Metric Learning (DML): Conventional deep learning models like Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs) are trained with data samples along

with their corresponding labels, so that they can correctly predict the class/label of an input sam-

ple during testing. However, deep metric learning algorithms train a model with the objective

of distinguishing between a pair of data samples whether they belong to the same class/category

or not. During training, a vanilla deep metric learning loss function would update the weights

of the model so that it produces embeddings/features (unlike class labels in conventional deep

learning models) of data samples that belong to the same class close to each other, and that of

different classes away from each other in the output embedding space of the model. In order to

train such a model, we need large quantities of data samples during training. Since a discrimi-

native model is being trained, it may be tested/evaluated on classes that are not encountered by

the model during training. This flexibility makes deep metric learning models a popular choice

for building real world recognition systems.

The most seminal work in deep metric learning was by Chopra et al. [88] where the contrastive

loss was proposed. It optimized a Siamese network for matching a pair of images, by the same

optimization goal as illustrated above. Thereafter, several research works [89, 90] have utilized

this optimization technique using a deep-CNN network as the backbone model, before a new

loss function, known as the triplet loss was proposed by Schroff et al. [91]. This was extended

in 2017 , by a new loss function known as the quadruplet loss [92]. An N-pair loss metric [93]

was also proposed which uses an N-tuple as a training data sample. Several variants of these loss

functions have been proposed, and some of them cater to scenarios of small sample learning.
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1.2.4 Sample Mining in DML

One of the most important and heavily discussed issues in the development of an efficient DML

method is sample mining. In order to train a deep network using loss functions such as the

triplet loss, which is the most popular among them, we need to prepare triplets (or 3-tuples)

using the data samples available for training. Given N training classes and K samples for

each class, the total number of triplets that can be prepared for training is upper bounded by

N(N − 1)K2(K − 1). Therefore, the number of training samples (each triplet is treated as a

training sample) increases from O(N.K) (available for conventional deep learning algorithms)

to O(N2.K3) which is a very large sample space. For quadruplets or N-pair loss functions,

this space would be ever larger. This increased sample space is extremely useful for learning a

model with a DML algorithm on a database that has a small number data samples. It also makes

DML algorithms a natural choice where the amount of training data is insufficient to learn a

conventional classifier. However, on large databases this enormous input sample space may

hinder efficient learning due to several reasons. One of the reasons is that, after several epochs

of training, the model would have learnt to solve most of the data samples, each of which is

a triplet/quadruplet. Thus, fewer samples would be useful for the model to continue learning

and make significant weight updates. During this phase it is required to provide only useful

triplets/quadruplets, in other words mine those triplets/quadruplets which are hard (which is still

not correctly classified by the model) in order to continue learning the model. This technique

known as hard mining, has been extensively explored [94–98] in the last few years for DML

methods.

1.3 Research Contributions

The key contribution of this dissertation is heterogeneous face recognition (As explained in the

previous sections and Figure 1.12) which caters to face recognition in real world unconstrained

environments. Face recognition in such unconstrained scenarios is of paramount importance to

surveillance and non-cooperative authentication scenarios. This dissertation focuses on improv-

ing the performance of heterogeneous face recognition by learning discriminative representa-

tions which are invariant to heterogeneity. We present five different contributions each of
which caters to the central idea of heterogeneous face recognition, although the primary
use case for them is face surveillance. Experiments and evaluations for each chapter has
been illustrated accordingly. In order to achieve this, first, we present a shared representation

learning based approach which can be trained to generate such representations for RGB-D im-

ages acquired under unconstrained scenarios. This can be utilized to match with high quality

gallery images for face recognition. Thereafter we propose a supervised image to image trans-

lation algorithm which uses generative modelling to achieve the same. Further, this dissertation
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FIGURE 1.12: Illustration of the research contributions

also contributes in proposing novel algorithms for training heterogeneity aware discriminative

models using novel deep metric learning methods for face recognition. The key contributions of

this dissertation are as follows:

The first contribution of this dissertation is aimed at learning a shared representation for uncon-

strained face images utilizing an auxiliary information in the form of RGB-D images.

Shared Representation Learning for RGB-D Face Recognition Low cost time-of-flight based

depth sensors such as Kinect have opened new avenues for their usage in video surveillance

scenarios. RGB-D images obtained from such sensors have shown their utility in improved

face recognition capabilities. Generally, existing RGB-D face recognition methods fuse the

depth information with RGB information which results in enhanced recognition performance.

However, in the real world surveillance scenarios, cameras are placed at a distance too large

for low cost depth sensors to capture good quality depth information. Such poor quality depth

information may not contribute significantly to face recognition. In this paper, we present a

novel representation learning algorithm by learning shared representation of RGB and depth

information using a reconstruction based deep neural network. The proposed network, once

trained in the offline mode, can generate a shared representation of RGB and depth data using

only the RGB image. This feature rich representation is then utilized for face identification. This

allows the framework to be used in scenarios where low quality or no depth image is captured.

Experiments on multiple real world databases show the effectiveness of the proposed approach.

The second contribution of this dissertation contributes in translating poor quality low resolution

face images at the image level using generative modelling.
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Supervised Resolution Enhancement and Recognition Network: Heterogeneous face recog-

nition is a challenging problem where the probe and gallery images belong to different modali-

ties such as, low and high resolution, visible and near-infrared spectrum. A Generative Adver-

sarial Network (GAN) enables us to learn an image to image transformation model for enhancing

the resolution of a face image. Such a model would be helpful in a heterogeneous face recogni-

tion scenario. However, unsupervised GAN based transformation methods in their native formu-

lation might alter useful discriminative information in the transformed face images. This affects

the performance of face recognition algorithms when applied on the transformed images. We

propose a Supervised Resolution Enhancement and Recognition Network (SUPREAR-NET),

which does not corrupt the useful class-specific information of the face image and transforms

a low resolution probe image into a high resolution one, followed by effective matching with

the gallery using a trained discriminative model. We show the results for cross-resolution face

recognition on three datasets including the FaceSurv face dataset, containing poor quality low

resolution videos captured at a standoff distance up to 10 meters from the camera. On the

FaceSurv, NIST MEDS and CMU MultiPIE datasets, the proposed algorithm outperforms re-

cent unsupervised and supervised GAN algorithms.

The next three contributions are focused towards learning discriminative embeddings for het-

erogeneous face recognition utilizing novel Deep Metric Learning methods.

Subclass Heterogeneity Aware Loss: One of the most challenging scenarios of face recogni-

tion is matching images in presence of multiple covariates such as cross-spectrum and cross-

resolution. In this work, we propose a Subclass Heterogeneity Aware Loss (SHEAL) to train

a deep convolutional neural network model such that it produces embeddings suitable for het-

erogeneous face recognition, both single and multiple heterogeneities. The performance of the

proposed SHEAL function is evaluated on four databases in terms of the recognition perfor-

mance as well as convergence in time and epochs. We observe that SHEAL not only yields

state-of-the-art results for the most challenging case of Cross-Spectral Cross-Resolution face

recognition, it also achieves excellent performance on homogeneous face recognition.

Density Aware Deep Metric Learning Deep metric learning algorithms have been utilized to

learn discriminative and generalizable models which are effective for classifying unseen classes.

In this work, a novel noise tolerant deep metric learning algorithm is proposed. The proposed

method, termed as Density Aware Deep Metric Learning, enforces the model to learn embed-

dings that are pulled towards the most dense region of the clusters for each class. It is achieved

by iteratively shifting the estimate of the center towards the dense region of the cluster thereby

leading to faster convergence and higher generalizability. In addition to this, the approach is

robust to noisy samples in the training data, often present as outliers. Detailed experiments

and analysis on two challenging cross-modal face recognition databases and two popular object

recognition databases exhibit the efficacy of the proposed approach. It has superior convergence,
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requires lesser training time, and yields better accuracies than several popular deep metric learn-

ing methods.

Top-K Aware Deep Metric Learning: Recently, in addition to optimizing for the classifica-

tion accuracy, the top-k accuracy has also gained considerable attention from machine learning

practitioners. Optimizing the overall classification accuracy of a network does not always lead

to best top-k accuracy. This behavior is often observed in cases where multiple classes are close

to each other in the embedding space and trained classifiers may not retrieve the correct class

due to class ambiguity. This work presents an elegant solution for enhancing the top-k matching

performance. The algorithm first uses a clustering algorithm to identify superclusters, which are

made of classes that are similar and are mapped close to each other in the embedding space. The

compactness of these superclusters is then enhanced while protecting the discriminative prop-

erties of the individual classes, which results in improved top-k matching performance during

testing. Experimental results on STL-10, CIFAR-10, CIFAR-100, Stanford Online Products,

CARS196, and SCface databases demonstrate the efficacy of the proposed approach.

So, to summarize, the contributions are catering to the problem of Heterogeneous face
Recognition, which is to perform face recognition in the presence multiple covariates like
resolution, spectrum, pose and so on. These scenarios are more prevalent in surveillance
scenarios and each chapter will illustrate experiments on at least on one face dataset cap-
tured in an unconstrained setup. Figure1.12 illustrates the different types of problems that
this dissertation is aimed at under the umbrella of Heterogeneous Face Recognition.



Chapter 2

RGB-D Face Recognition using
Reconstruction based Shared
Representation

2.1 Introduction

Innate capabilities of human mind to recognize familiar faces has motivated researchers to mimic

and build next generation algorithms. In the last two decades, face recognition has been one of

the most investigated topics in the area of computer vision and artificial intelligence. In general,

face recognition methods utilize 2D images. However, it has been shown that in the presence

of covariates such as pose, illumination, expression and occlusion, 3D images yield enhanced

recognition performance than their 2D counterpart [32–34, 39]. 3D images can capture facial

features in great detail which contribute to high recognition performance. However, the require-

ment of multiple cameras for developing a 3D model and the high cost of range sensors makes

it an expensive option when compared to acquiring 2D images.

RGB-D cameras such as Microsoft Kinect [48], Asus Xtion PRO LIVE [49] and Xtion 2 [100]

offer an attractive alternative to expensive 3D imaging. These cost-effective sensors provide

RGB-D images that may be used in controlled surveillance scenarios. Generally, these cameras

do not provide a true 3D mesh, but the depth information is provided in the form of a depth

map which gives per-pixel depth value of the scene. It uses an IR (Infrared) camera and an IR

projector for capturing the depth information of a scene. A speckle dot pattern is cast by the IR

projector on to the scene, which is captured by the IR camera in the form of reflected IR speckles.

This method of capturing depth is known as structured-light 3D surface imaging [50]. The

presence of an extra depth sensor in a sensor allows capturing information from both RGB and

depth sensor simultaneously [101]. Although this depth map does not provide a very accurate

23
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((A))

((B))

FIGURE 2.1: RGB and depth images (upper row: RGB images, lower row: depth images) in
controlled conditions (a) IIITD RGB-D database [35] and (b) Eurecom dataset [99]).

distance of each pixel from the sensor but researchers have shown [37, 102] that, it can be

combined with RGB information to enhance the performance of face recognition algorithms.

This has led to the development of several RGB-D based face recognition methods in constrained

scenarios [38–44, 103–105]. Recently, a detailed study of representative fusion schemes have

been performed by Cui et al. [106]. Figure 2.1 shows some RGB images and their corresponding

depth maps acquired in constrained scenarios. In addition to face recognition, RGB-D images

have also been utilized for several other applications such as face detection [52], object detection

and segmentation [53], object recognition [54], 3D modeling, gender recognition [56], object

discovery [57], human action recognition [58], head pose estimation [59, 107], and face anti-

spoofing [60].

Li et al. [38] presented one of the first methods for RGB-D face recognition. They utilized

the depth map to crop the face from the RGB-D image captured by the Kinect sensor. A set of

preprocessing operations like pose correction and filling of missing data using facial symmetry

is performed. Thereafter, Discriminant Color space transform [108] is applied and three color
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FIGURE 2.2: RGB-D images (upper row: RGB images, lower row: depth images) with large
standoff distance in surveillance scenarios (Kasparov database [114])

channels are concatenated into a single vector. Face matching is performed using a Sparse Rep-

resentation classifier [10]. Ciaccio et al. [109] proposed an RGB-D face recognition algorithm

where images of different poses were rendered from the RGB-D face images. Thus, multiple

face images were generated even though the gallery contained only one RGB-D image per sub-

ject. Face representations were generated using a combination of Local Binary Patterns (LBP)

and the covariance descriptor [110]. A probabilistic integration scheme was proposed for face

matching. Segundo et al. [111] proposed an RGB-D face recognition algorithm for continuous

face authentication. They used the iterative closest point (ICP) method to normalize the face

followed by Histogram of Oriented Gradients (HOG) features for face matching. Goswami et

al. [39] proposed an RGB-D image descriptor based on saliency and entropy. Entropy map is

extracted from the depth image and both entropy and saliency map are extracted from RGB im-

age. Thereafter, HOG features were computed on them and face identification was done using a

random decision forest classifier.

Hsu et al. [112] proposed a 3D reconstruction based approach followed by sparse representation

based classifier for RGB-D face recognition. The proposed 3D reconstruction method works

in two stages. The first stage handles the corrupted depth map captured. In the second stage,

an iterative face surface estimation approach was proposed. Hayat et al. [44] proposed a block

based covariance matrix representation for RGB-D face recognition which is used to model

images in a subset on Riemannian manifold (Lie group). SVM is used for classification on

each subset of the Lie group. The results from all these subsets are combined using a fusion

algorithm. Xu et al. [113] formulated RGB-D face recognition as a distance metric learning task

with privileged information. The depth images are treated as privileged information during the

training process. Using this approach, a Mahalanobis distance is learned, which is used for face

verification.

Li et al. [43] proposed Multi-channel Discriminant Transform (MDT) which was applied on
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FIGURE 2.3: Block diagram illustrating the steps of the proposed algorithm. In the training
block, the representations are learned using the Stacked Mapping Model (SMM) and Joint Hi-
erarchical Feature Learning (JHFL) Model. In the testing phase only the RGB image is used to
generate representations from the SMM and the JHFL models which are used for identification

by trained neural network classifier.

both the RGB image and the depth map for face recognition. A Multi-channel Weighted Sparse

Coding (MWSC) method computes a weight mask over multiple data channels for finding the

invariance property of the channels to imaging conditions. Chowdhury et al. [51] presented an

RGB-D face recognition algorithm which uses a neural network to reconstruct depth images

from RGB images. It utilizes the reconstructed depth images to train a neural network classifier

for face identification. Recently, Jiang et al. [115] proposed an approach for training a deep

learning model for RGB-D face recognition utilizing facial features in an attribute-aware loss

function.

A large number of algorithms have been proposed for RGB-D face recognition in constrained

environments. However, most of the real world scenarios where face recognition systems are

deployed are unconstrained environments. In the last few years, face recognition systems have

been heavily deployed [116] for surveillance applications and CCTV cameras have been in-

stalled in several public places to facilitate it. However, RGB-D face recognition in uncon-

strained surveillance scenario is challenging. Surveillance cameras need to operate under vary-

ing illumination conditions. The standoff distance of the subject from the camera is usually

large. In addition to this, other covariates such as pose, expression and occlusion, are also intro-

duced. As shown in Figure 2.2 when an RGB-D face image is acquired from a larger standoff

distance (more than 2 meters) the depth map acquired is of very poor quality. Due to this, the

performance of conventional RGB-D face recognition algorithms on such RGB-D images would

be severely affected. It has been shown in [51] that a conventional RGB-D face recognition al-

gorithm [35] which gives excellent performance on constrained RGB-D images (Figure 2.1(a))

performs poorly when applied on RGB-D images (acquired under surveillance conditions) of

the Kasparov database [114] (Figure 2.1(b)).

In this research, as shown in Figure 2.3, we present a novel RGB-D face recognition algorithm
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which learns a mapping from RGB to depth data using a neural network based mapping model

termed as the Stacked Mapping Model (SMM). This mapping model learns the representation of

RGB and depth data in its hidden layers. We learn another level of representation on the features

learned by the mapping model using the proposed Joint Hierarchical Feature Learning (JHFL).

This enables us in combining representations learned by the SMM into a shared representation

of RGB and depth during training. During testing we use only RGB images to generate the

shared representation of RGB and depth. Neural network classifier is then utilized for face

identification. Since the proposed algorithm does not use the depth image during testing, the

poor quality depth map acquired in a surveillance scenario would not affect its performance.

We evaluate the proposed algorithm using two real world MS Kinect based RGB-D databases,

IIITD RGB-D and Kasparov. The research contributions of this work can be summarized as:

• We present RGB-D face recognition algorithm which does not need depth images while

testing. This makes our algorithm suitable to surveillance scenarios where the captured

depth image by sensors like Kinect [48] are expected to be of poor quality.

• We present a stacked mapping model, which maps RGB data to depth data. We show that

such a mapping network can be utilized to learn shared representation of RGB and depth

data by putting together the representation from different layers of this mapping model

into a hierarchical representation learning architecture.

• We achieve state-of-the-art (SOTA) identification accuracies in two RGB-D face recogni-

tion datasets, namely the IIITD RGB-D [35] and Kasparov [114] datasets.

2.2 Stacked Mappping Model (SMM)

The proposed Stacked Mapping Model (SMM), is a multi layer neural network model which

learns a mapping from RGB to depth images. In this mapping process, the model learns a fused

representation of both the modalities in its hidden layers. Once trained, the weights of the SMM

is utilized to extract a representation which encodes both RGB and depth information.

2.2.1 SMM with One Hidden Layer

The proposed SMM is composed of an input layer, one or more hidden layers and an output

layer. For simplicity, we first formulate the model with one-hidden-layer which is then extended

for multiple layers. Figure 2.4 shows the functioning of SMM model with single hidden layer.

Let XR and XD be the unlabeled training data from two different (but registered) modalities,
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FIGURE 2.4: The Stacked Mapping Model (SMM) with one hidden layer
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(ground truth). Using these training samples we train the proposed stacked mapping model to

learn a mapping R : XR −→ XD with a help of hidden layer representation H . Let {W1, b1}
be the weights and bias of network between input XR and hidden layer and {W2, b2} be the

weights and bias between hidden layer and output X̂D. The hidden layer representation H can

be expressed as,

H = φ(W1.XR + b1) (2.1)

where, φ is the activation (sigmoid) function. In the output layer, depth map X̂D is estimated as

follows:

X̂D = φ(W2.H + b2)

= φ(W2.φ(W1.XR + b1) + b2)
(2.2)

The optimization of entire network is governed by minimizing the difference between estimated

depth map X̂D and actual depth map XD using following loss function,

argminθ(||XD − X̂D||22 + λR) (2.3)

Expanding Equation 2.3 using Equation 2.2,

argminθ(||XD − φ(W2.φ(W1.XR + b1) + b2)||22 + λR) (2.4)
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FIGURE 2.5: The Stacked Mapping Model (SMM) with multiple hidden layer.
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FIGURE 2.6: Training the Stacked Mapping Model (SMM): Training the SMM in (a) with 3
hidden layers (L2, L3 and L4) in a stacked fashion.

where, λ is the regularization parameter, R is the regularizer, and θ is the set of parameters

{W1,W2, b1, b2}. Using the proposed mapping model, weights W1 provides RGB (texture) rich

information, whereas, weights W2 provides features which are depth rich.

2.2.2 SMM with Multiple Hidden Layers

The proposed SMM model can be extended to multiple layers by adopting the stacked training

approach which is similar to Stacked Denoising Autoencoders (SDAE) [117]. A multi-layer

SMM with i hidden layers will contain k stacked networks where i = 2k − 1. We illustrate the

training of an SMM with 3 hidden layers (i = 3) which contains two stacks (k = 2). As shown

in Figure 2.6, a network with 3 hidden layers (L2, L3, L4) can be trained in two steps, training

one stack in each step. Each stack can be viewed as a separate network with one input layer, one

output layer and one hidden layer.

Training Stack 1: The hidden layer for the first stack is given by

H1 = φ(W1.XR + b1) (2.5)

wherein, φ is the sigmoid function. As shown in Figure 2.6, W1 and b1 are the weights and

biases between the input layer (L1) and hidden layer (L2) (for the first stack), respectively. The

output layer (L5 in Figure 2.6) for the first stack can be written as,
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X̂D = φ(W4.H1 + b4)

= φ(W4.φ(W1.XR + b1) + b4)
(2.6)

such that

argminθ(||XD − X̂D||22 + λR1) (2.7)

expanding Equation 2.7 using Equation 2.6 we get,

argminθ(||XD − φ(W4.φ(W1.XR + b1) + b4)||22 + λR1) (2.8)

Thus λ is the regularization parameter, R1 is the regularizer, and θ is the set of parameters

{W1,W4, b1, b4}.

The hidden layer for the second stack is given by

H2 = φ(W2.H1 + b2) (2.9)

where, φ is the sigmoid function. As shown in (Figure 2.6), W2 and b2 are the weights and

biases between the layer L2 and layer L3 (for the second stack), respectively. The output layer

(given by L4 in Figure 2.6) for the second stack is given by,

Ĥ1 = φ(W3.H2 + b3)

= φ(W3.φ(W2.H1 + b2) + b3)
(2.10)

such that

argminθ(||H1 − Ĥ1||22 + λR2) (2.11)

expanding Equation 2.11 using Equation 2.10 we get,

argminθ(||H1 − φ(W3.φ(W2.H1 + b2) + b3)||22 + λR2) (2.12)
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In the above equation θ represents the set of parameters given by {W2,W3, b2, b3}, λ repre-

sents the regularization parameter and R2 is the regularizer. Thus, the second stack learns a

reconstruction of H1 by training the weight matrices {W2,W3, b2, b3}.

We have applied both l1−norm and l2−norm regularization on the weight matrix for learning

the SMM stacks. The outer layers are learned in the first stack directly on RGB and depth data.

Thus, in the first stack the weights W1 and W4 learn richer features. On the other hand the

inner layers learned in the second stack are learned on the first layer representation (H1) of the

SMM. The l1−norm regularization is applied during training of the second stack (training W2

and W3) which enforce sparsity (R1 = ||W ||1) in these trained weight matrices. On the outer

layers (the first stack) we apply l2 regularization on the weights (R2 = ||W ||2) which prevents

overfitting (by penalizing large weights) by performing weight decay. This results in a more

robust representation.

2.2.3 The Joint Hierarchical Feature Learning (JHFL) Model

As discussed in Section 2.2.2, for an input RGB image, following representations can be ob-

tained using SMM:

• The representation obtained at the first hidden layer is given by H1 (equation 2.5)

• In the second hidden layer, the representation obtained is given by H2 (equation 2.9)

• The representation in the third hidden layer is given by Ĥ1 (equation 2.10)

• The representation (mapped depth from RGB) obtained at the output layer is given by X̂D

(equation 2.6)

The JHFL model serves the purpose of combining these features from the different layers of the

SMM into a combined representation. The most straightforward way to do that is to combine

(concatenate) all the four representations (H1, H2, Ĥ1 and X̂D) and learn a classifier on it. A

disadvantage of this is that the dimensionality of the combined representation will be too large

for the classifier. In this research, we combine the features in a hierarchical learning manner. As

shown in Figure 2.7, we concatenate the representations obtained from first two ([H1, H2]=N1)

and the last two layers ([Ĥ1,X̂D]=N2), separately, and learn autoencoders on each of them.

An autoencoder (AE) is learned on N1 and another autoencoder is learned on N2. The first

autoencoder trained on N1 has the following objective function.

argminθ(||N1 − N̂1||22 + λ1||W1||2 + λ2||W1||∗) (2.13)
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and the second autoencoder is trained on N2 which has the objective function

argminθ(||N2 − N̂2||22 + λ1||W2||2 + λ2||W2||∗) (2.14)

where, ||.||2 is the l2 norm and ||.||∗ is the trace norm on the weights W . The regularization

parameters λ1 and λ2 are used for the l2 and the trace norm regularizations, respectively. Further,

the trace norm or nuclear norm is defined as || · ||∗ =
∑

k σk, where σk is the kth singular value

of the input matrix.

The training of the autoencoder is done by stochastic gradient descent where the weight update

term is determined using ∂L
∂W where L is the loss function given by equations 2.13 and 2.14.

The partial derivative of the first two terms of equations 2.13 and 2.14 is straightforward. The

third term, the trace norm term, is not differentiable. Hence a sub-gradient is used in the gradient

descent weight update process. The sub-gradient of ||W||∗ with respect toW is given by

∂||W||∗
∂W

=W.(WTW)
−1/2

(2.15)

A more stable formulation of the above subgradient has also been formulated by using the

singular value decomposition (SVD) of W which can be expressed as

W = UΣV T (2.16)

where W ∈ Rm×n with m ≥ n. The sub-differential [118] of ||W||∗ can be expressed as

∂||W||∗
∂W

= U1:m,1:rV
T
1:n,1:r (2.17)

where r is the rank of the matrixW .

We have used a combination of tracenorm and l2 regularization in equations 2.13 and 2.14. The

tracenorm based regularization results in low ranked features. It has been attributed in several

other research papers [119, 120] that this kind of regularization is well suited for data which has

missing features. Since the inner layer (second stack of the SMM in Figure 2.6 ) is regularized

using l1 norm on the weights (from Section 2.2.1), most of these features will be very close to

zero. In such cases, the tracenorm based regularizer is effective since such sparse features lie
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FIGURE 2.7: Proposed RGB-D face recognition approach using information fusion across
feature and score levels of SMM and the JHFL models.

on a much lower dimensional manifold. This enables the JHFL model to learn a more compact

representation.

2.2.4 Fusion and Classification

As formulated in Section 2.2.3, we utilize the representations H1, H2, Ĥ1 and X̂D (represen-

tations from the proposed SMM) to further learn features (AE on N1 and AE on N2) in the

JHFL framework. Features learned by the AE on N1 and AE on N2 are denoted as FN1 and

FN2 , respectively. As shown in Figure 2.7, the features learned by the two autoencoders on the

hidden layer representations of the SMM (denoted as FN1 and FN2), are individually utilized to

train neural network classifiers for identification. The scores of these classifiers are combined

using weighted score fusion, i.e. SN1+N2 .

In addition to the features learned by the SMM, single-hidden-layer autoencoders (AE) are

learned on RGB and depth data separately, known as the auxiliary RGB and depth models in

our framework. These models learn features/representations directly from the RGB and depth

data and complement the features learned by the JHFL framework. Individual classifiers are

trained on the representations learned by the autoencoders on raw RGB and depth (Frgb and Fd,

respectively). The scores of these classifiers are combined (denoted as Srgb+d) using weighted

score fusion. Finally, the scores obtained by weighted fusion of the scores Srgb+d and SN1+N2

are utilized for face identification. In other words, the scores obtained from classifiers trained

on the JHFL features and the scores from classifiers trained on the features obtained from the

auxiliary models are fused at multiple levels using weighted score fusion.

2.3 Database and Experimental Protocol

This section presents the databases and experimental protocols used to show the efficacy of the

proposed algorithm along with implementation details.
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TABLE 2.1: Details of databases used and protocol for RGB-D face recognition.

Database Classes Images Image size Protocol
RGB Depth Training Testing

Eurecom [99] 52 728 256× 256 256× 256 728 -
IIITD RGB-D [35] 106 23025 variable variable 9210 13815
Kasparov [114] 108 62120 variable variable 31060 31060

2.3.1 Databases

The results are demonstrated on different databases. The database characteristics are described

below and the statistics are summarized in Table 2.1.

The IIITD RGB-D database [35] contains RGB and depth images of 106 subjects. The total

number of images are 4605, and are captured in two sessions using two different sensors namely

the Microsoft Kinect 1 and OpenNI SDK. The resolution of each image is 640 × 480. The

number of images per subject varies between 11 and 254.

The Kasparov database [114] is collected in surveillance scenarios using the Kinect version 1

and 2 cameras. The subjects are captured at varying distances from 1 to 5 meters under semi-

controlled illumination, uncontrolled occlusion, pose and expression. Detected and cropped

face images and depth maps from the video frames of 108 subjects are provided in the dataset.

For our experiments we have used the frames of the videos captured using the Kinect v1 sensor

since it is relatively easier to detect and align faces in these videos. These RGB videos have a

resolution of 1920×1080 and that of the depth videos is 512×424. The total number of images

used in our experiments are 62, 120.

The EURECOM database [99] is prepared with the Kinect version 1 sensor and comprises

RGB and depth images of 52 subjects (38 males and 14 females). The cameras are placed at

a fixed distance of 1 meter from the subject. The data is acquired in 9 different variations of

occlusion, illumination, pose and expression. As shown in Table 2.1, this database is only used

for training the models.

2.3.2 Experimental Protocol

The protocol and implementation details are divided into three different parts: (i) training the

Stacked Mapping Model (SMM), (ii) training the Joint Hierarchical Feature Learning model

(JHFL), and (iii) training classifiers for face identification.

Learning the SMM: The SMM model is trained using the complete EURECOM [99] dataset

along with the training partition of the IIITD RGB-D [35] dataset. These two databases contain
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728 and 9210 RGB and depth (training) images, respectively. For effective training, data is

augmented with image flipping and intensity variations of the RGB images. After augmentation,

the training dataset size increases to 728× 3 + 9210× 3 = 29814. For performing experiments

on the Kasparov [114] dataset, we use 50% of the data (pairs of RGB and depth images) for

fine-tuning the SMM model. Since the SMM model is pre-trained using the training data of the

IIITD RGB-D dataset, we do not fine-tune it for evaluation on this dataset.

Along with SMM model, additional autoencoders from RGB and depth data are also trained

to learn two auxiliary models as illustrated in Section 2.2.4. These auxiliary models are pre-

trained on the 29, 814 images (as explained above) and are fine-tuned on the training images of

the respective datasets (IIITD RGB-D or Kasparov) on which evaluation is performed.

Learning JHFL Model: The 29, 814 pairs of RGB and depth images that are used in learning

the SMM are also utilized to learn the next level of representations in the JHFL model. However,

only RGB images are required to learn the representations in the JHFL model. For the Kasparov

dataset [114], we use 50% of the data (RGB images) for fine-tuning the JHFL model. The fine

tuning is done in an unsupervised manner.

Training Classifiers for Identification: Neural network classifiers are trained on the features

obtained on the JHFL and the auxiliary models. In order to train these classifiers we utilize the

training data (Table 2.1) for the IIITD RGB-D [35] and the Kasparov [114] databases, respec-

tively. As illustrated in Section 2.2.4, the scores from these classifiers are then fused for face

identification.

Testing Protocols: To report testing performance, the (unseen) test partition of each dataset is

utilized. We need only RGB images during testing. The detailed training and testing split for

each database is outlined in Table 2.1.

2.3.3 Implementation Details

As illustrated in Section 2.2.2, the Stacked Mapping Model has 3 hidden layers. To reduce

the dimensionality of the input, the RGB images are converted to grayscale. For training the

SMM, the RGB and the depth images (of the data that is used to train the SMM) are resized to

64 × 64. Thus, the dimensionality of the input and output layers of the SMM are 4096 each.

The dimensionality of the hidden layers are 2048, 1024, and 2048, respectively. The sigmoid

activation function is used for training the SMM. The value of the regularization coefficient (λ)

for training stack 1 and stack 2 (Figure. 2.6) of the SMM are 0.26 and 0.12, respectively. The

JHFL model comprises of two autoencoders (AE) which are trained on the representations of the

SMM. Each of the AEs has 1 hidden layer, which is trained using the tanh activation function.
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TABLE 2.2: Comparison with SOTA methods for Rank 1 identification accuracies (%) of RGB-
D face recognition

Method Database
IIITD RGB-D [35] Kasparov [114]

Goswami et al. [35] 98.74 52.38
Chowdhury et al. [51] 98.71 67.77

Multimodal Learning [121] Multimodal 1 97.63 41.95
Multimodal 2 94.59 39.32

Proposed 99.61 72.98

The two regularization coefficients (λ1 and λ2) used in the JHFL are 0.22 and 0.08, respectively.

The neural network classifiers for face identification have 2 hidden layers and are trained using

the stochastic gradient descent optimizer.

2.4 Experiments

The performance of the proposed approach is compared with existing state-of-the-art (SOTA) al-

gorithms [35, 51, 102, 103], for RGB-D face identification, and deep multimodal learning [121].

On the IIITD RGB-D database [35], RISE [35] features have shown excellent results and for the

Kasparov database [114], the results presented by Chowdhury et al. [51] are the best reported in

the literature. In addition to this, we compare the performance of the proposed algorithm with

Cui et al. [102] and Zhang et al. [103], which are recent Convolutional Neural Network (CNN)

based RGB-D face recognition algorithms.

Since the proposed method can be considered as a multimodal fusion algorithm, the results

are also compared with the deep multimodal learning technique by Ngiam et al. [121]. This

algorithm has the scope of testing using data of only one modality. It uses an autoencoder to

learn shared representation of two different modalities. There are two different ways in which

this algorithm can be trained/tested. The first method (multimodal 1 in Table 2.2) is by using

both the modalities during training, and testing using data of both modalities for each sample.

The second method (multimodal 2 in Table 2.2) is using half of the training data to train with

both the modalities and using the other half for training with only one modality. This is done

so that during testing even if one of the modalities is missing, classification can be performed.

Along with evaluating the performance of the proposed algorithm, the effectiveness of individual

components of the SMM and JHFL are also evaluated through an elaborate ablation study.

2.4.1 Results and Analysis

According to the experiments performed, the results are divided into two sections. First, as

shown in Table 2.2, we illustrate the comparative results of the proposed algorithm with other
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FIGURE 2.8: Comparing the proposed algorithm with other methods, including recent CNN
based architectures on IIITD RGB-D [35] database.

RGB-D face recognition and multimodal learning algorithms. Next, Table 2.3 shows the results

obtained by using features from each component of the SMM and JHFL models and fusion of

their components. The results are discussed below.

Comparison with existing RGB-D Face Recognition and Multimodal Learning Algorithms:
We have compared the results of the proposed algorithm with Goswami et al. [35] and Chowd-

hury et al. [51], which have reported the best results on the IIITD RGB-D and Kasparov databases,

respectively (Table 2.2). In addition to this, we have also compared the results of the proposed

algorithm on the IIITD RGB-D database with recent CNN based methods [102, 103]. The algo-

rithms used for comparison have been trained and tested using consistent protocols as discussed

before. Figure 2.8 shows the comparative results of the proposed algorithms with SOTA RGB-D

face recognition algorithms, where it can be observed that the proposed algorithm outperform

the existing RGB-D face recognition algorithms including recent CNNs based methods (Cui et

al. [102] and Zhang et al. [103]).

Table 2.2 also shows the relative performance of multimodal deep learning [121] and the pro-

posed JHFL model. This comparison is performed to showcase the effectiveness of our approach

with respect to Ngiam et al. [121], which was one of the first methods on multimodal deep learn-

ing. They proposed autoencoder based architectures for learning a shared representation from

audio and video data. The proposed method is also presented as an algorithm for learning a

shared representation from RGB and depth data. The proposed algorithm outperforms both the

variants of multimodal learning (illustrated in Section 2.4) by a significant margin, especially on

the Kasparov database.
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TABLE 2.3: Rank 1 identification accuracies (%) of RGB-D face recognition on individual
components of the SMM and JHFL models.

Model Features Databases
IIITD RGB-D Kasparov

Raw Data Raw RGB 95.03 53.69
Raw Depth 89.20 18.90

Autoencoder
AE on RGB (Frgb) 98.46 64.04
AE on Depth (Fd) 95.75 19.43
Fusion of Frgb and Fd (Srgb+d) 99.16 65.10

Stacked Mapping
Model

Layer 1 (H1) 98.62 66.32
Layer 2 (H2) 97.86 65.38
Layer 3 (Ĥ1) 98.42 63.24
Full Reconstruction (X̂D) 97.14 63.82

Joint Hierarchical
Feature Learning

AE on N1 (FN1
) 99.38 68.51

AE on N2 (FN2
) 97.02 53.36

Fusion of FN1
and FN2

(SN1+N2
) 99.44 69.14

Proposed Fusion of Srgb+d and SN1+N2
99.61 72.98

((A)) ((B))
FIGURE 2.9: Visualizations of different representations used in the proposed method, (a) IIITD
RGB-D database [35], (b) KaspAROV database [114], where row 1: RGB image (in grayscale),
row 2: Captured depth image, row 3: Visualization of mapped depth (full reconstruction),

shows the properties of the reconstructed depth.

Ablation Study on Individual Components of SMM and JHFL: Face identification is per-

formed with features extracted from different layers of the SMM and JHFL, individually. The

representations obtained from the SMM (H1, H2, Ĥ1 and X̂D in Section 2.2.2) are used as

features and a neural network classifier is trained for face identification. Similarly, we perform

face identification on the representations obtained from the JHFL model as well. Furthermore,

we perform fusion of JHFL features with features obtained from raw RGB and depth data, as

outlined in section 2.2.4.

As shown in Table 2.3 it may be observed that the individual layers of the SMM have identifi-

cation accuracies lower than that of the JHFL model. This demonstrates that the JHFL model

is able to effectively combine the representations provided by the layers of the SMM. Features

from the JHFL model are fused (SN1+N2 in Table 2.3) and the rank 1 identification accuracies
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on the same are 99.44% and 69.14% for IIITD RGB-D and Kasparov databases, respectively.

We also perform face identification using the representations obtained from the auxiliary mod-

els trained using autoencoders (AE) on RGB (Frgb in Table 2.3) and depth (Fd in Table 2.3)

data. Finally, the proposed algorithm which combines the features learned from both JHFL and

auxiliary models (Fusion of Srgb+d and SN1+N2), yields best results on both the databases. It

yields rank-1 identification accuracy of 99.61% on the IIITD RGB-D database, and 72.98% on

the Kasparov database.

2.4.2 Analysis of SMM and JHFL

In this section we analyze and discuss the individual components of the proposed algorithm.

Analyzing Results of SMM: Figure 2.4 illustrates the architecture of the SMM, which is a

neural network that maps RGB (in grayscale) data to depth. This model is trained on pairs of

RGB and depth images captured from the same camera position. As illustrated in Section 2.2.2,

SMM can be used to extract different representations of RGB (grayscale) data (Figure. 2.9)

and classifiers trained on these layers are used for identification. From the results reported in

Table 2.3, it can be inferred that:

• The accuracies obtained from the representation of the different layers of the SMM are

higher than those obtained by training on raw RGB or depth.

• Analyzing the visualizations of the SMM weights W1 and W4 in Figure 2.10, shows that

W1 exhibits RGB like features and W4 looks more like features learned from depth. This

gives an intuition that different layers of the SMM learn different kinds of features. The

weights of the first and second layers learn RGB-like features and the weights of the layers

further away (near the output layer) learns depth like features. This gives an indication

that the initial layers of the SMM learns representation of RGB information while the

later layers learns the same from depth information. As the layers of the SMM seem to

learn different kinds of features, this gives us a rationale of combining these features from

different layers of the SMM.

• The results of face identification on the features of the individual layers of the SMM

(Table 2.3) exhibit the comparative performance of its different layers. It is commonly

believed (also evident from the accuracies from raw RGB and depth features in the same

table) that RGB images contain much more discriminative information than depth im-

ages. It is observed that the representation obtained from the initial layers of the SMM

yields higher accuracy than that from the last layer across both databases. Since the ini-

tial layers provide RGB like features, the classification accuracies achieved from them is
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((A)) ((B))

FIGURE 2.10: Visualization of (a) first layer weights (W1) , (b) last layer weights (W4) of the
SMM. The first layer weights have visually detectable RGB like features and the last layer has

depth like features

higher than the last layer which provides depth like features. In addition to the visualiza-

tions (Figure 2.10), this also confirms our previous observation that layer 1 features have

more properties of RGB and that of the last layer have more properties of depth.

Analysis of Results obtained from the JHFL model: The SMM layers learn different kind of

features and combining them should be useful for face identification. The rationale for using

JHFL model was also given in the beginning of Section 2.2.3. To follow up on that, we present

the analysis of results from the JHFL models as follows:

• From Table 2.3, it can be seen that combining the features from the SMM layers and

score fusion with other auxiliary AE models on RGB and depth results in higher identi-

fication accuracies. This also shows that indeed the different layers of the SMM provide

“additional” information which results in improved performance after fusion.

• The JHFL model illustrated in Figure 2.7 can also be used for databases that have both

RGB and depth images. However, during testing only RGB images have been used from

the RGB-D datasets. It also shows that the proposed algorithm is not heavily dependent

on the presence of depth images and that RGB images alone is sufficient for the algorithm

to perform face recognition in real-world settings.
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FIGURE 2.11: CMC curves for face identification experiments on the (a) IIITD RGB-D
Database and (b) Kasparov database.

2.5 Summary

This paper presents a novel representation learning algorithm which can learn features from

RGB and depth data and can be tested using only RGB images. The proposed algorithm com-

bines heterogeneous data (RGB and depth) and features from different modalities and learns a

shared representation for recognition. Visualization and results of our algorithm show that the

model learns shared representation from the two modalities. The proposed algorithm is evalu-

ated on RGB-D face recognition in both controlled and surveillance scenarios. It is shown that

the proposed algorithm produces state-of-the-art results on RGB-D databases without using any

depth image during testing.



Chapter 3

SUPREAR-NET: Supervised
Resolution Enhancement and
Recognition Network

3.1 Introduction

Digital surveillance has become an integral part of law enforcement. For instance, in 2018,

the British Security Industry Association estimated that there are around 6 million surveillance

cameras [16] installed in the United Kingdom and an average person is caught in such cam-

eras around 70 times a day [122]. Similarly, in the United States, the FBI uses an automated

facial recognition system as a part of their Next Generation Identification (NGI) system [17],

which processes the images captured by the surveillance cameras throughout the country. These

surveillance cameras are installed in public places, government and private buildings, railway

stations, bus terminals and so on. They are placed at a large standoff distance from the subjects

and have high field of view. Since these cameras cover a large area, the effective resolution and

quality of the captured face images are very low (Fig. 3.1). In terms of face recognition, the

query images captured from the surveillance cameras are known as probes and the background

database to which the probe images are matched is known as the gallery. In this scenario,

the gallery images are usually of high resolution with proper illumination captured under con-

strained settings, collected from government documents such as passport, driver’s license and

so on. On the other hand, the probe images captured using the surveillance cameras are of much

lower resolution and quality. As shown in Fig. 3.1, matching such low resolution probe images

to a high resolution gallery, is known as cross-resolution face recognition.

Cross-Resolution face recognition can be majorly approached at three levels: (1) Image level, (2)

Feature level and (3) Classifier level. At the image level, researchers have generally attempted

42
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Match

Low Resolution Probe

High Resolution Gallery

FIGURE 3.1: CCTV image of the suspects of the 2016 Brussels bombing attack, right frame:
the modality gap of the low resolution probe and the high resolution gallery image of the sus-

pect.

super-resolution [123–126] (Fig 3.12) and face hallucination based techniques [61, 127–129].

Such approaches primarily attempt to improve the image quality and resolution in order to im-

prove the recognition performance. Feature level approaches optimize the parameters of a map-

ping function in order to project the features of low resolution probe images and high resolution

gallery images to a common subspace, where the distance between images of the same sub-

jects/classes are lower than the distances between images of different subjects/classes. Most of

these algorithms have utilized discriminative learning [82, 83, 130–132] for the same. Classi-

fier level approaches [23, 133, 134] have also been designed to match faces in cross-resolution

scenarios. Such approaches learn the parameters of a classifier or create an optimum ensemble

of classifiers so that cross-resolution matching can be performed efficiently.

Recent success of Generative Adversarial Networks (GANs) [63, 135] for noise to image gener-

ation have motivated researchers to use it for image to image translation and impressive results

have been obtained [65, 70, 71, 136]. A vanilla image to image translation framework [65] using

GANs consist of a generator which is provided with an image of the source domain (low resolu-

tion probe image in our case) to transform it into an image of the target domain (high resolution

gallery). While these methods [65, 70] can produce photo-realistic and visually appealing im-

ages, they do not take into consideration that the class of the generated samples should remain

consistent with the one that was given as input to the generator. This makes such unsupervised

image to image translation methods unsuitable for improving the resolution and quality of low

resolution probe images without distorting the discriminative information in those images cap-

tured by surveillance cameras for face recognition. Some recent research on semi-supervised

GANs [137, 138] have shown that using the discriminator as a classifier (in addition to its usual

task) yields better results than a vanilla GAN. However, such studies are not utilized for image

to image translation, where, as shown by our approach, an additional classifier gives superior
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results compared to a multi-task discriminator, as far as the recognition of the generated images

are concerned.

3.1.1 Research Contributions

This research focuses on generating high resolution images corresponding to the low resolution

ones, which can then be utilized for matching with a high resolution gallery. Since this task

requires two specific objectives namely, (1) Enhance the image resolution and quality, and (2)

Retain the discriminative information present in the original low resolution image, we propose

a combination of image level and feature level framework for cross resolution face recognition.

At the image level, a Supervised Resolution Enhancement-GAN (SURE-GAN) (Fig. 4.4) is

proposed which contains a classifier in addition to the generator and the discriminator. The

generator takes in an image of the source domain (low resolution probe) and outputs another

image in the target domain (high resolution). The classifier provides feedback to the generator

in the form of cross-entropy loss on the output image, so that in the process of translation, im-

portant discriminative information in the source domain image is not compromised. Thereafter,

at the feature level we utilize a heterogeneous quadruplet loss (HQL) based algorithm to learn a

discriminative model for cross-resolution face recognition. During testing, the generator of the

SURE-GAN is used to synthesize high resolution face images from low resolution ones, which

are fed into the discriminative model trained by the heterogeneous quadruplet loss (HQL) for

face recognition. Since this component directly learns a discriminative embedding space for

matching, it implicitly works at both the feature and the classifier level. Fig 4.4 illustrates the

proposed SUPREAR-NET. The key contributions of this work are as follows:

1. A Supervised Resolution Enhancement-GAN (SURE-GAN) is proposed for image to im-

age translation. The proposed SURE-GAN can transform images from the source domain

(low resolution) into the target domain (high resolution) without corrupting the discrim-

inative information in the source domain (low resolution) images.

2. A heterogeneous quadruplet loss metric is proposed which is utilized to train a discrimi-

native model for cross resolution face recognition using the synthesized images from the

trained generator of the SURE-GAN. Thus, we propose an end to end Supervised Reso-

lution Enhancement and Recognition (SUPREAR-NET) network which works both at the

image level and at the feature level.

3. The proposed SUPREAR-NET is utilized for generating high resolution images from

low resolution ones followed by matching them with the gallery on three publicly avail-

able face databases, namely FaceSurv [4], CMU MultiPIE [139], and NIST MEDS [1].

The proposed SUPREAR-NET outperforms other existing supervised [140] and unsuper-

vised [65, 141] GAN based image to image translation methods on all three databases.
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3.2 Related work

This section is divided into two heads: (1) Cross-Resolution Face recognition and (2) GAN

based image to image translation.

3.2.1 Cross-Resolution Face Recognition

As illustrated in Section 3.1, cross-resolution face recognition may be approached at differ-

ent levels. Superresolution based approaches can be utilized for an image level transformation

of the low resolution probe images for cross-resolution matching. Zhao et al. [123] proposed

a superresolution algorithm using wavelet-domain hidden Markov tree. Niu and Nguyen [124]

proposed an approach for the same using support vector regression. Yang et al. [128] proposed a

face hallucination algorithm using sparse coding via Non-negative Matrix Factorization. Jiang et

al. [129] utilized a locality-constrained representation based approach for translating low res-

olution face images into a higher resolution image. Kang et al. [12] and Maeng et al. [142]

proposed a manifold learning based image denoising algorithm to improve the quality of the

low resolution images for cross-resolution face recognition. Recently, Yang et al. [143] used

an attribute-embedded upsampling network which consists of a discriminative network and an

autoencoder for face super-resolution. Singh et al. [144] proposed a Synthesis via Hierarchical

Sparse Representation (SHSR) algorithm for generating high resolution face images from low

resolution ones for recognition. Several algorithms have also been proposed for face recognition

in surveillance scenarios [114, 145–147].

Feature level approaches have been one of the most popular algorithms for cross-resolution face

recognition. Lee et al. [148] proposed a support vector data description method for low resolu-

tion face recognition. Li et al. [130] formulated an algorithm for projecting low and high reso-

lution face images into a common subspace using a coupled locality preserving mapping based

approach for matching cross-resolution face images. Biswas et al. proposed algorithms [82, 83]

for recognition of low resolution faces based on discriminative learning via a multidimensional

scaling based approach. Zou and Yuen [131] proposed a relationship based superresolution algo-

rithm for very low resolution face recognition problem, for face images which are smaller than

16×16. Mudunuri and Biswas [84] utilized a coupled discriminative dictionary based algorithm

for the same. Klare et al. [134] proposed a discriminant analysis based classification approach

using kernel prototype similarities for heterogeneous face recognition. Ghosh et al. [149] used

fusion of features from Restricted-Boltzmann Machines and DSIFT for face identification from

low resolution probe images.
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Some classifier level approaches have also been proposed for cross-resolution matching of face

images. Bhatt et al. [23, 133] formulated a co-transfer based learning approach where the knowl-

edge learnt from high resolution images is transfered for matching low resolution images to high

resolution gallery. The algorithm combined co-learning and transfer learning to update the clas-

sifier’s decision boundary for cross-resolution face matching. Lu et al. [150] proposed a cou-

pled ResNet model, consisting of a trunk network and two branch networks for low resolution

face recognition. A discriminative multidimensional scaling based algorithm was proposed by

Yang et al. [151] for the same.

3.2.2 Image to Image Translation using GANs

There have been significant advances in the investigation of Generative Adversarial Networks

and are applied in various applications such as image generation [66–69], image to image trans-

lation [65, 70, 71], social network analysis [72, 73] image superresolution [74], 3D shape model-

ing [75], text to image synthesis [76], image style transfer [77, 78], and texture synthesis [79]. In

this paper, the focus is particularly on image to image translation, which is one of the most popu-

lar applications of GANs. Most image to image translation methods using GANs [65, 70, 71, 80]

can transform an image from the source domain to the target domain effectively. Isola et al. [65]

proposed one of the first image to image translation based methods using GANs. They used a

generator which received a random noise and the source domain image as input. The discrim-

inator was given a pair of images (real and fake) as input and it had to discriminate between

a real-real and a real-fake pair. This was extended in [70] by introducing a cycle consistency

loss for unpaired image to image translation. Yi et al. [71] used a dual-learning [81] based

formulation to train a GAN model for unpaired image to image translation. Recently, a fusion

based approach [152] was proposed for combining infrared and visible spectrum images using

a GAN based framework. These methods only focus on the domain transfer, and do not take

into account that important discriminative information may be distorted during the process of

domain translation.

Some supervised and semi-supervised GANs have been proposed. Salimans et al. [137] intro-

duced a semi-supervised GAN based algorithm, so that the class of the translated images can

be kept consistent with the source domain images. They used a multitask based discriminator

model, which also computed a cross-entropy based supervised loss in addition to the adversar-

ial loss. This loss was back-propagated to the generator during training. Recently, Zhang et

al. [153] have proposed a similar approach. Zhao et al. [140] proposed a supervised GAN

formulation for translating face images across different pose variations. A BEGAN [67] style

discriminator (using an autoencoder) was used in this model which was multi-tasked to produce

both the supervised and the adversarial loss. The supervised loss was computed from an inter-

mediate representation of the discriminator, the gradient of which was then back-propagated to
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FIGURE 3.2: The proposed SUPREAR-NET for cross resolution face recognition using the
SURE-GAN followed by a heterogeneous quadruplet loss based discriminative model. The
SURE-GAN contains a classifier in addition to the generator and the discriminator, which pre-
vents the generator from corrupting useful discriminative information while performing the
image to image translation (resolution enhancement) task. The transformed probe images from
the trained generator is used to match with the high resolution gallery images using the dis-

criminative model trained by the heterogeneous quadruplet loss. (best viewed in color)

the generator during training. Park et al. [154] presented a conditional image synthesis frame-

work which takes in a semantic segmentation mask and produces a corresponding real world

scene as output. Mo et al. [155] developed an instance aware image to image translation GAN

which takes in a set of instance attributes in addition to the source image. They proposed a

context preserving loss which forces the network to focus on target instances in addition to the

general scene that is to be transformed. On similar lines, Tang et al. [156] proposed an unsuper-

vised image to image translation GAN framework using an attention guided training mechanism

which disentangles the semantic object and the unwanted part of the image by using an attention

mask and a content mask during training.

3.3 Proposed Algorithm

In this section, we explain the proposed SUPREAR-NET for cross-resolution face recognition

using supervised image to image translation with the SURE-GAN. The first step is to learn the

SURE-GAN model for supervised image to image translation, followed by learning a discrimi-

native Convolutional Network (CNN) model for cross-resolution face recognition. We begin by

briefly introducing the basic formulation of GANs.
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3.3.1 Background

A GAN [63] consists of a generator G and a discriminator D, where θg and θd are the parame-

ters of the generator and discriminator respectively. The generatorG produces a synthetic image

from a noise distribution pz , and the discriminator D is trained to distinguish between a syn-

thetic image G(z) and a real image x sampled from the distribution of real images pdata. It is

formulated as follows:

minθgmaxθd [Ex∈pdata logDθd(x) + Ez∈pz log(1−Dθd(Gθg(z)))] (3.1)

TheG andD models are trained alternatively by updating the parameters. The parameter update

of the generator is given by

∇θg
1

m

m∑
i=1

[
log
(

1−Dθd

(
Gθg

(
z(i)
)))]

(3.2)

and that of the discriminator is given by

∇θd
1

m

m∑
i=1

[
logDθd

(
x(i)
)

+ log
(

1−Dθd

(
Gθg

(
z(i)
))]]

(3.3)

where, m is the size of the minibatch used. The initial model of GANs [63] allowed the gener-

ation of synthetic images from noise. The applicability of such models is in data augmentation

which has resulted in generation of large amount of training data for better and robust training

of classifiers.

Conditional GAN [64] is proposed as an extension of the original GAN model. It allows both the

generator and the discriminator to be conditioned on an extra information y which can be either

the class label of the sample or any extra auxiliary information. Such models can be formulated

as:

minθgmaxθd [Ex∈pdata logDθd(x|y) + Ez∈pz log(1−Dθd(Gθg(z|y)))] (3.4)

The conditional GAN model is formulated for image to image translation by Isola et al. [65]. It

can be modeled as a mapping function G : {p, z} → q where p and q are sets of images of the

source and target modalities respectively and z is a noise vector. It can be formulated as follows:

ϕGAN (G,D) = [Ep,k∈pdata logDθd(p,k)+

Ez∈pz ;p,x∈pdata log(1−Dθd(x, Gθg(p, z)))] (3.5)

The generator can also be conditioned on an extra constraint ϕl1 (G) which is the l1 difference

of the input images p and output images q. The final objective function of the above model is
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FIGURE 3.3: Pipeline of the proposed SURE-GAN. The discriminator model contains convo-
lution and deconvolution layers. The vertical bars denote the intermediate output of the layers
and the light blue squares (in between the vertical bars) denote the filters. The classifier takes
in the synthetic image produced by the generator and backpropagates the loss back to the gen-
erator. The discriminator is a conventional one, contains convolutional layers which helps the

generator to produce realistic images. (best viewed in color)

as follows:

G∗ = minθgmaxθd [ϕGAN (G,D) + ϕl1 (G)] (3.6)

The l1 constraint makes the output images (from the generator) consistent with the structural

properties of the target image. The drawback of such a model is that it is trained only on the

goal of transforming the image from one modality into another. As a byproduct of such a

transformation, discriminative information in the images (which are important for classifying

the image) might get distorted. Thus, a supervised version of the above model is proposed and

is utilized to train a GAN for translating face images from the source to the target modality. It

ensures that the class of the generated image is consistent with that of the input image of the

source domain.

3.3.2 Proposed Supervised Resolution Enhancement GAN (SURE-GAN)

As shown in Fig 4.4, we present a Supervised Resolution Enhancement GAN (SURE-GAN) for

translating a low resolution image to high resolution. To generate high quality images preserv-

ing the identity information, the proposed SUPREAR-NET architecture comprises a two step

framework which not only operates at the image level but also at the feature level. The proposed

SURE-GAN is illustrated as follows.

Let p = {(p1, c1) , (p2, c2) , ... (pn, cn)} and q = {(q1, j1) , (q2, j2) , ... (qm, jm)} be the labeled

data (labeled images) from the source (low resolution) and target (high resolution) domains,

respectively, where ci and ji are the class labels of images pi and qi respectively. The model

has a generator G and a discriminator D with parameters θg and θd respectively. A classifier

network C is introduced with parameters θc. The generator G takes in as input a low resolution
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image pi and a random noise zi. The output of the generator is a high resolution synthesized

image, denoted by G (pi, zi). Input to the classifier C is the high resolution synthetic image

G (pi, zi) produced by the generator. The classifier is also given the real images from the target

modality q. The objective function of the classifier can be defined as:

C (G) = E
[
log
(
P
(
Cθc

(
Gθg (p, z)

))
= c
)]

+ E [log (P (Cθc (q)) = j)] (3.7)

where p, q and z are sets of low and high resolution images and the corresponding noise vectors

in a minibatch. The proposed supervised GAN for resolution enhancement is formulated as:

ϕSGAN (G,D,C) = ϕGAN (G,D) + C (G) (3.8)

An l1 constraint on the images generated by the generator (with respect to the high resolution

images) is applied. This ensures that the generator learns to produce images which resemble the

target data distribution. It may be expressed as:

ϕl1 (G) = Ep,q∈pdata;z∈pz ‖q−G (p, z)‖1 (3.9)

Combining Equations 3.8 and 3.9, the final objective of the proposed model is:

G∗s = minθgmaxθdminθc
[
ϕSGAN (G,D,C) + ϕl1 (G)

]
(3.10)

The above formulation thus has three models namely G, D and C which are trained as shown

in Fig 3.3. The stochastic gradient descent is used for training all three models. The parameter

update for the generator is:

∇θg
1

m

m∑
i=1

[[log(1−Dθd(x(i), Gθg(p(i), z(i))))]+

[logP (Cθc(Gθg(p(i), z(i)))) = c(i)] + [||q(i) −G(p(i), z(i))||1]] (3.11)

and that of the discriminator is given by:

∇θd
1

m

m∑
i=1

[logDθd(p(i), k(i)) + log(1−Dθd(x(i), Gθg(p(i), z(i))))] (3.12)

and that of the classifier is:

∇θc
1

m

m∑
i=1

[
log
(
P
(
Cθc

(
Gθg

(
p(i), z(i)

)))
= c(i)

)]
+

E
[
log
(
P
(
Cθc

(
q(i)
))

= j(i)
)]

(3.13)
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To summarize, the proposed SURE-GAN is a supervised GAN model that uses a classifier in

addition to the generator and the discriminator. The loss of the classifier on the images produced

by the generator is back-propagated to the generator and to the classifier. In addition to this,

the loss of the discriminator is also used to update the generator weights. This ensures that

the generator produces realistic looking images of high resolution without corrupting useful

discriminative information present in the low resolution images. Algorithm 1 summarizes the

training of the proposed method.

Algorithm 1: Training for Supervised Image to Image Translation GAN
Input: p (low resolution training data), q (high resolution training data), Gθg (generator

network), Dθd (discriminator network), Cθc (classifier)
Output: Gθg ( trained generator network),Dθd (trained discriminator network),Cθc (trained

classifier network)
Parameters: n1 (epochs for pretraining ), n2 (epochs for end to end training ),θg

(parameters of G), θd (parameters of D), θc (parameters of C), λ1 (coefficient for
adversarial loss), λ2 (coefficient for classifier’s loss), λ3 (coefficient for L1 loss), m (size
of minibatch), k (number of batches)

Pre-Training of the Classifier:
1 for Epoch=1 to n1 do
2 for every minibatch, Mb=0 to k − 1 do
3 Forward pass q{Mb.m....Mb.m+m} through Cθc

Calculate Gradient and Update weights:
4 4θc = ∇θc 1

m

∑m
i=1

[
log
(
P
(
Cθc

(
q(i)
))

= j(i)
)]

5 Update weights of Cθc using4θc
end

end
End to end training of the Generator, Discriminator and the Classifier:

6 for Epoch=1 to n2 do
7 for every minibatch, Mb=0 to k − 1 do
8 Forward pass p{Mb.m....Mb.m+m} through Cθc

Calculate Gradient and Update weights:
9 Ladv = [log(1−Dθd(x(i), Gθg(p(i), z(i))))]

10 LC =
[
logP

(
Cθc

(
Gθg

(
p(i), z(i)

)))
= c(i)

]
11 LsC = E

[
log
(
P
(
Cθc

(
q(i)
))

= j(i)
)]

12 L1(G) =
[∥∥q(i) −G (p(i), z(i))∥∥

1

]
13 4θg = ∇θg 1

m

∑m
i=1 [λ1.Ladv + λ2.LC + λ3.L1(G)]

14 4θd = ∇θd
1
m

∑m
i=1

[
logDθd

(
p(i), k(i)

)
+ Ladv

]
15 4θc = ∇θc 1

m

∑m
i=1 [LC + LsC ]

16 Update weights of Gθg using4θg
17 Update weights of Dθd using4θd
18 Update weights of Cθc using4θc

end
end
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3.3.3 SUPREAR-NET for Cross-Resolution Face Recognition

The SURE-GAN presents an image level solution for cross-resolution face recognition. The

trained generator of the SURE-GAN can be utilized to translate low resolution probe images to

high resolution ones. These translated images can be used to match with high resolution gallery

images. In order to learn a discriminative embedding space where both the high resolution

gallery images and low resolution probe images can be projected, a feature level solution is

proposed. Inspired from the quadruplet loss [92], a heterogeneous quadruplet loss (HQL) is

proposed to train a discriminative model for cross-resolution face recognition.

In order to have an effective and discriminative model for matching, Chen et al. [92] proposed

the quadruplet loss method of training a deep-CNN for face matching. In this method, each

training sample is a quadruplet ( ~Xa, ~X ′a, ~Xn, ~Xk), where ~Xa is a set of images known as the

anchor, ~X ′a is the positive set and ~Xn and ~Xk are the negative sets of images. The anchor ~Xa

are images of a particular subject a, ~X ′a is another set of images of the same subject a, ~Xn are

images of any other subject n and ~Xk belongs to a different subject k where a 6= n 6= k. The

loss function is designed to ensure that the distance of the anchor images ~Xa from the positive

samples ~X ′a is lesser than the distance of the anchor from the sets of negative samples ~Xn and
~Xk.

L =

[∥∥∥f( ~Xa)− f( ~Xp)
∥∥∥2
2
−
∥∥∥f( ~Xa)− f( ~Xn)

∥∥∥2
2

+ α1

]
+

+

[∥∥∥f( ~Xa)− f( ~Xp)
∥∥∥2
2
−
∥∥∥f( ~Xn)− f( ~Xk)

∥∥∥2
2

+ α2

]
+

(3.14)

∀( ~Xa, ~Xp, ~Xn, ~Xk) ∈ ¶

where, [z]+ = max(0, z), f is the discriminative model being trained, {α1, α2} are the margin

parameters and ¶ is the set of quadruplets.

Let ~p and ~q denote sets of images from the target and source domains respectively where, ~pa and

~qa be the images of a subject a from the source and target domains respectively. In order to train

a discriminative model for matching images from the source and target domains, we generate

4-tuples (known as quadruplets) from the training set. These 4-tuples are used for training,

comprising of high resolution anchor images ~pa, low resolution positive images ~qa of the same

subject/class “a”, and two sets of low resolution negative images ~qb and ~qc of two different

subjects “b” and “c”, where a 6= b 6= c. The loss function for the heterogeneous quadruplet loss

is as follows:
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FIGURE 3.4: Illustration of the heterogeneous quadruplet loss. Images are taken from the
FaceSurv database [4].

L =
[
‖f(~pa)− f(~qa)‖22 − ‖f(~pa)− f(~qb)‖22 + α1

]
+

+
[
‖f(~pa)− f(~qa)‖22 − ‖f(~pa)− f(~qc)‖22 + α2

]
+

(3.15)

∀(~pa, ~qa, ~qb, ~qc) ∈ ¶

where ¶ is the set of quadruplets that can be prepared from ~p and ~q. The first part of the loss

function [||f(~pa)− f(~qa)||22 − ||f(~pa)− f(~qb)||22] minimizes the distance of the high resolution

anchor images ~pa and low resolution positive images ~qa of the same subject “a”, and maximizes

the distance between the same set of anchor images and the low resolution negative images ~qb of

another subject “b”. The second part of the loss function [||f(~pa)−f(~qa)||22−||f(~pa)−f(~qc)||22]
performs the same by introducing a second set of negative images ~qc. This is done in order to

improve the generalizable of the model f by increasing the inter-class distance with a different

negative class “c”. The loss function is illustrated in Fig. 3.4.

Thus, the model f trained using this heterogeneous quadruplet loss is used to match synthesized

probe images (using the trained generator of the SURE-GAN) to high resolution gallery for

cross-resolution face recognition. This depicts a solution for cross-resolution face recognition

which works both at the image (SURE-GAN) and feature level (HQL model).

3.4 Databases and Protocol

This section outlines the datasets, experimental protocol and implementation details for evalu-

ating the performance of the proposed SUPREAR-NET.



On Heterogeneous Face Recognition 54

TABLE 3.1: Details of protocol used for the experiments.

Database Probe
Resolution

Gallery
Resolution

Number of Images

Training Testing
Gallery Probe

FaceSurv [4]
128x128

128 x 128 108 576
3066

96× 96 2261
64× 64 3209

CMU
MultiPIE [139]

48× 48,
32× 32,
24× 24

128× 128 17121 238 32889

NIST
MEDS [1]

48× 48,
32× 32,
24× 24

128× 128 247 271 787

3.4.1 Datasets

The proposed framework is evaluated on three real world face datasets namely FaceSurv [4],

CMU MultiPIE [1, 139], and NIST MEDS []. The details of the databases and their correspond-

ing protocols used for the experiments are as follows:

FaceSurv: This database [4] contains videos of 240 subjects in both day and night captured

under surveillance scenarios, where each video contains at most three and at least one subject.

There are 368 daytime and 365 nighttime videos. For our experiments we have used the videos

that are captured during the day. In all the videos, the standoff distance of the subjects from the

camera vary from 1m to 10m. Every subject has three high resolution gallery images which are

captured under controlled settings in daytime from a distance of less than 1m.

The images in the database are divided into train and test sets (subject-disjoint) according to a

predefined protocol of the database (Table 3.1). The training set contains both low resolution

and high resolution images. For preparing the probe set, we divide each probe video into 3

partitions, namely when the subject is at a distance of 1-4m, 4-7m and 7-10m. Faces are detected

in each frame by the Viola Jones face detector [157]. The images in each partition are kept at

a resolution of 128 × 128, 96 × 96, and 64 × 64 respectively. The gallery images are in high

resolution (128× 128).

CMU MultiPIE: The CMU MultiPIE database [139] contains 750,000 images of 337 subjects

captured with variations of pose, illumination, and expression. A subset of the database is

used which contains 50,247 images of all the 337 subjects with variations in illumination and

expression only.

For training, images pertaining to 100 subjects are used and the images of the rest of the subjects

are utilized for testing. In the test set, one high resolution image of each subject is kept as

gallery. The probes are divided into 3 resolution variants namely 24 × 24, 32 × 32, and 48 ×
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FIGURE 3.5: Illustration of the enhancement of resolution and quality using the proposed
SURE-GAN on the images of CMU MultiPIE [139] database.

48 respectively, which are created by sub-sampling the high resolution images present in the

database. The gallery images are in high resolution (128× 128).

NIST MEDS: The Multiple Encounter Dataset (MEDS) [1] contains images of individuals with

prior multiple encounters. There are 1306 images of 518 subjects in this database, out of which

271 subjects have more than 1 image.

The probes are divided into 3 resolution variants namely 24× 24, 32× 32, and 48× 48 respec-

tively, which are created by sub-sampling the high resolution images present in the database.

The gallery images are in high resolution (128× 128).

3.4.2 Implementation Details

After training the SURE-GAN and the discriminative model (using the Heterogeneous Quadru-

plet loss (HQL)) on the training set (pairs of low and high resolution images), the trained gener-

ator of the SURE-GAN is used to transform low resolution face images of the test set (probes)

into their high resolution counterparts. Thereafter, we use these transformed probe images for

face identification and verification experiments using the discriminative model. Various aspects

of implementation for this entire process are discussed as follows.
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((A)) ((B)) ((C))

FIGURE 3.6: Translation of probe images from low to high resolution, showing enhancement in
image quality, where (a) Images of FaceSurv database, (b) Images of CMU MultiPIE database
and (c) Images of NIST MEDS database and first row: bicubic interpolated low resolution
images, second row: images generated by Isola et al. [65], third row: images generated by Zhao
et al. [140], fourth row: images generated by Choi et al. [141], fifth row: images generated by
our proposed method. These translated images are then used for face recognition experiments.

3.4.2.1 Model Architectures and Parameters

In order to train the generator and discriminator of the SURE-GAN, we use the well known

encoder decoder style architecture [77, 158–160]. The encoder part of the generator contains

3 layers of convolutions with 64, 128, and 256 filters respectively. The decoder part of the

generator contains 3 layers of deconvolutions with 512 filters in each layer. The encoder layers

downsample the image by a factor of 2 and the deconvolution layers upsample the image by a

factor of 2. After the last layer of the decoder there is a layer of convolution which maps the

last layer output into the number of channels of the output image, followed by a tanh activation

function. In case of MultiPIE and NIST MEDS, the number of output channels is 3 and for

the FaceSurv database it is 1. The discriminator has 4 layers of convolutions with 64, 128,

256 and 512 filters in each layer respectively. The last layer of the discriminator maps the

output to a single value which is 0 for a fake image and 1 for a real image. The ResNet [161]

classifier (ResNet50) is used for supervising the training of the proposed SURE-GAN model.

The ELU [162] activation function is utilized for the generator and discriminator whereas ReLU

is used for the classifier. The Adam optimizer with a learning rate of 0.001 is used for training
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the generator and the discriminator. The ResNet classifier is trained using stochastic gradient

descent with a learning rate of 10−2.

The lightCNN29 [163] model (used to train the discriminative HQL model for face matching)

has 29 convolutional and 4 pooling layers. The dimensionality of the embedding from the last

layer is 256 which is used to calculate the HQL. The model is pretrained on the MS-Celeb-

1M [164] dataset. In order to train with the HQL function, we resize each image to 128 × 128

before giving the images as input to the model. The 4-tuples required to train with the HQL is

produced at every epoch and is not generated offline. No hard mining is used to generate these

4-tuples. The training is performed using the Adam optimizer. The learning rate is initially kept

at 10−5 and gradually decreased to 10−6.

3.4.2.2 Training of the SURE-GAN

The proposed SURE-GAN model is pretrained on the CASIA NIR-VIS 2.0 [165] database. This

database contains cropped face images in both visible and near infrared spectrum. We create

pairs using all 5094 visible spectrum images where each pair has a low resolution (32 × 32)

and a high resolution (128 × 128) image. The pretraining is done in an unsupervised manner,

without using the classifier.

After the SURE-GAN model is pretrained, it is trained (finetuned) on each of the testing datasets

(Table 3.1). Each dataset is divided into train and sets. The subjects/classes in the train and the

test set are non-overlapping. The train set (Table 3.1) for each dataset is used to train (finetune)

the SURE-GAN. The test set has probe and gallery images. The probe images are given as

input to the trained SURE-GAN model for translation. These translated images are utilized (as

illustrated in the Section 3.4.2.3) to report results on face identification and verification. The

number of images for training (finetuning) and testing is outlined in Table 3.1.

3.4.2.3 Face Recognition using SUPREAR-NET

We use a classifier (LightCNN [163]) for learning a discriminative model using the heteroge-

neous quadruplet loss (HQL). In order to train the HQL model, we use the training set for each

dataset as outlined in Table 3.1. The HQL function (Equation 3.15) requires training data in

both the domains (high and low resolution), which are directly synthesized (using the trained

SURE-GAN model) from the training folds of each dataset. Thus, for each of the three datasets,

a separate model using the HQL is trained. The trained model (for each database) is then used

to match the synthesized high resolution probe images (using the SURE-GAN) with the gallery.
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TABLE 3.2: Identification and verification accuracies for cross resolution face recognition us-
ing the proposed SUPREAR-NET.

Database Probe
Resolution

Rank 1 Accuracy (%) GAR (%) at 1% FAR

Bicubic Isola
et al. [65]

Zhao
et al. [140]

Choi
et al. [141] Proposed Bicubic Isola

et al. [65]
Zhao

et al. [140]
Choi

et al. [141] Proposed

FaceSurv [4]
128 x128 83.07 80.11 83.53 85.45 91.05 87.05 84.74 86.39 86.92 95.39
96 x 96 71.21 66.46 70.95 75.41 81.21 73.44 70.58 73.11 74.04 84.24
64 x 64 49.84 45.09 48.33 50.21 55.50 52.26 48.54 51.12 52.78 56.89

CMU
MultiPIE [139]

48 x 48 97.62 92.26 93.40 94.21 97.82 98.81 93.69 94.05 95.11 98.96
32 x 32 89.77 78.79 80.81 87.20 90.39 93.62 81.72 82.20 85.40 94.29
24 x 24 87.01 77.68 85.54 84.31 88.70 89.98 78.68 86.12 83.21 90.17

NIST
MEDS [1]

48 x 48 91.74 91.61 91.35 91.70 93.26 94.16 94.29 93.78 92.57 94.92
32 x 32 90.59 89.32 89.30 91.74 93.51 93.91 92.77 92.89 92.82 94.80
24 x 24 84.24 81.70 82.21 88.20 89.33 90.10 89.59 90.86 91.54 93.02

3.4.2.4 Additional Face Recognition Experiments

In order to evaluate the effectiveness of SURE-GAN, additional matching experiments are per-

formed using a pretrained model instead of the trained discriminative model (as illustrated in

Section 3.4.2.3). A pretrained VGGFace [166] model is used to generate embeddings for the

probe (translated using the SURE-GAN) and gallery images. The fully connected layers of the

VGGFace model are dropped and a global average pooling layer is used in its place. The dimen-

sionality of the embeddings are 512. Prior giving as input to the model, all images are resized

to 128× 128 so that the embeddings are of the same dimensionality. The cosine distance on the

embeddings of the probe and gallery images is used for matching.

3.5 Experimental Results

Face identification and verification experiments are performed for three different type of probe

resolution variations across all three databases, using the discriminative model (Section 3.4.2.3)

which is trained using the HQL. The proposed method is compared with Isola et al. [65], Zhao et

al. [140] and Choi et al. [141] on all the databases and on all the probe resolutions. The method

by Isola et al. [65] is an algorithm for image to image translation which uses conditional GANs.

Zhao et al.’s [140] method is proposed to transform the facial pose of an image, using the rep-

resentation of an autoencoder as a classifier to the generator model in their framework. Choi et

al. [141] proposed an algorithm for image to image translation using a single generator to trans-

late a given source image into multiple target domains. In order to make a fair comparison, the

methods by Isola et al. [65], Zhao et al. [140] and Choi et al. [141] are utilized only for trans-

lating the low resolution probes to high resolution. Thereafter the model trained using the HQL

is utilized for cross-resolution face recognition.

In addition to achieving impressive image quality and resolution enhancement (as shown in

Fig. 3.5), SUPREAR-NET yields significantly better recognition accuracies (Table 3.2) across
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FIGURE 3.7: Comparative face identification (%) (Rank 1) results of the proposed approach
with recent methods (Gupta et al. [4] and Ghosh et al. [167]) on the FaceSurv database.
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FIGURE 3.8: CMC curves showing identification accuracies for different probe resolutions for
the FaceSurv [4] database.
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FIGURE 3.9: CMC curves showing identification accuracies for different probe resolutions for
the NIST MEDS [1] database.

all the databases compared to Isola et al. [65], Zhao et al. [140] and Choi et al. [141]. On the

FaceSurv database, for each of the 4-7m, and 7-10m (equivalent to 96 × 96 and 128 × 128

probe resolutions) probe images, rank 1 identification accuracies are higher by at least 8%, and

around 7% for 1-4m probe images, compared to the results by Choi et al. [141]. We have also

compared the results of the proposed approach on all the three probe resolutions with two recent

algorithms namely Gupta et al. [4] and Ghosh et al. [167] as shown in Figure 3.7. On the CMU

MultiPIE database, since the overall image quality is much better (than the FaceSurv database)
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FIGURE 3.10: CMC curves showing identification accuracies for different probe resolutions
for the CMU MultiPIE [139] database.

rank 1 identification accuracies are marginally higher for all the probe image resolutions com-

pared to the other GAN based methods. For the NIST MEDS database, identification accuracies

(compared to the other methods) for all probe image resolution, are at least 3% higher than the

other GAN based methods. As observed in the CMC curves (Fig. 3.8, 3.9 and 3.10) for the

FaceSurv, NIST MEDS and CMU MultiPIE databases, SUPREAR-NET produces significantly

better results than the other GAN based methods.

3.5.1 Analysis of Results

The proposed algorithm presents an effective way for translating the low resolution probe images

to a higher resolution. The results obtained can be analyzed as follows:

1. Improvement in Image Quality: The proposed supervised GAN yields images with im-

proved quality. Fig. 3.5 and 3.6 shows the translation of images using the trained generator

of the proposed SURE-GAN from low to high resolution. It can be visually inferred that

the increased resolution results in improved quality. To accentuate and quantify this ob-

servation, we performed no-reference image quality assessment of face images generated

by all the five algorithms (bicubic, Zhao et al. [140], Isola et al. [65], Choi et al. [141] and

the proposed SURE-GAN) on the NIST MEDS database. We observed that the proposed

algorithm yields the lowest BRISQUE [168] values (Bicubic: 25.40, Zhao et al. [140]:

20.73, Isola et al. [65]: 20.21, Choi et al. [141]: 20.98 and Proposed: 19.27). It is to be

noted that lower BRISQUE values are considered better, in terms of image quality.

2. Additional Results using a Pretrained model: Additional results are also presented by

replacing the discriminative model in SUPREAR-NET by a pretrained VGGFace [166]

classifier. In all the three databases better results are obtained compared to a recent un-

supervised [65] and supervised [140] image to image translational GAN methods. The

results are outlined in Fig. 3.11.
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FIGURE 3.11: Bar plots showing identification accuracies for cross-resolution face recogni-
tion on different probe resolutions of the three databases. Matching was performed using a

pretrained VGGFace [166] model.
TABLE 3.3: Identification and Verification accuracies for the ablation study on the NIST

MEDS [1] database.

Probe
Resolution

Rank 1 Accuracy (%) GAR (%) at 1% FAR
Triplet

Loss [91]
Quadruplet

Loss [92]
Heterogeneous

Triplet Loss [169] Proposed Triplet
Loss [91]

Quadruplet
Loss [92]

Heterogeneous
Triplet Loss [169] Proposed

48 x 48 86.65 90.88 92.91 93.26 75.51 80.71 94.67 94.92
32 x 32 86.53 90.85 92.88 93.51 75.13 81.85 94.42 94.80
24 x 24 76.62 81.19 88.81 89.33 57.49 64.85 91.24 93.02

3. Pretrained VGGFace vs Trained HQL model: We utilized two different ways of per-

forming recognition post the image translation process by the generator of the SURE-

GAN. The proposed approach using the HQL model (results in Table 3.2) exhibits much

superior recognition performance in terms of both identification and verification accu-

racies. On the other hand, the improvement in recognition performance over the other

methods is marginal using the pre-trained VGGFace model (Fig. 3.11). This showcases

the advantage of using a heterogeneous deep metric learning approach for recognition in
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TABLE 3.4: Comparison of the proposed approach with a superresolution method (Wang et
al. [2]) in the NIST MEDS database [1].

Probe Resolution Rank 1 Accuracy (%) GAR (%) at 1% FAR
Wang et al. [2] Proposed Wang et al. [2] Proposed

48 x 48 92.50 93.26 89.21 94.92
32 x 32 92.37 93.51 89.72 94.80
24 x 24 84.62 89.33 77.28 93.02

Original                            Bicubic Super-resolved                          Proposed
(64 x 64)                         (128 x 128)                                (128 x 128)                             (128 x 128)

FIGURE 3.12: Comparison of image level approaches for cross-resolution face recognition.
The superresolved images (third column) (generated using [2]) has a grainy appearance com-
pared to that of the proposed SURE-GAN (last column). Images are from the FaceSurv [4]

database.

conjunction with the proposed SURE-GAN.

4. Comparison with Superresolution: Superresolution methods are popular for image

to image translation (from low to high resolution). A comparison of the proposed ap-

proach (SUPREAR-NET) with a popular deep-learning based superresolution method by

Wang et al. [2] is performed. This method is used to translate images of the NIST MEDS

database [1] for each of the three resolution variations (28× 28, 32× 32 and 48× 48) to

the resolution of the gallery (128×128). Thereafter, the model trained using the proposed

HQL function was used to match the translated probe images with the high resolution

gallery. As shown in Table 3.4, the proposed method outperforms the superresolution

method both in terms of verification and identification accuracies on all the three probe

resolutions.

5. Ablation Study: An ablation study (Table 3.3) was performed on the performance of the

proposed framework (SUPREAR-NET). The performance of the same is compared with

three popular deep metric learning algorithms namely Triplet Loss [91] and Quadruplet

Loss [92] and Heterogeneous Triplet Loss [169]. The heterogeneous triplet loss [169] is

a heterogeneous deep metric learning algorithm, the loss function for which is given by,
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L =

[
‖f(pa)− f(qa)‖22 −

∥∥∥f(pa)− f(qb)
∥∥∥2
2

+ α1

]
+

(3.16)

∀(pa, qa, qb) ∈ ¶

where the terms have their usual meanings as in Equation 3.15. We observe that the pro-

posed method (SUPREAR-NET) outperforms all the three deep metric learning methods

on the NIST MEDS database [1]. Table 3.3 outlines the results of the ablation study.

3.6 Summary

A novel method for training a supervised generative adversarial network is presented for image

to image translation which does not corrupt the discriminative information of the source image.

This is achieved by backpropagating the loss of a classifier to the generator, in addition to the

conventional adversarial loss from the discriminator. The trained generator is used to translate

the low resolution probe images into high resolution ones. A discriminative model trained using

a heterogeneous quadruplet loss function is used to match the translated probe images to the

high resolution gallery. These translated images yield better face recognition performance than

the conventional image to image translation GAN. In addition to this, the proposed method

also outperforms recent image to image translation GAN methods and a deep-learning based

superresolution algorithm. The proposed SURE-GAN is robust to unseen testing data since the

subjects/classes in training and testing splits are non overlapping. Thus our method is an useful

step for application in face recognition for surveillance scenarios, where resolution of the query

images obtained is a major obstacle for the same.



Chapter 4

Subclass Heterogeneity Aware Loss for
Cross-Spectral Cross-Resolution Face
Recognition

4.1 Introduction

The increasing effectiveness of Deep Convolutional Neural Networks (Deep-CNNs) has led to

the emergence of very efficient face recognition algorithms [150, 166, 170, 171]. With this de-

velopment, various applications ranging from unlocking of mobile phones and laptops to mon-

itoring of public places are now using face recognition technology. These images are usually

captured in controlled scenarios and constrained settings. However, the query images may be

captured in unconstrained environment by any kind of camera; for instance, surveillance cam-

eras. These cameras are generally placed at a high standoff distance from the subjects and have

a large field-of-view [172]. As a result, the effective resolution and quality of the captured face

image may be low. In addition to that, when sufficient visible illumination is not available, these

cameras operate in the Near-Infrared (NIR) mode and the probe images are captured in NIR

spectrum. This results in a heterogeneous image/face matching (recognition) problem between

the high resolution visible spectrum gallery and low resolution NIR spectrum probes (Fig. 4.1).

The combination of the acquisition environment and the position of the user in relation to the

camera location leads to three possible scenarios of heterogeneous face matching.

• Cross-Spectral matching where the visible spectrum face image (gallery) is matched with

the NIR spectrum images (probes).

• Cross-Resolution matching where the high resolution face images (gallery) is matched

with the low resolution images (probes) obtained from surveillance cameras.

64
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FIGURE 4.1: Visual abstract of the proposed Subclass Heterogeneity Aware Loss (SHEAL).
The intraclass distance between the different subclasses, each represented by a particular co-
variate such as high resolution (HR), low resolution (LR) and NIR images is minimized, while
pushing other impostor classes away, in the embedding space of the model. (best viewed in

color)

• Cross-Spectral Cross-Resolution matching where low resolution NIR images (probe) are

matched with high resolution visible spectrum mugshot images (gallery).

Several researchers have proposed solutions for heterogeneous face recognition. At the core of

many of these solutions lies the most fundamental concept of training a face recognition model,

which is, train the model such that the intra-class is minimized and the inter-class distance is

maximized, both for with intra-view (homogeneous) and inter-view (heterogeneous) data vari-

ations [173–175]. However, most of the existing algorithms focus on only one covariate at a

time, either cross-resolution or cross-spectral variations, not both together. Given the increasing

use of surveillance cameras for security, it is important to address both the covariates together.

In this research, we propose a unified Subclass Heterogeneity Aware Loss (SHEAL) to train a

discriminative model which produces face embeddings for accurate classification in the pres-

ence of multiple face recognition covariates. A novel subclass based optimization approach is

presented, which optimizes the clusters based on different subclasses in the data. As shown
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FIGURE 4.2: Illustrating the effect of training with the proposed loss function. The proposed
loss function attempts to minimize the distance between the intra-class embeddings compared

to the distance between the embeddings of the images belonging to different classes.

in Fig. 4.2, the proposed model learns discriminative embeddings for both high resolution

and visible spectrum gallery images and low resolution, NIR spectrum probe images. These

learnt embeddings are then matched using Euclidean distance. Experiments on four challenging

databases, namely SCface [3], FaceSurv [4], CASIA NIR-VIS 2.0 [165], and Labeled Faces in

the Wild [176], demonstrate the efficacy of the proposed approach, not only in the identification

performance but also with respect to convergence in terms of training time and epochs.

4.2 Related Work

This paper addresses the problem of cross-spectral cross-resolution face recognition with a novel

deep metric learning algorithm. Therefore, the review section first outlines the related work

performed on cross-spectral and cross resolution face recognition especially using deep learning

methods, followed by the literature on deep metric learning methods for face recognition.

Prior to the emergence of deep learning based face recognition algorithms, several discrimi-

native learning and transfer learning based approaches were proposed for cross-spectral [27,

165, 173, 175, 177–179] and cross-resolution [23, 82, 84, 180] face recognition. Deep learn-

ing based algorithms have also been proposed for these tasks. Lu et al. [181] learned binary

descriptors for heterogeneous face recognition. Yi et al. [182] used a shared representation

learning based approach using Restricted Boltzman Machines for cross-spectral face recogni-

tion. Saxena et al. [183] used a metric learning based algorithm to learn a Mahalanobis distance

based embedding space for the same. Lezama et al. [184] used a low rank embedding based ap-

proach for hallucination of NIR to visible spectrum face images for cross-spectral face match-

ing. He et al. [185] proposed an algorithm to learn a deep-CNN model where the high level
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FIGURE 4.3: Representation of the proposed method: (a) Overall motivation of the problem,
(b) Illustration of the proposed loss metric which minimizes the intra-class distance and maxi-
mizes the inter-class distance (including intra-view and inter-view variations) and (c) Subclass

based cluster optimization.

layer is divided into two orthogonal subspaces that learn modality-invariant representation for

cross-spectral face recognition. Wu et al. [186] used an approximate variational formulation in a

coupled deep learning framework for matching NIR face images to a gallery of visible-spectrum

face images. Song et al. [187] proposed an adversarial discriminative learning algorithm for the

same, using an integration of cross-spectral face hallucination and discriminative feature learn-

ing. Pereira et al. [188] proposed a deep learning approach using a framework that learns domain

specific feature detectors for cross-spectral face recognition. Recently, Peng et al. [189] pro-

posed a locally linear re-ranking (LLRe-Rank) approach for the same problem. He et al. [190]

performed face completion by texture inpainting and pose correction using generative modelling

for translating NIR face images for efficient matching with visible spectrum images.

Singh et al. [144] proposed a Synthesis via Hierarchical Sparse Representation for generat-

ing a high resolution face image from a low resolution one, for cross-resolution face recogni-

tion. Lu et al. [150] utilized a deep coupled end to end CNN consisting of a trunk network

and two branch networks for cross-resolution face matching. Lu et al. [151] utilized a dis-

criminative multidimensional scaling approach for face recognition from low resolution images.

Ge et al. [191] proposed an approach using a two-stream CNN for low resolution face recogni-

tion. Li et al. [192] used a supervised discriminative learning approach for low resolution face

recognition. Zangeneh et al. [193] proposed a novel nonlinear coupled mapping architecture for

face recognition from low resolution images. Abdollahi et al. [194] proposed a modified finetun-

ing approach using different variations of the training data for low resolution face recognition.

Recently Singh et al. [195] utilized a dual directed capsule network for very low resolution face

recognition.

The popularity of deep metric learning methods has led to the development of several loss func-

tions [21, 196–204] to train deep neural network models for face recognition. Schroff et al. [91]

introduced the triplet loss based training method for face verification. Quadruplet loss [92], an
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extension of triplet loss, adds an extra negative sample to the loss function. This loss function

enforces a stricter inter-class distance on the output embedding space of the model being trained.

However, both these techniques do not consider any heterogeneity in the data during training.

They also require extensive hard-sample mining for effective training. In order to account for

heterogeneity in data, Liu et al. [169] have proposed a heterogeneous variant of triplet loss.

This loss function can take at most one heterogeneity (e.g. cross-resolution) at a time and is

not suitable for handling more than one covariate (e.g. cross-resolution and cross-spectral both).

In addition, it required exhaustive hard mining prior to the training process. Several modifica-

tions [92, 200, 205] to the triplet loss have been proposed for a diverse range of applications

such as person-re-identification, matching images of cars, object recognition, patch matching

and so on. However, none of these methods addressed scenarios where matching of images with

multiple heterogeneity is involved.

4.3 Proposed Algorithm

In this section, we illustrate the proposed algorithm which is utilized to learn a model for face

recognition invariant to both spectrum and resolution. First, the framework for a heterogeneous

matching problem is illustrated with only one covariate/heterogeneity (resolution and spectrum)

across probes and gallery images. The formulation is then extended to include invariance to

two covariates, namely resolution and spectrum. It is important to note that while the proposed

loss function SHEAL, LSHEAL, optimizes for heterogeneous matching with one or two covari-

ates, it also optimizes for homogeneous matching (no covariates). The first subsection presents

the formulation of SHEAL followed by the sub-class based cluster optimization. Finally, the

heterogeneous face recognition algorithm is presented which learns a model with a highly dis-

criminative output embedding space for cross-spectral cross-resolution face recognition. Fig. 4.3

illustrates the concept of the proposed Subclass Heterogeneity Aware Loss (SHEAL).

4.3.1 SHEAL: Subclass Heterogeneity Aware Loss

For a heterogeneous face matching problem, the gallery contains images with high resolution

visible spectrum while the probe images are captured with different covariates present (for in-

stance low resolution and/or NIR). For simplicity, let us assume only one kind of heterogeneity,

e.g. resolution, is available in the data (i.e. gallery of high resolution images and probes are

low resolution images). In order to learn a discriminative model for such a task, the loss met-

ric needs to perform two tasks, minimizing (pulling together) and maximizing (pushing away)

the intra-class and inter-class distances, respectively in intra-view1 (homogeneous) settings, and
1Intra-view settings refer to the scenario when the gallery and probe are homogeneous in nature, for example,

same resolution and spectrum.
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performing the same in inter-view2 (heterogeneous) settings. The proposed heterogeneous loss

function is expressed as,

L = [||g(XH
i )− g(X ′

H
i )||22 − ||g(XH

i )− g(XH
j )||22 + α1]+

+ [||g(XH
i )− g(XL

i )||22 − ||g(XH
i )− g(XL

k )||22 + α2]+ (4.1)

∀(XH
i , X

H
j , X

L
i , X

L
k ) ∈ τ

where, H and L signify high and low resolution, respectively. XH
i is the high resolution anchor

image of subject i, X ′Hi is another high resolution image of the same subject i, XL
i is a low

resolution image of the subject i, XH
j is the high resolution image of subject j, XL

k is a low

resolution image of another subject k where, i 6= j 6= k and [·]+ = max(·, 0).

In a complex (more realistic) scenario, the heterogeneity may be due to two different views,

namely resolution and spectrum. For example, the gallery images are in visible spectrum and

high resolution, while the probes are in NIR and low resolution. Let the visible spectrum and

NIR spectrum be denoted as V and N , respectively, and subscripts i, j, k, l,m represent differ-

ent subjects/classes. Let the high resolution visible spectrum image of the ith subject (class)

be XH,V
i . Another image of the same subject in the same setting is denoted as X ′H,Vi . Sim-

ilarly, XH,N
i , XL,V

i and XL,N
i represent the high resolution NIR spectrum image, low reso-

lution visible spectrum image, and low resolution NIR spectrum image of the ith subject, re-

spectively. To accommodate both cross-resolution cross-spectral variations, the proposed loss

function is formulated with two cross-views, hence require four separate terms. The first term

takes care of the homogeneous matching scenario, the next two terms accommodates for cross-

resolution and cross-spectral matching respectively, followed by the last term for cross-spectral

cross-resolution matching.

The homogeneous loss term (LHo) is computed as,

LHo = [||g(XH,V
i )− g(X ′

H,V
i )||22 − ||g(XH,V

i )− g(XH,V
j )||22 + α1]+ (4.2)

This loss expression is composed of two parts, the former ‖g(XH,V
i )− g(X ′H,Vi )‖22 minimizes

the intra-class distance between the embedding of the anchor image g(XH,V
i ) and g(X ′H,Vi ),

which is another image of the same subject captured in the same condition. The later part of

the expression, ‖g(XH,V
i ) − g(XH,V

j )‖22 maximizes the inter-class distance between g(XH,V
i )

and g(XH,V
j ). However, in order to calculate the intra-class loss, we can replace the embed-

ding of the anchor image g(XH,V
i ) by the center embedding of the ith class (subject) given by

2Inter-view settings refer to the scenario when both gallery and probe images are heterogeneous in nature, for
example, different resolution or spectrum.
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gc(X
H,V
i ). In addition to that, the inter-class distances are also computed from gc(X

H,V
i ) in-

stead of g(XH,V
i ). Therefore, for SHEAL, the loss function for the homogeneous component

(LcHo) can be written as:

LcHo = [||gc(XH,V
i )− g(X ′

H,V
i )||22 − ||gc(X

H,V
i ))− g(XH,V

j )||22 + α1]+ (4.3)

Next, the cross-resolution loss term is expressed as:

LcCR = [||gc(XH,V
i )− g(XL,V

i )||22 − ||gc(X
H,V
i )− g(XL,V

k )||22 + α2]+ (4.4)

This loss expression contains two parts, the former ‖gc(XH,V
i ) − g(XL,V

i )‖22 pertains to the

distance between the center embedding of the images of the same subject i in visible spectrum

and low resolution. The later term ‖gc(XH,V
i ) − g(XL,V

k )‖22 focuses on maximizing the inter-

class distance between the center embedding of another subject k in visible spectrum and low

resolution. Similarly, the cross-spectral loss is expressed as,

LcCS = [||gc(XH,V
i )− g(XH,N

i )||22 − ||gc(X
H,V
i )− g(XH,N

l )||22 + α3]+ (4.5)

Along the same lines, the cross-spectral cross-resolution loss is computed as,

LcCS−CR = [||gc(XH,V
i ) − g(XL,N

i )||22 − ||gc(X
H,V
i ) − g(XL,N

m )||22 + α4]+ (4.6)

Equation 4.6 models the most challenging scenario where the intra-class and inter-class dis-

tances are evaluated between the high resolution visible spectrum images and images captured

in low resolution and NIR. Such probe images differ from the gallery images with respect to both

resolution and spectrum. The final loss function combines the homogeneous and heterogeneous

losses as follows:

LSHEAL = λ1.L
c
Ho + λ2.L

c
CR + λ3.L

c
CS + λ4.L

c
CS−CR (4.7)

∀(X ′H,Vi , XH,V
j , XL,V

i , XL,V
k , XH,N

i , XH,N
l , XL,N

i , XL,N
m ) ∈ τ

where, τ is the set of 8-tuples. Each such 8-tuple is considered as a training sample and the

coefficients {λ1, λ2, λ3, λ4} may be used to adjust the weights of each component of the loss

function. The gradient of this loss can be utilized to train the parameters of a model using

representation learning (e.g. CNN model).

The traditional triplet loss works by pulling the embeddings of all samples of the same class

towards the anchor and pushing the same for the impostor classes away from the anchor. How-

ever, this loss is unable to handle a heterogeneous matching problem where a pair of images of
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different views/modalities are to be matched during testing. In order to approach this problem

we are required to train a discriminative model which can generate heterogeneity aware embed-

dings. To train such a model, the loss function should incorporate different matching scenarios,

i.e. both homogeneous and heterogeneous. The proposed loss function (Equation 4.7) has been

formulated by combining multiple heterogeneous variations for face matching. To summarize,

the salient contributions/novelty of this work are as follows:

• We propose a method to train a discriminative model which can be utilized to match

images belonging to more than one covariate. Equation 7 has four loss terms, viz LcHo,

LcCR, LcCS and LcCS−CR. Each of them contributes a gradient which is used to update the

weights of the model g(.) being trained.

• In Equation 4.7, different terms are weighed by adjustable λ parameters. If we want

the model to be more often used for cross-spectral-cross-resolution matching then the

coefficient of LcCS−CR can be given a higher value. This allows the model to be tuned for

a specific application scenario as well.

The model g(.) is trained using Equation 4.7 which results in disjoint clusters for each class in

the output embedding space of the model. These clusters are further optimized using subclass

based cluster optimization as illustrated in the next subsection.

4.3.2 Subclass based Cluster Optimization

We optimize the clusters (learned using LSHEAL) in the embedding space of the model using

a subclass based loss formulation. As shown in Fig. 3(c), in each cluster which contains em-

beddings of the images of a particular subject, the embeddings of the good quality images (high

resolution visible spectrum) of the respective subject are expected to be very close to each other.

On the other hand, the images different from the good quality ones (i.e. low resolution and NIR)

are expected to be farther away in the same cluster. Using this as a hypothesis, each cluster is

expected to contain two subclasses, one representing the good quality images (homogeneous)

and the other for the heterogeneous images. An optimization stage is utilized to create a more

compact cluster by bringing these two subclasses closer to each other. The loss function for the

cluster optimization stage is expressed as,

LPP = β1.[||gc1(XH,V
i )− g(X ′

H,V
i )||22 − ||gc1(XH,V

i )− g(XH,V
j )||22 + α1]++

β2.[||gc2(XL,N
i )− g(XL,N

i )||22 − ||gc2(XL,N
i )− g(XL,N

k )||22 + α2]+ + β3.[||gc1(XH,V
i )−

gc2(XL,N
i )||22]+ (4.8)

∀(XH,V
i , XL,N

i , XH,V
j , XL,N

k ) ∈ τ
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TABLE 4.1: Experimental details to evaluate the performance of the proposed SHEAL.

Experiment Databases Spectrum Resolution
Gallery Probe Gallery Probe

Cross-Resolution
Face Recognition (CR-FR)

SCface Visible Visible 128 x 128 24 x 24, 32 x 32, 48 x 48
FaceSurv Visible Visible 128 x 128 48 x 48, 64 x 64

LFW Visible Visible 128 x 128 32 x 32, 48 x 48
Cross-Spectral

Face Recognition (CS-FR)
SCface Visible NIR 128 x 128 128 x 128

CASIA NIR-VIS 2.0 Visible NIR 128 x 128 128 x 128

Cross-Spectral Cross-Resolution
Face Recognition (CSCR-FR)

SCface Visible NIR 128 x 128 24 x 24, 32 x 32, 48 x 48
FaceSurv Visible NIR 128 x 128 48 x 48, 64 x 64

CASIA NIR-VIS 2.0 Visible NIR 128 x 128 48 x 48, 64 x 64

where, gc1(XH,V
i ) and gc2(XL,N

i ) are the centers of the subclasses pertaining to the homo-

geneous (good quality) and the heterogeneous (low resolution and NIR) images, respectively.

β1, β2, β3 are weights for each component. The first term in Equation 4.8 is similar to the first

term of Equation 4.3, which brings the embedding of the good quality (homogeneous) images

closer in the output embedding space of the model. The second term brings the embedding of

the heterogeneous images closer thus making the subclass of the heterogeneous images (low res-

olution and NIR) more compact. The third term brings the centers of the two subclasses of the

cluster closer to each other. The coefficients {β1, β2, β3} are used to adjust the strength of each

component of the loss function. At the end of this cluster optimization phase, it is expected that

all the images (heterogeneous and homogeneous) of each class must make a compact cluster,

thereby enhancing heterogeneous matching performance of the trained model.

4.3.3 Heterogeneous Face Recognition using SHEAL

In order to train a heterogeneity aware model for face recognition, Equation 4.7 followed by

Equation 4.8 is utilized. Once the model is trained, the test data is partitioned into probe and

gallery according to the protocol of the testing database. For cross-spectral cross-resolution

face recognition, the probes are NIR images of low resolution and the gallery images are high

resolution visible spectrum images. A probe is given as input to the trained discriminative model

to extract the embeddings, and the same is performed to generate the embeddings of the gallery

images. The Euclidean distance is used to calculate match scores between the probe and gallery

embeddings, which is finally used for face recognition.

4.3.4 Implementation Details

In this section, we outline the implementation details required to reproduce the results.
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4.3.4.1 CNN Model

The proposed SHEAL is utilized to train a deep-CNN model for heterogeneous face recognition.

The CNN model used is Light-CNN-29 [171] which is one of the popular models for face

recognition with 29 convolutional layers and 4 pooling layers. After every convolutional layer a

Max-Feature-Map operation is performed. The network is built using 6 blocks and each block

contains convolution and Max-Feature-Map layers. The final layer is a Max-Feature-Map layer

which gives an embedding of size 256.

4.3.4.2 Preparing Data for Training

In order to prepare training data for the SHEAL metric, each training sample is represented by an

8-tuple. Unlike existing approaches [91, 92, 205] we do not perform any hard mining on the set

of 8-tuples, rather, we randomly prepare 500 8-tuples for every epoch. In order to prepare each

8-tuple, the images of a randomly selected subject/class (high resolution and visible spectrum)

are used to calculate the center embedding. Other images for the 8-tuples are then chosen

randomly from the training set of the database accordingly. We train only one epoch on each set

of 500 8-tuples that are created in every iteration. We also performed experiments by running

multiple epochs on each set of 8-tuples, but there is a tendency of the model to overfit on the

samples that are generated. Thus, each epoch constitutes generating the set of 500 8-tuples and

running one iteration of training on it. This keeps the pace of learning stable and effective.

4.3.4.3 Loss Function Parameters

The deep-CNN model is trained by back-propagating the gradient of the proposed SHEAL. The

optimization is performed using Adam with a batch size of 20. The learning rate is initially kept

at 10−3 which is then gradually decreased to 10−7. The criteria for decreasing the learning rate

was non-increment of validation accuracy for 20 epochs. The learning rate was decreased in

steps of 0.05. The values of the margin variables α1, α2, α3, α4 are set differently for different

databases during training. For the SCface database, we keep α1 = 0.2, α2 = 0.4, α3 = 0.4, and

α4 = 0.6. For the FaceSurv database, we keep α1 = 0.2, α2 = 0.4, α3 = 0.4, and α4 = 0.8.

For the CASIA NIR-VIS 2.0 database, we keep α1 = 0.3, α2 = 0.4, α3 = 0.4, and α4 = 0.8.

The parameters for the loss function coefficients λ1, λ2, λ3, λ4 for training are set as follows. For

the SCface database, λ1 = 0.1, λ2 = 0.2, λ3 = 0.4, and λ4 = 0.7. For the FaceSurv database,

λ1 = 0.4, λ2 = 0.5, λ3 = 0.5, and λ4 = 0.9. For the CASIA NIR-VIS 2.0 database, λ1 = 0.1,

λ2 = 0.4, λ3 = 0.6 and λ4 = 0.6. Experiments are performed on a machine with Intel Core i7

CPU, with 32GB of RAM and NVIDIA GTX 1080Ti GPU with a PyTorch implementation.
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FIGURE 4.4: Three different cases of heterogeneous face recognition considered in this work,
including the most challenging case of cross-spectral cross-resolution matching. Images are

taken from the SCface [3] and FaceSurv [4] databases.

4.3.4.4 Weights (β) for Subclass Cluster Optimization

The β parameters are used to assign weight of different components (Equation 4.8) in the sub-

class optimization step of SHEAL. Although these parameters are chosen empirically, we have

followed a strategy while selecting the β parameters. As illustrated in Section 4.3.2, β1 and β2
are the weights of the subclasses for the visible spectrum high resolution images and the NIR

low resolution images, respectively. On the other hand β3 are weights for bringing the two sub-

classes closer into a single compact cluster. Since the later is the main motive of this step, β3 is

given a higher value than β1 and β2. Using this guideline and some empirical observations, the

best β parameters are obtained for the subclass based cluster optimization.

4.4 Experiments and Analysis

To show the efficacy of the proposed approach, we have performed three different heterogeneous

experiments on four challenging face databases. Very few papers in the literature have analyzed

all three heterogeneous scenarios (a typical scenario of face recognition for video surveillance)

using a single algorithm.
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4.4.1 Databases and Protocol

As shown in Fig. 4.4 three experiments are performed, namely Cross-Resolution Face Recogni-

tion (CR-FR), Cross-Spectral Face Recognition (CS-FR), and Cross-Spectral Cross-Resolution

Face Recognition (CSCR-FR). Details of experimental protocol are illustrated in Table 4.1. The

details of the databases used for the experiments are as follows.

SCface Database [3] is one of the most popular face datasets that contains real world surveil-

lance quality images. It contains 4160 images of 130 subjects captured using 8 surveillance

cameras from three standoff distances namely 1 mt, 2.6 mts and 4.2 mts. The effective reso-

lution of the face images detected from these surveillance images are 24 × 24, 32 × 32 and

48 × 48 for these three distances, respectively. Out of the 8 cameras, 5 operate in the visible

spectrum and the remaining capture images in the NIR mode. The gallery images are captured

using high resolution cameras and are sub-sampled to a resolution of 128×128. For CSCR-FR,

NIR probe images pertaining to the three different resolutions have been matched with the high

resolution visible spectrum gallery. For CR-FR, the same matching has been performed with

low resolution visible spectrum probe images.

CASIA NIR-VIS 2.0 Database [165] is the largest publicly available dataset for CS-FR. It

contains a total of 17,415 visible spectrum and NIR images pertaining to 725 subjects. The

images in the training and testing sets are fixed and contain non-overlapping subjects. The

database is divided into two views, namely view 1 and 2. The former is a development set and

the later is for reporting the results. The gallery set contains one high resolution visible spectrum

image for each subject. In order to train the deep CNN model using the proposed loss metric,

we need low resolution visible and NIR images, in addition to the high resolution (128 × 128)

visible and NIR images that are already present in the database. The images (both visible and

NIR) are subsampled to a resolution of 32 × 32 to synthetically create low resolution versions

of the same. To perform testing for CSCR-FR, the probe images are subsampled to a resolution

of 48× 48 and 64× 64. For CS-FR, the usual protocol of the database (128× 128 NIR probes)

is utilized.

FaceSurv Database [4] contains videos captured under surveillance conditions in both day-

time (in visible spectrum) and night-time (in NIR). The videos contain subjects walking at a

standoff distance of 1-10 mts from the camera. The night-time videos have been captured in a

completely dark environment using NIR illumination, while the day-time videos have been cap-

tured in outdoor settings. Both day-time and night-time videos are captured under uncontrolled

illumination, pose and expression variations. The gallery images contain three high resolution

(subsampled to 128 × 128) visible spectrum images for every subject. Images pertaining to 30

subjects are used for training and images of the remaining subjects are used for testing. In terms
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TABLE 4.2: Rank 1 identification accuracies on the SCface database.

Algorithm Cross-Spectral Cross-Resolution Cross-Resolution
24 x 24 32 x 32 48 x 48 24 x 24 32 x 32 48 x 48

Biswas et al. (2013) (Multi-Dimensional Scaling) [82] - - - 64.8 70.4 76.1
Bhatt et al. (2014) (Co-Transfer Learning) [23] - - - 70.1 76.2 83.4
Wu et al. (2015) (LightCNN29) [171] 8.4 23.7 69.0 33.1 85.5 97.8
COTS (2016) (FaceVacs) [149] 1.7 2.9 6.5 10.3 18.5 35.7
Ghosh et al. (2016) (Autoencoder+SIFT) [149] - 37.0 53.8 - - -
Schroff et al. (2015) (Triplet loss) [91] 11.1 37.9 67.8 35.3 87.5 97.4
Chen et al. (2017) (Quadruplet Loss) [92] 10.6 25.6 70.7 33.0 86.0 97.7
Hermans et al. (2017) (Hard Triplet Loss) [206] 11.2 28.9 71.7 35.6 87.7 97.2
He et al. (2018) (Triplet Center Loss) [207] 14.8 29.4 72.0 34.6 89.1 97.9
Yang et al. (2018) (DMDS) [151] - - - 61.5 67.2 62.9
Yang et al. (2018) (LDMDS) [151] - - - 62.7 70.7 65.5
Talreja et al. (2019) [208] - - - 44.8 49.6 54.3
Li et al. (2019) [192] - - - 20.4 20.8 31.7
Proposed SHEAL 43.9 73.0 87.6 72.8 97.6 99.1

TABLE 4.3: Rank 1 identification accuracies on the CASIA NIR-VIS 2.0 database.

Algorithm Cross-Spectral Cross-Resolution Cross-Spectral
48 x 48 64 x 64 128 x 128

Wu et al. (2015) (LightCNN29) [171] 62.9 77.4 79.1
Schroff et al. (2015) (Triplet loss) [91] 67.3 81.2 82.5
Liu et al. (2016) (Transferable Triplet Loss) [169] - - 95.7
Lezama et al. (2017) (Face Hallucination) [184] - - 96.4
He et al. (2017) (Invariant Deep Representation) [185] - - 97.3
Chen et al. (2017) (Quadruplet Loss) [92] 68.5 81.7 83.1
Hermans et al. (2017) (Hard Triplet Loss) [206] 70.4 83.8 86.0
Lu et al. (2018) (C-SLBFLE) [209] - - 86.9
Huo et al. (2018) (K-MCMML) [170] - - 96.5
Proposed SHEAL 93.8 97.5 97.6

of the number of images, the training and testing sets have 13,617 and 109,131 video frames

(of non-overlapping subjects), respectively. In order to perform CSCR-FR, night-time (NIR)

probe videos have been divided into two subsets, video frames that are captured at a distance

to 5-10 mts (48 × 48 resolution) and frames that are captured at a distance to 1-5 mts (64 × 64

resolution) from the camera. For CR-FR, the same matching has been performed with day-time

video frames.

Labeled Faces in the Wild (LFW) Database [176] contains 13,233 images of 5,749 subjects,

out of which 1,680 subjects have more than 2 images. The database is divided into views 1 and

2, where view 1 is the development set. View 2, which is the set on which results are reported

has 10 folds, each of which contains 300 genuine and 300 impostor pairs. In order to perform

cross-resolution face recognition experiments, low resolution images (32× 32 and 48× 48) are

synthetically prepared (similar to the experiment on the CASIA NIR-VIS 2.0 database) for both

training and testing.
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FIGURE 4.5: CMC curves for Cross-Resolution Face Recognition (CR-FR), Cross-Spectral
Face Recognition (CS-FR) and Cross-Spectral Cross-Resolution Face Recognition (CSCR-FR)

on the SCface [3], FaceSurv [4] and CASIA NIR-VIS 2.0 [165] databases.
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TABLE 4.4: Rank 1 identification accuracies on the FaceSurv database.

Algorithm Cross-Spectral Cross-Resolution Cross-Resolution
48 x 48 64 x 64 48 x 48 64 x 64

Wu et al. (2015) (LightCNN29) [171] 14.0 62.3 62.6 90.4
Schroff et al. (2015) (Triplet loss) [91] 13.2 62.5 59.1 90.1
Chen et al. (2017) (Quadruplet Loss) [92] 12.5 59.0 60.3 90.2
Hermans et al. (2017) (Hard Triplet Loss) [206] 14.1 61.7 62.9 90.0
He et al. (2018) (Triplet Center loss) [207] 14.2 59.8 62.4 90.5
Proposed SHEAL 33.9 74.8 68.8 90.7

TABLE 4.5: Verification accuracies at 1% False accept rate (FAR) for cross-resolution face
recognition on the LFW database, with unrestricted no-outside labeled data protocol.

Algorithm Cross-Resolution
32 x 32 48 x 48

Schroff et al. (2015) (Triplet Loss) [91] 58.2 87.6
Chen et al. (2017) (Quadruplet Loss) [92] 60.5 91.1
Hermans et al. (2017) (Hard Triplet Loss) [206] 62.9 92.4
He et al. (2018) (Triplet Center Loss) [207] 61.7 90.3
Proposed SHEAL 64.4 94.2

4.4.2 Experimental Results and Analysis

The proposed method is evaluated on four datasets and the results are outlined in Tables 5.1, 4.3,

5.2, and 4.53 and Figures 6.6 to 4.8. The experiments are performed to analyze the accuracies

along with convergence analysis, ablation study, and visual inspection of results. The results are

also compared with without pretraining and comparison with recent state-of-the-art algorithms.

4.4.2.1 Comparison with State-of-the-Art Methods

For the SCface [3], CASIA NIR-VIS 2.0 [165] and FaceSurv [4] databases, extensive compar-

isons have been performed with recent deep metric learning methods and state-of-the-art hetero-

geneous face recognition methods. For the SCface [3] database, CS-FR, CR-FR, and CSCR-FR

experiments are performed on three resolution variations of the probes, 24 × 24, 32 × 32, and

48 × 48. As shown in Table 5.1, the proposed method achieves state-of-the-art results and out-

performs popular deep metric learning and recent heterogeneous face recognition methods on

all the resolutions. It can be observed that SHEAL yields larger improvement with low res-

olution probe images. As shown in Table 4.3, on the CASIA NIR-VIS 2.0 [165] database as

well, the proposed SHEAL metric outperforms popular deep metric learning and recent cross-

spectral face recognition methods on both CS-FR and CSCR-FR. On the FaceSurv [4] database

we have performed CSCR-FR and CR-FR on two different probe resolutions, namely 48 × 48

and 64 × 64. As shown in Table 5.2, the proposed algorithm outperforms both Triplet [91]
3For CR-FR or CS-FR, wherever applicable, published results are reported. On the other hand, for CSCR-FR, we

have performed the comparisons with existing algorithms using publicly available codes.
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FIGURE 4.6: Convergence analysis of the proposed method on different probe resolutions of
the SCface database [3]. It can be observed that the convergence of the proposed method is

significantly better than the triplet [91] and the quadruplet loss [92] methods.

and Quadruplet loss [92] based methods (along with their variants), and achieves state-of-the-

art results on both CSCR-FR and CR-FR experiments. As outlined in Tables 5.1, 4.3, and 5.2,

the proposed SHEAL is among the top performing algorithms on all the probe resolutions. It

should be noted that for lower resolutions, such as 24× 24 in Table 5.1, the accuracy of SHEAL

is much higher compared to existing algorithms. The CMC curves showcasing the identifica-

tion accuracies are shown in Fig. 6.6. In addition, homogeneous face recognition experiment

is performed on the SCface database using the same model (that is trained using the SHEAL

metric). The proposed model achieves rank 1 accuracy of 97.29% on CR-FR for 32× 32 probes

on the SCFace database.

Finally, on the LFW face database [176], CR-FR experiment is performed and the results are

documented in Table 4.5. The results show that with gallery images of size 128 × 128 and

probe images of 32 × 32 or 48 × 48, the proposed algorithm is at least 1.5% better than other

deep metric learning algorithms. On the LFW database, comparisons have been performed

with popular deep metric learning methods, and the proposed method outperform them for CR-

FR scenario on this database on two different probe resolutions. Note that due to image size

variations to conduct CR-FR experiments, we cannot directly compare with reported results on

the LFW database.

4.4.2.2 Convergence Analysis

Figure 4.6 shows the rate of convergence of SHEAL, triplet loss, and quadruplet loss on the

SCface dataset. It can be observed that the convergence of SHEAL is significantly fast and

effective. The validation accuracy of the model trained using SHEAL reaches to 83.23% from

69.03% (on 48×48 probes) in just 10 epochs (Fig. 4.6(a)). Compared to SHEAL, the quadruplet

and triplet losses converge slowly. Figures 4.7(a) and (b) show the time taken and the number

of epochs required to converge, respectively. The number of epochs required by SHEAL to

converge is only 48 compared to 95 and 118 epochs required by triplet and quadruplet loss for
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FIGURE 4.7: Performance analysis of the proposed method: (a) Time taken to converge (train-
ing) and (b) Number of epochs for convergence. It can be observed that the proposed algorithm
not only converges rapidly, but also takes much lesser time and epochs for the same. Training

is performed on the SCface database.

the same. In terms of total time, SHEAL takes 115.3 seconds against 158.2, 171.3, 140.4 and

122.3 seconds required by triplet loss, quadruplet loss, hard triplet loss and triplet center loss

respectively for convergence. These results suggest that the proposed SHEAL converges rapidly,

takes lesser time, and exhibits significantly higher face recognition accuracies in heterogeneous

settings.

4.4.2.3 Ablation Study

We have performed two separate ablation studies for a thorough understanding of the effect of

the loss functions (Equations 4.7 and 4.8) on the trained model’s performance on CR-FR and

CSCR-FR scenarios. As illustrated in Section 4.3.1, Equation 4.7 is composed of four separate

terms: LcHo, L
c
CR, LcCS and LcCS−CR. We have performed an ablation study on Equation 4.7,

where we have utilized these specific terms for training the models separately. Each of these

terms have a disjoint effect on the trained model which is evident in the results obtained on the

SCface database (Table 4.6). The model, when trained only with the LcHo loss term yields the

worst performance. However, whenLcCR andLcCS loss terms are used separately for training, the

corresponding testing performance (eg. when LcCR term is used for training the cross-resolution

performance is improved during testing) is improved. It can be observed that when training is

performed with LcCS−CR, the results, during testing, are improved considerably for both CS-CR

and CR face recognition.

In addition to the above, we have also performed an ablation study on Equation 4.8 (subclass

based cluster optimization). As illustrated in Section 4.3.2, Equation 4.8 is composed of three

terms. The first term is a homogeneous matching term, the second term makes subclass contain-

ing the low resolution and NIR images more compact, and the third terms brings the subclasses
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TABLE 4.6: Rank 1 identification accuracies (%) for the ablation study on Equations 4.7 and
4.8 performed on the SCface database.

Loss Term CS-CR CR
24 x 24 32 x 32 48 x 48 24 x 24 32 x 32 48 x 48

Eq. 7

LcHo 9.5 29.4 65.1 37.0 58.9 63.4
LcCR 18.6 39.4 80.4 70.9 96.4 98.7
LcCR 12.5 31.2 69.0 40.5 51.2 64.3
LcCS−CR 41.3 72.6 85.9 68.7 94.3 99.0
LcHo + LcCR + LcCR 38.4 68.4 83.9 64.2 92.6 98.2

Eq. 8
1stterm+ 2ndterm 37.2 67.1 78.9 64.3 92.1 85.4
1stterm+ 3rdterm 42.1 72.5 87.3 70.2 96.4 98.4
Proposed 43.9 73.0 87.6 72.8 97.6 99.1

closer into one compact cluster. As shown in Table 4.6, we observe that the third term is the

major contributing factor in the subclass optimization stage. The value of β3 is also kept higher

during this optimization stage, to give more weight to the third term of Equation 4.8.

4.4.2.4 Loss Function Coefficients

For training using SHEAL and the cluster optimization phase (Equations 4.7 and 4.8), we have

the loss function coefficients (λ1, λ2, λ3 and λ4), which can be used to adjust the weight of each

component of the loss function. Since homogeneous matching is a less challenging problem

compared to CSCR-FR, CS-FR and CR-FR, we kept a considerably lower value for λ1 than

the other weight terms. For the SCface [3] database, we kept a much higher value for λ4 since

CSCR-FR matching is an extremely challenging problem.

4.4.2.5 Without Pretraining

In order to make a fair comparison, the other deep metric learning methods with which we

have compared in the paper ([92], [91] and their variants) have been trained on the same data

using the weights of the same pretrained model. In addition to this, we trained our method

from scratch (on a randomly initialized model), and achieved 90.71% accuracy wheras those

obtained by Chen et al. [92] and Schroff et al. [91] are 82.13% and 80.34% respectively, on

64× 64 probes of the CASIA NIR-VIS 2.0 database. It shows that even without pretraining, the

proposed method outperforms the most popular deep metric learning algorithms.

4.4.2.6 Visual Inspection of the Results

We also performed visual inspection of the results and some cases are presented in Fig. 4.8.

It can be observed that images of the SCface database which have extremely low resolution
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(a)

(b)

FIGURE 4.8: Sample images of some extremely noisy and poor quality images of (a) SC-
face [3] and (b) FaceSurv [4] databases that are correctly classified by the model trained with
SHEAL, but were incorrectly classified using triplet [91], quadruplet [92] and triplet center

loss [207] based methods.

and quality (Fig. 4.8(a)) are correctly classified by the proposed algorithm. On the other hand,

the images in the FaceSurv database, which in addition to low resolution suffer from heavy

motion blur and poor illumination, are also correctly classified by the proposed algorithm. These

results showcase the potential applicability of the proposed algorithm to real world surveillance

scenarios.

4.5 Summary

The problem of heterogeneous face recognition is compounded when test data shows multi-

ple heterogeneity. Current deep metric learning approaches generally do not handle such het-

erogeneous problems and yield poor recognition accuracies. This paper introduces a subclass

heterogeneity aware loss function which is utilized to train a discriminative model to generate

heterogeneity invariant embeddings. This helps to project a pair of face images of different

covariates into an embedding space where matching can be performed efficiently irrespective

of the images being captured in very different scenarios. This can be applied in a surveillance
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application where the data may encompass multiple covariates. In future, we plan to extend the

proposed algorithm to include other covariates of face recognition such as disguise and aging

along with multiple heterogeneous variations.



Chapter 5

On Learning Density Aware
Embeddings

5.1 Introduction

Classification models such as Convolutional Neural Networks (CNN) utilize deep metric learn-

ing based loss function for learning discriminative embeddings. The loss function attempts to

bring the embeddings of the same classes close to each other in the output manifold. In this

embedding space, a direct computation of the distance gives the dissimilarity score between the

two images. Several different applications have investigated the use of deep metric learning

algorithms such as person re-identification [205, 206, 210], 3D object retrieval [207], biomet-

ric recognition [89, 89–91, 211], robot perception [212], patch matching [213, 214], and object

recognition [215, 216].

In the literature, very efficient deep metric learning methods have been proposed such as triplet

loss [91] and quadruplet loss [92]. However, a major limitation of these loss functions is their

heavy dependence on mining of hard samples for training [91, 95, 206, 210]. In the triplet

Loss [91], for N training classes and K samples in each class, the total number of triplets for

training can be as high as N(N − 1)K2(K − 1), which increases the training time on large

datasets significantly. Another limitation of these methods is slow convergence, this heavily

depends on the appropriate choice of the training curriculum. Further, the presence of outliers

(noisy/poor-quality samples) in the training data, and their participation in triplets may hurt the

training process. To the best of our knowledge there has been no study to understand the effect of

outliers and density distribution of the training data on the performance of deep metric learning

algorithms.

84
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Density Aware Deep Metric Learning

Conventional Center based Metric Learning 

Class A Class B

Class A Class B

(b)

(a)

FIGURE 5.1: Illustrating the difference in the conventional and proposed metric learning tech-
niques. (a) Conventional center loss based deep metric learning algorithms pull the data of a
class towards the centroid of that class. (b) The proposed density aware deep metric learn-
ing algorithm pulls the samples of every class towards the most dense region of the respective

clusters.

As seen in Figure 5.1(a), conventional center loss based deep metric learning methods [200, 207]

generate embeddings of each class that lie closer to the centroid of the samples of that particular

class. However, they do not take into account the distribution of the training data. In cases

where outliers are present, the convergence of such methods on large databases can be slow and

the outliers/noisy training samples can adversely affect the training of a discriminative model.

In order to mitigate this challenge, the proposed algorithm minimizes the effect of outliers by

calculating the center, taking into account the most dense region of the respective clusters for

each class (Figure 5.1(b)). Using the philosophy of the classical mean-shift algorithm [217], the

estimate of the mean is shifted to a denser region from the initial estimate of the centroid. This

shifted center embedding is used for learning a discriminative model. The research contributions

of the paper can be summarized as follows:

• The proposed density aware deep metric learning algorithm provides a generalized frame-

work which can be augmented with any deep metric learning method for effective training

especially with noisy data.

• Detailed analysis and comparison with other popular deep metric learning methods on

four challenging databases pertaining to face and object images show that the proposed

approach gives better recognition accuracies, exhibits superior convergence with reduced

training time and is resilient to noisy training data.
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5.2 Related Work

Hadsell [88] proposed the contrastive loss, which was one of the first deep metric learning

methods for training a discriminative model with a deep neural network. They used a single

loss function to pull positive pairs and push negative pairs in the output embedding space of

the model. This method of training a discriminative neural network, popularly known as the

Siamese Network, resulted in several extensions [89, 90, 215] which produced excellent results

on a variety of image recognition problems. Recently, one of the most popular methods for

deep metric learning is the triplet loss [91]. The triplet loss enforces the model to learn an

embedding space where samples of similar classes are mapped closer to each other and that of

other classes are pushed away. Wen [200] used a combination of the softmax and the center loss

for face recognition. Later, Chen [92] proposed the quadruplet loss which used an extra negative

sample in addition to the anchor, positive and the negative sample that were utilized by the

triplet loss. They showed that the extra negative term helps to train a more generalizable model.

Thereafter, several methods have attempted to improve upon the triplet and the quadruplet loss

based methods. Yuan [95] proposed an ensemble based technique for mining hard examples

which are used for training a deep network using the contrastive loss. Hermans [206] proposed

a triplet mining technique, by selecting the k hardest positive samples and k hardest negative

samples for each anchor image in a batch of N randomly sampled images from the training set.

Recently, He [207] proposed the triplet center loss where the center of the set of anchors and

the center of the nearest negative cluster were utilized in the loss function of the triplet loss, for

person re-identification.

5.3 Density Aware Metric Learning

The proposed method presents a novel contribution to the deep metric learning paradigm by

incorporating the density of data in the clusters during training. Before delving into the detailed

formulation, a brief illustration of the background is discussed.

5.3.1 Background

In a classical pattern classification scenario, data ~Z from n different classes is available, ~Z =

{z1, z′1, z2, ...., zi, z′i, ...zn}, where zi and z′i are two images of the same class i. Let the ith class

contain ni number of training samples. The goal of a deep metric learning algorithm is to learn

a function gθ(z) : RS −→ RT where S is the dimensionality of the source data manifold, T is

the dimensionality of the output embedding space of the model g, and θ represents the trainable

parameters of the model. For illustration, let {x, y} be the pair of points on the embedding
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FIGURE 5.2: The proposed algorithm iteratively finds the estimate for the center in the most
dense region of the cluster. This center, when used with a deep metric learning algorithm, is

expected to provide effective training and better convergence. (best viewed in color).

manifold of the model g. The distance metric function is defined as:

D{x, y} : RT × RT −→ R (5.1)

In this paper, Euclidean distance is used as the distance metric, which can be defined as:

D{x, y} = ‖gθ(x)− gθ(y)‖22 (5.2)

Inspired from Large Margin Nearest Neighbor Classification [218], a typical deep metric learn-

ing loss L can be used which is minimized by pulling intra-class embeddings together into one

cluster and pushing the inter-class embeddings. From the training set Z, a 3-tuple is formed

using three images, za, which is a sample of the class a, a positive sample z′a, which is another

image of the same class a, and a negative sample zb which is an image of another class b. The

loss function can be expressed as:

L =
[
D{~Za, ~Z ′a} −D{~Za, ~Zb}+ α

]
+

(5.3)

∀(~Za, ~Z ′a, ~Zb) ∈ τ

where, τ is the set of all 3-tuples in the training data, [f ]+ = max(f, 0), α is the margin

parameter and ~Za, ~Z ′a and ~Zb are sets of all the anchors, positive and negative samples, prepared

from the training set.
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5.3.2 Proposed Formulation

In order to present the proposed approach, the standard loss metric (Equation 6.2) is re-formulated

where the anchor za is replaced with the center of class a. The center embedding Ca is calcu-

lated as the mean of all the embeddings of class a. Thus, the loss function may be expressed

as:

L =
[
D{Ca, ~Z ′a} −D{Ca, ~Zb}+ α

]
+

(5.4)

where Ca =

∑
na
g(za)

na

Ca represents the centroid of the cluster corresponding to class a, containing na training sam-

ples. However, depending on the density of the cluster (as shown in Figure 5.2), the mean-shift

algorithm [217] may be applied to iteratively arrive at the mean driven by non-parametric density

estimation of the cluster.

5.3.2.1 Shifting the Mean to a Denser Region

Reiterating, Ca is the initial centroid of the cluster which is calculated by taking the mean of

all the embeddings of class a. Now, from Ca, selecting the nearest p points (in the embedding

manifold of the model g) out of all the na points in the cluster corresponding to class a, we

take the mean of only these p points, where p < na. We term the region of the embedding

manifold containing these p points around the centroid (the red dotted circle in Figure 5.2) as

the enclosure region, and the set of these p points as enclosure points. The estimate for the

new center C ′a can be calculated as,

C ′a =

∑p
i=1 g(zia)

p
∀zia ∈ {z1a, z2a...zpa} (5.5)

where, zia is the ith point inside the enclosure region. Figure 5.2 shows the new mean C ′a, which

is expected to be in a denser region of the cluster. The difference of the new mean C ′a and the

old mean Ca gives the mean shift vector which can be expressed as:

Va =

[∑p
i=1 g(zia)

p
−
∑

na
g(za)

na

]
(5.6)

This process is repeated iteratively until the mean shift is negligible, thus leading to convergence.
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5.3.2.2 Weighted Mean Shift

The above calculation of the centroid does not take into account any weightage of the points

around the mean that are considered. In order to give importance to the points nearer to the

centroid, we can use a weight coefficient Wi for every point i in the enclosure region. The kth

estimate of the center with respect to weights Wi can be calculated as,

Cka =

∑p
i=1WiC

k−1
a g(zia)∑p

i=1WiC
k−1
a

∀zia ∈ {z1a, z2a...zpa} (5.7)

Ck−1a being the (k − 1)th estimate of the mean. The corresponding mean shift vector may be

expressed as,

V k
a =

[∑p
i=1WiC

k−1
a g(zia)∑p

i=1WiC
k−1
a

− Ck−1a

]
(5.8)

Here, p is the number of enclosure points for the kth iteration, and zia is the ith data point for the

class a.

5.3.3 Selecting weights using a Kernel Density Estimate (KDE)

In order to select weights Wi for each point i in the cluster represented by the centroid Ca for a

particular class a, we can use a kernel density estimate that are generally used by non-parametric

density estimation techniques. A uniform kernel for selecting the weights can be expressed as:

Wi =

{
c if

∥∥Ca − zia∥∥ < f

0 otherwise
(5.9)

where,
∥∥Ca − zia∥∥ gives the distance of the point zia from the cluster centroid Ca for class a.

The uniform kernel assigns a weight c to the point zia if it is within the enclosure region. The

enclosure region has a radius of f , thus all the points which are at a distance of f or less from

the centroid Ca are assigned the same weight c. Instead of directly using a parameter for the

radius of the enclosure region, p nearest enclosure points can also be considered out of all the

points in the cluster for class a. Algorithm 6.3 outline the steps of the proposed approach using

the triplet loss.

5.4 Density Aware Deep Metric Learning in Triplet and Quadru-
plet Loss

The proposed Density Aware Metric Learning is a generic formulation and can be incorporated

into any deep metric learning loss function. Here, we present the formulations of triplet and
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Algorithm 2: Density Aware Triplet Loss.

Input: CNN model gθ, training data {~Z}
Output: Trained model gθ
Parameters: e (epochs), θ (parameters of g), m (batch size), k (number of batches) p (number of

enclosure points) s (mean shift iterations), tp (threshold for hard positive selection), tn (threshold
for hard negative selection), f (radius of enclosure region)

1 for Epoch=1 to e do
Generate Triplets:

2 Initialize: X = {} (empty set of selected Hard Triplets)
3 Initialize: Pool = {} (empty pool of samples)
4 for every class a = 1 to n do
5 Select b images randomly from class a
6 Pool = Pool∪ selected images

end
7 for each image zia of each class a in Pool do
8 Select zia as the anchor image
9 for each image zyl in Pool such that zyl 6= zia do

10 if a = l and D{zia, z
y
l } > tp then X = X ∪ zyl

11 if a 6= l and D{zia, z
y
l } < tn then X = X ∪ zyl

end
end
Calculate Center:

12 Ca =
∑

na
g(za)

na

Shift Center:
13 for every class a do
14 for k=1 to s do

15 Wi = Ku(Ck−1a − zia) =

{
c if

∥∥Ck−1a − zia
∥∥ < f

0 otherwise

16 Cka =
∑p

i=1WiC
k−1
a g(zia)∑p

i=1WiC
k−1
a

∀zia ∈ {z1a, z2a...zpa}

17 V ka =
[∑p

i=1WiC
k−1
a g(zia)∑p

i=1WiC
k−1
a

− Ck−1a

]
end

end
Generate embeddings

18 for every batch of size m do
19 Forward pass through g to find gθ(Za), gθ(Z

′
a), fθ(Zb)

Calculate loss L
20 L =

∑
m

[∥∥∥Csa − g( ~Z ′a)
∥∥∥2
2
−
∥∥∥Csa − g(~Zb)

∥∥∥2
2

+ α

]
Calculate gradient

21 4W = ∇θ 1
m

∑
m L

22 Update weights of gθ using4W
end

end

quadruplet loss based density aware metric learning:

5.4.1 Density Aware Triplet Loss (DATL)

Schroff [91] proposed the triplet loss based deep metric learning technique where the loss L

is minimized by the same philosophy as discussed in Section 5.3.1. From the training set Z,
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a triplet is formed using an anchor za, which is an image of the class a, a positive sample z′a,

which is another image of the same class a, and a negative sample zb which is an image of

another class b. The loss function is expressed as,

L =

[∥∥∥g(~Za)− g( ~Z ′a)
∥∥∥2
2
−
∥∥∥g(~Za)− g(~Zb)

∥∥∥2
2

+ α

]
+

(5.10)

∀(~Za, ~Z ′a, ~Zb) ∈ τ

where ~Za, ~Z ′a and ~Zb are sets of all anchors, positive and negative samples, respectively, and τ

is the set of all triplets in the training data. Using the proposed approach, the anchor is replaced

with the center which is iteratively determined (Ca or C ′a, and so on) with an appropriate kernel

density estimate. The loss function for the Density Aware Triplet Loss (DATL) is as follows:

L =

[∥∥∥Ca − g( ~Z ′a)
∥∥∥2
2
−
∥∥∥Ca − g(~Zb)

∥∥∥2
2

+ α

]
+

(5.11)

5.4.2 Density Aware Quadruplet Loss (DAQL)

The triplet loss is extended by Chen [92] as the quadruplet loss where a second negative image

zc is introduced. The loss function for the same in the proposed density aware paradigm can be

expressed as,

L =

[∥∥∥Ca − g( ~Z ′a)
∥∥∥2
2
−
∥∥∥Ca − g(~Zb)

∥∥∥2
2

+ α1

]
+

+

[∥∥∥Ca − g( ~Z ′a)
∥∥∥2
2
−
∥∥∥Ca − g(~Zc)

∥∥∥2
2

+ α2

]
+

(5.12)

∀(~Za, ~Z ′a, ~Zb, ~Zc) ∈ ϑ

where ϑ is the set of all the quadruplets prepared from the training set.

5.4.3 Experimental Setup and Implementation

The deep CNN architecture by Wu [163] is utilized to learn a discriminative model with the

proposed loss function. The weights are initialized from a network that is pretrained on the

MS-Celeb 1M dataset. The model has 17 convolutional layers, along with 10 Max-Feature-

Map layers. The network has two fully connected layers at the end, producing embeddings of

dimensionality 256. Training is performed using the Adam optimizer. The batch size is kept at

60 and the learning rate of 10−3 is used which is decreased gradually till 10−7. Hard mining

is performed (steps 7-11 of Algorithm 6.3) for all the variants of triplet and quadruplet losses

according to the Batch Hard scheme proposed by Hermans [206]. The hard mining is only
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performed at the end of training (once the learning plateaus) to accelerate the training process.

All the codes are implemented using the Pytorch platform on a machine with Intel Core i7 CPU,

64GB RAM and NVIDIA GTX 1080Ti GPU.

5.5 Experiments

The proposed algorithm is evaluated on the SCface [3] and FaceSurv [4] datasets for cross-modal

face matching, and on the CIFAR10 [5] and STL-10 [6] datasets for object recognition.

5.5.1 Datasets

Details of the databases and experimental protocols are described in this section.

SCface [3] is a face dataset containing poor quality face images captured from surveillance cam-

eras in indoor environment. The database contains 4160 images of 130 subjects. The images are

captured with eight different cameras, out of which two cameras operated in night-vision mode

and one camera is operated in Near-Infrared mode. The images are taken from three different

stand-off distances namely 4.2 mts, 2.6 mts, and 1 mt. Out of the 130 subjects, images of 50

subjects are used for training and the remaining are used for testing. The classes/subjects in the

train and test set are non overlapping.

FaceSurv [4] is a video face database where the subjects walk towards the camera from a dis-

tance of about 10 mts. It has 396 daytime and 365 nighttime videos of 240 subjects. The

nighttime videos are captured in complete darkness with an NIR illuminator. Each video has

about 200 frames on an average. Each subject has three gallery images which are captured in

controlled scenarios from a standoff distance of 1 mt. Videos of only 39 subjects are used for

training and the remaining are used for testing. The classes/subjects in train and test sets are

disjoint.

CIFAR-10 [5] is a popular object recognition dataset consisting 60,000 images of 10 classes.

The resolution of the images is 32× 32. The training set contains 50,000 images (5,000 images

of each class) and 10,000 images (1,000 per class) comprise the testing set.

STL-10 [6] contains 113,000 images of 10 different objects. The resolution of the images is

96× 96. The total number of images for training and testing are 5,000 (500 per class) and 8,000

(800 per class), respectively. The remaining images are unlabeled and have not been used for

the experiments.
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5.5.2 Evaluation Criteria

In this work, two different kinds of experiments have been performed: cross-modal face recog-

nition (identification) and object recognition (retrieval). For face identification, the test set is

partitioned into probe (query images) and gallery (reference set/database) sets. For every image

of the probe set, matching is performed with each image of the gallery by a forward pass through

the learned model (gθ), followed by computing Euclidean distance between the embeddings of

the probe and the gallery images to calculate the match score. Rank K accuracy is the ratio

(multiplied by 100 to get a percentage) of the number of times the correct class is among the top

K matches to the number of matching attempts (once for each probe image). Recall @ K is the

average recall score for all the query images. Following the definition by Song [219], the recall

score is one if the relevant class is retrieved in the top K matches with the gallery/database set,

and is zero otherwise.

5.6 Results

The experiments have been performed by partitioning each database into the train and test sets.

The CNN model is trained on the train set using the proposed density aware deep metric learning,

i.e. the Density Aware Triplet Loss (DATL) and the Density Aware Quadruplet Loss (DAQL).

Comparisons have been performed with the vanilla triplet and quadruplet losses, (their variants

for cross-modal matching are implemented for the SCface and FaceSurv databases). In addition,

the proposed algorithm is also compared with hard triplet loss [206] and recently proposed triplet

center loss [207]. The former is a variant of the vanilla triplet loss using a moderate hard mining

approach. Triplet center loss is a formulation which mimics the conventional center based triplet

loss previously discussed (Equation 5.4).

For face recognition, Rank 1 accuracies for three different probe resolutions, namely 48 × 48,

32× 32 and 24× 24 are reported. As shown in table 5.1 on 32× 32 and 24× 24 resolutions, the

proposed algorithm produces state-of-the-art results for the SCface database. It outperforms the

vanilla triplet and the quadruplet losses and their variants on the FaceSurv database (Table 5.2)

as well. Moreover, on the SCface database, we report published results from different cross-

modal face recognition methods. As shown in Table 5.1, it can be observed that the proposed

algorithm outperforms these existing algorithms, specifically for lower resolution levels.

For the object retrieval task, experiments are performed on the CIFAR-10 and STL-10 datasets.

As shown in Table 5.3, on the CIFAR-10 dataset, the proposed algorithm outperforms both the

triplet and the quadruplet losses and their variants for recall @ 1 and recall @ 10. However, for

recall @ 100 it produces competitive accuracy with respect to the other algorithms. As shown
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TABLE 5.1: Summarizing the results of face identification on the SCface [3] Database.

Method Identification (%) (Rank 1)
24 x 24 32 x 32 48 x 48

MDS [82] 64.87 70.48 76.14
Co-Transfer Learning [23] 70.14 76.29 83.47
Res-Net [200] 36.30 81.80 94.30
Coupled Res-Net [150] 73.30 93.50 98.00
VGGFace [150] 41.30 75.50 88.80
Coupled VGGFace [150] 62.30 91.00 94.80
Coupled Light-CNN [150] 50.50 85.00 94.00
Triplet loss [169] 70.69 95.42 97.02
Quadruplet loss [92] 74.00 96.57 98.41
Hard triplet loss [206] 72.65 96.12 98.05
Triplet Center Loss [207] 75.45 96.10 98.50
Discriminative MDS [151] 62.70 65.50 70.70

Proposed
DATL 76.24 96.87 98.09
DAQL 77.25 96.58 98.14

TABLE 5.2: Summarizing the results of face identification on the FaceSurv [4] database.

Method Identification (%) (Rank 1)
24 x 24 32 x 32 48 x 48

Triplet loss [169] 18.0 38.5 72.5
Quadruplet loss [92] 16.4 38.5 77.9
Hard triplet loss [206] 17.8 40.8 78.9
Triplet Center Loss [207] 18.4 41.5 82.7

Proposed
DATL 20.4 42.8 85.9
DAQL 21.3 48.6 85.6

TABLE 5.3: Summarizing the results of object retrieval on the CIFAR-10 [5] database.

Method Recall @ K (%)
K = 1 K = 10 K = 100

Triplet loss [169] 76.24 94.78 97.21
Quadruplet loss [92] 78.35 95.40 98.99
Siamese+Triplet [212] 78.62 92.57 97.19
Hard triplet loss [206] 78.51 93.87 97.41
Triplet Center Loss [207] 79.41 96.10 95.78

Proposed
DATL 80.34 96.68 97.84
DAQL 80.81 96.12 97.58

in Table 5.4, on the STL-10 dataset, the proposed algorithm outperforms the vanilla triplet and

quadruplet losses along with their variants on recall @1, 10 and 100.

5.7 Analysis and Discussion

This section analyzes the performance of the proposed algorithm with respect to training with

noisy data, convergence, training time, and parameters.
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TABLE 5.4: Summarizing the results of object retrieval on the STL-10 [6] database.

Method Recall @ K (%)
K = 1 K = 10 K = 100

Triplet loss [169] 72.47 78.54 80.41
Quadruplet loss [92] 73.98 78.71 81.77
Siamese+Triplet [212] 73.62 77.15 81.34
Hard triplet loss [206] 72.95 76.08 81.90
Triplet Center Loss [207] 74.61 77.98 81.59

Proposed
DATL 75.27 79.08 82.38
DAQL 75.84 80.17 83.74

TABLE 5.5: Results on the STL-10 database after adding noisy training data for every class.

Method

Resolution of Noisy Samples
24 x 24 32 x 32

Recall @ K (%)
K=1 K=10 K=1 K=10

Triplet Loss [91] 54.12 58.00 68.45 72.58
Quadruplet Loss [92] 56.51 59.77 68.74 73.01
Hard Triplet Loss [206] 58.29 60.41 65.37 72.91
Triplet Center Loss [207] 62.76 65.40 68.76 73.16

Proposed
DATL 66.52 69.45 69.87 73.21
DAQL 65.47 69.80 68.52 75.40

5.7.1 Effect of Noisy Data during Training

One of the primary properties of the proposed method is the ability to ignore outliers during

training. Such outliers may often be represented by noisy data (low resolution/quality and poor

illumination). As shown in Figure 5.3(a), these noisy data samples affect the training process of

conventional deep metric learning based algorithms. Since the proposed method computes the

cluster center only by using the points inside the enclosure region, the outliers are effectively

ignored. On the other hand, conventional deep metric learning algorithms would consider all

the points (including outliers) which may lead to unnecessary jitter in the convergence during

training. An experiment is performed on the STL-10 database by replacing 15% of samples

from each class by low resolution variants (32 × 32 and 24 × 24 as two separate experiments)

of the same. Such training samples are expected to be outliers and thus may have potential to

hurt the training process. We use a no reference image quality score (BRISQUE [168]) (a lower

score implies better image quality) for the original training samples of STL-10 which is 33.90

(average for training set). For the noisy samples, the score is 45.14 (for 24× 24) and 41.83 (for

32 × 32). This infers that the low resolution data are of lower quality. As shown in Table 5.5,

the proposed methods perform better than conventional deep metric learning techniques when

noisy data is introduced in the training process. It also exhibits that performance improvement

is greater for the experiment where higher amount of data corruption (adding 24 × 24 images)

is performed.
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FIGURE 5.3: (a) tSNE Visualization of noisy samples (for a particular class), which shows
that most of the noisy samples are outliers (b) Center computed by the proposed method is
in the dense region of the class while the conventional center is away from the dense region.
Visualization is on the STL-10 database, one particular class is shown for illustrative brevity

(best viewed in color).

5.7.2 Size of the Enclosure Region

One important parameter of the proposed algorithm is the size of the enclosure region. For

implementation, the enclosure region is determined by taking the nearest k% points from the

current center embedding point. A region of 20% signifies that the nearest 20% points (with

respect to all the points of the particular cluster) from the current center are considered to be

inside the enclosure region. Figure 5.4 shows the results for the proposed Density Aware Triplet

Loss on the STL-10 and CIFAR-10 databases for four different enclosure regions. It can be seen

that an enclosure region of 17% yields optimal results while larger or smaller enclosure region

results in reduced accuracy on both the databases.

5.7.3 Training Time

Owing to better convergence properties of the proposed DATL, total training time required is

much less as compared to the vanilla triplet loss and its variants. As shown in Figure 5.5(a),
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FIGURE 5.5: Total (a) training time and (b) epochs for training on the STL-10 database (best
viewed in color).

the total time needed to train the proposed algorithm is 325.4 minutes. On the other hand, the

vanilla triplet loss, triplet center loss, and the hard triplet loss requires 714.9, 381.4, and 462.7

minutes, respectively on the STL-10 dataset. In terms of the number of epochs as well, the

proposed density aware triplet loss requires much lesser number of epochs (98 epochs), whereas

the triplet loss, triplet center loss, and the hard triplet loss takes 192, 144, and 149 epochs,

respectively.

5.7.4 Convergence

The foremost advantage of the proposed density based deep metric learning approach is its

ability to converge quickly as compared to the vanilla triplet and quadruplet loss methods. In

addition, the proposed algorithm also converges much faster with respect to the triplet center

loss [207] which uses the centroid of the cluster in the loss function (Equation 5.4). The pro-

posed method avoids outliers and thus updates the weights of the model in such a way, so as to
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FIGURE 5.7: Normalized center shift epoch-wise for the CIFAR-10 and SCface database (best
viewed in color).

create embeddings in the most dense region of the clusters. This avoids large weight updates as

the embeddings need not be shifted away from the dense region. As shown in Figure 5.6, the

convergence of the proposed density aware triplet loss (on a validation set which is prepared by

randomly selecting 10% samples from the training set) is superior than the vanilla triplet loss

and the triplet center loss. For all the methods, convergence is defined as the stage when the

validation accuracy does not improve for 50 epochs at a stretch.

5.7.5 Shifting of the Center

The proposed approach iteratively evaluates the center towards the most dense region of each

class (Figure 5.3(b)). An analysis is performed showing the magnitude of center shift for each

epoch. The average of the center shift for all the classes is used to plot the graph in Figure 5.7

which shows that the magnitude of the center shift is much higher for the SCface database which
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has a very large number of noisy training samples. It can be also observed that the magnitude of

the center shift decreases as the training progresses, thereby producing more compact clusters.

5.8 Summary

This chapter presents an elegant approach for density aware deep metric learning. The pro-

posed approach can be augmented with any deep metric learning technique such as triplet and

quadruplet loss, and its variants. It results in superior convergence and accuracies, thus provid-

ing an important enhancement in current deep metric learning strategies. The proposed DATL

and DAQL have also shown to be resilient to noisy training data compared to other deep met-

ric learning methods. Extensive experiments on four datasets showcase the superiority of the

proposed DATL and DAQL over existing deep metric learning techniques.

This chapter involves training a model which is robust to noise and data quality using a
classifier level algorithm. The model learning algorithm is designed such that it is robust
to noise and outliers, which is suitable for surveillance applications where the probe data
is expected to be noisy and of poor quality. In the next chapter we will delve into another
important requirement of surveillance applications, to optimize for the top-k accuracy,
where we will discuss a classifier level technique so that the trained model is more suited
towards that requirement.



Chapter 6

Top-k Aware Deep Metric Learning

6.1 Introduction

Conventional deep learning algorithms are generally trained for optimizing the classification

accuracy or top-1 accuracy, which is reflected by the performance of the model for obtaining

the most likely class label of a test image. However, in problems such as object retrieval and

biometrics, improving the top-k accuracy has received paramount attention [220–222]. In these

applications where the number of classes is extremely large, ensuring very high performance for

the top match might not be feasible. In such cases, the top-k best matching results obtained from

the algorithm can be further analyzed to ascertain the correct class of the test image. Formally,

top-k accuracy is defined as probability of the trained model for predicting the correct class

among the k-most likely classes for a given test image.

Considering an example of object retrieval, the algorithm matches a query/probe image to a

database/gallery and retrieves the most likely matches. The most desirable scenario is that the

top match belongs to the relevant class (the same class as the probe image). As shown in Fig-

ure. 6.1(a), the query image when matched with the database may retrieve samples that are very

similar to each other. In this example, the correct match is present at rank 3 and the matches

at previous ranks are not correct matches (does not belong to the same class of the query). The

reason is that all these images (top 6) are extremely similar in terms of image properties which

leads to class ambiguity [223–226]. Similarly, Figure 6.1(b) shows several classes from the

CIFAR-100 database which are similar in terms of features and properties, may lie close to each

other in the output embedding space of the model being used for matching.

100
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FIGURE 6.1: Motivation for enhancing the top-k matching performance. (a) A typical object
retrieval scenario. It shows that the correct class (with green border) is retrieved among the
top-6 matches from the gallery, while the other matches although look similar to the probe
are actually incorrect matches. (b) Illustration of class confusion in the CIFAR-100 database.
Images of different classes of flowers, namely orchids, poppies, roses, sunflowers and tulips
are shown. It is evident that several samples across different classes in each of the superclasses
have visually similar color, texture and appearance, which may lead to class confusion while

training a classifier (best viewed in color).

6.1.1 Related Work

Several notable research contributions have been made for enhancing the top-k matching per-

formance of classifiers for databases where the number of classes are large. Gupta et al. [227]

investigated the behaviour of classifiers on databases with two kinds of class ambiguity, namely

label noise and overlapping classes. They proposed an approach to avoid class confusion by

ignoring such classes and focusing the classifier on those classes that are more discriminative.

Lapin et al. [224] proposed a loss function with a tight convex upper bound on the top-k er-

ror. Further, they presented a detailed analysis [228] of multi-label classification techniques and

top-k based algorithms in the context of large scale databases. Yan et al. [229] utilized multi-

modal feature fusion for top-k classification by using several classifiers which are allowed to

participate in the process. Chu et al. [221] showcased a semi-smooth Newton algorithm which

improves the training time for top-k classification significantly. Recently Berrada et al. [220]

introduced a family of smooth loss functions designed for top-k optimization. Their work also

exhibits better top-k performance on large scale datasets in the presence of label noise.

One of the popular ways to build image recognition systems is to train a deep learning model

using a loss function which minimizes intra-class distance and maximizes inter-class distance

in the output embedding space of the model. Such approaches, categorized as deep metric

learning methods, have produced impressive results on several image recognition problems



On Heterogeneous Face Recognition 102

Before Training

K 1

K 2

K 3

After Training

Probe

Gallery class Probe

FIGURE 6.2: Illustrating the high level working of the proposed approach. It brings similar
classes (represented as smaller circles) closer in the embedding space to form compact super-
cluster (dotted circle), which results in increased top-k matching performance during testing.

[91, 94, 205, 207, 210, 213, 215], unlike conventional classifiers which output the class label

for an input image. Models trained using deep metric learning methods output the embed-

ding (feature representation) of an image that is given as input to the model. Further, unlike

conventional classifiers, deep metric learning models are often tested on classes which are not

encountered during training. As a result, existing top-k approaches [220–222, 224, 229] built

on conventional classifiers such as support vector machines and neural networks are not suitable

for the deep metric learning paradigm and they cannot be directly utilized in unseen train-test

classification/identification scenarios.

6.1.2 Research Contributions

In this research, we propose an algorithm for training a Convolutional Neural Network (CNN)

model using a deep metric learning loss function, with the objective of enhancing the top-

k matching performance. The proposed method achieves this objective by bringing together

classes into superclusters. As illustrated in Figure 6.2, this is done by using a loss metric which

brings together similar classes in the output embedding space of the model being trained. During

testing, when a query/probe is matched with the database/gallery, it is likely to be located close

to the supercluster containing the relevant class. As a result, the probe is expected to contain

the correct class in one of the top-k matches, where k is approximately equal to the number of

classes in the supercluster containing the class. The salient contributions of this research are as

follows.

1. A deep metric learning formulation is proposed for enhancing the top-k matching perfor-

mance of a CNN model. The formulation is presented as independent of the application

and can be used in its generic form for enhancing the top-k accuracy. To the best of our
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knowledge, this is the first work on enhancing the top-k performance of a classifier for

deep metric learning. The proposed approach may also be utilized in scenarios where

classes encountered during testing are not seen during training.

2. Extensive experiments on four popular object recognition datasets namely STL-10 [6],

CIFAR-10 [5], CIFAR-100 [5], CARS196 [230] and a challenging heterogeneous face

recognition dataset SCface [3] unravel the effectiveness of the proposed approach.

6.2 Preliminaries

Consider a classical pattern recognition scenario, where data {X1
1 , X

2
1 , X

3
1 , ....X

1
i , ....X

1
n} is

available from n classes. X1
i and X2

i represent two data samples belonging to the ith class.

A deep metric learning algorithm applied to this data attempts to learn a projection function

fθ(x) : RS −→ RT , where S is the dimensionality of the data and T is the dimensionality

of the projection of the input data. In the purview of deep metric learning, the function fθ is

often realized as a deep-CNN model f with trainable parameters (weights of the model) θ. After

the model f maps the input data to their respective embeddings, a distance metric function is

utilized to calculate the distances between the data samples in the output embedding space of

the model f . The distance metric function is defined as,

D{p, q} : RT × RT −→ R (6.1)

where, D is the distance metric function which outputs the distance between two data samples

p and q in the embedding space. This distance may be calculated between two images p and q

using the Euclidean measure D{p, q} = ‖fθ(p)− fθ(q)‖22. Similarly, D(.) may also be used to

evaluate a distance vector between two sets of images.

Inspired by Large Margin Nearest Neighbor Classification [218], the triplet loss [91] is defined

as,

L =
[
D{ ~Xa

i ,
~Xb
i } −D{ ~Xa

i ,
~Xc
j}+ α

]
+

(6.2)

∀( ~Xa
i ,
~Xb
i ,
~Xc
j ) ∈ τ

where, ~Xa
i and ~Xb

i are set of images of class i and ~Xc
j is the set of images of class j where

i 6= j, [f ]+ = max(f, 0), α is the margin parameter and τ is the set of all 3-tuples which

are generated from the training set. In order to minimize L, D{ ~Xa
i ,
~Xb
i } which represents the

intraclass distance, is minimized and D{ ~Xa
i ,
~Xc
j}, which represents the interclass distance, is

maximized. The gradient of this loss L is used to update the weights of the model f , which is

trained as a discriminative function.
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FIGURE 6.3: Illustration of the proposed top-k aware deep metric learning algorithm.

6.3 Top-k Aware Deep Metric Learning

In this section, we present the proposed deep metric learning algorithm which is used to train a

classifier for enhancing the top-k matching performance. In order to enhance the top-k matching

performance, we introduce the concept of superclusters, which are a collection of classes. A pre-

trained deep model can be initially used to generate embeddings of the training data. From these

embeddings, a density based clustering algorithm is used to create superclusters, each of which

is a set of similar classes in the output embedding space of the pretrained model. Thereafter,

the intra-supercluster distance is minimized and the inter-supercluster distance is maximized,

thereby making the superclusters more compact. This may result in some of the classes losing

their compactness, since some of the classes may not have their data allocated to a single su-

percluster, rather may be allocated to different superclusters. In order to mitigate this effect, a

generic deep metric learning algorithm is utilized to restore the compactness and separation of

the classes in the embedding space. The proposed algorithm is illustrated in Figure 6.3. In this

section we illustrate the proposed algorithm in detail, along with the intuition and significance

of each step of the process.

6.3.1 Preparing Superclusters

The first step of the proposed method is clustering of the embeddings of the input training data

obtained using a pretrained deep-CNN model. As shown in Figure 6.3, the clustering step is

used to categorize the input data into k clusters, where each cluster may contain data from mul-

tiple ground truth classes, hence called a supercluster. A density based clustering method DB-

SCAN [231] is applied on the embeddings of n-class training data {X1
1 , X

2
1 , X

3
1 , ....X

1
i , ....X

1
n}.
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This algorithm attempts to cluster the embeddings using density (number of points in the neigh-

borhood of a point) as a criterion. It identifies each data sample as one of the three types,

namely core point, border point and noise point. Core points are those which are located in a

dense neighborhood. The neighborhood of a point is dense, if it has at least c points in its ε

neighborhood, where ε is the radius of the neighborhood with respect to the core point and c

is a threshold parameter. A border point is one, which is not a core point but it is located in

the ε neighborhood of a core point. Points which are neither core nor border points are known

as noise points. DBSCAN performs a density traversal from an initial core point p1 to other

core points {p2, p3..pi, pi+1..pm} such that pi+1 is density reachable from pi. A point k is den-

sity reachable from l if l is a core point and it is present in the ε neighborhood of k. Thus the

set {p1, p2, p3....pm} forms a supercluster with m points. This process is repeated until all the

points in the training data have been allocated to a supercluster except the noise points which

are ignored in this process. As shown in Figure 6.3, C1, C2 and C3 are three superclusters, each

containing multiple classes. It should also be noted that the data of a particular class may not be

located in a single supercluster, rather distributed across superclusters.

6.3.2 Compaction of the Superclusters

Each supercluster, denoted byCi, has a centroidCic , which can be calculated as a mean of all the

embeddings of the data points in the supercluster. The objective function (loss) for compaction

of the superclusters is expressed as,

L1 =
[
λ1

[
~Cic − f( ~Xk

i )
]
− λ2

[
~Cic − ~Cjc

]
+ α

]
+

(6.3)

∀Xk
i ∈ Ci and i 6= j

wherein,Xk
i is an element of the ith class that has been allocated to the superclusterCi. The first

term [Cic − f(Xk
i )] computes the intra-supercluster distance (in the embedding space), which

is minimized, resulting in a more compact supercluster. The second term [Cic − Cjc ] gives the

inter-supercluster distance between two superclusters i and j, which is maximized as a result of

the minimization of L1. Thus, Equation 6.3 results in more compact superclusters, which is the

primary goal of the proposed approach.

6.3.3 Restoring Compactness of the Classes

The process of compactness of the superclusters may distort the compactness of the classes. This

is because all the data samples of a particular class may not be assigned to the same supercluster.

In such a case, as per the process outlined in Section 6.3.1 the data points pertaining to the same

class may be separated further apart. To ensure that the compactness of the classes is restored,
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Algorithm 3: top-k Aware Deep Metric Learning
Input: Training Data X = {X1

1 , X
2
1 , X

3
1 , ....X

1
i , ....X

1
n} ,

fθ (Pretrained Deep-CNN model)
Output: f ′θ ( trained Deep-CNN model)
Parameters: ε, c, α1, α2, λ1, λ2, λ3, λ4, tp (threshold for hard positive selection), tn

(threshold for hard negative selection), k (batches) and e (epochs)
Identify Superclusters:

1 Core = {}
2 for Xi ∈X do

if Xi is a core point then Core = Core ∪Xi

end
3 for Cri ∈Core do

find the Core points Crji that are density connected to Cri
end

4 for Epoch=1 to e do
Compaction of Superclusters:

5 for Epocha=1 to e1 do
6 for each supercluster Ci do
7 Evaluate Cic as the center

Generate embeddings:
8 for every batch of size m do
9 Forward pass through f to find fθ(Cic), fθ(Xk

i ), fθ(Cic)
Calculate loss L1

10 L1 =
[
λ1

[
~Cic − f( ~Xk

i )
]
− λ2

[
~Cic − ~Cjc

]
+ α1

]
+

Calculate gradient
11 4W = ∇θ 1

m

∑
m L1

12 Update weights of fθ using4W
end

end
end
Restore Compactness of Classes:

13 for Epochb=1 to e2 do
Generate embeddings:

14 for every batch of size m do
15 Forward pass through f to find fθ( ~Xic), fθ( ~X

p
i ), fθ( ~X

q
j )

Calculate loss L2
16 L2 =

[
λ3

[
~Xic − f( ~Xp

i )
]
− λ4

[
~Xic − f( ~Xq

j )
]

+ α2

]
+

Calculate gradient
17 4W = ∇θ 1

m

∑
m L2

18 Update weights of fθ using4W
end

end
end
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we use the triplet loss with respect to the centroids of the classes. The loss function can be

written as,

L2 =
[
λ3

[
~Xic − f( ~Xp

i )
]
− λ4

[
~Xic − f( ~Xq

j )
]

+ α
]
+

(6.4)

∀( ~Xic , ~X
p
i ,
~Xq
j ) ∈ τ

where, τ is the set of all triplets and ~Xic is a vector prepared by replicating the center embedding

of a classm times. Xp
i andXq

j denote the pth and qth data samples of classes i and j respectively

and m is the size of the triplet batch.

6.3.4 Optimization Process

Summarizing the algorithm, the first step is to run a density based clustering method such as

DBSCAN, on the embeddings of the training data (using a pretrained model) which identifies

the initial superclusters in the embedding space. Thereafter, Equation 6.3 is utilized for enforc-

ing compactness in the superclusters, followed by the triplet loss (Equation 6.4) to restore the

compactness of the original classes. It may be noted that Equation 6.3 and 6.4 are not optimized

serially, rather in an alternating fashion. The reason for this is that, optimizing Equation 6.4 af-

ter Equation 6.3 in a serial fashion may corrupt the structure of the superclusters which was

optimized by Equation 6.3. The gradient of these losses is utilized to update the weights of

the deep-CNN model. This alternating optimization process is repeated until convergence. The

detailed algorithm is outlined in Algorithm 3.

6.4 Databases, Protocols and Evaluation

The proposed approach is utilized for two kinds of experiments, namely object retrieval and

heterogeneous face recognition. For object retrieval, we have performed experiments on CIFAR-

10 [5], STL-10 [6], CIFAR-100 [5] and CARS196 [230] databases, and for heterogeneous face

recognition under surveillance scenarios, we have used the SCface [3] dataset.

6.4.1 Databases and Protocols

STL-10 [6] database contains 113000 images (of resolution 96× 96) of 10 object categories of

resolution 96 × 96. The training set contains 5000 images and 8000 images are in the testing

set. Each class has 500 images for training and 800 images for testing. The rest of the images

are unlabelled and have not been used in our experiments.

CIFAR-10 [5] and CIFAR-100 [5] contains 60000 images (of resolution 32 × 32) of 10 and

100 object categories respectively out of which 50000 images are for training and the rest are
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TABLE 6.1: Face identification accuracies (%) on the SCface [3] database with varying probe
resolution.

Method 24 x 24 32 x 32 48 x 48
Rank 5 Rank 10 Rank 5 Rank 10 Rank 5 Rank 10

Triplet Loss [91] 78.2 83.7 97.2 98.7 98.2 98.6
Quadruplet Loss [92] 79.4 82.4 97.5 98.9 98.7 99.1
Triplet Center Loss [207] 80.1 83.8 98.4 99.1 98.8 99.2
Hard Triplet Loss [206] 79.1 82.9 97.4 98.5 99.1 99.3
Proposed 81.7 85.7 98.8 99.4 99.3 99.7

TABLE 6.2: Retrieval results (%) on the STL-10 and CIFAR-10 databases.

Database Method Recall@1 Recall@10 Recall@100

STL-10

Triplet Loss [91] 72.4 78.5 80.4
Quadruplet Loss [92] 73.9 78.7 81.7
Triplet Center Loss [207] 74.6 77.9 81.5
Hard Triplet Loss [206] 72.9 76.1 81.9
Proposed 68.9 78.9 82.3

CIFAR-10

Triplet Loss [91] 76.2 94.7 97.2
Quadruplet Loss [92] 78.3 95.4 98.9
Triplet Center Loss [207] 79.4 96.1 95.7
Hard Triplet Loss [206] 78.5 93.8 97.4
Proposed 75.7 96.8 99.2

for testing. In CIFAR-10, the training and testing sets contain 5000 and 1000 images for each

class respectively. For CIFAR-100 the classes are grouped into 20 superclasses, each of which

contains multiple classes. For example, the superclass fish contains classes such as aquarium

fish, flatfish, ray, shark and trout.

CARS196 [230] dataset contains 16185 images of cars belonging to 196 categories, each corre-

sponding to a class. The training set contains 8054 images of 98 classes and the test set contains

8131 images of the same number of classes.

SCface [3] contains images captured using 8 surveillance cameras of 130 non-cooperative sub-

jects under uncontrolled imaging scenarios. Images are captured from three different standoff

distances, namely 4.2m, 2.6m and 1m, which are used as probes and are resized into 24 × 24,

32 × 32 and 48 × 48 respectively. Gallery images are captured in high resolution under con-

trolled illumination pose and expression. Out of 130 subjects, images pertaining to 50 subjects

are used in training and rest of the images are used for testing. The gallery images are resized to

a resolution of 72× 72. The subjects (classes) in the train and test set are disjoint.

6.4.2 Evaluation Criteria

For object retrieval the results are demonstrated in terms of the average recall@k calculated

on the images of the testing set. Recall@k is defined [98, 219] as the ratio of the number of

images correctly retrieved (that belongs to the class of the query image) for top k retrievals
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TABLE 6.3: Retrieval results (%) on the CARS196 database.

Method Recall@1 Recall@4 Recall@8
Triplet Loss [91] 51.5 73.5 82.4
Quadruplet Loss [92] 52.4 71.6 81.9
Triplet Center Loss [207] 52.9 73.6 83.7
Hard Triplet Loss [206] 51.6 70.2 83.4
Lifted Structures [98] 52.9 76.0 84.2
Discriminative Loss [232] 68.3 85.2 91.1
Proposed 56.7 89.1 90.4

(top-k matches). If a sample of the query image’s class is retrieved among the top k (k nearest

neighbor) matches, we assign a score of 1 to the retrieval, we assign a score of 0 otherwise. The

final recall@k score is calculated by averaging these scores for all the query images. In case

of heterogeneous face recognition, identification experiments are performed. The training set

is partitioned into probes (query images) and gallery (database). Each probe is matched to the

images in the gallery. The matching performance is evaluated by rank-k accuracy. It is defined

as the ratio of the number of times an image of the relevant class is retrieved in the top k matches

to the number of matching attempts (number of probes).

It is worthwhile to note that the proposed algorithm does not optimize for a particular value of

k. The loss functions does not specifically optimize for the top-k accuracy, rather it optimizes

the embedding space in such a way so that the top-k matching performance is enhanced during

testing.

6.4.3 Implementation Details

The proposed method uses the LightCNN-29 [163] which has 29 convolutional and 4 pooling

layers. It uses the Max-Feature-Map (MFM) activation after every convolutional layer. The

network is organized into 6 blocks, each containing convolutional, pooling and MFM layers.

The size of the final embedding from the model is 256. The model is trained by backpropagating

the gradient of the loss terms (as given by Equations 6.3 and 6.4). The optimization is performed

by Adam with different batch sizes for different databases. The learning rate is initially kept at

10−4 and is gradually reduced to 10−8. In order to run DBSCAN efficiently on the training data,

the value of ε and c are determined empirically. A lower value of ε and higher value of c would

enable DBSCAN to search for denser clusters and vice versa otherwise. It will also result in

more number of noise and border points. In order to balance this effect, we chose ε as 3.8 for

all the databases, with the exception of the CIFAR-100 database. The c parameter is chosen as

55 for CIFAR-10, 32 for STL-10, 30 for CARS196 and 20 for the SCface database. It has been

observed that higher number of training samples require a higher value for the c parameter for

optimal performance of the clustering process. The experiments are performed on a machine
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with Intel Core i7 CPU, 32GB RAM and NVIDIA GTX 1080Ti GPU. We would be releasing

the source code for the proposed algorithm.
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FIGURE 6.4: Bar Graph showcasing image retrieval accuracies (recall@4) on recent deep
metric learning methods on the CARS196 database.

6.5 Results and Observations

The results of the proposed approach have been compared with widely used deep metric learn-

ing algorithms [91, 92, 96–98, 206, 207, 232–234]. We outline the results of object retrieval

experiments followed by an illustration on face identification performed on a challenging face

recognition dataset.
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FIGURE 6.5: Evaluation on the CIFAR 100 database (a) Object retrieval accuracies (%) on the
CIFAR-100 database, (b) t-SNE [235] visualization of embeddings (for the flower superclass)
containing five classes of the CIFAR-100 [5] dataset (each distinct color represents a class)
with the pretrained LightCNN model before training, and (c) visualization after training. It
shows that the proposed algorithm results in a compact superclass, however the discriminative
properties of the embeddings are not completely done away with. This culminates in a higher
top-k accuracy during testing, while maintaining an appreciable top-1 matching performance

(best viewed in color).

The results of object retrieval on the STL-10 and CIFAR-10 databases are presented in Table 6.2

and results on CARS196 database are summarized in Table 6.3. It may be observed that on
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the CIFAR-10 and STL-10 databases, the proposed method yields the highest accuracies for

recall@10 and recall@100. On the CARS196 database, recall@4 is highest for the proposed

method, however for recall@1 the accuracy is lower for the proposed method. We have also

compared (Figure 6.4) the performance of the proposed method on the CARS196 database with

recent deep metric learning methods. On the CIFAR-100 database, the proposed algorithm gives

the best matching accuracies (Figure 6.5(a)) for recall@100.

Law enforcement agencies often rely on automated image matching systems. These systems

retrieve the top-k matches for a probe (face) image acquired from a surveillance camera. In

order to showcase the effectiveness of the proposed algorithm for enhancing the top-k matching

accuracy, we perform face identification experiments on the SCface [3] dataset. It may be ob-

served (Table 6.1) that rank 5 and rank 10 accuracy for the proposed method on all three probe

resolutions is higher compared to the other deep metric learning methods. We have also com-

pared (Figure 6.6(c)) the performance of face identification on 24 x 24 probes of this database

with other state-of-the-art heterogeneous face matching methods, including Co-Transfer Learn-

ing [23], Identity Aware Synthesis [144] and Density Aware Triplet Loss (DATL) [167]. Com-

parisons have also been performed with two commercial systems including Luxand, which is

a CNN based face recognition system. The results in Figure 6.6(c) show that the proposed ap-

proach is able to enhance the top-k matching performance for a real world face surveillance

application.

There are several interesting perspectives of the proposed algorithm which have been extensively

discussed in this section. One of the interesting observations is that the algorithm brings together

similar classes in the embedding space, and this has been shown through several experiments

and visualizations (Figures 6.5 and 6.6). We assert that it is this aspect of the proposed algorithm

that helps in enhancing the top-k matching performance.

6.5.1 Effect of ε and c Parameters

As illustrated in Section 6.3.1 the clustering process uses two important parameters namely ε

and c, where ε gives the size of the neighborhood of a point, and c is the minimum number

points that should be present in the ε neighborhood of the point to qualify it as a core point.

To understand the parameter sensitivity of ε and c, we performed experiments with by keeping

ε = 3.8 constant and varying the value of c while training. On the SCface database for values

of c=10, 15, 20, 25, 30 the rank 10 accuracies are 84.25%, 84.65%, 85.7%, 85.14% and 85.06%

respectively. Since different values of c results in different supercluster formation, we inferred

that both high and low values affect the testing performance and the optimal value should be

chosen carefully, probably with the help of empirical testing on a small validation set data. We

do not use test data to finetune these parameters.
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FIGURE 6.6: Face recognition on the SCface [3] database (a) CMC curves for 24 x 24 probes,
(b) CMC curves for 32 x 32 probes and (c) Bar graph for rank 10 accuracies (%) on 24 x 24
probes, comparing the results with Luxand (Commercial CNN based system), COTS (Com-
mercial Off-The-shelf System), Identity Aware Synthesis (IAS) [144], Co-Transfer Learning
(CTL) [23], and Density Aware Triplet Loss (DATL) [? ], and (d) Ablation study showing
normalized cluster compactness for every 10 epochs during training, for three different variants

of the training algorithm. (best viewed in color).

6.5.2 Individual Contribution of the Losses

To understand the effectiveness of individual losses, we performed multiple experiments with

individual losses on the SCface database. In the first experiment, we used the first (supercluster

compaction) loss (Equation 6.3) to train and used the second loss (Equation 6.4) for a very

brief training spell (about 10 epochs). During testing, on 24 x 24 probes, at rank 5 and 10 we

observed identification accuracies of 75.3% and 78.8% respectively. In another experiment we

ran the second loss for a longer spell (about 50 epochs) after the first loss and obtained accuracies

of 80.1% and 84.9% on the same ranks. It shows that the second loss performs a balancing act

of maintaining the structure of the superclusters and restoring the compactness of the individual

classes.

6.5.3 Analysis of Compaction of Superclusters

The proposed algorithm works on the strategy of compaction of the superclusters. The initial

process of the density based clustering points out the key superclusters. In a database such as

CIFAR-100 these superclusters are represented by the superclasses. Each of these superclasses

have multiple classes within them, some of which are visually similar to each other (Figure 6.1).

As shown in Figure 6.5 the proposed algorithm results in compaction of these superclasses.

However, as formulated in Section “Compaction of Superclusters” (with Equation 6.4), the com-

paction of the superclasses are not overdone. The reason is, if the superclusters are compacted

beyond a certain level, the individual classes might lose their dicriminative properties in the em-

bedding space. This might result in extremely poor top match accuracies. Figures 6.5(b) and

6.5(c) present the evidence of this process, where it may be observed that compaction of the

(a particular superclass in the CIFAR-100 database) superclass takes place, but the constituent

classes still continue to hold their separability with each other to an appreciable extent. In ad-

dition to this, it is observed that the images belonging to the classes of the superclusters (of the
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training set) appear together in the retrieved list after matching. This helps in obtaining a higher

top-k matching accuracy since the probe/query image’s class has a greater chance of appearing

in one of the top-k matches.

6.5.4 Ablation Study on Cluster Quality

As shown in Algorithm 3, Equation 6.3 and 6.4 are optimized in an alternating fashion. The

algorithm also has the flexibility to calibrate the number of epochs for optimization of Equa-

tion 6.3 and 6.4 in each alternating step. This can be done by setting appropriate values of

variables e1 (in Step 5) and e2 (in Step 13) in the algorithm. Figure 6.6(d) shows normalized

values of cluster compactness, which is defined as the average intra-class distance across all

classes in the training set. We observe that the best retrieval/recognition results are achieved

when the number of epochs e1 = e2, shown as 1:1 ratio in Figure 6.6(d). To perform this abla-

tion study we also train using e1 = 2 ∗ (e2) (1:2 ratio) and 2 ∗ (e1) = e2 (2:1 ratio). It may be

observed that having a higher value of e2 improves cluster quality considerably, but affects the

top-k identification accuracy. Thus, it may be inferred that a right balance of the two optimiza-

tion steps (Equation 6.3 and 6.4) is required for optimal top-k matching/recognition/retrieval

accuracy.

6.5.5 Selection of Noise Points

As discussed previously, the DBSCAN clustering method classifies every point into either of

the three categories namely core point, border point, and noise point. The clusters are made out

of core and border points whereas the noise points are ignored. Selection of the noise points

impact further learning of the deep model, as these points do not participate in this process.

The c (threshold for the number of points) and ε (neighborhood distance threshold) parameters

of the DBSCAN algorithm directly impact the amount of noise points selected. With a higher

value of ε, the number of noise points are expected to decrease, since the core points would

include more points inside its ε neighborhood. In the CIFAR-100 database, the amount of class

confusion was the highest among all the five databases. A direct implication is the increase in

the number of noise points, which is 6.78% of the training data. To address this, a higher value

of ε is required while training on this database. On the other hand, SCface, CIFAR-10, and the

STL-10 databases have 3.98%, 1.72% and 2.57% noise points respectively.
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6.6 Summary and Future Work

This paper presents a top-k aware deep metric learning algorithm. It works by initially clus-

tering the data into superclusters to first identify the sets of similar classes. Thereafter, these

superclusters are compacted though a two-step deep metric learning algorithm which results in

similar classes being mapped closer to each other in the output embedding space of the model.

This results in a higher top-k matching performance during testing. Extensive experiments and

analysis have been carried out for object retrieval and face identification in surveillance scenar-

ios, which show that the proposed approach yields enhanced top-k matching performance when

compared to popular and recent deep metric learning algorithms. It is observed that enhanc-

ing both top-1 and the top-k accuracies is a trade-off and the proposed algorithm may result in

slightly lower top-1 accuracy in order to enhance the top-k accuracy. As part of our future work,

we plan to extend the proposed algorithm to optimize both top-1 and top-k accuracies.



Chapter 7

Conclusion and Future Work

In recent years, face recognition is one of the most challenging and relevant problems in com-

puter vision and artificial intelligence. In order to protect their citizens from attack and public

disorder, governments around the world has been investing heavily in developing heterogeneous

face recognition systems which can be used for video surveillance. This helps the law enforce-

ment agencies in two ways, firstly, it can prevent such attacks and secondly it presents a chance

to identity the suspects if at all such an event takes place. However, a true surveillance sce-

nario presents a completely unconstrained setup for face image acquisition and recognition. The

problems of such scenarios that has been discussed in this thesis can be solved at several levels.

Although this thesis attempts to solve the problem at several of these levels, the most promising

contributions are at the image level, feature level and classifier levels.

RGB-D Face Recognition: The first contribution is focused on learning feature rich repre-

sentations for face recognition from RGB and depth data. Hierarchical layers of features are

learnt on the representation learned by a stacked mapping model which is a mapping function

from RGB to depth data. This allows the model to be utilized for RGBD face recognition where

depth data is not available during testing. Thus it presents a framework for learning a shared

representation of RGB and depth for face recognition.

Supervised Resolution Enhancement and Recognition Network: In the second contribution,

an image level transformation from low quality/resolution to high quality/resolution is proposed

to achieve improved face recognition results in unconstrained scenarios. However, during such

transformation important discriminative information in the source domain images (low quali-

ty/resolution images) may be distorted. We utilize a highly effective GAN based framework

which learns an image to image transformation from low to high resolution images. The pro-

posed framework uses a classifier which backpropagates a supervised signal (gradient) into the

generator, which prevents the generator of the proposed Supervised Resolution Enhancement-

GAN (SURE-GAN) in distorting important discriminative information during the process of
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transformation. Experiments on several face datasets show that the proposed approach signifi-

cantly enhances the recognition accuracy of low resolution face images.

The next three contributions are primarily aimed towards learning discriminative representations

for heterogeneous face recognition.

Subclass Heterogeneity Aware Loss Other than the image level, one of the most significant

level at which the problem of face recognition in unconstrained scenarios can be addressed is

the feature level. At this level we can utilize the embedding space of the training set to formulate

a loss function to train a deep CNN model, which can produce heterogeneity aware embeddings

for effective heterogeneous face matching performance. We propose a Density Aware Deep Met-

ric Learning algorithm which trains a deep CNN model considering the density distribution of

the embeddings of the different classes in the training set. We have shown that this results in sig-

nificantly better convergence and lower training time. We also propose a Subclass Heterogeneity

Aware Deep Metric learning formulation to train a discriminative model which produces face

embeddings for accurate classification in the presence of multiple face recognition covariates. In

a true surveillance scenario, a Cross-Spectral Cross-Resolution matching is required. We show

that this approach produces excellent results on several challenging face datasets including the

FaceSurv and SCface datasets, which were acquired in real world surveillance scenarios.

Density Aware Deep metric Learning: The work presents an elegant approach for density

aware deep metric learning. The proposed approach can be augmented with any deep metric

learning technique such as triplet and quadruplet loss, and its variants. It results in superior

convergence and accuracies, thus providing an important enhancement in current deep metric

learning strategies. The proposed DATL and DAQL have also shown to be resilient to noisy

training data compared to other deep metric learning methods. Extensive experiments on four

datasets showcase the superiority of the proposed DATL and DAQL over existing deep metric

learning techniques.

Top-k Aware Deep Metric Learning Optimizing the overall classification accuracy of a net-

work does not always lead to best top-k accuracies. This behavior is often observed in cases

where multiple classes are close to each other in the embedding space and trained classifiers

may not retrieve the correct class due to class ambiguity. In problems such as object retrieval

and biometrics, improving the top-k accuracy has received paramount attention. In these appli-

cations where the number of classes is extremely large, ensuring very high performance for the

top match might not be feasible. The fifth contribution presents a novel deep metric learning

algorithm that is formulated for optimizing the embedding space (feature level), but its effect is

observed in the rank level performance for face recognition. In this research, we propose an al-

gorithm for training a Convolutional Neural Network (CNN) model using a deep metric learning

loss function, with the objective of enhancing the top-k matching performance. The proposed

method achieves this objective by bringing together classes into superclusters. Experimental
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results on several popular image classification datasets demonstrate the efficacy of the proposed

approach.

7.1 Future Research Directions

Heterogeneous face recognition is an active area of computer vision research since the last two

decades. Development of this area has provided impetus to several real world applications in

surveillance and non-cooperative authentication environments. Although, this dissertation con-

tributes to this area of research by proposing several methods each of which solves an important

problem, there are useful future research directions in this area.

Heterogeneous Noise-resilient Representation learning: In a typical real world surveillance

scenario, the probe images that are captured from CCTV cameras are of extremely poor quality.

In one of the contributions of this dissertation, we have proposed a Density Aware Deep Metric

Learning method which can learn a robust model in the presence of such noise. However this

method does take into account the heterogeneity of the data while learning the model. In future

we can extend this method so that it not only helps us train a model robust to noise, but also

yield a model which is invariant to heterogeneity. Further, this method does not take into ac-

count the specific kind of noise, which if imbibed in the train model would lead to an improved

representation for heterogeneous face recognition.

Resilience to Adversarial Attacks: Heterogeneous face recognition finds its applicability in

covert video surveillance scenarios. Watch list surveillance systems are aimed at recognition of

miscreants and criminals. Such systems may be prone to adversarial attacks by sophisticated

criminals and this is one of the most important areas where further research should be carried

out.

Handling Multiple Heterogeneities: One of the contributions of this thesis was to propose a

method for training a model which is invariant to more than one heterogeneity simultaneously.

However, in a real world scenario there can be several other covariates that we might need to

handle, other than resolution and spectrum of image acquisition. Some of them are disguise,

occlusion, pose, expression and so on. Future work may be carried out in this direction so that

we may be able to train model for several heterogeneities at the same time. We could also utilize

Domain Adaptation techniques for handling multiple heterogeneities. Data for training models

for poor quality images is limited. Since CCTV cameras in most countries is mostly operated by

law enforcement agencies, data from those cameras cannot be made publicly available, without

compromising privacy of individuals. Thus training very large deep learning models would be

a challenge in such cases. To tackle this problem, novel domain adaptation methods could be
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proposed so that even if large amount of labelled data is not available, high performing models

may be trained by adapting models already trained on controlled face images.
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