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ABSTRACT

Generative modeling and adversarial learning have significantly advanced the field of

computer vision, particularly in object recognition and synthesis, unsupervised domain

adaptation, and adversarial attacks and defenses. These techniques have enabled the

creation of more accurate and robust models for critical applications. In particular, we

develop algorithms for fine-grained object recognition (Re-ID) and classification tasks.

Re-ID involves matching objects across non-overlapping cameras, which is challenging

due to visual recognition hurdles like pose change, occlusion, illumination variation,

low resolution, and modality differences. On the other hand, object classification is

another aim to categorize input data into pre-defined classes, using patterns learned

from training data.

In this context, our thesis is motivated by the potential of generative modelling to

synthesize novel human views, which can be used for unsupervised learning of Re-

ID models. Unsupervised Re-ID suffers from domain discrepancies between labeled

source and unlabeled target domains. Existing methods adapt the model using aug-

mented samples, either by translating source samples or assigning pseudo labels to the

target. However, translation methods may lose identity details, while label assignment

may give noisy labels. Our approach is distinct from other methods in that it decou-

ples the ID and non-ID features in a cyclic manner, which promotes better adaptation

to pose and background, thereby resulting in richer novel views. This approach could

improve the accuracy of Re-ID models for the unlabeled target domain, thus enhancing

their robustness in real-world settings.

Furthermore, we aim to analyze the robustness of Re-ID and classification models

and propose adversarial attack and defense methods to enhance their reliability. Adver-

sarial attacks are a malicious technique that manipulates input data to cause machine

learning models to make incorrect predictions or classifications. Adversarial defense

methods, including adversarial training, certified defense, and detection mechanisms,

are used to protect models from such attacks. By integrating adversarial attack and de-

fense methods into model development and deployment, the risk of incorrect Re-ID and
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misclassification can be minimized, leading to robust models. This is especially impor-

tant in critical applications such as surveillance and security systems. Our thesis aims

to propose adversarial attack and defense mechanisms for Re-ID models and certify the

robustness of classification models in both white-box and black-box settings.

Specifically, we address the limitations of conventional adversaries that consider

Euclidean space and ignore the geometry of the pixels. We propose a stronger at-

tack by incorporating geometry using the Wasserstein metric attack. To defend against

such adversarial attacks, we propose a stochastic neural network that uses isotropic and

anisotropic Gaussian noise to parameterize stochasticity. These parameters are learned

under a meta-learning framework to make our defense more effective and scalable.

Finally, in order to provide a provable guarantee of a black-box model robustness,

we propose a certified black-box defense via zeroth-order (ZO) optimization for image

classification tasks. Previous works suffer from high model variance and low perfor-

mance on high-dimensional datasets due to inadequate denoiser design and limited uti-

lization of ZO techniques. To address these limitations, we introduce a robust UNet

denoiser (RDUNet). RDUNet enables the model to learn intricate details while main-

taining low reconstruction error, surpassing the performance of previously developed

custom-trained denoisers.

We extensively evaluate our proposed generative and adversarial techniques using

publicly available Re-ID and classification datasets - Market-1501, DukeMTMC-ReID,

MSMT17, CUHK03, Veri-776, CIFAR-10, CIFAR-100, STL-10, Tiny Imagenet, and

MNIST.
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CHAPTER 1

Introduction

1.1 Motivation

Rapid advancements in the field of machine learning (ML) and computer vision have

revolutionized the way we process and analyze data. These techniques involve the use

of algorithms to automatically learn and improve from experience, making it possible to

extract meaningful insights and patterns from vast amounts of data with incredible speed

and accuracy. By leveraging the power of machine learning techniques, our research in-

terests are focused on two areas that aim to explore the potential of data-driven solutions

for addressing complex real-world problems. The first is Re-ID, which involves the re-

identification of objects, people, or events in different settings, and is the primary focus

of our thesis. The second area is classification task, which involves categorizing objects

into various classes. The development of effective Re-ID and classification techniques

is crucial for a variety of applications, including surveillance, security, and healthcare.

Re-ID is a problem of re-identifying a given query image from a gallery set, captured

from non-overlapping camera views. It is a popular field of computer vision, widely

employed in a batch of valuable multimedia applications, such as public security, traffic

surveillance, human behavior modeling, and smart city (Wang et al., 2015, 2016; Ye

et al., 2016; Li et al., 2018a; Yao et al., 2019; Huang et al., 2019b; Li et al., 2019d;

Wang et al., 2019b; Zhao et al., 2019a; Zeng et al., 2020; Zhao et al., 2021a; Gu et al.,

2022; Wu et al., 2023).

Re-ID can be formally defined as follows: the training data D ∈ Rd×N consists of

N samples, each represented by a column xi ∈ Rd×1 in the data matrix D. For each

sample xi, its label yi ∈ RK×1 is a one-hot encoded vector, where K is the number of

identities. The distance between any two different samples xi and xj can be computed

using a distance metric such as Euclidean distance, denoted by D. Specifically, it is

given as,

D(xi, xj) = ∥xi − xj∥22 (1.1)



Our objective is to train a deep feature representation model for Re-ID that can produce

an optimal feature embedding such that the sample xj , which belongs to the same iden-

tity as xi, has the lowest distance to xi, i.e., it is the closest match. Specifically, we aim

to learn a feature embedding that satisfies the conditionD(xi, xj) <D(xi, x
′
j), where x′

j

represents any sample that belongs to a different identity than xi.

Generative learning has emerged as a powerful tool for addressing the problem of

Re-ID by generating synthetic images similar to real data (Deng et al., 2018; Huang

et al., 2019a; Qu et al., 2023; Liu et al., 2023). However, due to domain shift between

existing source data and an unknown target data, the effectiveness of deep neural net-

works (DNNs) is limited in real-world applications, where the model fails to generalize

to unknown domains (Ge et al., 2018; Chen et al., 2019; Feng et al., 2021a). Unsu-

pervised domain adaptation (UDA) is a promising solution to this problem, with aim

to adapt the DNN to target domain without labeled data (Sun and Saenko, 2016; Bous-

malis et al., 2017; Ding et al., 2020; Ge et al., 2020; Li et al., 2021a; Rami et al., 2022;

Peng et al., 2023; Qi et al., 2023).

DNNs have made remarkable advancements in Re-ID tasks, but they remain vul-

nerable to adversarial attacks. Prior research has explored attack strategies such as con-

strained optimization, gradient optimization, generative models, and estimated decision

boundaries in both white-box and black-box settings, among others, as documented in

literature references (Zheng et al., 2018; Li et al., 2019b; Zhao et al., 2019b; Bai et al.,

2020b; Wang et al., 2020a; Ding et al., 2021; Gong et al., 2022; Wang et al., 2022b,a;

Yang et al., 2022; Subramanyam, 2023). lp-based perturbation norms are the primary

approach in these studies, but they ignore the data’s intrinsic geometry. The Wasser-

stein metric, which incorporates a cost matrix for pixel mass movement during attacks,

is a more robust alternative. Our thesis is the first to intorduce Wasserstein metric for

white-box and black-box adversarial attacks on Re-ID systems by projecting adversarial

samples in the Wasserstein ball.

In recent times, defending against adversarial attacks has emerged as a critical re-

search domain. To enhance the robustness of DNNs against adversarial attacks in both

white-box and black-box settings while preserving high performance on clean data,

adversarial defense techniques such as model optimization, data optimization, and ad-

ditional network utilization are being explored (Madry et al., 2017; Wong and Kolter,

2018; Bai et al., 2020b; Bouniot et al., 2020; Wang et al., 2022a; Salman et al., 2022;
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Zhang et al., 2022d; Seo et al., 2023). Our objective is to offer robust protection

against adversarial attacks for Re-ID tasks through a combination of model optimiza-

tion (stochastic network) and data optimization (adversarial training). Furthermore, our

goal is not only to provide empirical defense (adversarial training) in a white-box setting

for Re-ID tasks but also to ensure the effectiveness of our defense in popular computer

vision tasks like classification through certification (Akhtar et al., 2021; Liang et al.,

2022).

Computer Vision
Tasks

Person Re-ID

Vehicle Re-ID

Image
Classification

.......

Unsupervised
Domain

Adaptation

Certified
Black-Box
Defense

 Adversarial
Defense
(White-Box)

Adversarial
Attack 

(White-Box, Black-Box)

GAN-based
translation

Zeroth-order
optimization

Noise injection,
Meta learning

Wasserstein
metric

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Generative Adversarial
Techniques

Figure 1.1: Generative and adversarial methodologies have demonstrated notable ad-
vantages in the realm of computer vision applications. The central objective
of this inquiry is directed towards Re-ID and Image classification undertak-
ings. Through the use of a range of generative and adversarial techniques,
we have attained exceptional levels of performance on these tasks, surpass-
ing previous state-of-the-art benchmarks.

1.2 Research Aims

The focus of this thesis, as depicted in Figure 1.1, is on the application of genera-

tive and adversarial techniques in computer vision tasks. Generative and adversarial

learning are both active areas of research in machine learning with various potential

applications. The research objectives of this thesis can be broadly categorized into two

areas: improving generative models and enhancing the robustness of existing DNNs.

Recent studies in generative and adversarial learning have concentrated on developing
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Figure 1.2: The objective of our research is to address the constraints of prior works in
the field of object recognition. Specifically, our thesis emphasizes on gen-
erative and adversarial approaches, as illustrated by the green box. Mean-
while, the red box highlights the limitations of various generative and ad-
versarial techniques.

models capable of generating high-quality samples with diverse features (Karras et al.,

2017; Song and Ermon, 2019; Ho et al., 2020; Esser et al., 2021; Zhang et al., 2022b,c;

Ge et al., 2023). Moreover, in adversarial learning, researchers have worked on de-

veloping more efficient adversarial attack and defense methods. Adversarial attacks

aim to expose and exploit machine learning models’ vulnerabilities and identify poten-

tial weaknesses for attackers (Bai et al., 2020b; Yuan et al., 2021; Feng et al., 2021b;

Subramanyam, 2023). Empirical defense (adversarial training) and certified defense al-

gorithms are among the adversarial defense techniques that can improve the robustness

of machine learning models to adversarial attacks (Wong et al., 2020; Bai et al., 2020b;

Wang et al., 2022b; Gong et al., 2022). The objective of this thesis is to create novel

algorithms for generative and adversarial learning in Re-ID and classification tasks. To

achieve this goal, the following four research objectives (aims) have been identified.

Aim 1: To Investigate Unsupervised Domain Adaptation in Person Re-ID

Significant progress has been made in solving the problem of person Re-ID in a

supervised setting through recent advances such as (Zheng et al., 2015; Xiao et al.,

2016; Hermans et al., 2017; Bai et al., 2017; Zheng et al., 2017; Bai et al., 2017; Zhong

et al., 2018b; Sun et al., 2018; Tang et al., 2019; Zhao et al., 2019a, 2020a,b,a, 2021a;

Gu et al., 2022; Wu et al., 2023). However, the supervised setting faces challenges in

the open-set scenario due to the impracticality of manually annotating hundreds and
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Figure 1.3: Person Re-identification through Unsupervised Domain Adaptation. The
input comprises of a set of labeled source images and a set of unlabeled
target images. A shared encoder is utilized to obtain a common embedding,
which is then leveraged by a generator to produce generated images as out-
put. (Best Viewed in Colors.)

thousands of images in unseen scenes. Additionally, directly applying a Re-ID model

trained on an existing dataset (source) to a new dataset (target) results in significant per-

formance degradation due to domain shift. Existing methods in this field aim to reduce

domain shift caused by changes in context, camera style, or viewpoint by fine-tuning

and adapting the Re-ID model with augmented samples. These samples can be ob-

tained by either translating source samples to the target style or assigning pseudo labels

to the target as shown in Figure 1.3. However, the former method may result in the

loss of identity details while preserving redundant source background during transla-

tion, while the latter technique may introduce noisy labels when the model encounters

previously unseen backgrounds and person poses (refer to Domain Adaptation block in

Figure 1.2). In order to overcome the limitation of previous works, we aim to solve the

unsupervised person Re-ID problem by designing a model that generates cross-domain

images using a cyclic generation network. Our model separates the representation into

individual and environmental parts to maintain identity-related features while adapting

to the background and pose-related information.

Aim 2: To Investigate Adversarial Attack on Person Re-ID

The investigation in Aim 1 led to the design of a reliable technique to improve

DNNs for person Re-ID, however these models can be vulnerable to adversarial attacks

as shown in Figure 1.4. Adversarial attacks have been studied extensively in closed-

set settings like classification, object detection, and segmentation (Goodfellow et al.,
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+

+
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Figure 1.4: An illustration of adversarial attack on person Re-ID. By introducing imper-
ceptible noise to the query images, the similarity score between the query
image and the true positive decreases from 0.845 to 0.208, while the sim-
ilarity score with the true negative from the gallery image increases from
0.179 to 0.732. The adversarial noise has been resized to the range [0, 1]
for visualization purposes.

2014b; Kurakin et al., 2016; Madry et al., 2017; Xie et al., 2017; Dong et al., 2018b;

Zhang and Wang, 2019; Liu et al., 2019a; Qiu et al., 2019; Tu et al., 2020; Xu et al.,

2020; Saha et al., 2020; Li et al., 2021d; Ren et al., 2020; Kim et al., 2021; Liu et al.,

2022; Liu and Hu, 2022; Li et al., 2023; Deb et al., 2023). However, there have been

few attempts to investigate adversarial attacks in open-set retrieval problems like per-

son Re-ID, where source and target datasets have non-overlapping labels (Zheng et al.,

2018; Li et al., 2019b; Zhao et al., 2019b; Bai et al., 2020b; Wang et al., 2020a; Ding

et al., 2021; Yang et al., 2021a). Previous works on adversarial attacks in person Re-ID

mainly focus on l∞ perturbations and its corresponding lp generalization, using metric-

based attacks (Zheng et al., 2018; Bai et al., 2020b), GAN-based attacks (Zhao et al.,

2019b; Wang et al., 2020a), or meta-learning based attacks (Yang et al., 2021a) (refer

to Adversarial Attack block in Figure 1.2). We aim to use Wasserstein ball perturba-

tions, which provide more generalized image perturbations in the form of pixel mass

movement. Unlike previous methods, our approach does not require training to learn

perturbations. To the best of our knowledge, this is the first proposal to use Wasser-

stein ball perturbations in open-set ranking problems such as Re-ID. Wasserstein metric
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Figure 1.5: The illustration of adversarial defense. Vanilla adversarial defense is train-
ing of DNN with clean and adversarial images. We aim to increase the
robustness by introducing model and data optimization.

based perturbations provide more generalized image perturbations than lp ball attacks

in Re-ID systems, but have not been proposed for open-set ranking problems. Previ-

ous works have used Wasserstein metric for classification tasks (Wong et al., 2019; Wu

et al., 2020a; Hu et al., 2020), but it cannot be directly applied to Re-ID. The approach

proposed here is to project clean images into a Wasserstein ball to generate adversarial

samples, attacking an entire ranking model in an open-set setting.

Aim 3: To Investigate Adversarial Defense

Adversarial defense refers to the techniques and methods used to enhance the ro-

bustness of machine learning models against adversarial attacks as shown in Figure 1.5.

Our aim is to enhance DNNs’ robustness against adversarial attacks by introducing

model and data optimization techniques, including stochastic network, meta-learning,

and adversarial training. Numerous works have emphasized the dependence on adver-

sarial training as a leading approach for protecting against adversarial attacks, as ob-

served in prior research (Madry et al., 2017; Bai et al., 2020b; Bouniot et al., 2020; Bai

et al., 2021a; Xu et al., 2021a; Wang et al., 2022a; Kinfu and Vidal, 2022; Addepalli

et al., 2022; Cheng et al., 2023). However, employing vanilla adversarial training fails

to provide robustness against strong adversarial attacks and is prone to overfitting to a

particular attack leading to poor model generalization (Song et al., 2018; Tsipras et al.,

2019; Lin et al., 2020; Devaguptapu et al., 2021; de Jorge Aranda et al., 2022; Baytaş

and Deb, 2023) (refer to Adversarial Defense block in Figure 1.2). We aim to develop

a defense mechanism that defends against strong adversarial attacks while maintaining
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Figure 1.6: We examine a situation in which defense against adversarial attacks is illus-
trated for a black-box model, with the interaction between the defender and
the model limited to input-output function queries.

high generalizability. Our approach involves a meta perturbed stochastic neural network

that learns anisotropic and isotropic noise distribution in a novel meta-learning defense

algorithm. Previous studies have shown that isotropic or anisotropic noise injection im-

proves generalizability, but using only one type of noise has limitations (Jeddi et al.,

2020; Eustratiadis et al., 2021). Our approach combines both types of noise to provide

a richer noise distribution for a more challenging Re-ID task.

Aim 4: To Investigate Certified Black-box Defense

Empirical defenses refer to those that have been demonstrated to be resilient against

known adversarial attacks through empirical evidence. Among all empirical defenses

tested so far, adversarial training (Szegedy et al., 2013; Kurakin et al., 2016; Madry

et al., 2017; Zhang et al., 2019b; Kinfu and Vidal, 2022; Cheng et al., 2023) has been

proven to be the most effective. Our robustification algorithm, as described in Aim 3,

falls under the category of empirical defense. However, these methods may not al-

ways be certifiably robust (Uesato et al., 2018; Croce and Hein, 2020). Another line

of research is certified defense, where an off-the-shelf model’s prediction is certified

within the neighborhood of the input. These methods are called certified defense tech-

niques (Katz et al., 2017; Wong and Kolter, 2018; Raghunathan et al., 2018; Salman

et al., 2019, 2020, 2022). There are two primary scenarios in which defense methods

are implemented: white-box, where the model parameters and architectures are known,

and black-box, where only input queries and output feedback are available. Prior certi-

fied defense methods have primarily been executed in a white-box setting (Cohen et al.,

2019; Raghunathan et al., 2018; Salman et al., 2022; Rumezhak et al., 2023) or have

employed surrogate models as a proxy for the target model (Salman et al., 2020; Nayak
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et al., 2023) (refer to Adversarial Defense block in Figure 1.2). However, a recent pro-

posal by (Zhang et al., 2022d) suggested a black-box defense for DNN models using

a zeroth-order optimization approach, which relied solely on model queries and output

feedback and did not involve surrogate models. Nonetheless, this approach’s efficacy

was constrained to low-dimensional datasets. We aim to implement a certified black-

box defense using ZO optimization techniques. This defense method only relies on

model queries and output feedback for obtaining information, enabling it to achieve

high performance even with high-dimensional datasets (Figure 1.6). Our objective is

to design a robust UNet denoiser (RDUNet) for the target model and then prepend

it with our custom-trained autoencoder to suggest the ZO-AE-RUDS defense mecha-

nism. Unlike the state-of-the-art (SOTA) method proposed by (Zhang et al., 2022d),

which resulted in high model variance on direct application of ZO optimization to the

custom-trained denoiser, our RDUNet reduces model variance due to its architectural

advantages over previous denoisers and performs better with direct application of ZO

optimization.

1.3 Dissertation Organization

The subsequent chapters of this thesis are organized as follows.

Chapter 2 discusses the literature survey for generative and adversarial learning tech-

niques for Re-ID and classification tasks.

Chapter 3 presents a novel Individual-preserving and Environmental-switching cyclic

generation network (IPES-GAN) for unsupervised domain adaptation person Re-ID to

disentangle environment and identity-related feature space between the source and tar-

get domains so as to preserve the identity-related cues of source domain image while

adapting to the cross-domain environment.

Chapter 4 introduces Wasserstein metric for adversarial attack on Re-ID. We iteratively

perturb the query images by performing l∞ perturbation as the first step and then pro-

jecting the adversarial sample in the Wasserstein ball of radius ϵ followed by clamping

so that perturbation lies in [0, 1] pixel space.

Chapter 5 proposes a robust meta perturbed stochastic neural network (MP-SNN) for

defense against adversarial attacks in object Re-ID task. Our MP-SNN learns both
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anisotropic and isotropic noise distributions in a meta-learning framework.

Chapter 6 presents a certified black-box defense mechanism based on the preprocess-

ing technique of pre-pending a robust denoiser to the predictor to remove adversarial

noise using only the input queries and the feedback obtained from the model. We de-

sign a novel robust UNet denoiser RDUNet which defends a black-box model with ZO

optimization approaches.

Chapter 7 concludes the thesis by summarizing the key contributions in the field of

generative and adversarial learning, and discusses the future research work.

1.3.1 Contributions of this research

Generative learning and adversarial attack and defense have emerged as powerful tech-

niques for improving the accuracy and robustness of re-identification and classification

tasks in computer vision. In recent years, researchers have developed a range of gen-

erative models that can create synthetic data to augment existing datasets, thereby im-

proving the accuracy of models trained on limited data. At the same time, adversarial

attack and defense techniques have been developed to identify and defend against at-

tacks on these models, making them more robust and reliable. This thesis provides a

comprehensive review of recent research on generative learning and adversarial attack

and defense in the context of re-identification and classification tasks, highlighting their

contributions and potential applications. It also discusses open challenges and future

directions for research in this area. The detailed investigation of each of the techniques

suggested above lead to the following contributions of this thesis:

1. We propose a novel deep neural network (DNN) for unsupervised domain adap-
tation person Re-ID to disentangle environment and identity-related feature space
between the source and target domains so as to preserve the identity-related cues
of source domain image while adapting to the cross-domain environment. We
jointly optimize our generative (disentangling) and discriminative (adaptation)
modules. We introduce a cross-domain cyclic generation framework to achieve
effective disentanglement and adaptation of appearance and environment fea-
tures.

2. The DNNs learned in the above work are vulnerable to adversarial attacks. This
motivated us to propose a new approach for adversarial attacks on Re-ID using
the Wasserstein metric. Our method involves iteratively altering the query images
through l∞ perturbation as the initial step. The perturbed sample is then projected
within the Wasserstein ball of radius ϵ and subsequently clamped to ensure that
the perturbation remains within the [0,1] pixel space.
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3. In order to further improve the robustness of DNN, we introduce a robust de-
fense algorithm against adversarial attacks in re-identification task. Our defense
learns both anisotropic and isotropic noise distributions in a meta-learning frame-
work. We derive a novel feature covariance alignment loss which ensures high
clean performance while providing robustness against wide variety of adversarial
attacks.

4. We further introduce a certified black-box defense mechanism based on the pre-
processing technique of pre-pending a robust denoiser to the predictor to remove
adversarial noise using only the input queries and the feedback obtained from the
model. Our UNet-based robustification model gives high performance for both
low-dimensional and high-dimensional datasets.

1.3.2 Applications and Future Work

The applications of generative learning, adversarial attack and defense for Re-ID and

classification tasks are extensive and wide-ranging. Generative models can synthesize

high-quality data, improving the accuracy and efficiency of classification tasks while

also facilitating data augmentation for training models. Adversarial attacks are a signifi-

cant challenge in these tasks, but developing effective defense mechanisms can improve

the robustness and security of these models. Future work in this area could include the

development of more advanced generative models, the exploration of different types of

adversarial attacks, and the creation of more sophisticated defense mechanisms. Fur-

thermore, the integration of these techniques with other machine learning approaches,

such as deep learning and reinforcement learning, may lead to even more powerful and

accurate models for Re-ID and classification tasks.
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CHAPTER 2

Related Work

2.1 Introduction

The key contribution of this thesis is the development of generative and adversarial

learning algorithms for Re-ID and classification tasks. In this chapter, we provide a

summary of the overall development of Re-ID and classification tasks and then explain

the classical techniques followed by an overview of the popular generative and adversar-

ial learning techniques. We discuss generative learning which covers generation-based,

feature learning-based, and unsupervised domain adaptation based methods for person

Re-ID task in Section 2.2. Further, in Section 2.3, we discuss the works of adversarial

learning which covers adversarial attack and defense for Re-ID and classification tasks.

2.1.1 Evolution of fine grained object recognition (Re-ID) and Clas-

sification

Re-ID and classification has undergone significant evolution in recent years due to

advancements in computer vision and machine learning (Ballard, 1981; Lowe, 1987;

Lamdan et al., 1988; Crevier and Lepage, 1997; Huang and Russell, 1997; Wang, 2013;

LeCun et al., 1998a). In the past, object recognition was based on hand-crafted fea-

tures and template matching, which limited its effectiveness in handling variations in

object appearance, pose, and lighting conditions. However, with the rise of deep learn-

ing and convolutional neural networks (CNNs), object recognition has become more

accurate and robust (Krizhevsky et al., 2012; Girshick et al., 2014; LeCun et al., 2015;

He et al., 2016; Wang et al., 2018b). This has led to the development of advanced al-

gorithms that can recognize and re-identify objects across different environments and

conditions, including those with occlusions or partial views. Additionally, the incorpo-

ration of transfer learning and unsupervised learning methods has enabled the creation

of models that can generalize well to new and unseen data, making object Re-ID and

classification more practical and applicable to real-world scenarios (Tzeng et al., 2014;
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Figure 2.1: It illustrates the development from early works to deep learning-based meth-
ods for Re-ID task and highlights their susceptibility to adversarial attacks.
In order to address the robustness and safeguarding of target models, re-
searchers have proposed adversarial defense techniques.

Sun and Saenko, 2016; Bousmalis et al., 2017; Hoffman et al., 2017; Lin et al., 2018;

Lv et al., 2018; Yang et al., 2020). In the following, we discuss the advances for Re-ID

and classification tasks in detail.

Advances for Re-ID

We discuss below the early works, deep learning based methods and adversarial attacks

and defense methods for the Re-ID task in detail.

Early Works. One of the first definitions of Re-ID was given by (Plantinga, 1961).

Since then it has been studied in many research works and documentation (Rorty,

1973; Cocchiarella, 1977). Re-ID is a challenging task in computer vision, which

involves identifying individuals/vehicles across different cameras or in different sce-

narios. The early representative methods for object Re-ID are simple feature extrac-

tion techniques (Ballard, 1981; Lowe, 1987; Lamdan et al., 1988; Crevier and Lepage,

1997). Motivated by these works many complex feature extraction methods were pro-

posed, such as texture and color-based approaches (Lowe, 2004; Bay et al., 2006; Dalal
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and Triggs, 2005; Soo, 2014), multi-camera tracking (Huang and Russell, 1997; Wang,

2013), hand-crafted features (Hirzer et al., 2012; Zhao et al., 2014; Liao et al., 2015;

He et al., 2019a) (refer to Early Works block in Figure 2.1). (Gray and Tao, 2008) pro-

posed viewpoint invariant pedestrian recognition that learns a similarity function from

a set of training data and utilizes an ensemble of localized features. (Farenzena et al.,

2010) proposed a method for Re-ID using color and texture information from cloth-

ing. (Zheng et al., 2011) presented a method for Re-ID based on a sparse representation

of image features.

Deep Learning Based Methods. The main drawback of the earlier works on Re-ID

is their limited capacity to extract high-level features from complex and diverse data

sources, such as images and videos. These methods typically rely on handcrafted fea-

tures, which require significant manual effort and may not be suitable for all types of

data. Moreover, they may not be able to capture complex relationships among features,

leading to reduced accuracy. In contrast, deep learning methods have shown significant

promise in automatically learning complex features and relationships from large-scale

datasets, leading to improved performance in Re-ID tasks. In recent years, several pi-

oneering and effective generative and adversarial techniques are proposed for object

Re-ID (Zheng et al., 2015, 2016c; Liao et al., 2015; Xiao et al., 2016; Dong et al.,

2016; Zhou et al., 2017; Yang et al., 2017; Zhang et al., 2018b; Li et al., 2018c; Liu

et al., 2018d; Bai et al., 2018; Yang et al., 2018; Zhou et al., 2019; Qi et al., 2019;

Wang et al., 2019a; Wei et al., 2019; Zhu et al., 2019; Zhang et al., 2020a; Zhao et al.,

2021a; Gu et al., 2022; Wu et al., 2023) (refer to Deep Learning Based Methods block

in Figure 2.1).

(Zheng et al., 2015) proposed a scalable method using a combination of local fea-

tures and global features. (Zheng et al., 2016c) introduced a discriminatively learned

deep metric that is optimized for ranking accuracy. (Zhou et al., 2017) proposed a deep

learning method that uses a multi-scale feature aggregation approach to improve per-

formance. (Liu et al., 2018d) presented a large-scale dataset for Re-ID and evaluated

several state-of-the-art methods on the dataset. (Yang et al., 2017) presented a method

for vehicle Re-ID that uses a Siamese network architecture and a re-ranking algorithm

to improve accuracy. (Wei et al., 2019) introduced a method for vehicle Re-ID using a

hierarchical feature aggregation approach that captures both global and local features.

(Wu et al., 2023) proposed a camera-aware representation learning to address the issue
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of camera-imbalanced data distribution.

Adversarial Attacks and Defenses. Adversarial attack and defense are two opposing

techniques in the field of artificial intelligence and machine learning (Szegedy et al.,

2013; Goodfellow et al., 2014b; Kurakin et al., 2016; Madry et al., 2017; Ren et al.,

2020) as shown in Figure 2.1. Adversarial attack is when input data is manipulated

to produce incorrect or unexpected results, while adversarial defense protects machine

learning models against these attacks. Adversarial attacks can take many forms, from

simple modifications to exploiting model vulnerabilities, with serious consequences in

areas such as surveillance, self-driving cars and medical diagnosis (Xie et al., 2017;

Dong et al., 2018b; Zhang and Wang, 2019; Liu et al., 2019a; Qiu et al., 2019; Tu

et al., 2020; Saha et al., 2020; Li et al., 2021d, 2023). Adversarial defense aims to

develop robust models that can withstand these attacks (Xu et al., 2020; Kim et al.,

2021; Liu et al., 2022; Liu and Hu, 2022; Deb et al., 2023).

Adversarial attacks involve modifying the input data to fool a Re-ID system into

misidentifying a person. These attacks can be achieved by adding noise or perturbations

to the input image, altering the illumination, or changing the pose or background of the

person in the image (Zheng et al., 2018; Oh et al., 2018; Wang et al., 2019c; Bai et al.,

2020b; Bouniot et al., 2020).

Adversarial defenses, on the other hand, aim to improve the robustness of Re-ID

models against such attacks. These defenses can include adding adversarial training

data to the training set, using adversarial examples to fine-tune the model, or applying

feature-level transformations to enhance the feature representation (Bai et al., 2020b;

Bouniot et al., 2020; Rice et al., 2020; Jin et al., 2022; Li et al., 2022; Dong et al.,

2022; Gong et al., 2022). Overall, understanding the vulnerabilities of Re-ID models

to adversarial attacks and developing effective defenses are essential for ensuring the

reliability and security of Re-ID systems.

Advances for Classification

We discuss below the early works, deep learning based methods and adversarial attacks

and defense methods for the classification task in detail.

In the early 1990s, neural networks were used for image classification, but they suf-

fered from overfitting and required a large amount of labeled data (LeCun et al., 1998a).
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In 2012, (Krizhevsky et al., 2012) introduced AlexNet, a deep convolutional neural net-

work (CNN), which achieved state-of-the-art performance on the ImageNet dataset.

Since then, deep learning-based methods have become the dominant approach for im-

age classification (Goodfellow et al., 2014a; Mirza and Osindero, 2014; Radford et al.,

2016a; Gatys et al., 2016; Salimans et al., 2016). With the dominance of deep learning-

based methods for image classification, various adaptations such as the Conditional

GAN (Mirza and Osindero, 2014) and Auxiliary Classifier GAN (ACGAN) (Odena

et al., 2017) were developed, with DCGANs (Radford et al., 2016a) serving as the

underlying architecture for these models.

Recent advances in generative and adversarial learning for image classification in-

clude the use of attention mechanisms (Li et al., 2017; Zhang, 2018; Wu et al., 2018b).

Other recent work has focused on using generative models for unsupervised represen-

tation learning, which can help improve classification performance on limited labeled

data (Donahue et al., 2019; Kolesnikov et al., 2019; Chen et al., 2020b). Despite the

significant progress made in the field of generative and adversarial learning for image

classification, there are still several challenges and limitations that need to be addressed.

These include issues with model interpretability and fairness, as well as difficulties in

scaling these models to large datasets (Lipton et al., 2018; Gong et al., 2021).

Adversarial Attack and Defense. In the field of image classification, deep learning-

based models have become the state-of-the-art for achieving high accuracy rates. How-

ever, these models are susceptible to adversarial attacks, which are intentional modifica-

tions to the input data designed to mislead the model’s classification decision (Szegedy

et al., 2013; Goodfellow et al., 2014b; Papernot et al., 2016b; Carlini and Wagner,

2017; Dong et al., 2018a; Eykholt et al., 2018; Su et al., 2019) which motivated adver-

sarial defense works to provide robustness against these attacks (Szegedy et al., 2013;

Papernot and McDaniel, 2016; Kurakin et al., 2016).

2.2 Generative Learning

Generative learning is a subfield of machine learning that focuses on modeling the dis-

tribution of input data in order to generate new samples that are similar to the orig-

inal data. There are several generative learning techniques, including GANs (Brock

et al., 2018; Goodfellow et al., 2020), VAEs (Kingma and Welling, 2013; Rezende
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and Mohamed, 2015), autoregressive (Gregor et al., 2015; van den Oord et al., 2016),

flow-based (Dinh et al., 2014; Kingma and Dhariwal, 2018) and diffusion-based mod-

els (Kingma et al., 2021; Rombach et al., 2022; Song et al., 2023).

Generative Adversarial Network. Generative Adversarial Networks (GANs) were in-

troduced as a framework for learning generative models (Goodfellow et al., 2014a).

However, early GAN models suffered from issues such as mode collapse, where the

generator produces limited variations of the same image, and instability during train-

ing. The integration of GANs with deep neural networks (DNNs) has led to significant

improvements in image classification performance. For example, the Deep Convolu-

tional Generative Adversarial Network (DCGAN) model achieved state-of-the-art re-

sults in image generation tasks (Radford et al., 2016b). Since then, GANs have been

widely used for image synthesis tasks, such as image-to-image translation (Isola et al.,

2017) and style transfer (Radford et al., 2016a; Gatys et al., 2016). Conditional GANs

(cGANs) were introduced, which generated images based on a given condition, such

as class labels (Mirza and Osindero, 2014). (Salimans et al., 2016) proposed a method

called Improved GAN (iGAN), which improved the stability of GAN training.

Variational Autoencoder. Another generative model is the Variational Autoencoder

(VAE), which is based on the idea of learning the latent representation of data by min-

imizing the reconstruction error and maximizing the divergence between the prior dis-

tribution and the latent distribution (Kingma and Welling, 2013; Pu et al., 2020; Khan

et al., 2021). Recently, advances in diffusion based generative models have led to SOTA

performance on geenration-based tasks. (Kingma et al., 2021) developed a versatile

range of generative models based on diffusion. It incorporates Fourier features into the

diffusion model and employes a learnable specification of the diffusion process along

with other novel modeling techniques. (Song et al., 2023) proposed a novel inverse

problem solver that utilizes unconditional diffusion models. It does not require expen-

sive problem-specific training yet achieves competitive quality on various tasks.

Domain Adaptation. Domain adaptation in generative learning is a challenging prob-

lem that has received significant attention in the machine learning community. It refers

to the ability of a generative model to adapt to new domains or data distributions,

which is critical in real-world applications where the data distribution may change over

time. Various domain adaptation techniques have been proposed, including domain ad-

versarial training, cycle-consistent adversarial networks, variational autoencoders with
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Figure 2.2: The thesis focuses on the progression from neural networks to deep learning
techniques and ultimately, to generative and adversarial learning approaches
for Object Recognition. The central emphasis is on unsupervised domain
adaptation, as well as adversarial attack and defense within the realm of
generative and adversarial learning methods.

domain-specific encoders, trasnformers and diffusion models (Ganin and Lempitsky,

2015; Tzeng et al., 2017; Zhu et al., 2017; Choi et al., 2020; Chen et al., 2021; Zhang

et al., 2023). These techniques aim to learn a mapping between the source and target

domains by leveraging either the discriminative or the reconstruction capability of the

generative model.

Domain adaptation for Re-ID task in generative learning is an important research

area that has been gaining attention in recent years (Tzeng et al., 2014; Long et al.,

2015; Ganin et al., 2016; Bak et al., 2018; Deng et al., 2018; Wang et al., 2018a; Tang

et al., 2019; Mekhazni et al., 2020; Bai et al., 2021c; Mohanty et al., 2022; Mekhazni

et al., 2023). In this section, we discuss the generation based and feature learning

based methods for cross-dataset person Re-ID task. Further, we discuss the generative

learning applied in unsupervised domain adaptation for Re-ID.
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2.2.1 Domain Adaptation for Re-ID task

We discuss below the generation-based and feature learning based domain adaptation

methods for Re-ID task.

Generation-based Techniques. (Bak et al., 2018) propose a domain adaptation tech-

nique taking advantage of the synthetic data. This dataset comprises diverse illumi-

nation conditions which efficiently guide the training of the model. (Wei et al., 2018)

propose a person transfer GAN with the style transfer and person identity preservation

to bridge the domain gap. However, it results in mode collapse as multiple style transfer

is performed using a single mapping function. (Deng et al., 2018) defines learning via

translation framework to maintain the identity of the person and incorporate domain

differences between the two domains.

(Tang et al., 2019) propose C2GAN which applies key-points as weak supervision

where key-points are not only used as an input such as in PG2 (Ma et al., 2017) and

DSCF (Siarohin et al., 2018), but also act as a generative object. The key-point gener-

ation via key-point cycles boosts the quality of generated images. (Ma et al., 2018) pro-

posed to disentangle input image into three different features, foreground, background,

and pose. Further, a mapping function is learned to map the latent space to the feature

embedding space, which is then decoded into real image space. In order to exploit the

rich variations in an open surveillance setup, (Chen et al., 2019) proposed to use a

context rendering GAN (CR-GAN). The target instances guide the generation of a large

number of source instances with diverse target domain contexts. (Huang et al., 2022)

proposed a new lifelong learning framework that combines meta-learning and continual

learning to enhance the generalization and adaptability of deep neural networks.

Feature Learning Based Methods. (Wang et al., 2018a) introduced a joint attribute

and identity learning model for transferable representation. (Xiao et al., 2016) propose

a framework for learning deep feature representations from multiple domains. Some

neurons learn representations shared across several domains, while others are effective

only for a specific one.

(Long et al., 2015) learn transferable features with statistical guarantees by using an

optimal multi-kernel selection method to reduce the domain discrepancy. (Ganin et al.,

2016) exploit the idea that predictions of an effective domain transfer cannot discrim-

inate between the source and target domains. (Xie et al., 2018) learn semantic repre-
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sentations for unlabeled target samples by aligning labeled source centroid and pseudo-

labeled target centroid. (Zheng et al., 2022b) proposed a novel cross-domain alignment

method in the homogeneous distance space, which is constructed by the newly designed

stair-stepping alignment (SSA) matcher.

2.2.2 Unsupervised Domain Adaptation

Unsupervised domain adaptation is a popular approach in generative learning for Re-

ID tasks. In an unsupervised domain adaptation scenario, labeled data is not avail-

able in the target domain, but abundant labeled data exists in a related source domain.

To address this challenge, unsupervised domain adaptation methods attempt to learn a

mapping between the source and target domains that can generalize well to the target

domain (Tzeng et al., 2014; Sun and Saenko, 2016; Bousmalis et al., 2017; Hoffman

et al., 2017; Lin et al., 2018; Lv et al., 2018; Yang et al., 2020). These methods involve

training a model on the labeled source domain data and then adapting it to the target

domain without any supervision.

(Sun and Saenko, 2016) propose to learn the non-linear transformation to corre-

late activations in source and target domains. In (Tzeng et al., 2014), the domain gap

between two datasets is reduced by optimizing domain invariance. It uses a soft la-

bel distribution matching loss to transfer information between tasks. (Bousmalis et al.,

2017) proposed an approach to transform the pixel space from source to target domain

in an unsupervised way. (Hoffman et al., 2017) proposed a model that adapts both to the

feature level and pixel level. It enforces cycle consistency with task loss and does not

require aligned pairs. (Lin et al., 2018) propose an approach considering that the source

and target datasets share the same mid-level attributes. They optimize their model using

identity classification and attribute learning tasks. To reduce the domain gap between

two datasets, it uses MMD distance for mid-level feature distributions.

Unsupervised Domain Adaptation for Re-ID Task. (Lv et al., 2018) propose a model

to learn Spatio-temporal patterns of the target data with the visual classifier trained

on source data. It improves the classifier using both Spatio-temporal information and

visual features. In (Zhong et al., 2018a), a homogeneous and heterogeneous model is

proposed. This model incorporates camera invariance by sampling an image and its

camera style’s positive pair from the same dataset. Similarly, it samples negative pairs
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from source and target datasets heterogeneously. In (Yang et al., 2020), a multi-branch

network is proposed, which learns the local and global features from labeled source

data. Each network layer defines an unsupervised domain adaptation constraint, which

aligns labeled source data’s local and global features to unlabeled target data. (Ding

et al., 2020) propose a non-parametric classifier with a feature memory that maximizes

the distance between all person images by treating each person as a separate class. It

minimizes the distance between similar person images. In (Cheng et al., 2022), a novel

and robust network model named unsupervised domain adaptation hierarchical person

re-identification network (H-Net) is proposed, which not only effectively reduces the

impact of inaccurate identification of the hardest sample but also treats different positive

samples differently by hierarchical feature collection.

In this thesis, we investigate the unsupervised person Re-ID, aiming to design a Re-

ID model for the unlabeled target data by mitigating the gap between the source and

target domains. In the next section, we discuss the state-of-the-art adversarial attack

and defense algorithms for Re-ID and classification tasks.

2.3 Adversarial Learning

Adversarial learning is a rapidly growing sub-field of machine learning where a model is

trained to generate samples that can fool another model called the discriminator (we dis-

cussed it in detail in Section 2.2). More recently, adversarial learning field has also been

focused on studying adversarial attacks and developing techniques to protect against

them. Adversarial attacks are a type of threat that involves introducing carefully crafted

perturbations to input data, with the goal of causing a deep learning model to produce

erroneous or unexpected outputs (Szegedy et al., 2013; Goodfellow et al., 2014b; Pa-

pernot et al., 2016b; Carlini and Wagner, 2017; Dong et al., 2018a; Eykholt et al., 2018;

Su et al., 2019; Chen et al., 2020c; Liu and Li, 2022; Zhou et al., 2023).

Adversarial defense techniques, on the other hand, aim to enhance the robustness

of these models against such attacks. A number of different adversarial defense tech-

niques have been proposed, including adversarial training, where the model is trained

on adversarial examples in addition to clean data, and defensive distillation, where a

secondary model is trained to detect adversarial examples (Szegedy et al., 2013; Pa-

pernot and McDaniel, 2016; Kurakin et al., 2016; Tramèr et al., 2017; Madry et al.,
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2018; Dhillon et al., 2018; Xie et al., 2018; Yang et al., 2022; Liu et al., 2023). Adver-

sarial pruning is another technique that has been shown to improve model robustness

by removing the model’s vulnerability to adversarial attacks (Liu et al., 2018a, 2019d;

Ding et al., 2019; Wang et al., 2020b; Jian et al., 2022). The ongoing race between

adversarial attacks and defense techniques has led to significant advances in the field

of adversarial learning, and it remains an active area of research. In this section, we

discuss in detail the adversarial attack and defense methods for Re-ID and classification

tasks.

2.3.1 Adversarial Attacks

An adversarial attack is a type of attack on a machine learning model where an attacker

intentionally introduces small perturbations to the input data in order to cause the model

to make incorrect predictions. Let θ be the parameters of the machine learning model,

x be the input to the model, y are the labels corresponding to x and L(θ, x, y) is the

loss function used to train the neural network. Then, adversarial sample x̃ is obtained

by adding an imperceptibly small vector whose elements are equal to the sign of the

elements of the gradient of the loss function with respect to x. It is given as,

x̃ = x+ ϵ · sign(∇xL(θ, x, y)) (2.1)

where ϵ is a small constant. Much adversarial attacks are performed in a closed-set

setting to fool deep networks (Szegedy et al., 2013; Kurakin et al., 2016; Dong et al.,

2018b). The goal of such attacks is to undermine the reliability and trustworthiness of

machine learning systems, and they can have serious consequences in a variety of appli-

cations, from image and speech recognition to autonomous vehicles and security sys-

tems (Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017; Athalye et al., 2018a;

Chen and Gu, 2020; Tashiro et al., 2020; Li et al., 2021d, 2023).

White-box Setting. (Szegedy et al., 2013) proposed one-step gradient based method to

generate adversarial samples by adding the sign of gradient of image pixels to original

image. Many other works have been proposed since then, such as FGSM (Goodfellow

et al., 2014b), iterative FGSM (Kurakin et al., 2018), PGD (Madry et al., 2017). (Ku-

rakin et al., 2016) proposed an iterative method of step gradient method. (Dong et al.,

2018b) further proposed a method which uses momentum in iterative step gradient
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method. Later on, various methods were proposed for robust attack performance or

efficiency (Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017; Athalye et al.,

2018a; Chen and Gu, 2020; Tashiro et al., 2020).

Recently (Wong et al., 2019; Hu et al., 2020) proposed classification threat models

based on Wasserstein distance which corresponds to mass pixel movement, more gener-

alized to real world images and thus can be generalized to attack robust models, instead

of l∞ perturbations which depend on pixel independence.

Black-box Setting. Some other works are proposed in a more practical setting where

no information is available about the target model called as black-box attack (Su et al.,

2019; Yuan et al., 2021; Sun et al., 2022). Recently many black-box attacks are based

on transfer-based attacks (Wu et al., 2020b; Li et al., 2020; Zhang et al., 2022a), (Wang

et al., 2021c) proposed generation-based substitute training strategy for improved data-

free black-box attacking performance. (Sun et al., 2022) proposed a triplet-player tradi-

tional data free framework for black-box adversarial attack. Recently many black-box

attacks are based on transfer-based attacks (Wu et al., 2020b; Li et al., 2020; Zhang

et al., 2022a). Some previous works are query specific which update the perturbations

based on the features of query images (Andriushchenko et al., 2020; Chen et al., 2020a).

However, they are all based on lp threat model which may not generalize well to real

world images.

In a closed-set problem, a decision boundary can be formed within the feature space

and if the threat model predicts a wrong class for an image, its considered a success.

However, in the case of Re-ID the whole ranking order is to be changed to design a

robust attack model. The open set problem of Re-ID is quite different as their per-

formance is not only dependent on query image but also on gallery images, thus the

classification threat models cannot be directly applied for these problems. Re-ID brings

new challenges to design a robust attack system which will guide us to improve the

performance and accuracy of our current robust Re-ID systems.

Adversarial Attack Against Re-ID

In recent times, there has been a significant amount of research put forth in the area of

adversarial attacks on retrieval (Feng et al., 2020; Bai et al., 2020a; Li et al., 2021b)

and object Re-ID tasks (Zheng et al., 2018; Oh et al., 2018; Wang et al., 2019c; Bai
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et al., 2020b; Bouniot et al., 2020; Yang et al., 2021a; Ding et al., 2021). (Oh et al.,

2018) showed that adding adversarial perturbations to images of people can signifi-

cantly reduce the accuracy of person recognition systems. (Zheng et al., 2018) proposed

a method to push the features of adversarial sample away from an artificial guide in the

feature space. (Wang et al., 2019c) produced the adversarial samples by generating pat-

terns of clothes of query images.

(Bai et al., 2020b) proposed an adversarial metric attack to perturb the gallery

images by extending FGSM, I-FGSM and MI-FGSM attacks used for classification.

However, it does not generalize well to SOTA Re-ID models. (Wang et al., 2020a) pro-

posed a generator-based framework to produce perturbation and verify the universality

of the generated perturbation. (Bouniot et al., 2020) proposed metric attacks based on

pushing guides, pulling guides, or a combination of both guides. (Wang et al., 2020c)

proposed a black-box adversarial attack on Re-ID models that can fool the model by

generating adversarial examples using only its output probabilities. (Guo et al., 2021)

proposed an adversarial metric learning approach that can improve the robustness of

Re-ID models against adversarial attacks. (Yang et al., 2021a) uses a virtual-guided

meta-learning scheme to learn universal adversarial perturbation. (Ding et al., 2021)

proposed a image agnostic and model insensitive approach for generating a universal

adversarial perturbation. Many of the above approaches have poor transferability and

visual quality of adversarial samples is poor due to perceptible noise. (Zhao et al.,

2022) proposed a novel adversarial patch generative adversarial network (AP-GAN) to

generate adversarial patches instead of modifying the entire image.

In this thesis, we are the first to introduce Wasserstein threat model to attack Re-ID

system. We have used an adversarial metric to generate an adversarial gallery sample

by increasing the distance between clean query and perturbed gallery images.

2.3.2 Adversarial Defense

Adversarial defense refers to the set of techniques and strategies used to defend against

adversarial attacks mentioned in Section 2.3.1. In this Section we will first discuss the

defense methods on Re-ID and classification tasks in detail:
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Adversarial Defense for Re-ID Task

Recently, some works focus on improving the training efficiency of adversarial training

based methods (Rice et al., 2020; Jin et al., 2022; Li et al., 2022; Dong et al., 2022),

providing defense against, deep metric learning (Zhou et al., 2020; Zhou and Patel,

2022), and open-set Re-ID tasks (Bai et al., 2020b; Bouniot et al., 2020; Gong et al.,

2022). (Bai et al., 2020b) proposed offline adversarial training where adversarial sam-

ples are generated with the frozen trained model. (Bouniot et al., 2020) proposed an

online adversarial training method where they use images as guides that are sampled

during training. These guides are used to generate better adversarial samples to up-

date the model’s parameters. (Gong et al., 2022) proposed joint adversarial defense by

enhancing the contour and color feature of multi-modality images.

Stochastic Adversarial Defense. Recent works have shown that injecting noise; ei-

ther fixed or learnable, into the target model improves adversarial robustness. (Liu

et al., 2018c) improves model robustness by injecting additive spherical Gaussian noise

into various layers of the model. (He et al., 2019b) proposed Parametric Noise In-

jection where a learnable intensity parameter controls a fixed spherical noise distri-

bution. (Jeddi et al., 2020) propose Learn2Perturb where a parametric isotropic noise

perturbation-injection module is proposed. The parameters of the model and perturba-

tion injection module are updated alternately. (Yu et al., 2021) maximizes the entropy

of the learned noise distribution; for this purpose, they introduce fully-trainable stochas-

tic layers. (Eustratiadis et al., 2021) proposed a defense by introducing anisotropic noise

in a deep neural network. However, these works are primarily designed for closed-set

tasks like classification, and a straightforward adoption in retrieval tasks may not be

effective. Our work notably differs from these methods as we propose a learnable com-

bination of anisotropic and isotropic noise modules in an open-set object Re-ID task.

Meta-Learning for Adversarial Defense. Meta-learning is a learning-to-learn con-

cept to generalize to unknown tasks and distribution with limited training samples (Finn

et al., 2017; Nichol and Schulman, 2018). Meta-learning has various applications like

few-shot learning (Finn et al., 2017; Sun et al., 2019), domain generalization (Li et al.,

2019c; Guo et al., 2020; Chen et al., 2022a), adversarial attack (Feng et al., 2021b; Yuan

et al., 2021; Fang et al., 2022), adversarial defense (Goldblum et al., 2020), among oth-

ers. Recently, meta-learning has been used in object Re-ID works (Zhao et al., 2021b;
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Yang et al., 2021b; Bai et al., 2021b; Choi et al., 2021; Yang et al., 2021a; Ni et al.,

2022). Recently, (Yang et al., 2022) proposed meta-learning based defense, however

it is computationally expensive as they use an additional dataset to capture variations

in cross-domain. In this thesis, we propose a meta-learning scheme to learn a robust

defense mechanism against various attacks on the Re-ID task. We chose meta-learning

as we can naturally incorporate clean samples, noise parameters, and adversarial sam-

ples of a selected attack. And we do not need to train the system with samples from all

attacks, which is extremely expensive.

Adversarial Defense for Classification Task

We broadly categorize the literature on robust defense into empirical and certified de-

fense and briefly discuss them below in the white-box and black-box settings.

Empirical Defense (Adversarial Training). (Szegedy et al., 2013) first proposed ro-

bust empirical defense in the form of adversarial training (AT). Due to AT, there has

been a rapid increase in empirical defense methods (Chan et al., 2019; Wang and Wang,

2022; Yan et al., 2022; Cheng et al., 2023; Wei et al., 2023). (Zhang et al., 2019b)

proposed a tradeoff between robustness and accuracy that can optimize defense perfor-

mance. In order to improve the scalability of AT, empirical robustness is provided by

previous works which design computationally light alternatives of AT (Carmon et al.,

2019; Sehwag et al., 2021). Some recent empirical defense works are based on the con-

cept of distillation, initially proposed by (Hinton et al., 2015). (Papernot et al., 2016b)

presented a defensive distillation strategy to counter adversarial attacks. (Folz et al.,

2020) gave a distillation model for the original model, which is trained using a distil-

lation algorithm. It masks the model gradient in order to prevent adversarial perturba-

tions from attacking the model’s gradient information. (Addepalli et al., 2020) proposed

unique bit plane feature consistency (BPFC) regularizer to increase the model’s resis-

tance to adversarial attacks. (Cheng et al., 2023) proposed to regularize the distributions

of different classes to increase the difficulty of finding an attacking direction.

Certified Defense. Unlike empirical defense, the certified defense provides formal ver-

ification of robustness of the DNN model (Ma et al., 2021; Gupta et al., 2021; Elaalami

et al., 2022). Certified robustness is given by a ‘safe’ neighbourhood region around the

input sample where the prediction of DNN reamins same. Previous works (Katz et al.,
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2017; Dutta et al., 2017; Tjeng et al., 2017; Bunel et al., 2018) in this field provide

‘exact’ certification, which is often compute-intensive and is not scalable to large ar-

chitectures. (Katz et al., 2017) proposed a robust simplex verification method to handle

non-linear ReLU activation functions. Another line of work (Wong and Kolter, 2018;

Zhang et al., 2018a), which provides ‘incomplete’ verification, requires less compu-

tation; however, it gives faulty certification and can decline certification even in the

absence of adversarial perturbation. Both ‘exact’ and ‘incomplete’ posthoc certification

methods require customized architectures and hence are not suitable for DNNs (Zhang

et al., 2022d).

Another area of study focuses on in-process certification-aware training and predic-

tion. For instance, a randomized smoothing (RS) involves perturbing the input samples

with Gaussian noise. This process allows for the transformation of a given base clas-

sifier f into a new “smoothed classifier" g, using randomized smoothing. Importantly,

this transformation ensures that g is certified to be robust in the L2 norm. In (Cohen

et al., 2019), it was demonstrated that RS could offer formal assurances for adversar-

ial robustness. As well as, there are several different RS-oriented verifiable defences

that have been developed, including adversarial smoothing (Salman et al., 2019), de-

noised smoothing (Salman et al., 2020), smoothed ViT (Salman et al., 2022), and fea-

ture smoothing (Addepalli et al., 2021).

2.4 Conclusion

This chapter provides an overview of various generative and adversarial methods that

can address the limitations of traditional feature extraction techniques in Re-ID and

classification tasks. Generative models trained on a labeled source dataset often un-

derperform when applied to a target dataset, which is typically unlabeled due to the

impracticality of annotating large-scale datasets. To address this issue, we explore un-

supervised domain adaptation techniques that preserve the appearance of the source

domain while adapting to the pose and background of the target domain using a cyclic

GAN-based approach. We introduce the use of the Wasserstein metric for adversarial

attacks on Re-ID tasks and investigate the effectiveness of noise-perturbed adversarial

defense trained using a meta-learning strategy for improving the robustness of these

generative DNNs in Re-ID tasks. Additionally, we explore certified black-box defense
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optimized with zeroth-order optimization for classification tasks.
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CHAPTER 3

Unsupervised Domain Adaptation for Person

Re-Identification via Cyclic Generation

3.1 Introduction

Unsupervised domain adaptation in person Re-ID refers to the process of adapting a

person Re-ID model trained on a source domain to perform well on a target domain,

where the target domain has different characteristics, such as different lighting condi-

tions, camera viewpoints, or environmental contexts, without requiring labeled data in

the target domain (Fan et al., 2018; Lin et al., 2019; Huang et al., 2018; Bak et al.,

2018; Ren et al., 2019; Khatun et al., 2020). The goal is to minimize the domain shift

between the source and target domains, while retaining the discriminative power of the

model in identifying individuals across domains. This is typically achieved through the

following techniques.

Clustering-based Techniques. Clustering-based techniques have emerged as a popular

approach for person re-identification (Re-ID) due to their ability to pseudo-label sim-

ilar images together without requiring labeled data. These methods typically involve

partitioning a set of feature vectors into clusters based on some distance metric, such as

Euclidean or cosine distance. Once the clusters have been formed, they can be used to

identify individuals by matching images from the same cluster (Cai et al., 2018; Zhang

et al., 2019a; Cheng et al., 2019; Zheng et al., 2021; Zhang et al., 2021; Zheng et al.,

2022a; Quan et al., 2023).

The self-training scheme with clustering labels was originally proposed by PUL (Fan

et al., 2017) and UDAP (Song et al., 2020). SSG (Fu et al., 2019) and PAST (Zhang

et al., 2019c) subsequently built on this approach by incorporating human part features

and implementing a progressive training strategy. More recently, MMT (Ge et al., 2020)

has been introduced, which utilizes coupledly trained networks and mean-teacher net-

works for mutual training, resulting in state-of-the-art performance. However, the auto-

matic label assignment process in the clustering technique may bring in noise when the



model trained on the source meets the uncertain style change of unseen target data (Fan

et al., 2018; Lin et al., 2019). Furthermore, clustering-based methods typically pri-

oritize utilizing solely the data in the target domain, and do not leverage the valuable

labeled data available in the source domain (Ge et al., 2022).

Image Translation. Recently, unsupervised image to image translation and extensive

synthetic data using GANs have become popular. Several previous works use this tech-

nique to translate source samples to the target style and perform Re-ID by training a

CNN with this synthetic data (Wei et al., 2018; Deng et al., 2018; Wang et al., 2018a;

Huang et al., 2018; Bak et al., 2018; Ren et al., 2019; Khatun et al., 2020). These

methods are successful in mitigating the domain drift to some extent. Significant re-

searches in this field are done by reducing the domain gap in terms of camera style

change or pose change (Ma et al., 2017; Siarohin et al., 2018; Dong et al., 2018a; Song

et al., 2019; Li et al., 2019e). Some recent works on unsupervised domain adaptation in

Re-ID proposed after the publication of this work are (Ge et al., 2022; Ye et al., 2022).

In this chapter, we delve into the topic of unsupervised domain adaptation in per-

son Re-ID. Our goal is to create a Re-ID model that can effectively utilize unlabeled

target data by bridging the gap between the source and target domains. To achieve

this, we propose a novel cyclic generation network called the Individual-Preserving and

Environmental-Switching GAN (IPES-GAN). Our framework utilizes data from both

the source and target domains to train the model, and we separate the representation

into two parts: the individual part, which retains identity-related features such as cloth-

ing color and style, and the environmental part, which includes identity non-related

features such as pose and background.

Our network possesses two distinct features: firstly, we utilize decoupled features

rather than fused features, which has been proven to be beneficial for generation and

adaptation. Secondly, we use cyclic generation instead of one-step adaptive genera-

tion. We swap the source and target environment features to generate cross-domain

images that maintain identity-related features conditioned with the source (or target)

background features. We then change the environment features again to generate the

input image, allowing the cyclic generation to run in a self-supervised manner.

Our contributions are summarized as follows:

• We propose a novel Individual-preserving and Environmental-switching cyclic
generation network (IPES-GAN) for unsupervised domain adaptation person re-
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(a) A comparison with representative generation based methods.
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(b) Illustration of images generated by our model IPES-GAN.

Figure 3.1: (a) We make a comparison with four representative generation based meth-
ods, including SPGAN (Deng et al., 2018), SBSGAN (Huang et al., 2019a),
FD-GAN (Ge et al., 2018), and CR-GAN (Chen et al., 2019), by translat-
ing the image IS in the source domain according to the image IT in the
target domain. Different colors of squares indicate different backgrounds,
and different shapes in the squares indicate different poses. (b) Illustration
of images generated by our model IPES-GAN in the source domain. The
source (concatenated with target pose) and the target images are input to
our framework. The output is the generated images with the superimposed
pose, showing that these images have adapted to the pose of the target im-
ages (Best viewed in colors).
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identification to disentangle environment and identity-related feature space be-
tween the source and target domains so as to preserve the identity-related cues of
source domain image while adapting to the cross-domain environment.

• We propose a joint optimization of our generative (disentangling) and discrimina-
tive (adaptation) modules. We introduce a cross-domain cyclic generation frame-
work to achieve effective disentanglement and adaptation of appearance and en-
vironment features.

• We conduct experiments on three datasets - Market-1501 (Zheng et al., 2015),
DukeMTMC-ReID (Zheng et al., 2017), and MSMT17 (Wei et al., 2018). We
demonstrate that our model adapts well to the target domain using different met-
rics - CMC, mAP, and MMD. We show that our method can generate high-quality
cross-domain synthetic images with better fidelity and diversity with the help of
two metrics: LPIPS (Zhang et al., 2018c)and FID (Heusel et al., 2017). Our
method outperforms SOTA Re-ID in the unsupervised domain adaptation setting.

We make a comparison with four representative works, as shown in Figure 3.1(a).

1) SPGAN (Deng et al., 2018) attempts to translate the source image to a target style,

where person and background are treated as a whole. The translated image may obtain

a similar target style, but the redundant source background still exists, and the person’s

appearance may lose its identity detail. 2) SBSGAN (Huang et al., 2019a) removes

the source background, but the target background is ignored. It will make the Re-ID

model less generalizable. On the other hand, persons in different camera views are in

various poses. The model using the source pose only in training may not adapt to the

pose change in the target domain. 3) FD-GAN (Ge et al., 2018) disentangles the pose

information and generates more images with target poses. However, it needs paired im-

age for training and cannot be extended for an unsupervised setting. 4) CR-GAN (Chen

et al., 2019) changes the background of the source image to that of the target back-

ground. However, similar to SBSGAN, the model can not adapt to the pose change in

the target. Compared to these methods, our method has superiority in generating im-

ages with target background and pose (environmental) and maintaining relevant Re-ID

information. In Figure 3.1(b), we show the augmentation of the target environment fea-

tures with the source identity-related features. We depict that our network completely

adapts to the background, camera style, and pose-related information while preserving

the appearance of the source image as much as possible.
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3.2 Proposed Methodology

Problem Statement. We study the problem of unsupervised domain adaptation in Re-

ID. The input to our model is labeled source domain and unlabeled target domain data.

We aim to learn two different mappings from source to target domain - cyclic-image

generation and environment-switching generation.

Notation. Let us define some basic notations of our problem. The source dataset is

defined as S = {IS}NS with NS number of images and CS number of classes. IS

∈ RC×H×W where C is the number of channels in the image, H is the height and W

is the width of the image. The images are labeled as YS = {ySid, yScam}NS , where ySid

and yScam are the ID and camera ID of source dataset. The target dataset is defined

as T = {IT }NT with NT number of total images. The target dataset do not have

identity label. Since the camera ID label can be generated automatically, the images are

labeled as YT = {yTcam}NT . We have additional information in form of the pose of the

image. Pose of source and target images are given the annotation PS = {P S}NS and

PT = {P T }NT respectively.

Overview of Our Approach. We show our IPES-GAN framework in Figure 3.2. It

illustrates the decoupling of environment and shared appearance feature space. The

environment-style adapted cross-domain images are generated with the switching of

environment features while preserving the identity-related features. In Section 3.2.1,

we perform generative learning to supervise the generation of our cross-domain images

by swapping the environment components of the source and target domain in a cyclic

manner. We describe the concatenation of the source (target) image with the target

(source) pose. Our pose and style encoders use these concatenated images to encode

environment features. The identity encoder extracts identity-related features which are

shared between source and target domains. In Section 3.2.2, we show the use of these

synthetic cross-domain images to train our CNN-based identity encoder, which later

performs Re-ID on unseen data.

3.2.1 Generative Learning

Generative learning (generation) is performed by encoder-decoder architecture and a

discriminator. We show in Figure 3.3, the encoder is comprised of three distinct en-
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Figure 3.2: The overview of our Individual-preserving Environmental-switching Net-
work (IPES-GAN). Pose encoders help to achieve pose guidance. Style en-
coders learn the camera-style features. Identity encoder is shared between
labeled source and unlabeled target domain. Image generators’ (decoders’)
output are environmental switched images (IS→G, IT →G) which are passed
again to the generator (encoder-decoder) network to generate cyclic gener-
ated images (ĨS , ĨT ). Discriminator helps to achieve image-refinement. KL
Divergence loss is calculated between the probability distribution predicted
by our identity encoder and a standard CNN model Estd trained on source
dataset. (Best viewed in colors).

coders: the pose encoders (ES
p , E

T
p ), the style encoders (ES

s , E
T
s ), and the shared iden-

tity encoder Eid. Each of these encoders serves the purpose of capturing unique fea-

tures: pose, style, and identity features, respectively. Pose and camera-style features

together form environment features in the source and target domain. Environment fea-

tures are swapped between the two domains and concatenated with shared appearance

features. These cross-domain features are sent to the source (target) decoder to perform

generation. Discriminator is used to identify whether the generated image is real or

fake. We explain our encoders in detail below.

1. Pose Encoder. The input to the source (target) pose encoder is the source (target)
image and the target (source) pose in order to capture cross-domain pose features.

Pose Guided Generation. In order to learn cross-domain pose features, we
concatenate the source (target) image ∈ RC×H×W with the target (source) pose
∈ RCp×H×W at the input of pose encoder, where p = 18. The concatenated in-
put ∈ R(C+Cp)×H×W is then fed to the pose encoder. The pose encoder gives us
feature vector fpose which represents the cross-domain pose features. We obtain
the pose of the images using the state-of-art pose estimator model (Cao et al.,
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Figure 3.3: Our encoder network has pose encoders (ES
p , E

T
p ), style encoders (ES

s , E
T
s )

and shared identity encoder Eid. Source (target) images are concatenated
with cross-domain 18-channel pose keypoints are input to the pose encoder
to capture pose features. Similarly, we capture source (target) style features
and shared identity features. (Best viewed in colors).

2018). Even if the pose information is unavailable, our network can generate
cross-domain images by swapping the environment features of the source and
target domain. However, the pose information allows our model to learn the
global structure of the human body to generate high-quality cross-domain images
with the pose of source and target images. The pose information increases the
flexibility of our model to better adapt to unseen poses and thus can generalize
well to unseen person Re-ID images. We show some of the examples generated
by our model IPES-GAN in Figure 3.1(b). We superimpose the pose of generated
images in the source domain and observe that the poses of generated and target
images are very similar. It is visible that our generated images adapt to the target
images’ pose while preserving identity-related features of the source image.

2. Style Encoder. The input is source (target) image. It gives camera-style (back-
ground) features of source (target) as output.

3. Identity Encoder. The input is the source and target image. It is shared between
source and target domains. It gives identity-related features as output. Since
labels are present in the source domain, we enforce the identity encoder to capture
identity-related information by using the classification loss.

Environmental Swap (exchange). As we show in Figure 3.4, the pose encoder gives

us feature vector fpose which represents cross-domain pose features. The style encoder

provides the feature vector fstyle which represents the background and style of the cam-
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Figure 3.4: The pose and style (environment) features obtained from pose encoders
(ES

p , E
T
p ) and style encoders (ES

s , E
T
s ) respectively, are concatenated and

exchanged between the source and target domain. We also term this ex-
change as environmental swap. (Refer Figure 3.2 for legend of different
modules). (Best viewed in colors).

era. This decoupling of foreground (pose features) and background (style features)

forces our generative module to learn respective features separately and efficiently com-

pared to learning features of the image as a whole.

In order to avoid confusion, in the rest of the chapter, pose encoder and style en-

coders are represented together as environment encoders ES
env and ET

env, the environ-

ment features are denoted by fenv. fenv is the concatenation of pose and style fea-

tures of the source and target image, represented as fS
env = concat(fS

pose, f
S
style) and

fT
env = concat(fT

pose, f
T
style), where fS

pose (f
T
pose) and fS

style (f
T
style) are the private pose

and style feature of source (target) image. fS
env (fT

env) represents the private environment

features of the source (target) image.

Let us consider a pair of images IS and IT , respectively from the source and tar-

get domain. Our aim is to generate a new pedestrian image by swapping the environ-

ment features of the source and target images. The new feature distribution is given as
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fS→G = concat(fT
env, find) and fT →G = concat(fS

env, find), where find is the shared

identity-related features of source and target image. fS→G (fT →G) is the concatenated

feature vector of environment features of target (source) images and shared identity-

related features of source and target images. These features are fed to the decoders to

generate cross-domain images. Taking GS and GT as the decoders, we generate im-

ages in the source and target domains as IS→G = GS(fS→G) and IT →G = GT (fT →G)

respectively.

The intermediate generated image IS→G (Figures 3.2 and 3.4) contains the environ-

ment features of the target image while aiming to preserve the identity-related features

of the source image. Through this feature decoupling and generation, our model is

forced to adapt to the target image’s environment while maintaining the source image’s

individuality. IT →G is the translated image with identity-related features of the target

image. Our network generates cross-domain images by swapping the environment fea-

tures of the source and target domain. The shared identity encoder learns the domain-

invariant features and preserves the identity-related features of the two domains. Thus,

in the target domain, the generated image IT →G adapts to the pose and background of

source image IS while preserving appearance of target image IT .

Feature Consistency. In order to learn a mapping between two different domains with

no information of paired data, we introduce feature reconstruction based on environ-

ment and identity-related features (Figure 3.5). These features help us to supervise and

generate images in the source (target) domain with the pose and background informa-

tion of the target (source) image.

As we show in Figure 3.5, the generated image IS→G should maximize the environ-

ment information from the target image and appearance information from the source

image so that we can generate images with pose and background from the target image

while preserving the identity-related features of the source image. If we are success-

ful in attaining this environment switching from target to source domain, we should

be able to reconstruct our environment and identity-related features of the source and

target domain again:

LS
Con_Env = E[||fS

env − ES
env(I

T →G)||1], (3.1)
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Figure 3.5: We calculate the feature consistency loss between the features of real im-
ages and generated images for feature reconstruction with minimum noise.
(Best viewed in colors).

LT
Con_Env = E[||fT

env − ET
env(I

S→G)||1], (3.2)

LS
Con_Ind = E[||find − Eid(I

S→G)||1], (3.3)

LT
Con_Ind = E[||find − Eid(I

T →G)||1], (3.4)

where ES
env(I

T →G) (ET
env(I

S→G)) gives the reconstructed environment features of

the source (target) domain, and Eid(I
S→G) and Eid(I

T →G) give the shared reconstructed

appearance features of the source and target domain. LS
Con_Env (LT

Con_Env) is the envi-

ronment feature consistency loss of source (target) domain, and LS
Con_Ind (LT

Con_Ind) is

the appearance feature consistency loss of source (target) domain.

The total feature consistency loss (LCon) can be formulated as:

LCon = LS
Con_Ind + LT

Con_Ind + LS
Con_Env + LT

Con_Env. (3.5)
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Figure 3.6: We calculate cyclic reconstruction loss between original images and their
cyclically generated counterparts to provide a supervision for unpaired
source and target domain images. (Best viewed in colors).

Cyclic Reconstruction. In addition to feature consistency loss, we provide supervi-

sion by performing cyclic reconstruction of image as shown in Figure 3.6. We feed

our generated images IS→G (IT →G) again in the environment encoders ES
env(E

T
env) and

shared identity encoder Eid to get the environment and identity-related features respec-

tively. The decoders GS and GT , take these features to reconstruct our original images

in a cyclic manner. We use pixel-wise l1 loss between the reconstructed ĨS (ĨT ) and

original images IS (IT ) to achieve regularization. This cyclic reconstruction in the

source and target domain can be represented as ĨS = GS(ES
env(I

T →G), Eid(I
S→G)) and

ĨT = GT (ET
env(I

S→G), Eid(I
T →G)).

The total cyclic reconstruction loss LCyc can be represented in terms of the cyclic

reconstruction loss LS
Cyc (LT

Cyc) in the source (target) domain is given as follows:

LCyc = LS
Cyc + LT

Cyc = E[||IS − ĨS ||1] + E[||IT − ĨT ||1]. (3.6)

Camera-style Loss. To capture cross camera style variation in our generated images,

we define camera loss (Figure 3.7) to constrain the camera style of generated image

IS→G to target camera style and IT →G to source camera style. Style encoder gives the

probability distribution of a translated image belonging to a camera. The camera loss
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Figure 3.7: Our approach to incorporating cross-camera style variation into the gen-
erated images involves the formulation of a camera loss function. (Best
viewed in colors).

for generated images in the source and target domain is given as follows:

LS→G
Cam = E[− log(p(yTcam/I

S→G))] (3.7)

LT →G
Cam = E[− log(p(yScam/I

T →G))], (3.8)

where p(yTcam/I
S→G) and p(yScam/I

T →G) are the predicted probabilities that IS→G

(IT →G) belong to its camera label yTcam (yScam).

We also classify the real images with corresponding camera labels in source and

target domain. The camera loss for real source and target data is formulated as:

LS
Cam = E[− log(p(yScam/I

S))], (3.9)

LT
Cam = E[− log(p(yTcam/I

T ))], (3.10)

where p(yScam/I
S) (p(yTcam/I

T )) is the predicted probability that IS (IT ) belongs to

camera label yScam (yTcam).
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The total camera-style loss can be formulated as:

LCam = LS
Cam + LT

Cam + LS→G
Cam + LT →G

Cam (3.11)

Adversarial Loss Function. The adversarial loss function is defined to decrease the

gap between the real images and fake translated images (Goodfellow et al., 2014a). It

is formulated as:

LAdv = E[logD(IS) + log(1−D(IS→G)]+

E[logD(IT ) + log(1−D(IT →G)]
(3.12)

3.2.2 Discriminative Learning

In our proposed approach IPES-GAN, we train both the generative and discriminative

modules simultaneously. We train our network iteratively to generate high-quality syn-

thetic data based on our generation module (which contains the shared identity encoder)

and fine-tune the identity encoder with the high-quality synthetic data. After training,

the learned identity encoder is used to perform discriminative (Re-ID) learning. It is

used to match the query images to gallery images to evaluate the performance of our

proposed approach. Thus, our identity encoder, which performs discriminative learning

(Re-ID task) after training, is trained with the generated images along with generation

(generative task). In contrast, the generative task in existing methods (Wei et al., 2018),

(Deng et al., 2018), remains independent of the Re-ID task. They are often trained

conventionally to generate data. Thus, we summarize our network as: (1) the genera-

tor synthesizes images which are used to fine-tune the identity encoder; (2) the learned

identity encoder, in turn, influences the generator to generate better quality images; and

(3) generator and identity encoder are jointly optimized.

We show the training pipeline for a single domain (source domain since it is la-

beled) in Figure 3.8. We generate the images and use these images to fine-tune the

identity encoder. The learned identity encoder generates high-quality images, thus help-

ing the generation process. We feed the generated images to the identity encoder during
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Figure 3.8: Pipeline of our approach. Our IPES-GAN network is used to generate im-
ages (Translated Images) with environment style (pose and background) of
target image while preserving the identity-related features of the source im-
ages. The cross-entropy loss LCE performs classification on labeled source
images. The Soft cross-entropy loss LSoft_CE and divergence loss LKL

classify generated images that are pseudo-labeled with source labels. We
employ these losses on generated images to fine-tune the identity encoder,
which in turn improves generation. (Best viewed in colors).

the generation process, which reduces the operational complexity and saves the space

needed to store the extensive synthetic data. Once identity encoder Eid is fine-tuned

with the generated images, it is used to extract features for Re-ID matching in the target

domain.

Soft Cross-Entropy Loss (Soft_CE). The vanilla cross-entropy loss is formulated

as (Zhong et al., 2018b):

LCE = E[− log(p(c))k(c)] (3.13)

where the number of classes in the source domain is CS and c = {1, ..., CS}. An

image belonging to label c is given the probability p(c). The ground-truth distribution

is k(c). Since, a specific label ySid is given to each person in the training set, k(c) can be

given as,
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k(c) =

1 c = ySid

0 c ̸= ySid

(3.14)

Cross-entropy loss for a single person can be rewritten as − log p(ySid/I
S). For the

real images in the source domain we use the vanilla cross-entropy loss:

LCE = E[− log p(ySid/I
S)] (3.15)

We treat our style transferred images as the regular training samples. However, due

to the environment-switching feature in our generated images, we define a smooth label

regularization on the style transferred images to reduce noise and distribute the labels

softly. In this loss function, we give non-zero weights to the ground truth label as well

as other classes. The ground truth label is given less confidence, and other classes are

given small weights. This weight assignment is given as:

kSoft_CE(c) =

1− ϵ+ ϵ
CS

c = ySid

ϵ
CS

c ̸= ySid

(3.16)

where kSoft_CE(c) is the ground-truth distribution and ϵ ∈ (0, 1). With this new

weight configuration, the cross-entropy loss is re-defined as:

LSoft_CE = −(1− ϵ) log p(ySid/I
S→G)− ϵ

CS

CS∑
c=1

log p(c) (3.17)

KL Divergence. Apart from classifying the images using the soft cross-entropy loss,

we also use KL divergence to supervise classification on generated images. In order to

achieve this, we minimize the KL divergence between p(IS→G) and q(IS→G). p(IS→G)

is the predicted probability of the generated images belonging to a particular class c in

the source domain. Similarly, q(IS→G) is the probability predicted by the CNN model

trained with identity loss on the original source training dataset as shown in Figure 3.9.

KL divergence is given as:

LKL = E[−
CS∑
c=1

q(c|IS→G)log(
p(c|IS→G)

q(c|IS→G)
)] (3.18)
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Figure 3.9: KL Divergence between the probability predicted by our trained identity
encoder Eid and standard CNN model Estd.

Overall Objective Function. Our IPES-GAN is jointly optimized with (Eq. 3.6, 3.5,

3.11, 3.12, 3.15, 3.17, 3.18) losses,

LIPES−GAN = w1LCyc + w2LCon + LCam + LAdv

+LCE + w3LSoft_CE + w4LKL

(3.19)

where w1, w2, w3 and w4 are the weights assigned to the loss functions. w1 = 5,

w3 = 0.5. By utilizing random search, we can acquire weights that promote stability

throughout the entirety of the training process. The weight corresponding to cyclic re-

construction loss controls the cyclic generation of cross-domain data in self-supervised

manner. We give a large weight of w1 = 5 to cyclic-reconstruction loss LCyc which

is in accordance to previous GAN-based image generation methods (Zhu et al., 2017;

Lee et al., 2018; Huang et al., 2018). The high value of w1 helps us to generate better

quality images. We add w2 and w4 after 20K iterations and linearly increase them from

0 to 3 in next 6K iterations and these are constant at 3 thereafter. w6 corresponding to

the soft CE loss is assigned a small value as the initial generated images contain a lot

of noise and less appearance information. We did not initially add feature consistency

and KL divergence losses to avoid training instability and introduced them after 20K

iterations.
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3.3 Experiments

We discuss the datasets used, implementation details, and experiments performed in

this section.

3.3.1 Datasets and Metrics

We use three large-scale Re-ID datasets (Market-1501, DukeMTMC-ReID and MSMT17)

to evaluate our proposed method.

Market-1501 (Zheng et al., 2015). It is collected in front of a supermarket in Tsinghua

University. It consists of images taken from 6 different cameras. It has 12,936 training

images with 751 identities (IDs). The testing set consists of 19,732 gallery images with

750 IDs and 3,366 query images.

DukeMTMC-ReID (Zheng et al., 2017). It is a dataset of surveillance video footage

taken on Duke University’s campus in 2014. This dataset has 16,522 training images

with 1,404 IDs taken from 8 different cameras. The testing set comprises 17,661 gallery

images with 702 IDs and 2,288 query images.

MSMT17 (Wei et al., 2018). It utilizes a 15-camera network deployed on campus. It

has 12 outdoor and three indoor cameras. This dataset has a total of 126,441 bounding

boxes with 4,101 IDs. The training and testing ratio is 1:3. The training images are

32,621 bounding boxes of 1,041 IDs taken from 15 different cameras. The testing set

comprises 82,161 gallery images, and query images are randomly selected to be 11,659.

Evaluation Metrics. We use several metrics to show our performance. (1) To evalu-

ate the Re-ID performance, the standard Cumulative Matching Characteristics (CMC)

values and mean Average Precision (mAP) (Zheng et al., 2015) are adopted since one

person has multiple ground truths in the gallery set. (2) We check the visual quality of

generated images with two evaluation metrics: LPIPS (Zhang et al., 2018c) uses deep

features as perceptual similarity metric. We use AlexNet pre-trained on ImageNet for

evaluation. Fréchet Inception Distance (FID) (Heusel et al., 2017) measures the reality

factor by checking the anomalies present in the generated images. The Mean Opinion

Score (MOS) test is exploited to evaluate the quality and diversity of the generated im-

ages objectively. We use Maximum Mean Discrepancy (MMD) to quantify the domain

gap between T (target) and G (generated) images, and T (target) and S (source) images.
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3.3.2 Implementation Details

We use Adam optimizer for generator and discriminator with a learning rate set as

0.0002 and momentum 0.999. SGD optimizer is employed for the identity encoder

with a learning rate of 0.001 and momentum of 0.9. We load source and target datasets

simultaneously. We set a mini-batch size of 16. We randomly sample an equal number

of images from both source and target datasets. Labels of source data are also loaded.

While loading images from the source dataset, we chose a random ID and loaded these

images from different cameras.

On the other hand, the labels of the target dataset are unknown. Thus, we randomly

pick images from different cameras. We concatenate the image and the 18 channel pose

data, which makes a 21 channel input to the pose encoder. The Encoder comprises

the pose encoders, style encoders, and identity encoder. The pose encoders consist

of two downsampling layers, four residual layers, and atrous spatial pyramid pooling

(ASPP) (Chen et al., 2018). The style encoders are a 6-layer convolution network. The

identity encoder is based on a standard IBN-ResNet-50 pre-trained on ImageNet. We

design decoders with similar architecture as the pose encoders. For style transfer, we

use adaptive instance normalization at the time of decoding. We employ least-squares

generative adversarial network (LSGAN) (Mao et al., 2017). At the time of testing on

the target dataset, we use our identity encoder to extract a 1024-dim feature vector after

the global average pooling layer. We use 2 NVIDIA Tesla P100 PCIe 16 GB GPUs for

performing all the experiments.

3.3.3 Comparison with State-of-the-arts

In this subsection, we compare the state-of-the-art methods to show the effectiveness

of our generation network on the unsupervised Re-ID. We exploit the Market-1501

(DukeMTMC-ReID) as the source dataset and evaluate the methods on the DukeMTMC-

ReID (Market-1501). We show the results in Table 3.1. We primarily included previ-

ous works that perform unsupervised Re-ID with person image generation for a fair

comparison. PTGAN (Wei et al., 2018), SPGAN+LMP (Deng et al., 2018), Cam-

Style (Zhong et al., 2018b), HHL (Zhong et al., 2018a), SBSGAN (Huang et al.,

2019a), CR-GAN (Chen et al., 2019), CSGLP (Ren et al., 2019), CGAN-TM (Tang

et al., 2020) are recent methods based on image generation. Most of these methods
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adopt one backbone; for example, SPGAN+LMP, CamStyle, HHL, and CR-GAN use

ResNet-50, and CGAN-TM uses Densenet-121. The methods using a generation tech-

nique are marked
√

.

We show results by using two different backbones for the identity encoder. IPES-

GAN (ResNet-50) achieves 64.1% for Market-1501 and 53.5% for DukeMTMC-ReID

in CMC-1 accuracy, which is better than previous approaches. Then, after using IBN-

ResNet-50 we achieve 66.8% for Market-1501 and 55.7% for DukeMTMC-ReID

in CMC-1 accuracy. Our method outperforms all the GAN-based approaches with a

margin of 5.4% in CMC-1 accuracy for Market-1501. Our proposed IPES-GAN also

outperforms methods that do not perform generation by a large margin.

Table 3.1: The comparison with other state-of-the-art methods. The mAP, CMC-1,
CMC-5, and CMC-10 (%) results are reported. source → target rep-
resents the setting of training on the source dataset and testing on the target
dataset. Red and blue fonts indicate the best and the second best results.√

indicates that the corresponding method uses the generation technique to
augment training samples.

Methods Reference Generation
DukeMTMC-ReID→Market-1501 Market-1501→ DukeMTMC-ReID
CMC-1 CMC-5 CMC-10 mAP CMC-1 CMC-5 CMC-10 mAP

LOMO (Liao et al., 2015) CVPR’15 12.3 21.3 26.6 4.8 12.3 21.3 26.6 4.8
BoW (Zheng et al., 2015) ICCV’15 17.1 28.8 34.9 8.3 17.1 28.8 34.9 8.3
UMDL (Peng et al., 2016) CVPR’16 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3
CAMEL (Yu et al., 2017) ICCV’17 54.5 - - - - - - -
PUL (Fan et al., 2018) TOMM’18 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4
PTGAN (Wei et al., 2018) CVPR’18

√
38.6 - 66.1 - 27.4 - 50.7 -

SPGAN+LMP (Deng et al., 2018) CVPR’18
√

57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2
TJ-AIDL (Wang et al., 2018a) CVPR’18 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
CamStyle (Zhong et al., 2018b) CVPR’18

√
58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1

HHL (Zhong et al., 2018a) ECCV’18
√

62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2
ATNet (Liu et al., 2019b) CVPR’19 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9
SBSGAN (Huang et al., 2019a) ICCV’19

√
58.5 - - 27.3 53.5 - - 30.8

CR-GAN (Chen et al., 2019) CVPR’19
√

59.6 - - 29.6 52.2 - - 30.0
CASCL (Wu et al., 2019) ICCV’19 64.7 80.2 85.6 35.6 51.5 66.7 71.7 30.5
CSGLP (Ren et al., 2019) TIFS’19

√
59.2 76.2 83.2 31.1 47.8 62.3 68.3 27.1

CGAN-TM (IDE) (Tang et al., 2020) TIP’20
√

61.4 - - 31.3 54.6 - - 32.6
PPAN (Yang et al., 2020) TMM’20 62.7 77.2 82.5 30.2 55.6 68.1 73.2 34.0
IPES-GAN (ResNet-50) Ours

√
64.1 79.3 83.1 33.6 53.5 69.1 73.1 32.9

IPES-GAN (IBN-ResNet-50) Ours
√

66.8 81.2 85.4 34.4 55.7 71.4 75.2 33.3

Methods Reference Generation
DukeMTMC-ReID→MSMT17 Market-1501→MSMT17

CMC-1 CMC-5 CMC-10 mAP CMC-1 CMC-5 CMC-10 mAP
PTGAN (Wei et al., 2018) CVPR’18

√
11.8 - 27.4 3.3 10.2 - 24.4 2.9

SPGAN + LMP (Deng et al., 2018) CVPR’18
√

16.8 27.1 32.6 5.8 15.3 23.7 28.6 3.8
CamStyle (Zhong et al., 2018b) CVPR’18

√
19.8 29.2 34.1 6.3 17.6 26.2 31.4 4.9

HHL (Zhong et al., 2018a) ECCV’18
√

20.4 31.1 35.8 6.9 18.9 27.1 32.9 5.2
IPES-GAN (ResNet-50) Ours

√
20.6 31.0 36.4 6.5 18.4 28.9 34.4 5.9

IPES-GAN (IBN-ResNet-50) Ours
√

23.1 32.6 39.1 7.4 20.2 31.2 37.2 6.9

Performance on MSMT17 (Wei et al., 2018). We evaluate the results of our proposed

approach on another large-scale dataset, MSMT17, and compare it with GAN-based

cross-dataset person re-identification methods in Table 3.1. We use the Market-1501

(DukeMTMC-ReID) as the source dataset and test the target MSMT17 dataset. Previ-

ous SOTA methods used backbone as ResNet-50. On the other hand, we report results
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using ResNet-50 and IBN-ResNet-50. We outperform the SOTA methods by a margin

of 1.3% for Market-1501→MSMT17 and 2.7% for DukeMTMC-ReID→MSMT17.

Table 3.2: Comparison with SOTA hybrid methods. source → target represents
the setting of training on the source dataset and testing on the target dataset.
’Duke’ refers to DukeMTMC-ReID and ’Market’ refers to Market-1501
datasets.

Types Methods Reference Generation
Duke→Market Market→ Duke

CMC-1 (%) mAP (%) CMC-1 (%) mAP (%)

Image
SPGAN (Deng et al., 2018) CVPR’18

√
57.7 26.7 46.4 26.2

CR-GAN (Chen et al., 2019) CVPR’19
√

59.6 29.6 52.2 30.0
IPES-GAN Ours

√
66.8 34.4 55.7 33.3

Feature TAUDL (Li et al., 2018b) CVPR’19 63.7 41.2 61.7 43.2

Hybrid
SPGAN + TAUDL CVPR’18

√
66.5 38.5 66.1 47.2

CR-GAN + TAUDL CVPR’19
√

77.7 54.0 68.9 48.6
IPES-GAN + TAUDL Ours

√
78.9 54.3 73.6 53.6

Comparison with SOTA hybrid methods. We combine our IPES-GAN with TAUDL

[6] and compare it with existing hybrid (image and feature level learning) methods in

Table 3.2. We apply TAUDL with our trained identity encoder for unsupervised Re-

ID in the target domain. Our IPES-GAN outperforms the SOTA methods in hybrid

formulation by a margin of 1.2% for DukeMTMC-ReID→ Market-1501 and by 4.7%

for Market-1501→ DukeMTMC-ReID.

We should indicate that our method has a slightly lower mAP of 1.2% on Market-

1501 than CASCL (Wu et al., 2019). CASCL has better performance for CMC-10

and mAP on DukeMTMC-ReID → Market-1501. However, our method outperforms

CASCL in CMC-1 and CMC-5. Our method also outperforms CASCL on Market-

1501 → DukeMTMC-ReID. Furthermore, CASCL’s performance heavily depends on

the number of cameras in the source domain. Another method (Song et al., 2020), has a

mAP of 53% and CMC-1 of 75.8% for DukeMTMC-ReID→Market-1501 and a mAP

of 49% and CMC-1 of 68.4% for Market-1501 → DukeMTMC-ReID. It belongs to a

pseudo-label-based method, which makes guesses for unlabeled target data based on an

encoder. The encoder is trained using the guessed labels, which are selected iteratively

using clustering. However, it uses DBSCAN clustering method (Coifman, 1998) to

generate data clusters. DBSCAN has parameters that need to be tuned for different

datasets.

On the other hand, our method has a mAP of 34.4% and CMC-1 of 66.8% for

DukeMTMC-ReID → Market-1501 and a mAP of 33.3% and CMC-1 of 55.7% for

Market-1501→ DukeMTMC-ReID, it belongs to GAN based approach. The represen-
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tation of the feature space by decoupling the identity-related and identity non-related

features allows our network to easily generalize to unseen scenarios, which we also

show by providing results on three large-scale Re-ID datasets- Market-1501 (Zheng

et al., 2015), DukeMTMC-ReID (Zheng et al., 2017) and MSMT17 (Zheng et al.,

2017). Since our method falls under GAN based approach, a direct comparison may not

give a complete idea of the performance. Further, our method also has the advantage

that the images generated can be used by other Re-ID models to boost the performance.

Qualitative Comparison. We show qualitative comparison with two previous generation-

based methods as shown in Figure 3.10. The first and second rows are the source and

target images, respectively. The third and fourth row show the translated images ob-

tained by FDGAN (Ge et al., 2018) and our method (IPES) respectively in Figure 3.10

(a), and SPGAN (Deng et al., 2018) and our method in Figure 3.10 (b).

FD-GAN disentangles the pose information and generates more images with target

poses. However, it needs paired images for training and cannot be extended for unsuper-

vised domain adaptation. On the other hand, our method does not need any paired data

and is trained in an unsupervised manner. Without paired information, we generate bet-

ter quality images than FDGAN, which we show in Figure 3.10 (a). SPGAN attempts

to translate source images to a target style, where person and background are treated

as a whole. The translated image may obtain a similar target style, but the redundant

source background still exists, as we show in Figure 3.10 (b). However, as shown in

the figure, the images generated by IPES adapt to the target pose and background while

preserving the identity-related features like the color and style of a person’s clothing

and shoes.

3.3.4 Ablation Study

We conduct an ablation study to show the influence of pose change, cyclic encoding,

and loss functions in IPES-GAN.

Effectiveness of Pose Change. Re-ID aims to match persons across non-overlapping

camera views. Among other factors like a person’s appearance, illumination, occlusion,

etc., large pose variation makes Re-ID a difficult task. Re-ID becomes more challenging

in an unsupervised setting where labels of target data are unknown. Pose-variation
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Figure 3.10: (a) Qualitative comparison of our method with FD-GAN (Ge et al., 2018).
(b) our method with SPGAN (Deng et al., 2018). (Best viewed in colors).
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between source and target domains is an important factor that precludes from learning a

robust unsupervised domain adaptation method. We summarize the experimental results

to show the effectiveness of pose change in Table 3.3. Our model performs much better

unsupervised domain adaptation with pose change.

Table 3.3: Quantitative evaluation of effectiveness of pose change in unsupervised do-
main. ‘M’, ‘D’ and ‘MSMT’ denote the Market-1501 (Zheng et al., 2015),
DukeMTMC-ReID (Zheng et al., 2017) and MSMT17 (Wei et al., 2018)
datasets respectively.

Methods
M→ D M→MSMT D→M D→MSMT

CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP
Without Pose Change 63.9 30.6 14.5 4.3 53.7 31.2 18.0 5.6
With Pose Change 66.8 34.4 20.2 6.9 55.7 33.3 23.1 7.4

Cyclic Encoding. Cyclic encoding helps us control our unsupervised image translation

in different data domains without identifying aligned image pairs. In order to prove this

fact, in the first experiment, we generate images by single encoding and swapping of

the environment features and, after that, training our identity encoder Eid with these

images. It shows a significant boost of 8% in CMC-1 on DukeMTMC-ReID and 4.2%

on Market-1501 compared to direct testing as we show in Table 3.4. In the next experi-

ment, we encode our intermediate generated images to reconstruct the input images in a

cyclic manner while training the identity encoder. With our cyclic encoding in the gen-

erative module we get a significant boost of 13.1%/10.2% in CMC-1 on DukeMTMC-

ReID/Market-1501 over direct testing. From these results, we can conclude that our

proposed model is successful in reducing the domain gap.

Loss Functions. Our model is trained with adversarial loss along with four other losses.

Table 3.4 shows the effect of various loss functions in optimizing the model. From

Tables 3.4 and 3.5, it is clear that when we perform direct testing on target dataset

with a model trained in a supervised setting with all the loss functions, we get better

performance than in the setting where we remove LCyc or LKL from our proposed

network. Thus, all the loss functions help each other to attain an optimized performance.

To prove the significance of these loss functions, we conduct an ablation study

by removing one loss at a time. First, as discussed earlier, cyclic encoding improves

Re-ID accuracy by a large margin, and since it is achieved by cyclic reconstruction

loss, there is a considerable decrease in performance of about 18.8% in DukeMTMC-

ReID and 14.5% in Market-1501 in the absence of this loss. This decrease in per-
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Table 3.4: Ablation study on different types of training samples. “Supervised” stands
for the labeled source domain. “Direct Testing” denotes the unlabeled target
domain by the model trained in supervised setting. “Single Encoding” refers
to generation of intermediate image. “Cyclic Encoding” indicates our pro-
posed IPES-GAN network. source → target represents the setting of
training on the source dataset and testing on the target dataset. ‘M’ and ‘D’
denote the Market-1501 and DukeMTMC-ReID datasets, respectively. The
mAP and CMC-1 (%) results are reported.

Methods
M→ D D→M

CMC-1 mAP CMC-1 mAP
Supervised 84.4 70.1 93.4 80.6
Direct Testing 42.6 24.3 56.1 26.8
Single Encoding 50.6 30.9 60.3 29.5
Cyclic Encoding 55.7 34.1 66.8 34.4

formance is due to the absence of image-level information, due to which our model

cannot generate human-perceptible images. Second, KL divergence combined with our

identity losses on real and generated images helps our IPES-GAN network generate

good quality images by preserving their identity-related features. Without these losses,

there is around 10% decrease in accuracy for both Market-1501 and DukeMTMC-ReID

datasets. Third, feature consistency compliments our cyclic reconstruction and helps

generation without any image-level information. Finally, camera loss is introduced to

reduce the effect of change in camera styles across different datasets. Conventional

CE loss is adopted for real source images only, for which true labels are known. Using

soft CE loss for real images would decrease the performance. We can also adopt CE

loss for generated images. However, due to the environmental-switching feature in our

generated images, we employ soft CE loss to reduce the noise and distribute the labels

softly. If we use only one kind of loss (CE loss instead of soft CE loss as discussed

Table 3.5: Ablation study on loss functions. source→ target represents the setting
of training on the source dataset and testing on the target dataset. ‘M’ and
‘D’ denote the Market-1501 and DukeMTMC-ReID datasets respectively.
The mAP and CMC-1 (%) results are reported.

Methods
M→ D D→M

CMC-1 mAP CMC-1 mAP
w/o LCyc 36.9 19.7 52.3 23.8
w/o LKL 40.2 23.4 54.0 24.6
w/o (LCE + LSoft_CE) 45.2 25.0 57.2 26.8
w/o LCon 51.0 30.2 60.3 29.5
w/o LCam 51.5 29.8 62.9 30.0
Our Method 55.7 34.1 66.8 34.4
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above) for both real and generated images, we will get a drop of CMC-1 accuracy by

3.9% in Market-1501 and 4.2% in DukeMTMC-ReID.

We minimize the KL divergence between the probability distribution predicted by

the identity encoder and the CNN model trained with identity loss on the source dataset.

Since the environment switched image should give a similar probability distribution for

the output obtained from both the identity encoder and CNN model, we minimize the

KL divergence between these output distributions. This loss helps to supervise the

soft labeling of the generated images. Whereas, in the absence of KL loss, we apply

Eq. 3.17 to obtain soft labels. Since the soft labels obtained by applying KL loss are

richer in appearance information, the accuracy also improves. We also observe that the

generated images are sharper and of better quality once KL loss is applied. Thus, in

the absence of KL loss, low-quality images with poor representational soft labels drop

accuracy compared to direct testing.

3.3.5 Evaluation of the Quality and Diversity of Generated Images

For performing the quantitative evaluation, we compare the synthetic data generated by

IPES-GAN with SPGAN and CR-GAN. As shown in Table 3.6, compared to SPGAN

and CRGAN, our method has lower FID (Heusel et al., 2017) and higher LPIPS (Zhang

et al., 2018c). Thus, our method can generate images with better fidelity and diversity

after translation between two entirely different data domains.

We also perform the Mean Opinion Score (MOS) test to assess the quality and diver-

sity of generation methods. Specifically, we asked five reviewers to assign an integral

score from 1 (bad quality/diversity) to 5 (excellent quality/diversity) to the generated

images by different methods. Each reviewer rated 100 randomly selected images gen-

erated from DukeMTMC-ReID to Market-1501. The experimental results of the con-

Table 3.6: Quantitative evaluation to check quality of image. LPIPS: Learned percep-
tual image similarity, higher values indicate more similarity. FID: Fréchet
Inception distance, lower the better.

Methods
M→ D D→M

LPIPS↑ FID↓ LPIPS↑ FID↓
SPGAN (Deng et al., 2018) 0.099 0.171 0.099 0.115
CR-GAN (Chen et al., 2019) 0.281 0.058 0.269 0.096
IPES-GAN 0.345 0.023 0.401 0.062
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Figure 3.11: Visualization of translated images from the source (Market-1501, the first
column) to the target (DukeMTMC-ReID, the first row). (Best viewed in
colors).

S G

T

Figure 3.12: Visualization of translated images from the source (DukeMTMC-ReID,
the first column) to the target (Market-1501, the first row). (Best viewed
in colors).
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Table 3.7: The Mean Opinion Score (MOS) test results on the generated images from
DukeMTMC-ReID to Market-1501.

SPGAN SBSGAN FD-GAN CR-GAN IPES-GAN
Quality 3.45 3.22 2.23 3.28 3.23
Diversity 1.95 1.44 2.89 2.15 3.34

Table 3.8: Maximum Mean Discrepancy (MMD). S and T represents source and target
dataset, respectively. S → T (source → target) represents the set-
ting of training on the source dataset and testing on the target dataset. ‘M’,
‘D’ and ‘MS’ denote the Market-1501, DukeMTMC-ReID and MSMT17
datasets, respectively. Red and blue fonts indicates MMD after training and
before training.

T S S → T MMD
D M - 0.295
D - M→ D 0.167
M D - 0.306
M - D→M 0.245
MS M - 0.273
MS M→MS 0.183
MS D - 0.280
MS - D→MS 0.199

ducted MOS tests are summarized in Table 3.7.

We use Maximum Mean Discrepancy (MMD) to quantify the domain gap between

T (target) and G (generated) images, and T (target) and S (source) images. We show

corresponding results in Table 3.8. MMD between DukeMTMC-ReID (T ) and Market-

1501 (S) before training the model is 0.295. After training, it reduces to 0.167 between

DukeMTMC-ReID (T ) and (Market-1501 (S)→ DukeMTMC-ReID (T )). Similarly,

as illustrated in Table 3.8, MMD reduces after training for other dataset settings as well.

This decrease in MMD shows a large difference between the source and target image

styles before training, which leads to poor performance on the target dataset. However,

after training, the source image adapts to the pose and background of the target image.

Thus, source images with target environment style give better performance on target

data. As we show, the generated images by our method obtain competitive quality and

have the best diversity, comparing with all other representative methods.
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Figure 3.13: Visualization of translated images from the source (DukeMTMC-ReID,
the first column) to the target (MSMT17, the first row). (Best viewed in
colors).

3.3.6 Visualizations

We show the translated images in Figure 3.11 and 3.12. Figure 3.11 illustrates the

results for translation from Market-1501 (source) to DukeMTMC-ReID (target). It is

evident that the pose and background of the target image are adapted in the translated

images while maintaining the appearance (color and style of clothes and shoes) of the

source image. Similar observations can be inferred from translation of DukeMTMC-

ReID (source) images to Market-1501 (target) in Figure 3.12.

In Figure 3.13, we illustrate the results for translation from Market-1501 (source)

to MSMT17 (target). It is evident that the pose and background of the target image are

adapted in the translated images while maintaining the appearance of the source image.

Similar observations can be inferred from translation of DukeMTMC-ReID (source)

images to MSMT17 (target) in Figure 3.14.

The Re-ID task primarily extracts features such as the color of clothes, additional

useful cues such as a bag. While in some cases, cues such as bags may not be preserved,

yet the clothing is efficiently adapted because few images have such additional cues, and

the model may not be able to learn them. Further, the clothing appearance is the most

significant cue, and the network primarily learns to match this. In some cases, gender

may not be useful information as many shots are taken from different views, and quite
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Figure 3.14: Visualization of translated images from the source (Market-1501, the first
column) to the target (MSMT17, the first row). (Best viewed in colors).

a few are taken from an angle where identifying gender is very hard. Thus, while the

network may inherently learn some gender-based cues, it may not consider it as a strong

discriminative factor. Unlike previous approaches, our approach does not need separate

training for image generation and discriminative learning, which reduces complexity.

Visualization under major occlusion In our unsupervised domain adaptation frame-

work for person re-identification (re-id) task, we introduce a robust approach that effec-

tively handles variations in camera viewing angles and occlusion within the target do-

main while preserving identities. By incorporating identity-preserving and environmental-

switching mechanisms, our model adapts to diverse camera perspectives. The integra-

tion of pose and background style adaptation enables the model to generalize across

different viewing angles. Leveraging shared identity features and private environment

features, the model learns domain-invariant representations, ensuring resilience to back-

ground style differences. Our comprehensive approach shows promising results in ad-

dressing challenges posed by camera angles and occlusion, making it highly suitable

for real-world re-id applications.

As per your suggestion, we provide a detailed demonstration of the robustness of

our proposed model in handling a major occlusion scenario, as depicted in Figure 3.15.

Despite the challenging conditions posed by significant occlusion, our model exhibits

exceptional performance by accurately retrieving a majority of the correct samples
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Query Retrieved Images

Figure 3.15: The top-10 predictions made by our proposed IPES-GAN model with a
majorly occluded image as query. The green boxes represent correct pre-
dictions of query image from the gallery set and red represents the incor-
rect predictions. Red Circles in the query images represent the occlusion.
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(a) Source
(M)

(b) Target
(D)

(c) Generated Image
(M→ D)

Figure 3.16: The figure shows the Generated Image (M→ D) adapts to pose and back-
ground of Target (D) image while maintaining identity-related features of
the Source (M) image. M and D denotes Market-1501 and DukeMTMC-
ReID. (Best viewed in colors).

in the top-10 predictions. This outcome underscores the efficacy and reliability of

our model in real-world scenarios, where occlusion is a common and complex chal-

lenge. Figure 3.15 visually illustrates the impressive retrieval results, highlighting the

model’s ability to maintain high accuracy even in the presence of substantial occlu-

sion, thereby validating its practical applicability and significance in the field of person

re-identification.

3.3.7 Background Adaptation of target domain

We illustrate in Figure 3.16 the magnified backgrounds of source, target, and generated

image. It is visible that generated image (source → target) completely adapts to the

background of the target image while preserving its identity-related features (appear-

ance). We also superimpose the pose of the source, target, and generated image in this

figure to show that generated images consist of the background and pose style of the

target image.

3.4 Chapter Summary

This chapter proposes a novel person image generation network for the person re-

identification task. Our model performs both generative and discriminative learning

simultaneously. The proposed IPES-GAN encodes the pose information to incorpo-

rate the global structure of the target image. The target background and camera style
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are captured via environment encoder and camera style loss. The cycle consistency

and adversarial loss further optimize the target image generation process. In order to

obtain discriminative features for Re-ID, we apply soft cross-entropy loss and KL di-

vergence loss. The elaborate qualitative and quantitative experiments demonstrate that

our proposed approach generates images with better fidelity and diversity and achieves

state-of-the-art Re-ID performance.

In this chapter, we explore the application of unsupervised domain adaptation to

extend the generalizability of Re-ID models trained on a source dataset to an unlabeled

target dataset. However, the efficacy of these models is significantly reduced when sub-

ject to adversarial perturbations. To address this issue, the subsequent chapter focuses

on examining the robustness of these Re-ID models. In contrast to conventional ad-

versaries that solely consider Euclidean space and ignore pixel geometry, our method

incorporates the Wasserstein metric attack, resulting in a more potent attack.

60



CHAPTER 4

Adversarial Attack on Re-ID

4.1 Introduction

Deep neural networks (DNNs) have demonstrated tremendous performance improve-

ment in Re-ID (Zhang et al., 2017b; Sun et al., 2018; Rombach et al., 2022; Song et al.,

2023). However, they are vulnerable to adversarial attacks. Adversarial attacks have

been extensively investigated on tasks which fall under closed-set setting like classifi-

cation, object detection and segmentation (Szegedy et al., 2013; Kurakin et al., 2016;

Dong et al., 2018b; Guo et al., 2020; Moosavi-Dezfooli et al., 2016; Carlini and Wag-

ner, 2017; Athalye et al., 2018a; Su et al., 2019; Yuan et al., 2021; Sun et al., 2022;

Chen and Gu, 2020; Tashiro et al., 2020; Li et al., 2021d, 2023). However, except for a

few attempts (Zheng et al., 2018; Li et al., 2019b; Zhao et al., 2019b; Bai et al., 2020b;

Wang et al., 2020a; Ding et al., 2021; Yang et al., 2021a; Zhao et al., 2022), adversar-

ial attacks have not been much investigated in open-set retrieval problems like person

re-identification where the source and target dataset have completely non-overlapping

labels (Refer Chapter 2 for adversarial attack formulation).

Previous works in the field of adversarial attack on person re-identification focus

on attack based on l∞ perturbations and its corresponding lp generalization (Bai et al.,

2020b; Wang et al., 2020a; Ding et al., 2021; Yang et al., 2021a; Zhao et al., 2022).

These works are based on projected gradient descent (PGD) method to find perturba-

tions within a small lp radius (Goodfellow et al., 2014b). lp threat model is known to be

a poor metric to measure similarity of images which adjusts each pixel value in images

independent of other pixels (Wu et al., 2020a). Images which look similar under human

perception are not necessarily close under lp norm (Wong et al., 2019). On the other

hand, Wasserstein metric is a more perceptually-aligned metric for images (Hu et al.,

2020) (Peyré et al., 2019). The set of allowable perturbations can differ significantly

between the Wasserstein ball and the lp ball. It is possible for examples that are near in

terms of Wasserstein distance (∆W ) to be far apart in lp distance (∆∞), and conversely,

for examples that are close in ∆∞ to be far apart in terms of ∆W as shown in Figure 4.1.



Figure 4.1: We show images with four pixels to demonstrate the difference between
Wasserstein perturbations and ∆∞ perturbations. A small perturbation ∆W

shifts the image one pixel to the right, which is minimal in Wasserstein
distance but maximal in ∆∞ distance. In contrast, a small perturbation
∆∞ changes all pixels to be grayer, which is minimal in ∆∞ distance but
maximal in Wasserstein distance.

Wasserstein metric based perturbations provide more generalized image perturba-

tions in the form of pixel mass movement. It redistributes the pixel mass instead of deal-

ing with each pixel independently, as in case of lp norm based threat models. Previous

works in Re-ID mainly include l∞ metric-based attacks (Bai et al., 2020b; Zheng et al.,

2018), GAN-based attacks (Zhao et al., 2019b; Wang et al., 2020a) or meta-learning

based attacks (Yang et al., 2021a). However, to the best of our knowledge, Wasster-

stein ball perturbations are not yet proposed for open-set ranking problems like Re-ID.

Wasserstein metric is used in few previous works against classification task (Wu et al.,

2020a; Wong et al., 2019; Hu et al., 2020). (Wong et al., 2019) introduced Wasserstein

perturbations as an alternative to lp threat model for closed-set classification problem.

An improvement over this work was proposed by (Hu et al., 2020). However, we can-

not directly apply the existing attack methods against classification tasks to open-set

problems like Re-ID systems (Zheng et al., 2018; Li et al., 2019b).

In this chapter, we propose to obtain an adversarially perturbed sample by projecting

clean images into the Wasserstein ball. Our approach is used to attack the entire ranking

model in an open-set setting which is much more challenging problem than a closed-

set task. Unlike previous attack methods on person Re-ID which deal with finding

the adversarial samples in the lp ball, we project adversarial samples on Wassterstein

ball. Our method does not require any training to learn perturbations unlike previous

approaches (Wang et al., 2020a; Yang et al., 2021a).

We provide an illustration of our Wasserstein non-targeted and targeted attacks in

Figure 4.2. The aim of non-targeted attack is to increase the distance between the
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features of query and gallery samples of same identity. Different from non-targeted

attack, targeted attack tries to minimize the distance between the features of query and

a target adversary with identity different than that of query image.

Our contributions can be summarized as:

• To the best of our knowledge, we are the first to introduce Wasserstein metric for
adversarial attack on Re-ID.

• We iteratively perturb the query images by performing l∞ perturbation as the first
step and then projecting the adversarial sample in the Wasserstein ball of radius ϵ
followed by clamping so that perturbation lies in [0, 1] pixel space.

• We show that our Wasserstein threat model can be easily generalized to attack
state-of-the-art Re-ID models and unseen dataset scenarios.

Query Before Attack

After Attack

(a)
Target

Adversary After Attack

(b)

Figure 4.2: The top-10 predictions before and after our (a) non-targeted (b) targeted
Wasserstein attack. As is visible in (a) after attack the top-10 predictions
can be any other sample except the same identity (ID) as query whereas in
(b) same IDs as target adversary sample are mainly included in the ranking
list, degrading the performance of Re-ID model. The green boxes represent
correct predictions of query image from the gallery set and red represents
the incorrect predictions.

4.2 Preliminaries

Wasserstein Distance (WD). is the minimum cost required to change the distributions

with the help of probability mass. Let I , Ĩ ∈ Rn
+ be two vectorized images with equal
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mass such that 1⊤I = 1⊤Ĩ , which are converted to marginals by performing normaliza-

tion, such that
∑

i Ii =
∑

i Ĩi = 1. Then, Wasserstein distance is defined as:

WD(I, Ĩ) = min
T∈Rn×n

+

⟨T,C⟩,

s.t. T1 = I, T⊤1 = Ĩ ,

(4.1)

⟨T,C⟩ represents inner product between T and C. T,C belong to Rn×n
+ , T is the trans-

portation plan and C is the cost matrix. T represents the amount of mass and C repre-

sents the cost of moving the mass between the pixels.

Wasserstein Ball (BW ). The Wasserstein ball corresponding to Wasserstein distance is

as shown in Figure 4.3. It is given as:

Ĩ = I + δ;BW = {Ĩ : WD(I, Ĩ) ≤ ϵ}. (4.2)

where δ is the noise added to the clean image to obtain adversarial sample.

Transport Plan. Transport plan allows to move mass between any pair of pixels. We

apply a local cost matrix and restrict the movement of mass within a kernel size of k×k

of the original image.

Figure 4.3: Wasserstein Ball.
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4.3 Methodology

4.3.1 Wasserstein Metric Attack

Let the query image be I , gallery image be Ig and a Re-ID model f . The feature vector

of query and gallery images are given as f(I) and f(Ig). In order to attack Re-ID task

we employ a metric loss between the feature vectors to reduce the performance of Re-ID

models. We push the features of generated adversarial sample Ĩ = I + δ, where I is the

query image and δ is the noise, away from the features of same identity gallery image

with the help of our metric loss function and project this sample on the Wasserstein ball

of radius ϵ.

Metric Loss. We use Euclidean distance to increase the distance between the features

of perturbed query images and images in gallery database containing the same identity

as that of query image. It is given as,

l(f(Ig), f(Ĩ)) = f(Ig)− f(Ĩ) (4.3)

4.3.2 Iterative Wasserstein Space Projection

We perturb the query image in lp space iteratively as given below,

Î t+1 = Ĩ t + αsign(
∂l(f(Ig), f(Ĩ

t))

∂f(Ĩ t)
), (4.4)

where α is the step-size and t is the iteration number. Î t+1 is the perturbed image and

Ĩ0 = I .

Wasserstein Projection. Projecting the perturbed image Î onto the Wasserstein ball

within ϵ distance of original image I can be defined as,

Ĩ t+1 = proj
BW (I,ϵ)

(Î t+1), (4.5)

where BW is the Wasserstein ball with perturbation radius ϵ. Ĩ t+1 is the projected ad-

versarial query image corresponding to the clean image obtained after t iterations.

Wasserstein space projection can be obtained by solving the entropy-regularized opti-
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mal transport problem,

min
Ĩ∈Rn

+,T∈Rn×n
+

1

2
∥Î − Ĩ∥22 +

1

λ

∑
ij

Tij log(Tij)

s.t. T1 = I, T⊤1 = Ĩ ⟨T,C⟩ ≤ ϵ,

(4.6)

where the component 1
2
∥Î− Ĩ∥22 ensures that the output sample is close to the perturbed

sample Î in l2 sense and at the same time lies in Wasserstein ball of radius ϵ with respect

to clean sample I .

Dual of Entropy Regularized Optimization. An equivalent dual problem can be

formed for the above entropy regularized optimization with the help of Lagrange mul-

tipliers where dual variables x, y and z can be introduced. It is given as (Wong et al.,

2019),

max
x,y∈Rn,z∈R+

F (x, y, z) (4.7)

where,

F (x, y, z) = − 1

2λ
∥y∥22 − zϵ+ xT I + yT Î

−
∑
ij

e(xi)e(−zCij−1)e(yj).
(4.8)

F (x, y, z) can be maximized w.r.t. x, y and z to obtain these dual variables (Wong et al.,

2019). These dual variables can be substituted to obtain the adversarial sample Ĩ and

transport plan T which are,

Ĩi = Îi −
yi
λ
.

Tij = e(xi)e(−zCij−1)e(yj).

(4.9)

Clean Noise Adversary Clean Noise Adversary

+ = + =

Figure 4.4: The figure illustrates the adversarial sample obtained by adding noise to
clean images.

After projecting the perturbed image to Wasserstein space, we perform clamping to
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ensure that the adversarial sample is a valid image with pixels in the range [0, 1].

In Figure 4.4, we show the adversarial sample corresponding to the clean image

obtained after N iterations. We describe the Wasserstein threat model in Algorithm 1.

ALGORITHM 1: Wasserstein Threat Model
Require: Input query image I , gallery image Ig, Wasserstein radius ϵ, metric loss l,

iteration step size α, N is the total number of iterations, Γϵ
I is the clip function

Ensure: Adversarial Sample Ĩ
1: for t = 0 to N : do
2: ∇t

W ←
∂l(f(Ig),f(Ĩt))

∂f(Ĩt)

3: Î t← Ĩ t + αsign(∇t
W )

4: Ĩ t← proj
BW (I,ϵ)

(Î t)

5: Ĩ t← Γϵ
I(Ĩ

t)
6: end for

4.4 Experiment

We discuss the datasets, evaluation metrics and experimental settings in this section.

4.4.1 Datasets and Settings

Datasets. Our proposed approach is tested on four large-scale Re-ID datasets: Market-

1501 (Zheng et al., 2015), DukeMTMC-ReID (Ristani et al., 2016), MSMT17 (Wei

et al., 2018), and CUHK03 (Li et al., 2014).

CUHK03 (Li et al., 2014). It comprises of 14,097 images depicting 1,467 distinct indi-

viduals. To collect these images, 6 cameras were strategically placed across the campus,

with each individual being captured by 2 of these cameras. The dataset contains two

types of annotations: manually labeled bounding boxes and bounding boxes gener-

ated by an automatic detector. Additionally, the dataset offers 20 randomized train/test

splits, where 100 of the identities are reserved for testing and the remainder are used for

training.1

Implementation Details. We use a local cost matrix of 7×7 and entropy regularization

constant of 3000 for all the experiments. We provide results for perturbation radii ϵ = 8

and ϵ = 16. We have used l2 norm of distance in pixel space suppose going from pixels

(i, j) to (k, l) for calculating cost matrix, thus we are using 1-Wasserstein distance. The

1The details of Market-1501, DukeMTMC-ReID and MSMT17 datasets are present in Chapter 3.
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Table 4.1: White-Box Attack comparison with ODFA (Zheng et al., 2018),
TCIAA (Wang et al., 2020a), UAP (Li et al., 2019b) and Meta-Attack (Yang
et al., 2021a)

Market-1501 (Zheng et al., 2015)

Re-ID Models
mAP (%)

Before ODFA TCIAA UAP Meta-Attack Ours

IDE (Zheng et al., 2016b) 63.3 25.6 16.9 3.1 3.6 0.4
PCB (Sun et al., 2018) 70.7 - 22.4 10.7 10.9 0.9

DukeMTMC-ReID (Ristani et al., 2016)

Re-ID Models
mAP (%)

Before ODFA TCIAA UAP Meta-Attack Ours

IDE (Zheng et al., 2016b) 66.7 23.5 17.6 4.2 3.6 1.4
PCB (Sun et al., 2018) 68.0 - 25.2 14.3 11.2 1.6

maximum perturbation radius (ϵ) allowed is ≤ 10 for projected gradient descent on

Wasserstein ball, unless otherwise stated. ϵ is the upper bound applied on the generated

noise which determines the attack intensity of the threat model and visual quality of

adversarial samples. We have performed all the qualitative results for non-targeted

attack.

4.4.2 White-Box Attack

In white-box attack setting, the architecture and parameters θ of target model are known

to us.

Comparison with SOTA Re-ID attack methods. We show in Table 4.1 comparison

with other methods, and our performance exceeds by 3.2% on base model IDE and

by 10% on robust model like PCB for Market1501 dataset and similarly our model

outperforms by a significant range for DukeMTMC-ReID dataset.

Comparison with TCIAA on Re-ID backbones, Part-based and Data-augmentation

based SOTA Re-ID models. We compare our performance with TCIAA for ϵ = 8

and ϵ = 16 in Table 4.2a for Market-1501 dataset. Similarly, we show results for

DukeMTMC-ReID and MSMT17 in Tables 4.2b and 4.3, respectively. We can observe

from the results that compared to TCIAA, our threat model decreases the performance

of backbone models sharply, reaching almost to zero for ϵ = 16. We also get robust

attack performance for ϵ = 8. Ensembling local features or data-augmentation methods

also fail to provide defense against our attack. Our attack proves effective compared to
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Table 4.2: White-Box Attack comparison with TCIAA (Wang et al., 2020a) for pertur-
bation radius (ϵ = 8). Lower the rank accuracy, better is the performance of
the threat model.

Market-1501 (Zheng et al., 2015)
ϵ = 8

Method
CMC-1 (%)

IDE Inception-v3 AlignedRe-ID PCB HACNN SPGAN CamStyle HHL LSRO
Before 83.5 73.0 90.8 88.6 90.6 85.4 87.7 84.7 90.2
TCIAA 14.8 6.4 21.3 23.1 8.0 13.0 22.5 17.5 6.9

Ours 1.6 0.2 0.9 1.6 1.9 1.9 1.1 1.3 0.4
ϵ = 16

Method
CMC-1 (%)

IDE Inception-v3 AlignedRe-ID PCB HACNN SPGAN CamStyle HHL LSRO
Before 83.5 73.0 90.8 88.6 90.6 85.4 87.7 84.7 90.2
TCIAA 3.7 1.7 1.4 5.0 0.9 1.5 3.9 3.6 0.9

Ours 0.1 0.0 0.3 0.2 0.2 0.4 0.2 0.2 0.1
(a)

DukeMTMC-ReID (Ristani et al., 2016)
ϵ = 8 ϵ = 16

Method
CMC-1 (%) CMC-1 (%)

IDE PCB CamStyle HHL LSRO IDE PCB CamStyle HHL LSRO
Before 86.2 85.8 76.4 72.4 72.0 86.2 85.8 76.4 72.4 72.0
TCIAA 15.3 23.9 12.6 8.1 9.2 1.3 1.4 1.2 1.0 0.7

Ours 1.7 1.8 0.9 0.5 0.3 0.2 0.2 0.4 0.0 0.0
(b)

TCIAA on all SOTA Re-ID systems. It is clearly visible from the results that in many

cases our performance with smaller perturbation radius is better than previous works

for larger radius.

Visualization. We show the original and corresponding adversarial samples generated

by TCIAA (Wang et al., 2020a) and our method in Figure 4.5. Compared to TCIAA,

our Wasserstein threat model has better attack performance as well as it can generate

high quality adversarial samples introducing imperceptible noise. It is also visible that

TCIAA’s quality of image is poor as we increase the perturbation radius as compared to

our method. We also provide a quantitative analysis of comparison of the image quality

with previous works in Section 4.5.

Performance on CUHK03 dataset. Table 4.4 shows comparison with state-of-the-art

attack methods when attacking Re-ID backbones and robust Re-ID models.

69



Table 4.3: White-Box Attack comparison with TCIAA (Wang et al., 2020a) on models
trained on MSMT17 (Wei et al., 2018).

MSMT17
ϵ = 8 ϵ = 16

AlignedRe-ID IDE AlignedRe-ID IDE
mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1

Before 41.6 82.3 34.2 83.5 41.6 82.3 34.2 83.5
TCIAA 12.3 12.1 11.3 12.6 1.2 1.8 0.1 0.6

Ours 0.5 1.3 0.1 0.1 0.1 0.1 0.0 0.0

Original TCIAA Ours Original TCIAA Ours

Figure 4.5: The adversarial samples obtained after attack. Above row shows images
for perturbation radius ϵ = 8 which are better than below row with radius
ϵ = 16.

4.4.3 Black-Box Attack

Black-box setting is a challenging problem as the attacker has no knowledge of target

data or parameters of the target model. We perform a cross-model attack in black-box

setting.

Cross-Model attack. In this attack method, noise is learned by generating adversarial

samples with a known model and is used to attack an unknown model. We show an

ablation study of our Wasserstein cross-model attack performance on three backbone

models, IDE (Zheng et al., 2016b), DenseNet-121 (Huang et al., 2017) and Inception-

v3 (Qian et al., 2017) in Table 4.5a. Among the three backbones, Inception-v3 is most

robust against our attack.

We compare our cross-model attack with SOTA attack method TCIAA (Wang et al.,

2020a) in Table 4.5b. Our overall cross-model attack performance is better than TCIAA

for perturbation radius of ϵ = 16 on SOTA Re-ID models as presented in Table 4.5b.
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Table 4.4: Attacking Re-ID Backbones. IDE(ResNet-50) (Zheng et al., 2016b) and
Inception-v3 (Qian et al., 2017) trained on CUHK03 dataset. We compare
our proposed approach with GAP (Poursaeed et al., 2018),U-PGD (Madry
et al., 2017), TCIAA (Wang et al., 2020a) (ϵ = 16).

Re-ID Models
mAP (%) CMC-1 (%)

Before GAP U-PGD TCIAA Ours Before GAP U-PGD TCIAA Ours

IDE 24.5 1.3 0.8 0.9 0.1 24.9 0.9 0.8 0.4 0.0
Inception-v3 30.1 2.0 0.8 0.3 0.1 32.1 1.1 0.4 0.1 0.0

Re-ID Models
mAP (%) CMC-1 (%)

Before GAP U-PGD TCIAA Ours Before GAP U-PGD TCIAA Ours

AlignedRe-ID 59.6 3.4 2.1 2.1 0.2 61.5 2.1 1.4 1.4 0.1
HACNN 47.6 1.8 0.8 0.4 0.3 48.0 0.9 0.4 0.1 0.2

Original λ = 1 λ = 30 λ = 300 λ = 3k

Figure 4.6: The adversarial samples generated for different values of regularization pa-
rameter λ.

HACNN seems to be more robust than other models, thus indicating that attention net-

works are better for robustness of Re-ID models.

4.4.4 Effect of Regularization Parameter

It is important to make sure that regularization parameter (λ) does not cause blurring of

the adversarial samples as shown in Figure 4.6. It is clearly visible that for λ = 3000,

we get better quality adversarial samples. The smaller value of regularization causes

blurring in the images resulting in poor quality adversarial perturbations. Lower value

of λ also makes tougher to find adversarial perturbations at lower values of radius (ϵ)

in Wasserstein ball, thereby increasing the ϵ value.

4.4.5 Effect of size of local transport plan

Transport plan describes the movement of pixels from (i, j) to (k, l) with minimum

cost. We show the performance of our Wasserstein attack for different sizes of transport

71



Table 4.5: Cross-Model Attack: Known N/W→ Unknown N/W denotes the noise is
learned by a known model and tested on an unknown model. All experiments
carried out on Market-1501 (Zheng et al., 2015).

Known N/W Unknown N/W R-1 R-5 R-10 mAP

IDE
→ DenseNet-121 15.3 30.2 39.1 11.5
→ Inception-v3 36.5 58.2 67.1 18.9

DenseNet-121
→ IDE 36.8 57.3 65.7 19.4

→ Inception-v3 51.2 72.8 80.3 29.2

Inception-v3
→ IDE 25.3 46.7 53.4 15.0

→ DenseNet-121 14.5 22.7 38.4 6.8
(a) Ablation study of our cross-model attack on backbone networks IDE (ResNet-50) (Zheng

et al., 2016b), DenseNet-121 (Huang et al., 2017) and InceptionNet-v3 (Qian et al., 2017)
(ϵ = 8).

Known N/W Unknown N/W
mAP (%) CMC-1 (%)

TCIAA Ours TCIAA Ours

AlignedRe-ID
→ PCB 31.7 4.1 22.9 9.0
→ HACNN 13.4 11.4 14.8 14.5
→ LSRO 14.8 2.9 17.0 3.0

(b) The mAP (%) and CMC-1 (%) comparison of our Cross-Model Attack on SOTA Re-ID
models with TCIAA (ϵ = 16).

plans in Figure 4.7. As it is clearly visible from the figure that transport plan of 7 × 7

gives best attack performance. Increasing the transport plan to 9×9 is not able to attack

models as effectively, possibly due to the movement of more pixels by a large amount.

Thus, with the help of hyper-parameter tuning, 7 × 7 transport plan gives us optimum

attack performance. The attack performance increases for large values of ϵ reaching to

almost zero.

4.5 Image Quality

SSIM (Sheikh et al., 2004) is an image quality assessment metric which is used to mea-

sure the similarity between the images. Large SSIM score between real and synthetic

images indicate that synthetic images have high quality and less noise. In our case,

larger SSIM score indicates that high quality adversarial samples are generated with

less distortion. We show the SSIM scores in Table 4.6. The results prove that in com-

parison to previous approaches we generate high quality images which are able to fool

Re-ID models easily. We also provide maximum mean discrepancy (MMD). In com-

parison to TCIAA, our model produces adversarial examples with larger MMD. This
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Figure 4.7: Attack performance for different transport sizes.

means that the domain of adversarial samples is farther away. Since our model achieves

both larger SSIM and MMD, it can be inferred that it produces stronger adversarial

attack with better perceptual quality.

Table 4.6: SSIM scores and MMD to compare the quality of adversarial samples
(ϵ = 8) on Market-1501 (Zheng et al., 2015) and DukeMTMC-ReID (Ris-
tani et al., 2016) datasets. Larger SSIM scores coupled with larger MMD
values indicates better performance.

Market-1501 DukeMTMC-ReID

SSIM

TCIAA (Wang et al., 2020a) 0.1889 0.1985
Meta-Attack (Yang et al., 2021a) 0.1963 0.2121

Ours 0.8198 0.7893

MMD
TCIAA 0.4714 0.2813

Ours 0.4802 0.3867

4.6 Chapter Summary

In this chapter, we propose threat model based on Wasserstein distance for person Re-

Identification task. This perturbation is based on Wasserstein ball which is different

from previous Re-ID works with l∞ or more general lp perturbation. Our Wasserstein

attack does not require training to learn the noise. It generates the adversarial samples
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by adding noise to the clean image, and projecting the perturbations in Wasserstein ball.

We perform extensive attacks on various backbones and SOTA Re-ID models trained

on various datasets. Our performance in white-box as well as on more challenging

black-box setting proves that our attack is very efficient.

In the method proposed in this chapter, we developed adversarial attack for analyz-

ing the robustness of Re-ID models in white-box and black-box settings. In the next

chapter, in order to defend against such adversarial attacks, we propose adversarial de-

fense.
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CHAPTER 5

Re-ID Defense

5.1 Introduction

DNNs show very good performance in closed-set and open-set computer vision tasks.

However, it is a major concern that these DNNs are vulnerable to adversarial attacks.

In order to make sure that the performance of DNNs does not get affected, an adver-

sarial defense mechanism is proposed by many works. Previous works have proposed

approaches like feature denoising (Xie et al., 2019), adversarial training, and distilla-

tion (Goodfellow et al., 2014b; Papernot and McDaniel, 2016; Madry et al., 2017), fast

adversarial training (Rice et al., 2020; Chen et al., 2022b; Jin et al., 2022). Other ap-

proaches use techniques such as meta-learning (Goldblum et al., 2020; Bartler et al.,

2022) or addition of noise (He et al., 2019b; Eustratiadis et al., 2021; Byun et al., 2022)

to the network to provide robustness. However, these approaches are mainly for closed-

set tasks. To our knowledge, very few works have proposed adversarial defense for an

open-set task like object Re-ID.

In this chapter, we propose a meta perturbed stochastic neural network (MP-SNN)

to provide robust defense against adversarial attacks. MP-SNN learns anisotropic and

isotropic noise distribution in a novel meta-learning defense algorithm. Previous works

show that isotropic or anisotropic noise injection leads to better generalizability (Jeddi

et al., 2020; Eustratiadis et al., 2021). However, the use of isotropic noise suffers from

a sharp degradation in clean performance. At the same time, anisotropic noise fails to

achieve competitive adversarial performance. Therefore, in contrast to previous works,

which inject either isotropic or anisotropic noise (Jeddi et al., 2020; Eustratiadis et al.,

2021), we make use of both noises, thus providing a richer noise distribution for a more

challenging Re-ID task.

Our MP-SNN is trained with a novel meta-learning strategy where we propose

tasks as Vanilla, Perturbed, and Perturbed-adversarial training, respectively. We aim

to increase the robustness and generalizability of our model by adapting well to these
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Figure 5.1: Meta Perturbed Defense: We propose a SNN by adding noise modules to a
SOTA backbone. We train this SNN using a novel meta-learning strategy
with tasks as ‘V’, ‘P’, and ‘PA’ to obtain our proposed framework MP-SNN.

AQ After SMA (Bouniot et al., 2020) attack

After our defense

Figure 5.2: Top-10 predictions for Re-ID task on Market-1501 dataset after attack on
ResNet-50 and after applying our defense. Green box - correct prediction;
Red box - incorrect prediction. ‘AQ’ is attacked query image.

tasks. (Yang et al., 2022) also proposed meta-learning based defense; however, it is

computationally expensive as they use an additional dataset to capture variations in

cross-domain. MP-SNN increases the adversarial robustness and helps to generalize

better against unseen adversarial attacks. It provides a competitive performance in both

clean and adversarial settings. We provide an overview of our proposed method in

Figure 5.1.

Extensive experiments show that our method can be applied to architectures with

varying complexity; ResNet-50 (He et al., 2016) for person and vehicle Re-ID, and

OSNet (Zhou et al., 2019) for person Re-ID, and it shows SOTA performance across

widely used person and vehicle Re-ID benchmarks. We show an illustration of our Meta

Perturbed Defense in Figure 5.2.

Our contributions are as follows:
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• We propose a robust meta perturbed stochastic neural network (MP-SNN) for
defense against adversarial attacks in object Re-ID task. Our MP-SNN learns
both anisotropic and isotropic noise distributions in a meta-learning framework.

• We propose a novel meta perturbed defense algorithm with tasks as vanilla, per-
turbed, and perturbed-adversarial training. MP-SNN increases the robustness and
generalizability against wide variety of unseen attacks by adapting well to these
tasks.

• We derive a novel feature covariance alignment loss which ensures high clean
performance while providing robustness against wide variety of adversarial at-
tacks.

 
V

PA

P PA

V

P

Meta-Train

Meta-Test

Model

Isotropic  
Module

Anisotropic  
Module

V

P

PA

Vanilla 

Perturbed

Perturbed 
Adversarial Single Task

 Tasks

Meta-Train
Meta-Test
Meta-Update

Copy  
Model

 T
as

ks
 o

ve
r 

Figure 5.3: Overview of MP-SNN. Our SNN injected with anisotropic noise in the
penultimate layer and isotropic noise in the inner layers is learnt via meta-
learning. During training, we have n tasks over training data D, which we
divide into n− 1 meta-train tasks and a single meta-test task. In meta-train
stage, LFCA and LIso are calculated as meta-train loss Lmtr(Θ). In meta-
test stage, we copy the original model and update it using Lmtr(Θ). We
compute meta-test losses Lmte(Θ) and Lmte(Θ

′
) on original and updated

model respectively. Finally, we update our original model with Lmeta(Θ).

5.2 Methodology

In this section, we first describe our SNN. We then describe the training of SNN in

our proposed meta perturbed defense algorithm. We show our proposed framework in

Fig 5.3.

5.2.1 Proposed Stochastic Neural Network (SNN)

We first describe the model and the notations used. We then describe the Noise modules

used in our network and training of our SNN.
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Notations. The output of our SNN is drawn from a probabilistic rather than a deter-

ministic distribution. We define our probabilistic model as F̃(x; θ, ϕ, ϕa), where, x is

the input, and θ, ϕ, ϕa are the model, isotropic noise, and anisotropic noise parameters,

respectively. For simplicity we also represent our stochastic neural network as F̃(x; Θ),

where Θ = {θ, ϕ, ϕa}.

Vanilla Model. We use a standard deep neural network as our vanilla model. We use

cross-entropy (Zhong et al., 2018b) and triplet (Hermans et al., 2017) loss to train the

model with parameters θ. The vanilla loss is given as:

LV (θ) = LCE(θ) + LTri(θ) (5.1)

Noise Modules.

We now discuss each component of noise separately in detail.

Isotropic Noise Injection. We inject isotropic noise (ϕ) into the inner layers of our

model. It has a Gaussian distribution N (0, 1). The loss function for training our SNN

on injecting isotropic noise is given as:

LIso(θ, ϕ) = LCE(θ, ϕ) + LTri(θ, ϕ) + λr(θ), (5.2)

where λr(θ) is the regularization term; r(θ) = −θ1/2/τ , where τ is determined us-

ing a harmonic series with input as the value of current epoch while training the net-

work (Jeddi et al., 2020).

Anisotropic Noise Injection. We add anisotropic Gaussian noise (ϕa) to the penul-

timate layer of our network which ensures comparative clean and adversarial perfor-

mance (Eustratiadis et al., 2021). We derive a new loss function called feature-covariance

alignment (FCA) loss for optimizing the network with anisotropic perturbations similar

to WCA-Net (Eustratiadis et al., 2021). WCA-Net maximizes the loss by aligning the

noise with weight vectors. However, it suffers from the fact that maximizing the loss in-

herently leads to large weight vectors which is clearly undesirable as large weights lead

to overfitting. To address this, they add a regularizer that needs to be empirically tuned,

which is difficult to tune for different datasets and models. Our loss function is more

suited to Re-ID tasks where we utilize feature vectors of hard-batch triplets (Hermans
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et al., 2017). It is given as:

LFCA(θ, ϕa) = log

(
1

B

B∑
i=1

(f i
p − f i

n)
⊤Σ(f i

p − f i
n)

)
, (5.3)

where B is the batch size, fp and fn are the feature vectors of positive and negative

samples of the input image, and Σ = ϕaϕ
⊤
a is the covariance matrix. Instead of align-

ing weight vectors with noise, we align feature vectors of the triplets associated with

the final linear (penultimate) layer to Σ of the injected noise, avoiding the need of reg-

ularization. Thus, FCA loss is more computationally efficient than WCA-Net. FCA

is maximized when features are well-aligned with eigen vectors of covariance matrix.

FCA ensures that features and noise co-adapt and align efficiently, thereby giving us

high clean and adversarial performance.

Derivation of Feature Covariance Alignment Loss (LFCA). Let f be a feature extrac-

tor parameterized by θ. We denote an anchor or query sample by fa, positive sample by

fp, and negative by fn. Then, to obtain a correct prediction, we need,

m = f⊤
a (fp − fn) > 0

where m is referred to as margin. In presence of noise, we can represent the margin as,

δm = (fa + δ)⊤[fp − fn]

Let the mean of m is given by,

µ = E[f⊤
a (fp − fn)]

Then, mean of δm is,

E[f⊤
a (fp − fn)] + E(δ⊤fp)− E(δ⊤fn)︸ ︷︷ ︸

0

= µ

The second term is 0 as we assume δ to be zero mean noise.
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Similarly, we can compute the variance as,

σ2
m = E[f⊤

a (fp − fn)(fp − fn)
⊤fa]− µ2 (5.4)

and,

σ2
δ = E[(fa + δ)⊤(fp − fn)]− µ2

= E[(fp − fn)
⊤(fafa

⊤ + δδ⊤ + faδ
⊤ + δf⊤

a ) (5.5)

From equations 5.4 and 5.5, we can see that the difference comes from E[(fp −

fn)
⊤δδ⊤(fp − fn)] term. Thus, the difference can be represented as,

σ2 = E[(fp − fn)
⊤Σ(fp − fn)],

where Σ = δδ⊤.

Therefore, our proposed feature-covariance alignment loss (FCA) loss is given as:

LFCA(θ, ϕa) = log

(
1

B

B∑
i=1

(f i
p − f i

n)
⊤Σ(f i

p − f i
n)

)
,

where Σ = ϕaϕ
⊤
a and B is the batch size.

Mixed Noise Injection. Isotropic noise generation has a significant shortcoming in that

the generated noise has to be axis-aligned; that is, noise and weights of a given feature

space need to align towards the same axis. This affects the SNN’s ability to learn

distributions that are not axis-aligned, thus affecting clean performance Eustratiadis

et al. (2021). Anisotropic noise overcomes this limitation. However, this comes at the

cost of a decrease in its performance against adversarial attacks. Hence, we propose

a SNN that finds a balance between the respective limitations by injecting isotropic

perturbations into all the intermediary feature space and anisotropic perturbation into

the final feature space. The loss on injecting this mixed noise is:

LMix(θ, ϕ, ϕa) = LIso(θ, ϕ)− LFCA(θ, ϕa). (5.6)
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We also perform adversarial training along with mixed noise perturbation. The total

loss function of our proposed stochastic neural network is given as:

LTot(θ, ϕ, ϕa) = LMix(θ, ϕ, ϕa) + ηLAdv(θ, ϕ, ϕa), (5.7)

where η is the adversarial loss weight, and LAdv is the addition of triplet and cross-

entropy loss. LAdv is calculated on adversarial samples generated from attacking input

data using untargeted l∞ PGD attack (Madry et al., 2017).

Training of our SNN.

We learn θ and {ϕ, ϕa} alternately using a back-propagation strategy (Han et al., 2017).

In our proposed approach, we first inject anisotropic noise in the penultimate layer

and update {θ, ϕa} while keeping ϕ fixed. Then, we inject isotropic noise in the inner

layers and update ϕ while keeping {θ, ϕa} fixed. We describe the training of SNN in

Algorithm 2.

ALGORITHM 2: Training of our SNN F̃(Θ)

Input: Training data D, learning rates α, β
Output: Parameters θ, ϕ and ϕa

1: while not done do
2: (θ, ϕa) are updated based on Eq. 5.7 while ϕ remains fixed:

(θ, ϕa)← α∇(θ,ϕa)LTot(θ, ϕ, ϕa)
3: ϕ is updated based on Eq. 5.7 while θ and ϕa remain fixed:

ϕ← β∇ϕLTot(θ, ϕ, ϕa)
4: end while

5.2.2 Meta Training

We train our SNN using our novel meta-learning strategy for generalization and ro-

bustness against adversarial attacks by adapting well to noise modules and adversarial

training. We propose a novel way to define tasks for meta-learning. These tasks T are:

Vanilla training (V): Training on clean images using loss given in Eq. 5.1, Perturbed

training (P): We add anisotropic and isotropic noise modules to model layers (Eq. 5.6),

and Perturbed-adversarial training (PA): We train our model by adding noise mod-

ules and performing additional adversarial training (Eq. 5.7). We choose a random task

as meta-test, and the remaining tasks as meta-train. Now, we discuss the three steps of
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our meta training in detail:

Step 1: Meta-Train. We select k samples from the training data D with total N sam-

ples in a mini-batch, for each task in meta-train for a given set of tasks T. The meta-train

loss Lmtr(Θ) for our network F̃(x; Θ) computed over all the meta-train tasks is formu-

lated as,

Lmtr(Θ) =
k∑

j=1

T\t∑
i=1

LTot(F̃(xj; Θi), y), (5.8)

where y is the true label and LTot is as given in Eq. 5.7.

Step 2: Meta-Test. During meta-testing, we copy the original model F̃(x; Θ) and

update it with meta-train loss Lmtr to obtain F̃(x; Θ′
) :Θ′ ← ∇Θ(Lmtr). We compute

meta-test loss Lmte on meta-test set of N − k samples over task t on both original and

updated model. It is given as:

Lmte(Θ) =
N−k∑
j=1

LTot(F̃(xj; Θ), y) (5.9)

Lmte(Θ
′
) =

N−k∑
j=1

LTot(F̃(xj; Θ
′
), y) (5.10)

Step 3: Meta-Update. In the final step, our original model is updated using Lmeta(Θ)

which is:

Lmeta(Θ) = Lmte(Θ) + Lmte(Θ
′
) (5.11)

The meta training of our MP-SNN is summarized in Algorithm 3.

ALGORITHM 3: Meta Training

Input: Tasks T, Training data D, Stochastic neural network (SNN) F̃(Θ);

1: while not done do
2: Randomly select a task t from T as meta-test task
3: Sample remaining tasks as meta-train tasks
4: Meta-Train: (i) Sample k non-overlapping images from D as meta-train set for

each training task
(ii) Compute meta-train loss Lmtr(Θ) (Eq. 5.8)

5: Meta-Test: (i) Sample N − k images from D (exclusive of meta-train tasks’ k
images) as meta-test set
(ii) Compute meta-test loss Lmte (Eq. 5.9 and 5.10)

6: Meta-Update: (i) Compute Lmeta(Θ) (Eq. 5.11)
(ii) Update Θ← ∇ΘLmeta(Θ)

7: end while
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5.3 Experimental Settings

Datasets. We evaluate our method on three large-scale person Re-ID datasets Market-

1501, DukeMTMC-ReID, MSMT17, and a vehicle Re-ID dataset Veri-776. 1.

VeRi-776 (Liu et al., 2016). It is comprised of 49,357 images depicting 776 distinct

vehicles captured by 20 different cameras. This dataset was collected under real-world

traffic conditions, closely mimicking the environment of CityFlow. The dataset includes

annotations for bounding boxes, vehicle types, colors, and brands.

Implementation Details. We set the hyperparameters as follows: the batch size is 16,

and learning rates α and β are 1e − 5 and 3e − 4 respectively. We use the SGD opti-

mizer with a momentum of 0.9 and a weight decay of 1e − 5. The hyperparameter λ

used in Eq. 5.2 is set to 1e−4. We perform PGD adversarial training and robustness test

against attacks with 7 iterations and maximum ϵ = 8/255, unless specified otherwise.

Adversarial weight η is 0.5. For fair comparison with SOTA methods, we use 15 iter-

ations with ϵ = 5/255. We use Cumulative Matching Characteristic (CMC) precision

and Mean Average Precision (mAP) metrics (Zheng et al., 2015) to evaluate our work.

5.3.1 Performance against adversarial attacks

We evaluate the performance of our MP-SNN framework against wide variety of SOTA

white-box attacks FGSM, PGD, MI-FGSM, NI-FGSM and SI-NI-FGSM, EOT-FGSM

and EOT-PGD, and SOTA Re-ID specific attacks SMA (Bouniot et al., 2020) and

AMA (Bai et al., 2020b) in Table 5.1. We show in Tables 5.1 and 5.2 that our MP-SNN

is effective in improving the robustness of different network architectures trained on dif-

ferent datasets - Market-1501, DukeMTMC-ReID, MSMT17 and Veri-776. We report

the performance of our proposed defense technique (MP-SNN) on two SOTA vanilla

models, ResNet-50 (He et al., 2016) and OSNet (Zhou et al., 2019). MP-SNN (R-50)

represents our defense mechanism MP-SNN is trained on ‘ResNet-50’, and MP-SNN

(OS) represents that MP-SNN is trained on ‘OSNet’. For the Market-1501 dataset, MP-

SNN provides a boost of around 48%, 55% over SOTA ResNet-50 and 28%, 20% over

OSNet under powerful EOT-PGD and Re-ID specific SMA attacks, respectively. Simi-

lar observations can be made on MSMT17 and VeRi-776 datasets as well for ResNet-50

and OSNet architectures.
1The details of Market-1501, DukeMTMC-ReID and MSMT17 datasets are present in Chapter 3

83



Datasets Models
No Attack FGSM PGD SMA AMA

CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP

Market-1501
R-50 89.96 73.65 58.55 39.85 18.94 14.15 22.68 17.12 0.02 0.08
MP-SNN (R-50) 86.82 66.56 71.22 51.93 74.55 56.01 77.58 57.81 48.42 34.67

DukeMTMC-reID
R-50 79.80 63.96 45.91 31.65 20.10 15.77 23.11 18.17 - -
MP-SNN (R-50) 53.81 31.40 38.24 21.46 36.57 19.95 44.25 24.61 - -

MSMT17
R-50 52.30 33.62 5.08 3.10 0.26 0.20 0.59 0.40 - -
MP-SNN (R-50) 37.34 22.72 22.02 13.11 15.91 9.54 25.79 15.34 - -

VeRi-776
R-50 95.17 75.40 69.78 49.85 59.53 45.66 64.00 49.34 - -
MP-SNN (R-50) 89.21 64.92 79.61 54.74 79.32 55.22 85.57 60.57 - -

Datasets Models
MI-FGSM NI-FGSM SI-NI-FGSM EOT-FGSM EOT-PGD

CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP

Market-1501
R-50 17.54 13.64 28.23 19.34 27.22 18.50 58.55 39.85 15.08 11.78
MP-SNN (R-50) 70.48 51.92 69.53 50.79 68.05 49.61 70.27 51.72 63.36 45.26

DukeMTMC-reID
R-50 18.49 14.99 30.65 22.10 30.43 20.87 45.91 31.65 16.20 13.25
MP-SNN (R-50) 36.44 20.42 35.99 20.14 36.40 19.78 38.28 21.20 30.25 16.41

MSMT17
R-50 0.31 0.25 0.65 0.47 0.75 0.45 5.08 3.10 0.20 0.17
MP-SNN (R-50) 19.09 11.23 18.59 10.68 16.30 9.43 22.71 13.55 13.71 8.30

VeRi-776
R-50 61.79 46.84 61.85 45.56 60.78 44.44 69.78 49.85 55.42 43.20
MP-SNN (R-50) 76.40 53.27 77.23 54.21 78.42 54.22 78.54 54.74 73.77 50.98

Table 5.1: Performance of Re-ID models against adversarial attacks after applying our
defense method. ‘R-50’ is the baseline model of ResNet-50. ‘MP-SNN (R-
50)’ is our proposed approach.

Datasets Models
No Attack FGSM PGD SMA AMA

CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP

Market-1501
OS 94.23 83.60 59.08 46.73 45.48 36.13 54.45 43.74 1.51 0.87
MP-SNN (OS) 89.81 74.38 75.83 58.59 72.44 56.47 81.20 64.67 53.68 31.24

MSMT17
OS 58.98 40.54 11.80 7.61 1.10 0.82 2.05 1.31 - -
MP-SNN (OS) 47.79 31.24 27.83 17.40 16.87 10.65 28.23 18.00 - -

Datasets Models
MI-FGSM NI-FGSM SI-NI-FGSM EOT-FGSM EOT-PGD

CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP

Market-1501
OS 50.80 40.21 56.82 44.14 58.28 45.51 59.08 46.73 42.42 33.13
MP-SNN (OS) 78.97 61.84 74.31 58.25 75.95 59.56 75.79 58.71 68.31 53.08

MSMT17
OS 1.33 0.92 2.02 1.36 2.08 1.38 11.80 7.61 0.92 0.65
MP-SNN (OS) 23.30 14.48 20.49 12.79 18.92 11.76 27.42 17.13 15.68 9.72

Table 5.2: Performance of Re-ID models against adversarial attacks after applying our
defense method. ‘OS’ is the baseline model of OSNet. ‘MP-SNN (OS)’ is
our proposed approach MP-SNN with OSNet as backbone.
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Dataset Model
Clean WMA

CMC-1 mAP CMC-1 mAP

Market-1501

R-50 89.96 73.65 13.25 10.55
MP-SNN 86.82 66.56 60.64 44.21
OS 94.23 83.60 42.07 30.25
MP-SNN 89.81 74.38 64.32 52.71

MSMT17

R-50 52.30 33.62 0.13 0.12
MP-SNN 37.34 22.72 12.45 6.43
OS 58.98 40.54 0.67 0.46
MP-SNN 47.79 31.24 12.89 6.28

VeRi-776
R-50 95.17 75.40 54.26 40.37
MP-SNN 89.21 64.92 72.47 47.57

Table 5.3: Performance against our proposed Wasserstein Metric Attack (WMA). ‘R-
50’ is SOTA ResNet-50 He et al. (2016) and ‘OS’ is OSNet Zhou et al.
(2019). (ϵ = 8/255).

Performance against Wasserstein Metric Attack (WMA) We evaluate our meta-

perturbed defense on Wasserstein metric attack (WMA) in Table 5.3. We can observe

from the results that our WMA attack drastically decreases the performance of ResNet-

50 (R-50) and OSNet (OS) trained on three large-scale datasets Market-1501, MSMT17

and Vei-776. For Market-1501 dataset, the clean CMC-1 for R-50 is 89.96% which re-

duces to 13.25% after WMA attack. However, our proposed defense MPSNN increases

the robustness of ’R-50’ with a considerable 47.39% increase in the CMC-1 metric.

Similarly, when utilizing the ’OS’ backbone architecture with clean CMC-1 as 94.23%,

the performance reduces to 42.07% with the standard backbone, whereas after our pro-

posed defense MPSNN, the CMC-1 increases to 64.32%.

Generalization to Unseen Attacks. We show in Table 5.4 that the performance is

still very low after doing PGD adversarial training of ResNet-50 represented as PGD-

AT. Thus, vanilla adversarial training fails to provide generalization. Under MI-FGSM

attack, PGD-AT gives a boost of only 7.1%, whereas MP-SNN gives a large boost of

52.94%. Similarly under AMA attack, PGD-AT has poor performance with CMC-1

of 0.02%, whereas MP-SNN gives a high CMC-1 of 48.42%. It is clear that MP-SNN

generalizes well to various unknown white-box attacks as well as to Re-ID specific

attacks while only being trained by adversarial samples generated from PGD attack.

Thus, our proposed method does not require training against each attack and can be

robust against various unknown attacks.
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Model Clean FGSM PGD MI-FGSM NI-FGSM SI-NI-FGSM EOT-FGSM EOT-PGD SMA AMA
R-50 89.96 58.55 18.94 17.54 28.23 27.22 58.55 15.08 22.68 0.02

PGD-AT 86.60 62.11 27.49 24.64 36.72 37.82 62.11 24.16 28.02 0.05
MP-SNN 86.82 71.22 74.19 70.48 69.53 68.05 70.27 63.36 77.58 48.42

Table 5.4: Generalization of MP-SNN against various attacks. PGD-AT is adversarial
training using adversarial samples generated using PGD attack. ‘R-50’ is
the baseline SOTA ResNet-50 (He et al., 2016). CMC-1 in %. Dataset is
Market-1501 (ϵ = 8/255).

Backbone Defense Clean MI-FGSM SMA

ResNet-50 (He et al., 2016)

Baseline 89.96 17.54 22.68
AMD (Bai et al., 2020b) 84.67 21.49 25.41

AMD∗ 84.76 20.72 24.40
GOAT (Bouniot et al., 2020) 86.65 26.33 33.45

GOAT∗ 87.46 28.41 34.21
JAD (Gong et al., 2022) 88.65 27.04 30.55

JAD∗ 90.46 30.25 34.53
Meta-Def (Yang et al., 2022) 88.90 53.34 62.40

Meta-Def∗ 89.23 56.81 64.71
MP-SNN 86.82 69.09 75.44
MP-SNN∗ 87.36 74.55 79.29

OSNet (Zhou et al., 2019)

Baseline 94.23 50.80 54.45
AMD 91.77 47.20 47.86
AMD∗ 92.36 44.12 44.47

MP-SNN 89.81 77.01 80.31
MP-SNN∗ 89.75 80.26 81.99

Table 5.5: Comparison with SOTA on Market-1501 dataset. CMC-1 in %. ∗ denotes
re-ranking. ϵ = 5/255.

5.3.2 Comparison with State-of-the-art

We compare MP-SNN with SOTA Re-ID defense methods AMD (Bai et al., 2020b),

GOAT (Bouniot et al., 2020), JAD (Gong et al., 2022) and Meta-Def (Yang et al.,

2022) by implementing them in our setting in Table 5.5. We also provide results using

re-ranking (Zhong et al., 2017) during testing. Performance of AMD and GOAT after

SMA attack reduces to 24.40% and 34.53% respectively, whereas MP-SNN achieves a

high CMC-1 of 77.58%. AMD and GOAT use vanilla adversarial training to provide

defense which gives a poor performance against adversarial attacks, thereby showing

its ineffectiveness. Similarly, JAD, which uses data-augmentation techniques, also per-

forms poorly. Our method beats the SOTA Meta-Def by 17.74% and 15.87% under

both MI-FGSM and SMA attacks respectively. Moreover, Meta-Def is a computation-

ally expensive defense as it uses an additional virtual dataset to create a large training

data.

We also compare MP-SNN with AMD with OSNet as backbone in Table 5.5. AMD
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uses adversarial training which gives a low performance for all the settings, as is visible

from the results. These results show the effectiveness of our approach and its SOTA

performance.

5.3.3 Ablation Study

Effect of FCA. In Table 5.6, we show the effect of our feature covariance alignment

(FCA) in our MP-SNN framework. We observe that FCA gives high clean performance

while maintaining its adversarial accuracy. Thus, FCA maximizes the alignment be-

tween noise and feature vectors without compromising its clean performance.

Method Clean PGD SMA
MP-SNN w/o FCA 84.20 73.45 75.77
MP-SNN w/ FCA 86.82 74.19 77.58

Table 5.6: Effect of FCA on MP-SNN. ϵ = 8/255

Loss Clean PGD SMA

w/o ML
LV 89.96 18.94 22.68
LAdv 86.60 27.49 28.02
LTot 82.69 67.66 74.61

w/ ML LMeta 86.82 74.19 77.58

Table 5.7: Effect of loss functions and meta-training on our proposed MP-SNN. ‘ML’
is our proposed meta-learning strategy. Dataset is Market-1501. ϵ = 8/255.

Effect of Losses and Meta-learning. We show in Table 5.7 that LV (Vanilla Training)

and LAdv (Vanilla Adversarial Training) do not exhibit robustness against attacks. This

is due to the fact that Re-ID datasets are complex, and only adversarial training fails

to impart enough adversarial robustness. Under SMA attack, LAdv gives a very low

performance of 27.49%. We further show that LTot (Perturbed-Adversarial Training)

increases the performance to 74.61% under SMA attack. It shows the effectiveness of

our noise modules in providing robustness against SOTA attacks. After injecting our

anisotropic and isotropic noise modules, our network is able to learn better from ad-

versarial examples. Our proposed MP-SNN with novel meta-Learning strategy (LMeta)

gives us a high performance of 74.19% and 77.58% under PGD and SMA attacks,

respectively. We conclude from these experiments that our proposed MP-SNN tremen-

dously increases the model robustness.
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5.3.4 Challenges

We faced two main challenges in our meta-defense work.

Minor increase in training time: In our meta-learning-based defense, there is a small

increase in training time compared to traditional single-task learning approaches. Our

meta-defense typically had additional computations and iterations during meta-training,

where our model learns from tasks defined as, (i) Vanilla training (V): Training on

clean images, (ii) Perturbed training (P): We add anisotropic and isotropic noise mod-

ules to model layers, and (iii) Perturbed adversarial training (PA):, We train our

model by adding noise modules and performing additional adversarial training. These

tasks help to improve our model’s ability to provide robustness against unknown ad-

versarial attacks. While this can lead to a slight increase in training time compared to

single-task learning, our technique and optimization algorithm aims to minimize this

increase by efficiently leveraging the shared knowledge of tasks comprising of clean

samples, noise parameters, and adversarial samples and reducing redundant computa-

tions. Despite the small increase in training time, the benefits gained from the our meta-

defense process, such as improved adaptability and generalization to different attacks,

often outweigh the additional time investment.

Defining meta-learning tasks suitable for our defense: In our meta perturbed de-

fense, selecting relevant and suitable tasks during meta-training was crucial for the suc-

cess of the defense system. Defining appropriate tasks for our meta-defense involved

carefully curating a diverse set of attack-related scenarios that the model needs to be ro-

bust against. We define these tasks as: Vanilla training (V), Perturbed training (P), and

Perturbed adversarial training (PA). These tasks are representative of potential threats,

attack scenarios, or vulnerabilities that our defense system aims to address. Proper task

selection ensures that our meta-learning model learns transferable knowledge from in-

troduced noise parameters, clean and adversarial samples for robustness against new

attack scenarios.

Despite the challenges mentioned, the application of meta-learning has resulted in

optimized performance for our defense system. With meta-learning, we excel at learn-

ing from our defined defense-related tasks (V), (P), and (PA) and leveraging this knowl-

edge to adapt to new adversarial attacks efficiently. By training on a variety of defense-

related tasks, the meta-learning model acquires a more comprehensive understanding
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of defense strategies, which leads to improved performance and robustness. The novel

task-definition (including noise parameters, clean and adversarial samples) for robust

performance is a key advantage of our meta-learning-based defense over state-of-the

art defense approaches.

In summary, there might be a slight increase in training time in our meta-learning-

based defense due to the need for meta-training, the benefits of optimized performance

and improved adaptability outweigh this challenge. Careful task selection remains es-

sential to ensure that our meta-perturbed defense model learns relevant and transferable

knowledge for the defense system to achieve its objectives effectively.

5.4 Chapter Summary

In this chapter, we propose a meta perturbed framework to defend Re-ID models against

adversarial attacks. We leverage the adversarial robustness characteristics of anisotropic

and isotropic noise modules along with adversarial training and efficiently learn them

through our proposed meta-learning defense strategy. Our model generalizes well and

is robust against various unseen attacks. Further, we derive a novel FCA loss related

to anisotropic perturbations. FCA overcomes the decrease in clean performance while

ensuring robust performance against adversarial attacks. Elaborate experiments show

that MP-SNN provides SOTA adversarial defense for Re-ID task.

While Chapter 4 and this chapter introduced robustness techniques that rely on em-

pirical (adversarial training) methods, these methods may not always provide a certifi-

cation of defense (Cohen et al., 2019) because they are based on data and observation

rather than theoretical models. Although empirical methods can be useful for testing

the effectiveness of defense mechanisms, they may not be sufficient to guarantee de-

fense with high confidence, since they cannot account for all possible attack scenarios

or ensure the system’s continued effectiveness over time. In the next chapter we will

focus on exploring certified defense in the black-box setting.
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CHAPTER 6

Certified Zeroth-order Black-Box Defense

6.1 Introduction

A notable amount of success has been attained by machine learning (ML) models (Joshi

et al., 2022; Katz et al., 2022), and deep neural networks (DNNs) in particular because

of their better predictive capabilities. However, their lack of robustness and susceptibil-

ity to adversarial perturbations has caused serious worries about their wide-scale adap-

tation in a number of artificial intelligence (AI) applications (Goodfellow et al., 2014b;

Carlini and Wagner, 2017; Papernot et al., 2016a; Brown et al., 2017; Eykholt et al.,

2018; Antun et al., 2020). These adversarial attacks have motivated various strategies

to strengthen ML models as a key area of research (Madry et al., 2017; Athalye et al.,

2018a; Zhang et al., 2019b; Cui et al., 2021). Among these techniques, adversarial

training (AT) (Szegedy et al., 2013; Madry et al., 2017) is one of the prominent defense

strategies. The advancements in AT led to various empirical defense methods (Athalye

et al., 2018b; Wang and Wang, 2022; Yan et al., 2022; Chan et al., 2019; Zhang et al.,

2019b), however, these methods may not always be certifiably robust (Uesato et al.,

2018; Croce and Hein, 2020). Another line of research is certified defense, where an

off-the-shelf model’s prediction is certified within the neighborhood of the input. These

methods are called certified defense techniques (Wong and Kolter, 2018; Raghunathan

et al., 2018; Katz et al., 2017; Salman et al., 2019, 2020, 2022).

(Cohen et al., 2019) first proposed randomized smoothing (RS), which certifies

defense by forming a smoothed model from the empirical model by adding Gaussian

noise to the input images. Few other works have been proposed which provide certified

defense inspired by randomized smoothing (Salman et al., 2020, 2022; Addepalli et al.,

2021). (Salman et al., 2020) pre-pended a custom-trained denoiser to the predictor for

increased robustness. In another work, (Salman et al., 2022) apply visual transform-

ers within the smoothing network in order to provide certified robustness to adversarial

patches. While previous works in adversarial defense have achieved promising ad-

vancements, robustness is provided over white-box models with known architectures



and parameters. The white-box assumption, however, has high computational com-

plexity as models are trained end-to-end as in AT, thus limiting the practicality and

scalability of the defense method. For instance, it becomes impractical to retrain com-

plex ML models trained on a vast number of MRIs or CT scans (Sinha et al., 2022;

Hussain et al., 2023).

Moreover, privacy concerns may arise when implementing white-box defense since

the owner may not wish to reveal model information. This is because attacks such

as membership inference and model inversion attacks expose the vulnerabilities of the

training data (Fredrikson et al., 2015). Due to the scalability and privacy issues, few pre-

vious works tackled the highly non-trivial problem of adversarial defense in the black-

box setting (‘black-box defense’) (Salman et al., 2020; Zhang et al., 2022d).

(Salman et al., 2020) used surrogate models as approximates of the black-box mod-

els, over which defense may be done using the white-box setup. However, this setup

requires information on the target model type and its function, which may be not be

available practically. In another recent work, (Zhang et al., 2022d) proposed a more

authentic black-box defense of DNN models with the help of the zeroth-order optimiza-

tion perspective. They pre-pended a custom-trained denoiser as in (Salman et al., 2020)

followed by an autoencoder architecture to the target model and trained it with ZO opti-

mization. However, (Zhang et al., 2022d) fail to perform for high dimensional datasets

like Tiny imagenet with the dimensionality of 299× 299× 3 as the denoiser used may

fail to preserve spatial information. The main contribution of (Zhang et al., 2022d), that

is, the addition of autoencoder to existing technique (Salman et al., 2020), enhances the

robustness of black-box model to some extent for low-dimensional datasets like CIFAR-

10 (32 × 32 × 3). However, this limits its usage to only the coordinate-wise gradient

estimation (CGE) ZO optimization technique. However, our proposed approach can

utilize two main existing ZO optimization techniques: randomized gradient estimate

(RGE) and CGE. We discuss in detail in Section 6.4.2, where we prove the limitations

of (Zhang et al., 2022d) on high dimensional datasets experimentally in Figure 6.4.

In this chapter, we propose a certified black-box defense ZO-RUDS using the ZO

optimization technique, where we pre-pend a novel robust UNet denoiser (RDUNet) to

the target model. We further pre-pend our RDUNet and custom-trained autoencoder and

propose the ZO-AE-RUDS defense mechanism. Our proposed methods require only in-

put queries and output feedback and provide defense in a pure black-box setting. Unlike
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SOTA (Zhang et al., 2022d), which leads to high model variance on direct application

of ZO optimization on the custom-trained denoiser, our proposed RDUNet, due to its

architectural advantage over previous denoisers decreases model variance and provides

better performance with direct application of ZO optimization. We experiment with

various denoisers and prove that our RDUNet denoiser provides improved performance

for both low-dimensional and high-dimensional datasets. Since we are dealing with a

difficult ZO optimization and cannot back-propagate through the model, we optimize

our proposed model by utilizing the black-box model’s predicted labels and softmax

probabilities. In order to further increase the certification of our proposed approach, we

utilize maximum mean discrepancy (MMD) to bring the distributions of original input

images closer to obtained denoised output.

We provide an illustration of certified defense techniques and compare them to our

approach in Figure 6.1. We compare our proposed approaches, ZO-RUDS and ZO-

AE-RUDS, with SOTA certified defense techniques in white-box (W) and black-box

(B) settings. The input to the defense framework is sample x and noise η. RS (Cohen

et al., 2019) and DS (Salman et al., 2020) provide certified defense in the white-box

setting. In the ‘RS’ technique, noisy images (x + η) are input to the white-box model

for certified robustness. ‘DS’ uses an additional custom-trained denoiser and pre-pends

it to the predictor for certified robustness in the white-box setting. In addition to defense

in the white-box setting, ‘DS’ proposed certified black-box robustness using a surrogate

model.

In order to provide black-box defense without the use of a surrogate model (as

it uses the target model as its proxy and it is not always possible to have access to

the information on the target model and its function), (Zhang et al., 2022d) proposed

black-box defense with zeroth-order (ZO) optimization. They proposed ZO-DS by

direct application of ZO on ‘DS’ and further append an autoencoder in the ZO-AE-

DS technique. However, their proposed techniques have low performance on high-

dimension datasets as the custom-trained denoiser fails to learn fine-scale information

leading to poor performance. In order to overcome these limitations, we propose a

robust UNet denoiser RDUNet inspired from the conventional UNet used for image

segmentation (Ronneberger et al., 2015). Our robust denoiser RDUNet with the up-

sampling and downsampling layers, and lateral skip connections enables our defense to

learn complex structures and fine-scale information and makes it invariant to changes
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Method Defense Technique

RS (W)

DS (W)

DS (B)

ZO-DS (B)

ZO-AE-DS (B)

ZO-RUDS (B)
(Ours)

ZO-AE-RUDS (B)
(Ours)

Predictor

Denoiser

Surrogate

Denoiser

Denoiser (RDUNet)

E D

E D

Figure 6.1: We make a comparison with four previous certified defense meth-
ods, including RS (Cohen et al., 2019), DS(W) (Salman et al., 2020),
DS(B) (Salman et al., 2020), ZO-DS (Zhang et al., 2022d) and ZO-AE-
DS (Zhang et al., 2022d) (ZO-optimization approaches). ‘W’ and ‘B’ refer
to white-box (defense technique can utilize weights of target model f ) and
black-box settings. ‘x’ - input sample, ‘η’ - noise, ‘E’ - Encoder, ‘D’ - De-
coder, ‘f ’ - target model, fs - surrogate model (proxy of f ) and ‘z’ - latent
feature vector.
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in image dimensions, thus giving a high performance for high-dimension images.

We summarize our contributions as follows:

• We propose a certified black-box defense mechanism based on the preprocessing
technique of pre-pending a robust denoiser to the predictor to remove adversarial
noise using only the input queries and the feedback obtained from the model.

• We design a novel robust UNet denoiser RDUNet which defends a black-box
model with ZO optimization approaches. Unlike previous ZO optimization-based
defense approaches, which give a poor performance on high-dimensional data
due to high model variance, our UNet-based robustification model gives high
performance for both low-dimensional and high-dimensional datasets.

• We conduct extensive experiments and show that our proposed defense mecha-
nism beats SOTA by a huge margin on four classification datasets, CIFAR-10,
CIFAR-100, STL-10, Tiny Imagenet, and on MNIST dataset for reconstruction
task.

6.1.1 ZO Optimization for adversarial learning.

ZO optimization is useful in solving black-box problems where gradients are difficult

to compute or infeasible to obtain (Wei et al., 2022; Yin et al., 2023). These meth-

ods are gradient-free counterparts of first-order (FO) optimization methods (Liu et al.,

2020). Recently, ZO optimization has been used for generating adversarial perturba-

tions in black-box setting (Chen et al., 2017; Ilyas et al., 2018b,a; Tu et al., 2019; Liu

et al., 2019c, 2020a; Huang and Zhang, 2020; Cai et al., 2021, 2022). Similar to at-

tack methods, ZO optimization can also be applied to black-box defense methods with

access only to the inputs and outputs of the targeted model. (Zhang et al., 2022d) pro-

posed black-box defense using ZO optimization and leveraged autoencoder architecture

for optimizing the defense approach with CGE optimization. However, their approach

fails to perform for high-dimension datasets. Inspired from (Zhang et al., 2022d), we

propose a better defense mechanism with a robust UNet denoiser which gives high per-

formance for high-dimension images.

6.2 Preliminaries

Notations and Basics. Let x ∈ Rd is the input sample and l ∈ {1, 2, ....,Y} be the

label. An adversarial attack can perturb x by adding an adversarial noise. In order to

defend model f against these adversarial attacks and to provide certified robustness,
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(Cohen et al., 2019) proposed randomized smoothing (RS), a technique to construct a

smoothed classifier fs from f . It is given as,

fs(x) = argmax
l∈Y

Pη∈N(0,σ2I)[f(x+ η) = l], (6.1)

where η is the Gaussian noise with standard deviation σ.

Randomized Smoothing and Certified Robustness. (Lecuyer et al., 2019) and (Li

et al., 2019a) first gave robustness guarantees for the smoothed classifier fs using RS,

but it was loosely bounded. (Cohen et al., 2019) proposed a tight bound on l2 robustness

guarantee for the smoothed classifier fs. They used Monte Carlo sampling and proposed

an effective statistical formulation for predicting and certifying fs. If the prediction of

the base classifier for noise perturbed input samples (x+ η) is the probability pf as the

topmost prediction, and ps is the runner-up prediction. Then the smoothed classifier is

robust within the radius Rc assuming that fs gives correct prediction. Rc is the certified

radius within which the predictions are guaranteed to remain constant. (Cohen et al.,

2019) gave lower and upper bound estimates for pf and ps as pf and ps respectively

using Monte Carlo technique.

Theorem 1 ( (Cohen et al., 2019)) Given f is the base classifier which returns the tar-

get label of the input sample, and fs is the smoothed classifier, then assuming that fs

classifies correctly, the probabilities of topmost and runner-up predictions are given as:

pf = max Pη[f(x+ η) = l] (6.2)

ps = max
l′ ̸=l

Pη[f(x+ η) = l′], (6.3)

where η is the noise sampled from the Gaussian distribution N(0, σ2). Then, fs is

robust inside a radius Rc, which is given as:

Rc =
σ

2
[ϕ−1(pf )− ϕ−1(ps)], (6.4)

where ϕ−1 is the inverse of standard Gaussian CDF. If pf and ps hold the below in-

equality:

pf ≥ pf ≥ ps ≥ ps (6.5)
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Then, Rc is given as:

Rc =
σ

2
[ϕ−1(pf )− ϕ−1(ps)] (6.6)

The enhancement of the smoothed classifier’s robustness relies on the application of the

“Neyman-Pearson" lemma, which is used to derive the above expressions (Cohen et al.,

2019).

Denoised Smoothing (DS). (Salman et al., 2020) proposed that naively applying ran-

domized smoothing gives low robustness, as the standard classifiers are not trained to

be robust to the Gaussian perturbation of the input sample. ‘DS’ augments a custom-

trained denoiser Dθ to base classifier f . In this approach, an image-denoising pre-

processing step is employed before input samples are passed through f . The denoiser

pre-pended smoothed classifier, which is effective at removing the Gaussian noise, is

given as,

fs(x) = argmax
l∈Y

Pη∈N(0,σ2I)[f(D
θ
s(x+ η)) = l]. (6.7)

In order to obtain the optimal denoiser Dθ
s , DS proposed a stability regularized denois-

ing loss in the first-order optimization setting. It is given as,

LMSE+STAB(θ) =E
T,η
∥Dθ

s(x+ η)− x∥22

+ E
T,η

[LCE(f(D
θ
s(x+ η)), f(x))],

(6.8)

where T is the training dataset and LCE is the cross-entropy loss. However, previous

approaches provide certified robustness in white-box setting with access to the target

model’s architectures and parameters. (Salman et al., 2020) first proposed certified de-

fense in black-box setting. However, they utilized surrogate model which requires the

information about model type and its function. Recently, (Zhang et al., 2022d) proposed

certified black-box defense with ZO optimization.

6.3 Methodology

In this section, we first describe the architecture of our proposed robust defense model.

We then describe the objective function of our proposed defense mechanism. Lastly, we

discuss our two proposed defense mechanisms using RGE and CGE ZO optimization

approaches. Our proposed framework is as shown in Figure 6.2.
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CT

DConv

MP + DConv

MP + DConv

DConv

DConv

Conv 1 x 1
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: Height x Width
: Concat Module
: No. of Channels
: Encoder
: Decoder
: Black Box Predictor 

Conv : Conv       BN      ReLU     MP : Maxpool     DConv : Conv       Conv      CT : ConvTranspose2D

Figure 6.2: An overview of proposed certified defense mechanism via robust UNet de-
noiser RDUNet. Noise is added to input sample x which is given as input to
the robust denoiser. The output of denoiser is the residual map which when
added to noisy image x∗ gives denoised output x̂. The denoised output is
input of the autoencoder architecture which is then send as input to black-
box model f .

Problem Statement. We aim to defend a black-box model f , where f is used for clas-

sification or reconstruction purposes. We consider l2 norm-ball constrained adversarial

attacks as our threat (Goodfellow et al., 2014b). Notations. We consider input samples

as x and and l ∈ {1, 2, ...., L} be the predicted label. Noise and noise-perturbed images

are represented as η and x∗, respectively. We denote our proposed learnable RDUNet

as Du
θ . We denote encoder and decoder as Eθe and Dθd respectively. We represent our

black-box predictor as f . We denote RGE and CGE ZO optimization as ‘R’ and ‘C’,

respectively.

6.3.1 Proposed Robust Architecture

We provide a robust black-box defense by pre-pending our proposed robust denoiser

RDUNet, followed by a custom-trained AE to the black-box predictor. We show the

architecture of our proposed RDUNet in Figure 6.2. The network has a feedforward

and a feedback path. We have a stack of conv layers, and each conv layer contains a
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convolution layer with kernel size 3×3 and padding of 1, followed by batch normaliza-

tion layer (Ioffe and Szegedy, 2015) and rectified linear unit (Krizhevsky et al., 2012).

DConv represents two consecutive conv layers. Our feedforward path consists of five

blocks: one is DConv block, and four are Maxpooling + DConv.

RDUNet has four blocks with a fusion module followed by DConv operation in the

feedback path. The last block in the feedback path is a convolution layer with kernel size

1 × 1. Fusion module receives two inputs, one feedback input from the feedback path

and the lateral input from the feedforward path. We use ConvTranspose2D (Dumoulin

et al., 2016) to upsample the feedback input to the same size as the lateral input. The

feedforward path generates feature maps of increasingly lower resolutions, and along

the feedback path, the feature maps have an increasingly higher resolution, as is visible

from Figure 6.2. The denoised output x̂ is the sum of noisy image x∗ and −dx̂. It is

represented as, x̂ = x∗ + (−dx̂).

6.3.2 Proposed Objective Function

Our proposed robustification model is trained by using different losses designed for

ensuring three objectives, (i) correct predictions by f on the denoised output x̂, (ii)

the similarity between the features of clean training samples x and denoised output

Du
θ (x

∗), and (iii) decrease in the domain gap between the probability distributions of

clean samples and denoised output.

Robust Prediction. We use cross-entropy loss LCE (Zhong et al., 2018b) to make sure

that the label predicted by the black-box model of the original input sample is same as

that of the denoised output of its Gaussian-perturbed counterpart.

LCE(θ) = E[−p(f(x)l) log(p(f(Du
θ (x

∗))l))], (6.9)

where f(x) is a black-box predictor which takes an input x and makes predictions.

p(f(x)l) and p(f(Du
θ (x

∗))l) are the probabilities predicted by f for clean samples and

denoised output.

Feature Similarity. We leverage the information that the black-box model trained on

the training dataset is highly discriminative. Thus, we propose cosine similarity to learn

a mapping between the logit features of the original input images (f(x)) and the logits
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of the output obtained from the denoiser of the Gaussian perturbed inputs (f(Du
θ (x

∗))).

LCS(θ) = E[
f(x)⊤f(Du

θ (x
∗))

||f(x)||||f(Du
θ (x

∗))||
]. (6.10)

Domain Similarity. In addition to maintaining the label and feature consistency at

the sample level, we want to bring the domain distribution of synthesized denoised

images closer to the original input sample by using the maximum mean discrepancy

(MMD(µ, v)) (Gretton et al., 2012) on the features of input images (ffeat(x)) and

features of denoised output (ffeat(Du
θ (x

∗))). This distribution pulling of the original

samples and denoised output is inspired by the task of domain adaptation (Mekhazni

et al., 2020; Zhang and Wu, 2020).

LMMD(θ) = MMD(ffeat(x), ffeat(D
u
θ (x

∗))). (6.11)

Let µ = ffeat(x) and v = ffeat(D
u
θ ), then MMD is the distance between the feature

means of µ and v. It is given as (Gretton et al., 2012),

MMD(µ, v) = ∥
∑

i ϕ(pi)−
∑

i ϕ(qi)∥2H, (6.12)

where ∥ · ∥ is the norm, ϕ is a function that maps datapoints to a kernel Hilbert space

(RKHS)H, {pi} and {qi} are samples drawn from distributions µ and v, respectively.

MMD measures the distance between the expected feature map of the samples from

the distributions µ and v in the RKHS (H) induced by ϕ. Minimization of MMD be-

tween distributions of clean images and denoised output ensures reconstruction of de-

noised output that are as close as possible to the clean images. Therefore, the utilization

of MMD leads to robust training of the denoiser model which when pre-pended to the

black-box target model provides certified black-box defense.

Our Overall Objective Function. We optimize our certified defense mechanism with

loss functions given in Eq. 6.9, 6.10 and 6.11

LTot(θ) = LCE + λCSLCS + λMMDLMMD, (6.13)

where λCS and λMMD are the weights assigned to the loss functions. However, since we

cannot access the parameters or weights of the model, we cannot optimize our model us-
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ing standard optimizers like SGD (Amari, 1993) or ADAM (Zhang, 2018) as that would

require back-propagation through the predictor. Thus, we utilize ZO optimization ap-

proaches where values of functions are approximated instead of using true gradients.

6.3.3 Proposed Black-Box Defense Methods

We discuss in this section our two defense methods in detail:

ZO Robust UNet Denoised Smoothing (ZO-RUDS) Defense (RGE Optimization).

In order to achieve ZO-RUDS with our proposed pre-pended RDUNet denoiser to the

black-box model f , we represent our objective function as,

LR
Tot(θ) := LTot(f(D

u
θ (x

∗)), (6.14)

where LR
Tot(θ) represents that we optimize LTot (Eq. 6.13) with RGE ZO optimization

(R) (Liu et al., 2020). We calculate gradient estimate of LR
Tot(θ) as,

∇̂θLR
Tot(θ) ≈

dDu
θ (x

∗)

dθ
∇̂zf(z)|z=Du

θ (x
∗), (6.15)

where ∇̂zf(z) is the ZO gradient estimate of f . We calculate the RGE ZO gradient

estimate of LR
Tot(θ) by the difference of two function values along a set of random

direction vectors. It is represented as:

∇̂θLR
Tot(θ) =

q−1∑
k=0

[
d

ξ · q
(LTot(θ + ξuk)− LTot(θ))uk], (6.16)

q are the querying directions, and u ∈ {1, 2, ..., q} are q independently and uniformly

drawn random vectors from a unit Euclidean sphere ξ > 0 is the smoothing parameter

with a small step size of 0.005. We show the corresponding algorithm of our ZO-RUDS

defense in Algorithm 4. (Zhang et al., 2022d) directly applied ZO to the previous ap-

proach (Salman et al., 2020), with poor performance in the RGE optimization approach.

However, we show in Table 6.1 in Section 6.4.1, that after using our proposed RDUNet

in ZO-RUDS defense mechanism, we achieve a huge increase of 35% in certified accu-

racy compared to (Zhang et al., 2022d). This proves that our proposed RDUNet type of

architecture enables the model to learn fine-scale information while maintaining a low

reconstruction error in comparison to previous custom-trained denoisers (Salman et al.,
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2020; Zhang et al., 2022d).

ZO Autoencoder-based Robust UNet Denoised Smoothing (ZO-AE-RUDS). We

further pre-pend RDUNet followed by an encoder Eθe and a decoder Dθd to the black-

box predictor for better performance on datasets like Tiny Imagenet and STL-10 with

large dimensionality as shown in Figure 6.3. We extend our defensive operation where

the new black-box is D+f , and the new white-box system is RDUNet + E by plugging

AE between our RDUNet and black-box predictor f . It ensures that ZO optimization

can be carried out in a feature embedding space with low dimensions. However, the

autoencoder can also lead to over-reduced features for these datasets leading to poor

performance as in (Zhang et al., 2022d).

We observe from Figure 6.4 in Section 6.4.2 that for low-dimension datasets like

CIFAR-10, there is an increase of approximately 2%, whereas, for high-dimension

dataset STL-10, there is an increase of approximately 10% between performances of

ZO-RUDS and ZO-AE-RUDS. Thus, AE enables us to conduct ZO optimization in a

feature-embedding space which ensures the feasibility of least-variance CGE. Our ZO-

AE-RUDS with RDUNet denoiser overcomes the curse of dimensionality, and due to

the ability of RDUNet to learn fine-scaled information leads to high performance. The

objective function for our ZO-AE-RUDS defense is represented as,

LC
Tot(θ) := LTot(f(Dθd(z)); z = Eθe(D

u
θ (x

∗)), (6.17)

where LC
Tot(θ) represents that we optimize LTot (Eq. 6.13) with CGE ZO optimization

ALGORITHM 4: ZO-RUDS Defense (RGE)
Require: Input x, noise η, smoothing parameter ξ, query directions q, dimensionality

d, black-box predictor f , and initial parameters θ of RDUNet.
Ensure: Trained RDUNet Du

θ

1: x̂ = Du
θ (x+ η) = Du

θ (x
∗),

2: Calculate LTot(f(x), f(x̂)) (Eq. 6.13),
3: for k = 0 to q − 1 do
4: Obtain a random direction vector uk with Normal distribution N(µ, σ),
5: Calculate x̂q = x̂+ ξ · uk,
6: Calculate LTot(f(x), f(x̂q)) (Eq. 6.13),
7: Calculate gradient estimation using Eq. 6.16,
8: end for
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(C) (Liu et al., 2020). We calculate gradient estimate of LC
Tot(θ) as,

∇̂θLC
Tot(θ) ≈

dEθe(D
u
θ (x

∗))

dθ
∇̂zf(z)|z=Eθe (D

u
θ (x

∗)), (6.18)

where z is the latent feature vector with reduced dimension dr < d. This reduction

in dimension makes the CGE ZO optimization approach feasible. Thus, we utilize

CGE (Lian et al., 2016; Liu et al., 2018b) and calculate the gradient estimate of training

objective function LTot(θ) as,

∇̂θLC
Tot(θ) =

d−1∑
k=0

[
(LTot(θ + ξek)− LTot(θ − ξek))

ξ
ek], (6.19)

where ek ∈ Rd is the kth elementary basis vector, with 1 at the kth coordinate and 0s

elsewhere. We show the corresponding algorithm of our ZO-AE-RUDS defense using

CGE optimization in Algorithm 5.

ALGORITHM 5: ZO-AE-RUDS Defense (CGE)
Require: Input x, noise η, smoothing parameter ξ, query directions q, dimensionality

d, black-box predictor f , decoder Dθ, initial parameters θ of RDUNet, and θe of
white-box encoder Eθe

Ensure: Trained Du
θ + Eθe

1: z = Eθe(D
u
θ (x+ η)),

2: x̂ = Du
θ (z),

3: Calculate LTot(f(x), f(x̂)) (Eq. 6.13),
4: for k = 0 to d− 1 do
5: Obtain a elementary basis direction vector ek,
6: Calculate x̂+

q = x̂+ ξ · ek and x̂−
q = x̂− ξ · ek,

7: Calculate LTot(f(x), f(Eθe(x̂
+
q ))) (Eq. 6.13),

8: Calculate LTot(f(x), f(Eθe(x̂
−
q ))) (Eq. 6.13),

9: Calculate gradient estimation using Eq. 6.19,
10: end for

Denoiser (RDUNet)
White Box Black Box

Figure 6.3: Architecture of our defense technique ZO-AE-RUDS.
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6.4 Experimental Settings

Datasets and Models. We evaluate the results on CIFAR-10 (Krizhevsky and Hinton,

2009a), CIFAR-100 (Krizhevsky and Hinton, 2009b), Tiny Imagenet (Liu et al., 2017)

and STL-10 (Coates et al., 2011) datasets for classification task. For image recon-

struction, we focus on MNIST (LeCun et al., 1998b) dataset. We consider pre-trained

models ResNet-110 for CIFAR-10 and ResNet-18 for STL-10. For CIFAR-100, we use

ResNet-50 as the target classifier.

CIFAR-10. It comprises 60,000 color images, 32 × 32 pixels in size, classified into

10 classes, each with 6,000 images. 50,000 images are used for training, and 10,000

for testing. The dataset is divided into five training batches and one test batch, each

containing 10,000 images.

CIFAR-100. The dataset shares similarities with CIFAR-10, with the exception that it

comprises 100 classes, each consisting of 600 images. For every class, there are 500

training images and 100 testing images.

Tiny ImageNet. It comprises 100,000 colored images that are downsized to 64 × 64

pixels. The dataset consists of 200 classes, with each class containing 500 images. For

every class, there are 500 training images, 50 validation images, and 50 test images.

STL-10. It is an image dataset with 100,000 unlabeled and 13,000 labeled images from

10 classes. It is popular for evaluating self-taught learning algorithms and contains color

images of 96× 96 pixels.

MNIST. MNIST database, short for Modified National Institute of Standards and Tech-

nology database, consists of handwritten digits with a training set of 60,000 examples

and a test set of 10,000 examples.

Implementation Details. We use learning rate 10−4 and weight decay by 10 at ev-

ery 100 epochs with total 600 epochs. We set the smoothing parameter ζ = 0.005

for a fair comparison with SOTA. We sample noise η with mean µ = 0 and variance

σ2 = 0.25 from Normal distribution. We optimize ZO-RUDS with RGE and ZO-AE-

RUDS with CGE optimization unless otherwise stated. We set the values of hyperpa-

rameters λMMD = 4 and λCS = 1. We use batch-size of 256. RGE ZO optimization is

denoted as ‘R’, and CGE ZO optimization is ‘C’ in all the experiments. It is to be noted

that we do not use original labels of the datasets, thus making our technique practical
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and scalable as it is not practically possible to annotate large-scale datasets. We mea-

sure the robustification using standard certified accuracy (SCA) (%) and robust certified

accuracy (RCA) (%). In each tabular result, we have shown best results for certified

black-box defense in bold. We also show the results of certified defense in white-box

setting and prove that our results are comparative or better than previous white-box

certified defense methods even with no information of model weights or parameters.

Evaluation Metrics. We measure the robustification of our model using standard cer-

tified accuracy (SCA) at l2-radius (r) = 0 and robust certified accuracy (RCA) at

r = {0.25, 0.50, 0.75}. Higher certified accuracy (CA) ensures that for a given r, more

percentage of correctly predicted samples have certified radii larger than r (Cohen et al.,

2019).

Computational Complexity. We optimize our training time with the help of parallel

processing and matrix operations. The averaged training time on NVIDIA A100-SXM4

for one epoch is approximately∼ 30sec for FO-AE-RUDS in white-box setting. For our

proposed certified black-box defense approach ZO-RUDS (RGE) the averaged training

time is ∼ 30min and ∼ 33min for ZO-AE-RUDS (CGE), on the CIFAR-10 dataset.

6.4.1 Comparison with SOTA

We compare our proposed defense methods ZO-RUDS and ZO-AE-RUDS with previ-

ous certified defense approaches in white-box (First-order (FO)) and black-box (Zeroth-

order (ZO)) settings in Table 6.1. In white-box setting, we compare our approach with

RS (Cohen et al., 2019), DS (FO-DS) (Salman et al., 2020) and FO-AE-DS (Zhang

et al., 2022d). Our proposed defense methods ZO-RUDS and ZO-AE-RUDS with

RDUNet comfortably outperform SOTA (Zhang et al., 2022d) by a large margin of

35% and 9% in RGE and CGE optimization approaches, respectively. It consistently

achieves higher certified robustness across different r. The high performance of ZO-

RUDS over SOTA signifies that our method leads to an effective DS-oriented robust de-

fense even without additional custom-trained autoencoder. We observe that our method

provides better results in the black-box setting and better performance than RS (Cohen

et al., 2019) and DS (Salman et al., 2020), which defend the model in the white-box

setting, thus proving the effectiveness of our approach.

FO-AE-DS is the first-order implementation of ZO-AE-DS. We compare our pro-
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Method Type SCA
RCA (r)

0.25 0.50 0.75
RS (Cohen et al., 2019) W 76.22 61.20 43.23 25.67

DS (FO-DS) (Salman et al., 2020) W 70.80 53.31 40.89 25.90
DS (Salman et al., 2020) B 74.89 44.56 18.20 14.39

FO-AE-DS (Zhang et al., 2022d) W 75.92 60.54 46.45 32.19
ZO-DS (R) (Zhang et al., 2022d) B 42.34 18.12 5.01 0.19

ZO-AE-DS (R) (Zhang et al., 2022d) B 60.90 43.25 26.23 7.78
ZO-AE-DS (C) (Zhang et al., 2022d) B 70.90 53.45 33.21 12.45

FO-RUDS W 77.32 61.78 49.43 34.56
FO-AE-RUDS W 79.95 63.24 49.21 35.82
ZO-RUDS (R) B 77.89 58.92 38.31 21.93

ZO-AE-RUDS (R) B 76.87 58.23 37.72 20.65
ZO-AE-RUDS (C) B 79.87 61.32 42.90 23.21

Table 6.1: Comparison with SOTA certified defense techniques in white-box (W) and
black-box (B) settings on CIFAR-10 dataset. ‘R’ and ‘C’ are RGE and CGE
optimization techniques. ‘q’=192.

posed ZO-AE-RUDS in RGE and CGE ZO optimization techniques as ZO-AE-RUDS

(R) and ZO-AE-RUDS (C), respectively. We observe that our prepended robust de-

noiser RDUNet followed by autoencoder leads to better performance with the CGE

optimization approach (ZO-AE-RUDS (C)). We show the results for FO-RUDS and

FO-AE-RUDS with our proposed robust denoiser RDUNet in white-box setting. We

observe that our FO-RUDS and FO-AE-RUDS show a performance improvement of

approximately 7% and 3% on FO-DS (Salman et al., 2020) and FO-AE-DS (Zhang

et al., 2022d) respectively, in standard certified accuracy (SCA) and similarly provide

robustness for all radii. We show that our black-box defense techniques (ZO-RUDS,

ZO-AE-RUDS (R), and ZO-AE-RUDS (C)) achieve comparative performance to our

proposed defenses in white-box settings (FO-RUDS and FO-AE-RUDS).

6.4.2 Performance on Image Classification

Performance on different number of queries. We show the performance for other

queries q = 20, 100 for CIFAR-10 and q = 576 for STL-10 dataset in Table 6.2. Our

proposed robustification outperforms SOTA (Zhang et al., 2022d) on all these queries

by a huge margin for SCA and RCA evaluation metrics at different l2 radii. We observe

that (Zhang et al., 2022d) has poor performance for high-dimension images even after

increasing the number of queries or using CGE optimization with auto-encoder to de-

crease the variance caused by RGE optimization. This may happen due to two reasons;
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CIFAR-10
q

Model SCA
RCA (r)

0.25 0.50 0.75

20

ZO-DS (R) (Zhang et al., 2022d) 18.56 3.88 0.53 0.26
ZO-AE-DS (C) (Zhang et al., 2022d) 40.67 27.90 17.84 7.10

ZO-RUDS (R) 62.10 42.43 36.23 24.56
ZO-AE-RUDS (C) 63.59 51.34 39.01 30.23

100

ZO-DS (R) (Zhang et al., 2022d) 39.82 17.90 4.71 0.29
ZO-AE-DS (C) (Zhang et al., 2022d) 54.32 40.90 23.98 9.35

ZO-RUDS (R) 74.60 58.71 39.56 27.82
ZO-AE-RUDS (C) 76.34 62.46 44.29 30.22

STL-10

576

ZO-DS (R) (Zhang et al., 2022d) 37.59 21.23 8.67 2.56
ZO-AE-DS (C) (Zhang et al., 2022d) 44.78 33.41 26.10 16.43

ZO-RUDS (R) 58.20 47.83 40.32 29.89
ZO-AE-RUDS (C) 68.29 57.93 47.31 33.22

Table 6.2: Comparison of our defense with previous ZO defense approaches. ‘q’ is the
number of queries.
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Figure 6.4: Comparison of Certified Accuracy on low-dimension (CIFAR-10, CIFAR-
100) and high-dimension (STL-10 and Tiny Imagenet) datasets for different
l2 radius at query q = 192.

First, the bottleneck in the autoencoder architecture constrains the fine-scaled informa-

tion necessary for reconstructing denoised images, and Second, the over-reduced fea-

ture dimension in high-dimension images could hamper the performance. Our proposed

denoiser RDUNet with lateral connections between the encoder and decoder ensures

better reconstruction of denoised output, which ensures prediction with high certified

accuracy. RDUNet decreases model variance as it consists of downsampling and up-

sampling layers in the encoding and decoding path, which makes the model invariant to

changes in image dimensions and thus performs better for high dimensions as well. The

lateral skip connections help the model learn fine-scale information, thus overcoming

the disadvantage of auto-encoder constraining fine-scale information.

Performance on low-dimension (CIFAR-10, CIFAR-100) and high-dimension (STL-
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10, Tiny Imagenet) classification datasets. We compare our proposed defense meth-

ods ZO-RUDS (R) and ZO-AE-RUDS (C) with previous black-box defense methods

DS (S) (Salman et al., 2020), ZO-DS (R) (Zhang et al., 2022d) and ZO-AE-DS (C)

(Zhang et al., 2022d) at various r for low and high-dimension classification datasets

in Figure 6.4. Our proposed approaches ZO-RUDS and ZO-AE-RUDS beat the SOTA

(Zhang et al., 2022d) by a large margin of 30.21% and 8.87% in RGE, and CGE op-

timization approaches respectively for CIFAR-100 dataset. It outperforms SOTA by

a huge margin for all other radii as well. We show that unlike (Zhang et al., 2022d),

which gives better performance only for the CGE optimization approach after append-

ing autoencoder in ZO-AE-RUDS, our proposed RDUNet denoiser when appended to

predictor performs better for both RGE and CGE optimization approaches. We ob-

serve that SOTA (Zhang et al., 2022d) fails to perform even after the addition of an

autoencoder to the network for high-dimension Tiny Imagenet and STL-10 datasets.

Our defense methods ZO-RUDS and ZO-AE-RUDS beat SOTA (Zhang et al., 2022d)

by a huge margin of 24.81% and 25.84% respectively, for Tiny Imagenet dataset. Sim-

ilar observations can be made for CIFAR-10 and STL-10 datasets at different certified

radii, as shown in Figure 6.4.

6.4.3 Performance on Image Reconstruction

Previous works (Antun et al., 2020; Raj et al., 2020; Wolf) show that image recon-

struction networks are vulnerable to adversarial attacks like PGD attacks (Madry et al.,

2017). We compare our proposed defense methods ZO-RUDS and ZO-AE-RUDS with

previous white-box and black-box defense methods in Table 6.3. We follow the set-

tings of (Zhang et al., 2022d) and aim to recover the original sample using a pre-trained

reconstruction network (Raj et al., 2020) under adversarial perturbations generated by

a 40-step l2 PGD attack under ||δ||2 = {0, 1, 2, 3, 4}. We use root mean square error

(RMSE) and structural similarity (SSIM) (Hore and Ziou, 2010) to find the similar-

ity between the original and reconstructed image. We observe that our method beats

SOTA (Zhang et al., 2022d) with low RMSE and high SSIM scores for all the values

of ||δ||2. Our defense beats FO defense methods as well as the vanilla model, proving

the robustness provided by our method for the reconstruction task. We observe that at

high values of ||δ||2 perturbation the performance of vanilla model (Raj et al., 2020)

decreases drastically.
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Method
∥δ||2 = 0 ∥δ||2 = 1 ∥δ||2 = 2 ∥δ||2 = 3 ∥δ||2 = 4

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Vanilla 0.1213 0.7934 0.3251 0.4367 0.4629 0.1468 0.6129 0.0494 0.5976 0.0168
FO-DS 0.1596 0.7415 0.1692 0.6934 0.2182 0.5421 0.2698 0.3956 0.3245 0.3178
FO-AE-DS 0.1475 0.7594 0.1782 0.7025 0.2182 0.5421 0.2693 0.4163 0.3176 0.3293
ZO-DS (R) 0.1892 0.5345 0.2267 0.4634 0.2634 0.3689 0.3092 0.2792 0.3482 0.2177
ZO-AE-DS
(C)

0.1398 0.6894 0.1634 0.7099 0.2126 0.5472 0.2689 0.4188 0.3367 0.3294

ZO-RUDS
(R)

0.1232 0.7924 0.1465 0.7991 0.2053 0.5966 0.2380 0.4591 0.3082 0.3811

ZO-AE-
RUDS (C)

0.1219 0.7926 0.1392 0.8346 0.1872 0.6648 0.2174 0.6102 0.2679 0.5236

Table 6.3: Performance comparison with SOTA image reconstruction tasks which are
Vanilla Model (Raj et al., 2020), FO-DS (Salman et al., 2020), FO-AE-
DS (Zhang et al., 2022d), ZO-DS (R) (Zhang et al., 2022d) and ZO-AE-DS
(C) (Zhang et al., 2022d) on MNIST dataset. (q = 192)
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Figure 6.5: Effect of different denoisers on our RGE and CGE ZO optimization-based
defense approaches for different l2-radii at q=192. Dataset is CIFAr-10.

6.4.4 Ablation Study

We show the effect of different denoiser architectures and loss functions in our proposed

defense mechanism.

Effect of various denoisers. We compare our proposed robust denoiser RDUNet with

previous denoisers MemNet (Tai et al., 2017), DnCNN (Zhang et al., 2017a), wide-

DnCNN (Zhang et al., 2017a), UNet (Ronneberger et al., 2015) and Diffusion (Ho

et al., 2020) in Figure 6.5. We show that after appending denoiser DnCNN as pro-

posed in (Salman et al., 2020; Zhang et al., 2022d) with 17 layers primarily including

Conv+BN+ReLU layers and wide-DnCNN with 128 deep layers to the black-box model

in the RGE optimization leads to poor performance. We observe that appending these

denoisers to the autoencoder architecture in the CGE optimization improves the robust-
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Loss SCA
RCA (r)

0.25 0.50 0.75
LCE 72.67 54.90 36.01 17.03

LCE + LCS 73.21 56.04 36.45 18.79
LCE + LCS + LMMD 79.87 61.32 42.90 23.21

Table 6.4: Effect of loss functions on our proposed (ZO-AE-RUDS) for q = 192.
Dataset is CIFAR-10.

Training Strategy SCA
RCA (l2-radius)

0.25 0.50 0.75
(Du

θ )finetune 67.52 53.44 29.56 12.87
(Du

θ )scratch 79.87 61.32 42.90 23.21

Table 6.5: Effect of RDUNet training strategies on ZO-AE-RUDS for q = 192. Dataset
is CIFAR-10.

fication of the model to some extent. We show that the diffusion model gives com-

paratively better performance than other conventional denoisers. However, RDUNet

gives better performance than diffusion models. It may happen due to multiple noise

addition, which makes ZO optimization of the diffusion model unstable. These results

conclude that our proposed RDUNet provides robustness to a black-box model against

adversarial perturbations.

Effect of Loss Functions. We show in Table 6.4, the effect of cosine similarity loss

LCS at the sample level and MMD loss LMMD between the probability distributions of

the original samples and denoised output. We observe in Table 6.4 that after applying

LCS in addition to cross-entropy loss, our model’s performance increases by 1% and

usingLMMD the performance increases by approximately 6%. This shows that bringing

closer the features of the original sample and denoised output at the instance and domain

level increase the robustness of the black-box model.

Effect of Training Strategies. We show the effect of our training schemes (over

RDUNet) on ZO-AE-RUDS across different r in Table 6.5. (Du
θ )finetune represents

pre-training RDUNet and then fine-tuning it in our defense method, and (Du
θ )scratch is

training RDUNet from scratch. We show that training from scratch gives better per-

formance than pre-training and fine-tuning RDUNet. We observe during training that

(Du
θ )finetune achieves very high performance at the initial training stage; however, it

does not improve as training progresses. Pre-training the denoiser causes the optimiza-

tion to get stuck at a local optima leading to decreased performance.
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CIFAR-10

Model SCA
RCA (r)

(σ) 0.25 0.50 0.75

0.5

FO-DS (Salman et al., 2020) 66.93 45.78 23.34 6.20
ZO-DS (R) (Zhang et al., 2022d) 35.67 12.45 2.58 0.01
FO-AE-DS (Zhang et al., 2022d) 67.78 48.90 26.76 9.21

ZO-AE-DS (C) (Zhang et al., 2022d) 63.24 42.98 25.67 4.56
ZO-RUDS (R) 70.44 49.63 31.21 12.48

ZO-AE-RUDS (C) 71.52 49.68 32.37 13.56

1.0

FO-DS (Salman et al., 2020) 51.29 30.47 8.36 1.67
ZO-DS (R) (Zhang et al., 2022d) 21.89 6.34 0.12 0.00
FO-AE-DS (Zhang et al., 2022d) 54.97 37.83 20.63 5.64

ZO-AE-DS (C) (Zhang et al., 2022d) 48.90 37.21 18.39 0.79
ZO-RUDS (R) 55.25 38.98 23.54 3.58

ZO-AE-RUDS (C) 55.26 38.84 22.49 4.29

Table 6.6: Comparison of our proposed approach with previous ZO optimization ap-
proaches on the CIFAR-10 dataset for different noise levels. Query ‘q’=192.

In this work, we study the problem of certified black-box defense, aiming to robus-

tify the black-box model with access only to input queries and output feedback. First,

we proposed two novel defense mechanisms, ZO-RUDS and ZO-AE-RUDS, which

substantially enhance the defense and optimization performance by reducing the vari-

ance of ZO gradient estimates. Second, we proposed a novel robust denoiser RDUNet

that provides a scalable defense by directly integrating denoised smoothing with RGE

ZO optimization, which was not feasible in previous works. We show that RDUNet

gives high performance by further appending autoencoder (AE) as in ZO-AE-RUDS

defense. Lastly, we proposed an objective function with MMD loss, bringing the dis-

tribution of denoised output closer to clean data. Our elaborate experiments demon-

strate that ZO-RUDS and ZO-AE-RUDS achieve SOTA-certified defense performance

on classification and reconstruction tasks.

Effect of Noise Level (σ). We show the performance of our proposed defense tech-

niques for σ = {0.50, 1.0} in Tables 6.6 and 6.7, in addition to the certified robustness

calculated at noise level σ = {0.25} unless otherwise stated. Our defense techniques

consistently outperform the SOTA black-box defense approaches for low-dimension

CIFAR-10 and high-dimension STL-10 datasets for all values of σ.

Variation of ZO techniques over number of epochs. We show the RGE and CGE

optimization of our black-box defenses ZO-RUDS and ZO-AE-RUDS, as training pro-

gresses in Figure 6.6. We observe that ZO-AE-RUDS (CGE) gives high performance at
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STL-10

Model SCA
RCA (r)

(σ) 0.25 0.50 0.75

0.5

ZO-DS (R) (Zhang et al., 2022d) 31.56 16.34 1.57 0.00
ZO-AE-DS (C) (Zhang et al., 2022d) 34.67 22.65 18.42 9.81

ZO-RUDS (R) 49.97 39.81 33.54 20.10
ZO-AE-RUDS (C) 61.20 48.71 31.23 20.51

1.0

ZO-DS (R) (Zhang et al., 2022d) 12.56 1.24 0.34 0.09
ZO-AE-DS (C) (Zhang et al., 2022d) 22.65 13.42 6.32 0.05

ZO-RUDS (R) 33.28 24.51 16.53 7.62
ZO-AE-RUDS (C) 43.27 31.27 23.33 9.80

Table 6.7: Comparison of our proposed approach with previous ZO optimization ap-
proaches on STL-10 dataset for different noise levels. Query ‘q’=192.

initial epochs, however as training progresses both defense approaches give compara-

tive performance. We observe high increase in performance at initial epochs and slight

increase in accuracy at higher epochs.

Performance on different classifiers. We show the performance of our proposed de-

fense techniques ZO-RUDS (R) and ZO-AE-RUDS (C) on different classifiers (VGG-

16 and Vision Transformer (ViT-16-L(224)) in Table 6.8. These results in addition to

the results provided in Section 6.4.2 prove that our proposed defense method leads to

robustification of wide variety target models with various architectures.

0 100 200 300 400 500 600
Epoch

0

20

40

60

80

100

Ce
rti

fie
d 

Ac
cu

ra
cy

 (%
)

ZO-RUDS (RGE)
ZO-AE-RUDS (CGE)

Figure 6.6: Training progress of our certified black-box defense ZO-RUDS (RGE) and
ZO-AE-RUDS (CGE) over number of epochs. Dataset used is CIFAR-10.
Query ‘q’ = 192, σ = 0.25.
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VGG-16

Model SCA
RCA (r)

0.25 0.50 0.75
ZO-RUDS (R) 77.24 59.93 38.01 21.35

ZO-AE-RUDS (C) 79.83 61.34 43.66 23.90
ViT-16-L(224) (Tseng et al., 2022)

ZO-RUDS (R) 77.91 60.24 38.75 21.26
ZO-AE-RUDS (C) 79.89 62.36 43.87 24.01

Table 6.8: Certified Accuracy for different classifiers on CIFAR-10 dataset for noise
level σ = {0.25}. Query ‘q’=192.

6.5 Chapter Summary

In this chapter, we focus on the problem of certified black-box defense, which aims to

improve the robustness of a black-box model by using only input queries and output

feedback. Two new defense mechanisms, ZO-RUDS and ZO-AE-RUDS, are proposed

to enhance defense and optimization performance by reducing the variance of ZO gra-

dient estimates. In addition, a novel robust denoiser called RDUNet is introduced,

which integrates denoised smoothing with RGE ZO optimization, providing a scalable

defense that was not possible in previous works. The high performance of RDUNet

is demonstrated by appending an autoencoder (AE) as in the ZO-AE-RUDS defense.

Finally, an objective function with MMD loss is proposed to bring the distribution of

denoised output closer to clean data. The experiments conducted in this study show that

ZO-RUDS and ZO-AE-RUDS achieve state-of-the-art certified defense performance on

classification and reconstruction tasks.
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CHAPTER 7

Limitations

7.1 GAN-based Unsupervised Domain Adaptation

Failure Cases:

• Significant differences in the feature distributions between the source and target
domains causes our adapted model to fail in capturing finer discriminative details
like bags and gender across domains. The Re-ID task primarily extracts features
such as colour of clothes, additional useful cues such as bag. While in some cases,
cues such as bag may not be preserved, yet the clothing is adapted efficiently. This
maybe due to the reason that only few images have such additional cues and the
model may not be able to learn them. Further, the clothing appearance is the most
significant cue and the network primarily learns to match this. In some cases
gender may not be useful information as many shots are taken from different
views and quite a few of them are taken from an angle where identifying gender
is very hard. Thus, while the network may inherently learn some gender based
cues, it may not consider it as a strong discriminative factor.

Restrictions and Assumptions:

• The target domain is assumed to have no labeled data available, requiring adapta-
tion techniques to rely solely on the knowledge from the labeled source domain.

• We assume that the source and target domains share some common identity fea-
tures and that the domain discrepancy mainly arises from different environment
(pose and background) distributions.

7.2 Wasserstein Metric Attack

Failure Cases:

• In certain instances, achieving a significant Wasserstein distance requires the in-
troduction of substantial perturbations into the input data. While effective in ma-
nipulating model predictions, these large perturbations can inadvertently result
in visually conspicuous adversarial examples. This, in turn, poses a challenge to
the robustness of the attack, as these visually noticeable artifacts may be easily
detected by human observers, potentially undermining the adversarial attack’s ef-
fectiveness. Balancing the need for large perturbations to enhance Wasserstein
distance while maintaining inconspicuousness remains an important area of re-
search, seeking to bolster the robustness of machine learning models against in-
creasingly sophisticated adversarial attacks.



Restrictions and Assumptions:

• A significant limitation of Wasserstein metric attack is it’s reliance on having
complete knowledge of the target model’s architecture and training mechanism,
which includes awareness of the specific use of Wasserstein distance as a training
objective. It is effective under white-box setting where training information is
accessible.

7.3 Meta Perturbed Defense

Failure Cases:

• Despite the significant strides made in fortifying our defense model against adver-
sarial attacks through meta-learning and the introduction of specific noise patterns
during training, it is essential to acknowledge its inherent limitations. Adversarial
attacks are continually evolving, and some may possess the capability to adapt to
the noise patterns established during meta-learning, thereby circumventing our
defense mechanisms. These adaptive attacks challenge the efficacy of our model
and highlight the need for ongoing research and innovation to develop more ro-
bust and adaptive defense strategies. While our defense model represents a valu-
able step forward, we remain vigilant in recognizing that it may not be universally
effective against all forms of adversarial threats.

Restrictions and Assumptions:

• Firstly, meta perturbed defense relies on the assumption that the noise patterns
learned through meta-learning will effectively generalize to both unseen data and
various types of adversarial attacks. However, it is essential to acknowledge that
there might be instances where this generalization does not hold, potentially limit-
ing the defense’s efficacy. Secondly, the meta-learning approach can introduce an
additional computational overhead during the training process, making it more
resource-intensive compared to conventional training methods. Despite these
challenges, we continue to explore ways to optimize the defense model’s per-
formance while considering the trade-offs between robustness and computational
costs.

7.4 Certified Defense

Failure Cases:

• Failure cases in certified defense methods stem from their reliance on guarantees
within a predefined perturbation space established during certification. While
these defenses can offer robustness within the certified bounds, they become sus-
ceptible to attacks exploring perturbation spaces beyond those limits, leaving the
model vulnerable to exploitation. Moreover, the complexity of the mathematical

114



computations involved in certified defenses makes them computationally expen-
sive and challenging to scale effectively to larger models and datasets. Balancing
the trade-offs between robustness and computational efficiency remains a key
challenge in developing certified defense mechanisms that can provide reliable
protection against a wide range of adversarial threats.

Restrictions and Assumptions:

• Firstly, it assumes that the model’s predictions exhibit continuity and smooth-
ness concerning the input space. However, in cases where the model’s decision
boundaries contain discontinuities, the defense may be weakened. Although our
certified defense method proves effective against attack strategies it is specifically
certified for, there is a concern about its generalization to unseen or adapted attack
methods. The defense’s effectiveness may vary depending on the magnitude of
perturbations applied. Extremely large or subtle perturbations could fall outside
the certified bounds, potentially compromising the defense’s overall robustness.
Addressing these assumptions and limitations requires a comprehensive approach
that accounts for various attack scenarios and perturbation magnitudes to develop
a more resilient and adaptive defense mechanism.
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CHAPTER 8

Thesis Summary and Future Directions

8.1 Introduction

This thesis explores the application of generative learning and adversarial attack and de-

fense techniques for Re-ID and classification tasks in computer vision. With the grow-

ing availability of large datasets and advances in deep learning algorithms, Re-ID and

classification tasks have become increasingly important in areas such as surveillance,

security, and autonomous vehicles. However, these systems are vulnerable to adver-

sarial attacks, where imperceptible perturbations can cause misclassification or Re-ID

errors. Generative learning and adversarial defense strategies have shown promise in

mitigating the impact of these attacks, but their effectiveness in real-world scenarios

remains unclear. In this research, our aim is to evaluate the performance of different

generative models and adversarial defense techniques in improving the robustness and

reliability of Re-ID and classification systems under various types of attacks.

8.2 Summary

In this thesis, four novel algorithms for generative and discriminative learning are pro-

posed, namely IPES-GAN, WMA, MP-SNN, ZO-AE-RUDS. In the first approach, we

proposed a novel person image generation network for the person Re-ID task in Chap-

ter 3. The proposed IPES-GAN encodes the pose information to incorporate the global

structure of the target image. The target background and camera style are captured via

environment encoder and camera style loss. The cycle consistency and adversarial loss

further optimize the target image generation process. In order to obtain discriminative

features for Re-ID, we apply soft cross-entropy loss and KL divergence loss.

The generative models learned in Chapter 3 provide robustness to some extent.

However, the performance of these DNNs decreases drastically under the influence

of adversarial perturbations. This motivated us to introduce a threat model based on



Wasserstein distance for person Re-ID task (WMA in Chapter 4). This perturbation

is based on Wasserstein ball which is different from previous Re-ID works with l∞ or

more general lp perturbation. WMA does not require training to learn the noise. It gen-

erates the adversarial samples by adding noise to the clean image, and projecting the

perturbations in Wasserstein ball. It uses Euclidean distance as metric loss to increase

the distance between features of perturbed query images from the gallery database.

In order to design defense mechanism against the adversarial attacks, we designed a

meta perturbed framework to defend Re-ID models against adversarial attacks in Chap-

ter 5. We leverage the adversarial robustness characteristics of anisotropic and isotropic

noise modules along with adversarial training and efficiently learn them through our

proposed meta-learning defense strategy. Our model generalizes well and is robust

against various unseen attacks. Further, we derive a novel FCA loss related to anisotropic

perturbations. FCA overcomes the decrease in clean performance while ensuring robust

performance against adversarial attacks in Chapter 4.

We further introduced black-box certified defense methods against adversarial per-

turbations have been recently investigated in the black-box setting with a zeroth-order

(ZO) perspective in Chapter 6). We proposed a robust UNet denoiser (RDUNet) that

ensures the robustness of black-box models trained on high-dimensional datasets. We

proposed a novel black-box denoised smoothing (DS) defense mechanism, ZO-RUDS,

by prepending our RDUNet to the black-box model, ensuring black-box defense. We

further proposed ZO-AE-RUDS in which RDUNet followed by autoencoder (AE) is

prepended to the black-box model.

The research has yielded three accepted publications and one submitted paper.

1. Verma, Astha, A. V. Subramanyam, Zheng Wang, Shin’ichi Satoh, and Rajiv
Ratn Shah. "Unsupervised domain adaptation for person re-identification via
individual-preserving and environmental-switching cyclic generation." IEEE Trans-
actions on Multimedia (2021).

2. Verma, Astha, A. V. Subramanyam, and Rajiv Ratn Shah. "Wasserstein Metric
Attack on Person Re-ID." 2022 IEEE 5th International Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE, 2022.

3. Meta Perturbed Re-Id Defense, in IEEE International Conference on Multimedia
and Expo, 2023. (Accepted)

4. Certified Zeroth-order Black-Box Defense with Robust UNet Denoiser, Interna-
tional Conference on Computer Vision, 2023. (Submitted)
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8.3 Future Work

The objective of this research is to develop algorithms for generative learning and adver-

sarial learning for Re-Id and classification tasks. Generative learning has the potential

to revolutionize Re-ID and classification tasks in computer vision. However, adversar-

ial attacks pose a significant threat to the performance and security of these models. To

address these challenges, researchers are developing new techniques for generating and

defending against adversarial attacks. The future of generative learning and adversarial

attack and defense in Re-ID and classification tasks will depend on continued innova-

tion and collaboration among researchers and practitioners, with a focus on improving

the accuracy and robustness of these models while maintaining security and privacy for

individuals and communities.

8.3.1 Unsupervised Domain Adaptation for Video Re-ID

We proposed GAN-based unsupervised domain adaptation in Chapter 3. GANs have

become a popular approach for generating realistic images and videos, but they also

have several limitations. One major limitation is that GANs can suffer from mode

collapse, where the generator learns to produce only a limited set of samples that fail

to capture the diversity of the true data distribution. Additionally, GANs require large

amounts of data to train and can be sensitive to hyperparameters. Finally, there are

concerns about the interpretability and transparency of GANs, as they do not provide

clear explanations for how they generate their outputs (Goodfellow et al., 2014a; Bau

et al., 2019; Karras et al., 2020).

In order to overcome the above limitations, we plan to investigate unsupervised

adversarial domain adaptation with similarity diffusion (Zhang et al., 2020b; Xu et al.,

2021b) for video networks. It is a technique that can be applied to video Re-ID, where

the goal is to recognize individuals across different cameras or environments. In this

technique, a pre-trained video Re-ID model is adapted to a new target domain using

adversarial training and similarity diffusion, without using any labeled data from the

target domain.

Here are the main steps involved in unsupervised adversarial domain adaptation

with similarity diffusion for video Re-ID:

• Pre-train a video Re-ID model on a large dataset, such as the MARS (Zheng et al.,
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2016a) or DukeMTMC-VideoReID (Wu et al., 2018a) datasets. The pre-training
process involves training the model to recognize individuals across different cam-
eras and environments.

• Select a small amount of unlabeled videos from the target domain, such as surveil-
lance footage from a new location or environment.

• Use a generator network similar to our proposed IPES-GAN in Chapter 3 to create
synthetic videos that are similar to the target domain. The generator network takes
in the pre-trained model and a set of random noise vectors as input, and outputs
a set of synthetic videos that are similar to the target domain. The generator
network is trained using adversarial training to create videos that are difficult for
a discriminator network to distinguish from real videos from the target domain.

• Use a diffusion model (Wang et al., 2021b; Luo et al., 2022) to propagate similar-
ity information between the synthetic videos and the real videos from the target
domain. The diffusion model takes in the synthetic videos and the real videos, and
outputs a set of similarity scores that indicate how similar each pair of videos is to
each other. The similarity scores are used to update the weights of the pre-trained
model, such that the model becomes more adept at recognizing individuals in the
target domain.

• Evaluate the performance of the adapted model on a set of labeled videos from
the target domain. The adapted model should be able to recognize individuals
in the target domain with high accuracy, despite not being explicitly trained on
labeled data from that domain.

8.3.2 Future of Adversarial Attacks in Wasserstein Space

Inspired from our work in Chapter 4, we plan to develop robust adversarial attack in

Wasserstein space. Here are some potential future directions for robust adversarial at-

tack in Wasserstein space.

• Adversarial attacks are often developed for specific models and datasets, and may
not transfer well to other models or datasets (Papernot et al., 2016a; Ilyas et al.,
2019; Wang et al., 2021a). This limits the practical applicability of adversarial
attacks. One potential future direction is to develop more transferable Wasserstein
attacks, such as those that target specific features or properties of the model that
are likely to be shared across different models.

• Many existing adversarial attacks rely on small perturbations to the input data,
which may not reflect the full range of possible manipulations (Hosseini and
Poovendran, 2019; Qin et al., 2019; Xiao et al., 2021). This limits the ability
to test the robustness of machine learning models to more complex and diverse
attacks. Another future direction can be the development of adversarial attacks
in Wasserstein space with the help of generative models that can generate more
diverse and complex adversarial examples.
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8.3.3 Robustness to Adaptive Attacks

One of the main limitations of our existing adversarial defense technique proposed in

Chapter 5 is its susceptibility to adaptive attacks (Athalye et al., 2018a; Tramer et al.,

2020), where the attacker modifies their attack strategy to bypass the defense mech-

anism. Many existing defenses rely on the assumption that the attacker’s goal is to

produce the smallest possible perturbation, but this assumption may not hold for adap-

tive attackers that can generate more powerful attacks that can overcome the defense

mechanism.

One potential future direction to mitigate this limitation is to develop more robust

defenses that can withstand a broader range of attack strategies. This can involve ex-

ploring more advanced defense mechanisms, such as ensemble models (Tramèr et al.,

2017; AprilPyone and Kiya, 2020) or adversarial training with diverse attacks (Jang

et al., 2019; Jia et al., 2022). Another approach can be to incorporate more randomness

into the training process, which can make the model more resistant to attacks that rely

on deterministic gradients. In chapter 5, we add noise to feature vectors, similarly in or-

der to make our method robust against adaptive attacks, we can incorporate randomness

in other ways as mentioned below:

• Adding a small perturbation to the input data and minimizing the difference be-
tween the probability distributions of the original and perturbed output (Miyato
et al., 2018; Li et al., 2021c). Minimization in the probability distributions can
be achieved by KL divergence (Goldberger et al., 2003) or Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012) loss. It can improve the robustness of the
model against adaptive adversarial attacks.

• Adding random noise to the input data where the output is the most common
class predicted by the target model over multiple random perturbations, which
can improve the robustness of the model against adversarial attacks (Cohen et al.,
2019; Salman et al., 2022).
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