
DEEP CLUSTERING

By

ANURAG GOEL

(PhD19015)

Under the supervision of

Prof. Angshul Majumdar

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

NOVEMBER, 2023

DEEP CLUSTERING

By

ANURAG GOEL

PhD19015

A Thesis

submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

NOVEMBER, 2023

Certificate

This is to certify that the thesis titled Deep Clustering being submitted by Anurag

Goel to the Indraprastha Institute of Information Technology Delhi, for the award

of the degree of Doctor of Philosophy, is an original research work carried out

by him under my supervision. In my opinion, the thesis has reached the standard

fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree or diploma.

November, 2023

Prof. Angshul Majumdar

Indraprastha Institute of Information Technology Delhi

New Delhi 110020

Dedication

I dedicate this thesis to those who have been the pillars of my journey, providing
unwavering support, encouragement, and inspiration.

To my family, whose boundless love and sacrifices have been my foundation.
Your belief in me has fueled my determination to reach this academic milestone.
Special thanks to my wife Nidhi for her whole-hearted belief in me, constantly
motivating me, and for never leaving my side in this journey.

To my friends, who have been my companions through the highs and lows
of this academic adventure. Your camaraderie has made the challenges more
bearable and the successes more joyful.

To my professors and mentors, who have shared their knowledge generously and
guided me with wisdom. Your expertise has been a guiding light, shaping my
understanding and passion for this field.

This thesis is a testament to the collective support of these individuals, and
I am forever grateful for the impact you have had on my academic and personal
growth.

Anurag Goel

i

Acknowledgements

Completion of this doctoral dissertation was possible with the support of several
people. I would like to express my sincere gratitude to all of them.

First and foremost, I would like to express my sincere gratitude to my advi-
sor Prof. Angshul Majumdar, who has been an embodiment of everything I
expected from my advisor. I cannot thank him enough for the continuous sup-
port, patience, motivation, immense knowledge, valuable guidance, scholarly
inputs and consistent encouragement. This thesis and my growth in the past four
years are credits to his technical prowess and constant engagement in my work.
I am truly blessed to have him as my advisor.

I am much indebted to Dr. Saket Anand, Dr. Debarka Sengupta, Dr. A. V.
Subramanyam and Dr. A. Anil Kumar for their insightful comments and encour-
agement.

I am profoundly grateful to the Indraprastha Institute of Information Technology
for providing excellent infrastructure and research environment. I want to thank
the University Grants Commission for providing me a research fellowship that
helped me financially during my first year of Ph.D.

I want to express my sincere thanks to The Sengupta Laboratory headed by
Dr. Debarka Sengupta, Dr. Emilie Chouzenoux and Dr. Giovanni Chierchia for
their research collaborations.

This thesis would be incomplete without the mention of my support system
from the SALSA lab. I thank all my friends and colleagues in this journey,
Jyoti Maggu, Aanchal Mongia, Shikha Singh, Shalini Sharma, Pooja Gupta,
Priyadarshini Rai, and Kriti Kumar for always keeping me motivated and hopeful
in bad times of this journey.

ii

I am profoundly grateful to my employer organization Delhi Technological
University (DTU) for helping me financially during my Ph.D. journey. I would
also like to thank my colleagues in DTU for being supportive throughout this
journey.

This thesis and my Ph.D. itself would not have seen culmination if not for
my family. My parents have given me the freedom to choose, my wife has
given me the confidence to decide and a faith that no matter what, I have them
watching my back. To my beloved daughter Taarini, I would like to express
my thanks for always cheering me up. My gratitude to my family is incom-
plete without special mention for my sisters and brother-in-laws, for always
believing in me, for the endless love and supporting me throughout my life. I
thank my all time friends, Himanshu and Ashutosh, for the unconditional support.

I also express my regards to all those who supported me in any respect dur-
ing the completion of my Ph.D.

Anurag Goel

iii

Abstract

The traditional way of clustering is first extracting the feature vectors according
to domain-specific knowledge and then employing a clustering algorithm on the
extracted features. Deep learning approaches attempt to combine feature learning
and clustering into a unified framework which can directly cluster original images
with even higher performance. Therefore, deep clustering approaches rely on
deep neural networks for learning high-level representations for clustering.

Auto-encoders are a special instance of deep neural networks which are able
to learn representations in a fully unsupervised way. Majority of the prior works
on deep clustering are based on auto-encoder framework where the clustering
loss is embedded into the deepest layer of an auto-encoder. The problem with
auto-encoder is that they require training an encoder and a decoder network. The
clustering loss is incorporated after the encoder network; the decoder network
is not relevant for clustering. The need of learning an encoder and a decoder
network leads to learning twice the number of parameters as that of a standard
neural network. This may lead to overfitting especially in the cases where the
number of data instances are limited. Moreover, the current state-of-the-art deep
clustering approaches are not able to capture the discriminative information in
the learned representations due to the lack of supervision [1].

To alleviate the aforementioned problems, we have proposed deep clustering
approaches based on Dictionary Learning, Transform Learning, and Convolu-
tional Transform Learning (CTL) frameworks. We have embedded two popular
clustering algorithms – K-means clustering and Sparse Subspace clustering. The
limitation of unsupervised learning in existing deep clustering approaches is mit-
igated by incorporating contrastive learning in CTL framework. The proposed
deep clustering approaches are evaluated using datasets from multiple domains
including computer vision, hyperspectral imaging, text and multiview datasets.
The results demonstrate the superiority of the proposed approaches over the
current state-of-the-art deep clustering approaches.

iv

Contents

Dedication i

Acknowledgements ii

Abstract iv

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Problem Statement . 3

1.2 Background . 3

1.2.1 Auto-encoders based deep clustering approaches 4

1.2.2 Convolutional Neural Network (CNN) based deep clus-
tering approaches . 5

1.2.3 Generative Adversarial Network (GAN) based deep clus-
tering approaches . 6

1.2.4 Contrastive Learning based deep clustering approaches . 7

1.3 Datasets Description . 8

1.3.1 Computer Vision datasets 9

1.3.2 Hyperspectral Images datasets 11

v

1.3.3 Text datasets . 12

1.3.4 Mutli-view datasets . 13

1.4 Evaluation Metrics Description 15

1.4.1 Evaluation Metrics for Clustering 15

1.4.2 Evaluation Metrics for Hyperspectral Imaging 17

1.4.3 Evaluation Metrics for Text datasets 18

1.5 Research Contributions . 19

1.5.1 Dictionary Learning based deep clustering approaches . 20

1.5.2 Transform Learning based deep clustering approaches . 21

1.5.3 Convolutional Transform Learning based deep cluster-
ing approaches . 22

List of Abbreviations 1

2 Dictionary Learning based Deep Clustering Approaches 25

2.1 Dictionary Learning . 25

2.2 Deep Dictionary Learning . 27

2.3 Proposed Approaches . 29

2.3.1 Dictionary Learning based K-means clustering 29

2.3.2 Dictionary Learning based Sparse Subspace clustering . 32

2.3.3 Deep Dictionary Learning based K-means clustering . . 35

2.3.4 Deep Dictionary Learning based Sparse Subspace clus-
tering . 40

2.4 Experiments and Results . 43

2.4.1 Computer Vision . 43

2.4.2 Hyperspectral Imaging 45

2.5 Summary . 53

vi

3 Transform Learning based Clustering Approaches 54

3.1 Transform Learning . 54

3.2 Deep Transform Learning . 58

3.3 Literature Review . 60

3.4 Proposed Approaches . 62

3.4.1 Transformed K-means Clustering 62

3.4.2 Deeply Transformed K-means Clustering 65

3.5 Experiments and Results . 72

3.5.1 Text Datasets . 72

3.5.2 Hyperspectral Imaging 74

3.5.3 Comparison with Deep Dictionary Learning based deep
clustering approaches 78

3.6 Summary . 80

4 Convolutional Transform Learning based Clustering Approaches 81

4.1 Convolutional Transform Learning (CTL) 82

4.2 Proposed Approaches . 84

4.2.1 Deep Convolutional K-Means Clustering 84

4.2.2 Deep Convolutional Sparse Subspace Clustering 86

4.2.3 Contrastive Deep Convolutional Transform K-means
Clustering . 89

4.2.4 DeConFCluster: Deep Convolutional Transform Learn-
ing based Multiview Clustering Fusion Framework . . . 96

4.3 Experiments and Results . 108

4.3.1 Computer Vision datasets 108

4.3.2 Hyperspectral Imaging 119

4.3.3 Multiview datasets . 124

vii

4.4 Summary . 130

5 Conclusion 132

5.1 Summary of Contribution . 132

5.1.1 Dictionary Learning based clustering approaches 132

5.1.2 Transform Learning based clustering approaches 133

5.1.3 Convolutional Transform Learning based clustering ap-
proaches . 133

5.2 Future Work . 135

References 137

viii

List of Tables

1.1 Computer Vision datasets: Statistics 11

1.2 Text datasets: Statistics . 12

1.3 MVC datasets: Statistics . 14

2.1 DL+K-means and DL+SSC: Clustering Results 44

2.2 DL+K-means and DL+SSC: Runtime comparison (in seconds) . 45

2.3 DDLS: Clustering Results . 50

2.4 DDLS: Ablation Studies Results 50

2.5 DDLS: Runtime Comparison (in seconds) 53

3.1 DTLK: Table lookup . 72

3.2 TLK: Clustering Results on TDT2 73

3.3 TLK: Clustering Results on Reuters 73

3.4 TLK: Clustering Results on Newsgroup 73

3.5 DTLK: Runtime comparison (in seconds) 76

3.6 Comparison of DLK, DLS, DDLK and DTLK 79

4.1 DCKM: Clustering Results . 109

4.2 DCKM: Ablation Studies Results 110

4.3 Contrastive DCTLK: Hyperparameters Settings 113

4.4 Contrastive DCTLK: Clustering Results 114

ix

4.5 Contrastive DCTLK: Ablation Results on K-means loss and
Contrastive loss . 119

4.6 DCTLSSC: Results (Mean ± Standard Deviation) 121

4.7 DCTLSSC: Runtime comparison (in seconds) 122

4.8 DeConFCluster: Hyperparameters settings 124

4.9 DeConFCluster: Clustering Results (All the metrics are in (%)) . 127

4.10 DeConFCluster: Ablation Studies Results on λ, µ 128

4.11 DeConFCluster: Ablation Studies Results on K-Means Regularizer129

4.12 DeConFCluster: Ablation Studies Results on Piecemeal and
Proposed Formulation . 129

x

List of Figures

1.1 Sample Images of Yale Faces dataset 9

1.2 Sample Images of Extended YaleB dataset 9

1.3 Sample Images of COIL20 dataset 10

1.4 Sample Images of Olivetti Faces dataset 10

2.1 Dictionary Learning (DL) . 26

2.2 Neural network interpretation of DL 27

2.3 Schematic diagram: Deep Dictionary Learning 27

2.4 Schematic Diagram of Proposed DL based Clustering Algorithms 35

2.5 DL+K-means and DL+SSC: Empirical Convergence plots. Here,
x-axis represents the number of iterations and y-axis represents
the normalized cost function value 46

2.6 Spatio-spectral Feature Extraction 47

2.7 DDLS: Empirical Convergence plot 52

3.1 Transform learning (TL) . 55

3.2 Neural network interpretation of TL 56

3.3 Schematic diagram: Deep Transform learning 59

3.4 Schematic Diagram of Proposed TL+Kmeans Algorithm 65

3.5 TLK: Empirical Convergence Plot (2 clusters) for TDT2 74

3.6 TLK: Empirical Convergence Plot (2 clusters) for Reuters 74

xi

3.7 TLK: Empirical Convergence Plot (2 clusters) for Newsgroup . . 75

3.8 DTLK: Empirical Convergence Plot (20 bands) 77

3.9 DTLK: Detailed Results . 77

4.1 Overview of the proposed DCKM architecture. L represents
number of DCTL layers, M c

l - filter size and F c
l - #filters of the

respective layer l and channel c. SELU is the activation function. 86

4.2 Contrastive DCTLK Architecture 93

4.3 General view of the DeConFuse Architecture. C = 5 represents
the number of DeepCTL networks/channels, L = 2 is the num-
ber of DCTL layers, M c

ℓ is the filter size and F c
ℓ is the number

of filters of the respective layer ℓ and channel c. 106

4.4 DeConFCluster Architecture. C represents the number of DeepCTL
networks/channels, L is the number of DCTL layers, M c

ℓ is the
filter size and F c

ℓ is the number of filters of the respective layer ℓ
and channel c. 108

4.5 DCKM: Empirical Convergence Plot 111

4.6 Contrastive DCTLK: Empirical Convergence Plots 115

4.7 Contrastive DCTLK: Ablation Results on K-means loss regular-
izer (β) . 115

4.8 Contrastive DCTLK: Ablation Results on Contrastive loss regu-
larizer (δ) . 116

4.9 Contrastive DCTLK: Ablation Results on Learning rate 117

4.10 Contrastive DCTLK: Ablation Results on µ, ϵ regularizers . . . 118

4.11 DCTLSSC: Ablation Results 123

4.12 DeConFCluster: Empirical Convergence Plots 127

4.13 DeConFCluster: Ablation Results on λ, µ 128

4.14 DeConFCluster: Ablation Results on K-Means Regularizer . . . 129

xii

Chapter 1

Introduction

The conventional clustering algorithms extract the feature vectors according to

domain-specific knowledge and employ a clustering algorithm on the extracted

features. Deep learning approaches attempt to combine feature learning and

clustering into a unified framework which can directly cluster original images

with even higher performance.

The regular neural network projects data to form a representation which is

then used for supervised tasks. During training, the network weights are learned

through various techniques including gradient descent, backpropagation and

others. However, when a neural network does not have any output, the backprop-

agation leads to a trivial solution where the network weights and representations

are both zeros, regardless of the cost function used. This makes the conventional

feedforward neural networks unsuitable for unsupervised representation learning

as even incorporating an unsupervised clustering loss does not change the trivial

solution.

1

Prior research on deep clustering [2–5] has addressed the aforementioned

problem by incorporating the clustering losses within the auto-encoder frame-

work. Auto-encoders are typically used for unsupervised learning tasks like

feature learning, data reconstruction etc. An auto-encoder is composed of an

encoder and a decoder network. The encoder network maps the input data into a

lower-dimensional latent space and the decoder network decodes the encoded

representation back to the original input space. This allows the auto-encoders

to capture meaningful representations of data and makes them well-suited for

embedding and clustering tasks. The auto-encoders based deep clustering ap-

proaches embed the clustering loss in the latent space after the encoder.

The limitation of auto-encoder is that it requires training an encoder and a

decoder network. The clustering loss is incorporated after the encoder network;

the decoder network is not relevant for clustering. The need of learning an

encoder and a decoder network leads to learning twice the number of parameters

as that of a standard feedforward neural network. This may lead to overfitting

especially in the cases where the number of data instances are limited [6].

Moreover, the current state-of-the art deep clustering approaches are not able to

capture the discriminative information in the learned representations due to the

lack of supervision [1].

2

1.1 Problem Statement

The current state-of-the-art deep clustering approaches are majorly based on auto-

encoders which comprised of encoder-decoder networks. The auto-encoders

based deep clustering approaches tend to overfit in data constrained scenarios

due to the requirement of learning the weights of encoder as well as decoder.

This research dissertation aims to propose the deep clustering approaches based

on Deep Dictionary Learning, Deep Transform Learning and Convolutional

Transform Learning frameworks. In this dissertation, we have targeted two

popular clustering techniques – K-means clustering and Sparse Subspace cluster-

ing, to embed in the deep learning frameworks. The proposed deep clustering

approaches need to learn fewer parameteres; thus, alleviate the problem of over-

fitting in auto-encoders based deep clustering approaches and achieve good

performance specially in data constrained scenarios.

1.2 Background

Deep clustering approaches use deep learning based networks to learn the deep

representations and feed the learnt representations into shallow clustering meth-

ods. Several deep learning based architectures are implemented to learn the

deep representations for clustering. We will briefly discuss the various current

state-of-the art deep clustering approaches based on the deep learning model

architecture used for learning the representations for clustering.

3

1.2.1 Auto-encoders based deep clustering approaches

One of the initial research studies on deep learning based clustering is based on

stacked auto-encoder; in there the representation generated from the deepest layer

of auto-encoder was fed into a separate clustering algorithm such as k-means or

spectral clustering [7]. The auto-encoder regenerative loss and the clustering loss

were optimized in a piecemeal fashion. Later, the limitations of piecemeal train-

ing were highlighted and a jointly learnt formulation of stacked auto-encoder and

sparse subspace clustering was proposed in [2]. The jointly learnt formulation

achieved better performance as compared to the piecemeal version. Another

deep clustering model was proposed in [3] in which K-means clustering with Stu-

dent’s t-distribution kernel as the distance metric was embedded in the stacked

auto-encoder and trained in a joint end-to-end fashion. K-means clustering

with standard Euclidean distance was embedded in the auto-encoder in [4, 5].

Later, deep clustering approaches based on convolutional auto-encoder [8] and

contractive auto-encoder [9] were proposed. Semi-supervised Deep Embedded

Clustering (SDEC) integrated the pairwise constraints to enhance the feature

learning process in Deep Embedded Clustering [10]. Deep Clustering under

Similarity and Reconstruction constraints (DCSR) jointly optimized the Adaptive

Siamese loss and Reconstruction loss to flexibly account for similarities and

promote clustering stability [11]. Spectral clustering loss was embedded in the

auto-encoder in [12]. The robustness of Deep K-means approach proposed in [5]

was improved in [13] by replacing K-means with hierarchical K-means. A dual

variational auto-encoder structure is leveraged to impose the reconstruction error

4

for the latent embedding and its corresponding noise counterpart [14]. Recently,

k-Deep Variational Autoencoder (k-DVAE) is proposed, which employs multiple

auto-encoders to produce enhanced latent representations for improved clustering

outcomes [15].

The limitation of auto-encoder is that it requires training an encoder and a

decoder network. The clustering loss is incorporated after the encoder network;

the decoder network is not relevant for clustering. The need of learning an

encoder and a decoder network leads to learning twice the number of parameters

as that of a standard feedforward neural network. This may lead to overfitting

especially in the cases where the number of data instances are limited [6].

1.2.2 Convolutional Neural Network (CNN) based deep clustering approaches

The agglomerative clustering is combined with Convolutional Neural Network

in a recurrent manner in [16]. This approach divided the time steps into multiple

periods and in each period, merging of clusters and representation learning are

performed in forward pass and backward pass respectively. DeepClust jointly

learns a Convolutional Neural Network and cluster assignments of resulting

features [17]. DeepClust iterates between applying k-means clustering on the

features generated by the Convolutional Neural Network and updating its weights

by predicting the cluster assignments as pseudo-labels in a discriminative loss.

A deep clustering framework based on Gated Convolutional Neural Network is

proposed in [18]. Gated CNN uses a gated linear unit as non-linear activation

function.

5

CNN-based deep clustering approaches are highly sensitive to noise and

variations in input data. Additionally, CNNs are primarily used as supervised

learning models. The filters in CNNs are learned in a data-driven manner and

are not predefined or handcrafted. However, there is no inherent guarantee that

each learned filter will be completely unique. There are several reasons for

this like redundancy in training data, learning of local features, random weights

initialization, and regularization techniques. Thus, learned representations might

be redundant in CNN-based deep clustering approaches [19].

1.2.3 Generative Adversarial Network (GAN) based deep clustering approaches

ClusterGAN samples the latent variables from a mixture of discrete and continu-

ous latent variables and coupled them with an inverse-mapping network, which

projects the data to the latent space. The inverse-mapping network is trained with

a clustering-specific loss and thus achieves clustering in latent space [20]. Deep

Subspace Clustering via Dual Adversarial Generative networks (DSC-DAG)

and Self-Supervised Deep Subspace Clustering with Adversarial Generative

networks (S2DSC-AG) are proposed in [21]. In DSC-DAG, the distributions

of both the inputs and corresponding latent representations are learnt via ad-

versarial training simultaneously. In S2DSC-AG, a self-supervised information

learning module substitutes for adversarial learning in the latent space, since

both of them play the same role in learning discriminative latent representations.

HC-MGAN is a deep clustering method for hierarchical clustering based on

GANs with multiple generators [22]. Each generator of MGAN tends to generate

6

data that correlates with a sub-region of the real data distribution. This clustered

generation is used to train a classifier for inferring from which generator a given

image came from, thus providing a semantically meaningful clustering for the

real distribution.

The limitations in GAN-based deep clustering algorithms are difficulty in

convergence and mode collapse problems due to GAN architecture [19].

1.2.4 Contrastive Learning based deep clustering approaches

The deep clustering approaches discussed so far are unsupervised, they may not

be capable of capturing discriminative information in the learned representa-

tions because of the absence of supervision. To alleviate the negative impact

of unsupervised learning in clustering, the concept of Contrastive learning is

introduced in Contrastive Clustering [23]. Contrastive Learning is a technique

for self-supervised learning that enables a model to learn data features without

relying on labeled samples. The approach involves generating pairs of positive

and negative data samples, and maximizing similarity between the positive pairs

while minimizing similarity between the negative pairs. Contrastive Clustering

uses data augmentation to generate positive pairs and negative pairs of data

samples that are projected into feature space for instance-level and cluster-level

contrastive learning. Contrastive Deep Embedded Clustering integrated the con-

trastive loss in stacked denoising auto-encoders to obtain more representative

features for clustering [1]. But Contrastive Deep Embedded Clustering suffers

with the problem of overfitting in auto-encoders specially in data constrained

7

scenarios [6].

The prior studies on deep clustering are based on auto-encoders, Convo-

lutional Neural Networks and Generative Adversarial Networks. The auto-

encoders based approaches have the limitation of high number of learnable pa-

rameters due to encoder-decoder network architecture; CNN-based approaches

do not guarantee to learn unique and meaningful filters due to lack of supervision

and are highly susceptible to noise in input. GAN-based approaches suffer with

the limitations of complex GAN architecture. Moreover, all these approaches are

not able to learn the representations containing discriminative information for

clustering due to lack of supervision. Contrastive learning based clustering over-

comes this problem but requires data augmentation to compute the contrastive

loss.

1.3 Datasets Description

This dissertation propose deep clustering approaches based on three differ-

ent deep learning based frameworks namely Dictionary Learning, Transform

Learning and Convolutional Transform Learning. While proposing novel deep

clustering approaches, multiple datasets covering different domains are explored

and used for the evaluation purpose. It helped us realize that the proposed deep

clustering approaches are generic enough to be applied to the various applica-

tion domains of clustering. Thus, the various datasets used for evaluating the

approaches proposed in this dissertation are introduced here.

8

Figure 1.1: Sample Images of Yale Faces dataset

Figure 1.2: Sample Images of Extended YaleB dataset

1.3.1 Computer Vision datasets

The various computer vision datasets used for evaluating the performance of the

proposed deep clustering approaches in this dissertation are illustrated below:

• Yale Faces1: This dataset contains 165 images of 15 people in grayscale

mode. There are 11 images per individual corresponding to 11 different

facial expressions or configurations. The images are of size 150*150 pixels.

Fig. 1.1 shows sample images of this dataset.

• Extended YaleB [24]: This dataset contains 2414 facial images of 38 indi-

viduals. There are approximately 64 images per individual. Fig. 1.2 shows

sample images of this dataset.

• COIL20 [25]: This dataset contains 1440 grayscale images of 20 objects.

There are approximately 72 images per object. Fig. 1.3 shows sample

images of this dataset.

• ARFaces [26]: In this dataset, there are 2000 facial images correspond to
1http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html

9

Figure 1.3: Sample Images of COIL20 dataset

Figure 1.4: Sample Images of Olivetti Faces dataset

different facial expressions, illuminations conditions and occlusions.

• Olivetti Faces2: This dataset comprises of 400 facial images of 40 individu-

als. There are ten images per individual corresponding to different lighting

conditions, time, facial expressions, and facial details. The image size is

64*64 pixels. Fig. 1.4 shows sample images of this dataset.

• Pixraw10P Faces [27]: There are 100 images over 10 classes with 10000

features in this dataset.

The complete statistics of all the above mentioned datasets can be referred

from Table 1.1.
2https://scikit-learn.org/0.19/datasets/olivetti_faces.html

10

Table 1.1: Computer Vision datasets: Statistics

Datasets #Samples #Classes #Features
Yale Faces 165 15 22500

Extended YaleB 2414 38 2016
COIL20 1440 20 1024
ARFaces 2000 100 540

Olivetti Faces 400 40 4096
Pixraw10P Faces 100 10 10000

1.3.2 Hyperspectral Images datasets

The various hyperspectral images datasets used for evaluating the performance

of the proposed deep clustering approaches in this dissertation are illustrated

below:

• Indian Pines3: The Indian Pines dataset was collected by the airborne

visible/infrared imaging spectrometer in Northwestern Indiana, with a size

of 145 × 145 pixels with a spatial resolution of 20 m per pixel and 10-nm

spectral resolution over the range of 400–2500 nm. As is the usual protocol,

the work uses 200 bands, after removing 20 bands affected by atmospheric

absorption. There are 16 classes.

• Pavia University4: This dataset is acquired by a reflective optics system

imaging spectrometer (ROSIS). The image is of 610 × 340 pixels covering

the Engineering School at the University of Pavia, which was collected

under the HySens project managed by the German Aerospace Agency

(DLR). The ROSIS-03 sensor comprises 115 spectral channels ranging from

430 to 860 nm. In this dataset, 12 noisy channels have been removed and
3https://paperswithcode.com/dataset/indian-pines
4https://paperswithcode.com/dataset/pavia-university

11

the remaining 103 spectral channels are investigated. The spatial resolution

is 1.3 m per pixel. The available training samples of this dataset cover nine

classes of interest.

1.3.3 Text datasets

The various text datasets used for evaluating the performance of the proposed

deep clustering approaches in this dissertation are illustrated below:

• TDT2 corpus5: This dataset is a collection of 9394 documents collected

from six English language news sources on daily basis for a duration of six

months.

• Reuters-215785: This dataset is a collection of manually categorized 8293

newswire stories from Reuters Ltd.

• 20 Newsgroups5: This dataset is a collection of 18846 documents.

The complete statistics of all the above mentioned datasets can be referred

from Table 1.2.
Table 1.2: Text datasets: Statistics

Datasets #Samples #Classes #Features
TDT2 9394 30 36771

Reuters-21578 8293 65 18933
20 Newsgroups 18846 20 26214

5http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

12

1.3.4 Mutli-view datasets

The proposed novel mutiview clustering framework is evaluated on various

multiview datasets which are listed below:

• 100leaves [28]: It contains one hundred plant species, each of which has

16 samples per specie. Thus, there are 100 clusters and 1600 total samples.

For each sample, shape descriptor, fine scale margin and texture histogram

are given.

• Amsterdam Library of Object Images (ALOI) [29]: ALOI dataset consists

of 11025 images of 100 small objects. Every image is represented using

four features namely - Color similarity, HSV, RGB, and Haralick features.

• Mfeat [28]: Mfeat dataset is from the UCI repository that contains 2000

samples of handwritten digits (0-9). Each image of this dataset is represented

using six different features.

• WebKB [28]: It consists of 203 web pages with four classes collected from

computer science departments of various universities. Each web page is

attributed by the page’s content, hyperlink’s anchor text of the hyperlink

and its title text.

The complete statistics of all the datasets mentioned above can be referred from

Table 1.3.

13

Table 1.3: MVC datasets: Statistics

Datasets #Samples #Classes #Views

100leaves 1600 100 3

ALOI 11025 100 4

Mfeat 2000 10 6

WebKB 203 4 3

The motivation for choosing the above datasets for evaluating the proposed

deep clustering approaches can be driven by several factors:

• Diversity: These datasets cover a wide range of data types, including facial

images, object images, remote sensing data, text data, and more. Their

diversity can help researchers evaluate the performance and versatility of

deep clustering algorithms across different domains and complexities.

• Availability and Benchmarking: These datasets are readily accessible,

well-documented and widely used benchmarks. This allows for mean-

ingful benchmarking and facilitates fair comparisons between different

approaches.

• Real-world Applications: The demonstration of proposed deep clustering

approaches on these datasets make the proposed approaches applicable in

practical scenarios. For example, clustering facial images is important in

various real-world applications, such as face recognition, image retrieval,

and surveillance systems. Hyperspectral imaging datasets like Pavia Uni-

versity and Indian Pines are important for land cover classification and

14

environmental monitoring.

• Size and Complexity: These datasets vary in terms of size and complexity.

For example, Olivetti Faces is relatively small and simple, making it suitable

for initial experimentation and prototyping. In contrast, Extended Yale B

and ARFaces contain a larger number of images with variations in lighting,

pose, and expression, which can challenge the clustering model’s robustness

and generalization capabilities.

1.4 Evaluation Metrics Description

This section presents the various evaluation metrics used to evaluate the perfor-

mance of the proposed deep clustering approaches in this dissertation.

1.4.1 Evaluation Metrics for Clustering

The various metrics used to evaluate the proposed approaches on computer vision

datasets are Accuracy, Normalized Mutual Information (NMI), and Adjusted

Rand Index (ARI). These evaluation metrics are well-suited for evaluating the

proposed deep clustering methods on computer vision datasets since they provide

a quantitative, interpretable, and comprehensive assessment of clustering quality.

These metrics address the unique challenges of working with visual data and are

widely adopted within the computer vision community, promoting consistency

and reproducibility in research. These evaluation metrics are described below:

15

• Accuracy: The accuracy is defined as the ratio of the number of data

instances that are assigned the same cluster as in the ground truth to the

total number of data instances [30].

• Normalized Mutual Information (NMI): This metric computes the normal-

ized measure of similarity between the labels of same data instances [30].

The range of NMI is [0,1] where 0 signifies no correlation and 1 signifies

the perfect correlation. The formula is given by:

NMI =
I(l, c)

max(H(l), H(c))
(1.1)

where I(l, c) denotes the mutual information between the true label l and

the assigned cluster c and H denotes the entropy. It is defined as follows:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) · log
(

p(x, y)

p(x) · p(y)

)
(1.2)

Entropy measures the uncertainty and can be computed as follows:

H(X) = −
∑
x∈X

p(x) · log(p(x)) (1.3)

• Adjusted Rand Index (ARI): ARI measures the similarity between two

clusters by considering all pairs of data instances that are assigned to the

same or different clusters in the actual and predicted labels [31]. The range

of ARI is [-1,1]. The higher the ARI value, the better is the clustering.

ARI =
(RI − E)

(max(RI)− E)
(1.4)

16

where RI is the Rand Index and E is the Expected Rand Index value for

random clustering.

RI =
(a+ b)(

n
2

) (1.5)

where a and b represents the number of times a pair of elements belongs

to the same cluster and different clusters respectively across two clustering

methods.
(
n
2

)
is the number of unordered pairs in a set of n elements. Here,

max(RI) = 1.

E =

∑
(
(
ni

2

)
) ∗

∑
(
(
nj

2

)
)(

N
2

) (1.6)

where ni is the number of samples in cluster i, nj is the number of samples

in cluster j and N is the total number of samples.

1.4.2 Evaluation Metrics for Hyperspectral Imaging

For remote sensing, Overall Accuracy, Average Accuracy, and Kappa Coefficient

are well-justified metrics for evaluating deep clustering methods. These metrics

provide a quantitative, interpretable, and comprehensive assessment of clustering

quality, taking into account the unique characteristics and objectives of remote

sensing applications. These metrics are widely accepted and used within the

remote sensing and geospatial analysis communities, making them valuable tools

for assessing the effectiveness of deep clustering methods in this domain. These

evaluation metrics are described below:

• Overall Accuracy (OA): It is a measure of the proportion of correctly

classified pixels or samples over the total number of pixels or samples in

17

the hyperspectral image [32].

• Average Accuracy (AA): It is a metric that calculates the average accuracy of

each class separately. It provides a more detailed assessment of classification

performance compared to Overall Accuracy [33].

• Kappa Coefficient (κ): It is a statistical measure that assesses the agreement

between the observed classification and a random classification. It takes

into account the agreement that would be expected by chance [34].

κ =
OA− EA
1− EA

(1.7)

where OA is the Overall Accuracy and EA is the Expected Accuracy which

can be calculated as follows:

EA =

∑N
i=1((a) ∗ (b))

N 2
(1.8)

where a is the fraction of pixels or samples in the hyperspectral image that

belongs to class i, b is the fraction of pixels or samples in the hyperspectral

image that is assigned into class i by clustering algorithm and N is the total

number of pixels or samples in the hyperspectral image.

1.4.3 Evaluation Metrics for Text datasets

The evaluation metrics used for evaluating the proposed deep clustering method

on text datasets are Purity and Entropy. These evaluation metrics align well with

the objectives and characteristics of text data. These metrics provide interpretable

18

and relevant assessments of clustering quality, addressing the unique challenges

and goals of text clustering tasks. Researchers and practitioners in natural

language processing and text analysis frequently use these metrics to assess and

compare the performance of clustering algorithms on text data. These evaluation

metrics are described below -

• Purity: Purity measures the extent to which data points within each cluster

are assigned to the same true class [35]. Purity is given by,

Purity =
1

n

r∑
k=1

max1≤l≤q n
l
k (1.9)

where nlk is the number of samples in cluster k that belong to original class

l. A larger purity value indicates better clustering performance.

• Entropy: Entropy measures how classes are distributed on various clusters

[35]. Entropy is given by,

Entropy =
1

n log2 q

r∑
k=1

q∑
l=1

nlk log2
nlk
nk

(1.10)

where nk =
∑

l n
l
k. Generally, a smaller entropy value corresponds to a

better clustering quality.

1.5 Research Contributions

This dissertation has three main objectives: 1. To propose novel Dictionary

Learning based deep clustering approaches; 2. To propose novel Transform

19

Learning based deep clustering approaches; and 3. To propose novel Convolu-

tional Transform Learning based deep clustering approaches.

Our contributions towards these objectives are as follows:

1.5.1 Dictionary Learning based deep clustering approaches

We have proposed two dictionary learning based deep clustering algorithms -

DL+K-means and DL+SSC in [36]. In DL+K-means and DL+SSC algorithms,

K-means clustering loss and Sparse Subspace Clustering (SSC) loss are em-

bedded in dictionary learning formulation respectively and the combined loss

functions are jointly optimized in an end-to-end fashion. The proposed algo-

rithms are tested on several computer vision datasets and the results of the

proposed algorithms show improvement over the current state-of-the art deep

clustering approaches. Next, we have proposed another novel deep clustering

method DDLK i.e. Deep Dictionary Learning based K-means, that embeds the

K-means clustering loss in Deep Dictionary Learning (DDL) framework [37].

The joint formulation of DDL loss and K-means clustering loss is solved via

Alternative Directed Multipliers Method (ADMM). The proposed DDLK algo-

rithm is applied for scRNA-seq clustering to leverage pathway enrichment scores

and yield robust grouping of single cells. We have also proposed DDL+SSC

algorithm that incorporates SSC loss in the DDL formulation [38]. DDL+SSC

algorithm is applied for hyperspectral image clustering where DDL nonlinearly

transforms the data such that the transformed representation (of the data) is sepa-

rable into subspaces. Comparison with state-of-the-art methods in hyperspectral

20

image clustering shows the superiority of the proposed DDL+SSC algorithm.

The publications related to the contributions towards the first research objec-

tive of this dissertation are as follows:

1. Anurag Goel, and Angshul Majumdar. "Clustering Friendly Dictionary

Learning." In Neural Information Processing: 28th International Conference,

ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings,

Part I 28, pp. 549-557. Springer International Publishing, 2021.

2. Sarita Poonia, Anurag Goel, Smriti Chawla, Namrata Bhattacharya, Priyadarshini

Rai, Yi Fang Lee, Yoon Sim Yap et al."Marker-free characterization of

full-length transcriptomes of single live circulating tumor cells." Genome

Research 33, no. 1 (2023): 80-95.

3. Anurag Goel, and Angshul Majumdar. "Sparse subspace clustering friendly

deep dictionary learning for hyperspectral image classification." IEEE Geo-

science and Remote Sensing Letters 19 (2021): 1-5.

1.5.2 Transform Learning based deep clustering approaches

We have proposed two deep clustering frameworks based on the paradigm

of Transform learning. The first approach embeds the K-means clustering

loss in Transform learning framework in joint end-to-end fashion and the joint

formulation is solved via ADMM method [39]. The proposed approach is

applied for document clustering and proves to be more effective than the current

state-of-the art deep clustering approaches. In the second approach, we propose

21

a joint formulation of K-means clustering and deep transform learning based

representation learning [40]. The ensuing joint formulation is solved via ADMM

method. Application of the proposed solution to the hyperspectral band selection

problem shows that the proposed solution improves over the current state-of-the-

art by a significant margin.

The publications related to the contributions towards the second research

objective of this dissertation are as follows:

1. Anurag Goel, and Angshul Majumdar. "Transformed K-means Clustering."

In 2021 29th European Signal Processing Conference (EUSIPCO), pp.

1526-1530. IEEE, 2021.

2. Anurag Goel, and Angshul Majumdar, "K-Means Embedded Deep Trans-

form Learning for Hyperspectral Band Selection", IEEE Geoscience and

Remote Sensing Letters 19 (2022): 1-5.

1.5.3 Convolutional Transform Learning based deep clustering approaches

We have proposed four Convolutional Transform Learning (CTL) framework

based deep clustering approaches. The first proposed CTL based approach is

Deep Convolution K-means clustering that integrates the K-means clustering

loss with Deep CTL (DCTL) framework in a joint end-to-end fashion [41]. The

proposed approach improves over the current state-of-the-art on several computer

vision datasets. We have also incorporated SSC loss in DCTL framework in

our next proposed approach DDL+SSC. The proposed DDL+SSC is applied

22

for hyperspectral band selection. Next, we propose DeConFCluster that applies

DCTL based K-means clustering in multiview clustering fusion framework. The

proposed framework jointly trains DCTL network, multichannel fusion network

and the K-Means clustering module; thus, the representations are diverse and

effective as these are guided by K-Means loss. The proposed framework gives

superior clustering performance than the current state-of-the-arts multiview

clustering approaches on several multiview datasets. Finally, we incorporated

contrastive learning in DCTL based K-means clustering framework to capture

the discriminative information in the learned representations. The proposed

framework outperforms the current state-of-the-art approaches on several facial

images datasets.

The publications related to the contributions towards the third research objec-

tive of this dissertation are as follows:

1. Anurag Goel, Angshul Majumdar, Emilie Chouzenoux, and Giovanni Chier-

chia. "Deep Convolutional K-Means Clustering." In 2022 IEEE Interna-

tional Conference on Image Processing (ICIP), pp. 211-215. IEEE, 2022.

2. Anurag Goel, Angshul Majumdar, "Sparse Subspace Clustering Incorpo-

rated Deep Convolutional Transform Learning for Hyperspectral Band

Selection" (Submitted in ICASSP 2024).

3. Pooja Gupta, Anurag Goel, Angshul Majumdar, Emilie Chouzenoux and

Giovanni Chierchia, “DeConFCluster: Deep Convolutional Transform

Learning based Multiview Clustering Fusion Framework" (Submitted in

23

Information Sciences).

4. Anurag Goel and Angshul Majumdar, "Contrastive Deep Convolutional

Transform K-means Clustering" (Submitted in Information Sciences).

The rest of this dissertation is structured as follows:

• The contributions towards the first research objective of the dissertation

are explained in Chapter 2. The four proposed deep clustering approaches

under these contributions are discussed in Section 2.3. The experiments and

results of these proposed approaches are presented in Section 2.4.

• The contributions towards the second research objective of the dissertation

are explained in Chapter 3. The two proposed deep clustering approaches

under these contributions are discussed in Section 3.4. The experiments and

results of these proposed approaches are presented in Section 3.5.

• The contributions towards the third research objective of the dissertation

are explained in Chapter 4. The four proposed deep clustering approaches

under these contributions are discussed in Section 4.2. The experiments and

results of these proposed approaches are presented in Section 4.3.

24

Chapter 2

Dictionary Learning based Deep Clustering

Approaches

This chapter presents four novel deep clustering approaches based on dictionary

learning framework. The proposed deep clustering approaches use either K-

means clustering or Sparse Subspace clustering to embed in the dictionary

learning framework. The proposed approaches are evaluated on the datasets from

two different kinds of domains: computer vision and hyperspectral imaging. The

results demonstrate that the proposed approaches outperform state-of-the-art

deep clustering techniques.

2.1 Dictionary Learning

Dictionary Learning (DL) [42] learns a dictionary/basis to synthesize the data

from the latent representation. Consider a data X consists of n training samples

where each sample consists of k features, a dictionary D that contains the basis

25

atoms to learn the representation Z. Then, the DL problem can be expressed as

follows:

X = DZ (2.1)

Dictionary learning aims at learning a dictionary D and the representation Z for

the input data X, as shown in figure 2.1. The euclidean cost function of DL is

Figure 2.1: Dictionary Learning (DL)

given by:

min
D,Z
∥X −DZ∥2F (2.2)

Here, X is the training data, D is the dictionary to be learned and Z represents

the coefficients. ∥∥2F represents the Frobenius norm.

The neural network interpretation of DL is shown in Figure 2.2 where dictio-

nary D is considered as an operator being applied on the feature representation

to generate the input data. In other words, dictionary D can be considered as

weights of the neural network interpretation which are being learned along with

the representative features. The direction of weights being learned is opposite to

that of a neural network architecture because of the inverse formulation of DL.

Please note that it is not a true neural network but its interpretation.

26

Figure 2.2: Neural network interpretation of DL

2.2 Deep Dictionary Learning

In Deep Dictionary Learning (DDL), the idea is to learn multiple levels of

dictionaries. DDL proposes to extend the shallow DL problem into multiple

levels. The idea of forming a deep architecture using DL stems arises from the

success of deep learning.

Figure 2.3: Schematic diagram: Deep Dictionary Learning

Mathematically, a DDL problem with two levels (shown in figure 2.3) can be

formulated as

X = D1ϕ(D2Z) (2.3)

27

where, X is the input data, D1 and D2 are dictionaries and Z are the coefficients.

D1 and D2 are separated by a non-linear activation function ϕ.

Greedy approach to DDL learns one layer of dictionary at a time. For a DDL

framework with two layers of dictionary, the first layer of dictionary learns from

the training data. The representations learned from the first layer of dictionary

are passed as input in the second layer of dictionary to learn the second layer

dictionary atoms and the representations. Same concept can be extended to

multiple layers of dictionary. The DDL formulation for multiple layers can be

expressed as:

X = D1ϕ(D2ϕ(...ϕ(DNZ))) (2.4)

where, D1, D2, .., DN are dictionaries corresponding to N levels of dictionaries

respectively. Z represents the final level representations and ϕ represents the non-

linear activation function. The corresponding optimization problem is expressed

as follows:

min
D1,D2...DN ,Z

∥X −D1ϕ(D2ϕ(...ϕ(DNZ)))∥2F + λ∥Z∥1 (2.5)

where, X is the input data, D1, D2, .., DN are dictionaries corresponding to N

levels of dictionaries respectively, Z is the final level representation, ϕ represents

the non-linear activation function and ∥∥2F represents the Frobenius norm. ∥Z∥1

is to promote sparsity on the learned coefficient and λ is a hyperparameter.

28

2.3 Proposed Approaches

2.3.1 Dictionary Learning based K-means clustering

We present our novel approach DL+K-means1 in which the K-means clustering

loss is embedded in the dictionary learning formulation. The popular way to

express K-means clustering is via the following formulation:

k∑
i=1

n∑
j=1

hij∥zj − µi∥22 (2.6)

hij =

1, if xj ∈ cluster i

0, otherwise
(2.7)

where zj denotes the jth sample and µi the ith cluster.

In [43], it was shown that the K-means clustering loss shown in equation 2.6

can be alternately represented in the form of matrix factorization as below:

∥Z − ZHT (HHT)−1H∥2F (2.8)

where Z is the data matrix formed by stacking zj’s as columns and H is the

matrix of binary indicator variables hij .

In our proposed formulation, the input to the K-means (Z) is not the raw data

but the coefficients learned from dictionary learning. In the proposed formulation,
1Anurag Goel and Angshul Majumdar, "Clustering Friendly Dictionary Learning." In Neural Information Processing: 28th

International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I 28, pp. 549-557.
Springer International Publishing, 2021.

29

we incorporated the K-means cost into the dictionary learning formulation as

shown below:

min
D,Z,H

∥X −DZ∥2F︸ ︷︷ ︸
Dictionary Learning loss

+λ∥Z∥1 + µ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

(2.9)

In equation 2.9, µ controls the relative importance of the K-means clustering loss.

To give equal importance to both the loss functions, we keep µ=1. The sparsity

promoting term ∥Z∥1 on the coefficients Z, which is usually there in dictionary

learning framework, is dropped in the proposed formulation. The sparsity penalty

is important for solving inverse problems but plays a less significant role in such

representation learning problems apart from being a regularizer. Furthermore, the

sparsity promoting term complicates the solution by requiring iterative updates.

So, the final proposed formulation is shown as below:

min
D,Z,H

∥X −DZ∥2F︸ ︷︷ ︸
Dictionary Learning loss

+ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

(2.10)

The equation 2.10 can be solved via Alternative Directed Multipliers Method

(ADMM) i.e. by updating each variable assuming the others to be constant. This

leads to the following sub-problems:

min
D
∥X −DZ∥2F (2.11)

min
Z

(∥X −DZ∥2F + ∥Z − ZH⊤(HH⊤)−1H∥2F) (2.12)

min
H
∥Z − ZH⊤(HH⊤)−1H∥2F (2.13)

30

The closed form update for D is given by –

Dk = XZ†k (2.14)

where k is the iteration number and † represents the pseudo-inverse.

To solve Z, we have to take the gradient of the expression in 2.12 and equate

it to 0

∇Z(∥X −DZ∥2F + ∥Z − ZH⊤(HH⊤)−1H∥2F) = 0 (2.15)

=⇒ D⊤X −D⊤DZ − Z(I −H⊤(HH⊤)−1H) = 0 (2.16)

=⇒ D⊤DZ + Z(I −H⊤(HH⊤)−1H) = D⊤X (2.17)

Equation 2.17 is a form of Sylvester’s equation AZ + ZB = C, where A = D⊤D,

B = (I −H⊤(HH⊤)−1H) and C = D⊤X . We can solve the Sylvester equation

in 2.17 to get the update for Z.

The last step is to update H by solving equation 2.13. To get the updated H,

we have to simply apply K-means clustering on the updated Z.

The algorithm is shown in a succinct fashion below. Once the convergence is

reached, the clusters can be found from H. Since the proposed formulation is a

non-convex function, we do not have any guarantees for convergence. We stop

the iterations when the H does not change significantly in subsequent iterations.

31

Algorithm 1: DL+K-means

1 Initialize: D0, Z0, H0;
2 repeat
3 Update Dk using 2.14;
4 Update Zk by solving Sylvester’s equation in 2.17;
5 Update Hk by applying K-means clustering on the updated Z;
6 until Convergence is reached;

2.3.2 Dictionary Learning based Sparse Subspace clustering

Here, our novel approach DL+SSC2 is presented in which the Sparse Subspace

Clustering (SSC) loss is embedded in the dictionary learning framework. In SSC

[44], it is assumed that the samples belonging to the same cluster lie in the same

subspace. The formulation for SSC is as follows:

∑
i

∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m} (2.18)

Here zi is the ith data point, Zic represents all the data points barring the ith one

and ci(∈ Rm−1) corresponds to the sparse linear weights that represent samples

in Zic belonging to the same cluster as zi. The l1-norm imposes sparsity. λ is a

hyperparameter.

Once all the ci’s are solved, 0’s are imputed in appropriate ith locations to

make them vectors of length m. For example, c1(∈ Rm−1) will impute 0 in first

location to become a vector of length m. Similarly, in c2, 0 is imputed in second

location and so on. These m-length vectors are then stacked into a matrix Cm∗m.
2goel2021clustering

32

The affinity matrix A is computed from C as follows:

A = |C|+ |C⊤| (2.19)

The affinity matrix A is segmented using normalized cuts algorithm as in [45].

The joint optimization formulation of the proposed DL+SSC is expressed as

follows:

min
D,Z,c

∥X −DZ∥2F︸ ︷︷ ︸
Dictionary Learning loss

+µ(
∑
i

∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m}︸ ︷︷ ︸
SSC loss

)

(2.20)

We set µ=1 in the above formulation to give equal importance to the dictionary

learning and SSC at the onset. We solve the equation 2.20 using ADMM. The

updates for D remains the same as in 2.14. The update for Z is given by -

Z ← min
Z
∥X −DZ∥2F + ∥Z − ZC∥2F (2.21)

Here Z is formed by stacking the zi’s as columns. To solve Z, we take the

gradient of the expression in 2.21 and equate it to 0.

∇Z(∥X −DZ∥2F + ∥Z − ZC∥2F) = 0 (2.22)

=⇒ D⊤DZ + Z(I − C)−D⊤X = 0 (2.23)

=⇒ D⊤DZ + Z(I − C) = D⊤X (2.24)

Equation 2.24 is a form of Sylvester’s equation PZ + ZQ = R, where P = D⊤D,

33

Q = (I − C) and R = D⊤X . We can solve the Sylvester equation in 2.24 to get

the update for Z. The last step is to update the ci’s,

cik ← minci∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m} (2.25)

The equation 2.25 is solved using SPGL13 solver.

The DL+SSC algorithm proceeds by iteratively solving for the dictionaries

using 2.14, updating the representation by solving Sylvester’s equation in equa-

tion 2.24 and updating the coefficients ci’s by SPGL1 solver. As in the case

of DL+K-means, 2.20 is non-convex. Hence, we can only expect to reach a

local minimum; however we do not have any theoretical guarantees regarding

convergence. In practice, we stop the iterations when the values of ci’s do not

change significantly with iterations. We emphasize on ci’s since it has a direct

consequence on the clustering performance.

Once the ci’s are obtained, the actual clustering proceeds the same as in SSC,

i.e. the affinity matrix is computed from the ci’s which is then segmented using

normalized cuts. The complete algorithm is shown in a succinct fashion below.

Algorithm 2: DL+SSC

1 Initialize: D0, Z0;
2 repeat
3 Update Dk using 2.14;
4 Update Zk by solving Sylvester’s equation in 2.24;
5 Solve ci’s using SPGL1;
6 until Convergence is reached;
7 Compute affinity matrix A = |C|+ |C⊤|;
8 Use N-cuts [45] to segment A;

3https://www.cs.ubc.ca/ mpf/spgl1/index.html

34

((a)) DL+Kmeans ((b)) DL+SSC

Figure 2.4: Schematic Diagram of Proposed DL based Clustering Algorithms

The schematic diagram of proposed DL based deep clustering algorithms

namely DL+Kmeans and DL+SSC are shown in Figure 2.4.

2.3.3 Deep Dictionary Learning based K-means clustering

Our next proposed approach is DDLK4 in which the K-means clustering loss is

embedded in the Deep Dictionary Learning (DDL) framework.

In Section 2.3.1, we have seen that the K-means clustering loss can be ex-

pressed in the form of matrix factorization [43] as shown below:

∥Z − ZHT (HHT)−1H∥2F (2.26)

where Z is the data matrix formed by stacking zj’s as columns and H is the
4Sarita Poonia, Anurag Goel, Smriti Chawla, Namrata Bhattacharya, Priyadarshini Rai, Yi Fang Lee, Yoon Sim Yap et al.,

"Marker-free characterization of full-length transcriptomes of single live circulating tumor cells." Genome Research 33, no. 1
(2023): 80-95.

35

matrix of binary indicator variables hij.

hij =

1, if xj ∈ cluster i

0, otherwise
(2.27)

where zj denotes the jth sample and µi the ith cluster.

In DDL, instead of learning one layer of dictionary, multiple layers are learned

instead. In our proposed formulation, we have used three layers of dictionaries,

which is expressed as follows:

X = D1(D2(D3Z)) (2.28)

Here, D1, D2, D3 are three layers of dictionaries. ReLU type non-linearity is

introduced between two consecutive layers of dictionaries. The DDL formulation

is expressed as follows:

min
D1,D2,D3,Z

∥X −D1(D2(D3Z))∥2F (2.29)

In this work, ReLU activation function is used between two layers of dictio-

naries for two reasons – 1. It is easier to incorporate as an optimization constraint,

and 2. ReLU has better function approximation capabilities. Therefore, our basic

framework for DDL (with ReLU) will be expressed as follows:

min
D1,D2,D3,Z

∥X −D1D2D3Z∥2F s.t.D2D3Z ≥ 0, D3Z ≥ 0, Z ≥ 0︸ ︷︷ ︸
ReLU activation

(2.30)

36

In our proposed formulation DDLK, we incorporate the K-means clustering

loss into the DDL formulation. The basic idea is to use the features generated

by DDL as inputs for clustering. However, instead of solving it in piecemeal

fashion, we jointly optimize the proposed cost function shown below.

min
D1,D2,D3,Z,H

∥X −D1D2D3Z∥2F︸ ︷︷ ︸
DDL loss

+µ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

s.t.D2D3Z ≥ 0, D3Z ≥ 0, Z ≥ 0︸ ︷︷ ︸
ReLU activation

(2.31)

In 2.31, µ controls the relative importance of the dictionary learning and

K-means clustering loss. To give equal importance to both the loss functions, we

keep µ=1. So, the final proposed formulation is as below:

min
D1,D2,D3,Z,H

∥X −D1D2D3Z∥2F︸ ︷︷ ︸
DDL loss

+ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

s.t.D2D3Z ≥ 0, D3Z ≥ 0, Z ≥ 0︸ ︷︷ ︸
ReLU activation

(2.32)

The equation 2.32 can be solved via ADMM method i.e. by updating each

variable assuming the others to be constant. This leads to the following sub-

problems:

D1 ← min
D1

∥X −D1D2D3Z∥2F (2.33)

D2 ← min
D2

∥X −D1D2D3Z∥2F (2.34)

D3 ← min
D3

∥X −D1D2D3Z∥2F (2.35)

37

Z ← min
Z
∥X −D1D2D3Z∥2F + ∥Z − ZH⊤(HH⊤)−1H∥2F (2.36)

min
H
∥Z − ZH⊤(HH⊤)−1H∥2F (2.37)

Initially, we ignore the non-negativity constraints in equation 2.32; later on, we

will discuss how they can be handled. The updates for different variables are as

follows:

Dk
1 = XZ†1, where Z1 = Dk−1

2 D3Z
k−1 (2.38)

Dk
2 = (Dk

1)
†XZ2, where Z2 = Dk−1

3 Zk−1 (2.39)

Dk
3 = (Dk

1D
k
2)
†X(Zk−1)

† (2.40)

where k is the iteration number and † represents the pseudo-inverse.

To solve Z, we have to take the gradient of the expression in 2.36 and equate

it to 0

∇Z(∥X −D1D2D3Z∥2F + ∥Z − ZH⊤(HH⊤)−1H∥2F) = 0 (2.41)

=⇒ (D1D2D3)
⊤X − (D1D2D3)

⊤(D1D2D3)Z − Z(I −H⊤(HH⊤)−1H) = 0

(2.42)

=⇒ (D1D2D3)
⊤(D1D2D3)Z + Z(I −H⊤(HH⊤)−1H) = (D1D2D3)

⊤X

(2.43)

Equation 2.43 is a form of Sylvester’s equation AZ + ZB = C, where A =

38

(D1D2D3)
⊤(D1D2D3), B = (I −H⊤(HH⊤)−1H) and C = (D1D2D3)

⊤X . We

can solve the Sylvester equation in 2.43 to get the update for Z.

The final step is to update H by solving equation 2.37. To get the updated H,

we have to simply apply K-means clustering on the updated Z.

In the derivation so far, we have not accounted for the ReLU non-negativity

constraints. Ideally imposing the constraints would require solving them via

forward-backward type splitting algorithms; such algorithms are iterative and

hence would increase the run-time of the algorithm. We account for these

constraints by simply putting the negative values in Z,D3Z and D2D3Z to

zeroes in every iteration.

The algorithm is shown in a succinct fashion below. Once the convergence is

reached, the clusters can be found from H. Since 2.31 is a non-convex function,

we do not have any guarantees for convergence. We stop the iterations when the

H does not change significantly in subsequent iterations.

Algorithm 3: DDLK

1 Initialize: D0
1, D

0
2, D

0
3, Z0, H0;

2 repeat
3 Update Dk

1 , D
k
2 , D

k
3 using (2.38), (2.39), (2.40);

4 Set the negative coefficients in Dk
1 , D

k
2 , D

k
3 to 0;

5 Update Zk by solving Sylvester’s equation in (2.43);
6 Update Hk by applying K-means clustering on the updated Z;
7 until Convergence is reached;

39

2.3.4 Deep Dictionary Learning based Sparse Subspace clustering

As an extension to the proposed approach discussed in Section 2.3.2, in this

proposed approach, we have incorporated the Sparse Subspace clustering loss in

the Deep Dictionary Learning (DDL) formulation. DDL non-linearly transforms

the data such that the transformed representation (of the data) is separable into

subspaces.

The DDL formulation remains same as we discussed in Section 2.3.3, for-

mulated in equation 2.30. DDL is mathematically flexible which allowed us to

integrate SSC into it. The SSC formulation is given by -

∑
i

∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m} (2.44)

Here zi is the ith data point, Zic represents all the data points barring the ith one

and ci(∈ Rm−1) corresponds to the sparse linear weights that represent samples

in Zic belonging to the same cluster as zi. The l1-norm imposes sparsity. Once

all the ci’s are solved, 0’s are imputed in appropriate ith locations to make them

vectors of length m; the vectors are then stacked into a matrix Cm∗m. The affinity

matrix is computed from C using,

A = |C|+ |C⊤| (2.45)

The affinity matrix is segmented using normalized cuts algorithm as in [45]. Our

proposed formulation DDLS5 embeds the SSC loss in DDL framework leading
5Anurag Goel and Angshul Majumdar, "Sparse subspace clustering friendly deep dictionary learning for hyperspectral image

classification", IEEE Geoscience and Remote Sensing Letters 19 (2021): 1-5.

40

to the following joint optimization formulation,

min
D1,D2,D3,Z,c

∥X −D1D2D3Z∥2F︸ ︷︷ ︸
DDL

+µ(
∑
i

∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m}︸ ︷︷ ︸
SSC loss

)

s.t.D2D3Z ≥ 0, D3Z ≥ 0, Z ≥ 0︸ ︷︷ ︸
ReLU activation

(2.46)

We set µ=1 in the above formulation to give equal importance to DDL and SSC

loss at the onset. We solve the equation 2.46 using ADMM.

The updates for D1, D2 and D3 remains the same as in equations 2.38, 2.39

and 2.40 respectively. The update for Z is given by -

Z ← min
Z
∥X −D1D2D3Z∥2F + ∥Z − ZC∥2F (2.47)

Here Z is formed by stacking zi’s as columns. To solve Z, we take the gradient

of the expression in 2.47 and equate it to 0.

∇Z(∥X −D1D2D3Z∥2F + ∥Z − ZC∥2F) = 0 (2.48)

=⇒ (D1D2D3)
⊤(D1D2D3)Z + Z(I − C)− (D1D2D3)

⊤X = 0 (2.49)

=⇒ (D1D2D3)
⊤(D1D2D3)Z + Z(I − C) = (D1D2D3)

⊤X (2.50)

Equation 2.50 is a form of Sylvester’s equation PZ + ZQ = R, where P =

(D1D2D3)
⊤(D1D2D3), Q = (I − C) and R = (D1D2D3)

⊤X . We can solve the

Sylvester equation in 2.50 to get the update for Z.

41

The last step is to update the ci’s,

cik ← minci∥zi − Zicci∥22 + λ∥ci∥1,∀i ∈ {1, . . . ,m} (2.51)

The equation 2.51 is solved using SPGL16 solver.

The algorithm proceeds by iteratively solving for the dictionaries using equa-

tions 2.38, 2.39, 2.40, updating the representation by solving Sylvester’s equation

obtained in equation 2.50 and updating the coefficients ci’s by SPGL1 solver.

As in the case of K-means, 2.46 is non-convex. Hence, we can only expect

to reach a local minimum; however we do not have any theoretical guarantees

regarding convergence. In practice, we stop the iterations when the values of ci’s

do not change significantly with iterations. We emphasize on ci’s since it has a

direct consequence on the clustering performance. Once the ci’s are obtained,

the actual clustering proceeds the same as in SSC, i.e. the affinity matrix is

computed from the ci’s which then is segmented using normalized cuts. The

complete algorithm is shown in a succinct fashion below.

Algorithm 4: DDLS

1 Initialize: D0
1, D

0
2, D

0
3, Z0, C0;

2 repeat
3 Update Dk

1 , D
k
2 , D

k
3 using (2.38), (2.39), (2.40);

4 Update Zk by solving Sylvester’s equation in 2.50;
5 Solve ci’s using SPGL1;
6 until Convergence is reached;
7 Compute affinity matrix A = |C|+ |C⊤|;
8 Use N-cuts [45] to segment A;

6https://www.cs.ubc.ca/ mpf/spgl1/index.html

42

2.4 Experiments and Results

2.4.1 Computer Vision

We carry out evaluation of our proposed approaches DL+K-means and DL+SSC

discussed in Section 2.3.1 and 2.3.2 respectively on three computer vision

datasets namely Extended YaleB, ARFaces and COIL20. The datasets details

can be referred from Section 1.3.1.

The number of dictionary atoms D in DL+K-means and DL+SSC formulation

are fixed as half of the dimensionality of the input data. In DLS formulation

(2.20), the value of hyperparameter λ is set as 0.1.

We have compared our proposed approaches DL+K-means and DL+SSC

with four state-of-the-art deep clustering approaches namely Deep Convolutional

Embedded Clustering (DCEC) [8], Deep K-Means (DKM) [5], Deep Clustering

Network (DCN) [4] and Deeply Transformed Subspace Clustering (DTSC) [46].

For the experiments, since the number of clusters is known for the given

datasets, two standard clustering metrics namely Normalized Mutual Information

(NMI) and Adjusted Rand Index (ARI) are used to evaluate the performance of

the proposed DL+K-means and DL+SSC algorithms.

The clustering results are presented in Table 2.1. In the case of AR Faces

dataset, our proposed approaches demonstrate significantly superior performance

compared to the benchmark methods. Specifically, the DL+SSC method achieves

the highest performance, followed by DL+K-means. For COIL20 dataset, our

43

proposed algorithms DL+K-means and DL+SSC show slightly inferior perfor-

mance compared to the benchmark methods. This outcome is noteworthy as the

COIL20 dataset is relatively simpler and smaller in scale. It suggests that our

proposed methods excel when faced with challenging datasets but may perform

marginally less effectively on datasets with lower complexity.

For Extended YaleB dataset, our proposed algorithm DL+K-means algorithm

emerges as the second-best performer, following the benchmark method DTSC

[46]. The proposed DL+SSC algorithm also achieves competitive results in

this context. Notably, it is evident that the benchmark methods as well as the

proposed approaches exhibit relatively lower performance when compared to

the results obtained on the other two datasets. This discrepancy can be attributed

to the inherent challenges posed by the Extended YaleB dataset, including

variations in illumination conditions, limited pose diversity, and the presence

of noise. Furthermore, it is worth noting that DL+K-means exhibits superior

performance when applied to the Extended YaleB dataset, whereas DL+SSC

outperforms in the case of the AR Faces and COIL20 datasets. This divergence

in performance suggests that K-means may excel in more challenging scenarios,

whereas SSC demonstrates superior performance in datasets characterized by

lower complexity.

Table 2.1: DL+K-means and DL+SSC: Clustering Results

Algorithms→ DCEC DKM DCN DTSC DL+K-means DL+SSC
Datasets ↓ NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI
ARFaces 0.26 0.02 0.45 0.04 0.45 0.05 0.46 0.15 0.56 0.23 0.64 0.26
COIL20 0.79 0.64 0.79 0.60 0.78 0.60 0.78 0.60 0.67 0.56 0.72 0.59
EYaleB 0.20 0.04 0.17 0.02 0.22 0.04 0.42 0.14 0.36 0.11 0.29 0.10

44

The run-times of different algorithms are shown in Table 2.2. Between DL+K-

means and DL+SSC, the former is faster by almost an order of magnitude.

This is because it does not require solving a computationally costly l1-norm

minimization problem like the latter in every iteration. Our proposed algorithms

are faster than all the benchmarks since DL+K-means and DL+SSC are relatively

shallow techniques.

Table 2.2: DL+K-means and DL+SSC: Runtime comparison (in seconds)

Datasets ↓ DCEC DKM DCN DTSC DLK DLS
ARFaces 1013 1548 1495 996 95 389
COIL20 959 517 921 502 29 201
EYaleB 1180 2054 2065 1252 73 564

The empirical convergence plots for the proposed techniques are given in

figure 2.5. We observe that although the proposed formulations DL+K-means

and DL+SSC are non-convex problems, both the algorithms converge, at least to

a local minimum.

2.4.2 Hyperspectral Imaging

We carry out evaluation of our proposed approach DDLS discussed in Section

2.3.4 on two popular hyperspectral images datasets namely Indian Pines and

Pavia University. The datasets details can be referred from Section 1.3.2.

For our proposed method, the depth of DDL is kept fixed at 3. The number of

dictionary atoms D in DDLS formulation are fixed as half of the dimensionality

of the input data. In DDLS formulation (2.46), the value of hyperparameter λ

that determines the sparsity level of the linear weights is set as 1.

45

Figure 2.5: DL+K-means and DL+SSC: Empirical Convergence plots. Here, x-axis represents the number of
iterations and y-axis represents the normalized cost function value

46

In prior studies on DDL-based hyperspectral image analysis [47, 48], it was

found that the spectral–spatial features generated by taking Principal Component

Analysis (PCA) [49] around the pixel of interest turn out to be a good input

feature for DDL. Here we do the same. The process is schematically shown

in figure 2.6. Around each pixel, a spatial window is considered; within this

window, all the bands in the spectral direction are taken. Each such 3-D patch is

then vectorized; these are stacked as columns of a matrix. On this matrix, PCA is

run to reduce the dimensionality. We have tried three different windows of sizes

3 × 3, 5 × 5, and 7 × 7; for each window size, 10% of the principal components

were kept. For example, in Indian Pines with a 3 × 3 window, the size of the

input to PCA would be 1800 (3 × 3 × 200); after PCA 180 principal components

will be kept.

Figure 2.6: Spatio-spectral Feature Extraction

We have compared our proposed approach DDLS with four state-of-the-art

deep clustering approaches namely Deep Spatial-Spectral Subspace Clustering

(DS3C) [50], Deep Clustering With Intraclass Distance (DCID) [51], Self-

Supervised Deep Subspace Clustering (S2DSC) [52], and 3-D Convolutional

47

Auto-encoders (3DCAEs) [53].

For the experiments, two types of evaluation metrics are considered. The

first type consists of four generic metrics for clustering – Normalized Mutual

Information (NMI), Adjusted Rand Index (ARI), Purity, and Entropy. The

second type consists of three metrics that are specific for hyperspectral image

classification – Overall Accuracy (OA), Average Accuracy (AA), and Kappa

coefficient (κ). Both types of metrics serve different purposes in evaluating

clustering and classification tasks. The first type assesses the quality of clustering

algorithm by comparing predicted clusters with ground truth labels, while the

second type specifically evaluates the accuracy and consistency of hyperspectral

image classification.

• Normalized Mutual Information (NMI): NMI measures the mutual in-

formation between the true labels of data points and the predicted cluster

assignments, normalized by the entropy of both sets of labels. NMI takes

values between 0 (no mutual information) and 1 (perfect agreement).

• Adjusted Rand Index (ARI): ARI quantifies the similarity between the

true labels and the predicted clusters, while considering the possibility of

randomness. ARI ranges from -1 (no agreement) to 1 (perfect agreement).

• Purity: Purity measures the proportion of data points in a cluster that belong

to the majority class of that cluster. It evaluates the homogeneity of clusters

with respect to class labels.

• Entropy: Entropy quantifies the uncertainty or disorder in the distribution

48

of class labels within clusters. Lower entropy indicates higher purity and

better cluster quality.

• Overall Accuracy (OA): OA measures the percentage of correctly clas-

sified pixels in the hyperspectral image. It provides a general view of the

classification performance but may not account for class imbalances.

• Average Accuracy (AA): AA calculates the average accuracy across all

classes. It can help mitigate the impact of class imbalances and provides a

more balanced assessment of the classifier’s performance.

• Kappa Coefficient (κ): Kappa coefficient measures the agreement between

the predicted classifications and the actual classifications, while account-

ing for the agreement that could occur by chance. It ranges from -1 (no

agreement) to 1 (perfect agreement).

The clustering results are shown in Table 2.3. Our proposed method yields

the best results in terms of all metrics for window sizes 3 × 3 and 5 × 5. For

the larger window size, we perform worse than DCID. With a larger window

size, the dimensionality increases, and with an increase in dimensionality, we

need to learn more network weights – this possibly leads to overfitting and thus

the result results deteriorate. In the benchmarks, DCID yields the best results.

In terms of methodology, this is the most sophisticated technique. 3DCAE and

S2DSC perform somewhat worse than DCID. DS3C is the simplest approach

and consequently yields results that are not at par with the rest.

In the next set of experiments, we carry out ablation studies. We analyze the

49

Table 2.3: DDLS: Clustering Results

Datasets ↓ Metric DS3C DCID S2DSC 3DCAE Proposed
3 × 3 5 × 5 7 × 7

Pavia University

NMI 0.637 0.664 0.648 0.653 0.681 0.673 0.655
ARI 0.501 0.529 0.507 0.514 0.550 0.537 0.518

Purity 0.613 0.694 0.645 0.647 0.703 0.700 0.649
Entropy 0.457 0.442 0.451 0.447 0.404 0.419 0.444

OA 0.858 0.883 0.866 0.875 0.897 0.888 0.875
AA 0.820 0.855 0.831 0.839 0.862 0.858 0.841

Kappa 0.791 0.808 0.793 0.796 0.825 0.814 0.798

Indian Pines

NMI 0.604 0.701 0.685 0.631 0.726 0.711 0.696
ARI 0.490 0.523 0.508 0.497 0.535 0.531 0.524

Purity 0.607 0.658 0.633 0.637 0.664 0.660 0.651
Entropy 0.433 0.426 0.436 0.423 0.415 0.418 0.430

OA 0.811 0.841 0.835 0.832 0.852 0.846 0.837
AA 0.775 0.801 0.796 0.790 0.823 0.810 0.792

Kappa 0.749 0.772 0.770 0.762 0.790 0.783 0.762

effect of depth of dictionaries. For each depth, we see how the metrics change for

the proposed joint solution and a piecemeal solution. By a piecemeal solution,

we mean that the features are generated separately by DDL and the learned

features are input to a separate sparse subspace classifier. The joint solution is

the proposed one where DDL and clustering losses are intertwined and optimized

jointly. The results are shown in Table 2.4 for the 5 × 5 window size.

Table 2.4: DDLS: Ablation Studies Results

Datasets ↓ Metric One layer Two layers Three layers Four layers
Joint Piecemeal Joint Piecemeal Joint Piecemeal Joint Piecemeal

Pavia
University

NMI 0.633 0.627 0.654 0.636 0.673 0.649 0.667 0.651
ARI 0.515 0.509 0.524 0.513 0.537 0.520 0.533 0.523

Purity 0.611 0.605 0.662 0.614 0.700 0.657 0.688 0.660
Entropy 0.460 0.468 0.431 0.457 0.419 0.434 0.425 0.432

OA 0.849 0.832 0.863 0.842 0.888 0.852 0.880 0.853
AA 0.822 0.809 0.841 0.820 0.858 0.829 0.851 0.832

Kappa 0.787 0.768 0.802 0.775 0.814 0.784 0.809 0.785

Indian
Pines

NMI 0.690 0.685 0.699 0.691 0.711 0.695 0.706 0.697
ARI 0.511 0.498 0.516 0.509 0.531 0.516 0.528 0.519

Purity 0.636 0.630 0.651 0.636 0.660 0.650 0.655 0.651
Entropy 0.429 0.434 0.426 0.428 0.418 0.427 0.421 0.426

OA 0.819 0.810 0.825 0.818 0.846 0.827 0.836 0.528
AA 0.781 0.775 0.790 0.779 0.810 0.788 0.805 0.790

Kappa 0.760 0.751 0.768 0.758 0.783 0.766 0.777 0.767

50

One observes that the results improve from the dictionary layers one to three

and then dip in layer four for the proposed joint formulation. This is expected; in

deep learning, one can improve the results by going deeper; however, one cannot

go arbitrarily deep since the number of parameters increases with depth. With

limited training data, this leads to overfitting and one sees deterioration in results.

For every number of dictionary layers, one can see that the joint formulation

yields better results than the piecemeal one. This is also expected; the proposed

formulation learns projections that are clustering friendly, but this is not the case

for the piecemeal formulation. Overall one can notice that the results from Pavia

University are always better than that of Indian Pines. The spatial resolution

of Indian Pines dataset is relatively coarse. The image pixels are larger, which

means that individual objects or features in the scene might not be well-defined,

and there can be mixing of information from different land cover types within

a single pixel. On the other hand, Pavia University dataset has higher spatial

resolution compared to the Indian Pines dataset. This means that individual

objects or features can be more clearly delineated in the imagery due to smaller

pixel sizes. Therefore, the Pavia University dataset is giving better performance

as compared to the Indian Pines dataset. The Indian Pines dataset has a spatial

size of 145 x 145 pixels, which translates to a total of 21,025 pixels (samples).

On the other hand, the Pavia University dataset has a spatial size of 610 x 340

pixels, resulting in 207,400 pixels (samples). Therefore, Pavia University has

more number of pixels due to its larger spatial dimensions which may also be

a factor for the better performance of Pavia University dataset as compared to

51

Indian Pines dataset.

Our proposed DDLS formulation is non-convex and hence, we do not have

any convergence guarantee. However, we find that in practice the algorithm

converges. The convergence plot for three-layers of dictionaries and 5 × 5

window size is shown in figure 2.7.

Figure 2.7: DDLS: Empirical Convergence plot

The run times for different algorithms are shown in Table 2.5. The results

show that the 3DCAE is the fastest. This is because the said algorithm uses K-

means clustering internally; K-means is faster than subspace clustering which all

other algorithms use. Our proposed technique (with three layers of dictionaries)

is slower than 3DCAE but is faster than the rest. Our proposed algorithm for one

layer and two layers of dictionaries is faster than 3DCAE but does not yield the

best results at these depths.

52

Table 2.5: DDLS: Runtime Comparison (in seconds)

Datasets→ Pavia University Indian PinesAlgorithms ↓
DS3C 1308 1221
DCID 1276 1195
S2DSC 1093 1115
3DCAE 593 320

Proposed (1 layer) 482 303
Proposed (2 layers) 507 346
Proposed (3 layers) 691 406
Proposed (4 layers) 984 793

2.5 Summary

This chapter proposes four novel deep clustering approaches based on dictio-

nary learning framework namely Dictionary Learning based K-means cluster-

ing (DL+K-means), Dictionary Learning based Sparse Subspace Clustering

(DL+SSC), Deep Dictionary Learning based K-means clustering (DDLK) and

Deep Dictionary Learning based Sparse Subspace Clustering (DDLS). DL+K-

means and DL+SSC embeds K-means clustering and Sparse Subspace Clustering

in dictionary learning framework respectively and optimize the joint formulation

using Alternative Directed Multipliers Method (ADMM). DDLK and DDLS

embeds K-means clustering and Sparse Subspace Clustering in deep dictionary

learning framework (with three layers of dictionaries) respectively and optimize

the joint formulation via ADMM. Experiments have been carried out on two

different kinds of problems: computer vision and hyperspectral imaging. DL+K-

means and DL+SSC are evaluated on three computer vision datasets while DDLS

is evaluated on hyperspectral imaging datasets. In both the set of experiments,

the proposed approaches outperform state-of-the-art techniques.

53

Chapter 3

Transform Learning based Clustering

Approaches

In the previous chapter, we have seen the clustering approaches based on dictio-

nary learning. In this chapter, two novel deep clustering approaches based on

Transform Learning (TL) framework are proposed. The conducted experiments,

which encompassed two distinct problem domains, namely text datasets and

hyperspectral imaging, yielded results demonstrating the superior performance

of the proposed methodologies over existing state-of-the-art techniques.

3.1 Transform Learning

Transform Learning (TL) is the analysis equivalent of dictionary learning. It

learns an analysis dictionary / transform (T) such that it operates on the data

(X) to generate the coefficients (Z) (see figure 3.1). The TL problem can be

54

Figure 3.1: Transform learning (TL)

expressed as follows

TX = Z (3.1)

Suppose we are given the data X ∈ Rm×n such that each column xi represents a

training sample of size m, thus we have total n training samples. Mathematically

this is represented as,

min
T∈Rk×m,Z∈Rk×n

1

n

n∑
i=1

(
1

2
||Txi − zi||22+µ||zi||1) (3.2)

Here, zi is learned coefficient corresponding to the training sample xi, the

term ∥zi∥1 is to promote the sparsity on the learned coefficients and µ is the

regularization parameter on the sparsity term.

The main motivation that can be carried from TL is to use it beyond signal

processing. TL has not been used for solving machine learning problems. We

explore if TL features can be general enough to solve machine learning problems,

and we have computational cost and run time advantages.

Figure 3.2 shows neural network interpretation of TL where transform T is

considered as an operator being applied on the input data to generate feature

55

representation. In other words, transform T can be considered as weights of the

neural network interpretation which are being learned along with the representa-

tive features from the given data in the input layer. Please note that it is not a

true neural network but its interpretation.

Figure 3.2: Neural network interpretation of TL

One may be enticed to solve the TL problem by formulating,

min
T,Z
||TX − Z||2F+µ||Z||1 (3.3)

Unfortunately such a formulation would lead to degenerate solutions; it is easy

to verify the trivial solution T = 0 and Z = 0. In order to ameliorate this the

following formulation was proposed in [54].

min
T,Z
||TX − Z||2F+λ(||T ||2F− log det(T)) + µ||Z||1 (3.4)

56

The factor − log det1 imposes a full rank on the learned transform; this prevents

the degenerate solution (T = 0, Z = 0). The additional penalty ∥T∥2F is to

balance the scale; without this − log det(T) can keep on increasing; producing

degenerate results in the other extreme. Note that the sparsity constraint on

the coefficients is not mandatory for machine learning problems. It is useful

for solving inverse problems in signal processing. In [55], an alternating

minimization approach was proposed to solve the TL problem equation 3.4

which leads to the following sub-problems

T ← min
T
∥TX − Z∥2F + λ(∥T∥2F − log det(T)) (3.5)

Z ← min
Z
∥TX − Z∥2F + µ||Z||1 (3.6)

Updating the coefficients (Z) is straightforward. It can be updated via one step

of hard thresholding [56], [57] . This is expressed as,

2Z ← (abs(TX) ≥ µ)⊗ TX (3.7)

Here ⊗ represents element-wise product.

For updating the transform, one can notice that the gradients for different

terms in equation 3.5 are easy to compute. Ignoring the constants, this is given
1logdet(T)= log(singular values). If some singular value ≤ 0, then the log takes +∞ as output. For the case when T is not

square, the algorithm solves − log det(T ′T) + ||T ||2F .
2We take absolute of each entry of the matrix and see if any entry of matrix is greater than µ

57

by:

∇||TX − Z||2F= XT (TX − Z)

∇||T ||2F= T

∇ log detT = T−T

(3.8)

In the initial paper on transform learning [55], a non-linear conjugate gradient

based technique was proposed to solve the transform update. In the second

paper [58], with some linear algebraic tricks they were able to show that a closed

form update exists for the transform. This is given by:

XXT + λI = LLT

L−1Y XT = QSRT

T = 0.5R(S + (S2 + 2λI)1/2)QTL−1

(3.9)

The first step is to compute the Cholesky decomposition; the decomposition

exists sinceXXT+λI is symmetric positive definite. The next step is to compute

the full Singular Value Decomposition (SVD). The final step is the update step.

One must notice that L−1 is easy to compute since it is a lower triangular matrix.

The cost function is monotonic, decreasing in each step. Moreover, since it is

lower bounded, it converges, and its closed-form solution exists.

3.2 Deep Transform Learning

In Deep Transform Learning (DTL), multiple levels of transforms are learned

to represent the data in terms of coefficients [59]. The layers of single level

transforms have been stacked one after the other leading to the framework of

58

DTL; DTL is indeed a more powerful tool than the conventional Transform

Learning.

Figure 3.3: Schematic diagram: Deep Transform learning

Deeper representations are learned by stacking one transform after another.

The learning is done greedily. The first layer determines the transform and

features from the input training samples. The subsequent layers use the features

(after activation) from the previous layer as training input as shown in figure 3.3.

For DTL, instead of analyzing the data by single-level transform, multiple

levels of transforms are used to produce the final level of coefficients. This is

expressed as,

TNϕ(...(T2ϕ(T1X))) = Z (3.10)

Here T1 operates on the data X to produce the first level of coefficients. T2

analyzes the first level of the coefficients to produce the second level. Finally,

TN operates the (n-1) level of coefficients to generate final coefficients Z. ϕ

represents the non-linear activation function without which all the transforms

will collapse into the single one. The corresponding optimization problem is

59

expressed as follows:

min
T1,T2,..,TN ,Z

∥TNϕ(...(T2ϕ(T1X)))− Z∥2F + λ(∥T∥2F − log det(T)) + µ∥Z∥1

(3.11)

Here, the factor − log det(T)3 imposes a full rank on the learned transform; this

prevents the degenerate solution (T = 0, Z = 0). The additional penalty ∥T∥2F is

to balance the scale; without this− log det(T) can keep on increasing; producing

degenerate results in the other extreme. ∥Z∥1 is the sparisty promoting term on

the learned coefficients and λ, µ are the regularization parameters.

3.3 Literature Review

Over the years there have been a handful of studies on transform learning

based data analysis. In recent years, several variants of transform learning like

Kernelized transform learning [60] and Robust transform learning [61] were

proposed. In Kernelized transform learning [60], a non-linear version of the

data is represented in terms of a transform made up of linear combination of

non-linear version of itself. In Kernelized transform learning, a kernel defined by

K = ϕ(X)Tϕ(X), where ϕ is a non-linear activation function, is used as the data

matrix X in the original transform learning formulation; rest all remains the same

as in the conventional transform learning. In Robust transform learning [61], a

robust version of transform learning is proposed by replacing the Frobenius norm

by l1− norm in transform learning formulation (equation 3.4). Using transform
3logdet(T)= log(singular values). If some singular value ≤ 0, then the log takes +∞ as output. For the case when T is not

square, the algorithm solves − log det(T ′T) + ∥T∥2F .

60

learning as the building block, deeper versions have also been proposed for

unsupervised learning [59, 62]. In Greedy deep transform learning [62], the

learning proceeds in a greedy fashion. The first layer learns the transform and

features from the input training samples while the subsequent layers of transform

use the features (after activation) from the previous layers as training input. In

Unsupervised deep transform learning [59], the deep architecture of transform

learning are learned in a joint end-to-end fashion.

Recently, transform learning based methods are proposed for clustering [46,

63–65]. In [64], the subspace clustering [66] formulations are incorporated into

the transform learning framework. The proposed formulation was solved in a

joint fashion using the Alternating Direction Method of Multipliers (ADMM).

The kernelized version of the aforesaid formulation is also proposed in [64],

where the subspace clustering formulations are embedded in kernelized transform

learning [60]. A deeper version of Transformed Subspace Clustering [64] is

proposed in [46]. In [46], the subspace clustering formulations are incorporated

in deep transform learning where three layers of transforms are stacked one over

the other and ReLU type non-linearity is introduced in between the transform

layers. The results in [46] demonstrate that the deep version of transform

learning is more effective as compared to the single layer transform learning

framework. However, one cannot go deep to any number of transform layers for

better performance since the chances of overfitting increase with increase in the

number of transform layers.

61

3.4 Proposed Approaches

3.4.1 Transformed K-means Clustering

In this work TL+K-means4, we propose to embed the K-means clustering into the

transform learning framework. The basic idea remains the same as in [64]. The

learnt representation from transform learning is input for K-means clustering.

The K-means embedded transform learning is solved as a single optimization

problem.

Transform learning analyses the data by learning a transform/basis to produce

coefficients. Mathematically this is expressed as,

TX = Z (3.12)

Here T is the transform, X is the data and Z the corresponding coefficients. The

transform learning formulation is expressed as:

min
T,Z
||TX − Z||2F+λ(||T ||2F− log detT) + µ||Z||1 (3.13)

The popular way to express K-means clustering is via the following formulation:

k∑
i=1

n∑
j=1

hij∥zj − µi∥22 (3.14)

4Anurag Goel and Angshul Majumdar, "Transformed K-means Clustering", In 2021 29th European Signal Processing
Conference (EUSIPCO), pp. 1526-1530. IEEE, 2021.

62

hij =

1, if zj ∈ cluster i

0, otherwise
(3.15)

where zj denotes the jth sample and µi the ith cluster. In [43], it was shown that

the K-means loss shown in equation 3.14 can be alternatively represented in the

form of matrix factorization as below:

∥Z − ZHT (HHT)−1H∥2F (3.16)

where Z is the data matrix formed by stacking zj’s as columns and H is the

matrix of binary indicator variables hij .

In our proposed formulation of TL+K-means, the general idea is to use the

coefficients generated by transform learning as inputs to K-means clustering.

This is achieved by incorporating the K-means clustering loss into the transform

learning formulation as shown below -

min
T,Z,H

∥TX − Z∥2F︸ ︷︷ ︸
Transform Learning loss

+µ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

(3.17)

In the equation 3.17, transform learning formulation is regularized by the K-

means clustering loss in a single joint optimization problem. Note that, compared

to the original formulation of transform learning [58], we have dropped the

sparsity promoting term Z. This is because transform learning was originally

intended to solve inverse problems so sparsity on the coefficients was necessary

[67]. However, for our purpose, the l1-norm on the coefficients do not carry any

63

particular meaning apart from a regularization term. Hencem we have dropped it.

Note that the same has been done in other transform learning based formulations

for machine learning [59–62, 64, 68–71].

The solution to equation 3.17 can be achieved via the alternating direction

method of multipliers (ADMM) [72], i.e. in every iteration each variable is

updated by assuming the other variables to be constant. This leads to the

following three subproblems –

T ← min
T
∥TX − Z∥2F + λ(∥T∥2F − log detT) (3.18)

Z ← min
Z
∥TX − Z∥2F + µ∥Z − ZH⊤(HH⊤)−1H∥2F (3.19)

H ← min
H
∥Z − ZH⊤(HH⊤)−1H∥2F (3.20)

The update for equation 3.18 is given by 3.9 in Section 3.1. The subproblem

3.19 can be simplified to the following subproblem -

Z ← min
Z
∥TX − Z∥2F + µ∥ZK∥2F ;K = I −H⊤(HH⊤)−1H (3.21)

Taking the derivate and equating it to 0,

∇Z(∥TX − Z∥2F + µ∥ZK∥2F) = 0

=⇒ TX = Z(I + µK)

=⇒ Z = TX(I + µK)−1

(3.22)

This concludes the closed form update for Z. The solution for H is straight-

forward; it can be obtained by applying K-means clustering on the updated

64

Z.

This concludes the derivation of our proposed TL+K-means formulation.

The complexity of updating T is dependent on the Cholesky and singular value

decompositions; both of which have a complexity of O(n3). The update for Z

has a complexity of O(n2). The K-means is ideally a NP-hard problem, but the

algorithm used here has a complexity of O(t ∗ k ∗ n2) where t is the number of

loops and k is the number of clusters.

The schematic diagram of proposed TL+Kmeans algorithm is shown in Figure

3.4.

Figure 3.4: Schematic Diagram of Proposed TL+Kmeans Algorithm

3.4.2 Deeply Transformed K-means Clustering

We have already discussed the deep version of Transform Learning i.e. Deep

Transform Learning in Section 3.2. In this proposed approach5, we have embed-

ded K-means clustering loss in the Deep Transform Learning (DTL) formulation.

As discussed in Section 3.2, for DTL, instead of analyzing the data by single-
5Anurag Goel and Angshul Majumdar, "K-Means Embedded Deep Transform Learning for Hyperspectral Band Selection",

IEEE Geoscience and Remote Sensing Letters 19 (2022): 1-5.

65

level transform, multiple levels of transforms are used to produce the final level

of coefficients. For example, the DTL formulation with three layers of transforms

can be expressed as,

T3(T2(T1X)) = Z (3.23)

Here T1 operates on the data X to produce the first level of coefficients. T2

analyzes the first level of the coefficient to produce the second level. Finally,

TN operates the (n-1) level of coefficients to generate Z. The ReLU type non-

linearity is introduced between the transforms layers without which all the

transforms will collapse into the single one. The formulation of DTL is given by

min
T3,T2,T1,Z

∥T3T2T1X − Z∥2F + λ
3∑

i=1

(∥Ti∥2F − log detTi)

s.t.T2T1X ≥ 0, T1X ≥ 0, Z ≥ 0

(3.24)

Here T1, T2, T3 are three layers of transforms. In equation 3.24, the term ∥Ti∥2F −

log detTi is to prevent the trivial solutions and degenerate solutions to the

transforms [73]. The non-negativity constraints in equation 3.24 translate to

Rectified Linear Unit (ReLU) activations between the layers. The reason for

using ReLU is two-fold. First, it is easy to accommodate in the optimization

framework. Second, it is known for its function approximation capability [74].

The K-means clustering loss remains same as in equation 3.16. In our pro-

posed formulation, the input to the K-means clustering is the representation from

deep transform learning. Incorporating the K-means clustering loss into the DTL

66

formulation leads to

min
T1,T2,T3,Z,H

∥T3T2T1X − Z∥2F + λ
3∑

i=1

(∥Ti∥2F − log detTi)︸ ︷︷ ︸
Transform Learning loss

+

µ ∥Z − ZH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

s.t. T2T1X ≥ 0, T1X ≥ 0, Z ≥ 0︸ ︷︷ ︸
ReLU constraints

(3.25)

To solve the formulation in equation 3.25, we introduce two proxies T1X = X2

and T2T1X = X3. The resulting augmented Lagrangian becomes

min
T1,T2,T3,X2,X3,Z,H

∥T3X3 − Z∥2F + γ1∥T2X2 −X3∥2F + γ2∥T1X −X2∥2F

+ λ

3∑
i=1

(∥Ti∥2F − log detTi) + µ∥Z − ZH⊤(HH⊤)−1H∥2F

s.t. X3 ≥ 0, X2 ≥ 0, Z ≥ 0

(3.26)

The hyperparameters γ1 and γ2 are usually different, but in the given scenario,

they represent the relative significance of different layers. We do not see any

reason to give more significance to one layer over others. Therefore, we assign

equal importance; hence, we keep γ1 = γ2 = 1. This leads to

min
T1,T2,T3,X2,X3,Z,H

∥T3X3 − Z∥2F + ∥T2X2 −X3∥2F + ∥T1X −X2∥2F

+ λ
3∑

i=1

(∥Ti∥2F − log detTi) + µ∥Z − ZH⊤(HH⊤)−1H∥2F

s.t. X3 ≥ 0, X2 ≥ 0, Z ≥ 0

(3.27)

We solve the formulation in equation 3.27 using the alternating direction method

67

of multipliers (ADMM) [72]. Using ADMM, 3.27 can be segregated into the

following subproblems:

P1 : min
T3

∥T3X3 − Z∥2F + λ(∥T3∥2F − log detT3) (3.28)

P2 : min
T2

∥T2X2 −X3∥2F + λ(∥T2∥2F − log detT2) (3.29)

P3 : min
T1

∥T1X −X2∥2F + λ(∥T1∥2F − log detT1) (3.30)

P4 : min
X3

∥T3X3 − Z∥2F + ∥T2X2 −X3∥2F s.t.X3 ≥ 0 (3.31)

P5 : min
X2

∥T2X2 −X3∥2F + ∥T1X −X2∥2F s.t.X2 ≥ 0 (3.32)

P6 : min
Z
∥T3X3 − Z∥2F + µ∥Z − ZH⊤(HH⊤)−1H∥2F s.t.Z ≥ 0 (3.33)

P7 : min
H

µ∥Z − ZH⊤(HH⊤)−1H∥2F (3.34)

Solutions to P1 − P3 are the standard transform update given in [55]. It has a

closed-form solution

min
T
∥TX − Z∥2F + λ(∥T∥2F − log detT) (3.35)

XX⊤ + λI = LL⊤ (Cholesky Decomposition)

L−1XZ⊤ = USV ⊤ (Singular Value Decomposition)

T = 0.5U(S + (S2 + 2λI)1/2)V ⊤L−1

(3.36)

Solutions to sub-problems P4 and P5 are akin to the Tikhonov regularization.

68

The solution can be obtained as follows:

minX∥Z − TX∥2F + ∥X − C∥2F , T2X2 or T1X = C = constant

=⇒ X̂ = (T⊤T + I)−1(T⊤Z + C)
(3.37)

Here, we have not specifically accounted for the positivity constraint. This is

because the exact solution would require forward–backward-type splitting. We

prefer the approximate solution where the aforesaid closed-form solution is

thresholded to keep only non-negative values. The same approach was followed

in [46].

The solution to P6 is obtained by taking the derivative of it and equating it to

zero

∇Z(∥T3X3 − Z∥2F + µ∥ZK∥2F) = 0, where(I − (HH⊤)−1H) = K

=⇒ T3X3 = Z(I + µK)

=⇒ Z = T3X3(I + µK)−1

(3.38)

In the solution of Z, we follow the same approach as before. We do not explicitly

incorporate the non-negativity constraint but put the negative values in it to zero

once it is solved in every iteration.

The solution to P7 is applying K-means clustering on the updated Z.

This concludes the derivation of our proposed algorithm. The complexity

of updating the transforms is dependent on the Cholesky decomposition and

Singular value decomposition; both of which have a complexity of O(n3). The

update for the coefficients has a complexity of O(n2). The K-means is ideally a

69

NP-hard problem, but the algorithm used here has a complexity of O(t ∗ k ∗ n2)

where t is the number of loops and k is the number of clusters.

Application to Hyperspectral Band Selection

We have applied our proposed Deep Transform learning based K-means cluster-

ing formulation for Hyperspectral band selection. Most of the clustering-based

band selection techniques work with individual band images, i.e., with xi where

i denotes the band. Some kind of a representative feature (zi) is learned from

xi. This representation is passed into a clustering algorithm where the number

of clusters is specified (this is the same as the number of bands to be chosen).

The clustering algorithm outputs the cluster centroid. The band images that are

closest to the cluster centroid in some sense (normed distance, cosine similarity,

and so on) are finally selected.

We do not follow this approach for two reasons:

1. trying to learn deep transforms from a few band images (∼ hundreds) will

lead to overfitting [62];

2. clustering from a few samples (∼ hundreds) will not lead to robust cluster

centroids.

Instead, we divide the entire hyperspectral datacube into spatial patches Pxik

that denotes the kth patch of the ith band image. These patches are input to

our proposed deeply transformed learning based K-means clustering (DTKM)

70

algorithm. This requires solving the following problem:

min
T1,T2,T3,Z,H

∑
k

((∥T3T2T1Pxik
− zik∥2F) + λ

3∑
i=1

(∥Ti∥2F − log detTi)+

µ∥Z − ZH⊤(HH⊤)−1H∥2F

s.t. T2T1X ≥ 0, T1X ≥ 0, Z ≥ 0

(3.39)

The formulation states that K-means clustering is carried out on individual

patches (instead of the images) and the transforms are globally learned on all

the patches. By learning on a vast number of patches, the problem of overfitting

is resolved. Similarly, as the clustering is run patchwise, robustness is ensured

following a simple table lookup strategy. For each patch, we will get a band

that is closest to the jth cluster in the Euclidean sense. We see which band is

appearing to be the closest in the majority of patches and select the same. A toy

example is given in Table 3.1. We consider an image with eight patches and want

to select five bands. The table entries represent the band number. The cluster

center corresponding to each patch is shown in Table 3.1. The final selection,

considering all the patches, is obtained from the statistical mode of the column

(shown in bold).

One can argue that an identifiability problem may arise in such a scenario.

This is avoided via deterministic initialization of all cluster centers for each band.

71

Table 3.1: DTLK: Table lookup

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
Patch 1 15 29 54 11 79
Patch 2 32 29 42 4 77
Patch 3 15 45 56 7 84
Patch 4 15 7 46 4 77
Patch 5 87 16 56 16 77
Patch 6 6 71 15 5 69
Patch 7 15 33 56 4 51
Patch 8 54 29 55 5 26

Selected Band 15 29 56 4 77

3.5 Experiments and Results

3.5.1 Text Datasets

Our proposed work Transformed K-means Clustering focuses on document

clustering. Therefore, we used three text datasets namely TDT2 corpus6, Reuters-

21578 corpus6, and 20 Newsgroup6. The datasets details can be referred from

Section 1.3.3.

In [75], the evaluation metrics are reported by varying the number of clusters

from 2 to 10. We follow the same protocol and reports the results using two

evaluation metrics - Purity [35] and Entropy [35]. The evaluation metrics details

can be referred from Section 1.4.3.

We compare our proposed technique with several state-of-the-art approaches

in document clustering. The first one is Improved Spherical K-means (ISKM)

[76], Deep Embedding Clustering based on Contractive Autoencoder (DECCA)

[9] and Transformed Subspace Clustering (TSC) [64].
6http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

72

Table 3.2: TLK: Clustering Results on TDT2

Clusters ↓ Entropy (lower is better) Purity (higher is better)
ISKM DECCA TSC Proposed ISKM DECCA TSC Proposed

2 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
4 0.0059 0.0000 0.0000 0.0000 0.9956 1.0000 1.0000 1.0000
6 0.0826 0.0809 0.0013 0.0011 0.9435 0.9954 0.9963 0.9971
8 0.0952 0.0911 0.0465 0.0206 0.9476 0.9801 0.9013 0.9901
10 0.0808 0.0685 0.0178 0.0061 0.9153 0.9224 0.9775 0.9854

Table 3.3: TLK: Clustering Results on Reuters

Clusters ↓ Entropy (lower is better) Purity (higher is better)
ISKM DECCA TSC Proposed ISKM DECCA TSC Proposed

2 0.0551 0.0454 0.0493 0.0451 0.9012 0.9218 0.9735 0.9912
4 0.2751 0.2400 0.2103 0.2008 0.8834 0.8935 0.8984 0.9061
6 0.2029 0.2021 0.1905 0.1435 0.8719 0.8880 0.8855 0.8995
8 0.2158 0.2029 0.2811 0.2009 0.8686 0.8776 0.9135 0.9524
10 0.2677 0.2464 0.2579 0.2286 0.7690 0.7888 0.8069 0.8331

Table 3.4: TLK: Clustering Results on Newsgroup

Clusters ↓ Entropy (lower is better) Purity (higher is better)
ISKM DECCA TSC Proposed ISKM DECCA TSC Proposed

2 0.1556 0.1843 0.8172 0.1131 0.8867 0.8200 0.7233 0.9233
4 0.1665 0.1301 0.5911 0.1055 0.8083 0.8183 0.6567 0.8575
6 0.1441 0.1492 0.4697 0.1211 0.8717 0.8322 0.7050 0.9028
8 0.1505 0.1562 0.4673 0.1142 0.8708 0.8700 0.6721 0.8859
10 0.1395 0.1625 0.4449 0.1299 0.8943 0.8677 0.6690 0.9100

The results are shown in Table 3.2, 3.3 and 3.4 for the datasets TDT2, Reuters-

21578 and 20 Newsgroup respectively. For all the datasets, across all config-

urations, one can see that our proposed approach yields the best results. The

empirical convergence plots of the proposed approach for the datasets TDT2

corpus, Reuters-21578 and 20 Newsgroup are shown in Fig. 3.5, 3.6 and 3.7

respectively. The results are shown for two clusters. The convergence plots

depict that the proposed algorithm converges within 15 to 20 iterations. This

has been the case irrespective of the number of clusters. One can observe that

for Reuters dataset, the convergence is non-monotonic. This can be the case for

73

Figure 3.5: TLK: Empirical Convergence Plot (2 clusters) for TDT2

Figure 3.6: TLK: Empirical Convergence Plot (2 clusters) for Reuters

ADMM based solutions.

3.5.2 Hyperspectral Imaging

We carry out evaluation of our proposed approach Deeply Transformed K-means

Clustering discussed in Section 3.4.2 on two standard hyperspectral images

datasets namely Indian Pines and Pavia University. The datasets details and

pre-processing steps can be referred from Section 1.3.2.

There is no straightforward way to evaluate the efficacy of the selected bands.

Therefore, it must be evaluated based on some other criterion. Here, we have

used classification as the evaluation criterion, i.e., after band selection, the

74

Figure 3.7: TLK: Empirical Convergence Plot (2 clusters) for Newsgroup

selected bands are passed onto a classifier. In particular, we have used kernel

sparse representation classifier [77] in this work since it is a highly cited work

on hyperspectral classification.

We benchmark against several deep clustering techniques — Unsupervised

Deep Subspace Clustering (UDSC) [78], Graph Convolutional Neural Network

(GCNN) [79], and BS-Nets [80]. We also compare with Deeply Transformed

Subspace Clustering (DTSC) [46]; however, note that DTSC was never meant to

be used for the said purpose and, hence, we use the table lookup approach for

selecting the bands.

Our proposed technique requires the specification of two parameters — λ and

µ. We set the value of λ to 1 for all the experiments; this value has been found to

work well on almost all transform learning-based formulations. The parameter µ

controls the relative importance of the deep transform learning loss and K-means

clustering loss. There is no reason to give more weightage to one than the other;

therefore, we set µ = 1. In the experiments, we used overlapping patches of

size 8 × 8. The patches are obtained by shifting the patches 2 pixels in both

75

horizontal and vertical directions, as and when needed. The best results were

obtained for a three-layer architecture where the number of nodes in subsequent

layers was halved, i.e., the architecture was 64-32-16.

The experiments were carried out on a 64 bit Intel Core i5-8265U CPU at

1.60 GHz, 16-GB RAM running Ubuntu. The run times of different algorithms

are shown in Table 3.5. One can see that our proposed algorithm is the fastest.

It is faster than DTSC because, unlike the latter, we do not need to solve a

complex iterative optimization problem every time in the clustering step. Both

our proposed algorithm and DTSC are solved using ADMM and hence are

considerably faster compared to the traditional backpropagation-based approach

used by UDSC, GCNN, and BS-Nets.

Table 3.5: DTLK: Runtime comparison (in seconds)

Pavia University Indian Piines
Bands→ 10 20 30 10 20 30Algorithms ↓

UDSC 1002 1338 1609 553 819 1012
GCNN 1190 1581 2086 678 1006 1375

BS-Nets 984 1403 1760 425 664 808
DTSC 817 1119 1531 316 497 633

Proposed 465 650 803 193 302 386

Although we could not give any proof regarding the convergence of our

proposed algorithm, we found that it does indeed converge to a local minimum

given the choice of parameters. The empirical convergence plot is shown in Fig.

3.8 for 20 bands. Similar convergence results were obtained for the other number

of bands. For measuring classification accuracy, we use three standard evaluation

metrics in hyperspectral imaging —Overall Accuracy (OA), Average Accuracy

(AA), and Kappa coefficient. In Fig. 3.9, the plots for two different datasets and

76

Figure 3.8: DTLK: Empirical Convergence Plot (20 bands)

Figure 3.9: DTLK: Detailed Results

three different metrics are shown. From Fig. 3.9, one can note that our proposed

method yields the best results, especially for a fewer number of bands. Our

proposed method is closely followed by GCNN and DTSC. GCNN performs

better than ours in some cases when the number of chosen bands is higher. In

general, for all the techniques, one can notice that the results improve as the

number of bands increases from 5 to 15 or 20, after that the results deteriorate.

The same has been observed by other studies such as [78].

77

3.5.3 Comparison with Deep Dictionary Learning based deep clustering approaches

In this section, we present a comparison between Deep Dictionary Learning

(DDL) based deep clustering approach and Deep Transform Learning (DTL)

based deep clustering approach.

DDL and DTL are two popular deep learning frameworks for feature ex-

traction and representation learning. Both of these frameworks are used in

unsupervised learning tasks, such as image and signal processing, where the goal

is to learn a compact and meaningful representation of high-dimensional data.

Deep dictionary learning (DDL) is a technique that learns a dictionary of

basis atoms from the input data. The basis atoms are used to represent the data

in a sparse and compact manner. In DDL, the input data is transformed by a

linear combination of the dictionary elements, and the resulting coefficients are

used as features for downstream tasks. DDL is often used in image and signal

processing applications, where the input data is a high-dimensional signal or

image. The advantage of DDL is that it can learn a compact and interpretable

representation of the input data. However, DDL is computationally expensive

and requires a large amount of training data to learn an accurate dictionary.

On the other hand, deep transform learning (DTL) is a technique that learns a

set of non-linear transformations that map the input data to a low-dimensional

feature space. Unlike DDL, DTL does not require a pre-defined dictionary of

basis functions. Instead, DTL uses a deep neural network to learn the non-linear

transformations from the input data. The advantage of DTL is that it can learn

78

a highly expressive and flexible representation of the input data. DTL is often

used in applications where the input data is complex and high-dimensional, such

as natural language processing and computer vision. However, DTL can suffer

from overfitting if the network is too large, and it may be difficult to interpret the

learned representation [81].

We have compared the performance of DDLK (discussed in Section 2.3.3)

and DTLK (discussed in Section 3.4.2) along with several deep clustering bench-

marks on computer vision datasets. The results are shown in Table 3.6. The

datasets details can be referred from Section 1.3.1. The results show that DDLK

gives better results than DTLK on all the four datasets. This might be because

all the four datasets are not very complex and high-dimensional.

Table 3.6: Comparison of DLK, DLS, DDLK and DTLK

Algorithms→ DCEC [8] DKM [5] DLK DLS DDLK DTLK
Datasets ↓ NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI
ARFaces 0.26 0.02 0.45 0.04 0.56 0.23 0.64 0.26 0.58 0.15 0.42 0.03
COIL20 0.79 0.635 0.785 0.60 0.67 0.56 0.72 0.59 0.81 0.68 0.78 0.60
EYaleB 0.20 0.04 0.17 0.02 0.36 0.11 0.29 0.10 0.551 0.224 0.27 0.05
Olivetti 0.709 0.336 0.52 0.101 0.72 0.42 0.68 0.36 0.826 0.533 0.543 0.11

In summary, DDL learns a dictionary of basis functions to represent the input

data, while DTL learns a set of nonlinear transformations. DDL is computa-

tionally expensive but interpretable, while DTL is highly expressive but may

suffer from overfitting [81]. The choice between DDL and DTL depends on the

specific application and the trade-off between interpretability and flexibility.

79

3.6 Summary

This chapter proposes two novel deep clustering approaches based on transform

learning framework namely Transfomed K-means clustering, Deeply Trans-

formed K-means clustering. Transfomed K-means clustering embeds K-means

clustering in transform learning framework and optimize the joint formulation

using Alternative Directed Multipliers Method (ADMM). Deeply Transformed

K-means clustering embeds K-means clustering in deep transform learning

framework (with three layers of transforms) and optimize the joint formula-

tion via ADMM. Experiments have been carried out on two different kinds

of problems: text datasets and hyperspectral imaging. The first proposed ap-

proach Transfomed K-means clustering is evaluated on three text datasets while

Deeply Transformed K-means clustering is evaluated on hyperspectral imaging

datasets. In both the set of experiments, the proposed approaches outperform

state-of-the-art techniques.

80

Chapter 4

Convolutional Transform Learning based

Clustering Approaches

This chapter presents four novel deep clustering approaches based on Convo-

lutional Transform Learning (CTL) framework. The first and second proposed

approach embeds K-means clustering and Sparse Subspace clustering respec-

tively in Deep CTL (DCTL) framework. The former is evaluated on facial

images datasets while the latter is evaluated on hyperspectral imaging data. Both

the proposed approaches outperform state-of-the-art deep clustering approaches.

The third proposed approach embeds the Contrastive Learning in the DCTL

frameowkr embedded with K-means clustering. The incorporation of contrastive

learning empowers the proposed model to capture discriminative information

of clusters and thus, learns more cluster-friendly representations. The proposed

approach is evaluated on five facial images datasets to demonstrate higher clus-

tering performance as compared to the current state-of-the-art deep clustering

models. The fourth approach proposes a novel unsupervised multi-channel fu-

81

sion clustering framework named DeConFCluster. The proposed framework

jointly trains DCTL network, multichannel fusion network and the K-Means

clustering module; thus, the representations are diverse and effective as these

are guided by K-Means loss. The proposed framework gives superior clustering

performance than the current state-of-the-arts multiview clustering approaches

on several multiview datasets.

4.1 Convolutional Transform Learning (CTL)

Convolutional Transform Learning (CTL) has been introduced in [82]. CTL

learns a set of filters (tm)1≤m≤M operated on observed samples
(
s(k)

)
1≤k≤K to

generate a set of features (x(k)m)1≤m≤M,1≤k≤K . Formally, the inherent learning

model is expressed through convolution operation defined as

(∀m ∈ {1, . . . ,M} ,∀k ∈ {1, . . . , K}) tm ∗ s(k) = x(k)m . (4.1)

Following the original study on transform learning, a sparsity penalty was im-

posed on the features for improving representation ability and limiting overfitting

issues [73]. This was expressed as the following optimization problem

minimize
(tm)m,(x

(k)
m)m,k

1

2

K∑
k=1

M∑
m=1

(
∥tm ∗ s(k) − x(k)m ∥

2
2 + ψ(x(k)m)

)
+ µ

M∑
m=1

∥tm∥2F − λ log det ([t1|. . . |tM]), (4.2)

where ψ is a suitable penalization function. Note that the regularization term

82

“µ ∥·∥2F −λ log det” promotes diversity and non-degeneracy of the learned filters

[83]. Let us introduce the matrix notation

T ∗ S −X =

t1 ∗ s(1) − x(1)1 . . . tM ∗ s(1) − x(1)M

...

t1 ∗ s(K) − x(K)
1 . . . tM ∗ s(K) − x(K)

M

 (4.3)

where T =

[
t1 . . . tM

]
, S =

[
s(1) . . . s(K)

]⊤
, andX =

[
x
(k)
1 . . . x

(k)
M

]
1≤k≤K

.

The cost function in equation (4.2) could be compactly rewritten as1

F (T,X) =
1

2
∥T ∗ S −X∥2F +Ψ(X) + µ ∥T∥2F − λ log det (T) , (4.4)

where Ψ applied the penalty term ψ column-wise on X .

A local minimizer to (4.4) could be reached efficiently using the alternating

proximal algorithm [84–86], which alternates between proximal updates on

variables T and X . More precisely, set a Hilbert space (H, ∥·∥), and define the

proximity operator [87] at x̃ ∈ H of a proper lower-semi-continuous convex

function φ : H → [−∞,+∞] as

proxφ(x̃) = argmin
x∈H

φ(x) +
1

2
∥x− x̃∥2 . (4.5)

1Note that T is not necessarily a square matrix. By abuse of notation, we defined the “log-det” of a rectangular matrix as the
sum of logarithms of its singular values.

83

Then, the alternating proximal algorithm reads

For n = 0, 1, ... T [n+1] = proxγ1F (·,X [n])

(
T [n]

)
X [n+1] = proxγ2F (T [n+1],·)

(
X [n]

) (4.6)

with initializations T [0], X [0] and γ1, γ2 as positive constants. For more details

on the derivations and the convergence guarantees, the readers can refer to [82].

4.2 Proposed Approaches

4.2.1 Deep Convolutional K-Means Clustering

Our proposed approach Deep Convolutional K-Means Clustering2 integrated the

K-means clustering loss in the Deep CTL (DCTL) framework.

The DCTL approach is the deep version of CTL approach discussed in Section

4.1. In DCTL, we learned a different set of convolutional filters T (c)
1 , . . . , T

(c)
L

and features X(c)
1 , . . . , X

(c)
L . These learned deep features can be computed by

stacking many such layers

(∀ℓ ∈ {1, . . . , L− 1}) Xℓ = ϕℓ(Tℓ ∗Xℓ−1), (4.7)
2Anurag Goel, Angshul Majumdar, Emilie Chouzenoux, and Giovanni Chierchia, "Deep Convolutional K-Means Clustering."

In 2022 IEEE International Conference on Image Processing (ICIP), pp. 211-215. IEEE, 2022.

84

where X0 = S and ϕℓ is a given activation function for layer ℓ.

minimize
T1,...,TL,X

1

2
∥TL ∗ ϕL−1(TL−1 ∗ . . . ϕ1(T1 ∗ S))−X∥2F+Ψ(X)

+
L∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ))

Our proposed approach Deep Convolutional K-Means Clustering (DCKM)

embeds the K-means clustering loss [43] in DCTL formulation. The proposed

formulation is expressed as follows:

minimize
T1,...,TL,X,H

Fconv(T1, . . . , TL, X |S)︸ ︷︷ ︸
DCTL loss

+β ∥X −XH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

(4.8)

where

Fconv(T1, . . . , TL, X |S) =
1

2
∥TL ∗ ϕL−1(TL−1 ∗ . . . ϕ1(T1 ∗ S))−X∥2F

+Ψ(X) +
L∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ)) (4.9)

hij =

1, if xj ∈ cluster i

0, otherwise
(4.10)

Here, S is the input, X is the learned representation, β > 0 is the regularization

weight associated with the K-Means clustering loss, and H is the matrix of binary

indicator variables hij.

The architecture of DCKM framework is shown in figure 4.1. The input data

is convolved by a set of convolutional filters T1. The resulting feature map is max-

85

Figure 4.1: Overview of the proposed DCKM architecture. L represents number of DCTL layers, M c
l - filter size

and F c
l - #filters of the respective layer l and channel c. SELU is the activation function.

pooled followed by Scaled Exponential Linear Unit (SELU) activation function.

Then, the resulted features are convolved through second set of convolution

filters T2. The resulting feature map undergoes max-pooling before being input

to K-means clustering.

4.2.2 Deep Convolutional Sparse Subspace Clustering

Our next proposed approach is Deep Convolutional Sparse Subspace Cluster-

ing3 that incorporated the Sparse Subspace Clustering (SSC) loss in the DCTL

framework.

The DCTL approach is the deep version of CTL approach discussed in Section

4.1. The deeper version of CTL was formed by applying (and learning) multiple

convolutional filters one after the other [81]. This was expressed as follows,

minimize
T1,T2,T3,Z

∥T3 ∗ (T2 ∗ (T1 ∗X))− Z∥2F +Ψ(Z)

+
3∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ))
(4.11)

3Anurag Goel and Angshul Majumdar, "Sparse Subspace Clustering Incorporated Deep Convolutional Transform Learning
for Hyperspectral Band Selection" (Submitted in ICASSP 2024)

86

In sparse subspace clustering (SSC) [44], it is assumed that the samples

belonging to the same cluster lie in the same subspace. The formulation for SSC

is as follows:

∑
i

∥zi − Zicci∥22 + χ∥ci∥1,∀i ∈ {1, . . . , N} (4.12)

Assuming N samples, zi is the ith data point, Zic represents all the data points

barring the ith one and ci(∈ RN−1) corresponds to the sparse codes that represent

samples in Zic belonging to the same cluster as zi. The l1-norm imposes sparsity

on the codes. The sparsity is important because it ensures that the ith sample

is only represented by the samples of the same cluster. χ is the regularizing

parameter on the sparsity promoting term.

It is possible to represent 4.12 in a more compact form as follows:

∥Z − ZC∥22 + χ∥C∥1, (4.13)

such that diag(C) = 0

where

Z =

[
z1 | . . . | zN

]
, C =

[
c̃1 | . . . | c̃N

]
, c̃i ∈ RN (4.14)

c̃i is formed from ci by imputing it with 0 in the ith position. It is essential to

have the constraint diag(C) = 0 so that any sample is not represented by itself.

87

Therefore, the proposed formulation is as follows,

min
T1,T2,T3,Z,C

∥T3 ∗ (T2 ∗ (T1 ∗X))− Z∥2F +Ψ(Z) +
3∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ))︸ ︷︷ ︸
DCTL loss

+ β(∥Z − ZC∥2F + χ∥C∥1︸ ︷︷ ︸
SSC loss

)

(4.15)

such that diag(C) = 0.

Here, S is the input, X is the representation learned, β > 0 is the regulariza-

tion weight associated with the SSC loss.

Equation 4.15 is solved iteratively in two parts. In the first part, C is assumed

to be constant and T1, T2, T3 and Z are updated.

P1 : min
T1,T2,T3,Z

∥T3 ∗ (T2 ∗ (T1 ∗X))− Z∥2F +Ψ(Z)+

3∑
ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ)) + β(∥Z − ZC∥2F)
(4.16)

In the second part, T1, T2, T3 and Z are assumed to be fixed and C is updated.

P2 : min
C
∥T3 ∗ (T2 ∗ (T1 ∗X))− Z∥2F + β(∥Z − ZC∥2F + χ∥C∥1) (4.17)

The first part (P1) is solved via ADAM optimizer and the second part (P2) is a

regularized version of SSC and can be easily solved using any l1-norm minimizer.

Solutions to P1 and P2 are carried out alternately until the convergence is attained,

which is defined by the condition that the cluster centers exhibit negligible

variance in successive iterations.

88

Application to Hyperspectral Band Selection

We have applied our proposed approach Deep Convolutional Transform Learning

Sparse Subspace Clustering (DCTLSSC) for hyperspectral band selection in a

fashion similar to our prior work discussed in Section 3.4.2. This is because our

simple scheme yielded very good results in practice.

We divide the entire hyperspectral datacube into spatial patches Pxk
i

that

denotes the kth patch of ith band image. We modify the proposed formulation

slightly to reflect that the transforms are learnt globally on all patches but the

clustering is happening on the kth patch. This requires solving the following

problem –

min
T1,T2,T3,Z,H

∑
i

(
∑
k

(∥T3 ∗ (T2 ∗ (T1 ∗ Pxk
i
))− zxk

i
∥2F +Ψ(Zi))

+
∑
i

β(∥Z − ZC∥2F + χ∥C∥1) + λ

3∑
i=1

(∥Ti∥2F − log detTi)

(4.18)

such that diag(Ci) = 0.

For each patch, we will get a band that is closest to the jth cluster in the

Euclidean sense. We see which band is appearing to be the closest in the majority

of patches and select the same. A toy example is already shown in Table 3.1.

4.2.3 Contrastive Deep Convolutional Transform K-means Clustering

The deep learning based clustering approaches are not able to capture the discrim-

inative information in the learned representations due to the lack of supervision

89

[1]. To mitigate the negative impact of unsupervised learning in clustering, the

concept of Contrastive Learning was proposed in Contrastive Clustering [23]. In

Contrastive Clustering, the positive and negative data samples pairs are generated

using data augmentation. The constructed data samples pairs are projected into a

feature space where the instance-level and cluster-level contrastive learning is

performed by maximizing the similarity between positive pair data samples and

minimizing the similarity between negative pair data samples. The instance-level

and cluster-level contrastive loss are jointly optimized to learn the representations

and cluster assignments in joint end-to-end fashion. Later, Contrastive Deep

Embedded Clustering embedded the contrastive loss in the stacked denoising

auto-encoders to improve the clustering performance [1]. But, Contrastive Deep

Embedded Clustering suffers with the limitation of auto-encoders and might

overfit in data constrained scenarios.

Here, a novel Contrastive Deep Convolutional Transform K-means Clus-

tering model4 is proposed that leverages our previous research work, Deep

Convolutional K-means clustering framework [41] discussed in Section 4.2.1,

by incorporating the contrastive learning in the DCTL learnt representations.

To embed the contrastive loss, the positive and negative pairs of data samples

are generated with the input data and the reconstructed data from DCTL learnt

representations. Then, the contrastive loss, DCTL loss and K-means clustering

loss are jointly optimized together in end-to-end fashion. This ensures the DCTL

learnt representations retain the discriminative information of input data features
4Anurag Goel and Angshul Majumdar, "Contrastive Deep Convolutional Transform K-means Clustering" (Submitted)

90

to generate better clusters. Our proposed model incorporates contrastive learning

without relying on data augmentation to create positive and negative pairs of

data samples, as many other contrastive learning-based methods do. This makes

the construction of contrastive sample pairs more convenient. Moreover, our pro-

posed model introduces a skip connection while reconstructing the data samples

from DCTL learnt representations to alleviate the degradation problem that may

arise due to the deep layers in DCTL framework.

4.2.3.1 Related Work on Contrastive Learning based Clustering

Contrastive Learning is a self-supervised learning technique that allows the

model to learn the features of the data using the data samples without their

labels. In Contrastive learning, the positive and negative pairs of data samples

are generated. The contrastive learning minimizes the similarity between the

positive pairs while maximizes the similarity between the negative pairs of

data samples. The concept of Contrastive Clustering was introduced in [23]

in which the positive pairs and negative pairs of data samples are obtained

through data augmentation and then are projected into the feature space where

the instance-level contrastive learning is performed in row space and the cluster-

level contrastive learning is performed in column space. The joint optimization

of clustering loss and instance-level contrastive loss for short-text clustering was

proposed in [88]. [89] framed the class contrastive loss in cluster assignment

using Nearest Neighbor Matching. Deep Robust Clustering was proposed in [90]

that investigates the relationship between mutual information and contrastive

91

learning. Contrastive Deep Embedded Clustering integrated the contrastive loss

along with the regeneration loss of stacked denoising autoencoders to obtain the

more representative features for clustering [1].

4.2.3.2 Proposed Formulation

Our proposed network embeds the K-means clustering and Contrastive learning

in the Deep Convolutional Transform Learning (DCTL) framework. The com-

plete architecture of the proposed framework is shown in figure 4.2. For the input

dataset X,X ∈ Rn∗d, an input image x, x ∈ Rd, is first passed through the first

convolutional layer in which the input image is first convolved with a set of con-

volutional filters (T1). Then the max-pooling is applied on the resultant feature

map followed by Scaled Exponential Linear Unit (SELU) activation function.

The feature map generated from the first convolutional layer is then convolved

with another set of convolutional filters (T2) followed by max-pooling. This

constitutes the second convolutional layer. The feature map generated from the

second convolutional layer is the representation z on which K-means clustering

is applied to generate the clusters.

To embed the contrastive learning in the proposed framework, for each in-

put image x, a corresponding reconstructed image y is generated from the

corresponding representation z. To generate the reconstructed image y, the

representation z is upsampled and then convolved with a set of convolutional

filters. This constitutes the first Deconvolution layer.

92

Figure 4.2: Contrastive DCTLK Architecture

The feature map generated from the first deconvolutional layer is then added

with the feature map generated from the first convolutional layer through a skip

connection. The skip connections are used to solve degradation problems in

general. Moreover, the first layer of a deep network learns features with more

semantic information since it is close to the input. Therefore, introducing the skip

connection from the initial layer, helps in generating the reconstructed image y

more similar to the input image x and thus helps in optimizing the contrastive

loss.

After the skip connection, the feature map is passed through the second decon-

volutional layer in which the feature map is first upsampled and then convolved

with a set of convolutional filters. The feature map obtained from the second

convolutional layer is the reconstructed image y and has the same dimension as

the input image x. Now, the contrastive loss is calculated corresponding to the

input image x and the reconstructed image y which is then backpropagated.

93

In our proposed approach, three loss namely Deep Convolutional Transform

Learning (DCTL) loss, K-means clustering loss and Contrastive loss are com-

bined together and the combined loss function is optimize in a joint end-to-end

fashion.

The integration of K-means clustering in DCTL framework is already dis-

cussed in Section 4.2.1. The DCTL loss can be formulated as follows

Ldctl = ∥T2 ∗ (T1 ∗X)− Z∥2F + ψ(Z)

+
2∑

i=1

(
ϵ∥Ti∥2F − µlogdet(Ti)

) (4.19)

Using [43], the K-means clustering loss can be expressed as

Lkmeans = ∥X −XHT (HHT)−1H∥2F (4.20)

where X is the input data matrix and H is the matrix of binary indicator variables

hij where

hij =

1, if xj ∈ cluster i

0, otherwise
(4.21)

To better learn discriminative information of different clusters, the contrastive

learning is applied that maximizes the agreement of positive pairs and minimizes

the agreement of negative pairs. In the proposed framework, the original data

and the reconstructed data of the same sample is considered as positive pairs.

94

Suppose that the input data is

XT = {x1, x2, . . . , xn} ∈ Rd∗n

and the corresponding reconstructed output is

Y T = {y1, y2, . . . , yn} ∈ Rd∗n

Now, for each sample xi where i ∈ {1, . . . , n}, one positive pair is generated

that comprises of xi and its corresponding reconstructed sample yi, n-1 negative

pairs are generated by pairing xi with xj where j ∈ {1, . . . , n}, j ̸= i, and n-1

negative pairs are generated by pairing xi with yj where j ∈ {1, . . . , n}, j ̸= i.

The similarity between xi and yj is given as

s(xi,yj) =
xt
iyj

∥xi∥∥yj∥
(4.22)

where i, j ∈ [1, n]. The similarity between yj and xi can be computed by

swapping the xi and yj terms in the equation 4.22. The contrastive loss for

XT = {x1, x2, . . . , xn}, Y T = {y1, y2, . . . , yn} are obtained at instance-level

using the below equations

lxi = − log
e(s(xi,yi)/τ)∑n

j=1[e
(s(xi,xj)/τ) + e(s(xi,yj)/τ)]

(4.23)

lyi = − log
e(s(yi,xi)/τ)∑n

j=1[e
(s(yi,yj)/τ) + e(s(yi,xj)/τ)]

(4.24)

where τ is temperature coefficient that affects the degree of attention given to

each negative sample while computing the contrastive loss. A very small value of

95

τ results in only focusing on a few negative samples that are near to the positive

samples while a very high value of τ results in equal weightage given to all the

negative samples. Since [1] considered τ=0.5, the same value of τ is kept in our

experiments for better comparison. The overall contrastive loss is given by

Lcon =
1

2n

n∑
j=1

(lxi + lyi) (4.25)

The final loss function of the proposed framework is expressed as follows:

Lfinal = Ldctl + βLkmeans + δLcon (4.26)

Lfinal = ∥T2 ∗ (T1 ∗X)− Z∥2F + ψ(Z) +
2∑

i=1

(
ϵ∥Ti∥2F − µlogdet(Ti)

)
︸ ︷︷ ︸

Deep Convolutional Transform Learning loss

+

β ∥X −XH⊤(HH⊤)−1H∥2F︸ ︷︷ ︸
K−Means loss

+δ
1

2n

n∑
j=1

(lxi + lyi)︸ ︷︷ ︸
Contrastive loss

(4.27)

where the β and δ are the K-means loss regularizer and Contrastive loss regular-

izer respectively.

4.2.4 DeConFCluster: Deep Convolutional Transform Learning based Multiview Cluster-

ing Fusion Framework

With the rapid increase in data collection sources and volume, the exploration

of multiview data has become popular. Multiview data is referred to as the

data collected from the same data source but with different angles or different

96

perspectives. For example, the same news is advertised or published in different

media with different content; the same statement is labeled with different tags

by different individuals, and the same image is captured using different features.

Multiview data is richer and more informative but more complex than single-view

data. In multiview data, the data belonging to each view has information related

to different contexts and also has some complementary information. Clustering

is a category of unsupervised learning approach in which the data instances are

grouped into several groups or clusters based on the various features of the data

instances. Thus, multiview data clustering requires exploring and integrating

multiple views of the data to perform the grouping of data instances in possible

clusters.

Multiview data knowledge extraction is vital in big data mining and analytics

nowadays. In this regard, many recent works suggest CNN based clustering

objectives [91, 92]. These generally lie on the encoder-decoder framework. In

such a work, the clustering loss is included after the encoder network, which

ensues the problem of additional training of a decoder network and hence, incurs

extra learning of weights. In data-constrained scenarios, this can make the model

prone to overfitting [6]. Also, some works learn representations independently

and apply clustering algorithms like K-Means in a piecemeal fashion which may

lead to representations being less effective for clustering task.

Deep Convolutional Transform Learning (DCTL) based unsupervised and

supervised frameworks have been proposed in [93] and [94] respectively for per-

forming the classification and regression tasks. In this chapter, an unsupervised

97

multi-channel multiview clustering framework based on DCTL - DeConFCluster

is introduced that bridges all the gaps mentioned earlier, namely

1. it avoids additional decoder training,

2. it learns unique transforms and

3. it learns representations from joint training of deep CTL multiview layers

and K-Means algorithm.

The proposed framework is evaluated on four standard multiview clustering

datasets. The results demonstrate that the proposed framework outperforms the

state-of-the-art multiview deep clustering approaches.

4.2.4.1 Related Work on Multiview Clustering

MultiView Clustering (MVC) clusters subjects into subgroups using multiview

data and has gained significant attention rapidly as it caters to solving real-world

problems that fall under big data analytics. Recently many solutions have been

proposed to perform the same. These are broadly classified into two categories

generative and discriminative approaches. The generative approaches try to

learn the underlying data distribution. These use generative models with each

model representing the individual view and then find the clustering solution.

In contrast, discriminative approaches seek to optimize an objective function

with pairwise similarities. The average similarity in intra-clusters and inter-

clusters is minimized and maximized respectively [95]. The former usually

98

includes Expectation Maximization (EM) and mixture models. The latter, being

larger in number, can be further categorized into sub-categories like multiview

spectral clustering, multiview subspace clustering, multiview non-negative matrix

factorization clustering, multi-kernel clustering, Canonical Correlation Analysis

(CCA), etc. [95].

In generative approaches, the work in [96] assumes independent views and

adopts multinomial distribution for the document clustering problem. Similarly,

based on different assumptions and criteria, two versions of the multiview EM

algorithm for finite mixture models are proposed in [97]. Using Convex Mixture

Models (CMMs) for single-view clustering, the multiview version proposed in

[98] could find the global optimum. It also avoided the initialization and local

optima problems of standard mixture models, as the latter requires multiple EM

algorithms executions.

Next, the multiview spectral clustering method is discussed in discriminative

approaches. This method obtains a common clustering result and assumes that

the same or similar eigenvector matrix is shared among all views. There are

two characteristic methods. First is co-training spectral clustering [99–102]

when both labeled and unlabelled data are available. Second is co-regularized

spectral clustering [103, 104], which is a semi-supervised learning technique.

The objective function generally requires the difference between the predictor

functions of the two views to be minimized.

There are methodologies based on subspace clustering in the multiview data

99

[105–107]. It requires finding the underlying low dimensional common subspace

from each view which is, in general, obtained by making each of the view’s

coefficient matrix as similar as possible. The other works suggest Non-Negative

Matrix Factorization (NMF) that seeks two non-negative matrix factors called

basis and indicator. In the case of MVC, some studies point to learning a

common indicator matrix across each view [108, 109] for NMF. Some works

propose using multiview K-Means clustering to deal with the extensive data.

These works use K-Means as it is computationally less expensive than eigen-

decomposition. In [110], authors proposed a multiview K-Means clustering

method that adopted a common indicator matrix across different views. Besides

Non-negative Matrix Factorization (NMF), the authors in [111] introduced a

categorical utility function to measure the similarity between the indicator matrix

from each view and the common indicator matrix and proposed a consensus

based MVC method.

Also, there are methods in which direct view combination via a kernel is used

as a common approach to perform MVC. Usually, it is done by designating a

kernel for each view and then combining these kernels in a convex combination

[112–114]. Another technique - CCA combines multiple views after projection

[115, 116]. All methods mentioned earlier have achieved satisfactory perfor-

mance for the clustering task. But, it may be challenging to handle the data

with high-dimensional features and nonlinear property using the above stated

methods since they majorly adopt shallow and linear embedding functions to

reveal the intrinsic structure of the multiview data.

100

Recently, graph based MVC has also gained momentum. The authors in

[28] proposed a solution wherein the graph matrices of multiple views are

combined into a unified graph matrix by generating the Similarity Induced Graph

(SIG) matrices for all the available views. Then the rank constraint on the

graph Laplacian matrix is applied, and the number of connected components are

produced from the unified graph, which gives the final number of clusters.

Deep learning has emerged as a highly utilized technique to solve almost all

real-world problems and is used in the case of MVC. In [92], multiple autoen-

coders are utilized for multiview data to generate multiple latent representations

and apply heterogeneous graph learning to fuse the generated latent represen-

tations followed by the K-Means network for the final clusters. Further, in the

study[91], based on autoencoders, Deep Embedded Multiview Clustering with

collaborative training (DEMVC) is proposed. It utilizes complementary and

consensus information from multiple views and collaboratively learns the deep

latent feature representations and clustering assignments.

A Graph Neural Network (GNN) [117] is applied to deep representation-

based MVC to completely benefit from the features embedded in the attributed

multiview graph data. Further, the work in [118] used Graph Convolutional

Network (GCN) as an encoder with the most reliable view as input. In another

study, multiple GCN decoders capture the view-consistent low-dimensional

feature representation among different views [119]. Here, the issue is with the

additional weights training incurred from the decoder network, which could lead

to overfitting in data-constrained scenarios [6, 41]. Also, another shortcoming

101

of existing solutions is due to CNN. Additionally, CNN ends up in a trivial

solution without an output. Employing Deconvolutional layers is the lone way to

prevent the trivial solution. However, even using the mentioned solution, there

are chances of over-fitting.

The work in [39] embedded K-Means clustering in the Transform Learning

framework and trained in a joint end-to-end fashion. Also, DCTL was utilized to

perform clustering by jointly training it with K-Means to perform single-view

clustering [41]. In this chapter, a MVC framework DeConFCluster is introduced

that jointly trains and optimizes DeConFuse and K-Means clustering modules

and it overcomes the aforementioned shortcomings.

4.2.4.2 DeConFuse: a deep convolutional transform-based unsupervised fusion framework

ConFuse framework was proposed for the unsupervised construction of represen-

tation features of multi-channel data [120]. A natural strategy was to learn, for

each channel c ∈ {1, . . . , C}, a distinct set of convolutional filters (T (c))1≤c≤C

and associated features (X(c))1≤c≤C , by solving a CTL-based formulation:

minimize
T (c),X(c)

1

2

K∑
k=1

(
∥S(c)

k T (c) − X
(c)
k ∥

2
F+Ψ(X

(c)
k)

)
+ µ∥T (c)∥2F−λ log det(T (c)). (4.28)

Then, the learned channel-wise features were stacked asXk = [X
(1)
k

⊤
|. . . |X(C)

k

⊤
]⊤

for each k, and fused by a transform learning procedure acting as a fully-

102

connected layer:

minimize
T̃ ,Z

1

2

K∑
k=1

∥T̃Xk − Zk∥2F + ι+(Z)

+ µ∥T̃∥2F−λ log det(T̃), (4.29)

where T̃ denoted the fusion stage transform (not assumed to be convolutional),

Z is the row-wise concatenation of the fusion stage features (Zk)1≤k≤K , and ι+

is the indicator function for positive orthant, equals to zero if all the entries of Z

are non-negative, and +∞ otherwise. Such non-negativity constraint allowed us

to avoid trivial solutions.

However, the disjoint resolution of Problems (4.28) and (4.29) might lead to

unstable solutions that were too sensitive to initialization. Thus, an alternative

strategy is proposed in this work where all the variables are learned in an end-

to-end fashion by solving a joint optimization problem. To this aim, we relied

on the key property that the solution (X̂(c))1≤c≤C of the CTL problem assuming

fixed filters (T (c))1≤c≤C could be reformulated as the simple application of an

element-wise activation function, that is, for every k ∈ {1, . . . , K},

X̂k(T) =
[
X̂

(c)
k (T)

]
1≤c≤C

=
[
Φ(S

(c)
k T (c))

]
1≤c≤C

, (4.30)

with Φ the proximity operator of Ψ [121]. For example, if Ψ was the indicator

function of the positive orthant, then Φ identified with the famous rectified linear

unit (ReLU) activation function. Many other examples are provided in [121].

103

Consequently, in the proposed formulation, the Equation (4.30) is plugged into

Problem (4.29), leading to our final ConFuse formulation:

minimize
T,T̃ ,Z

1

2

K∑
k=1

∥T̃ X̂k(T)− Zk∥2F + ι+(Z) + µ∥T̃∥2F

+ µ∥T∥2F−λ
(
log det(T̃) +

C∑
c=1

log det(T (c))
)
. (4.31)

Although Problem (4.31) was still non-convex, this new formulation had two

notable advantages. First, as soon as the involved activation function was smooth,

all terms of the cost function in (4.31) were differentiable, except the indicator

function. Thus, the accelerated stochastic projected gradient descent, Adam,

from [122] can be employed. The latter used automatic differentiation and

stochastic approximations to deal with large datasets efficiently. Second, any

(sub-)differentiable activation function Φ could be plugged into our model (4.30),

for instance, SELU [123], or Leaky ReLU [124]. This flexibility will play a key

role in the performance, as shown in the experimental section.

In the formulation of ConFuse, the non-negativity constraint on Z is imposed

to avoid trivial solutions. Regarding the representation filters stacked in matrices

(T, T̃), the log-det regularization imposed a full rank on those. Thus, it helped to

enforce the diversity and to prevent the degenerate solution (T = 0, X = 0, T̃ =

0, Z = 0). The Frobenius regularization ensured that the matrices entries remain

bounded.

In DeConFuse framework, the ConFuse architecture is extended with more

Convolutional layers based on CTL [93]. Here, the number of Transforms is

104

same as the number of CTL Layers. Thus, a different set of convolutional

filters T (c)
1 , . . . , T

(c)
L and features X(c)

1 , . . . , X
(c)
L are learned. These learned deep

features can be computed by stacking many such layers

(∀ℓ ∈ {1, . . . , L− 1}) Xℓ = ϕℓ(Tℓ ∗Xℓ−1), (4.32)

where X0 = S and ϕℓ a given activation function for layer ℓ. Further, these

features were processed in the same manner as in the ConFuse architecture, i.e.,

with fusion transform T̃ and common representation Z learned subsequently.

This led to the joint optimization problem

minimize
T,X,T̃ ,Z

Ffusion(T̃ , Z,X) +
C∑
c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c) |S(c))︸ ︷︷ ︸

J(T,X,T̃ ,Z)

(4.33)

where

Fconv(T1, . . . , TL, X |S) =
1

2
∥TL ∗ ϕL−1(TL−1 ∗ . . . ϕ1(T1 ∗ S))−X∥2F

+Ψ(X) +
L∑

ℓ=1

(µ||Tℓ||2F−λ log det(Tℓ)). (4.34)

and

Ffusion(T̃ , Z,X) =
1

2

∥∥∥Z − C∑
c=1

flat(X(c))T̃c

∥∥∥2
F
+ ι+(Z)

+
C∑
c=1

(
µ∥T̃c∥2F−λ log det(T̃c)

)
,

(4.35)

where the operator “flat” transformed X(c) into a matrix where each row con-

tained the “flattened” features of a sample. The complete architecture is shown

105

in Figure 4.3.

Figure 4.3: General view of the DeConFuse Architecture. C = 5 represents the number of DeepCTL networks/chan-
nels, L = 2 is the number of DCTL layers, M c

ℓ is the filter size and F c
ℓ is the number of filters of the respective

layer ℓ and channel c.

4.2.4.3 Proposed Formulation

In this chapter, an unsupervised multi-channel fusion framework called DeConF-

Cluster5 is proposed to perform multiview clustering. Previously, the framework

DCKM [41] combined DCTL [81] with K-Means for Single View Clustering

(SVC). In contrast, multiview clustering task is targeted here. Hence, DeCon-

FCluster was a multi-channel clustering framework that extended DeConFuse

Network [125] based on DCTL by embedding the K-Means clustering loss as

was done in DCKM [41]. Here, fusion was happening that was not present
5P. Gupta, A. Goel, A. Majumdar, E. Chouzenoux and G. Chierchia, “DeConFCluster: Deep Convolutional Transform

Learning based Multiview Clustering Fusion Framework" (Submitted in Pattern Recognition)

106

in DCKM. It jointly trained and globally optimized DeConFuse Network and

K-Means module. There were as many channels as the number of views in any

of the considered datasets, i.e., C = V . Each channel was processed based on

the DCTL network. This amounted to learning unique transforms (Tc)1≤c≤C and

thus, diverse and interpretable representation (Xc)1≤c≤C , for each channel input

(Sc)1≤c≤C . These channel wise representations were further fused using TL [73]

to learn a common representation Z and transform T̃ . This completed the first

module of the architecture. The representations are then fed as input to the sec-

ond part of the framework K-Means clustering module that gives the clustering

results. Thus, the representations learned are also guided by the K-Means loss.

The learning problem reads:

minimize
T,X,T̃ ,Z,H

Ffusion(T̃ , Z,X) +
C∑
c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c) |S(c))+

β∥Z − ZH⊤(HH⊤)−1H∥2F

(4.36)

The complete architecture of the DeConFCluster is summarized in the figure 4.4.

The network’s pipeline consisted of multiple channels wherein each channel was

designated for one of the views of the multiview dataset. Next, the representa-

tions were learned from these channels’ networks that gave the individual view’s

contribution. Then these representations were flattened and concatenated to pass

through a fully connected layer learned via TL. Here, a common representation

across all channels’ representations is learned that provides the cross-channel in-

formation or shared information from each view. Finally, clusters were obtained

by inputting the representation into the K-Means module.

107

Figure 4.4: DeConFCluster Architecture. C represents the number of DeepCTL networks/channels, L is the number
of DCTL layers, M c

ℓ is the filter size and F c
ℓ is the number of filters of the respective layer ℓ and channel c.

All the variables were learned in an end-to-end fashion. Typically, SGD could

be used as an optimizer for all the variables except H . This latter variable was

updated directly via K-Means clustering [43] at each iteration using the current

Z estimate as an input.

4.3 Experiments and Results

4.3.1 Computer Vision datasets

4.3.1.1 Results on Deep Convolutional K-means Clustering (DCKM)

The evaluation of our proposed approach Deep Convolutional K-means Cluster-

ing (DCKM) discussed in Section 4.2.1 is carried out on three benchmark facial

images datasets: Yale, Extended YaleB and ARFaces. The datasets details can

108

be referred from Section 1.3.1.

For all the datasets, the dense shift invariant feature transform (DSIFT) fea-

tures were first extracted; then principal component analysis (PCA) was used

to further reduce the dimensions to 300. This protocol was followed by several

prior clustering studies [2, 46, 64, 126].

Our proposed formulation is compared with several benchmarks including

Deep Learning friendly Clustering (DLC) [4], Deep K-Means (DKM) [5], Deep

Clustering with Convolutional Autoencoder (DCEC) [8] and AutoEncoded K-

Means (AEKM) [7]. The K-means algorithm with standard Euclidean distance

as distance metric is also used for comparison.

Normalized Mutual Information (NMI), Adjusted Rand Index (ARI) and

Accuracy are used as metrics [2, 127]. The values of µ and λ are set as 1 and

0.001 in all the experiments. For all the experiments, 3 filters of sizes 9x9 have

been used in both the first and second layer of convolutions. The max-pooling

kernel size is 2x2.
Table 4.1: DCKM: Clustering Results

Yale Extended YaleB ARFaces
Models Acc NMI ARI Time Acc NMI ARI Time Acc NMI ARI Time

K-Means 0.618 0.669 0.448 24 0.098 0.131 0.014 1769 0.146 0.457 0.047 377
DKM 0.338 0.430 0.158 397 0.087 0.125 0.010 7789 0.133 0.449 0.042 1414
DLC 0.386 0.477 0.186 428 0.098 0.151 0.016 5436 0.138 0.455 0.045 1418

AEKM 0.376 0.462 0.169 124 0.103 0.103 0.018 2536 0.137 0.456 0.045 522
DCEC 0.539 0.624 0.377 2112 0.295 0.453 0.173 24367 0.074 0.26 0.02 7008

Proposed 0.649 0.708 0.510 51 0.349 0.448 0.132 2417 0.159 0.463 0.051 757

The results are shown in Table 4.1. For Yale and AR Faces, our proposed

method yields the best results; for Extended YaleB, our results are a close second.

109

The Yale and the AR Face datasets are more challenging compared to Extended

YaleB. This is because the first two have a larger number of clusters (an order of

magnitude higher than Extended YaleB) and fewer images (an order of magnitude

lower than Extended YaleB). On these two challenging datasets, our method

performed better than the existing benchmarks. In the relatively simpler case

(Extended YaleB), our method is slightly worse than DCEC in terms of ARI

and NMI but is better in terms of accuracy. It is interesting to note that existing

deep learning algorithms are doing worse than the simple K-means specially in

data-constrained scenarios.

The runtime (in seconds) for various techniques are shown in Table 4.1 under

Time column. Unsurprisingly K-means is the fastest, our proposed method is in

the same order as that of K-means and is much faster than the rest of the deep

learning based clustering techniques.

Ablation Studies

Table 4.2: DCKM: Ablation Studies Results

Yale Extended YaleB ARFaces
Metric Prop1L Piece1L Prop2L Piece2L Prop1L Piece1L Prop2L Piece2L Prop1L Piece1L Prop2L Piece2L
Acc 0.620 0.588 0.649 0.636 0.146 0.135 0.349 0.320 0.142 0.122 0.159 0.151
NMI 0.686 0.648 0.708 0.691 0.204 0.193 0.448 0.432 0.453 0.434 0.463 0.456
ARI 0.447 0.412 0.510 0.462 0.033 0.031 0.132 0.123 0.044 0.040 0.051 0.048

This section shows how the results vary with the number of layers. The

study also illustrates the variation in results when solving the problem jointly

(as proposed) compared to the piecemeal solution. In the piecemeal approach,

features are generated from (deep) convolutional transform learning, and these

110

features are subsequently fed into K-means clustering. The results are shown in

Table 4.2. The joint solution, be it one layer or two-layer, yields better results

than the piecemeal solution. This is expected; even in the past, jointly formulated

solutions yielded better results than piecemeal ones. For both the piecemeal and

joint solutions, going deeper helps, that is, the results obtained from two layers

are always better than the ones from one layer.

Finally the empirical convergence plot is shown in figure 4.5. It is observed

that the proposed algorithm converges within 50 iterations. The convergence

plot for other depths show a similar trend.

Figure 4.5: DCKM: Empirical Convergence Plot

4.3.1.2 Results on Contrastive Deep Convolutional Transform K-means Clustering

The evaluation of our proposed approach Contrastive Deep Convolutional Trans-

form K-means Clustering discussed in Section 4.2.3 is carried out on five bench-

mark facial images datasets namely Yale Faces, Extended YaleB, ARFaces,

Olivetti Faces and Pixraw10P datasets. The datasets details can be referred from

Section 1.3.1.

111

Since the number of clusters (classes) for the given datasets are known,

When conducting experiments, the standard clustering evaluation metrics namely

Accuracy [30], Normalized Mutual Information (NMI) [30], and Adjusted Rand

Index (ARI) [31], are commonly employed. The evaluation metrics details can

be referred from Section 1.4.1.

The proposed model is compared with five state-of-the-art models to evaluate

the performance. The benchmark models are briefly described as follows:

• K-Means: This refers to the standard K-means clustering algorithm [128]

with Euclidean distance as the distance metric.

• Deep Clustering Network (DCN): This refers to the Deep Clustering Net-

work proposed in [4]. DCN framework learns the deep representations via

Deep Neural Network and apply K-means clustering on the learned deep

representations. DCN optimizes the deep representations and the cluster

assignments in an alternate fashion.

• Deep K-Means (DKM): DKM refers to Deep K-Means approach proposed

in [5] that jointly learns the deep representations via auto-encoders and

K-means clustering.

• Efficient Deep Embedded Subspace Clustering (EDESC): EDESC [129] is

a deep learning based subspace clustering approach that learns the subspace

bases from deep representation in an iterative refining manner.

• Contrastive Deep Embedded Clustering (CDEC): CDEC [1] embeds the con-

112

trastive loss in the stacked denoising auto-encoders to learn discriminative

latent representations by optimizing the reconstruction loss and contrastive

loss. In CDEC, the KL-divergence is optimized as the clustering loss.

In the experiments, Adam Optimizer is used, the values of ϵ and µ both are set

as 10−4 for all the datasets. All other hyperparameters’ values are grid-searched

and the ones that gave best results are set as the final values. The final values for

these hyperparameters are summarized in Table 4.8.

Table 4.3: Contrastive DCTLK: Hyperparameters Settings

Parameter Yale EYaleB ARFaces Olivetti Pixraw10P
Epochs 50 50 50 50 110

Learning Rate 1e-4 1e-3 1e-4 1e-3 1e-5
Kernel Sizes1 (9,9) (3,3) (3,3) (3,3) (3,3)

#Kernel Filters2 (9,9) (64,64) (32,32) (64,64) (64,64)
β3 1.0 1.0 1.0 1.0 1.0
δ4 0.8 1.0 1.0 1.0 1.0

1 Kernel Filters size for DCTL layers 1, 2
2 Number of Kernel Filters for DCTL layers 1, 2
3 K-Means loss regularizer
4 Contrastive loss regularizer

The performance of the proposed framework is compared with five state-of-

the-art approaches including the K-means algorithm, Deep Clustering Network

(DCN), Deep K-Means (DKM), Efficient Deep Embedded Subspace Clustering

(EDESC), and Contrastive Deep Embedded Clustering (CDEC) on five facial

images datasets namely Yale Faces, Extended YaleB, ARFaces, Olivetti Faces,

and Pixraw10P Faces dataset. The results are shown in Table 4.4. The results

demonstrate that the proposed framework outperforms all the benchmarks with

significant margin for all the datasets. The EDESC approach shows the second

best results for ARFaces and Pixraw10P datasets while CDEC shows the second

113

best result for Extended YaleB dataset. For Yale Faces and Olivetti Faces datasets,

K-means algorithm gives the second best results.

The loss plots of the proposed framework for the three datasets: Yale Faces,

Olivetti Faces and Pixraw10P Faces are shown in figure 4.6. The proposed

framework converges within 50 epochs. For Pixraw10P faces, the convergence

is reached in 110 epochs due to the lower learning rate.

Table 4.4: Contrastive DCTLK: Clustering Results

Models Metrics Yale EYaleB ARFaces Olivetti Pixraw10P

K-means
Acc 0.618 0.098 0.146 0.612 0.91
NMI 0.669 0.131 0.457 0.779 0.92
ARI 0.448 0.014 0.047 0.464 0.83

DCN1 Acc 0.386 0.098 0.138 0.275 0.674
NMI 0.477 0.151 0.455 0.513 0.776
ARI 0.186 0.016 0.045 0.092 0.555

DKM2 Acc 0.338 0.087 0.133 0.286 0.608
NMI 0.430 0.125 0.449 0.523 0.752
ARI 0.158 0.010 0.042 0.101 0.484

EDESC3 Acc 0.588 0.113 0.147 0.53 0.94
NMI 0.648 0.168 0.453 0.727 0.93
ARI 0.408 0.024 0.043 0.386 0.87

CDEC4 Acc 0.521 0.146 0.132 0.407 0.82
NMI 0.577 0.233 0.423 0.631 0.87
ARI 0.302 0.042 0.024 0.221 0.74

Proposed Acc 0.685 0.214 0.159 0.642 0.94
NMI 0.71 0.271 0.462 0.811 0.95
ARI 0.511 0.052 0.053 0.493 0.89

1 Deep Clustering Network
2 Deep K-means
3 Efficient Deep Embedded Subspace Clustering
4 Contrastive Deep Embedded Clustering

Ablation Studies

In this section, five ablation studies are performed on the various important

hyperparameters using three datasets namely Yale Faces, Olivetti Faces and

Pixraw10P Faces.

114

Figure 4.6: Contrastive DCTLK: Empirical Convergence Plots

4.3.1.3 Ablation on K-means clustering loss Regularizer (β)

The first ablation study experimented on the value of K-means clustering loss

regularizer in the final loss function of the proposed framework which is rep-

resented by β in equation 4.27. The values of β are taken in the range of [0.2,

1.2]. The results are shown in figure 4.7. From the results, it can be observed

that all the three datasets are giving best results for β = 1.0. This signifies the

importance of K-means clustering loss term in the final loss function.

Figure 4.7: Contrastive DCTLK: Ablation Results on K-means loss regularizer (β)

115

4.3.1.4 Ablation on Contrastive loss Regularizer (δ)

The second ablation study experimented on the value of Contrastive loss regular-

izer in the final loss function of the proposed framework which is represented

by δ in equation 4.27. The values of δ are taken in the range of [0.2, 1.2]. The

results are shown in figure 4.8. From the results, it can be observed that Olivetti

Faces and Pixraw10P Faces datasets have shown the best performance for δ =

1.0 while Yale Faces is giving the best results for δ = 0.8. This means that a

higher weightage to the contrastive loss term in the final loss function helps in

achieving better clustering performance.

Figure 4.8: Contrastive DCTLK: Ablation Results on Contrastive loss regularizer (δ)

4.3.1.5 Ablation on Learning Rate

The third ablation study is performed on the learning rate. Learning rate is

considered as an important hyperparameter that affects the final results. The

values of learning rate are considered in the range of [10−5, 10−1] for conducting

the experiments in this ablation study. The results are shown in figure 4.9. From

the results, it can be interpreted that the Yale Faces dataset gives the best results

116

with the learning rate value 10−4 while the Olivetti Faces and Pixraw10P Faces

dataset give the best performance with the learning rate values of 10−3 and 10−5

respectively.

Figure 4.9: Contrastive DCTLK: Ablation Results on Learning rate

4.3.1.6 Ablation Studies Results on µ, ϵ regularizers

This ablation study experimented with the regularizers µ and ϵ associated

with the penalty terms log-det and frobenius norms in the final loss function

of the proposed framework formulated in equation 4.27. The set of values

taken as a combination for both the penalty regularizers µ and ϵ respectively

are - ((10−2, 10−3), (10−3, 10−4), (10−4, 10−4), (10−4, 10−3), (10−3, 10−2)). The

metric-wise results for all three datasets are shown in in figure 4.10. This

indicates that the proposed framework is robust for the regularizers of the pe-

nalization terms since the results of Yale Faces and Pixraw10P Faces have not

shown any variation for different values of µ and ϵ regularizers. The performance

of Olivetti Faces dataset slightly varies for different values of µ and ϵ regularizers

and gives the best performance for µ = 10−4 and ϵ = 10−4.

117

Figure 4.10: Contrastive DCTLK: Ablation Results on µ, ϵ regularizers

4.3.1.7 Ablation on K-means clustering loss and Contrastive Loss

The last ablation study is performed on the loss functions: K-means clustering

loss and Contrastive loss. There are four variants of the proposed framework

which are evaluated in this experiment. The first two variants are based on the

piecemeal approach where the representations are first learned using the deep

convolutional transform filters and once the representations are learned, they

are fed to the K-means clustering to obtain the final clusters. Therefore, in the

piecemeal version, β is set to 0 and thus, the K-means clustering loss is not

backpropagated. In the piecemeal versions, the first variant is without contrastive

loss while the second variant is with contrastive loss i.e. in the first variant, both

β and δ are set to 0 while in the second variant only β is set to 0 while δ is set

to the best value of contrastive loss regularizer obtained in Section 5.2.2. The

third and fourth variants show the importance of contrastive loss in the proposed

framework where the third variant is without contrastive loss i.e. δ is set to 0

while the fourth variant is with the contrastive loss. The results are shown in

Table 4.5. The results show that the best results are obtained in the fourth variant

where both the K-means clustering loss and contrastive loss are optimized. This

118

signifies that both the K-means clustering loss and contrastive loss are crucial in

the proposed framework for achieving the best clustering performance.

Table 4.5: Contrastive DCTLK: Ablation Results on K-means loss and Contrastive loss

Models Metrics Yale Olivetti Pixraw10P

Piecemeal w/o
Contrastive loss

Acc 0.594 0.577 0.59
NMI 0.693 0.769 0.764
ARI 0.449 0.42 0.449

Piecemeal with
Contrastive loss

Acc 0.679 0.59 0.77
NMI 0.702 0.782 0.883
ARI 0.499 0.447 0.732

Proposed w/o
Contrastive loss

Acc 0.649 0.58 0.67
NMI 0.708 0.774 0.709
ARI 0.510 0.409 0.379

Proposed with
Contrastive loss

Acc 0.685 0.642 0.94
NMI 0.71 0.811 0.95
ARI 0.511 0.493 0.89

4.3.2 Hyperspectral Imaging

The proposed approach Deep Convolutional Sparse Subspace Clustering dis-

cussed in Section 4.2.2 is evaluated on two benchmark hyperspectral images

datasets: Indian Pines and Pavia University. The datasets details and pre-

processing steps can be referred from Section 1.3.2.

There is no straightforward way to evaluate the efficacy of the selected bands.

Therefore, it must be evaluated based on some other criterion. Here, classification

is used as the evaluation criterion, i.e., after band selection, the selected bands

are passed onto a classifier. In particular, kernel sparse representation classifier

[77] is used since it is a highly cited work on hyperspectral classification. The

same was followed in our previous work discussed in Section 3.4.2.

In choosing the benchmarks, diversity in the selection strategy is maintained.

119

The first one is based on ranking – Similarity Based Ranking (SBR) [130]. The

second one is based on Searching – FastVGBS [131]. The third one is a hybrid

approach based on Dilation Distances and Ranking (DDR) [132]. The final one

is deep learning formulation based on attention networks – DARecNet [133]. As

our method is based on SSC, SSC is also used as a benchmark. Our previous

work Deeply Transformed K-Means clustering (DTKM) (discussed in Section

3.4.2) is also used as a benchmark.

Our proposed technique requires the specification of four hyperparameters

— λ, µ, β and χ. The value of both λ and µ is set as 1 for all the experiments;

this value has been found to work well on almost all transform learning-based

formulations. The parameter µ controls the relative importance of the deep

transform learning and the SSC costs. There is no reason to give more weightage

to one than the other; therefore, µ is set to 1. The fourth parameter χ controls

the sparsity; as the number of clusters is relatively few (compared to the size

of the image) the number of samples falling in each cluster will be moderate.

Keeping that in mind, χ value is set as 0.2 in all the experiments; perhaps trying

to optimize it could have given somewhat better results.

In the experiments, overlapping patches of size 16x16 are used. The patches

are obtained by shifting the patches 1 pixel in both horizontal and vertical

directions, as and when needed. The proposed architecture with three layers is

used. For all the experiments, 3 filters of sizes 5x5 have been used in both the

first, second, and third layers of convolutions. The maxpooling kernel size is

2x2.

120

In this work, an extremely challenging evaluation protocol shown in [134]

is followed. For each class, only 15 labeled samples are used for training and

the rest for testing. These 15 samples are randomly picked, and 100 such trials

are carried out. The means and the standard deviations are being reported in

the Table 4.6. For measuring classification accuracy, three standard measures in

hyperspectral imaging – Overall Accuracy, Average Accuracy (AA), and Kappa

coefficient are used.
Table 4.6: DCTLSSC: Results (Mean ± Standard Deviation)

Metric ↓
Datasets→ Pavia University Indian Pines
Bands→ 10 20 30 10 20 30Algorithms ↓

Overall
Accuracy

DTKM 0.94 ± 0.16 0.93 ± 0.13 0.91 ± 0.12 0.83 ± 0.13 0.82 ± 0.11 0.79 ± 0.11
SBR 0.81 ± 0.11 0.82 ± 0.11 0.80 ± 0.09 0.73 ± 0.09 0.73 ± 0.08 0.71 ± 0.07

FastVGBS 0.72 ± 0.09 0.73 ± 0.09 0.70 ± 0.08 0.63 ± 0.08 0.64 ± 0.07 0.62 ± 0.06
DDR 0.78 ± 0.12 0.80 ± 0.11 0.79 ± 0.11 0.68 ± 0.12 0.69 ± 0.12 0.68 ± 0.11

DARecNet 0.93 ± 0.15 0.92 ± 0.14 0.92 ± 0.13 0.82 ± 0.13 0.81 ± 0.13 0.80 ± 0.11
SSC 0.69 ± 0.07 0.71 ± 0.07 0.71 ± 0.06 0.62 ± 0.07 0.64 ± 0.06 0.63 ± 0.05

Proposed 0.95 ± 0.12 0.94 ± 0.12 0.93 ± 0.12 0.85 ± 0.11 0.84 ± 0.12 0.82 ± 0.10

Average
Accuracy

DTKM 0.91 ± 0.14 0.91 ± 0.13 0.88 ± 0.13 0.80 ± 0.12 0.80 ± 0.12 0.76 ± 0.10
SBR 0.78 ± 0.10 0.79 ± 0.10 0.77 ± 0.09 0.71 ± 0.09 0.71 ± 0.09 0.77 ± 0.09

FastVGBS 0.71 ± 0.08 0.71 ± 0.07 0.70 ± 0.06 0.63 ± 0.08 0.64 ± 0.08 0.62 ± 0.07
DDR 0.76 ± 0.11 0.77 ± 0.11 0.76 ± 0.09 0.69 ± 0.10 0.70 ± 0.09 0.70 ± 0.09

DARecNet 0.90 ± 0.14 0.90 ± 0.13 0.89 ± 0.13 0.81 ± 0.13 0.80 ± 0.13 0.78 ± 0.11
SSC 0.67 ± 0.06 0.68 ± 0.06 0.68 ± 0.05 0.59 ± 0.06 0.62 ± 0.05 0.60 ± 0.05

Proposed 0.93 ± 0.13 0.93 ± 0.12 0.91 ± 0.12 0.84 ± 0.12 0.82 ± 0.11 0.80 ± 0.11

Kappa
Coefficient

DTKM 0.88 ± 0.14 0.87 ± 0.14 0.84 ± 0.13 0.74 ± 0.13 0.72 ± 0.12 0.69 ± 0.11
SBR 0.75 ± 0.10 0.76 ± 0.08 0.73 ± 0.07 0.64 ± 0.08 0.65 ± 0.07 0.64 ± 0.07

FastVGBS 0.64 ± 0.09 0.65 ± 0.09 0.63 ± 0.08 0.59 ± 0.08 0.60 ± 0.08 0.59 ± 0.08
DDR 0.71 ± 0.11 0.73 ± 0.12 0.71 ± 0.11 0.62 ± 0.12 0.63 ± 0.11 0.63 ± 0.10

DARecNet 0.86 ± 0.14 0.85 ± 0.12 0.85 ± 0.11 0.73 ± 0.14 0.71 ± 0.13 0.70 ± 0.13
SSC 0.62 ± 0.06 0.64 ± 0.06 0.63 ± 0.05 0.55 ± 0.06 0.57 ± 0.05 0.56 ± 0.04

Proposed 0.89 ± 0.12 0.89 ± 0.12 0.87 ± 0.12 0.77 ± 0.13 0.76 ± 0.12 0.74 ± 0.12

The running time of different algorithms are shown in Table 3.5. One can see

that DTKM, DARecNet and our proposed are slower than the rest. SSC is the

fastest. This is understandable since the aforesaid are based on deep learning

while others are not. However, speed comes at the expense of accuracy. Note

that, while comparing with our previous work DTKM, the results are slightly

121

different; this is because the patch size chosen in DTKM and the one used here

are different.
Table 4.7: DCTLSSC: Runtime comparison (in seconds)

Pavia University Indian Pines
Bands→ 10 20 30 10 20 30Algorithms ↓

DTKM 505 781 1004 229 396 501
SBR 257 306 433 130 199 226

FastVGBS 109 139 166 63 80 91
DDR 163 188 204 105 131 155

DARecNet 794 1107 1569 402 564 732
SSC 106 112 127 61 63 68

Proposed 329 404 530 154 187 215

The general observation is that the deep learning based techniques that are

slower (observed in Table 3.5) are indeed more accurate than others. Our method

outperforms the benchmarks including DTKM. One can notice that addition of

convolutional transforms vastly improves the results over vanilla SSC. For all

the algorithms, the best results are obtained between 10 to 20 bands and results

deteriorate when one goes up to 30 bands. The same was observed in prior studies

like in our previous work DTKM and DARecNet [134]. It is observed that the

algorithms that give higher accuracy also show higher deviations. Furthermore,

it is noticed that the deviations in general decrease for all the techniques with the

increase in the number of bands.

It is interesting to compare our proposed work with our previous work DTKM.

The prior study used a fully connected network; empirical observations in deep

learning have established that convolutional filters typically yield better results

than fully connected networks, therefore our improvement was expected. The

other deep learning based method DARecNet [133] performs almost at par

122

Figure 4.11: DCTLSSC: Ablation Results

with DTKM. This may owes to two reasons. In terms of architecture, it uses

state-of-the-art attention networks hence one can expect good performance.

Unfortunately, it does not have an embedded band selection strategy, like DTKM

or ours; perhaps this is the reason it was below par.

4.3.2.1 Ablation Study

This set of experiments analyze the effect of depth on the performance of our

proposed method. The depth of convolutional transform layers is increased from

one to four and see how the performance metrics vary. The number of chosen

bands is kept constant at 20. The number of filters and the size of filters remain

as before. The results are shown in figure 4.11.

One can see that the results improve from Layers one to three, but then dips.

The deterioration from layers three to four is likely due to overfitting; there is

not enough data to learn further layers [81].

123

4.3.3 Multiview datasets

The performance of our proposed approach DeConFCluster (discussed in Section

4.2.4) is illustrated on various multiview clustering datasets - 100leaves, ALOI,

Mfeat and WebKB. The datasets details can be referred from Section 1.3.4.

4.3.3.1 Hyperparameters Settings

Stochastic Gradient Descent (SGD) is used as the optimizer, λ = 0.01, µ =

0.0001 and weight decay as 0.001 for all the datasets. Another hyperparameter -

feature_ratio is also defined that indicated the percentage of features kept in the

final representation Z. All other hyperparameters can be referred from Table 4.8.

Table 4.8: DeConFCluster: Hyperparameters settings

Parameter 100leaves WebKB Mfeat ALOI
Batch size 1600 203 128 11025

Epochs 25 25 40 25
Learning Rate 5e-6 1e-4 1e-4 5e-6
Kernel Sizes1 (3,3,3) (3,3,3) (5,3,3) (3,3,3)

#Filters2 (4,8,16) (4,8,16) (2,4,8) (4,8,16)
feature_ratio 0.15 0.15 0.25 0.25

β3 1.0 0.5 0.8 0.5
1 Kernel sizes for DCTL layers 1,2,3
2 #Filters for DCTL layers 1,2,3
3 K-Means loss regularizer

4.3.3.2 Benchmarks Used

The results are compared with four state-of-the-art works. The compared models

are briefly described here as follows:

• MCGL: It is a graph based learning method. Starting graphs were learned

124

using different views’ data points that were further optimized with a rank

constraint on the Laplacian matrix. Next, optimized graphs were integrated

into a global graph. The graph was learned with the same rank constraint

on its Laplacian matrix. Cluster indicators were obtained from the global

graph only without conducting any graph cut technique and the K-Means

clustering [135].

• GMC: In this approach, each view was weighted and the SIG matrices and

the unified graph matrix were jointly learned [28]. The latter was obtained

by the fusion of the graph matrices of each view.

• DEMVC: This method proposed a framework based on autoencoders. It

utilized complementary and consensus information from multiple views and

learned the deep latent feature representations and clustering assignments

in a collaborative manner [91].

• RRA-MVC: This technique proposed a simple baseline model (SiMVC)

that aligned the distributions of the views. Further, it added the contrastive

module and selective views alignment by prioritizing the views and, thus,

improved the baseline model’s performance calling it as CoMVC framework

[136].

4.3.3.3 Metrics Used

The performance of the proposed model is evaluated using three metrics - Accu-

racy, Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

125

4.3.3.4 Results Analysis

The results of our model and benchmarks on all the four datasets are reported

in Table 4.9. It can be observed from Table 4.9 that for all the datasets, the

proposed model has shown better performance than the state-of-the-arts specially

in the case of 100leaves and WebKB datasets. The proposed model achieves a

significant improvement of 10.62% and 5.81% in the accuracy over the second

best performing benchmark for 100leaves and WebKB datasets respectively. For

Mfeat dataset, the proposed model outperforms all the benchmarks in terms of

accuracy and ARI. The NMI value of the proposed model is slightly worse than

the NMI value of the benchmark models MCGL [135] and GMC [28]. For ALOI

dataset, the proposed model performs better than all the state-of-the-arts in terms

of accuracy. For the other two metrics NMI and ARI, the proposed model is the

second best performer after the benchmark RRA-MVC [136]. This is probably

because the feature variability across classes is low in case of Mfeat and ALOI

datasets. It is worth noting that the proposed model performed well in the case

of 100leaves and WebKB, both of which have fewer samples per class. For

example, in 100leaves dataset, there are only 16 images available for each class.

It is quite challenging for a model to learn the feature representations using few

samples per class. Thus, the proposed method performed well for challenging

datasets and slightly worse for the ones where we have relatively higher number

of samples per class.

Also, the convergence plot for all the datasets were plotted that can be referred

126

Table 4.9: DeConFCluster: Clustering Results (All the metrics are in (%))

Models 100leaves WebKB Mfeat ALOI
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

MCGL 81.06 91.30 51.50 54.19 8.60 4.01 85.30 90.55 83.13 46.25 66.57 4.41
GMC 82.38 92.92 49.74 76.35 41.64 42.80 88.20 90.50 85.02 57.05 73.50 43.05

DEMVC 6.69 24.53 0.60 49.75 10.05 8.43 46.45 37.53 24.59 13.52 41.30 8.45
RRA-MVC 73.25 92.56 71.58 40.89 13.43 9.22 81.20 83.19 74.36 55.22 80.79 49.34
Proposed 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84

from figure 4.12. Using SGD as an optimizer, it could be clearly inferred that

the given solution converged to the point of stability. The SGD parameters, such

as mini-batch size and learning rate, are given in Table 4.8 for all the considered

datasets.

Figure 4.12: DeConFCluster: Empirical Convergence Plots

4.3.3.5 Ablation studies

This section shows the results corresponding to the three ablation studies per-

formed for all the datasets. We first experimented with changing the values of

the regularizers λ and µ associated with the penalty terms log-det and Frobe-

nius norms in both CTL and TL equations 4.32 and 4.35 respectively. The

set of values taken as a combination for both the penalty regularizers are -

127

Figure 4.13: DeConFCluster: Ablation Results on λ, µ

((10−2, 10−4), (10−2, 10−3), (10−3, 10−4), (10−3, 10−5),

(10−4, 10−5)). The results can be referred from Table 4.10. We also displayed

them graphically for all three metrics Accuracy, NMI and ARI in figure 4.13. We

concluded from the results that our method was robust for the regularizers of the

penalization terms except for the Mfeat dataset. In the case of Mfeat, the results

were depleted for lower values of regularizers. Thus, these penalizations played

an essential role in our formulation and helped to learn better representations.

Table 4.10: DeConFCluster: Ablation Studies Results on λ, µ

Value 100leaves (β = 1.0) WebKB (β = 0.5) Mfeat (β = 0.8) ALOI (β = 0.5)

(λ, µ) Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI
(10−2, 10−4) 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84
(10−2, 10−3) 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84
(10−3, 10−4) 91.13 96.59 88.01 80.79 54.98 52.02 94.70 89.49 88.66 58.95 79.75 46.84
(10−3, 10−5) 91.13 96.59 88.01 80.79 54.98 52.02 94.70 89.49 88.66 58.95 79.75 46.84
(10−4, 10−5) 91.13 96.59 88.01 80.79 54.98 52.02 91.80 86.24 83.74 58.95 79.75 46.84

Secondly, we experimented with the regularizer β associated with K-Means

clustering loss in the equation 4.36. The set of values for β lie in range [0, 1],

specifically, these are (0.0, 0.1, 0.3, 0.5, 0.8, 1.0). We represented results both

in text and graphically that can be referred from Table 4.11 and figure 4.14

respectively. It could be observed that for all the datasets, in general, the K-

128

Figure 4.14: DeConFCluster: Ablation Results on K-Means Regularizer

Means regularizer β ≥ 0.5 gave better performance. This signified that K-Means

loss was an important term associated with the final objective function. It helped

in learning better representations as guided by it and was thus responsible for

better clustering performance.

Table 4.11: DeConFCluster: Ablation Studies Results on K-Means Regularizer

Value 100leaves WebKB Mfeat ALOI
β Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

0.0 89.56 96.17 86.50 77.83 44.47 52.57 91.10 85.37 82.15 55.27 78.34 41.16
0.1 89.69 96.62 87.26 77.83 44.47 52.57 94.65 89.39 88.51 54.15 78.41 41.49
0.3 87.75 96.05 84.96 77.83 44.47 52.57 94.45 89.18 88.08 53.72 77.87 38.65
0.5 88.69 95.91 85.30 80.79 54.98 52.02 91.35 85.57 82.79 58.95 79.75 46.84
0.8 86.56 95.76 84.24 80.79 52.05 52.81 95.00 89.22 89.89 54.20 78.61 40.80
1.0 91.13 96.59 88.01 80.79 51.32 53.24 81.60 85.62 78.46 55.31 79.40 42.89

Table 4.12: DeConFCluster: Ablation Studies Results on Piecemeal and Proposed Formulation

Methods 100leaves WebKB Mfeat ALOI
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

Piecemeal 89.56 96.17 86.50 77.83 44.47 52.57 91.10 85.37 82.15 55.27 78.34 41.16
Proposed 91.13 96.59 88.01 80.79 54.98 52.02 95.00 89.22 89.89 58.95 79.75 46.84

The second experiment inference was also validated by the third experiment

conducted, where we performed the piecemeal version of our model. It means

we first learned representations from the DeConFuse network separately and

then passed the learned representations via the K-Means clustering module to

get the final clusters, i.e., here β = 0. The results could be referred from Table

4.12. Here, it was clearly inferred that the joint optimization of the DeConFuse

129

and K-Means clustering module is better than the piecemeal approach.

4.4 Summary

This chapter proposes four novel deep clustering approaches based on CTL

framework. The first proposed approach is Deep Convolutional K-means clus-

tering that embeds K-means clustering in CTL framework with two layers of

convolutional transform layers. The proposed approach is evaluated on three

standard computer vision datasets, demonstrated higher clustering scores as

compared to the current state-of-the-art deep clustering frameworks. The second

proposed approach embeds SSC in K-means clustering in CTL framework. The

proposed approach is evaluated on two standard hyperspectral imaging datasets,

demonstrated higher performance as compared to the current state-of-the-art

hyperspectral imaging approaches. The third work proposes a novel unsuper-

vised multi-channel fusion clustering framework named DeConFCluster. The

proposed framework jointly trains the DCTL based DeConFuse and K-Means

clustering modules in an end-to-end fashion. The advantage of this framework is

that it does not have the additional overhead of learning the weights of decoder

or deconvolutional layers, which is the case in existing multiview clustering

approaches. Another advantage of this framework is that it promotes diversity

among filters and thus, in turn, helps to learn more interpretable filters that are

further guided by K-Means loss. Therefore, due to these advantages, the pro-

posed framework DeConFCluster, evaluated on four standard multiview datasets,

130

demonstrated higher clustering scores as compared to the current state-of-the-art

multiview clustering frameworks. The last proposed approach is Contrastive

Deep Convolutional Transform K-means clustering. This approach highlights

the problem of existing deep clustering approaches being not able to capture

discriminative information due to lack of supervision. In the fourth proposed

approach, the said problem is alleviated by incorporating Contrastive learning in

Deep Convolutional Transform K-means clustering. The proposed framework

jointly trains the contrastive loss, DCTL loss and K-means clustering loss in a

joint end-to-end fashion. The proposed approach is evaluated on five standard

computer vision datasets, demonstrated higher clustering scores as compared to

the current state-of-the-art deep clustering frameworks.

131

Chapter 5

Conclusion

This dissertation proposes novel deep clustering approaches based on dictionary

learning, transform learning and convolutional transform learning frameworks.

5.1 Summary of Contribution

In this section, we will briefly summarize the chapter-wise contribution in the

area of Deep Clustering, giving a bird’s eye view of the dissertation.

5.1.1 Dictionary Learning based clustering approaches

In this part of the dissertation, we have modeled clustering approaches based on

dictionary learning framework, namely - Dictionary Learning + K-means (DLK)

and Dictionary Learning + Sparse subspace clustering (DLS). The proposed

algorithms DLK and DLS are evaluated on computer vision datasets and both the

algorithms obtained good performance. We have also proposed Deep Dictionary

132

Learning + K-means (DDLK) and Deep Dictionary Learning + Sparse subspace

clustering (DDLS) algorithms. DDLS algorithm is applied for hyperspectral

image classification problem and DDLS outperforms several state-of-the-art

approaches of hyperspectral imaging.

5.1.2 Transform Learning based clustering approaches

This chapter presented the clustering approaches based on transform learning

framework. Transform learning is the analysis equivalent of dictionary learning.

In this chapter, we proposed two approaches namely, Transform Learning +

K-means (TLK) and Deep Transform Learning + K-means (DTLK). The first

framework TLK embeds the K-means clustering loss in Transform learning

framework. TLK algorithm is applied for document clustering and achieved

good results. DTLK algorithm is applied for hyperspectral band selection and

achieved promising results as compared to other state-of-the-arts.

5.1.3 Convolutional Transform Learning based clustering approaches

In this chapter, we presented four Convolutional Transform Learning (CTL)

based clustering approaches. The first proposed approach is Deep Convolutional

K-means Clustering (DCKM) that embeds K-means clustering loss in Deep CTL

(DCTL) framework and optimize the joint formulation in an end-to-end fashion.

The performance of DCKM is evaluated on facial images datasets and achieves

good performance. The second proposed approach incorporates Sparse Subspace

133

Clustering loss in DCTL framework. This approach is applied for hyperspectral

band selection and achieved promising results.

The third proposed approach is a Multiview Clustering Framework based

on CTL - DeConFCluster. The proposed DeConFCluster is an unsupervised

multiview multi-channel fusion framework that performs multiview clustering

task utilizing representations from the fusion of the individual view’s representa-

tions; thus, it learns individual view information and then learns cross-channel

information via fusion. The framework comprised a DeConFuse network (dis-

cussed in Section 4.2.4.2) and a K-means module that are jointly trained and

optimized. Therefore, representations learned are beneficial since those have

the advantages of CTL and are well-guided through the K-Means loss also. The

same is observed in terms of performance from the experimental results too.

The fourth proposed clustering approach based on CTL is Contrastive Deep

Convolutional Transform k-means clustering that leverages DCKM by incorpo-

rating the contrastive learning in the DCTL learnt representations. To embed the

contrastive loss, the positive and negative pairs of data samples are generated

with the input data and the reconstructed data from DCTL learnt representa-

tions. Then, the contrastive loss, DCTL loss and K-means clustering loss are

jointly optimized together in end-to-end fashion. This ensures the DCTL learnt

representations retain the discriminative information of input data features to

generate better clusters. Our proposed model incorporates contrastive learning

without relying on data augmentation to create positive and negative pairs of

data samples, as many other contrastive learning-based methods do. This makes

134

the construction of contrastive sample pairs more convenient. Moreover, our pro-

posed model introduces a skip connection while reconstructing the data samples

from DCTL learnt representations to alleviate the degradation problem that may

arise due to the deep layers in DCTL framework. Extensive experimental results

on several facial images datasets demonstrate the superiority of our proposed

model.

The most significant advantage of the proposed deep clustering approaches

is that the proposed frameworks prevented the additional training from the

decoder/deconvolutional network that is generally applied in the auto-encoders

based deep clustering approaches. This significantly reduces the total number

of learnable parameters. Therefore, the proposed frameworks avoid overfitting

even in data-constrained scenarios where the number of data instances is low

and the number of classes is high.

5.2 Future Work

Convolutional Dictionary Learning [137] extends the traditional dictionary learn-

ing framework to incorporate local spatial relationships within the data. Instead

of using a single atom as in traditional dictionary learning, convolutional dictio-

nary learning uses a set of filters that are convolved with the input signal. These

filters capture local patterns and can be interpreted as the dictionary elements. It

provides a powerful framework for capturing meaningful features and has been

successfully applied in various areas of signal processing and computer vision.

135

In future, we will leverage Convolutional Dictionary Learning framework to

integrate the clustering modules.

The visual and audio modalities exhibit a significant correlation while carrying

distinct information. This strong correlation enables accurate prediction of the

semantics of one modality from the other. Leveraging their inherent differences,

cross-modal prediction emerges as a potentially more beneficial approach for self-

supervised learning of video and audio representations, surpassing the benefits

of learning within a single modality [138]. Therefore, in the future, we plan

to extend the deep clustering approaches proposed in this dissertation to cross-

modal clustering.

The robustness of the clustering network is susceptible to being attenuated

especially when it encounters an adversarial attack. A small perturbation in the

embedding space will lead to diverse clustering results since the labels are absent.

In future, we plan to incorporate adversarial learning into the proposed deep

clustering networks to enhance the clustering robustness. Adversarial learning

generates an adversarial sample to learn a small perturbation in the embedding

space which can fool the clustering layers but not impact the deep embedding.

Then, contrastive learning [139] is utilized to force the results generated by the

original embedding space features and their perturbed versions to be similar to

improve the robustness and the overall performance of the clustering network

[140].

136

References

[1] G. Sheng, Q. Wang, C. Pei, and Q. Gao, “Contrastive deep embedded

clustering,” Neurocomputing, vol. 514, pp. 13–20, 2022.

[2] X. Peng, S. Xiao, J. Feng, W.-Y. Yau, and Z. Yi, “Deep subspace clustering

with sparsity prior.” in IJCAI, 2016, pp. 1925–1931.

[3] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for

clustering analysis,” in International conference on machine learning.

PMLR, 2016, pp. 478–487.

[4] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-

friendly spaces: Simultaneous deep learning and clustering,” in interna-

tional conference on machine learning. PMLR, 2017, pp. 3861–3870.

[5] M. M. Fard, T. Thonet, and E. Gaussier, “Deep k-means: Jointly clustering

with k-means and learning representations,” Pattern Recognition Letters,

vol. 138, pp. 185–192, 2020.

[6] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of

deep neural network architectures and their applications,” Neurocomput-

ing, vol. 234, pp. 11–26, 2017.

137

[7] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep represen-

tations for graph clustering,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 28, no. 1, 2014.

[8] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional

autoencoders,” in Neural Information Processing: 24th International

Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017,

Proceedings, Part II 24. Springer, 2017, pp. 373–382.

[9] B. Diallo, J. Hu, T. Li, G. A. Khan, X. Liang, and Y. Zhao, “Deep embed-

ding clustering based on contractive autoencoder,” Neurocomputing, vol.

433, pp. 96–107, 2021.

[10] Y. Ren, K. Hu, X. Dai, L. Pan, S. C. Hoi, and Z. Xu, “Semi-supervised

deep embedded clustering,” Neurocomputing, vol. 325, pp. 121–130, 2019.

[11] L. Yu and W. Wang, “Dcsr: Deep clustering under similarity and recon-

struction constraints,” Neurocomputing, vol. 411, pp. 216–228, 2020.

[12] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral clustering

using dual autoencoder network,” in Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, 2019, pp. 4066–4075.

[13] S. Huang, Z. Kang, Z. Xu, and Q. Liu, “Robust deep k-means: An effective

and simple method for data clustering,” Pattern Recognition, vol. 117, p.

107996, 2021.

[14] L. Yang, W. Fan, and N. Bouguila, “Deep clustering analysis via dual vari-

138

ational autoencoder with spherical latent embeddings,” IEEE Transactions

on Neural Networks and Learning Systems, 2021.

[15] A. Caciularu and J. Goldberger, “An entangled mixture of variational

autoencoders approach to deep clustering,” Neurocomputing, vol. 529, pp.

182–189, 2023.

[16] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep

representations and image clusters,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 5147–5156.

[17] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for

unsupervised learning of visual features,” in Proceedings of the European

conference on computer vision (ECCV), 2018, pp. 132–149.

[18] L. Li and H. Kameoka, “Deep clustering with gated convolutional net-

works,” in 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2018, pp. 16–20.

[19] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A survey of clus-

tering with deep learning: From the perspective of network architecture,”

IEEE Access, vol. 6, pp. 39 501–39 514, 2018.

[20] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent

space clustering in generative adversarial networks,” in Proceedings of

the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.

4610–4617.

139

[21] Z. Yu, Z. Zhang, W. Cao, C. Liu, C. P. Chen, and H.-S. Wong, “Gan-

based enhanced deep subspace clustering networks,” IEEE Transactions

on Knowledge and Data Engineering, vol. 34, no. 7, pp. 3267–3281, 2020.

[22] D. P. de Mello, R. M. Assunçao, and F. Murai, “Top-down deep clustering

with multi-generator gans,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7770–7778.

[23] Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive clus-

tering,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, no. 10, 2021, pp. 8547–8555.

[24] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few

to many: Illumination cone models for face recognition under variable

lighting and pose,” IEEE transactions on pattern analysis and machine

intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[25] S. A. Nene, S. K. Nayar, H. Murase et al., “Columbia object image library

(coil-20),” 1996.

[26] A. Martinez and R. Benavente, “The ar face database: Cvc technical report,

24,” 1998.

[27] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,

“Feature selection: A data perspective,” ACM computing surveys (CSUR),

vol. 50, no. 6, pp. 1–45, 2017.

[28] H. Wang, Y. Yang, and B. Liu, “Gmc: Graph-based multi-view clustering,”

140

IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6,

pp. 1116–1129, 2019.

[29] X. Zhang, L. Zhao, L. Zong, X. Liu, and H. Yu, “Multi-view clustering

via multi-manifold regularized nonnegative matrix factorization,” in Pro-

ceedings of the IEEE International Conference on Data Mining (ICDM

2014), 2014, pp. 1103–1108.

[30] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative

matrix factorization,” in Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion retrieval,

2003, pp. 267–273.

[31] K. Y. Yeung and W. L. Ruzzo, “Details of the adjusted rand index and clus-

tering algorithms, supplement to the paper an empirical study on principal

component analysis for clustering gene expression data,” Bioinformatics,

vol. 17, no. 9, pp. 763–774, 2001.

[32] F. A. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro,

P. Barloon, and A. Goetz, “The spectral image processing system

(sips)—interactive visualization and analysis of imaging spectrometer

data,” Remote sensing of environment, vol. 44, no. 2-3, pp. 145–163, 1993.

[33] G. M. Foody and A. Mathur, “A relative evaluation of multiclass im-

age classification by support vector machines,” IEEE Transactions on

geoscience and remote sensing, vol. 42, no. 6, pp. 1335–1343, 2004.

141

[34] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[35] Z. Yang and E. Oja, “Linear and nonlinear projective nonnegative matrix

factorization,” IEEE Transactions on Neural Networks, vol. 21, no. 5, pp.

734–749, 2010.

[36] A. Goel and A. Majumdar, “Clustering friendly dictionary learning,” in

Neural Information Processing: 28th International Conference, ICONIP

2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I

28. Springer, 2021, pp. 549–557.

[37] S. Poonia, A. Goel, S. Chawla, N. Bhattacharya, P. Rai, Y. F. Lee, Y. S.

Yap, J. West, A. A. Bhagat, J. Tayal et al., “Marker-free characterization of

full-length transcriptomes of single live circulating tumor cells,” Genome

Research, vol. 33, no. 1, pp. 80–95, 2023.

[38] A. Goel and A. Majumdar, “Sparse subspace clustering friendly deep dic-

tionary learning for hyperspectral image classification,” IEEE Geoscience

and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.

[39] ——, “Transformed k-means clustering,” in 2021 29th European Signal

Processing Conference (EUSIPCO). IEEE, 2021, pp. 1526–1530.

[40] ——, “K-means embedded deep transform learning for hyperspectral band

selection,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5,

2022.

142

[41] A. Goel, A. Majumdar, E. Chouzenoux, and G. Chierchia, “Deep convo-

lutional k-means clustering,” in 2022 IEEE International Conference on

Image Processing (ICIP). IEEE, 2022, pp. 211–215.

[42] S. Tariyal, A. Majumdar, R. Singh, and M. Vatsa, “Deep dictionary learn-

ing,” IEEE Access, vol. 4, pp. 10 096–10 109, 2016.

[43] C. Bauckhage, “K-means clustering is matrix factorization,” arXiv preprint

arXiv:1512.07548, 2015.

[44] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory,

and applications,” IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[45] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,

pp. 888–905, 2000.

[46] J. Maggu, A. Majumdar, E. Chouzenoux, and G. Chierchia, “Deeply

transformed subspace clustering,” Signal Processing, vol. 174, p. 107628,

2020.

[47] V. Singhal, H. K. Aggarwal, S. Tariyal, and A. Majumdar, “Discriminative

robust deep dictionary learning for hyperspectral image classification,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 9, pp.

5274–5283, 2017.

[48] V. Singhal and A. Majumdar, “Row-sparse discriminative deep dictionary

learning for hyperspectral image classification,” IEEE Journal of Selected

143

Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 12,

pp. 5019–5028, 2018.

[49] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley inter-

disciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459,

2010.

[50] J. Lei, X. Li, B. Peng, L. Fang, N. Ling, and Q. Huang, “Deep spatial-

spectral subspace clustering for hyperspectral image,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 31, no. 7, pp. 2686–

2697, 2020.

[51] J. Sun, W. Wang, X. Wei, L. Fang, X. Tang, Y. Xu, H. Yu, and W. Yao,

“Deep clustering with intraclass distance constraint for hyperspectral im-

ages,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59,

no. 5, pp. 4135–4149, 2020.

[52] K. Li, Y. Qin, Q. Ling, Y. Wang, Z. Lin, and W. An, “Self-supervised

deep subspace clustering for hyperspectral images with adaptive self-

expressive coefficient matrix initialization,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp.

3215–3227, 2021.

[53] J. Nalepa, M. Myller, Y. Imai, K.-i. Honda, T. Takeda, and M. Antoniak,

“Unsupervised segmentation of hyperspectral images using 3-d convo-

lutional autoencoders,” IEEE Geoscience and Remote Sensing Letters,

vol. 17, no. 11, pp. 1948–1952, 2020.

144

[54] S. Ravishankar and Y. Bresler, “Sparsifying transform learning for com-

pressed sensing mri,” in 2013 IEEE 10th International Symposium on

Biomedical Imaging. IEEE, 2013, pp. 17–20.

[55] S. Ravishankar, B. Wen, and Y. Bresler, “Online sparsifying transform

learning - Part I,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp.

625–636, 2015.

[56] T. Blumensath and M. E. Davies, “Iterative thresholding for

sparse approximations,” Journal of Fourier Analysis and Applications,

vol. 14, no. 5, pp. 629–654, Dec 2008. [Online]. Available:

https://doi.org/10.1007/s00041-008-9035-z

[57] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint,” Commu-

nications on pure and applied mathematics, vol. 57, no. 11, pp. 1413–1457,

2004.

[58] S. Ravishankar and Y. Bresler, “Online sparsifying transform learning -

Part II,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 637–646,

2015.

[59] J. Maggu and A. Majumdar, “Unsupervised deep transform learning,”

in 2018 IEEE international conference on acoustics, speech and signal

processing (ICASSP). IEEE, 2018, pp. 6782–6786.

[60] J. Maggu and A. Majumdar, “Kernel transform learning,” Pattern Recog-

nition Letters, vol. 98, pp. 117–122, 2017.

145

https://doi.org/10.1007/s00041-008-9035-z

[61] J. Maggu and A. Majumdar, “Robust transform learning,” in 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2017, pp. 1467–1471.

[62] J. Maggu and A. Majumdar, “Greedy deep transform learning,” in 2017

IEEE International Conference on Image Processing (ICIP). IEEE, 2017,

pp. 1822–1826.

[63] J. Maggu, A. Majumdar, and E. Chouzenoux, “Transformed locally linear

manifold clustering,” in 2018 26th European Signal Processing Confer-

ence (EUSIPCO). IEEE, 2018, pp. 1057–1061.

[64] ——, “Transformed subspace clustering,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 33, no. 4, pp. 1796–1801, 2020.

[65] J. Maggu and A. Majumdar, “Kernelized transformed subspace clustering

with geometric weights for non-linear manifolds,” Neurocomputing, vol.

520, pp. 141–151, 2023.

[66] R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,

vol. 28, no. 2, pp. 52–68, 2011.

[67] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information

theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[68] J. Maggu, H. K. Aggarwal, and A. Majumdar, “Label-consistent transform

learning for hyperspectral image classification,” IEEE Geoscience and

Remote Sensing Letters, vol. 16, no. 9, pp. 1502–1506, 2019.

146

[69] V. Singhal, J. Maggu, and A. Majumdar, “Simultaneous detection of multi-

ple appliances from smart-meter measurements via multi-label consistent

deep dictionary learning and deep transform learning,” IEEE Transactions

on Smart Grid, vol. 10, no. 3, pp. 2969–2978, 2018.

[70] J. Maggu and A. Majumdar, “Semi-coupled transform learning,” in Neural

Information Processing: 25th International Conference, ICONIP 2018,

Siem Reap, Cambodia, December 13–16, 2018, Proceedings, Part III 25.

Springer, 2018, pp. 141–150.

[71] S. Nagpal, M. Singh, R. Singh, M. Vatsa, A. Noore, and A. Majumdar,

“Face sketch matching via coupled deep transform learning,” in Proceed-

ings of the IEEE international conference on computer vision, 2017, pp.

5419–5428.

[72] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in nonconvex

nonsmooth optimization,” Journal of Scientific Computing, vol. 78, pp.

29–63, 2019.

[73] S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,” IEEE

Transactions on Signal Processing, vol. 61(5), pp. 1072–1086, 2012.

[74] B. Hanin, “Universal function approximation by deep neural nets with

bounded width and relu activations,” Mathematics, vol. 7, no. 10, p. 992,

2019.

[75] X. Pei, C. Chen, and W. Gong, “Concept factorization with adaptive neigh-

147

bors for document clustering,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 29, no. 2, pp. 343–352, 2016.

[76] H. Kim, H. K. Kim, and S. Cho, “Improving spherical k-means for docu-

ment clustering: Fast initialization, sparse centroid projection, and efficient

cluster labeling,” Expert Systems with Applications, vol. 150, p. 113288,

2020.

[77] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classifi-

cation via kernel sparse representation,” IEEE Transactions on Geoscience

and Remote sensing, vol. 51, no. 1, pp. 217–231, 2012.

[78] M. Zeng, Y. Cai, Z. Cai, X. Liu, P. Hu, and J. Ku, “Unsupervised hyper-

spectral image band selection based on deep subspace clustering,” IEEE

Geoscience and Remote Sensing Letters, vol. 16, no. 12, pp. 1889–1893,

2019.

[79] Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, “Graph convo-

lutional subspace clustering: A robust subspace clustering framework

for hyperspectral image,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 59, no. 5, pp. 4191–4202, 2020.

[80] Y. Cai, X. Liu, and Z. Cai, “Bs-nets: An end-to-end framework for band

selection of hyperspectral image,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 58, no. 3, pp. 1969–1984, 2019.

[81] J. Maggu, A. Majumdar, E. Chouzenoux, and G. Chierchia, “Deep con-

volutional transform learning,” in Neural Information Processing: 27th

148

International Conference, ICONIP 2020, Bangkok, Thailand, November

18–22, 2020, Proceedings, Part V 27. Springer, 2020, pp. 300–307.

[82] J. Maggu, E. Chouzenoux, G. Chierchia, and A. Majumdar, “Convolu-

tional transform learning,” In International Conference on Neural Infor-

mation Processing, pp. 162–174, Dec 2018.

[83] ——, “Convolutional transform learning,” in Neural Information Process-

ing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia,

December 13–16, 2018, Proceedings, Part III 25. Springer, 2018, pp.

162–174.

[84] H. Attouch, J. Bolte, and B. Svaiter, “Convergence of descent methods

for semi-algebraic and tame problems: Proximal algorithms, forward-

backward splitting, and regularized gauss-seidel methods,” Mathematical

Programming, vol. 137, 01 2011.

[85] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A block coordinate vari-

able metric forward-backward algorithm,” Journal of Global Optimization,

vol. 66, 11 2016.

[86] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized

minimization for nonconvex and nonsmooth problems,” Mathematical

Programming, vol. 146, 08 2013.

[87] H. Bauschke, R. Burachik, P. Combettes, and D. Luke, Fixed-Point Al-

gorithms for Inverse Problems in Science and Engineering. Springer

Optimization and Its Applications, 11 2009.

149

[88] D. Zhang, F. Nan, X. Wei, S. Li, H. Zhu, K. McKeown, R. Nallapati,

A. Arnold, and B. Xiang, “Supporting clustering with contrastive learning,”

arXiv preprint arXiv:2103.12953, 2021.

[89] Z. Dang, C. Deng, X. Yang, K. Wei, and H. Huang, “Nearest neighbor

matching for deep clustering,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2021, pp. 13 693–

13 702.

[90] H. Zhong, C. Chen, Z. Jin, and X.-S. Hua, “Deep robust clustering by

contrastive learning,” arXiv preprint arXiv:2008.03030, 2020.

[91] J. Xu, Y. Ren, G. Li, L. Pan, C. Zhu, and Z. Xu, “Deep embedded multi-

view clustering with collaborative training,” Information Sciences, vol.

573, pp. 279–290, 2021.

[92] X. Yang, C. Deng, Z. Dang, and D. Tao, “Deep multiview collaborative

clustering,” IEEE Transactions on Neural Networks and Learning Systems,

2021.

[93] P. Gupta, J. Maggu, A. Majumdar, E. Chouzenoux, and G. Chierchia,

“Deconfuse: a deep convolutional transform-based unsupervised fusion

framework,” EURASIP Journal on Advances in Signal Processing, vol.

2020, no. 1, pp. 1–32, 2020.

[94] P. Gupta, A. Majumdar, E. Chouzenoux, and G. Chierchia, “Superdecon-

fuse: a supervised deep convolutional transform based fusion framework

150

for financial trading systems,” Expert Systems with Applications, vol. 169,

p. 114206, 2021.

[95] G. Chao, S. Sun, and J. Bi, “A survey on multiview clustering,” IEEE

Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 146–168, 2021.

[96] S. Bickel and T. Scheffer, “Multi-view clustering,” in Proceedings of the

Fourth IEEE International Conference on Data Mining (ICDM 2004),

2004, pp. 19–26.

[97] X. Yi, Y. Xu, and C. Zhang, “Multi-view em algorithm for finite mixture

models,” in Pattern Recognition and Data Mining, S. Singh, M. Singh,

C. Apte, and P. Perner, Eds. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2005, pp. 420–425.

[98] D. Lashkari and P. Golland, “Convex clustering with exemplar-based

models,” in Advances in Neural Information Processing Systems, J. Platt,

D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20. Curran Associates,

Inc., 2007.

[99] A. Kumar and H. D. III, “A co-training approach for multi-view spectral

clustering,” in Proceedings of the 28th International Conference on Inter-

national Conference on Machine Learning (ICML 2011). Madison, WI,

USA: Omnipress, 2011, p. 393–400.

[100] J. Sun, J. Lu, T. Xu, and J. Bi, “Multi-view sparse co-clustering via prox-

imal alternating linearized minimization,” in Proceedings of the 32nd

International Conference on Machine Learning (ICML 2015), ser. Pro-

151

ceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37,

Lille, France, 07–09 Jul 2015, pp. 757–766.

[101] T. Liu, “Guided co-training for large-scale multi-view spectral

clustering,” CoRR, vol. abs/1707.09866, 2017. [Online]. Available:

http://arxiv.org/abs/1707.09866

[102] W. Cai, H. Zhou, and L. Xu, “A multi-view co-training clustering algo-

rithm based on global and local structure preserving,” IEEE Access, vol. 9,

pp. 29 293–29 302, 2021.

[103] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral clus-

tering,” in Advances in Neural Information Processing Systems, J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24.

Curran Associates, Inc., 2011.

[104] Y. Ye, X. Liu, J. Yin, and E. Zhu, “Co-regularized kernel k-means for multi-

view clustering,” in Proceedings of the 23rd International Conference on

Pattern Recognition (ICPR 2016), 2016, pp. 1583–1588.

[105] M. Brbić and I. Kopriva, “Multi-view low-rank sparse subspace clustering,”

Pattern Recognition, vol. 73, pp. 247–258, 2018.

[106] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized

latent multi-view subspace clustering,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 42, no. 1, pp. 86–99, 2020.

[107] J. Tan, Y. Shi, Z. Yang, C. Wen, and L. Lin, “Unsupervised multi-view

152

http://arxiv.org/abs/1707.09866

clustering by squeezing hybrid knowledge from cross view and each view,”

IEEE Transactions on Multimedia, vol. 23, pp. 2943–2956, 2021.

[108] S. Yu, L. Tranchevent, X. Liu, W. Glanzel, J. A. Suykens, B. De Moor,

and Y. Moreau, “Optimized data fusion for kernel k-means clustering,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,

no. 5, pp. 1031–1039, 2012.

[109] X. Chen, X. Xu, J. Z. Huang, and Y. Ye, “Tw-k-means: Automated two-

level variable weighting clustering algorithm for multiview data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 25, no. 4, pp.

932–944, 2013.

[110] X. Cai, F. Nie, and H. Huang, “Multi-view k-means clustering on big data,”

in Proceedings of the Twenty-Third International Joint Conference on

Artificial Intelligence (IJCAI 2013). AAAI Press, 2013, p. 2598–2604.

[111] H. Liu and Y. Fu, “Consensus guided multi-view clustering,” ACM

Trans. Knowl. Discov. Data, vol. 12, no. 4, apr 2018. [Online]. Available:

https://doi.org/10.1145/3182384

[112] T. Joachims, N. Cristianini, and J. Shawe-Taylor, “Composite kernels

for hypertext categorisation,” in Proceedings of the 18th International

Conference on Machine Learning (ICML 2001), 01 2001, pp. 250–257.

[113] T. Zhang, A. Popescul, and B. Dom, “Linear prediction models with

graph regularization for web-page categorization,” in Proceedings of the

153

https://doi.org/10.1145/3182384

12th ACM International Conference Knowledge Discovery Data Mining

(SIGKDD 2006), 2006, p. 821–826.

[114] G. Chao and S. Sun, “Multi-kernel maximum entropy discrimination

for multi-view learning,” Intelligence Data Analysis, vol. 20, no. 3, p.

481–493, jan 2016.

[115] M. B. Blaschko and C. H. Lampert, “Correlational spectral clustering,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR 2008), 2008, pp. 1–8.

[116] W. Shao, L. He, C.-t. Lu, and P. S. Yu, “Online multi-view clustering with

incomplete views,” in Proceedings of the IEEE International Conference

on Big Data (Big Data 2016), 2016, pp. 1012–1017.

[117] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,

“The graph neural network model,” IEEE Transactions on Neural Networks,

vol. 20, no. 1, pp. 61–80, 2009.

[118] H. Zhang, G. Lu, M. Zhan, and B. Zhang, “Semi-supervised classification

of graph convolutional networks with laplacian rank constraints,” Neural

Processing Letters, vol. 54, pp. 1–12, 08 2022.

[119] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, and B. Wang, “One2multi graph

autoencoder for multi-view graph clustering,” in In Proceedings of The

Web Conference 2020 (WWW ’20), 04 2020, pp. 3070–3076.

[120] P. Gupta, J. Maggu, A. Majumdar, E. Chouzenoux, and G. Chierchia,

154

“Confuse: Convolutional transform learning fusion framework for multi-

channel data analysis,” in 2020 28th European Signal Processing Confer-

ence (EUSIPCO). IEEE, 2021, pp. 1986–1990.

[121] P. Combettes and J.-C. Pesquet, “Deep neural network structures solv-

ing variational inequalities,” Set-Valued and Variational Analysis, 2020,

https://arxiv.org/abs/1808.07526.

[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. of ICLR, 2015.

[123] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-

normalizing neural networks,” in Proc. of NeurIPS, Long Beach, Cal-

ifornia, USA, 4-9 Dec. 2017.

[124] A. Mass, A. Hannun, and A. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. of ICML, Atlanta, USA, 16-21 June

2013.

[125] P. Gupta, J. Maggu, E. Majumdar, A. Chouzenoux, and G. Chierchia,

“Deconfuse: a deep convolutional transform-based unsupervised fusion

framework,” EURASIP J. Adv. Signal Process, vol. 26, 2020.

[126] Y. Chen, G. Li, and Y. Gu, “Active orthogonal matching pursuit for sparse

subspace clustering,” IEEE Signal Processing Letters, vol. 25, no. 2, pp.

164–168, 2017.

[127] X. Peng, J. Feng, J. T. Zhou, Y. Lei, and S. Yan, “Deep subspace clustering,”

155

IEEE transactions on neural networks and learning systems, vol. 31,

no. 12, pp. 5509–5521, 2020.

[128] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means cluster-

ing algorithm,” Journal of the royal statistical society. series c (applied

statistics), vol. 28, no. 1, pp. 100–108, 1979.

[129] J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, and Z. Zhang, “Efficient

deep embedded subspace clustering,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 1–10.

[130] B. Xu, X. Li, W. Hou, Y. Wang, and Y. Wei, “A similarity-based ranking

method for hyperspectral band selection,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 59, no. 11, pp. 9585–9599, 2021.

[131] L. Ji, L. Zhu, L. Wang, Y. Xi, K. Yu, and X. Geng, “Fastvgbs: A fast

version of the volume-gradient-based band selection method for hyper-

spectral imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 18,

no. 3, pp. 514–517, 2020.

[132] A. Challa, G. Barman, S. Danda, and B. D. Sagar, “Band selection using

dilation distances,” IEEE Geoscience and Remote Sensing Letters, vol. 19,

pp. 1–5, 2021.

[133] S. K. Roy, S. Das, T. Song, and B. Chanda, “Darecnet-bs: Unsupervised

dual-attention reconstruction network for hyperspectral band selection,”

IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 12, pp. 2152–

2156, 2020.

156

[134] S. Jia, X. Deng, J. Zhu, M. Xu, J. Zhou, and X. Jia, “Collaborative

representation-based multiscale superpixel fusion for hyperspectral image

classification,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 57, no. 10, pp. 7770–7784, 2019.

[135] K. Zhan, C. Zhang, J. Guan, and J. Wang, “Graph learning for multiview

clustering,” IEEE Transactions on Cybernetics, vol. 48, no. 10, pp. 2887–

2895, 2018.

[136] D. J. Trosten, S. Lokse, R. Jenssen, and M. Kampffmeyer, “Reconsidering

representation alignment for multi-view clustering,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR 2021), Los Alamitos, CA, USA, jun 2021, pp. 1255–1265.

[137] C. Garcia-Cardona and B. Wohlberg, “Convolutional dictionary learning,”

arXiv preprint arXiv:1709.02893, 2017.

[138] H. Alwassel, D. Mahajan, B. Korbar, L. Torresani, B. Ghanem, and

D. Tran, “Self-supervised learning by cross-modal audio-video cluster-

ing,” Advances in Neural Information Processing Systems, vol. 33, pp.

9758–9770, 2020.

[139] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-

work for contrastive learning of visual representations,” in International

conference on machine learning. PMLR, 2020, pp. 1597–1607.

[140] X. Yang, C. Deng, K. Wei, J. Yan, and W. Liu, “Adversarial learning

157

for robust deep clustering,” Advances in Neural Information Processing

Systems, vol. 33, pp. 9098–9108, 2020.

158

	Dedication
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement
	Background
	Auto-encoders based deep clustering approaches
	Convolutional Neural Network (CNN) based deep clustering approaches
	Generative Adversarial Network (GAN) based deep clustering approaches
	Contrastive Learning based deep clustering approaches

	Datasets Description
	Computer Vision datasets
	Hyperspectral Images datasets
	Text datasets
	Mutli-view datasets

	Evaluation Metrics Description
	Evaluation Metrics for Clustering
	Evaluation Metrics for Hyperspectral Imaging
	Evaluation Metrics for Text datasets

	Research Contributions
	Dictionary Learning based deep clustering approaches
	Transform Learning based deep clustering approaches
	Convolutional Transform Learning based deep clustering approaches

	Dictionary Learning based Deep Clustering Approaches
	Dictionary Learning
	Deep Dictionary Learning
	Proposed Approaches
	Dictionary Learning based K-means clustering
	Dictionary Learning based Sparse Subspace clustering
	Deep Dictionary Learning based K-means clustering
	Deep Dictionary Learning based Sparse Subspace clustering

	Experiments and Results
	Computer Vision
	Hyperspectral Imaging

	Summary

	Transform Learning based Clustering Approaches
	Transform Learning
	Deep Transform Learning
	Literature Review
	Proposed Approaches
	Transformed K-means Clustering
	Deeply Transformed K-means Clustering

	Experiments and Results
	Text Datasets
	Hyperspectral Imaging
	Comparison with Deep Dictionary Learning based deep clustering approaches

	Summary

	Convolutional Transform Learning based Clustering Approaches
	Convolutional Transform Learning (CTL)
	Proposed Approaches
	Deep Convolutional K-Means Clustering
	Deep Convolutional Sparse Subspace Clustering
	Contrastive Deep Convolutional Transform K-means Clustering
	DeConFCluster: Deep Convolutional Transform Learning based Multiview Clustering Fusion Framework

	Experiments and Results
	Computer Vision datasets
	Hyperspectral Imaging
	Multiview datasets

	Summary

	Conclusion
	Summary of Contribution
	Dictionary Learning based clustering approaches
	Transform Learning based clustering approaches
	Convolutional Transform Learning based clustering approaches

	Future Work

	References

