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Abstract

Spatial data mining is a specialized field that focuses on extracting meaningful insights
and patterns from geographical or spatial data. One particular area of interest in spatial
data mining is colocation pattern mining. Colocation patterns refer to objects or entities
that tend to occur frequently in close spatial proximity to each other. These patterns
can provide valuable insights into spatial relationships and dependencies.

Traditional colocation mining algorithms typically operate on static data and re-
quire a predefined single distance threshold to determine spatial proximity. However,
deciding on a suitable threshold can be challenging and may not capture the full range
of interesting patterns. Moreover, processing the graph representation of spatial data
and handling dynamic or evolving datasets present additional challenges in colocation
pattern mining.

To address these challenges, our work introduces several novel approaches. Firstly,
we propose a new colocation query called Range colocation mining. This query enables
the computation of colocation patterns over a range of distances, rather than relying
on a single threshold value. This provides greater flexibility to analysts when the de-
termination of a specific distance threshold is difficult or uncertain. Unlike classical
algorithms that compute patterns separately for each distance threshold, our method
efficiently computes patterns in a single scan over the spatial data, ensuring scalability.

In addition, we extend the traditional notion of colocation patterns beyond cliques
to any subgraph representation. This notion allows for a broader exploration of patterns
and considers the edges’ labels and the degree of affinity between objects. We analyze
the complexity of mining subgraph colocation patterns and propose a novel query for
high-utility subgraph (colocation) pattern mining. The problem turns out to be more
complex than the classical colocation pattern mining. Leveraging the power of Apache
Spark, our solution employs a set of heuristics to traverse the pattern space efficiently,
utilizing an anti-monotonic relationship over utility values. Our proposed approach is
scalable and aids in discovering interesting subgraph patterns prevalent across a set of
disjoint regions.

Furthermore, we investigate the dynamic nature of spatial datasets and their im-
pact on computational challenges while mining colocation patterns. We introduce the
concept of dynamic colocation pattern mining, which focuses on mining patterns in an
incremental manner. Instead of recomputing patterns from scratch for each window, our
approach utilizes patterns computed in previous windows to compute patterns in future
time windows efficiently. This incremental approach significantly reduces computation
time and resources while capturing the temporal evolution of colocation patterns.
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Overall, our work contributes to the advancement of colocation pattern mining in
spatial data mining. The introduction of Range colocation mining, high-utility sub-
graph pattern mining, and dynamic colocation pattern mining expand the scope and
capabilities of colocation pattern analysis. These approaches offer greater flexibility,
scalability, and efficiency in discovering spatial relationships and dependencies within
datasets, enhancing our understanding of spatial phenomena.
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Chapter 1

Introduction

The rapid expansion in the size of spatial databases has emphasized the importance of
utilizing spatial data mining techniques to extract interesting and useful spatial patterns
from these large datasets [29]. Spatial data has a geographic or spatial component, such
as maps, satellite imagery, and GPS coordinates. A lot of location-specific significant and
valuable information is hidden in such data, like the co-existence of groups of objects,
clusters with similar characteristics, spatial outlier objects, etc. Discovering patterns
from the extensive spatial datasets is crucial in numerous application domains, includ-
ing urban planning, ecology, environmental management, public safety, transportation,
public health, business, travel, and tourism [36] [17] [11]. For instance, spatial data
mining is instrumental in detecting regions with a high prevalence of disease incidents
in epidemiology to contain outbreaks.

Due to the massive and rapid flow of spatial data, computational techniques are in-
dispensable for uncovering spatial patterns that exceed the analytical capacity of human
experts. To detect spatial patterns, there are three crucial stages:

1) Data preparation: This stage involves correcting noise, errors, and missing infor-
mation in the spatial data. Additionally, spatial distribution analysis is conducted to
gain insights into the underlying patterns.

2) Applying spatial data mining algorithms: In this stage, appropriate spatial data
mining algorithms are applied to the pre-processed data to generate pattern output.
These algorithms utilize various techniques such as clustering, classification, association
rule mining, and outlier detection.

3) Refining output patterns: The generated pattern output is further refined through
post-processing techniques. This allows domain experts to examine the output, validate
the patterns, and gain insights into the underlying spatial phenomena.

The different families of spatial patterns include hotspot detection, colocation de-
tection, spatial prediction, and spatial outlier detection. Colocation detection methods
focus on identifying objects that are frequently located near each other in space, indicat-
ing spatial associations. On the other hand, spatial outlier detection methods identify
data points that deviate significantly from neighboring points, representing unique or
unusual spatial phenomena.

1



1. Introduction 2

In this work, we propose efficient methodologies to address challenges associated with
colocation pattern mining techniques. Colocation pattern mining aims to uncover sets
of features that frequently co-occur in specific spatial areas. By analyzing the spatial
proximity of these features, valuable insights can be gained across various domains. In
the next section, we will explain the idea of colocation pattern mining and provide an
example to illustrate its significance in uncovering meaningful patterns within spatial
data.

1.1 Colocation Pattern Mining

Spatial colocation patterns are sets of features whose instances are frequently located
near each other in space [54]. To illustrate this concept, let’s consider a dataset of crime
incidents in a city, where each incident is recorded as a point on a map. The objective
is to identify sets of crime types that co-occur frequently in specific areas of the city. To
achieve this, a colocation pattern mining algorithm can be employed, which identifies
sets of crime types that appear together more often than expected by chance. The
algorithm searches for colocations of crime incidents that are in closer proximity to each
other than would be randomly anticipated.

For instance, the algorithm might uncover a colocation pattern consisting of theft,
burglary, and vandalism in a particular neighborhood. This pattern suggests that these
specific types of crimes tend to occur together more frequently in that neighborhood
compared to other parts of the city. Armed with this information, law enforcement offi-
cials can strategically allocate more resources to that neighborhood, aiming to prevent
such crimes. Furthermore, they can investigate the underlying factors contributing to
the co-occurrence of these crimes and take necessary steps to address any issues, such
as improving lighting or implementing enhanced security measures. This example high-
lights how colocation pattern mining serves as a valuable tool for discovering meaningful
patterns within spatial data.

Colocation pattern mining has extensive applications in various domains. In urban
planning and resource allocation, it can optimize the placement of facilities and amenities
based on their co-occurrence patterns. Retail and marketing benefit from colocation
pattern mining by identifying associations between different businesses, allowing for
collaboration opportunities and optimal store locations. Environmental studies leverage
colocation pattern mining to understand ecological interactions and guide conservation
efforts.

In the next section, we will look into the detailed applications of colocation pattern
mining, exploring its potential in urban planning, retail, marketing, and environmental
studies. By understanding these applications, we can further appreciate the significance
and utility of colocation pattern mining in real-world scenarios.
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1.2 Colocation Pattern Mining Applications

Colocation pattern mining finds extensive applications in various domains, including ur-
ban planning, ecology, environmental management, public safety, transportation, public
health, and business [11, 17, 36]. Below are some notable examples of colocation pattern
mining applications:
Urban Planning: Colocation pattern mining plays a vital role in urban planning, par-
ticularly in the analysis of land use patterns [11]. By examining the spatial distribution
of different land uses, such as residential, commercial, and industrial areas, colocation
pattern mining can identify areas where certain land uses are more concentrated. This
information empowers urban planners to make informed decisions regarding zoning reg-
ulations and development strategies, leading to more efficient land use.
Public Safety: The analysis of crime patterns is an important application of colocation
pattern mining [17]. By studying the spatial locations of criminal incidents, colocation
pattern mining enables the identification of high-crime areas, allowing law enforcement
agencies to implement targeted interventions and preventive measures.
Public Health: Colocation pattern mining finds utility in public health by identifying
spatial relationships between disease cases and contributing locations [36]. By analyzing
the locations visited by infected individuals, public health officials can pinpoint high-
risk areas and implement targeted measures to mitigate disease transmission in those
locations.
Business: Colocation pattern mining is also applied in the business domain to uncover
spatial relationships between different types of establishments, such as retail stores,
restaurants, and hotels [77]. By examining the co-locations of these establishments,
businesses can gain valuable insights into consumer behavior, optimize their operations,
and develop effective marketing strategies.

In summary, colocation pattern mining serves as a powerful tool for discovering
valuable patterns within spatial data, with diverse applications across various fields
and industries. The ability to identify spatial relationships and co-occurrences enables
professionals in urban planning, public safety, public health, and business to make data-
driven decisions and improve their strategies. In the next section, we will present a
general approach for colocation pattern mining, providing insights into the techniques
and methods used in the process.

1.3 A General Approach for Colocation Pattern Mining

A general approach for colocation pattern mining is presented in Figure 1.1, which
outlines the steps involved in mining colocation patterns given a spatial dataset, neigh-
borhood relation, and minimum prevalence criteria.
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Figure 1.1: A general approach for colocation mining

Modeling a Neighborhood Graph: One common approach to mine colocation pat-
terns from a spatial dataset is to model a neighborhood graph that captures the spatial
relations between the objects in the dataset. In this approach, each object is represented
as a node in the graph, and the edges between nodes denote their spatial relationships.
Graph Processing: The neighborhood graph is then processed to enumerate all possi-
ble cliques, which are fully connected subgraphs within the neighborhood graph. Identi-
fying cliques is essential for discovering potential colocation patterns in the data. How-
ever, it is crucial to consider the computational complexity of this task, as the size of
the neighborhood graph can grow rapidly with an increasing number of spatial units.
Efficient algorithms and appropriate computational resources should be employed for
processing large neighborhood graphs.
Colocation Mining: Once the cliques have been identified, they are evaluated to dis-
cover interesting colocation patterns. The prevalence of each clique is calculated and
compared against a predefined prevalence threshold. Cliques that meet the prevalence
criteria are selected as colocation patterns, indicating sets of objects that exhibit signif-
icant spatial co-occurrence.

In summary, the general approach for colocation mining involves modeling a neigh-
borhood graph, processing the graph to identify cliques, and subsequently evaluating the
cliques to discover colocation patterns that meet the predefined prevalence criteria. Two
popular prevalence measures used in the literature are the participation index (explained
in Section 1.4.4) and the fraction score (explained in Section 1.4.5). These measures help
determine the significance of colocation patterns based on their frequency and spatial
proximity.

For graph processing, the Join-less colocation mining algorithm (explained in Sec-
tion 1.5) is commonly used in state-of-the-art approaches. This algorithm efficiently
identifies colocation patterns by avoiding unnecessary join operations, reducing compu-
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tational overhead, and improving performance. By leveraging the properties of colo-
cation patterns and optimizing the graph processing techniques, Join-less algorithms
provide effective solutions for colocation mining tasks.

In the section 1.4, we will delve deeper into the fundamentals of mining co-location
patterns. We will explore the participation index and the fraction score as prevalent
measures for evaluating colocation patterns. Additionally, we will discuss the Join-less
co-location mining algorithm, which is widely used in state-of-the-art approaches for
efficient graph processing. By understanding these foundational concepts, we will lay
the groundwork for further exploration and propose novel methodologies to enhance the
efficiency and effectiveness of co-location pattern mining.

1.4 Fundamentals of Mining Co-Location Patterns

A.1

B.1

D.2

C.3
D.1

C.2

C.1

B.2 B.3

D.3

A.2

A.3

Figure 1.2: A real-time spatial dataset

Point of Interest Feature Types Spatial Instances
Apartment A A.1, A.2, A.3

Billiard B B.1, B.2, B.3
Community centre C C.1, C.2, C.3

Dancing hall D D.1, D.2, D.3

Table 1.1: Feature Types and Instances
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In the context of mining co-location patterns, we consider a spatial dataset consisting
of objects with unique features from the feature-set F = {f1, f2, . . . , fn}. The collection
of all objects in the dataset is denoted by O, which can be expressed as O = O1∪· · ·∪On,
where each Oi (with 1 ≤ i ≤ n) represents objects of a unique feature type fi. Each
object o ∈ O is represented as a tuple (id, f, l), where id is the instance ID, f ∈ F
denotes its feature type, and l indicates its location (x, y).

Consider a real-time spatial data shown in Figure 1.2 where apartment, billiard,
community centre and dancing hall are different point of interest features. For example,
in Figure 1.3, the instance A.1 with ID 1 belongs to feature type A. The spatial dataset
illustrated in Figure 1.3 includes instances from four feature types: A, B, C, and D.
Table 1.1 summarizes the number of instances for each feature type. Table 1.1 provides
an overview of the feature types and spatial instances present in the dataset.

1.4.1 Spatial Neighbor Relationships

A.1

B.1

D.2

C.3
D.1

C.2

C.1

B.2 B.3

D.3

A.2

A.3C.1

Figure 1.3: Example neighborhood graph of a spatial dataset at distance d=8

AB :3/3 AD: 2/3 BD: 3/3 ABD: 2/3
A.2, B.2 A.3, D.3 B.1, D.1 A.3, B.2, D.3
A.3, B.2 A.2, D.3 B.2, D.1 A.3, B.3, D.3
A.2, B.3 A.1, D.2 B.1, D.2 A.2, B.2, D.3
A.1, B.1 B.3, D.3 A.2, B.3, D.3
A.3, B.3 B.2, D.3 A.1, B.1, D.2

Table 1.2: Example patterns and their Participation Indexes



1. Introduction 7

A spatial neighbor relationships can be established between two spatial instances
based on their Euclidean distance, which is measured using a threshold value d. The
neighbor relationship betweenA.1 andB.1 in Figure 1.3 can be denoted asR(A.1, B.1)↔
(distance(A.1, B.1) ≤ d), where d represents the minimum threshold value. Solid lines
in the figure connect instances that satisfy the neighbor relationship condition. For ex-
ample, A.1 and B.2 meet this condition since they are within a distance of d from each
other. Spatial instances are grouped into clique instances as follows:

1.4.2 Clique Instance

A clique is a group of objects in which each pair of objects is co-located with each other.
For example, in Figure 1.3, A.3, B.3, and D.3 form a clique.

Definition 1.1 (Clique Instance). Let p = {f1, . . . , fk} ⊆ F be a pattern, and let
{o1, . . . , ok} ⊆ O be its object instances, where oi.f = fi for all i. If the distance
between any pair of objects in {o1, . . . , ok} satisfies the neighborhood relationship R
with a distance threshold d, then CI = {o1, . . . , ok} is considered a clique instance of
the pattern p. The collection of all clique instances of pattern p for the neighborhood
relation R, denoted by Ip, is defined as follows:

Ip = {CI = {o1, . . . , ok} | ∀i, oi.f = fi ∧ CI is a clique in R}

Table 1.2 displays the clique instances for patterns AB, AC, AD, BD, etc., considering
a distance threshold of d = 8. For each of these clique instances participation index is
calculated. To explain the participation index we will first introduce participation ratio.

1.4.3 Participation Ratio

The participation ratio [54] of a feature type fi in a colocation pattern p for a given
distance threshold d is defined as the ratio of the number of unique instances of fi

participating in any clique instances of p to the total number of instances of fi in O.

Definition 1.2 (Participation Ratio). Let p = {f1, . . . , fk} be a colocation pattern with
clique instances Ip. The participation ratio of feature fi ∈ p, denoted by Pr(fi, p, I

p), is
calculated as:

Pr(fi, p, I
p) = |{oi ∈ Oi | {o1, . . . , ok} ∈ Ip}|

|Oi|
(1.1)

where Oi represents the set of instances of feature type fi in the spatial dataset O.

For example, in Table 1.2 for Figure 1.3, the participation ratio of feature type B in
the pattern p = {A,B} is 3/3 for d = 8.
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1.4.4 Participation Index

In statistics, the cross-K function is an extension of Ripley’s K function that is commonly
used to identify colocation patterns between multiple spatial features. It is a spatial
statistical method specifically designed for analyzing point events. The cross-K function,
denoted as Kij(h), is defined for binary spatial features and can be expressed as follows:
Kij(h) = λ−1

j EE[number of j instances within distance h of a randomly-chosen type
i instance] where λj is the density (number per unit area) of type j instances. Higher
cross-K values indicate a higher likelihood of the features being located in close proximity
to each other, while lower values suggest that they tend to be located further apart. The
participation index estimates the cross-K value and is efficiently computable.

The participation index [54] is the minimum among all the participation ratios of
distinct features fi in a colocation pattern p.

Definition 1.3 (Participation Index). The participation index of a colocation pattern
p = {f1, . . . , fk} with clique instances Ip under the spatial neighborhood relation R,
denoted by Pi(p, Ip), is defined as:

Pi(p, Ip) = min
fi∈p

Pr(fi, p, I
p) (1.2)

For example, in Table 1.2 for Figure 1.3, the participation index of the pattern
p = {A,B} is 1 for d = 8 since all instances of feature types A and B participate in the
clique instances.

The participation index is an upper bound of the cross-K function and is widely used
as a measure of colocation due to its computational efficiency. However, it is important
to note that the participation index may overcount the number of instances involved in
colocation patterns. To address the issue of overcounting, the fraction score measure
was introduced in [9].

1.4.5 Fraction Score

Fraction score provides a refined support computation for a pattern p by considering the
fraction of shared objects in different groups [9]. Let’s consider a pattern p = {A,B}
with clique instances {A.2, B.2}, {A.3, B.2}, and {A.2, B.3} as shown in Table 1.2. To
compute the fraction score, we first fix a feature f ∈ p to group the clique instances of
p. The set of all objects o in some clique instance of p that have the fixed feature f is
denoted by obj(f, p). For example, if we fix f = A, then obj(A, p) includes the objects
{A.1, A.2, A.3}.

Since some objects may be shared among different instances, overcounting can occur
in participation-based scores. To address this, a fraction value is assigned to each object
based on its participation in the grouping.
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Let o be an object in obj(f, p) and o′ be an object from an instance of p with a
feature different from f . The fraction value ∆obj(o, o′) is defined as the reciprocal of the
number of neighbors of o′ that have feature f within a distance threshold d:

∆obj(o, o′) = 1
|Neigh(o′, o.f, d)| (1.3)

By assigning the appropriate fraction values to the objects in obj(f, p), the fraction
score measure effectively handles overcounting and provides a more accurate assessment
of colocation patterns.

Consider o = A.3 and o′ = B.3. Clearly, |Neigh(B.3, A, d)| = 2. That is, the two
objects in the neighborhood of B.3, namely A.2 and A.3, share the object B.3. As
a result, an equal fraction value is assigned to the two objects A.2 and A.3 as their
participation:

∆obj(A.2, B.3) = 1
|Neigh(B.3, A, d)| = 1

2 = ∆obj(A.3, B.3)

The support of p for the feature f (denoted as sup(p|f)) is calculated by summing
the fraction-scores of objects o ∈ obj(f, p):

sup(p|f) =
∑

o∈obj(f,p)
∆pattern(o, p) (1.4)

The overall support of p (denoted as sup(p)) is then determined by dividing the
minimum support value among all features in p by the maximum number of objects that
have a specific feature in the dataset:

sup(p) = minf∈p sup(p|f)
maxf∈F |{o.f = f |o ∈ O}|

(1.5)

This calculation allows for the determination of the support of a given feature set p
based on the fraction-score measure.

Spatial co-location patterns are subsets of features that are frequently located to-
gether in geographic space, indicating a potential spatial relationship [20, 75]. In Figure
1.3, the set of features {A,B,D} represents a co-location pattern.
Definition 1.4 (Colocation Patterns). For a given < O,F, d,min_prev >, where O is a
spatial object with spatial features from F , d is a distance, and min_prev is a prevalence
threshold, a pattern p is a colocation pattern c if the participation index (or support) for
p ⊆ F crosses the min_prev threshold for the distance d.

For example, in Table 1.2 for Figure 1.3, considering the min_prev threshold as 2/3,
pattern AB qualifies as a colocation pattern, while pattern AC does not meet the criteria
to be considered a colocation pattern.
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1.5 Join-less co-location mining algorithm
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Figure 1.4: Star neighborhood partition method

The join-less algorithm is designed to identify co-location patterns in spatial data
without the need for explicit join operations. Instead, it relies on the concept of a
star neighborhood, which involves creating a circular area around each spatial instance.
Within each star neighborhood, all neighbor relationships among the spatial instances
are recorded, allowing for efficient identification of cliques that form co-location patterns.
By using the star neighborhood approach, the join-less algorithm can avoid expensive
join operations and improve the speed of co-location pattern mining in spatial data sets.
Star neighborhood approach: Figure 1.4 describes the star neighborhood partition
method. The dashed circle in the figure represents the star neighborhood of spatial
instance B.2 (i.e., the star neighborhood with B.2 as the center point). Instances within
each star neighborhood are listed in Table 1.3. It is important to note that although A.3
and B.3 satisfy the neighborhood relationship, there is no A.3 in the star neighborhood
of C.3. This is because the star neighborhood is defined as a set of central instances and
instances that satisfy the neighborhood relationship with the central instance, where the
spatial feature types of the instances listed in Table 1.3 are in an order greater than
those of the central instance. For example, A.1 belongs to feature type A, which has an
order greater than C.3 belonging to feature type C.
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Centre Star neighborhood
Feature Object

A
A.1 A.1, B.1, C.1, C.3, D.2
A.2 A2, B2, B3, D.3
A.3 A.3, B.2, B.3, D.3

B
B.1 B.1, C.3, D.1, D.2
B.2 B.2 , C.1, C.2, D.1, D.3
B.3 B.3,C.2,D.3

C
C.1 C.1, D.1,D.2
C.2 C.2,D.1,D.3
C.3 C.3, D.1, D.2

D
D.1 D.1
D.2 D.2
D.3 D.3

Table 1.3: Star neighborhood

The basic steps of joinless algorithm are as follows:
Step 1: Transformation— To transform the spatial dataset into a non-intersecting

star neighborhood set, the first step is to find all adjacent object pairs using a geometric
method based on the provided neighborhood relationship. Then, for each object, its
neighbor objects can be grouped together to form a star neighborhood.

Step 2: Candidate Generation—The process of generating candidate co-location
patterns involves initializing all features to determine size 1 prevalent co-location pat-
terns based on the participation index definition. Then, in the process of neighborhood
materialization, size k candidate co-location patterns are generated from size k−1 preva-
lent co-location patterns. These patterns are filtered at the feature level. If any subset
of the candidate co-location pattern is non-prevalent, the candidate pattern is pruned.

Step 3: Star Instance Filtering—The star instances of the candidate co-locations
are filtered from the star neighborhood sets based on their feature types. The star
neighborhood corresponding to the feature type of the first feature in each candidate co-
location pattern is examined, and the instances of all features in the candidate pattern
are collected from that star neighborhood.

Step 4: Prevalent Co-location Selection—Approximately select prevalent co-
location patterns by collecting cluster instances for co-locations of size 2 from the star
instances of both neighbor features. For co-locations with a size larger than 3, check
whether a star instance is a cluster instance. Prior to this step, the candidate co-locations
are roughly filtered by computing their participation indexes and discarding those whose
value is below the minimum popularity threshold set by the user.

Step 5: Row Instance Filtering—Filtering row instances of co-locations involves
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using an instance lookup scheme to identify and filter instances of co-locations from the
star instances of candidate co-location patterns.

Step 6: Prevalent Co-location Generation—The generation of prevalent co-
locations is achieved by computing the actual participation index based on the instances
of co-locations. This involves an optimized filtering process where candidate co-locations
are examined for their actual participation index, and only those that meet a predeter-
mined threshold are considered as prevalent co-locations.

1.6 Key Challenges

The research in co-location pattern mining involves tackling several challenges that hin-
der the flexibility, efficiency, and effectiveness of the existing approaches. In this section,
we discuss the key challenges and limitations that this thesis aims to address:

Challenge 1: Determining an Appropriate Distance Threshold — Existing
co-location mining approaches rely on a single distance threshold, which can be challeng-
ing and time-consuming for domain experts to determine. The selection of this threshold
is highly dependent on the data and requires expertise in the specific domain. One way to
solve this problem is by incorporating a range query into existing co-location mining ap-
proaches, and is non-trivial. Existing methods are designed to work with a fixed distance
threshold, and adapting them to handle a range of distances poses several challenges.
When using a range query approach, it is crucial to reduce the computation by selecting
a few distance values, we call as the critical distances, within the given range. These crit-
ical distances represent the points at which the set of co-location patterns changes, and
efficiently identifying them is necessary to avoid unnecessary computation. Furthermore,
recomputing clique instances for each distance within the range can be computationally
expensive and should be minimized. Finding an efficient approach to avoid multiple runs
of the co-location mining algorithm is necessary to improve performance.

Challenge 2: Considering the Importance of Nodes and Edges for colo-
cation Pattern Mining — There exists a lot of scientific work for subgraph pattern
mining which supports finding more general patterns compared to clique instances in
colocation pattern mining. This work may be leveraged to mine patterns on neigh-
bourhood graphs constructed for a set of regions to find common patterns. Traditional
subgraph pattern mining approaches, such as Frequent Subgraph Mining (FSM), do not
consider the relative importance of instances and their relationship with other instances
in a pattern. However, real-life scenarios may have different importance for different
instances. Leveraging graph pattern mining and incorporating the importance notion
requires the development of new approaches. Furthermore, mining patterns from large
graph databases is computationally expensive and presents a challenge in terms of ef-
ficiency. Although distributed frameworks like Map-Reduce/Apache Spark can handle
the iterative nature of pattern mining tasks, optimizing the process on these platforms
is crucial to improve efficiency.
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Challenge 3: Handling Dynamic Updates in Co-location Pattern Mining
— Traditional co-location mining techniques are designed for static data and are not
efficient in handling dynamic updates. Updating co-location patterns from the previous
state while considering the previously computed patterns, old data state, and changes
in the data poses computational challenges. When mining co-location patterns from
dynamic data, the addition or deletion of objects affects the patterns. Determining
how these changes impact the patterns and efficiently updating their relevant scores
adds to the complexity of the problem. To handle dynamic data, efficient algorithms
and frameworks are required to minimize the need for re-computation and optimize the
update process. This involves identifying candidate objects whose scores are likely to
change and implementing lazy computation techniques to avoid redundant updates.

By acknowledging and addressing these challenges, the research aims to overcome
limitations in co-location mining, provide practical benefits, and advance the field by
proposing innovative solutions and algorithms.

1.7 Thesis Contributions

The dissertation explores three tasks: First, mining colocation patterns over a range
query. Second, Colocation Subgraph Pattern Mining. Third, mining co-location patterns
on dynamic data. A brief introduction and contributions of the problems addressed are
as follows:

1.7.1 Mining Colocation Patterns over a Range Query

Existing approaches in co-location mining typically rely on a single distance threshold (d)
and a minimum prevalent score (min_prev) to identify co-locations with a PI higher
than the specified min_prev. However, determining an appropriate d value can be
challenging and time-consuming for domain experts, as it is highly dependent on the
data. To address this challenge and provide more flexibility to users, we propose a range
query approach for co-location pattern mining. Instead of a single distance threshold,
users can input a distance interval (D = [d1, d2]) that represents their desired range of
spatial proximity. This range query allows users to capture patterns that occur within
a specific distance range, enabling them to explore different levels of proximity.

There are several reasons why a range query can be beneficial. Firstly, it alleviates
the difficulty of choosing a single distance threshold by allowing users to specify a range
that is more intuitive and easier to determine. Secondly, the distribution of co-location
patterns within the range interval provides a more expressive representation of the re-
sult space, allowing users to observe the prevalence of patterns at different distances.
Finally, the additional distance information associated with each co-location pattern
assists in post-mining decision-making, as users can analyze how patterns evolve and
appear/disappear with changes in the distance value.
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However, incorporating a range query into existing co-location mining approaches is
non-trivial. Existing methods are designed to work with a fixed distance threshold, and
extending them to handle a range of distances requires addressing several challenges. One
of the main challenges is determining the critical distances within the given range, i.e.,
the distances at which the set of co-location patterns changes. These critical distances
play a crucial role in determining the result set and need to be efficiently identified
to avoid unnecessary computation. Additionally, recomputing clique instances for each
distance within the range is computationally expensive and should be avoided.

In our work, we propose a novel solution to address these challenges and enable
range colocation pattern mining. We introduce a range colocation query type, develop
an efficient algorithm called Range−CoMine, and leverage structural properties of co-
location patterns to minimize computational costs. The algorithm operates in a single
pass and utilizes a space-efficient data structure to avoid multiple runs of the co-location
mining algorithm. Extensive experiments on real and synthetic datasets demonstrate the
effectiveness and efficiency of our proposed approach, outperforming adapted versions of
existing algorithms in terms of time and space requirements.

1.7.2 Colocation Subgraph Pattern Mining

The approach to colocation pattern mining can be viewed as a subgraph pattern mining
task wherein we relax the constraint of clique formation over the instances. It involves
representing objects as nodes in a graph and the relationships between objects as edges
with distance features. The subgraph (colocation) patterns can be mined using standard
approaches like Frequent Subgraph mining (FSM) over a graph database, wherein each
graph in the database is a neighbourhood graph of a specific region. The algorithm
would be able to find out common spatial patterns over a set of regions.

The FSM is a well-studied problem that aims to discover subgraph patterns that
occur frequently in a given graph database. However, FSM does not consider the relative
importance of nodes and edges in a pattern. To address this, we introduce high-utility
subgraph pattern mining (WSM), which considers the importance of participating nodes
and edges to compute a pattern’s relevance (utility).

Both FSM and WSM are computationally expensive, and mining patterns from a
large graph database can be challenging. Distributed frameworks like Map-Reduce/Apache
Spark are suitable for handling the iterative nature of pattern mining tasks. However,
straightforward extensions of Map-Reduce solutions for FSM to Spark do not offer signif-
icant advantages. Therefore, optimization strategies are needed to improve the efficiency
of pattern mining on Spark.

The contributions of the research include defining the high-utility subgraph pattern
mining problem, developing a distributed solution for both WSM and FSM on big-data
platforms, designing effective optimization strategies to reduce data communication and
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unnecessary computations, and conducting experiments to demonstrate the efficiency of
the proposed approach.

Overall, the research aims to enhance the efficiency and effectiveness of colocation
pattern mining by considering the importance of nodes and edges and by leveraging
distributed computing platforms for large-scale graph databases.

1.7.3 Mining Co-location Patterns on Dynamic Data

The focus of this work is on mining co-location patterns from dynamic data, where
the data changes over time with the addition and deletion of objects. Traditional co-
location mining techniques are designed for static data and do not handle dynamic
updates efficiently. The proposed computational framework aims to update co-location
patterns from the previous state by considering the previously computed patterns, the
old data state, and the changes that occurred in the data.

The fraction-score measure is used as the support measure for co-location patterns,
as it addresses the issue of overcounting and undercounting of support measures in
overlapped participating instances. The framework takes into account the topological
relationships between objects and the effects of object addition or deletion on the fraction
scores of participating objects. Multiple score updates may be required for affected
participating objects, and the same objects may participate in multiple feature-sets,
adding to the computational challenges.

The temporal-window framework is employed, where the data changes are realized
at fixed time intervals. The current co-location patterns are updated from the previous
window’s patterns by identifying candidate objects whose scores are likely to change and
efficiently updating their fraction scores using their previous score and the changes in
the dataset. This approach minimizes the need for re-computation and optimizes the
update process.

The contributions of the work include the proposed computational framework for
online updating of fraction-score-based co-location patterns, an efficient algorithm for
updating fraction scores that avoids redundant updates and utilizes lazy computation,
and the design of an efficient algorithm named UpFS for mining co-locations in the cur-
rent window based on the proposed update technique. Experimental results demonstrate
the effectiveness and efficiency of the algorithm compared to the baseline approach.

Overall, the research aims to enhance the productivity of analysts, reduce computa-
tional overhead, and improve the utilization of computing resources in mining co-location
patterns from dynamic data.
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1.8 Outline of the Thesis

In Chapter 2, a comprehensive literature review of colocation pattern mining is pre-
sented. The review provides the necessary background and understanding to follow the
discussions in the subsequent chapters. Various techniques, algorithms, and measures
related to colocation pattern mining are explored, setting the foundation for the research
presented in the thesis.

Chapter 3 focuses on mining colocation patterns over a range query. A framework
for mining range colocation is proposed, and detailed algorithms are presented. The
algorithms aim to efficiently identify patterns where objects co-occur within a speci-
fied range. The chapter discusses the design, implementation, and evaluation of these
algorithms, highlighting their effectiveness and applicability in different domains.

In Chapter 4, the concept of colocation subgraph pattern mining is introduced. The
chapter discusses the importance of considering the utility or significance of individual
nodes and edges within subgraph patterns. An efficient solution for high-utility subgraph
pattern mining using Spark, a popular distributed computing framework, is presented.
The chapter presents the algorithm’s design and implementation details, along with
experimental evaluations demonstrating its effectiveness and computational advantages.

Chapter 5 focuses on mining colocation patterns on dynamic data. A window-based
model is introduced to handle the evolving nature of the data. The chapter proposes
two operators for efficiently performing the computation of dynamic colocations. The
algorithms and techniques presented in this chapter address the challenges associated
with updating colocation patterns as the data changes over time. Experimental results
and evaluations are provided to validate the efficiency and effectiveness of the proposed
approach.

The final chapter concludes the thesis by summarizing the main findings, contri-
butions, and implications of the research presented. The limitations of the proposed
methods are discussed, and potential avenues for future research in colocation pattern
mining are outlined. This chapter provides closure to the thesis and highlights its sig-
nificance in advancing the field of colocation pattern mining.
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Figure 2.1: A survey of research space

The concept of spatial colocation pattern mining having applications in various ap-
plication domains [43, 68, 76] was first introduced by Shashi Shekhar et.al. [54]. In this
work, a join-based approach was used to first create transactions by enumerating neigh-
borhood objects based on predefined spatial proximity. For mining colocation patterns
from transactions, they identified candidates using generalized-apriori and pruned them
using apriori property for the chosen prevalence threshold. Some of the challenges of
this approach are- 1) Finding efficient computational techniques for mining colocation
patterns; 2) choosing the appropriate prevalence threshold for pruning candidates and

17



2. Literature Review 18

filtering relevant patterns; 3) defining measures that quantify the relevance of a pattern,
and 4) choosing appropriate distance threshold for spatial proximity that identify trans-
actions. To address these challenges, several techniques have been proposed in literature.
These techniques aim to improve the efficiency, accuracy, and scalability of spatial colo-
cation pattern mining. Figure 2.1 provides an overview of the research space in spatial
colocation pattern mining, highlighting the different techniques, challenges, and recent
advancements.

2.2 Computational techniques

The state-of-the-art join-based approach for spatial colocation pattern mining is known
to be computationally expensive due to the join step itself. In order to improve efficiency,
several algorithms [70–72] have been proposed.

Yoo et al. [72] addressed the issue of computational complexity by introducing a
partial join-based approach. This approach improves performance by considering only
a subset of the join operations. However, its efficiency heavily depends on the distri-
bution of spatial datasets, and in the worst-case scenario, the time complexity remains
equivalent to the join-based approach.

To further enhance efficiency, the joinless approach was introduced by Yoo et al.
[70, 71]. This approach employs an instance look-up scheme known as star instances,
which eliminates the need for actual join operations. By utilizing this scheme, the time
complexity is significantly reduced compared to the join-based and partial join-based
approaches.

Another approach to address computational complexity is through the exploration of
alternate computational frameworks. Mehta et al. [48] proposed the use of a distributed
graph database for spatial colocation pattern mining, leveraging the distributed nature
of the database to improve efficiency.

In addition, Huang et al. [24] proposed a multi-resolution filter that reduces the
search space for colocation pattern mining, thereby addressing the issue of computational
complexity. This filter utilizes different levels of spatial granularity to efficiently filter
out irrelevant patterns. Chan et al. developed an apriori like algorithm for mining
colocation patterns based on fraction score and gave a filter and verification approach
to decide whether an object is part of a candidate colocation or not [9].

Table 2.1 provides an overview of the reviewed literature in terms of the proposed
computational techniques and their respective references.
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Study Research Objective Contributions
Yoo et al.
(2004)[71]

Address the issue of compu-
tational complexity in join-
based algorithms.

Proposed a partial join-based
approach to improve effi-
ciency. The performance de-
pends on the distribution of
spatial datasets, with worst-
case time complexity equiv-
alent to the join-based ap-
proach.

Yoo et al. (2006)
[70]

Introduce the joinless ap-
proach with a star instance
look-up scheme to further im-
prove time complexity.

Reduced computational com-
plexity by introducing star in-
stances for efficient instance
look-up.

Huang et al.
(2006) [23]

Reduce the search space with
a multi-resolution filter.

Addressed computational
complexity by reducing the
search space through the
implementation of a multi-
resolution filter.

Mehta et al.
(2018) [48]

Propose an alternate compu-
tational framework using a
distributed graph database.

Addressed computational
complexity by utilizing a
distributed graph database as
an alternate computational
framework.

Chan et al.
(2019) [9]

Develop an Apriori-like algo-
rithm based on fraction score
for mining colocation pat-
terns.

Introduced a filter and verifi-
cation approach to determine
object inclusion in candidate
colocations.

Table 2.1: Finding Efficient Computational Techniques for Mining Colocation Patterns

2.3 Prevalence thresholds

To address the issue of suitable prevalence thresholds and prevalence measures in colo-
cation mining, several techniques have been proposed, as outlined below.

Yan et al. introduced the maximal participation index measure, which does not
require a support threshold [25]. This measure focuses on capturing the participation of
objects in colocations without setting a specific threshold value, providing more flexibility
in identifying significant patterns.

Tran et al. proposed an overlapping clique-based spatial co-location pattern mining
framework to tackle the issue of prevalence thresholds [59]. This framework reduces the
recomputing cost of the participation index by utilizing a hash map structure, improving
the efficiency of prevalence-based pruning techniques.
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Barua et al. proposed a statistical approach to overcome the need for a worst-case
threshold [7]. By leveraging statistical measures, this approach provides a more adaptive
and data-driven method for determining prevalence thresholds, taking into account the
inherent variability in spatial data.

Shekhar et al. introduced the participation index as a prevalence measure in coloca-
tion mining [54]. The participation index counts the frequency of clique instances and
has been widely studied in the field. It serves as a baseline measure for assessing the
prevalence of colocation patterns.

Chan et al. proposed a fraction score as a prevalence measure, which offers a tight
bound over the participation index and addresses the issue of overcounting due to in-
stance sharing [9]. This measure provides a more accurate estimation of pattern signifi-
cance by considering the fractional contributions of objects in colocations.

Wenkai et al. presented an alternate prevalence measure based on the likelihood
ratio statistic [43]. This measure, suitable for combinatorial optimization problems,
offers a different perspective on assessing the prevalence of colocation patterns, taking
into account the statistical significance of observed patterns.

Wenhao et al. proposed a network-constrained model for mining colocations by con-
sidering distance decay effects [74]. This model incorporates the impact of distance on
the prevalence of colocation patterns, allowing for the identification of spatial relation-
ships that exhibit distance-dependent behavior.

These techniques provide various approaches to address the challenge of suitable
prevalence thresholds and prevalence measures in colocation mining, enabling researchers
and practitioners to better capture and analyze significant spatial patterns.

2.4 Support measures

In colocation mining, various support measures have been proposed to quantify the sig-
nificance of co-location patterns. The most studied measures include partition-based,
construction-based, enumeration-based, and fraction-based measures. Each of these
measures has its advantages and limitations, as discussed below.

Partition-based approaches divide the geographical region into smaller grids, and
the count of co-location patterns in each grid is aggregated to determine support [54].
This approach is straightforward to apply and can efficiently mine frequent co-locations.
However, it has a limitation of missing instances that overlap between different grid cells,
leading to potential underestimation of support.

Construction-based methods use heuristics, such as Voronoi partitioning, to find
instances of a label set, and the count of these instances is used as support [50]. The
limitation of this approach is that the heuristic used to group instances may not always
result in an optimal grouping, leading to potential undercounting of support for patterns.
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Study Research Objective Key Findings
Partition-based
[47]

Divide the geographical re-
gion into small grids and use
the aggregate of co-location
patterns in the grids as sup-
port.

Easy to apply but misses in-
stances that overlap between
different grid cells.

Construction-
based [44]

Find instances of a label set
using heuristics like Voronoi
partitioning and use the in-
stance count as support.

Heuristics may result in un-
dercounting support by not
providing optimal grouping.

Enumeration-
based [22]

Use the number of row in-
stances where objects are in
each other’s neighborhood as
support.

Can overcount co-location fre-
quency due to overlapping in-
stances.

Fraction-based [8] Assign fractions to objects
based on the overlap of po-
tential co-location pattern in-
stances and aggregate frac-
tions as support.

Addresses overcounting and
undercounting issues, provid-
ing support closest to the
ground truth.

Table 2.2: Support Measures for Mining Co-location Patterns

Enumeration-based approaches determine support based on the number of row in-
stances, where objects form a row instance if they are in each other’s neighborhood
[79]. While this approach is efficient and straightforward, it can result in overcounting
co-location frequency due to the presence of overlapping instances.

The fraction-based approach, proposed by Chan et al. [9], assigns fractions to objects
based on the overlap of instances in potential co-location patterns and aggregates these
fractions to calculate support. This approach addresses the issues of both overcounting
and undercounting, making it a suitable support measure for colocation pattern mining.
Studies have shown that the supports obtained from the fraction-based approach are
closest to the ground truth compared to other support measures [9].

It is important to consider the strengths and limitations of different support measures
when mining colocation patterns, as the choice of the measure can impact the accuracy
and reliability of the discovered patterns. The fraction-based approach has emerged
as a promising measure that mitigates some of the limitations associated with other
approaches.
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2.5 Distance Measures

In earlier works [9, 54, 70–72], the choice of a suitable distance threshold for colocation
pattern mining was crucial as a slight change in the distance could significantly impact
the quality of the results. However, researchers have explored alternative approaches to
address this challenge, as summarized in Table 2.3.

Yao et al. proposed a density-weighted distance threshold approach [67], where the
proximity and direction of instances are considered to determine the neighborhood rela-
tion. By incorporating density information, this approach adapts the distance threshold
based on the local density of instances, resulting in more flexible and context-aware
colocation mining.

Xiaojing et al. utilized Voronoi diagrams to establish the network for colocation
mining [66]. Instead of relying on a fixed distance threshold, Voronoi diagrams divide
the space into regions based on the proximity to predefined objects, enabling the iden-
tification of colocations without explicitly specifying a distance threshold.

Vanha et al. employed statistical measures to overcome the need for distance thresh-
old parameters [58]. By leveraging statistical techniques, such as confidence intervals
or standard deviations, the approach determines the colocation patterns based on the
underlying distribution of data rather than a predefined distance threshold.

Barua et al. proposed an algorithm to find colocation patterns at multiple distances
[6]. Instead of a single distance threshold, this approach explores colocations at differ-
ent distances, allowing for the identification of patterns with varying levels of spatial
proximity.

Huang et al. mapped the colocation mining problem into the clustering problem
and applied clustering techniques for mining colocations [23]. By treating colocation
mining as a clustering task, distance thresholds are implicitly determined based on the
clustering algorithm, providing more flexibility in capturing spatial relationships.

Fang et al. used a density-based clustering approach to identify spatial relationships
and mine colocations from these clusters [14]. By considering density information, this
approach identifies dense regions in the dataset and extracts colocation patterns that
satisfy a given notion of density, reducing the dependency on a fixed distance threshold.

These alternative approaches alleviate the challenge of selecting a precise distance
threshold and offer more flexible and adaptive mechanisms for colocation pattern mining.

2.6 Fuzzy proximity-based techniques

The second set of problems in spatial colocation pattern mining focuses on incorporating
fuzzy proximity metrics, which are summarized in Table 2.4.
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Study Approach Key Findings
Yao et al. [67] Density-weighted distance

threshold, proximity, and di-
rection for colocation mining

Proposed a density-weighted
distance threshold approach
for colocation mining that
takes into account the density
of the points

Xiaojing et al.
[66]

Utilization of Voronoi dia-
grams to find the network

Used Voronoi diagrams to
identify co-location patterns
based on the relative distances
between points

Vanha et al. [58] Statistical measures used to
overcome the need for dis-
tance threshold parameters

Developed a method based on
statistical measures to avoid
the need for distance thresh-
old parameters

Barua et al. [6] Algorithm for finding coloca-
tion patterns at multiple dis-
tances

Proposed an algorithm to find
co-location patterns at multi-
ple distances

Huang et al. [23] Mapping of colocation mining
problem to clustering prob-
lem, applying clustering tech-
niques

Mapped the colocation min-
ing problem to a clustering
problem and applied various
clustering techniques to iden-
tify co-location patterns

Fang et al. [14] Density-based clustering ap-
proach for identifying spatial
relationships and mining colo-
cations

Developed a density-based
clustering approach to iden-
tify spatial relationships and
mine co-location patterns

Table 2.3: Colocation Mining Literature based on Distance

Lei et al. proposed a fuzzy-based algorithm that utilizes a fuzzy proximity measure
to analyze similarities between spatial features [35]. By incorporating fuzziness in the
proximity measure, this approach considers the degree of similarity between objects,
allowing for more flexible and nuanced analysis of colocation patterns.

Wang et al. addressed the instance sharing problem by developing a fuzzy proximity
metric based on the fuzziness of spatial neighbor relations [63]. This approach enables
the identification of colocation patterns by considering the varying degrees of proximity
between objects and capturing the uncertainty in spatial relationships.

Li et al. proposed a method to find the top-k spatial colocations without explicitly
calculating distances [28]. Instead of relying on distance thresholds, this approach ranks
the colocations based on their relevance and importance, providing a fuzzy ranking
mechanism for colocation pattern discovery.

Wang et al. also explored the use of fuzzy neighbor relationships in colocation mining
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Study Approach Key Findings
Lei et al. [35] Fuzzy-based algorithm utiliz-

ing fuzzy proximity measure
for analyzing similarities be-
tween spatial features

Proposed a fuzzy-based algo-
rithm that uses fuzzy prox-
imity measure to analyze the
similarities between spatial
features

Wang et al. [63] Fuzziness of spatial neigh-
bor relation, developing fuzzy
proximity metric to address
instance sharing problem

Utilized the fuzziness of spa-
tial neighbor relation and de-
veloped a fuzzy proximity
metric to address the instance
sharing problem

Li et al. [28] Method to find top-k spatial
colocations without calculat-
ing distances

Proposed a method to find the
top-k spatial colocations with-
out the need to calculate dis-
tances

Wang et al. [62] Mining colocations using
fuzzy neighbor relationship
with a distance range as input

Presented an approach to
mine colocations using a fuzzy
neighbor relationship, taking
a distance range as input
rather than a single distance
threshold

Table 2.4: Literature on Fuzzy-based Colocation Mining

by taking a distance range as input instead of a single distance threshold [62]. By
incorporating a range of distances, this approach considers the uncertainty in spatial
proximity and provides more flexibility in capturing colocation patterns.

These fuzzy proximity-based techniques enhance the quality of results in spatial
colocation pattern mining by incorporating variation in the distance threshold at the
neighborhood relations level. By considering the fuzzy nature of spatial relationships,
these approaches offer more robust and adaptive mechanisms for colocation pattern
discovery.

2.7 Incremental Mining

In addition to the techniques discussed earlier, there have been studies focusing on
mining co-locations in incremental databases. Table 2.5 provides an overview of these
incremental mining algorithms. He et al. proposed the ICMP algorithm for the in-
cremental maintenance of discovered spatial co-location patterns when a new object is
added to the database [16]. This algorithm efficiently updates the existing co-location
patterns based on the addition of new points.
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Yoo et al. introduced the EUCOLOC algorithm, which efficiently mines co-location
patterns in evolving spatial databases [3]. EUCOLOC employs the concept of borders
to avoid unnecessary candidate generation, resulting in improved efficiency compared to
ICMP. However, both ICMP and EUCOLOC focus only on handling the addition of new
points and do not consider point deletion. To address the issue of point deletion, Lu
et al. developed the IMPCA algorithm for incremental mining of prevalent co-locations
[44]. IMPCA handles both new and deleted points and incorporates a pruning strat-
egy to further enhance efficiency. Lee et al. proposed the incremental topology miner
(Inc_TMiner) algorithm, specifically designed for incrementally updating topological
patterns in spatial-temporal databases [34]. This algorithm performs database projec-
tions and searches for patterns using a depth-first search approach. Wang et al. intro-
duced the UUOC (Utility Update of Co-locations) algorithm, which incrementally mines
high utility co-locations in a database by considering both the addition and deletion of
data points [64]. UUOC takes into account the utility of co-locations and efficiently
updates the patterns with changing data.

For efficient mining of co-locations in large datasets, Andrzejewski et al. proposed
a parallel approach using the iCPI-Tree structure [5]. This approach leverages the pro-
cessing power of parallel computing to handle the mining of co-locations effectively.
The INC-MGPUCPM algorithm takes advantage of GPU processing power to mine
co-locations when the database is updated with new data points. By utilizing the com-
putational capabilities of GPUs, INC-MGPUCPM achieves efficient incremental mining
of co-locations. Wang et al. introduced the incremental fuzzy participation index for
measuring the prevalence of changed co-locations in updated datasets and designed the
IMPCP-FNR algorithm for incremental mining of prevalent co-location patterns [61].
Chang et al. proposed a novel approach that rearranges neighborhood relations to re-
duce storage requirements and avoid generating non-incremental candidate instances
[10]. These incremental mining algorithms provide efficient ways to update and main-
tain co-location patterns as databases evolve over time. They address the challenges of
handling new and deleted points, as well as achieving scalability for large datasets.

2.8 Dynamic spatial co-location patterns

On the other hand, to handle the dynamic nature of spatial objects, research has been
conducted on mining dynamic co-locations, as shown in Table 2.6.

Qian et al. proposed an algorithm for mining co-locations with dynamic neighbor-
hood constraints [51]. This algorithm formulates the co-location mining problem as an
optimization problem and solves it using a greedy approach. By considering the dynamic
changes in neighborhood constraints, this algorithm captures the evolving relationships
among spatial objects.

Hu et al. introduced the concept of dynamic spatial co-location patterns, which takes
into account the dynamic relationships among spatial features [21]. Instead of mining all
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Study Approach Key Findings
He et al. [16] ICMP algorithm for incre-

mental maintenance of discov-
ered spatial co-location pat-
terns when a new object is
added

The concept of cross is intro-
duced to reuse already-known
knowledge, improving the effi-
ciency of the incremental main-
tenance algorithm.

Yoo et al. [3] EUCOLOC algorithm for ef-
ficient mining of co-location
patterns in evolving spatial
databases

EUCOLOC is more efficient
than ICMP, but both algo-
rithms only consider adding
new points and cannot handle
point deletion

Lu et al. [44] IMPCA algorithm for incre-
mental mining of prevalent co-
locations, handling new and
deleted points and providing
a pruning strategy

IMPCA handles both new and
deleted points, and the pruning
strategy enhances efficiency

Lee et al. [34] Inc_TMiner algorithm for in-
cremental updating of topo-
logical patterns in spatial-
temporal databases

Inc_TMiner performs
database projections and
uses a depth-first search for
pattern search

Wang et al. [64] UUOC algorithm for incre-
mental mining of high utility
co-locations in a database

UUOC considers both addition
and deletion of data points for
mining high utility co-locations

Andrzejewski et
al. [5]

Parallel approach using iCPI-
Tree structure for efficient
mining of co-locations in large
data

iCPI-Tree structure enables ef-
ficient mining of co-locations in
large datasets

Wang et al. [61] Incremental mining of preva-
lent co-location patterns
based on FNR (the IMPCP-
FNR algorithm)

Incremental fuzzy participation
index measures the prevalence
of changed co-location, enhanc-
ing the mining algorithm

Chang et al. [10] Approach to rearrange neigh-
borhood relations for efficient
storage and non-incremental
candidate instance generation

Efficient storage and avoidance
of non-incremental candidate
instances

Table 2.5: Literature on Incremental Colocation Mining

possible co-locations, this approach focuses on mining only maximal co-locations, which
can derive all prevalent co-locations. By considering the dynamics of spatial objects,
this method captures the evolving patterns over time.

Ma et al. proposed a two-step framework for discovering evolving spatial co-location
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patterns [46]. In this framework, an extend-and-evaluate scheme is proposed to form
evolving spatial co-locations by selecting appropriate evolvers from the top-k spatial
co-location patterns at each time slot. This approach allows for the identification of
evolving patterns and provides insights into the changes and trends in co-locations over
time.

These studies on dynamic co-location mining address the need to capture the evolving
relationships and patterns among spatial objects. By considering dynamic neighborhood
constraints and temporal changes, these approaches provide valuable insights into the
dynamics and evolution of co-locations.

Authors Approach Key Findings
Qian et al. [51] Algorithm for mining co-

locations with dynamic neigh-
borhood constraints, treating
it as an optimization problem
and solving it using a greedy
approach

Dynamic neighborhood con-
straints can be incorporated
in co-location mining using a
greedy optimization approach

Hu et al. [21] Concept of dynamic spatial
co-location pattern to con-
sider dynamic relationships
among spatial features, fo-
cusing on mining only maxi-
mal co-locations to derive all
prevalent co-locations

Dynamic spatial co-location
patterns capture dynamic re-
lationships among spatial fea-
tures, and mining only maxi-
mal co-locations can derive all
prevalent co-locations

Ma et al. [46] Two-step framework for
discovering evolving spatial
co-location patterns, includ-
ing an extend-and-evaluate
scheme to form evolving spa-
tial co-location by selecting
appropriate evolvers from
top-k spatial co-location
patterns at each time slot

Evolving spatial co-location
patterns can be discovered
using a two-step framework
with an extend-and-evaluate
scheme, selecting appropriate
evolvers from top-k spatial co-
location patterns

Table 2.6: Literature on Mining Co-locations with Dynamic Constraints

2.9 Exploration of Spatio-Temporal Colocation Patterns

The thesis now delves into the evolving landscape of spatio-temporal colocation patterns,
a pivotal area highlighted in recent research.

Li et al. [42] present an innovative methodology, the Geographically and Temporally
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Weighted Co-location Quotient, offering a profound analysis of spatio-temporal crime
patterns across Greater Manchester. Their approach tackles the challenges posed by
spatial data pooled over time, unraveling symmetrical spatio-temporal co-location pat-
terns and mapping local clusters. This method not only identifies patterns but also
addresses the intricacies of varying temporal scales, contributing significantly to under-
standing the relationships between crime and the urban environment.

Additionally, Ma et al. [46] contribute to this field by proposing a two-step frame-
work for discovering Evolving Spatial Co-location Patterns (ESCs) from spatio-temporal
databases. Their methodology, validated using real and synthetic datasets, showcases the
identification of ESCs in the Shilin nature preservation zone of Yunnan Province over a
decade. This work illuminates the variation trends, diversity, and relationships between
SCPs over time, providing crucial insights into evolving spatial co-location patterns.

Furthermore, the study by Tang et al. [56] examines the spatio-temporal evolution
patterns and influencing factors of the attractiveness of residential areas to restaurants
in the central urban area. The research introduces the concept of the ARTR (the at-
tractiveness of residential areas to restaurants) and measures its value, along with its
spatial and temporal evolutionary patterns using global and local colocation quotients.
Their analysis unveils the impact of urban expansion and regeneration on the cluster-
ing of catering establishments, shedding light on the changing dynamics between urban
elements and catering businesses.

These contributions collectively deepen our understanding of spatio-temporal colo-
cation patterns, offering insights into diverse domains such as crime analysis, ecological
preservation zones, and the intricate relationship between urban development and cater-
ing establishments.

2.10 Interactive and Visual Analytics

In recent years, the landscape of spatial data exploration has seen a significant rise in
the development of interactive and visual analytics tools designed to empower analysts
and domain experts. Notably, Seebacher et al. contributed to this field by developing
methods for the interactive analysis of spatio-temporal data abstractions [52]. Their
work focuses on enhancing the interpretability and usability of spatial data exploration.

Wang et al. introduced a spatial-temporal visual analytics approach for interpretable
object detection in autonomous driving [60]. Their work addresses the challenges of
understanding when, where, and how object detection may fail in autonomous driving
scenarios, providing valuable insights for the development of safer autonomous systems.

While there is existing work on the identification and visualization of spatial and
temporal trends [73], there has been limited exploration in the realm of colocation pattern
mining. Zhou et al. proposed a visualization method for discovering colocation patterns
constrained by a road network [78]. Their approach involves network kernel density
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estimation and the construction of colocation rule maps, providing a spatially intuitive
representation of colocation patterns.

Mengjie et al. contributed to colocation pattern mining by introducing a visualization
approach for discovering colocation patterns for two independent point distributions
[49]. Their method utilizes human color perception to generate colocation rule maps,
enhancing the intuitive understanding of spatial relationships.

In a study by Kuo and Lord, the authors applied the color mixing theorem to define
the colocation pattern of multiple variables related to crashes, crimes, and alcohol re-
tailers [30]. Their work explores the spatio-temporal evolution patterns and influencing
factors of attractiveness in residential areas to restaurants, shedding light on the spatial
dynamics of these interactions.

However, these approaches exhibit limitations when applied to a large number of
features and colocation sizes. The scalability of these methods becomes challenging,
particularly in cases involving a high number of features and big-size colocation pat-
terns, necessitating the integration of machine learning techniques for efficient decoding.
Addressing these challenges is essential to unlock the full potential of colocation pattern
mining in spatial data analytics.

2.11 Summary

The literature highlights several challenges involved in selecting an appropriate distance
threshold for colocation mining. Scholars emphasize the significance of domain knowl-
edge in understanding the spatial relationships relevant to the analysis. Additionally,
analyzing the data distribution, aligning with analysis objectives, considering data vari-
ability, adopting an iterative approach, and applying validation and evaluation tech-
niques are crucial factors that researchers have investigated to optimize the selection of
a distance threshold.

The efficient processing of the neighborhood graph presents unique challenges in
colocation mining. Graph representation, encompassing the choice of graph model and
determining edge types and properties, has been explored in the literature. Furthermore,
handling large-scale graphs with considerations for scalability, capturing indirect rela-
tionships, developing graph-specific algorithms, and ensuring effective graph partitioning
and distribution are key challenges that have been addressed to improve the processing
of the neighborhood graph.

Dynamic data poses specific challenges in colocation mining. Literature has high-
lighted the importance of managing data updates and maintenance while preserving
colocation patterns. Scholars have proposed techniques for incremental processing to ef-
ficiently update patterns when new data is added or existing data changes. Additionally,
accounting for temporal variations, conducting temporal analysis, and designing efficient
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storage and retrieval mechanisms for dynamic colocation patterns have been addressed
in the literature.

By reviewing the existing literature, it is evident that researchers have made substan-
tial progress in addressing the challenges of choosing a distance threshold, processing
the neighborhood graph, and handling dynamic data in colocation mining. The insights
gained from these studies provide a foundation for further research and advancements
in the field. Future work can focus on developing novel approaches, algorithms, and
frameworks to overcome these challenges and enhance the effectiveness and applicability
of colocation mining in various domains.

Overall, this literature review emphasizes the significance of addressing the chal-
lenges related to choosing a distance threshold, processing the neighborhood graph, and
handling dynamic data in colocation mining. The reviewed studies provide valuable in-
sights into the advancements made thus far and serve as a roadmap for future research
endeavors in the field.



Chapter 3

Mining Colocation Patterns for a
Range Query

This chapter is based on the following journal paper:

Srikanth Baride, Anuj S. Saxena, Vikram Goyal,"Efficiently Mining Colocation Pat-
terns for Range Query", Big Data Research, Volume 31, 2023, 100369, ISSN 2214-5796.

3.1 Introduction

One of the most preferred measures for finding colocation patterns is the Participation
Index (PI) [54]. The PI of a feature set is defined using the count of different objects in
spatially close clique instances of the feature set. For a user-provided distance threshold
d and a minimum prevalent score min_prev, the existing approaches report all those
sets of features as colocations for which the PI is more than the min_prev. The distance
threshold d determines spatially close clique instances of the feature set, and thus, the
quality of the results depends upon the chosen d value. However, determining a d value
is difficult for any domain expert as it is data-dependent.

This causes the domain expert to try different distance values to find out interesting
patterns thus forming relevant hypotheses. It can be a very time-consuming effort. In
practice, the user will be interested in having the flexibility to input parameters. For
example, a user who desires patterns that are around 100 meters apart may consider ob-
jects at 100 meter distance and 105 meter distance both nearby. This scenario indicates
that in most of the situations the understanding of spatially nearby can reasonably be
modeled as an interval over the distance threshold, i.e., D = [d1, d2], where d1, d2 ∈ R,
and d1 < d2. In the running example, the user may provide an interval D = [95, 105] for
mining colocations that are around 100 meters apart.

Motivated by the challenges, we propose a range query for colocation pattern min-
ing that would accept a distance interval instead of a single distance threshold value.
The patterns mined over the distance interval are organized and presented in a way

31
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that reduces a domain expert’s efforts and time to find interesting patterns. The pro-
posed solution would also help a user to know how the pattern changes with distance.
There are three reasons why a range query can be useful. 1) It is difficult to decide
on a single distance threshold for a task, whereas, intervals are rather easier to choose.
2) The distribution of colocation patterns in a range interval as shown in the lattice
visualization of result space in figure 3.1 makes the result space more expressive. 3)
The extra distance information with every colocation pattern is useful for post-mining
decision-making. The user might be interested in knowing at what distance a particular
colocation gets appeared. Moreover, the appearance and disappearance of patterns with
changes in the distance value can help understand the trade-off between colocations and
the distance threshold for the data at hand. For example, using our technique for the
range query [100m, 400m] on Real_Data_1, we discover that pattern {Social Services,
Religious Institution} gets introduced at distance 351m and pattern {Residential, So-
cial Services} gets introduced at distance 396m. Similarly, for Real_Data_2 in the
range [50m, 250m] we discover pattern {bar, restaurant} at distance of 71m and pattern
{recreation, supermarket} at distance 203m.

The existing approaches neither provide support for range query nor can be extended
trivially to mine colocations for distance interval. It is because, in mining with a distance
threshold d = 100, objects with a distance of more than 100 meters are not considered
nearby and, therefore, are not a part of any clique instances. Finding new clique instances
for the distance value higher than 100 requires the recomputation of nearby objects for
those d values.

All distances higher than 100 meters may not add new clique instances. Even those
distances that add new clique instances may not contribute enough to the participa-
tion index of candidate patterns and therefore may not add new colocations. We call
those distances in the range for which there is a change in the colocation pattern set
as critical distances. One of the major challenges in extending the existing colocation
mining approaches for distance range is the lack of information about critical distances
in the given range. Somehow even if we know the critical distances, re-computation of
(additional) clique instances can not be avoided completely. It makes colocation mining
over the distance range query computationally challenging.

We articulate the following research questions solving a range colocation pattern
query :

• There are uncountable many points in the given distance range. How do we find
a computationally feasible candidate critical distance set out of these uncountable
choices?

• Given colossal search space, how do we efficiently find the distances at which a
colocation pattern is no longer valid?

• While mining patterns for candidate critical distances, do we need to recompute
colocations at each of the critical distances from scratch?, or can there be a better
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way out? The recomputation of colocations at each candidate distance is compu-
tationally expensive and should be avoided.

To overcome these challenges, our contributions in this work are the following:
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Figure 3.1: Lattice Visualisation of Colocations Over Range Query D = [3, 8]

1. We introduce a new query type, called range colocation pattern mining, that allows
a domain expert to extract colocation patterns over a distance interval, hence
facilitating the exploration of patterns over a large space of neighborhood notion.

2. We give a method to organize and present the patterns over a distance interval as
shown in figure 3.1. The presentation method would allow efficient exploration of
spatial colocations patterns and form relevant hypotheses with ease.

3. We propose an efficient single-pass algorithm for range colocation mining called
Range − CoMine that exploits the structural properties of the colocation pat-
terns. It also uses a space-efficient data structure to mine the patterns efficiently
by avoiding multiple runs of a colocation mining algorithm. The memory space
requirement of the proposed algorithm is minimal.

4. We perform extensive experiments on both real and synthetic datasets to show the
efficiency of our proposed strategy. Our proposed algorithm outperforms the two
adapted versions of the join-less colocation pattern mining algorithms in terms of
space and time requirements.



3. Mining Colocation Patterns for a Range Query 34

3.2 Preliminaries, Problem Definition, and Mathematical
formulation

In this section, we formally introduce the problem of colocation mining for the distance
range query.

We use the participation index [54] measure to find prevalent colocation patterns
that we briefly discuss next, with the necessary changes as required for the distance
range query scenario.

We consider that the spatial dataset consists of objects having a unique feature from
the feature-set F = {f1, f2, . . . , fn}. The collection of all the objects in the dataset is
denoted by O that can be seen as O = O1 ∪ · · · ∪On, where each Oi(1 ≤ i ≤ n) denote
objects of a unique feature type fi. The objects o ∈ O are represented as a tuple (id, f, l),
where id is the instance id, f ∈ F is its feature type, and l is its location (x, y). The
problem of co-location pattern mining for the distance range D = [d1, d2] , with d1 < d2,
is to find a subset p of the spatial features F whose object instances in O are in the
spatial proximity for the given range D with high frequency. More formally, a collection
of objects {o1, . . . , ok} ⊆ O is said to be an object instance of p = {f1, . . . , fk} ⊆ F
if oi.f = fi for all i. We call those subsets p of F for which object instance exists in
O a pattern or a candidate colocation. Thus, we intend to find those patterns (called
prevalent colocations) whose object instances are frequently nearby in the spatial region.
One of the measures to find how frequently the object instances are spatially nearby is
Participation Index (PI). We use the participation Index measure to formally define the
prevalent colocation for distance range query D = [d1, d2]. If no confusion arises, we call
the distance range query just a range query in the subsequent discussion.

Two objects o and o′ in O satisfy a neighborhood relation Rd for a distance d ∈ D
if the Euclidean distance between them is less than or equal to d. We denote it by
Rd(o, o′). In figure 3.2, the neighborhood of object instances B.1, B.2, and B.3 of
feature type B are shown in a graphical representation for the distance d = 7 and the
neighborhood relation for the feature types A and B are shown in the list form for
distances d = 7, 5, 4. From the example, it is clear that objects A.2 and B.2 satisfy
neighborhood relation R7(A.2, B.2) but not R5(A.2, B.2). The change in the distance d
changes the neighborhood relationship Rd. We will interchangeably use ‘distance d’ or
‘neighborhood relation Rd’ to highlight changes due to distance d ∈ D.

We now discuss the definition of clique instances of a pattern p = {f1, . . . , fk} ⊆ F .
An object instance {o1, . . . , ok} of a pattern p is said to satisfy the mutual neighbourhood
relationship Rd for a distance d ∈ D if Rd(oi, oj) for all i, j = 1, . . . , k; i ̸= j.

Definition 3.1 (Clique Instance). Let p = {f1, . . . , fk} ⊆ F be a pattern and {o1, . . . , ok} ⊆
O be its object instance, i.e., oi.f = fi for all i. If for a distance d ∈ D objects in
{o1, . . . , ok} satisfy the mutual neighbourhood relationship Rd, then CI = {o1, . . . , ok}
is said to be a clique instance of the pattern p for the distance d. The collection of all
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Figure 3.2: Neighbourhood Relation Rd for pattern {A,B} for distances d = 7, 5, 4

the clique instances of a pattern p for the neighborhood relation Rd, denoted by Ip
Rd

, is,

Ip
Rd

= {CI = {o1, . . . , ok} | ∀i, oi.f = fi ∧ CI is clique in Rd}

A pattern for which clique instances exist is called a colocation. We denote colocations
by the symbol c. For every colocation there exists a family of clique instance set Ip

Rd

for d ∈ D that satisfy Ip
Rd1
⊂ Ip

Rd2
for d1, d2 ∈ D with d1 < d2. The cliques of a two-

size pattern are its neighbourhood relations. For example, in figure 3.2, R7(A.2, B.2)
is a clique of a colocation c = {A,B} but not R5(A.2, B.2) is not. The neighbourhood
relation lists of a colocation c = {A,B} in figure 3.2 also shows the family of clique
instances (i.e., IAB

Rd
) for distances d = 7, 5, 4.

Next, we discuss the participation ratio of a feature type fi in a colocation c for
d ∈ D that is defined as the ratio of the number of unique instances of fi participating
in any clique instances of c to the total number of instances of fi in O.

Definition 3.2 (Participation Ratio). Let c = {f1, . . . , fk} be a colocation having clique
instances Ic

Rd
under the spatial neighborhood relation Rd. The participation ratio of
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feature fi ∈ c at distance d, denoted by Pr(fi, c, I
c
Rd

), is given as:

Pr(fi, c, I
c
Rd

) =
|{oi ∈ Oi | {o1, . . . , ok} ∈ Ic

Rd
}|

|Oi|
(3.1)

For example, in figure 3.2, the participation ratio of B in the colocation c = {A,B} is
2/3 for d = 4, and is 1 for d = 5 or 7. Now we discuss the participation index which is
the minimum amongst all the participation ratios of distinct features fi in the colocation
c.

Definition 3.3 (Participation Index). The participation index of a colocation c =
{f1, . . . , fk} having clique instances Ic

Rd
under the spatial neighborhood relation Rd,

denoted by Pi(c, Ic
Rd

), is defined as:

Pi(c, Ic
Rd

) = min
fi∈c

Pr(fi, c, I
c
Rd

) (3.2)

For example, in figure 3.2, the participation index of c = {A,B} is 1 for d = 7
since all the instances of A and B are in the clique instances and is 2/3 for d = 4 as
participation ratio of B in c = {A,B} is 2/3. On changing the distance, the participation
ratio and participation index also change. We now discuss this relationship between the
participation index and the distance d ∈ D.

Lemma 3.4. (Participation Index Monotonicity Property) The participation ratio and
the participation index decrease monotonically with the decrease in the distance.

Proof. The proof of the lemma is direct from the fact that the decrease in the distance
threshold reduces the neighborhood relation and clique instances monotonically.

The lemma allows not to evaluate a pattern at a lower distance value once it becomes
irrelevant at a higher distance value. In figure 3.3, the changes in the participation index
of the colocation c = {A,B} are shown for the neighbourhood relation as in figure 3.2.

For a user-provided prevalence threshold min_prev, colocation is a prevalent coloca-
tion for a distance d ∈ D if its participation index under spatial neighborhood relation
Rd is greater or equal to the min_prev. A colocation is said to be a prevalent colocation
in the range D if it is prevalent for some distance d ∈ D. Thus the objective of range
colocation mining is to find all prevalent colocations in the given range D.

Definition 3.5 (Range Colocation Mining). For a given < O,F,D,min_prev >, where
O is a special object having spatial features from F , D = [d1, d2] is a distance range,
and min_prev is a prevalence threshold, a distance-colocation pair (d, c) is a prevalent
colocation for the range query D if d1 ≤ d ≤ d2 and c ⊆ F is a prevalent colocation for
the distance d.
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Figure 3.3: Participation Index vs. Distance Threshold for colocation {A,B}

The extra distance information associated with prevalent colocations for the range
query makes the mined patterns more expressive and thus useful for post-mining analysis
in decision problems. However, the computation of prevalent colocations for the range
D is computationally expensive. It is not clear how to select distances from D if we
apply multiple applications of the existing colocation mining approaches for the single
distance value. Also, if (d, c) is a prevalent colocation in the range D, then (d′, c) is also
prevalent for all d′ ≥ d in the range D and fixed min_prev. Reporting such redundant
patterns in the result will reduce its readability and usefulness. To address these issues
we define the critical distance of a prevalent colocation.

For a prevalent colocation in the range D, a distance in D at which the coloca-
tion becomes prevalent is called its critical distance. For example, in figure 3.3 for the
min_prev = 0.7, the critical distance for the colocation c = {A,B} is 5 because it
is prevalent for d ≥ 5 but not for d < 5. Similarly, for min_prev = 0.6, the critical
distance for c = {A,B} is 4. We denote a list of all the prevalent colocations C hav-
ing critical distance d ∈ D by the pair < d,C >, and by ColList, the collection of
all such pairs < d,C > in the range D. The ColList is the desired output of a range
colocation pattern mining algorithm. Since every prevalent colocation in the range D is
reported once in ColList by associating it with its critical distance, it resolves the issue
of redundant patterns. Also, all critical distances in D are the values that can extend
the existing single-distance colocation mining techniques through multiple executions.
However, there remain several challenges that we discuss in subsequent sections.
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One of the challenges in finding prevalent colocations for the range query D = [d1, d2]
is- how to efficiently compute all critical distances in the range D for a fixed min_prev?
Also, updating prevalent colocations at those distances is required. Thus, the second
challenge is - how to efficiently find prevalent colocations at critical distances in D?
The recomputation of prevalent colocations for every critical distance is an expensive
operation. In the next section, we introduce our main approach Range−CoMine which
efficiently resolves these issues in range colocation mining. We start our discussion
by introducing two baseline approaches, namely the Naïve approach and the Range
Inc-Mining, which extend the join-less colocation pattern mining [54] by recomputing
prevalent colocations. We compare the efficiency of the Range − CoMine with these
baseline approaches in the experiment section.

3.3 Related Work

In our framework, we extend the computational framework of the join-less approach [71],
use the participation index as a prevalence measure, and address the issue of choosing
a suitable distance threshold. Many of the earlier works [9, 54, 70–72] require the user
to specify a distance threshold that is an exact value such as 5 meters, 10 meters, etc.
A slight change in the distance may result in a substantial change in the quality of the
result, and thus the choice of a suitable distance threshold is important. In the literature,
two types of approaches address this challenge. The first set of problems avoids the need
for a distance threshold and develops the neighborhood relation through other means.

Yao et al. [67] proposed a density-weighted distance threshold to mine colocations
based on the proximity and direction of the instances. Xiaojing et al. [66] used Voronoi
diagrams to find the network. Vanha et al. [58] uses statistical measures to overcome the
need for distance threshold parameters. Barua et al. [6] proposed an algorithm to find
colocation patterns at multiple distances. Huang et al. [23] map the colocation mining
problem into the clustering problem and show that the clustering techniques can be
applied to mine colocations. Fang et al. [14] used a density-based clustering approach to
identify the spatial relationship and then mine colocations from these clusters. Density-
based colocation pattern mining techniques report patterns that satisfy a given notion
of density. On the other hand, the proposed Range query captures a family of density
(neighborhoods) defined using distance thresholds in the given distance range.

The second set of problems incorporates fuzzy proximity metrics in spatial colocation
pattern discovery. Lei et al. [35] proposed a fuzzy-based algorithm that uses fuzzy
proximity measure to analyze the similarities between the spatial features. Wang et
al. [63] uses fuzziness of spatial neighbor relation to addressing the instance sharing
problem by developing fuzzy proximity metric. Li et al. [28] proposed a method to find
the top-k spatial colocations without calculating distances. Wang et al. [62] also worked
on mining colocations using fuzzy neighbor relationship by taking a distance range as
input rather than a single distance threshold. The fuzzy proximity-based techniques
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enhance the quality of results by incorporating variation in the distance threshold at
the neighbourhood relations level. However, this information about the distance change
and its effect on the patterns is not associated with the result that may be desirable for
post-mining analyses. Thus we are motivated to find an efficient technique that mines
spatial colocation patterns for distance range query and enhances the expressive power
of patterns for post-mining analysis by associating a pattern visibility distance with the
patterns in the result set.

To the best of our knowledge, there exists no prior work that discusses the coloca-
tion pattern mining for the distance range query. The existing algorithms for colocation
pattern mining are not directly applicable due to computational overhead as multiple
applications over the distance range are required. Also, in some of the existing ap-
proaches for colocation mining, the spatial data was first converted into the transaction
data, and there exist techniques for range-based association rule mining [38, 47, 53] over
transaction data. However, these approaches are also not helpful for getting a mean-
ingful solution for range colocation mining. It is because the spatial data is converted
into transaction data by realizing the neighbourhood relation that depends upon the
distance threshold. Therefore, for comparison purpose, we have developed a Naïve Ap-
proach that apply joinless approach [71] multiple times by choosing multiple distances
in the distance range.

3.4 Methodologies for Range Colocation Mining

In range colocation Mining, for a user-provided min_prev threshold and a range query
D = [d1, d2], the objective is to find ColList consists of pairs {< d,C > |d ∈ D} where
C is a list of prevalent colocations having critical distance d ∈ D.

We now discuss our first baseline, the Naïve Approach, that would find candidate
critical distances in D and then compute prevalent colocations for those distances. It
uses a traditional colocation mining algorithm [54] as a basic routine to recompute
prevalent colocations for the chosen candidate distances. From the result of the candidate
distances, the desired ColList is generated.

3.4.1 Naïve Approach

For distance d ∈ D and its neighbourhood relation Rd, we denote by Dpair the set of
distances between any two objects in Rd that lies in the range D. Distances in Dpair

are the edge distances in the neighbourhood graph of Rd. The next result discusses the
relationship between the critical distance of the prevalent colocations and Dpair.

Lemma 3.6. The set of all the critical distances of the prevalent colocations correspond-
ing to the neighbourhood relation Rd is a subset of Dpair for the same Rd.
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Proof. The proof is direct from the fact that the critical distance of a prevalent colocation
corresponds to some of its clique instance deletions. The clique instance deletion is due
to an edge deletion in the neighbourhood graph. Thus the collection of critical distances
is a subset of Dpair. However, every clique instance deletion may not decrease the
participation index below the min_prev. Hence every edge distance in Dpair need not
be a critical distance.

We use Dpair as candidate critical distances in the Naïve Approach. For compu-
tational ease, the distances in Dpair are stored in decreasing order. We denote by Cd

the collection of all prevalent colocations at a distance d. The next result explains the
relationship of the prevalent colocation set with a change in candidate distance in Dpair.

Lemma 3.7. For consecutive distances in Dpair, the prevalent colocation sets are mono-
tonically decreasing, i.e., for di−1, di in Dpair, we have, Cdi−1 ⊇ Cdi

, where Cd denotes
a set of prevalent colocations at distance d.

Proof. The result is direct from that edge-distances in Dpair are in decreasing order, i.e.,
di−1 > di, and the neighborhood graph for di is a sub-graph of neighbourhood graph for
di−1.

Since every distance in Dpair need not be a critical distance, the prevalent colocations
set Cd may not change for every d ∈ Dpair. Let there be a change in Cdi

for di ∈ Dpair.
From lemma 3.7, we have Cdi−1 ⊃ Cdi

. Let us denote by Cchanged all the prevalent
colocations that are in Cdi−1 but not in Cdi

. In the next lemma, we discuss that di−1 is
a critical distance for all the prevalent colocations in Cchanged.

Lemma 3.8. For any two consecutive distances di−1, di in Dpair such that Cdi−1 ⊃ Cdi
,

di−1 is a critical distance for colocations in Cchanged = Cdi−1 \ Cdi
.

Proof. The neighbourhood relation changes only for distances in Dpair. Since di−1 and
di are consecutive distances in Dpair, no distance in the interval (di, di−1) can be the
critical distance for Cchanged. Hence the result.

We now discuss the Naïve Approach for the range query D = [d1, d2] in the Algorithm
1. It uses Dpair for distance d2 as candidate distances to compute ColList consisting of
pairs < di−1, Cchanged > as stated in lemma 3.8.
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Procedure 1 Naïve Approach (O,F, [d1, d2], min_prev)
1: Compute neighbourhood relation Rd2 at distance d2
2: Compute Dpair for Rd2 , and maintain it in decreasing order
3: for each di ∈ Dpair do
4: Compute neighbourhood Rdi

and clique instances at di

5: Compute colocation set Cdi
for Rdi

using colocation algorithm
6: if Cdi

̸= Cdi−1 then
7: Compute Cchanged = Cdi−1 \ Cdi

8: Update ColList with pair < di−1, Cchanged >
9: end if

10: end for
11: return ColList

The correctness of the Naïve Approach is justified by Lemma 3.8. It is easy to apply
but is computationally expensive. There are two issues with this approach.

1. The candidate distances in Dpair are much more as compared to the actual crit-
ical distances within the range D. This results in unnecessary computations of
prevalent colocation set several times.

2. It is expensive to recompute prevalent colocations for each distance in Dpair as
in line 4 and line 5 of Algorithm 1. From lemma 3.7, the colocation patterns at
different distances in Dpair are monotonically decreasing. Updating them from the
previous state is advantageous.

In the next section, we discuss the second baseline approach RangeInc−Mining that
updates the prevalent colocations for the distances in Dpair.

3.4.2 RangeInc−Mining

The RangeInc −mining algorithm differs from Algorithm 1 in line 4 and line 5 only.
We compute Dpair for d2 for the given range query D = [d1, d2], and maintain it in
decreasing order, as in line 1 and line 2 of Algorithm 1. For the first distance value
in Dpair, the prevalent colocations are computed using a traditional colocation mining
algorithm. All the prevalent colocations with their clique instances are stored for further
computation. In the next stage, with a change in the distance d ∈ Dpair, we discard
those clique instances from the previously stored clique instances that disappear. It
requires an update operation in line 4 of Algorithm 1. The process is repeated for every
distance in Dpair by storing colocations and clique instances of the previous state. Thus
with extra storage space, we can avoid the recomputation of clique instances, a costly
operation.
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3.4.3 Range− CoMine

The limitation of the baseline approaches is that the candidate critical distances in Dpair

are too many, and multiple passes of traditional colocation mining techniques over Dpair

make them highly inefficient. To overcome this issue, in this section, we first define the
critical distance formally and propose an efficient technique to compute it. Next, we
propose a single pass technique Range−CoMine for the range query that significantly
reduces the computation cost and memory requirement.

A critical distance of a prevalent colocation is the smallest distance in the range
D = [d1, d2] at which the colocation is prevalent for the first time. More formally,

Definition 3.9 (Critical Distance). For a given min_prev threshold, a distance d is
the critical distance of colocation c if the pattern c is prevalent at distance d but not
prevalent for any distance smaller than d. More formally, for a colocation c that is
prevalent for distance d ∈ D, its critical distance denoted by cr.dist(c,min_prev) is

cr.dist(c,min_prev) = min
d′∈[d1,d]

{d′ | Pi(c, Ic
Rd′ ) > min_prev}

The above definition does not help in computing critical distance due to infinitely
many candidate distances in the interval [d1, d]. We denote the candidate critical dis-
tances for a prevalent colocation c by CAND(c). It is to observe that only those distances
that correspond to the distance between the pair of the objects in some clique instances of
c may become critical distances. Therefore, for a prevalent colocation c having collection
of clique instances Ic

Rd
for distance d,

CAND(c) = {dist(oi, oj) | CI ∈ Ic
Rd
, CI = {o1, . . . , ok} ⊆ O}

The number of distances in CAND(c) is still too many. We use clique diameter that
reduces CAND(c) substantially. The clique diameter of a clique CI ∈ Ic

Rd
, denoted by

dia(CI), is the maximum pairwise distance of the objects in CI, i.e.,

dia(CI) = max{ dist(oi, oj) | oi, oj ∈ CI }

A clique instance CI ∈ Ic
Rd

exists if the distance threshold is greater or equal to the
clique diameter. This reduces the candidate distance of a prevalent colocation c to only
the diameters of the clique instances CI in Ic

Rd
, one for each clique instance. More

formally,

CAND(c) = {dia(CI) | CI ∈ Ic
Rd
} (3.3)

Let us consider a toy example as in Figure 3.4 that shows the graph representation
of neighbourhood relation for the distance threshold d = 8. The distance between
the objects is shown as an edge weight. For computational purposes, we store the
neighbourhood relation as a star neighbourhood [70]. Extra distance information with
each object is stored in the star neighborhood, which is its distance from the center.



3. Mining Colocation Patterns for a Range Query 43

Definition 3.10 (Star Neighborhood). Given a spatial object oi ∈ O whose feature type
is fi ∈ F , the star neighborhood of oi is defined as a set of pairs consisting of spatial
objects together with its distance from oi, given by the following equation:

SNd = {(oj , dist(oi, oj))|oj = oi ∨ (fi > fj ∧Rd(oi, oj))} (3.4)

where fj ∈ F is the feature type of oj and Rd is neighbourhood relation for distance d.

The star neighbourhood of the relation R8 is shown in Table 3.1. The edge weight
with the neighbourhood objects, i.e., (Neighbour, distance), in the star neighbourhood
list supports the computation of the diameter. The clique diameters are computed while
validating the clique from the star instances using the distance information stored in the
star neighbourhood list. The collection of all the clique instances with their diameters
is shown in Table 3.2, below the respective colocation patterns.

A.1

B.1

D.2

C.3

D.1

C.2

C.1

B.2 B.3

D.3 A.2

A.3

8
3

6

4

7 4

7

5 3
7

4

4
5

7

4
6 3

7

4

55

4
3

4

Figure 3.4: Graph representation of Neighborhoods Relation at distance d = 8

From Table 3.2, the candidate critical distances for pattern {A,B} are CAND({A,B}) =
{3, 4, 5, 7}, which are the diameters of their clique instances. Though, the diameters of
the clique instances of prevalent colocations in the range [d1, d2] reduce candidate critical
distances substantially. The next property, namely critical distance monotone property
(CDMP) further reduces the size of the candidate critical distance set. We first discuss
the property.

Lemma 3.11. (Critical Distance Monotonicity Property (CDMP)) Let d and d′ be the
critical distances of prevalent colocations c and c′ respectively such that c ⊂ c′. Then the
critical distance of c′ would be larger or equal than the critical distance of c, i.e., d ≤ d′.

Proof. On the contrary, assume that the statement is not correct, i.e., d > d′. Since d is
the critical distance of c, we get that the pattern c would not be prevalent at d′.
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Centre (Star Neighbour, distance) List
F O

A
A.1 (A.1, 0), (B.1, 4), (C.1, 8), (C.3, 6), (D.2, 3)
A.2 (A.2, 0), (B.2, 7), (B.3, 4), (D.3, 3)
A.3 (A.3, 0), (B.2, 5), (B.3, 3), (D.3, 8)

B
B.1 (B.1, 0), (C.3, 4), (D.1, 8), (D.2, 5)
B.2 (B.2, 0), (C.1, 7), (C.2, 4), (D.1, 6), (D.3, 4)
B.3 (B.3, 0), (C.2, 7), (D.3, 3)

C
C.1 (C.1, 0), (D.1, 5), (D.2, 5)
C.2 (C.2, 0), (D.1, 3), (D.3, 6)
C.3 (C.3, 0), (D.1, 4), (D.2, 4)

D
D.1 (D.1, 0)
D.2 (D.2, 0)
D.3 (D.3, 0)

Table 3.1: Star Neighborhood List for d = 8

AB :3/3 AD: 2/3 BC: 3/3 BD: 3/3 CD: 3/3
A.1, B.1 - 4 A.1, D.2 - 3 B.1, C.3 - 4 B.1, D.1 - 8 C.1, D.1 - 5
A.2, B.2 - 7 A.2, D.3 - 3 B.2, C.1 - 7 B.1, D.2 - 5 C.1, D.2 - 5
A.2, B.3 - 4 A.3, D.3 - 7 B.2, C.2 - 4 B.2, D.1 - 6 C.2, D.1 - 3
A.3, B.2 - 5 B.3, C.2 - 7 B.2, D.3 - 4 C.2, D.3 - 6
A.3, B.3 - 3 B.3, D.3 - 4 C.3, D.1 - 4

C.3, D.2 - 4

ABD: 2/3 BCD: 3/3
A.1, B.1, D.2 - 5 B.1, C.3, D.2 - 5
A.2, B.2, D.3 - 7 B.2, C.1, D.1 - 7
A.2, B.3, D.3 - 4 B.2, C.2, D.1 - 6
A.3, B.2, D.3 - 7 B.2, C.2, D.3 - 6
A.3, B.3, D.3 - 7 B.3, C.2, D.3 - 7

Table 3.2: Clique Instances with Diameters for d = 8 and min_prev = 7
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Consider all clique instances Ic′
Rd′ of colocation c′ for the neighbourhood relationship

Rd′ at distance d′. Let F = c′ \ c be a collection of all features in c′ that are not in
c. Clearly, the projection of Ic′

Rd′ to Ic
Rd′ by removing objects of features F will give us

collection of all clique instances of c at distance d′. We argue that c would be prevalent
at distance d′.

As c′ is prevalent at d′, let fi ∈ c′ is the feature with the minimum participation ratio
in Ic′

Rd′ . There are two cases:

1. When fi ∈ c: For all the features f ∈ F , the objects of f in Ic′
Rd′ are in Ic

Rd′ also.
This implies that the participation ratios of f ∈ F remain the same in Ic

Rd′ , i.e., fi

would be the feature with the minimum participation ratio in Ic
Rd′ . Therefore c is

prevalent at distance d′ also.

2. When fi ̸∈ c: Let fj ∈ (c′∩c) is feature in pattern c with the minimum participation
ratio in Ic

Rd′ . Since fj is in c′ also, the participation ratio of fj is greater or equal
to that of fi. Thus the participation index of c will be greater or equal to the
participation index of c′ at distance d′, and therefore c will remain prevalent at d′.

This is a contradiction to our initial assumption that implies c cannot be prevalent
at d′. Therefore the critical distance of a super pattern is greater or equal to the critical
distance of a subpattern i.e., d ≤ d′.

For example, from Table 3.6 colocations {A,B} and {A,B,D} having critical dis-
tances 4 and 5 respectively satisfy the property in lemma 3.11. Similarly, the rela-
tionship is true for colocations {B,C} and the {B,C,D} also. Since the participation
index satisfies anti-monotonicity property[24], we use the Apriori strategy for enumerat-
ing candidate colocations and computing their critical distances. The CDMP property
reduces the candidate critical distances of colocations of size k that are generated from
colocation of size k − 1. While mining colocations of size k, all colocations of size k − 1
with their critical distances are already computed. Let ck−1 is a prevalent colocations
of size k − 1 having the critical distance crk−1, and ck be a pattern of size k such that
ck−1 ⊂ ck. From the CDMP property, we have

CAND(ck) = {dia(CI) | CI ∈ Ick
Rd

and dia(CI) ≥ crk−1} (3.5)

We now discuss an efficient algorithm that on the fly compute the critical distances
for all the colocations for a fixed distance threshold d and given min_prev threshold.

Procedure for Computing Critical Distances

The critical distance computation is a three-step procedure as shown in Figure 3.5.
For computing the critical distance of a prevalent colocation c having cliques instances
Ic

Rd
and candidate critical distances CAND(c), we perform the following steps. For
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computation, we consider CAND(c) consists of diameters of the clique instances as in
equation 3.3.

Mapping object 
instances to 

distance

Object instance 
union (Updated 

Mapping)

Critical distance 
computation

Figure 3.5: Procedure for finding critical distances

• Step 1: (Mapping object instances to distance). In this step, we maintain a
map of different object instances that participate in clique instances of a colocation
c to its diameter.
For each clique instance CI ∈ Ic

Rd
having diameter dia, the clique instance CI

exist for any distance d > dia. Thus, the objects in CI can contribute to the
participation index for distances greater or equal to dia. We record this information
about the objects by mapping different feature objects in CI to the corresponding
dia. The data structure for maintaining this record is shown in Table3.5 that
demonstrates the record of object instances of colocation {A,B} as in Table 3.2.
The different clique instances of a colocation may have the same diameter. The
objects of such clique instances are appended to the object list of the respective
features of the same diameter. For example, for colocation {A,B} as in Table 3.2,
there are two clique instances A.1, B.1 and A.2, B.3 with diameter 4. The map
contains {A.1, A.2} objects of feature A and {B.1, B.3} objects of feature B with
distance 4 corresponding to these colocations.
An object may be a part of multiple clique instances having different diameters.
Such objects would be in the object list of respective features at multiple locations.
For example, in Table 3.5, object A.2 is available at distance 7 and distance 4 both
as it is a part in clique instance A.2, B.2 and A.2, B.3 with diameters 7 and 4
respectively.

• Step 2 : (Object instance union). In this step, we take the union of the object
instances of the map maintained in the previous step starting from the smallest
candidate distance to the largest candidate distance in CAND(c).
All the object instances that are first available at a distance d remain available for
all d′ ≥ d. This is because Ic

Rd
⊆ Ic

Rd′ for all d′ ≥ d. This requires updating the
map to mark the availability of objects for all the distances in CAND(c) that is
greater than the object’s critical distance. Table 3.5 shows the updated mapping
by incorporating object instance union of objects in Table 3.5.
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• Step 3 : (Computing Critical distance of a colocation) For each candidate
distance d ∈ CAND(c), we associate the feature weight as the number of distinct
objects of that feature in the object instance union list. For a feature f ∈ F we
denote its feature weight as Wf . Using the feature weight, we can compute the
participation index (PI) for each candidate distance for the prevalent colocation.
The feature weights of features A and B and the participation index (PI) of the
colocation {A,B} for the candidate distances are shown in Table 3.5.
For the given min_prev threshold, by comparing PI value with the threshold
value the critical distance of a colocation can be computed. The distance value
corresponding to a PI value that is just bigger than the min_prev is the critical
distance of a colocation. For example, from Table 3.5, for min_prev = 0.66, the
critical distance of {A,B} is 4 whereas for min_prev = 0.7, the critical distance
of {A,B} is 5.

CAND A B
7 {A.2} {B.2}
5 {A.3} {B.2}
4 {A.1, A.2} {B.1, B.3}
3 {A.3} {B.3}

Table 3.3: Map of objects to distance (CAND) for colocation {A,B}

While validating the clique instances from the star instances of a pattern, we maintain
the mapping of candidate distances to object instances (as in Table 3.5), and use it to
compute the mapping of candidate distances to PI value (as in Table 3.5). It helps
compute the critical distance of colocations on the fly while mining them for the first
time.

We also maintain ColList consisting of critical distances associated with the list of
colocations having that critical distance. The ColList of the critical distances to the
list of colocations for the neighbourhood relation R8 in figure 3.4 is shown in Table 3.6.
The lattice visualisation of ColList for Range query D = [3, 8] as in Table 3.6 is shown
in figure 3.1.

CAND A B
7 {A.1, A.2, A.3} {B.1, B.2, B.3}
5 {A.1, A.2, A.3} {B.1, B.2, B.3}
4 {A.1, A.2, A.3} {B.1, B.3}
3 {A.3} {B.3}

Table 3.4: Object instance union (Updated Mapping)
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CAND WA WB PI
7 3 3 1
5 3 3 1
4 3 2 2

3
3 1 1 1

3

Table 3.5: Feature weight and PI for candidate distances

Critical List of
Distance Colocations

3 A, B, C, D
4 AB, BC, CD
5 BD, ABD
6 AD, BCD

Table 3.6: ColList: Critical distance to list of Colocations

The ColList can be computed while mining the prevalent colocation for the first
time and is instrumental in providing the result of the range query on the fly. To further
reduce the candidate critical distance set, as proposed in Equation 3.5, we need to
maintain a temporary list of different features’ objects in Table 3.5. This temporary list
stores objects of all the clique instances whose diameter is less than the critical distance
of the sub-pattern that grows the current pattern. For all those clique instances for
which the diameter is more than or equal to the critical distance, a map is maintained
similarly to the previous case. The union of the objects of this temporary list is taken
with the lowest distance objects in the map before performing the object instance union
in step 2. Thus, we only maintain a record of the candidate distances in Table 3.5 and
Table 3.5 that are greater or equal to the critical distance of the sub-patterns.

3.5 Algorithm for Range− CoMine

In this section, we delve into the details of the Range − CoMine procedure, which is
the core component of our research for mining colocation patterns within a specified
range query D = [d1, d2], as outlined in procedure 2. Additionally, we conduct a com-
prehensive complexity analysis of the Range−CoMine algorithm, shedding light on its
computational efficiency and performance characteristics.

The initial phase of our colocation pattern mining process involves the transformation
of a spatial dataset (in line 2) and initialization of candidate colocations P1 and prevalent
colocations ColList (in line 3).

In line 2, the spatial data consisting of spatial objects O having features F is trans-
formed into a set of distinct star neighborhoods for the distance d2. Each star neigh-
borhood is composed of a central object and its associated neighboring objects together
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with its distance from the central object as defined in equation 3.4. We store only those
objects in its neighborhood whose features are greater than the feature of the center
object, arranged in a lexical order. A pivotal step in this transformation is the identi-
fication of neighboring objects. To accomplish this efficiently, we employ a spatial data
structure known as the IR-tree [37]. The IR-tree assists in the efficient identification of
neighboring objects within d2 distance to each other. The resulting set of star neighbor-
hoods effectively partitions the spatial dataset. Star neighborhood avoids duplication
without any loss of neighbor relationships. Further details and examples of the star
neighborhood structure can be found in Table 3.1.

In line 3, we generate size-1 Candidate Colocations. By definition of participation
index, equation 3.2, all the features of size-1 are prevalent colocation. We, therefore,
initialize the ColList with size-1 subset of features as prevalent colocations with d1 ∈ D
as their critical distance.

In lines 4-24, we incrementally iterate over candidate pattern size to find colocations
with their critical distances over the range [d1, d2]. In line 4, we initialize k to size-2,
to find candidate colocations C[k] (starting with C[2]) from the prevalent colocations of
size k-1 (i.e., Pk−1).

In line 6, we undertake the task of generating candidate colocations. This involves de-
termining the number of instances associated with each feature during the neighborhood
materialization process. Our primary objective is to produce candidate colocations with
a size greater than one (k > 1) using prevalent colocations of size k-1 as a starting point.
We initiate this process with a set of prevalent colocations of size k-1 and subsequently
generate new candidate colocations of size-k by combining features that are prevalent.
To refine these candidates, we employ feature-level filtering, effectively eliminating any
candidate colocation where even a single subset of features is not prevalent.

In line 7, we filter the star instances. The star instances of a candidate colocation
are collected from the star neighborhoods that have a center object with a feature type
matching the first feature of the colocation. For instance, if we’re dealing with the
colocation B, D, we would gather instances from the star neighborhoods associated
with feature B. Similarly, for colocation A, B, D, we collect instances from the star
neighborhoods linked to feature A. For example for candidate colocation ABD the start
instance would consists of A1,B1,D2 along with maximum of distances of the instances
from the centre.

The list of clique instances CIk contains elements (ci, dia) where ci is the clique
having diameter dia. First, we check if the size of the star instance is 2 (line 8) and
directly assign 2-size star instances as clique instances(line 9).

In line 11, we first verify if they exhibit clique-like characteristics. Before initiat-
ing this process, we apply a coarse filter to the colocations, where pruning candidate
colocations is done based on the participation index of their associated star instances.

In line 12, from the star instances of a candidate colocations we filter the clique
instances based on whether they form a clique under neighborhood relationship Rd2 or
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not. We do this using an instance look-up scheme. For example, the star instance A.1,
B.1, D.2 is evaluated for cliqueness by examining if the subinstance B.1, D.2 (excluding
A.1) belongs to the set of clique instances of colocation B, D. While validating ci is
a clique we also compute its diameter which is maximum of pair wise distances. An
example clique instances with diameters are shown in Table 3.2.

Overall in lines 6-12, we generate clique instances with the corresponding diameters
using the apriori rule. The steps for clique generation are similar to the earlier approaches
[41],

Procedure 2 Algorithm for Range− CoMine

1: procedure Range-CoMine([d1, d2])
2: Rd2 = gen_Star_Nbd(F,O, d2)
3: P1 = F ;ColList[d1]← P1
4: k = 2
5: while (not empty Pk−1) do
6: C[k] = gen_candiate_colocations(Pk−1)
7: SIk ← filter_Star_Instance(Ck, Rd2)
8: if k = 2 then
9: CIk = SIk

10: else
11: C[k] = select_coarse_prevalent_colocations(C[k], SIk,min_prev)
12: CIk ← filter_Clique_Instances_with_Diameter(C[k], SIk)
13: end if
14: for ck ∈ C[k] do
15: if ck prevalent then
16: cr ← compute_CrDistances_colocations(ck, CIk,min_prev)
17: Pk.append(ck)
18: ColList[cr].append(ck)
19: end if
20: end for
21: k = k + 1
22: end while
23: return ColList
24: end procedure

In lines 14-23, we compute critical distances for each of the candidate colocation
patterns and maintain the ColList containing list of colocations along with their critical
distance. The detailed procedure of computation of critical distance is discussed in
section 3.5. If a candidate colocation ck is not prevalent, it is discarded; otherwise, ck

is appended in ColList along with its critical distance cr (line 18). The structure of
ColList is presented in Table 3.6 for the colocations of spatial objects in Figure 3.4
for d = 8. The colocation ck is also stored in the list of prevalent colocations Pk to
enumerate its super set (line 17). Finally, we return the list of colocations with their
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critical distance ColList in line 23 when there are no more colocation patterns to explore
(i.e., Pk is empty for some k in line 5).

Implementation Issues

The primary challenge in implementing colocation pattern mining is defining an appro-
priate distance threshold. There are two common methods to determine values for d1
and d2:

A. Statistical Analysis (Mean and Standard Deviation)

• Start by analyzing the dataset to calculate the mean and standard deviation of
distances between data points.

• Choose d1 by adding a multiple of the standard deviation to the mean (e.g., mean
+ k * standard deviation).

• Choose d2 by subtracting the same multiple of the standard deviation from the
mean (e.g., mean - k * standard deviation).

• The specific value of ’k’ should be adjusted based on your dataset’s characteristics
and the requirements of your analysis.

B. Dataset Properties

• Another approach is to consider the unique properties of your dataset, especially
those related to colocation patterns.

• Based on these dataset-specific properties, you can determine suitable values for
d1 and d2.

These methods help ensure that the chosen distance threshold values are appropriate
for your specific dataset and analytical goals.

Complexity Analysis

This section analyses the computational complexity of the Range−CoMine algorithm.
We first define the cost to compute critical distance in Range − CoMine (line 14 in
Algorithm 2) for each prevalent colocation as discussed in Section 3.5. Let us assume
that the maximum size colocation pattern in the result set is of length N , and the upper
bound over the number of clique instances for any colocation pattern is K. Then the
cost of computing critical distances (refer Table 3.5) is
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1. The cost of mapping object instances to the clique diameter, thus constructing the
map as in Table 3.3 is O(N ·K). This is equal to seeing all the object instances in
the clique instance once and creating the map.

2. The cost of object instance union as discussed in Table 3.4 is O(N ·K2). In the
worst case, all the clique diameters can be different, and object instances of a
feature in the clique instances can be all distinct. Thus the union operation cost
of a feature is O(K2), and there are a total of N features.

3. The cost of computing feature weight for all the clique diameters, and computation
of critical distance is O(N ·K+ logK). This is due to finding weight for N features
for K candidate distances and then a lookup of PI below the min_prev for K
size list.

Therefore, the total time complexity of critical distance computation for a prevalent
colocation in O(N ·K2).

If the total number of prevalent colocations in the result set is P and the running
time of the join-less colocation mining is J , then the running time of Range−CoMine
is O(J + P ·N ·K2).

The following equation shows the total cost function of J as per anlaysis given by
Yoo et al. in [70]:

J(k) = Tstar_neighborhoods(S) + J(2) +
∑
k>2

J(k) (3.6)

Here, S represents the input spatial dataset. J(2) represents the cost for finding size
2 colocation patterns in the procedure. The following equation represents the costs of
finding size k (k > 2) colocation patterns:

J(k) = Tgenerate_candidates(Pk−1) + Tfilter_star_instances(Ck) + Tfilter_coarse_colocation (Ck)
+ Tfilter_clique_instances(C ′

k) + Tfilter_previous_colocation(C ′
k)

≈ Tfilter_star_instances(Ck) + Tfilter_clique_instances(C ′
k)

(3.7)
Here, Pk−1 is a size k−1 prevalent colocation set. Ck is a size k candidate colocation

set. Each C ′
k is a size k candidate colocation set filtered by the coarse filtering process in

the joinless algorithm [70]. The overall cost is expected to be slightly larger than the cost
to generate the star neighborhood set, so Tstar_neighborhoods can be ignored. Similarly,
Tgenerate_candidates, Tfilter_coarse_colocation, and Tfilter_previous_colocation can be ignored when
compared with other computation factors.

Therefore,
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J(k) ≈ Tfilter_star_instances(Ck) + Tfilter_clique_instances(C ′
k)

≈| Ck | ×tscan_cost + pij× | Ck | ×tlookup_cost

≈ tscan_cost + pij × tlookup_cost

(3.8)

Here, tscan_cost is the average cost to collect the star instances of a candidate colo-
cation by scanning the materialized neighborhood set. pij is the coarse filtering ratio.
tlookup_cost is the average cost to check the cliqueness of its star instances per colocation.

3.6 Experimental Analysis

In this section, we study the performance of our proposed approach Range − CoMine
by comparing it with two baseline approaches on synthetic and real data sets. Both
the baseline approaches, namely the Naïve Approach and RangeInc −Mining, are an
adaptation of the popular join-less colocation pattern mining algorithm [70] for the case
of the range query.

All the algorithms are implemented in C/C++ and run on a computer with a 2.30
GHz Processor with 96GB memory.

3.6.1 Experimental Settings

The experiments are conducted on two real and eleven synthetic datasets. The datasets
are chosen for the study as per the practice in the research community [9, 24]. Table 3.7
shows the characteristics of real datasets. The real data sets have points of interest in
China and New York, respectively.

Synthetic Data Generation Process

Now, we describe the process for generating synthetic datasets, which follows the method-
ology outlined in previous research studies [54][24].

Step 1: Feature Set Generation

The first step in generating synthetic data is the creation of feature sets. We begin
by generating Nco_loc subsets of features systematically. Each subset is constructed by
sampling a specific number of features randomly. The number of features in each subset
follows a Poisson distribution with a mean denoted as λ1. To enhance the complexity of
our synthetic dataset, we then create moverlap maximal co-location patterns or feature
sets from each subset of features. This is achieved by adding one additional random
feature to each subset, making the resulting feature sets representative of real-world
data patterns.
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Step 2: Instance Construction

Once we have defined our feature sets, the next step is to generate instances for these sets.
For each maximal co-location pattern created in Step 1, we construct a certain number
of instances. The number of instances is determined using a Poisson distribution with a
mean denoted as λ2. These instances are the fundamental building blocks of our synthetic
dataset. Each instance consists of creating mclump multiple objects corresponding to the
features within the co-location pattern. These objects are then placed inside random
grid cells. The grid cells are characterized by their size, denoted as d′ × d′, and are part
of a spatial frame with dimensions of D×D. This step simulates the spatial distribution
of objects related to the features in our dataset.

Step 3: Noise Injection

To make our synthetic dataset more realistic, we introduce noise into the data. This step
involves the generation of noisy features and instances. First, we generate (rnoisy_feature×
n1) noisy features, where n1 corresponds to the number of non-noisy features generated
in Step 1. These noisy features introduce variability and randomness into the dataset.
Next, we construct (rnoisy_num×n2) noisy instances based on the noisy features, following
a process similar to that employed for non-noisy instances in Step 2. Each noisy instance
is placed within a random grid cell. The number of noisy instances, denoted as n2, is
equal to the number of non-noisy instances generated in Step 2.

We set Nco_loc, λ1, moverlap, λ2, mclump, d′, D, rnoisy_feature and rnoisy_num as per the
values given in Table 3.8. The characteristics of synthetic datasets are shown in Table
3.9. By default, we use Synthetic_Data_1 to study the performance.

Data Set Number of Objects Number of Features
Real_Data_1 20558 13
Real_Data_2 182334 36

Table 3.7: Relevant information about Real Data Sets

Parameters: Parameters like minimum prevalence (min_prev), Range [d1, d2] are
set as per Table 3.10. The default values used are shown in bold.

3.6.2 Effect of Threshold Settings

Effect of min_prev threshold: This section analyses the effect of min_prev on
the runtime of algorithms. Experiments conducted on Synthetic_Data_1 are shown
in Figure 3.6(a). In this experiment, Range − CoMine takes significantly less time
than both RangeInc−Mining, and Naïve approaches. Naïve takes more time because
it computes star neighborhood, star instances, and clique instances etc. from scratch
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Parameter Meaning Values

Nco_loc Number of co-location 20
λ1 Size of each co-location 5
moverlap Number of maximal co-locations generated by appending more fea-

tures into co-locations
1, 5, 10, 15

λ2 The parameter used in Poisson distribution to construct the in-
stances for each maximal co-location

40, 50, 60, 70, 80

mclump Number of feature instances for each co-location in it’s neighborhood 1, 2, 3, 4, 5
D Spatial framework size 106

d′ Size of grid cell 10
rnoisy_feature Noise feature ratio 0.5
rnoisy_num Noise instance ratio 0.5

Table 3.8: Synthetic data parameters and their values in experiments.

Data Set Number of Objects Number of Features mclump moverlap λ2

Synthetic_Data_1 9372 192 1 1 50
Synthetic_Data_2 94028 462 1 10 50
Synthetic_Data_3 46748 312 1 5 50
Synthetic_Data_4 282083 462 3 10 50
Synthetic_Data_5 470138 462 5 10 50
Synthetic_Data_6 142925 612 1 15 50
Synthetic_Data_7 191370 762 1 20 50
Synthetic_Data_8 75108 462 1 20 40
Synthetic_Data_9 113439 462 1 20 60
Synthetic_Data_10 132405 462 1 20 70
Synthetic_Data_11 151487 462 1 20 80

Table 3.9: Relevant information Synthetic Data Sets

Dataset min_prev [d1, d2]

Real_Data_1 [0.1, 0.3] [100m,150m], [100m,200m], [100m,250m],[100m,300m], [100m,
350m], [100m,400m]

Real_Data_2 [0.1, 0.6] [100m,150m], [100m,200m], [100m,250m],[100m,300m], [100m,
350m], [100m,400m]

Synthetic Datasets [0.01, 0.06] [1,2], [1,3], [1,4], [1,5], [1,6], [1,7]

Table 3.10: Parameter Settings for experiments

for each candidate distance. However, the RangeInc −Mining takes less time than
the Naïve Approach approach because it reuses the clique instances computed for the
previous candidate distance.

On the real datasets, in Figure 3.6(b) and Figure 3.6(c), we observe that with an
increase in the min_prev there is a decrease in running time. This is due to the decrease
in the number of candidate patterns. Further, we report only those results that complete
in 10 hrs. As a result, in Figure 3.6(c), plots of Naïve Approach and RangeInc−Mining
approach are not included as they do not complete the experiment within the time limit
for the Real_Data_2. The Range−CoMine also took more than 10hrs at 0.1 and 0.2
due to a huge number of candidate patterns being generated at these thresholds.



3. Mining Colocation Patterns for a Range Query 56

1 2 3 4 5 6

·10−2

101

102

103

min prev

R
u
n
n
in
g
T
im

e(
s)

-
O
n
L
og

S
ca
le

(a)Synthetic Data 1

Range− CoMine
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Figure 3.6: Performance with min_prev
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Figure 3.7: Performance with Range

Effect of Range threshold: Experiments conducted on Synthetic_Data_1 are shown
in Figure 3.7(a). Here, d1 is set to 1 and d2 is varied from 2 to 7 to increase the range
interval. In this experiment, our approach takes very little time than both RangeInc−
Mining, and Naïve approaches. The number of neighborhood objects increases with
an increase in range, thus increasing the number of candidate distances. The Naïve
approach takes more time than the other two approaches as it needs all the computations
at each candidate distance. In comparison, the RangeInc−Mining approach takes less
time than Naïve as it reuses previous iterations’ information at each iteration. Range−
CoMine takes lesser time than the other two as it computes critical distances in one
iteration itself. Experiments conducted on Real_Data_1 and Real_Data_2 are shown
in Figure 3.7(b) and 3.7(c) respectively. Here R1 is set to 100m, and d2 is varied
from 200m to 700m. In Real_Data_1 the run time increases linearly as we increase
d2 to 300m as there are very few objects that get added in the neighborhood. After
300 meters, the run time increases exponentially as it encounters many neighborhood
objects, thus increasing the number of clique diameters it needs to validate the critical
distance test. Plots on other approaches are missing because they ran for more than
10hrs without producing any results. Also, in the case of Real_Data_2, the run time
increases exponentially as we increase the range. This is because neighborhood objects
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start increasing from the beginning itself as we increase d2. Plots on other approaches
are missing as they did not complete.

3.6.3 Effect on number of candidates

Figure 3.8: Effect on the number of candidates in Synthetic_Data_1

In this section, we analyze the number of candidates generated in Range−CoMine
, RangeInc−Mining and Naïve approaches on Synthetic_Data_1. Experiments con-
ducted by varying Number of Features, Number of Objects, min_ prev and d2 are shown
in Figure 3.8(a), Figure 3.8(b), Figure 3.8(c), and Figure 3.8(d), respectively. Figure
3.8(a) shows that in the Naïve approach the number of candidates increases exponentially
with the increase in the number of features. This is clearly due to the candidate enu-
meration made at each and every distance value. In Figure 3.8(a), RangeInc−Mining
plot shows that the number of candidates generated increases linearly because candi-
dates are generated in the first iteration and in addition to that only colocations created
in the previous iteration are added as candidates for the next iteration. Figure 3.8(a)
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shows that Range−CoMine generates very less candidates compared to the other two
approaches, this is because the candidates are generated only once. Similarly, Figure
3.8(b) also shows that Range − CoMine generates very less candidates compared to
the other two approaches. Figure 3.8(c) shows that the number of candidates decreases
with the increase in min_prev value for all the three techniques. This is because, in a
pattern-growing technique, as a lesser number of patterns qualify to be a prevalent colo-
cation on increasing the minimum prevalence threshold, they generate lesser candidates
for the next step. Figure 3.8(d) shows that the number of candidates increases with the
increase in d2 value. This is because, on increasing the distance, more objects are added
to the neighborhood. However, Range−CoMine generates fewer candidates compared
to the other two approaches as it enumerates candidates only once.

3.6.4 Scalability Experiments
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Figure 3.9: Scalability with number of objects

For scalability analysis, we have selected objects from the respective dataset of a
particular size through random sampling with a uniform probability distribution. We
have followed a similar method for feature selection.
Scalability test with a number of objects: In this section, we study the scalability
tests by varying the number of objects. Experiments conducted on Synthetic_Data_1
and Synthetic_Data_2 are shown in Figure 3.9(a) and Figure 3.9(b). In these experi-
ments Range−CoMine takes very less time than both RangeInc−Mining and Naïve
approaches. As we increase the number of objects the running time of Naïve Approach
increases exponentially. This is because the number of candidate instances increases
exponentially with the increase in the number of objects. Experiments conducted on
Real_Data_2 are shown in Figure 3.9(c). The experiments show that Range−CoMine
is scalable, whereas other approaches do not scale well. The runtime of Range−CoMine
increases linearly.
Scalability test with a number of features: In this section, we do scalability tests
by varying the number of features. Experiments conducted on Synthetic_Data_1 and
Synthetic_Data_2 are shown in Figure 3.10(a) and Figure 3.10(b). In these experi-
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Figure 3.10: Scalability with number of features

ments, our approach takes very little time than both RangeInc −Mining and Naïve
approaches. Our approach is scalable as its running time increases linearly. Whereas the
Naïve approach is not scalable. As we increase the number of features, the running time
of Naïve approach increases exponentially. We chose to perform the same experiment
on Real_Data_2 as it has a large number of objects with a large number of features.
The results are shown in Figure 3.10(c). In these experiments, as the number of features
increases, the running time of other algorithms increases exponentially. Plots on other
approaches are missing because they ran for more than 10hrs without producing any
results.
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Figure 3.11: Effect of density

Effect of density: In this section, we analyze the behavior of Range − CoMine by
varying the mclump and moverlap values on synthetic datasets. We set min_prev as
0.0001 and the Range threshold as [1,2]. Experiments conducted on mclump, moverlap

and λ2 are shown in Figure 3.11(a), Figure 3.11(b) and Figure 3.11(c), respectively. We
observe that the running time increases with an increase in mclump value because the
total number of objects increases with an increase in mclump value. Also, the number
of candidate instances increases with the increase in mclump and moverlap, respectively.
Similarly, the running time increases with an increase in moverlap value because the
total number of features increases with an increase in moverlap value. Running time
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also increases with the increase in λ2 because it increases the average number of clique
instances and data would involve more objects.

To summarize, Naïve Approach performs worst in all the experiments. Both the
Naïve approach and RangeInc − Mining approaches are not scalable. Even in the
case of dense data, Real_Data_2, and other synthetic datasets with different densities,
the Range− CoMine approach is scalable and performs reasonably with the change in
min_prev threshold and distance range.

3.6.5 Explainability of real data set output:

When we run Range − CoMine on Real_Data_1 in the range [100m, 400m] we dis-
cover that pattern {Social Services, Religious Institution} gets introduced at 351m and
pattern {Residential, Social Services} gets introduced at 396m. Similarly, When we run
Range−CoMine on Real_Data_2 in the range [100m, 300m] we discover that pattern
{bar, restaurant} gets introduced at 71m and pattern {recreation, supermarket} gets
introduced at 203m. So, using our algorithm we are able to say which pattern gets
introduced at what distance. This way we not only address the challenge of choosing a
distance threshold but also assist a user analyst in forming a valid hypothesis.

3.7 Conclusion

In this work, we have introduced the problem of prevalent colocation mining over a
distance range query. To our knowledge, this is the first work that discusses a com-
putation framework for distance range queries over colocation mining. First, we have
discussed a Naïve approach that gives an elementary working framework of the problem.
We have discussed the computational challenges in the Naïve approach and improved
it to propose an incremental range colocation mining approach RangeInc −Mining.
We have defined the critical distance of colocation patterns that helped in the compu-
tation and in justifying the correctness of these approaches. By exploring the structural
properties of colocations, we have proposed an efficient technique for computing criti-
cal distances. This helped in proposing our efficient single pass range query algorithm,
namely Range − CoMine, to solve the problem. We experimentally demonstrate the
performance of these algorithms with various experiments using both real-world and
synthetic data sets. We observe that Range−CoMine is more scalable compared to the
other two approaches. As a future extension to this problem, we would like to explore
the range query challenges in colocation mining with additional overheads such as range
over minimum prevalence thresholds, dynamic object instances, and computation over
road networks.



Chapter 4

Colocation Subgraph Pattern
Mining

In colocation pattern mining, the focus of enumeration remains on clique instances on
a single neighbourhood graph. However, in real-life scenarios, one may like to relax
the clique constraint to a general subgraph over a set of neighbourhood graphs along
with feature instances and their relationships having different importance. This scenario
becomes very complex and would need distributed algorithms to solve it. One possible
approach to solve the above pattern mining problem can be adapting existing Frequent
Subgraph Mining (FSM) algorithms. We extend the FSM to include the notion of the
importance of feature instances and their relationships using the Map-Reduce distributed
platform and design an efficient solution to pattern mining.

This work got published in the following conference paper:

A. Khare, V. Goyal, Srikanth Baride, S. K. Prasad, M. McDermott and D. Shah, "Dis-
tributed Algorithm for High-Utility Subgraph Pattern Mining Over Big Data Platforms,"
2017 IEEE 24th International Conference on High Performance Computing (HiPC),
Jaipur, 2017, pp. 263-272, doi: 10.1109/HiPC.2017.00038.

4.1 Introduction

One approach to colocation pattern mining is to view it as a subgraph pattern mining
task. In this approach, the objects are represented as nodes in a graph, and the edges
between the nodes represent the spatial or temporal relationships between the objects.
The task then becomes one of finding subgraphs that occur frequently in the input
data. When considering distance labels, the edges in the graph are assigned labels that
represent the distance between the objects. For example, in a spatial context, the labels
might represent the physical distance between two objects. In a temporal context, the
labels might represent the time lag between two events. To account for distance labels

61
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in subgraph pattern mining, we need specialized algorithms that take into account both
the structure of the graph and the labels on the edges.

Frequent subgraph mining (FSM) discovers subgraph patterns that occur in a given
graph database with a frequency more than a user-defined threshold. This problem has
been well attended by researchers and practitioners due to its various applications in
the area of biological networks, social networks and web data analytics. For instance,
frequent subgraphs can compactly represent information in social networks. Likewise in
the bioinformatics domain, common structures in protein-protein networks can be used
to predict properties of a molecular compound or functionality of a protein. Other gen-
eral applications include indexing of a graph database and search of dense subnetworks
in a large graph.

Generally, graphs have weights associated with nodes and edges that capture different
semantics related to the importance of nodes or affinities between nodes. For example,
in a gene expression network, the weight on an edge may denote the connection strength
of the pair of genes. Nevertheless, FSM does not consider the relative importance of
participating nodes and edges in a pattern. It considers the presence or absence of nodes
and edges with certain labels. Thus, FSM may report insignificant patterns that miss
relevant nodes and edges. To address this issue, an approach to consider the importance
of participating edges while computing the support of a pattern has been proposed.
Along the same lines, we define the problem of high-utility subgraph pattern mining
(WSM) where the importance of each edge/node is considered to compute the relevance
(utility) of a pattern. In WSM, only the patterns having a utility value higher than
the user-defined threshold are reported. The motivation behind considering the relative
importance is that it would allow discovery of those patterns that include infrequent
nodes or edges but that have high importance value in the network database.

Like the FSM, WSM is computationally expensive in nature. Moreover, the WSM
needs to deal with the significant issue of not holding the anti-monotone property. This
property states that if a pattern of size K is not relevant then no superset pattern
of size K + 1 or more will be relevant which restricts the search space in FSM and
other standard pattern mining methods. A naive solution to address this problem is to
enumerate all possible patterns exhaustively and compute their utility. The search space
for this naive solution would be very large (exponential number of subgraph patterns of
a graph), rendering it computationally prohibitive on all but small sample sizes. One
of the challenges in the WSM is to devise an efficient methodology to prune the search
space while capturing all high-utility patterns with no misses. We introduce a function to
estimate the upper-bound utility of a pattern that satisfies the anti-monotonic property
and helps in restricting the search space.

The search space for FSM is generated from a graph database that is usually com-
prised of many moderately sized graphs and as previously mentioned for WSM this
search space, naively, can quickly grow to levels that are computationally prohibitive.
Hence, mining patterns from a large database is a herculean task on a single machine.
Thus, use of distributed frameworks like Map-Reduce has been advocated recently for
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FSM. However, any general method to solve pattern mining is iterative in nature and the
big data platform Apache Spark has proved to be the best fit for iterative jobs [1]. We
therefore design and study a Spark-based solution for WSM. We observe that straight-
forward extension of Map-Reduce based solution for FSM to Spark does not offer any
advantage. Therefore we designed several optimization strategies such as i) utilizing
the Bloom Filter for restricting the search space exploration, ii) avoiding sending of the
graph database information in a pattern object, and iii) avoiding sending of the pattern
embeddings in a pattern object. We implement these strategies in Spark and find them
to be very effective.

Our main contributions are as follows:

• We define a high-utility subgraph pattern mining problem that incorporates the
relative importance of edges and nodes while mining subgraph patterns.

• We develop a distributed solution for WSM and FSM on big-data platforms such
as Apache Spark and Map-Reduce.

• We design effective strategies for WSM to minimize data communication, prune
non-candidates to restrict the search space and avoid unnecessary computations.
Our optimization strategies are also applicable for FSM.

• We conduct an experimental study to observe that our optimization strategies are
efficient and reduce the computational time by a factor of at least 10.

4.2 Preliminaries, Problem Definition, and Mathematical
formulation

A graph is defined as G = (V,E) where V is a set of vertices and E is a set of edges,
in particular, E ⊆ V × V . L is a labeling function for vertices and edges and w is a
weight function associating a weight with each edge e ∈ E. L(v) denotes the label of
the vertex v, L(e) denotes the label of the edge e, and w(e) is the weight of the edge
e. We represent each subgraph pattern that is to be mined from the graph database as
P = (VP , EP ), and term this as pattern or pattern object.

Definition 4.1 (Subgraph isomorphism). A pattern P is said to be subgraph isomorphic
to a graph G = (V,E), denoted as P ⊆ G, if there exists an injective function ψ : VP → V
such that:
1) ∀v ∈ VP , L(v) = L(ψ(v)), and
2) ∀e = (vr, vs) ∈ EP , (ψ(vr), ψ(vs)) ∈ E and L(vr, vs) = L(ψ(vr), ψ(vs)).

Definition 4.2 (Subgraph matching). An isomorphic subgraph in G corresponding to
the vertices in pattern graph P , denoted as ϕ(P,G) = {ψ(v1), ψ(v2), . . . , ψ(vp)}, is
called a matching of the pattern P in the graph G.



4. Colocation Subgraph Pattern Mining 64

A pattern P may have more than one matching in an input graph. We denote the
set of all matchings of P in G by Φ(P,G) = {ϕ1(P,G), ϕ2(P,G), . . . , ϕt(P,G)}, and kth

matching of pattern P in G by ϕk(P,G).
Let S = {G1, G2, G3, ...., Gn} denote the graph database of n objects. Let Gi =

(Vi, Ei) be the graph representing the ith object.
Definition 4.3 (Support set). Given a graph database S = {G1, G2, G3, . . . , Gn} and
a pattern P , the support set of the pattern P , denoted by SupSet(P ), is defined as the
set of graph objects that have at least one matching for P . Hence, SupSet(P ) = {Gi :
P ⊆ Gi, Gi ∈ S}.

The size of SupSet(P ) (cardinality) defines the support of a pattern P in the set S,
denoted by PS . The task of pattern mining needs to associate a measure for relevancy to
each pattern object so that patterns with a relevancy score greater than some threshold
are extracted. Support of a pattern is one of the relevancy measures used in the literature
[4, 13, 26, 32]. Besides these relevancy measures, other measures to define the relevancy
of a pattern P are also proposed [27, 33, 55, 57]. We use the relevance measure similar
to the one proposed in [33]. Utility is a measure which has been discussed recently in the
pattern mining community. This is where the relevancy of a pattern considers the utility
of the pattern object’s constituting components [12, 69? ]. For example, the utility of
nodes and edges, represented as edge and node weights in a graph, can be used to define
the relevancy score of a pattern.
Definition 4.4 (Utility). Let Eϕ be the set of edges in a matching m for pattern P in
a graph G, i.e., m ∈ ϕ(P,G), the utility of the matching m, denoted by u(m,P,G), is
defined as

u(m,P,G) =
∑

e=(vr,vs)∈P

w(ψ(vr), ψ(vs))

Definition 4.5 (Weight of the maximum matching). Utility of a Pattern P in a graph
object G having a matching set Φ, denoted as u(P,G), is defined as the weight of the
maximum matching of P in G. Hence, u(P,G) = max

ϕj∈Φ
(u(ϕj , P,G)), u(P,G) = 0 when

Φ is empty.

Using this definition, we can compute the utilities of all patterns of the graph
database S.
Definition 4.6 (Sum of utility of the pattern). Utility of a pattern P in a database S,
denoted by u(P, S), is defined as the sum of utility of the pattern P in each graph in
the database. Hence,

u(P, S) =
∑
G∈S

u(P,G)

For example, in Fig. 4.1, the graph database S contains only two graphs- G1 and
G2. The pattern P has two matchings in the graphs G1 and G2. The utility value for
the pattern P is computed as the following:
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Figure 4.1: An example showing various weights for pattern P

Eϕ1(P,G1) = {(1, 4, a, 1)}, u(ϕ1,P,G1) = 1, and
Eϕ2(P,G1) = {(2, 3, a, 2)}, u(ϕ2,P,G1) = 2. Similarly,
Eϕ1(P,G2) = {(2, 5, a, 8)}, u(ϕ1,P,G2) = 8, and
Eϕ2(P,G2) = {(2, 4, a, 6)}, u(ϕ2,P,G2) = 6.
u(P,G1) = max(u(ϕ1,P,G1), u(ϕ2,P,G1)) = max(1, 2) = 2
u(P,G2) = max(u(ϕ1,P,G2), u(ϕ2,P,G2)) = max(8, 6) = 8 Finally, the utility of the
Pattern P in the graph database S is u(P, S) = u(P,G1) + u(P,G2) = 2 + 8 = 10.

Problem 4.7. Weighted Subgraph pattern Mining (WSM): Given a database of
graph objects S = {G1, G2, G3, · · · , Gn} and a utility threshold parameter τ , determine
all patterns P such that each pattern’s utility over the database is at least τ . In other
words, find the set R such that R = {P |u(P, S) ≥ τ}.
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Similar to frequent subgraph mining problem, WSM determines relevant patterns
from a database. However, the anti-monotonicity property does not hold in WSM.

Lemma 4.8. Anti-monotonic property in WSM does not hold.

Proof. The proof is evident by the following example: Consider the example in Fig. 4.1.
Let the utility threshold parameter τ be 10. Now consider Pattern Q in 4.1. Its utility
in S = {G1, G2} is 11. Also, u(Q,S) = u(Q,G1) + u(Q,G2) = 8 + 3 = 11.
As u(Q,S) ≥ τ , Q is relevant. Suppose Q1 is a subgraph of Q consisting of only one
edge with vertex A. i.e., Q1 = ({(1, A), (2, A)}, {(1, 2, c)}). Utility of pattern Q1 in S is
6 as u(Q1, S) = 4 + 2 = 6. Pattern Q1 is not relevant however its superset pattern Q is
relevant. This shows that anti-monotonic property is not satisfied in WSM.

4.3 Related Work

The work for frequent graph mining can be broadly categorized as following: Frequent
subgraph mining over a single graph, and Frequent subgraph mining over a database of
graphs.

The algorithms for mining a single graph include DISTGRAPH [55], SUBDUE [19],
SiGraM [31] and GraMi [13]. SUBDUE, SiGraM and GraMi are sequential algorithms,
whereas DISTGRAPH is a distributed algorithm implemented using MPI framework. As
the dataset is a single graph, the challenges for the distributed algorithms are different.
These include partitioning of a large graph into multiple partitions to have a balanced
load at each node and computing of subgraph patterns without introducing any false
negatives. Our focus is to mine a given graph database that can be partitioned easily.
None of these studies consider utility or importance of edges while mining patterns and
therefore can’t be adopted for high-utility graph pattern mining due to not holding of
downward closure property in the case of weighted pattern mining.

Frequent subgraph mining over graph databases is a celebrated field of study. The
early methods for FSM include AGM [26] and FSG [32]. Similar to the Apriori algorithm
[4], the candidates are generated in a level-wise manner using a breadth-first search
approach. Later proposed methods like gSpan [65] and FFSM [22] use depth-first search
exploration and canonical ordering of patterns. Contrary to the Apriori algorithm, no
candidates are generated. However, AGM, FSG, gSpan and FFSM rely on a single
node computation and are inefficient to process massive datasets. Recently some Map-
Reduce based approaches are also proposed [8, 18, 39, 45]. These approaches have a low
performance due to large data communication or a large number of duplicate candidates.
Furthermore, the approaches proposed so far are limited in the notion of relevance and
do not consider the individual importance of edges and nodes. For large scale data sets,
Lin et al. [40] have devised a statistical method to predict whether a subgraph is globally
frequent.
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The weighted version of the graph has been approached with different relevance
measures proposed. Jiang et al. introduced weighted gSpan influenced by weighted
association rule mining [57] along with edge-weighted graphs [27]. Lee et al. proposed
a method to mine weighted frequent subgraphs with weight and support affinities [33].
These approaches consider the node and edge importance while determining relevant
patterns but fall short on scalability due to their sequential nature. Our inspiration for
high-utility pattern mining originates from the approach of high-utility pattern mining
for transactions which considers the relevance of each transaction item while determining
relevant item-set patterns [12, 69]. However, these approaches cannot be directly applied
as graph is a more complex structure as compared to an itemset.

4.4 Proposed Methods

As WSM does not follow anti-monotonic property, the search space cannot be pruned
easily while searching for high utility patterns. Therefore we define an upper-bound
utility function, OWU, for a pattern which returns the upper bound estimate of the
maximum over the utility value of the pattern and its superset patterns. This function
helps us to decide if a pattern or any of its superset patterns is relevant. The pattern
search is based on classical pattern growth method that iteratively grows the pattern
base, initially small in size. Patterns that have their upper bound utility value less than
the user threshold are called non-candidates. The non-candidate patterns should not be
grown and hence are pruned. The leftover patterns, also called potential patterns, are
grown in a systematic way to avoid generation of redundant patterns for further utility
estimation and growth. This iterative process for generation of candidates, pruning
the non-candidates, and growing of potential candidates continues till there exists some
potential pattern to grow after pruning non-candidates. In each iteration, the actual
utility value of all candidate patterns is computed and those with high utility value are
written to an output file.

Definition 4.9 (Upper-bound utility). Upper-bound utility of a pattern P over a set
of graph objects S, represented as OWU(P, S), is defined as the sum of utility of graph
objects that have at least one matching for pattern P . Hence,

OWU(P, S) =
∑

P ⊆Gi

u(Gi, Gi)

Lemma 4.10. OWU(P, S) satisfies anti-monotonicity.

Proof. Consider a pattern P with OWU(P, S) ≥ τ . Let Psub be a subgraph of pattern
P . It can be trivially seen that OWP (Psub) ≥ τ . As SupSet(Psub) ≥ SupSet(P ),
OWU(Psub ≥ OWU(P ) ≥ τ). Thus, Psub will be a potential subgraph pattern.
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4.4.1 Baseline Algorithm

The algorithm for WSM is based on the pattern growth method [4]. At the beginning of
an iteration i, the algorithm processes all the potential patterns of size i−1, denoted by
Fi−1, as its input. The size here equals to the number of edges in a pattern. At the end
of the ith iteration, the algorithm generates all the relevant patterns of size i, denoted
by Ri. It computes the upper bound utility value of grown patterns and prunes non-
candidates. The remaining patterns are the set of potential patterns, i.e., (Fi), which is
used for i+ 1th iteration if not empty. Algorithm 3 gives a basic outline of this method.

Procedure 3 Mining Relevant Subgraphs
1: procedure Basic-WSM(S, τ)
2: k = 1, Populate Fk

3: while Fk ̸= ϕ do
4: Ck+1 = Candidate-generation(Fk, S)
5: for c ∈ Ck+1 do
6: if isomorphic-check(c)=true and OWU(c, S) ≥ τ then
7: c.upperUtility = OWU(c, S)
8: Fk+1 = Fk+1 ∪ {c}
9: end if

10: if u(c, S) ≥ τ then
11: c.datasetUtility = u(c, S)
12: Rk+1 = Rk+1 ∪ {c}
13: end if
14: end for
15: k = k + 1
16: end while
17: Return ∪i=1...k−1Ri

18: end procedure

The main steps of the algorithm are: i) candidate generation, ii) upper bound utility
estimation, and iii) actual utility computation.

Candidate Generation

Good candidate generation is a crucial step in minimizing the generation of redundant
patterns for any pattern mining algorithm. The candidate generation step in the WSM-
Algorithm uses an established and well-known strategy given in [8] that extends vertices
on the rightmost path only. A depth-first traversal of the pattern P assigns each node a
traversal-id or a time stamp when that node is visited. The rightmost path is defined as
the path from the lowest traversal-id vertex to highest traversal-id vertex. The vertex
with highest traversal-id is called the rightmost vertex. A pattern can have either forward
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extension or backward extension. Forward extension results in addition of a new vertex
as well as an edge to P , whereas backward extension adds only an edge.

• Forward extension applies to all the vertices in the rightmost path. The order of
the extension is from the rightmost vertex to the vertex with the smallest traversal
id in the rightmost path.

• Backward extension applies only to the rightmost vertex of Pattern P .

However, after using rightmost path extension there may still exist duplicate can-
didate patterns which need to be pruned. This duplicacy may exist due to the fact
that a pattern may be generated from different subgraph patterns. One way to identify
duplicate candidate patterns is to perform isomorphism checks on the candidates which
is a computationally expensive task. Another way to identify duplicates is to associate
a canonical code with each candidate pattern so that all duplicates would have the same
code. We use min-dfs-code in WSM that takes the order of edges that results into the
min-dfs-code. Out of all the isomorphic candidates, the candidate pattern whose inser-
tion order of the edges is same as the min-dfs-code order is considered and selected as a
validate candidate, and rest of all duplicate candidate patterns are removed.

Calculating Upper Bound Weight

To calculate the upper bound utility of a pattern we need to check the occurrence
of the pattern in each graph object via subgraph isomorphism. However, subgraph
isomorphism is an NP-complete problem. Inspired by [8] we instead use a data structure
called occurrence list to store the locations (in terms of vertex-id) of a pattern in each
graph of the graph database. We also create a Hash-Map called GraphWeights for storing
graph utility of graphs with each pattern. The occurrence list and the GraphWeights
together are used to compute the upper bound utility of a pattern.

Calculating Utility of a pattern

Calculation of u(P, S) for a pattern P requires information about its parent graphs from
the database and the information of the matchings of the pattern within the graph. To
accomplish this we use a hashmap called Esets which stores a list of edge-sets corre-
sponding to each matching for each graph-id. Each edge-set is a list of edges with each
edge being represented as a 3-tuple (vertex-id1, vertex-id2, edge-weight). The utility of
the pattern over the database can be computed using Esets easily as it contains infor-
mation of all the matchings of a pattern in each graph.

Consider G1, G2 in Fig 4.1 and a pattern P = {(A,B, c), (A,C, a)}. The pattern has
two matchings in G1 and G2 each. Therefore it has two edge-sets corresponding to the
graph G1 , i.e. {(1,2,21), (1,5,43)} and {(2,3,56), (2,8,1)}. The edge-sets for P in G2
can be obtained similarly.
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4.4.2 Distributed WSM Algorithm

The distributed algorithm for WSM is challenging for many reasons. First, to compute
upper-bound utility estimates and actual-utility of a pattern access to the whole database
is needed, however, the database is partitioned and distributed to multiple nodes. In
effect, utility values for any pattern would be available only with respect to the partition
of database available at a node where the pattern gets generated. It therefore becomes
difficult to make potentially global pruning related decisions with the utility information
remaining local to a single partition. Second, performing aggregation in any distributed
environment like Map-Reduce and Spark is always an expensive operation as it requires
data communication between the nodes. On the other hand, since the search space is very
large aggregation of the utility information over the whole database cannot be delayed
for a long time. Hence, the distributed WSM algorithm runs in an iterative fashion as
with basic WSM. In each iteration, the candidate patterns are generated from each of
the partitions and aggregated. Each of the candidate patterns would have the upper-
bound as well as actual-utility values for its generating partition associated with it. We
define the utility values associated with a pattern originated from a particular partition
as local upper-bound utility and local utility. Algorithm 4 represents the pseudocode for
distributed-WSM algorithm to generate candidate pattern in an iteration and Algorithm
5 represents the pseudo code for the aggregation.

Algorithm Description

Conceptually, each node runs an independent WSM task over a partition of the graph
dataset which is 1/kth of the size of |S|. The argument F k

p represents the set of size-k
potential patterns having their upper-bound utility greater than the threshold in a spe-
cific partition Sp.

The mapper reads each pattern (say x) from the Hadoop Distributed File Systems
(HDFS) as a key-value pair. The key is the min-dfs-code of the pattern (x.min-dfs-code)
and the value is a pattern object (x.obj). Here the term “object” stands for its usual
meaning from the object oriented programming. Then the mapper generates all possible
candidates of size k+1 (Line 2 Algorithm 4) by extending each of the patterns in F k

p . For
each of the generated candidates (say, c), the mapper performs isomorphism checking
to confirm whether c is generated from a valid generation path. In other words, it tests
whether c passes the min-dfs-code based isomorphism test (Line 4 Algorithm 4). For
successful candidates, the mapper calculates its upper-bound utility and actual-utility
(locally) over the graphs in the partition Sp of the graph database. The p.obj contains
a hashmap graphWeightsp that stores weights of graphs (u(Gi, Gi) ) in the partition
p and can be used to compute upper-bound utility. p.obj also contains an occurrence
list data structure that stores the graph-id of the graphs in partition p to which the
given pattern is subgraph isomorphic. It also contains the edgeSetp that stores multiple
matchings of the candidate pattern c in the graphs of partition p to which c is subgraph
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Procedure 4 Mapper Of Distributed WSM
1: procedure Map(F k

p <p.min-dfs-code,p.obj>)
2: Ck+1 = candidate− generation(F k

p )
3: for c ∈ Ck+1 do
4: if isomorphism− check(c) = true then
5: c.upperUtility = OWU(c, p.obj)
6: c.datasetUtility = u(c, p.obj)
7: c.obj = update−Object(c, p.obj)
8: if c.upperUtility > 0 then
9: emit(c.min− dfs− code, c.obj)

10: end if
11: end if
12: end for
13: end procedure

isomorphic. If the upper bound weight for candidate pattern c is greater than zero then
a key-value pair of (c.min-dfs-code, c.obj) is emitted.

Procedure 5 Reducer Of Distributed WSM
1: procedure Reduce(c.min− dfs− code,

[
c.obj

]
)

2: for obj ∈ c.obj do
3: TotalupperUtilityobj.upperUtility
4: TotaldatasetUtilityobj.datasetUtility
5: end for
6: if TotaldatasetUtility ≥ τ then
7: write (c.min− dfs− code) To HDFS
8: end if
9: if TotalupperUtility ≥ τ then

10: for obj ∈ c.obj do
11: write (c.min− dfs− code, obj) to HDFS
12: end for
13: end if
14: end procedure

Algorithm 5 represents the psuedocode of the reduce phase of Map-Reduce Job. The
reducer receives a set of key-value pairs, where the key is the min-dfs-code of a pattern
namely c.min-dfs-code and the value is a list of c.obj’s constructed from all partitions
where the pattern c has a non-zero upper-bound utility. Reducer then iterates (Line 2
Algorithm 5) over every c.obj and calculates the aggregated (total) upper-bound utility.
In the same scan over the c.obj, it also calculates the actual-utility of the pattern (Lines
3-4 Algorithm 5). If the total actual-utility of the pattern is greater than the threshold
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(τ is the threshold) then the min-dfs-code of c is written to the HDFS (Line 6 Algorithm
3). If the total upper-bound utility is greater than the threshold the reducer writes
appropriate key-value pairs in the HDFS for the mappers of the next iteration (Line 9
Algorithm 5). If the number of potential k+1 size patterns is zero, execution of WSM-H
is stopped.

Procedure 6 Spark Implementation Algorithm
1: inRDD<String>= Sparkcontext.readFiles()
2: cRDD<p.min-dfs-code,p.obj>= inRDD.flatMap(o:gen-one-edge-len-candidates(o))
3: potRDD<p.min-dfs-code,

[
c.obj

]
>= cRDD.groupByKey().filter(o : filPotPatns(o))

4: rRDD<p.min-dfs-code,
[
c.obj

]
>= potRDD.filter(o: FilterRelevantPatterns(o))

5: rRDD.writeToHdfs()
6: while true do
7: iRDD<p.obj>= potRDD.flatMap(o: gen-input(o))
8: cRDD = iRDD.flatMap(o : gen-cand-from-prev(o))
9: pRDD = cRDD.groupByKey().filter(o : filPotPatns(o))

10: rRDD = pRDD.filter(o: FilterRelevantPatterns(o))
11: rRDD.writeToHdfs()
12: if PotentialRDD.count() = 0 then
13: break
14: end if
15: end while

Algorithm 6 represents the implementation of Algorithm 3 in the Spark framework.
The Spark implementation starts with the reading of the partition files (Line 1 Al-
gorithm 6) and creates an RDD named inRDD. It then generates size one candidate
patterns from inRDD (Line 2 Algorithm 6). Next, all the pattern objects having similar
min-dfs-code (isomorphic patterns) are grouped together and the patterns with their
upper bound utility greater than the threshold are retained in the potRDD (Line 3 Al-
gorithm 6). The potRDD is then processed to get the relevant patterns of size one which
are saved (Lines 4-5). We extend size one patterns to size-2 patterns, and size-2 to size-3
and so on until no further extension is possible (Lines 6-13 Algorithm 6).

4.5 Optimizations

4.5.1 Use of bloom filter for Pruning of Non-candidates

A bloom filter is a space efficient probabilistic data structure widely used in set-membership
test. Bloom filters can render false positives but cannot render false negatives. Bloom
filters can perform addition and membership-test of an element in O(k) time where
k is the number of hash functions. We use the bloom filter to avoid exploration of
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non-candidates. We also employ novel strategy to tighten the upper-bound utility of a
potential candidate pattern by using a bloom filter.

In particular, we first add two edge’s potential patterns generated in the 2nd iteration
of the WSM algorithm to the bloom filter. Then, we use them to prune non-candidate
patterns of larger sizes, as illustrated in Fig. 4.2.

Figure 4.2: Addition of size-2 frequent patterns to the bloom filter

Whenever a potential pattern is grown by either forward extension or backward
extension to generate a candidate pattern we perform a check for each pair of edges
consisting of the extended edge and a neighboring edge in the bloom filter. If this test
fails for a pair then the extended candidate pattern is identified as non-candidate and
its utility computation is not performed.

For example in Fig. 4.3, Let P be a five-edge potential pattern. Suppose the vertex
E (marked in red in Fig. 4.3) is selected for adding an edge to the pattern P . Suppose
a candidate pattern Pcandidate is generated by a forward extension, and an edge with
label g is added to P along with a vertex, labeled D. Dotted line shows the newly
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Figure 4.3: Illustration of membership test

added edge to the pattern P . Now, the neighbors of vertex E, namely C and D, are
traversed and marked blue. Since vertex E has two neighbors, two two-edge patterns
P1 = ({(1, E), (2, C), (3, D)}, {(1, 2, e), (1, 3, g)}) and
P2 = ({(1, E), (2, D), (3, D)}, {(1, 2, f), (1, 3, g)}) are generated (representation accord-
ing to G(V, E)). These two patterns P1 and P2 are checked to be present in the bloom
filter. The utility of Pcandidate is calculated only if both of these patterns pass the mem-
bership test.

Lemma 4.11. Bloom filter based pruning does not generate any false negative.

Proof. Consider a potential candidate pattern P of size k which is extended to a can-
didate pattern Q of size k + 1 by adding an edge e. Let e1, e2,· · · , et be the adjacent
edges. Suppose the pair (ei, e) fails the bloom filter test, then it is an irrelevant edge.
Thus, Q cannot be a potential high-utility pattern as per the anti-monotonic property
of the upper-bound utility function. The pair (ei, e) does not belong to the set of all
potential high-utility pairs in the database, therefore no superset of the pair can be a
potential high-utility pattern. The pattern Q contains this pair and hence it cannot be
a potential high-utility pattern.

Tighter Upper-bound Utility

The upper-bound utility of a pattern is currently calculated as the sum of utilities
of the graphs containing the pattern, which is a very loose upper-bound. A loose upper-
bound of a pattern does not prune non-candidates effectively, and hence we propose
a pioneering idea to have a tighter upper-bound utility using the bloom filter. Our
approach is based on the observation that one can remove the utility of the irrelevant
edges. These irrelevant edges could be identified while pruning using the bloom filter.
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Reciting the WSM algorithm, each pattern object P generated from a partition Sp is
associated with a hashmap of graph utilities of the partition Sp. Let Q be a pattern and
H be a hashmap of graph utilities for graphs of Q. Suppose Q is extended to generate
a candidate pattern Q1 by adding a new edge e. If the bloom filter membership test of
Q1 fails then by Lemma 4.11, the edge e is an irrelevant edge for any extension of Q.
Therefore, for every graph of Q having e, the utility of e can be subtracted. However,
as the same edge can occur multiple times in a pattern and a graph, the utility value of
a graph Gi containing Q is updated in the following way: Suppose the edge e occurs n
times in Q, and m times in graph Gi. We update the utility of Gi by subtracting the
sum of the utility value of m−n edges with the least weights in Gi. This gives us a new
hashmap for pattern Q that allows computation of tighter upper-bound utility value for
all extensions of Q.

4.5.2 Schimmy Approach

We observe that the naive implementation of the distributed algorithm sends the com-
plete partition information as an adjacency list data structure alongside each pattern.
As a result, multiple communications of the graph database occur in each iteration. This
is done for the following reasons: a) different partitions can generate the same pattern
and one partition has many patterns. Due to this many-to-many relationship between
patterns and partitions, each task performing map operation needs data from multiple
partitions and b) if the partition information is associated within the pattern object,
next candidates can be generated by accessing the pattern object data locally and the
solution becomes straightforward.

Our approach is to give each partition a unique partition-id and associate it with
each of its candidate patterns. This association is necessary because it gives information
about the partition generating that pattern. This allows us to now know for a given
pattern which partitions are needed for its extension. Whenever we need to extend
the potential patterns generated from the previous iteration of the WSM-algorithm, we
perform a natural join operation of these patterns with partition-ids to determine graph
database partitions needed for each of the patterns. We observe that graph data pulling
works better than sending the partition information along with each pattern. Due to
many to many relationship between patterns and partitions, as the number of generated
patterns increase it results into the graph database being sent multiple times in each
iteration. This happens as the whole partition data is sent with each pattern in the case
of naive implementation.

4.5.3 Lightweight Object Approach

With the Schimmy approach, pattern object does not have graph structure attached to it
but it is still large as it contains information of matching and graph utility. The match-
ing list grows larger and larger and potentially grows exponentially in size. We notice
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that the min-dfs-code of a pattern gives us sufficient information to retrace the pattern
generation path i.e., it takes k iterations of the DFS algorithms to generate the k-edge
length pattern again. Recomputing the pattern saves us from sending the embeddings
in the pattern object reducing the size of the pattern object and the communication
further. Our results show that implementing this approach further reduces the running
time of the algorithm.

4.6 Experimental Study

The performance of our approaches are evaluated on four standard real-life datasets.
A description of these datasets is given in Table 4.1. These datasets have been used

Datasets Number of
graphs

avg # edges
per graph

Yeast 79,601 22.8
P388 41,472 23.3

NCI-H23 40,353 28.6
OVCAR-8 40,516 28.1

Table 4.1: Statistics of datasets

by researchers earlier for FSM and do not have weights assigned to edges or nodes.
Therefore, the weights on edges are generated synthetically with uniform probability
distribution over the range from 1 to 3. To compare the performance of our approaches
we port the state-of-the-art algorithm for FSM [8] to Apache Spark. We implement
six different versions of WSM algorithm, namely, i) Hadoop-WSM, that is adaptation
of Hadoop FSM for high-utility pattern mining, ii) Hadoop-WSM-Bloom, that extends
Hadoop-WSM with bloom filter strategy, iii) Spark-WSM, that is the adaptation of
Hadoop-WSM on Spark, iv) Spark-WSM-Bloom, that extends Spark-WSM with bloom
filter based optimization and prunes non-candidates and revises the upper-bound utility
estimate of patterns, v) Spark-WSM-Bloom-Schimmy, that extends Spark-WSM-Bloom
and does not send graph database information in a pattern object, and vi) Spark-WSM-
Bloom-Schimmy-Lightweight, that extends Spark-WSM-Bloom-Schimmy by not storing
pattern embeddings in a pattern object but recomputes those in every iteration.

To show the effectiveness of our optimization strategies on FSM, we use the code
shared by the authors of [8] and call it as Hadoop-FSM. As with WSM approaches, we
adapt and implement FSM on Apache Spark to get Hadoop-FSM-Bloom, Spark-FSM,
Spark-FSM-Bloom, Spark-FSM-Bloom-Schimmy, and Spark-FSM-Bloom-Schimmy-Light
weight approaches.

For evaluating the comparative performance of our approaches we studied the effect
of varying different parameters such as utility threshold, cluster size, and partition size
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(number of graphs in a partition) on the running time and pruning of non-candidates.
The parameters with their range as well as the default value are described in Table 4.2.
All experiments are conducted on a heterogeneous Hadoop/Spark cluster with each node
having cores ranging from 8-24 and RAM from 8-64 GB. The processor clock frequency
ranges from 800-1866 MHz.

For running Hadoop-WSM algorithm, the job property in Hadoop named mapred.task.
timeout was set as 7hrs (420 minutes). This is done to ensure that master node waits for
sufficiently large amount of time for datanodes to respond. The default configuration of
this setting was not enough for WSM algorithm to run on Hadoop. Another property
to be set is Hadoop java heap space. We set it through the HADOOP_HEAPSIZE
environment variable with value as 8192 MB. This is required for storing the partition’s
information so that java.Lang.outOfMemory Exception is not thrown. In Spark config-
uration, the executer memory for Spark-WSM is kept as 12 GB and driver memory is
kept as 20 GB.

Sr. No. Parameter Range Default
1. Utility

Threshold
60%, 40%, 30% 40%

2. Cluster Size 5,7,10,12,15 10
3. Datasets Yeast, P388, NCI-

H23, OVCAR-8
Yeast

4. Partition
Size

100, 800, 1800 ,
2800

800

Table 4.2: Parameters for experimental-study

We keep the number of mappers in Hadoop-framework equal to number of partitions
and number of reducers are kept at 30% of the number of mappers. In Spark, the
number of executers are kept equal to the number of partitions in the datasets. For all
the experiments we use the bloom filter of size 50 bits with the false positive rate 0.02.

4.6.1 Effect of Utility Thresholds

Figure 4.4 shows the run time of six different approaches at different utility thresh-
olds. Our approach Spark-WSM-Bloom-Schimmy-Lightweight (SWBSL) outperforms
the naive approach Hadoop-WSM by at least an order on all the datasets. For some
datasets, like NCI-H23 and OVCAR-8, our approach shows a run time improvement of
20 times at the threshold of 40%. Furthermore, the speedup increases with the decrease
of utility thresholds. This is due to an increase in the number of patterns with a decrease
in threshold which causes more data communication overhead in the case of Hadoop-
WSM. The graphs also show the effectiveness of our optimization strategies in terms of
reducing the run time. Each strategy contributes in reducing the run time for all the
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datasets. We also study the effect of bloom filter qualitatively by measuring the statis-
tics of non-candidate pruning both with and without bloom filter. Table 4.3 shows the
statistics for different datasets. In datasets such as OVCAR-8 we observe non-candidate
pruning rate as high as 82%.
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Figure 4.4: Effect of utility threshold on run time

4.6.2 Effect of Cluster Size

We study the effect of cluster size on Yeast, OVRCAR-8, NCI-H23 and P388 Datasets
with thresholds set at 40%, 40%, 40%, 50% respectively with the partition size set at
800 for the SWBSL approach. As can be seen in Figure 4.5, the run time decreases
with the increase in the number of nodes, but this decrease in run time (or increase in
speedup) is little. It can be due the fact that the increase in the number of nodes leads
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Datasets Thresholds % Pruning

Yeast
60% 47.87
40% 56.80
30% 65.62

NCI-H23
70% 42.28
60% 70.00
40% 81.94

OVCAR-
8

70% 41.84
60% 70.38
40% 81.94

P388
90% 6.17
70% 26.85
50% 47.04

Table 4.3: Effect of Bloom filter based pruning
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Figure 4.5: Effect of Cluster Size on Runtime

to more data communication overhead. Also, Spark-Framework runs multiple tasks on
multiple threads. Therefore even in the case with less number of nodes the time taken is
not linearly increasing as the nodes in the cluster are multi-core and reduce computation
time due to multi-threading.
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4.6.3 Effect of Partition Size

This experiment is performed against the Yeast Dataset having a threshold of 40% using
the fully optimized algorithm (SWBSL) on a 10-node cluster configuration. Table 4.4
shows the result for this experiment. The partition size plays a significant role for
the WSM algorithm. Having small partition sizes leads to more isomorphic patterns
generated in total as the isomorphic check is performed locally to a partition by a task.
This results in an increase in communication. This can be evident from Table 4.4 as
the least percentage of pruning is when partition size is 100. On the other hand, if the
partition size is kept high then the time taken to perform computation per partition
increases. Also the data-structures for storing partition information require a large
amount of memory. Therefore partition size is a crucial parameter to balance carefully.
It can be seen that the time decreases with increase in partition size initially, but further
increase of the partition size to 2800 increases the run time, hence corroborating the
reasoning.

Partition
Size

Time Taken % Pruning

100 3269s 53.8%
800 2545s 56.8%
1800 2182s 58.9%
2800 2713s 58.9%

Table 4.4: Effect of partition size on run time and % pruning

4.6.4 Effect of Optimization Strategies in FSM

Figure 4.6: FSM: Effect of support threshold on run time

Figure 4.6 shows the effect of frequency threshold on the run time of different ap-
proaches. The graphs shows a similar trend for FSM as we see with WSM. All three
optimization strategies are effective. In FSM, the bloom filter stores frequent patterns
with two edges and is used for the pruning of non-candidates. The irrelevant patterns
are identified as with WSM while generating candidate patterns. We observe that the
Bloom filter is very effective for the case of FSM. The Schimmy and the Lightweight
approaches are implemented in the same way as WSM. They help in lowering the data
communication overhead and hence decrease in the run time.
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4.7 Conclusion

We defined and presented novel distributed approaches for mining high-utility subgraph
patterns from a graph database. To address the issue of utility measure being not anti-
monotonic we define a function to get the upper-bound utility of a subgraph pattern that
allows the systematic search of high-utility subgraph patterns and enables reduction
of the search space. We give different optimization strategies, namely, use of bloom
filters to prune the non-candidate patterns as well as to tighten the upper-bound utility
estimate, a Schimmy design to reduce the communication of graph data between the
nodes, and Removal of embeddings of a pattern from the pattern object to reduce the
data communication. Our solution is flexible since it relies on primitive operations, such
as map, filter and group-by, available on almost all distributed platforms.

We show that a straightforward porting of the state-of-the-art Map-Reduce solution
to Apache Spark does not reduce the computation time for FSM. It quickly overshoots
its demand of main memory and results into flushing of memory data to disk frequently.
Our solution is efficient as demonstrated by the experimental study. However, the upper-
bound utility estimate of a pattern is still very loose. Our future road-map includes plans
to explore new mechanisms to tighten the upper-bound utility of a pattern.



Chapter 5

Mining Co-location Patterns on
Dynamic Data

This chapter is based on the following submitted journal paper:

Srikanth Baride, Anuj S. Saxena, and Vikram Goyal. "Mining Co-location Patterns
on Dynamic Data." Data Mining and Knowledge Discovery, [Submitted].

5.1 Introduction

In applications where data changes with time, i.e., new events become available and the
old events lapse, the co-location patterns also change. For example- for event organiz-
ers, in planning a new event in the vicinity of the co-located events of types musical
evenings, stand-up performances, social gatherings, business meetings, food festivals,
etc., updated co-location patterns from the recent data will be required to ensure better
turnaround. Similarly, in planning daily police patrol routes, law enforcement agencies
required updated crime locations from the latest crime data [2]. Thus, the mining task
for dynamic data is exploratory and requires an analyst to explore different subsets of
data corresponding to different time intervals.

The traditional co-location mining techniques are defined for static data and do not
provide mechanisms to accommodate changes in the datasets. Thus, the algorithms
would have to run afresh on the updated dataset. This would result in a reduction in
the productivity of an analyst in addition to wastage of energy and less effective use
of computing resources. Further, for applications that require online updates of co-
location information, the re-computation may not be feasible due to high computational
time requirements.

In this work, we are motivated to develop a computational framework that can ef-
ficiently update the co-location patterns from the previous state, i.e., the previously
computed patterns, the old data state, and the changes that occurred in the data. In
literature, various measures have been defined to quantify the support for co-location

82
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patterns, such as construction-based [50], partition-based [54], enumeration-based [24],
and fraction-based [9]. Fraction score addresses the issue of overcounting and under-
counting of support measures in overlapped participating instances [9], and therefore,
it is considered the best-suited support measure for finding co-location patterns. We
intend to develop a framework for updating fraction score based co-location patterns
for dynamic data. Some of the earlier studies discussed co-locations mining in evolving
databases using the participation index as a support measure [3, 5, 10, 16, 21, 44, 46, 64].
To the best of our knowledge, this is the first work that discusses fraction score-based
co-location pattern mining in dynamic data.

The fraction score measure gives weightage to an object based on its overlapping
with different participating instances of candidate patterns. It depends on the topology
of the participating objects, and therefore, the addition or deletion of objects in close
proximity to the participating objects may change the score of participating objects
as well as their own scores. As analyzed in subsequent sections, these changes in the
fraction scores occur not only due to changes in the neighboring objects (aka., 1-nbd) but
also due to changes in the neighborhood of the neighboring objects (aka., 2-nbd). Thus
multiple score updates for affected participating objects may be required for updating the
fraction score of a candidate pattern. Moreover, the same objects may be participating
in different candidate patterns and may get an update call several times corresponding
to different objects that are added or deleted. Also, changes in fraction score for object
addition or deletion are not monotonic in nature which prevents an early termination
while updating scores. These facts pose severe computational challenges in updating the
fraction score from the previous state.

In this work, we address the problem of updating co-location patterns for dynamic
data using a temporal-window framework, as in Figure 5.1. In the temporal-window
framework, the data that changes with time is realized at a fixed time gap, say after
every 15 minutes, every 1 hour, etc. Between any two consecutive time instances, say
previous time (t) and current time (t+1), the data at time t+1 (denotedW t+1) is updated
from the previous data (denoted W t) by adding objects Oa and deleting objects Od that
are added and deleted during the time period t to t + 1. The co-location patterns of
the current window W t+1 (aka., current co-locations) are desired to be updated from
that of the previous window, instead of recomputing them from scratch. For efficiently
mining current co-location patterns, it is required to compute the support of only those
patterns that are likely to be either included in or deleted from the co-location patterns
of the previous state, called candidate co-location. An efficient method for updating
the support measure of candidate patterns should make only necessary updates in the
fraction score whereby reusing the unchanged information. This requires identifying
candidate objects for the current window W t+1 for which the score is likely to change,
by using the past state (i.e., the previous data W t and the previous co-location patterns)
and the changes that occur in the data.

Techniques for mining co-location patterns in static data cannot be applied directly
to dynamic data that requires the following updates: 1) The neighborhood relationships
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Figure 5.1: Framework for Mining Co-locations from Dynamic Data

may change as soon as some data arrives or is removed, hence there is a need to find the
updated neighborhoods; 2) Using the updated neighborhood, there is need to identify the
previous co-locations that disappear, new co-location patterns that appear, and those
which remains unchanged. The cost of computing co-locations using classical mining
algorithms becomes high as they do not reuse information from the previous state and
find co-locations for the updated data from scratch. We address these computational
overheads by proposing an efficient technique for updating co-locations. The main con-
tributions of this work are:

1. A computational framework is proposed that can update the fraction score for the
dynamic data in an online fashion. The proposed method is efficient as it only
updates scores that are changed due to the addition or deletion of objects and
reuse previous unchanged fraction score values.

2. An efficient algorithm is proposed for updating the fraction scores by avoiding
multiple updates for the same score due to overlapping instances in the neighbor-
hood sets of added and deleted objects. A lazy computation approach is proposed
for the fraction score updating to avoid possibly over-computing the score due to
overlapping instances.

3. An efficient algorithm named UpFS is designed for mining co-locations in the
current window based on the proposed fraction score update technique. Three
variants of the proposed algorithm are implemented that vary in how the neigh-
borhood information is stored. They are (1) computing neighborhood information
from scratch, (2) neighborhood information in the form of a list, (3) neighborhood
information using a hash map. Experimental results show that the designed algo-
rithm is more efficient than the baseline approach.

5.2 Related work

Various support measures have been proposed for mining co-location patterns in the
last decade. The most studied measures includes, partition-based [54], construction-
based [50], enumeration-based [24], and fraction-based [9]. These proposed measures
have some advantages over others; however, they are not devoid of limitations. In
partitioning-based co-location mining, the geographical region is divided into small grids,
and the aggregate of the number of co-location patterns in various grids is used as
support. Though the partitioned-based approach is easy to apply for mining frequent
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co-locations, it has an obvious limitation of missing the count of those instances which
overlap between different grid cells. Construction-based methods find instances of a label
set using heuristics such as Voronoi partitioning, and the instance count of a feature set
that is put together heuristically is used as support. A limitation of this approach is
that a heuristic may not provide an optimal grouping of instances, which may result
in undercounting the support of patterns. An enumeration-based approach uses the
number of row instances as support where objects are said to form a row instance if they
are in each other’s neighborhood [79]. The enumeration-based approach can overcount
co-location frequency because of overlapping instances. The recently proposed fraction-
based approach [9] assigns fractions to objects based on the overlap of instances of the
potential co-location patterns and takes aggregation of these fractions as support. It
is considered as the best-suited support measure for finding co-location patterns as it
addresses the issue of overcounting and undercounting. It is shown that the supports of
the fraction-based approach are nearest to the ground truth compared to the support
measures of the other mentioned approaches [9].

5.2.1 Classical Colocation Mining

Shekhar et al. introduced the concept of the Co-location pattern mining and proposed
a Co-location Miner algorithm to mine co-locations using an event centric model [54].
Huang et al. extended this work with a join based algorithm to mine co-location patterns
using participation index. The proposed join based algorithm was able to reduced the
search space by exploiting the spatial autocorrelation properties of the spatial data [24].
Yoo et al. initially came up with a partial join approach to improve the efficiency of
join based co-location mining algorithm [72] and then further improved it with a joinless
technique using an instance-lookup scheme [70]. Mehta et al. gave a new perspective
for mining co-locations using a distributed graph database [48]. Chan et al. developed
an apriori like algorithm for mining co-location patterns based on fraction score and
gave a filter and verification approach to decide whether an object is part of a candidate
co-location or not [9].

5.2.2 Incremental Colocation Mining

There are also studies on mining co-locations in incremental databases. He et al. pro-
posed the ICMP algorithm for incremental maintenance of discovered spatial co-location
patterns when a new object is added [16]. Then, an algorithm named EUCOLOC for
efficiently mining co-location patterns in evolving spatial databases was proposed by Yoo
et al. [3]. EUCOLOC relies on a border concept to avoid unnecessary candidate gen-
eration and it is more efficient compared to ICMP. However, these two algorithms only
consider adding new points and cannot handle point deletion. Later, Lu et al. designed
an algorithm for incremental mining of prevalent co-locations (IMPCA) to handle both
new and deleted points and also gave a pruning strategy to further increase efficiency
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[44]. Lee et al. proposed the incremental topology miner (Inc_TMiner) algorithm to in-
crementally update topological patterns in spatial-temporal databases [34]. It performs
database projections and searches for patterns using a depth-first search. Wang et al.
proposed an algorithm named UUOC (Utility Update of Co-locations) to incrementally
mine high utility co-locations in a database by considering both addition and deletion
of data points [64]. To efficiently mine co-locations in large data Andrzejewski et al.
proposed a parallel approach to mining co-locations using an iCPI-Tree structure [5].
An algorithm named INC-MGPUCPM is proposed which takes the advantage of the
processing power of GPUs to mine co-locations when the database is updated with new
data points. Wang et al. proposed incremental fuzzy participation index for measur-
ing the prevalence of the changed co-location in the updated data sets, and design the
algorithm of incremental mining of prevalent co-location patterns based on FNR (the
IMPCP-FNR algorithm). [61] Chang et al. proposed a new approach to rearrange the
neighborhood relations in order to use less storage to store data information and also
can avoid generating the non-incremental candidate instances [10].

5.2.3 Dynamic Co-location Mining

On the other hand to handle the dynamic nature of spatial objects, Qian et al. proposed
an algorithm for mining co-locations with dynamic neighborhood constraints [51], which
treats the co-location mining problem as an optimization problem and solves it using a
greedy approach. Hu et al. proposed a concept of dynamic spatial co-location pattern
to consider the dynamic relationships among the spatial features [21]. The idea here is
to mine only maximal co-locations, which can derive all prevalent co-locations. Ma et
al. proposed a two-step framework to discover evolving spatial co-location patterns [46].
In this framework, an extend-and-evaluate scheme is proposed to form evolving spatial
co-location by selecting appropriate evolvers from top-k spatial co-location patterns at
each time slot.

But none of these algorithms consider the fraction score as a support measure. This
is the first attempt to analyze dynamic co-location pattern mining using fraction score
as a support measure.

5.3 Preliminaries and Problem Formalization

For applications in which objects change with time, i.e., new objects become available
and the old objects lapse, the co-location information also changes. A periodic update
of the co-location patterns for such dynamic data is required. Most of the existing
techniques for co-location pattern mining do not provide support for updating patterns
for dynamic data. The re-computation of patterns may not be feasible for applications
that require online updates due to high computational time requirements. In this work,
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we are motivated to develop a computational framework that can efficiently update the
co-location patterns for dynamic data.

We first define the terminology and notations used in our modeling. For an object,
we denote its type by a fixed label depicting its feature. For example, objects M1, M2,
M3, etc., of the type ‘Musical Events’ spread across a region, can be denoted by a label
M. The collection of all the labels that are considered for computation is denoted by a
set L. The task of co-location mining for dynamic data is to find those subsets of L
(called labelset or pattern) whose object instances are in close proximity with sufficiently
high frequency at any given time.

For mining co-location patterns, we process dynamic data at a fixed time gap using
a temporal-window framework as discussed in the next Section.

5.3.1 Dynamic data update framework

Initially, all the objects that are available are stored in (data) window W 0 at a time
zero. As time progresses, we update the window W 1 at time t = 1 (i.e., after the first
time-gap), W 2 at time t = 2 (i.e., after the second time-gap), and so on. Thus we
consider time to be discrete, i.e., t = 0, 1, 2, 3, . . ., and the window W t denotes active
objects at any given time t. As time progresses from t to t+ 1, we keep a record of the
objects that are deleted (Od) and added (Oa) during this period. This record facilitates
the updating of window W t+1 at time t+ 1. The window W t+1 now contains the active
objects as follows: (W t \Od) ∪Oa. The objects that are added to and deleted from the
window W t at time t + 1 are called the changed objects. We denote the cardinality of
the changed object by λ.
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Figure 5.2: Snapshot of dynamic spatial data
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In Figure 5.2, we present a snapshot of the dynamic data in which a spatial object o
consists of object ID, spatial coordinate < latitude, longitude >, event duration, and a
label. Object IDs are assigned incrementally as distinct integers based on their arrival
time. Event duration, denoted by a pair [st, et], tells the start time and end time of
the event. The absolute times are converted into discrete time using the time at t = 0
and the time-gap. Thus an event with the time interval [2, 5] is first available at time
t = 2 and remains available until t = 5. For our example, we have considered labels as
Health Camps (H), Musical Performances (P ), Cultural Events(C), Social Gatherings
(S), and Industrial Exhibitions (I). Figure 5.3 illustrates the proposed temporal-window
framework over the data of Figure 5.2. For demonstration purposes, we have shown a
temporal-window from W 2 (at time t = 2) to W 3 (at time t = 3). In the window W 2,
there are 14 objects where objects with IDs 1-5 get added at time t = 0, objects with
IDs 6-9 get added at time t = 1, and objects with IDs 10-14 get added at time t = 2.
For ease of explanation, we have not deleted any object till time t = 2. The objects with
IDs 1,4,5 and 7 are having end times et = 2. At the time t = 3, these four objects get
deleted whereas the new objects C4, P4, I3, and M1 that appear in between t = 2 and
t = 3 get added in W 3 at time t = 3. In the same way, objects get added and deleted to
update the window as time progress.

5.3.2 Overview of Fraction-Score

In literature, various measures, such as fraction score [9], participation score [54], etc.,
are defined to ascertain a labelset to be a co-location pattern. In this work, we have
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used fraction score to decide on co-location patterns, as discussed in the next Section.
The reason for giving preference to the fraction score over others is that the fraction
score avoids overcounting overlapped instances of a pattern by assigning fraction value
to them. Thus, the mined patterns are more accurate and closer to the ground truth [9].

The central concept behind this approach is to consider each group not as a whole
unit of prevalence but as a fractional unit, where the fraction value is calculated by
distributing the contribution of an object across all the row instances involving that
object.

In other words, instead of treating each group as a complete and independent entity,
this method breaks down the prevalence of a group into smaller fractions, where each
fraction represents a portion of the group’s prevalence associated with the object in
question. The fraction assigned to a group is determined by how many row instances
within that group involve the same object.

This approach is particularly useful when dealing with situations where objects are
shared among multiple groups or instances, as it allows for a more fine-grained and fair
representation of each group’s contribution to the overall prevalence. It ensures that the
contribution of shared objects is appropriately distributed among the relevant groups,
leading to a more accurate assessment of prevalence.

5.3.3 Formal Definition of Fraction-Score

In this Section, we discussed the adaptation of the fraction score computation for the
temporal-window framework. For illustration, we have considered our running example
of a window W 2 at time t = 2 as in Figure 3.2 having 14 spatial objects with five
different labels L = {H,P,C, S, I}, and its spatial view as in Figure 5.4. The edge
is shown between the objects that are within the prespecified distance d. We have
considered d = 70m, and used Euclidean distance for distance calculation between two
spatial objects.

For a window W and an object o ∈ W , the neighbouring objects of o within a
distance d are denoted by disk(o, d,W ). For a label l ∈ L, the subset of the neighbors
of o having label l is denoted Neigh(o, l, d). For example, in Figure 5.4, the neighbors
of some of the objects are highlighted by drawing a circle. It can be seen that neighbors
of H1 in W 2 are {H1, P2, C3, P3}(= disk(H1, 70m,W 2)). The neighbors of all other
objects are shown in Table 5.1. Also, Neigh(H1, H, d) = {H1}, Neigh(H1, P, d) =
{P2, P3}, Neigh(H1, C, d) = {C3}, Neigh(H1, S, d) = {} and Neigh(H1, I, d) = {}.
The neighborhood count of all the objects for the labels L = {H,P,C, S, I} is shown in
Table 5.1.

The different neighbourhood instances (hereafter called row instances) of a label-
set C(⊆ L) may not have all distinct objects. For illustration, consider a label set
C = {H,P} that have row instances H1P2, H1P3, H4P1, H4P2 in W 2 in Figure 5.4.
The object H1 is common in row instances H1P2 and H1P3 and thus the two objects
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Figure 5.4: Fraction score Computation forW 2( at time t = 2)

Object Neighborhood Neighborhood count Fraction score

H P C S I H P C S I

H1 H1, P2, C3, P3 1 2 1 0 0 1 1 1 0 0
H2 H2, I1, C1 1 0 1 0 1 1 0 1 0 1
H3 H3, P1 1 1 0 0 0 1 0.5 0 0 0
H4 H4, P1,P2, I2 1 2 0 0 1 1 1 0 0 1
P1 P1,H3,H4 2 1 0 0 0 1 1 0 0 0
P2 P2, H1, H4, 2 1 0 0 0 1 1 0 0 0
P3 P3 , H1, C2 1 1 1 0 0 0.5 1 1 0 0
S1 S1, C1, 0 0 1 1 0 0 0 0.5 1 0
S2 S2, C1 0 0 1 1 0 0 0 0.5 1 1
I1 I1, H2 1 0 0 0 1 1 0 0 0 1
12 I2, H4, 1 0 0 0 1 1 0 0 0 1
C1 C1, S2, H2, S1 1 0 1 2 0 1 0 1 1 0
C2 C2, P3, 0 1 1 0 0 0 1 1 0 0
C3 C3, H1 1 0 1 0 0 1 0 1 0 0

Table 5.1: Neighborhood, Neighborhood Count & fraction scores for W 2

P2 and P3 must get a 1/2 share (i.e., fraction value) of H1 as its participation in these
two instances.

The fraction value is assigned to the objects of the row instances based on the number
of shared objects in different groups. Formally, for objects o, o′ ∈W , the object o receives
a fraction value of o′ as its participation in W , denoted by ∆obj(o, o′,W ), defined as

∆obj(o, o′,W ) = 1
minNeigh(o′, o.l, d) | (5.1)

Where Neigh(o′, o.l, d) is the sharing of o′ with neighbouring objects having label o.l
in the window W . For our running example, for o = P2 and o′ = H1, we have
Neigh(H1, P, d) = 2 as the object H1 is shared with two objects in W 2, namely P2
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and P3, having the label P . Thus

∆obj(P2, H1,W 2) = 1
Neigh(H1, P, d) = 1

2 = ∆obj(P3, H1,W 2)

For an object o ∈ W and a label l ∈ L such that o.l ̸= l′, the object o may have
multiple objects in its neighbourhood with label l′. The fraction score that an object
o receives from the label l′ in W , denoted by ∆label(o, l′,W ), is the aggregation of the
fraction values of those neighbouring objects that have label l′. Formally,

∆label(o, l′,W ) = min

 ∑
o′∈disk(o,d,W )∧o′.l=l′

∆obj(o, o′,W ), 1

 (5.2)

The aggregate fraction score of o can not be more than 1; thus, it is bounded by 1. For
example, object P2 in Figure 5.4 has objects H1 and H4 in its neighbour having label
H. Therefore,

∆label(P2, H,W ) = min{∆obj(P2, H1,W ) + ∆obj(P2, H4,W ), 1} = 1

The fraction score of the objects in the window W 2 for labels L = {H,P,C, S, I} is
shown in Table 5.1. In the time window framework, as time progresses, the fraction
score of objects for the current labels also changes and thus requires periodic updates.

We are now ready to discuss the support computation for a label-set C in a windowW
for deciding on co-location patterns. The defined measure quantifies the participation of
a label-set by assigning fraction value to overlapped instances. Label-sets having support
more than the prespecified minimum support threshold qualify as co-location patterns.

Definition 5.1 (Co-locations in a Window W ). A label-set C (⊆ L) is said to be a
co-location for a window W if the fraction score based support for their object instances
in W that are within a given distance d satisfies the user-specified minimum support
(min_sup) threshold.

For computing the support of a label-set C (with | C |≥ 2), first the score of all
the objects of the row instances of C in W with respect to the label-set C, denoted
by ∆labelset(o,C,W ), is computed. For a fixed label l ∈ C and an object o ∈ W with
o.l = l, ∆labelset(o,C,W ) is the minimum of the fraction scores object o receives with
respect to other labels in C. Formally,

∆labelset(o,C,W ) = min
l′∈C−{o.l}

∆label(o, l′,W ) (5.3)

The support of a label-set C for a fixed label l ∈ C is the aggregation of the score of
all the objects having label l, as given in equation 5.3.

sup(C | l,W ) =
∑

o∈obj(l,C,W )
∆labelset(o,C,W ) (5.4)
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where for a label l ∈ C, obj(l,C,W ) denote the set of objects o in the row instances of
C in W that have label l. The support of a label-set C in W is the least among the
support of labels in C normalized by the count of maximum objects of any label in C.

sup(C,W ) = minl∈C sup(C | l,W )
maxl∈L | {o.l = l | o ∈W} |

(5.5)

From the above discussion, it is evident that in a timed window framework, the
neighbourhood structure of objects, as in Figure 5.4, changes. This results in a change in
the neighbourhood count and the fraction score of objects as in Table 5.1 and computed
using formulas in the equation 5.1-5.2. However, the computation for the support1 of a
label-set, as in equations 5.3-5.5, can be performed as proposed earlier [9].

5.3.4 Problem Formalization

Finding co-location patterns for dynamic data requires recomputing support measures
periodically. A baseline approach computes the fraction score and the support from
scratch for every temporal-window. However, if the number of changed objects (i.e., λ)
is small compared to the window size | W |, the changes in the neighborhood relation
are also less and ample information can be reused from the previous window. Thus, with
the assumptions such as (a) λ ≪ W (b) the data updates periodically at a small-time
gap, and (c) the changes in the patterns require at the run time, it is meaningful to
update the fraction scores from the previous window.

The methodology to update the changes for the temporal-window between any two
consecutive time instances is the same. Thus for the ease of explanation, we denote by
W c and W o the current window (say, at time t + 1) and the previous window (say, at
time t), respectively, such that

W r = W o \Od & W c = W r ∪Oa

where Oa and Od are respectively the added and deleted objects due to the temporal-
window, and W r are the objects retained in the current window from the previous
window. Similarly, Lc and Lo denote distinct labels in W c and W o respectively such
that Lc = Lr ∪Lnew, where

Lr = {o.l | o ∈W r} and Lnew = {o.l | o ∈ Oa} \Lr

represents the unchanged labels and the newly added labels, respectively. Finding the
changes in the co-location patterns due to the temporal-window requires identifying

• Deleted Co-locations. The co-location patterns from the previous window for which
the current support is less than the minimum support threshold. Formally, finding
C such that

sup(C,W o) ≥ min_support & sup(C,W c) < min_support
1Refer [9] by Chan et al. for more details about the fraction score based support computation.
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• Added Co-locations. The label set C that were not co-locations in the previous
window and for which the current support value has increased above the minimum
support threshold. Formally,

sup(C,W o) < min_support & sup(C,W c) ≥ min_support

This work proposes an efficient approach for mining current co-locations for the
temporal-window framework by updating the fraction value (equation 5.1) and the frac-
tion score (equation 5.2) of the current objects in the window W c for the current labels
Lc.

5.4 Framework for Updating Fraction score

The change in the fraction score of an object o ∈ W c is due to the change in its neigh-
borhood. An inverted list R-Tree (IR-Tree) [15, 37] is used to find the neighborhood of
an object o within the user-specified distance d. For finding an updated neighborhood,
the IR-Tree is updated by inserting Oa and deleting Od. We denote by Disk(o, d,W o)
and Disk(o, d,W c) the neighborhood of an object o in the old and the updated IR-Tree
respectively.

Next, we define 1-nbd and 2-nbd of an object o in a window W to analyze the effect
of the change in the neighbourhood over the fraction score.

Definition 5.2 (Neighbourhood of an object). For an object o ∈ W , an object o′ ∈
Disk(o, d,W ) is said to be in 1-nbd of o, and an object o′′ ∈ Disk(o′, d,W o) such that
o′′ ̸∈ Disk(o, d,W o) is said to be in 2-nbd of o.

We first analyze the effects of deletion and addition of a single object on the frac-
tion score. We denote by ∆obj(o, o′,W o) and ∆obj(o, o′,W c) the fractional participation
value that object o receives from o′ (equation 5.1) in the old and the current window
respectively. For notational convenience, the deletion of a single object o is represented
as Od = {o}, Oa = ϕ, and with this change, W o and W c denote the old window and the
current window respectively. For objects in the 1-nbd of o, say o′, the deletion of o will
decrease the fraction score of o′ for the label o.l. Formally,

∀o′ ∈ Disk(o, d,W o) s.t. ∆obj(o, o′,W o) = 1 Oa,Od

=⇒ ∆label(o′, o.l,W c) = 0

It is to note that ∆obj(o, o′,W o) = 1 corresponds to the case of only one object in the
1-nbd of o′ having label o.l, and that is o.

The cases of deletion of an object o for which ∆obj(o, o′,W o) < 1 and that changes
the fraction value of the neighboring objects to a non-zero value are discussed next.

Lemma 5.3. Effect of deleting a single object o on the fraction score of objects in the
1-nbd and 2-nbd of o that have the same label as o.
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(a) For the objects o′ in the 1-nbd of o and from which o receives a fraction value that
is less than 1 (i.e., ∆obj(o, o′,W o) < 1), the fraction value of all the objects in
the 1-nbd of o′ that have the same label as o will increase due to the deletion of o.
Formally,
Let o′ ∈ Disk(o, d,W o) with ∆obj(o, o′,W o) < 1, then for all o′′ ∈ Disk(o′, d,W c)
such that o′′.l = o.l and o′′ ̸= o, the fraction value o′′ receives from o′ increases due
to the deletion of o, i.e.,

∆obj(o′′, o′,W o) < ∆obj(o′′, o′,W c)

(b) Additionally, in the previous case, the fraction score of o′′ for the label o′.l increases
or remains the same.

Proof (a): The deletion of object o reduces the neighborhood count of o′ ∈ Disk(o, d,W o)
with respect to the label o.l, i.e., reduces Neigh(o′, o.l, d) by 1. Also, as ∆obj(o, o′,W o) <
1, the reduced neighborhood count is still greater or equal to 1. Thus for all the objects
o′′ ∈ Disk(o′, d,W c), other than o, having o′′.l = o.l, it is found that

∆obj(o′′, o′,W o) = 1
Neigh(o′, o.l, d) <

1
Neigh(o′, o.l, d)− 1 = ∆obj(o′′, o′,W c)

Proof (b): The fraction score of object o′′ for the label o′.l is the aggregation of fraction
values object o′′ receives from the objects in its 1-nbd with label o′.l. Let us consider the
case when this value is less than one in the old window. From equation 5.2 in Section
5.3.3, we have

∆label(o′′, o′.l,W o) =
∑

oi∈Disk(o′′,d,W o)∧oi.l=o′.l

∆obj(o′′, oi,W
o)

Some of the terms in the above summation are the fraction values o′′ received from the
objects oi that are in the 1-nbd of o . One such object is o′. Let us denote all these
objects by set A, i.e., A = {oi | oi ∈ Disk(o′′, d,W o), oi ∈ Disk(o, d,W o), oi.l = o′.l},
and the remaining elements by the set B, i.e., B = {oi | oi ∈ Disk(o′′, d,W o), oi ̸∈
Disk(o, d,W o), oi.l = o′.l}. It is to be noted that for all a ∈ A, ∆obj(o, a,W o) < 1 as
their neighborhood contains at least two objects with the same label as o.l, namely o
and o′′. Now rewriting the above expression,

∆label(o′′, o′.l,W o) =
∑
a∈A

∆obj(o′′, a,W o) +
∑
b∈B

∆obj(o′′, b,W o)

on deleting the object o, from part (a), ∆obj(o′′, a,W o) < ∆obj(o′′, a,W c) for all a ∈ A,
whereas ∆obj(o′′, b,W o) = ∆obj(o′′, b,W c) for all b ∈ B. And therefore,

∆label(o′′, o′.l,W o) ≤ ∆label(o′′, o′.l,W c) (5.6)
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Thus the value of the fraction score of o′′ for the label o′.l increases or remains the same
(when A = ϕ) on deleting object o. Moreover, the change in the fraction score of o′′ with
respect to the label o′.l, denoted by ∆diff

label(o′′, o′.l), is

∆diff
label(o

′′, o′.l) =
∑
a∈A

{∆obj(o′′, a,W c)−∆obj(o′′, a,W o)} (5.7)

Further, in the case when the minimum value of the fraction score is 1 in the old window
(equation 5.2), despite the increase in the fraction score of o′′ for the label o′.l as in
equation 5.6, there is no change in the actual value as it is bounded by 1.

Lemma 5.4. Effect of deleting a single object o on the fraction scores of objects in its
1-nbd that have labels different than o.

(a) Due to the deletion of a single object o, the fraction value that the objects in the
1-nbd of o, say o′, receives from o becomes zero, whereas the fraction value o′

receives from other objects in its 1-nbd having the same label as that of o remains
the same. Formally,
For o′ ∈ Disk(o, d,W o), we have

i ∆obj(o′, o,W c) = 0
ii For all o′′ ∈ Disk(o′, d,W c) such that o′′.l = o.l, we have

∆obj(o′, o′′,W c) = ∆obj(o′, o′′,W o)

(b) Additionally, the fraction score of o′ for the label o.l decreases due to deletion of o.

Proof (a): The proof of the first part is direct as the value depends upon the fraction
an object o′ receives from an object o which is not present anymore in W c. To prove
the second part, it is observed that the fraction value ∆obj(o′, o′′,W c) depends upon the
neighborhood count of o′′ with respect to label o′.l in W c. The deletion of object o,
which has a different label than o′ will not change this count, and hence the result.
Proof (b): Let us denote A = {o′′ | o′′ ∈ Disk(o′, d,W o), o′′.l = o.l} and B = {o′′ | o′′ ∈
Disk(o′, d,W c), o′′.l = o.l} where B = A\{o}. The fraction score of object o′ due to
label o.l in the old window W o is

∆label(o′, o.l,W o) =
∑

o′′∈A

∆obj(o′, o′′,W o)

= ∆obj(o′, o,W o) +
∑

o′′∈B

∆obj(o′, o′′,W o)

From part a(ii), we have ∆obj(o′, o′′,W o) = ∆obj(o′, o′′,W c) for all o′′ ∈ B, and

∆label(o′, o.l,W c) =
∑

o′′∈B

∆obj(o′, o′′,W c)
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Therefore,

∆label(o′, o.l,W o)−∆label(o′, o.l,W c) = ∆obj(o′, o,W o) > 0

Hence the result.
The case of the addition of an object is dual to the deletion of an object, and the

results are direct from the previous lemmas. For addition of an object o, we consider
Od = ϕ and Oa = {o}, and the windows W o and W c denote the old and the current
windows with this change.

Lemma 5.5. Effect of adding a single object o on the fraction scores of objects in the
1-nbd and 2-nbd of o and having the same label as that of o.

(a) For the objects o′ in the 1-nbd of o, the fraction value of all the objects in 1-nbd of
o′ and having the same label as o will decrease due to the addition of o. Formally,
For o′ ∈ Disk(o, d,W c) and for o′′ ∈ Disk(o′, d,W o) such that o′′.l = o.l, ∆obj(o′′, o′,W c) <
∆obj(o′′, o′,W o) on addition of o.

(b) Additionally, the fraction score of o′′ for the label o′.l decreases.

Proof outline: The proof of both the parts is direct from the lemma 5.3 on inter-
changing the role of the current and the old window.

Lemma 5.6. Effect of adding a single object o on the fraction scores of objects in its
1-nbd having label different from that of o.

(a) Due to the addition of a single object o, the fraction value that the objects in the
1-nbd of o, say o′, receives from other objects in the 1-nbd of o′ and having a label
as that of o remains the same. Formally,
For o′ ∈ Disk(o, d,W c) and for o′′ ∈ Disk(o′, d,W c) s.l. o′′.l = o.l, we have

∆obj(o′, o′′,W c) = ∆obj(o′, o′′,W o)

(b) Additionally, the fraction score of o′ for the label o.l increases due to the addition
of o.

Proof outline: The proof is direct from lemma 5.4 on interchanging the current and
the old window, and from the fact that ∆obj(o′, o,W c) > 0

From equation 5.4 and equation 5.5 in section 5.3.3, the support sup(C,W ) of a
candidate co-location C is an aggregation of fraction score of its row instances. Also from
lemmas 5.3-5.6, fraction score may increase, decrease, or remain the same corresponding
to the addition or deletion of objects which depends upon the neighbourhood of changed
objects in the current window. As estimating the change in the support value sup(C,W c)
from sup(C,W o) is not possible without updating the fraction score of the changed
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objects, we propose an observation-based approach for efficiently updating fraction values
of the relevant objects in the current window.

In the observation-based approach, the fraction values are updated only for each pair
of objects that have changed, and the rest of the values are copied as it is. In the next
section, we discuss this approach that utilizes the results of the addition and deletion of
an object as derived in lemma 5.3-5.6. There are issues with efficiently updating fraction
scores and support values after updating fraction values. This is due to multiple deletions
and the addition of objects, keeping track of the changed fraction values and fraction
scores. The implementation issues are discussed in Section 5.5, however, in this section,
we discuss our observation-based technique for the addition and the deletion of objects.

5.4.1 Addition of an object

This Section discusses the effect of the addition of an object o ∈ Oa on the fraction
values of the objects in W c.

(a) For all the objects o′ ∈ Disk(o, d,W c), ∆obj(o′, o,W c) needs to be computed. It
is the fraction value objects o′ receives from newly added object o, and is equal to
the reciprocal of the number of objects in the neighborhood of o having label o′.l
as in equation 5.1, Section 5.3.3. This update requires exploring of the 1-nbd of
o ∈ Oa.

(b) For all the objects o′ ∈ Disk(o, d,W c), we need to compute ∆obj(o, o′,W c). This
requires finding objects in the neighborhood of o′ having label o.l. This update
requires exploring the 1-nbd and 2-nbd of o ∈ Oa.

(c) For all the objects o′ ∈ Disk(o, d,W c) and o′′ ∈ Disk(o′, d,W c) such that o′′.l = o.l,
∆obj(o′′, o′,W c) (lemma 5.5) must be updated. This update also requires exploring
the 1-nbd and 2-nbd of o ∈ Oa.

(d) For all the objects o′ ∈ Disk(o, d,W c) and o′′ ∈ Disk(o′, d,W c) such that o′′.l ̸= o.l,
the ∆obj(o′′, o′,W c) values remain unchanged. i.e., ∆obj(o′′, o′,W c)← ∆obj(o′′, o′,W o)

(e) For all the objects o′ ∈ Disk(o, d,W c) and o′′ ∈ Disk(o′, d,W c), the ∆obj(o′, o′′,W c)
values remain unchanged (lemma 5.4). i.e., ∆obj(o′, o′′,W c)← ∆obj(o′, o′′,W o)

(f) For all the objects o′ that are neither in 1-nbd nor in 2-nbd of o ∈ Oa, their fractions
remain unchanged. That is, for all o′′ ∈ Disk(o′, d,W c), fractions ∆obj(o′, o′′,W c)
and ∆obj(o′′, o′,W c) remain unchanged.

The above observations provide a guideline to compute, update and restore the fraction
values due to the addition of objects. However, the spatial locations of the newly added
objects make this task non-trivial. For example, the newly inserted objects having the
same label and in the 1-nbd or 2-nbd of each other, the same neighborhood count and
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Figure 5.5: Effect of addition
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Figure 5.6: Effect of deletion

∆ values, may be updated multiple times. The above observations are illustrated next
with an example.

Consider Figure 5.5, where all the objects are old except P4 and P5. The effect
of adding of P4 having 1-nbd Disk(P4, d,W c) = {P2, P4, P3, H1, H4, I2} is that the
fraction values of objects in the 1-nbd and 2-nbd are updated as
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1. All the objects in the 1-nbd of P4 will get a fraction of P4. Two objects in the 1-nbd
of P4 have label H, i.e., Neigh(P4, H, d) = {H1, H4}. Thus ∆obj(H1, P4,W c) =

1
Neigh(P 4,H,d) = 1

2 = ∆obj(H4, P4,W c) Similarly, ∆obj(I2, P4,W c) = 1. These
freshly computed values require exploring 1-nbd of P4 only.

2. The 1-nbd of the object H4 contains three objects with label P , including the
one newly introduced P4. The fraction value that P4 will receive from H4 is
∆obj(P4, H4,W c) = 1

Neigh(H4,P,d) = 1
3 This freshly computed value requires ex-

ploring the 2-nbd of P4.

3. In addition to the above, fraction values of the old object in the 1-nbd H4 with label
P , i.e., P1 and P2, will also change as ∆obj(P1, H4,W c) = ∆obj(P2, H4,W c) =
∆obj(P4, H4,W c). That is, all the objects with label P in the 1-nbd of H4 will
receive one-third fraction of it in place of the earlier score of 1

2 . This update on
2-nbd of P4 is performed within the computation of the previous step.

4. The fraction values ∆obj(I2, H4,W c) (in (d)) and ∆obj(H4, P1,W c), ∆obj(H4, P2,W c),
∆obj(H4, I2,W c) (in (e)) remain unaffected. It can be observed that the frac-
tion values of all other objects that are not in 1-nbd or 2-nbd of P4 also re-
main unaffected. That is, ∆obj(C1, P3,W c), ∆obj(P3, C1,W c), ∆obj(H2, P2,W c),
∆obj(P2, H2,W c), etc., remain the same. Further, note that in the 1-nbd of H1
there are two newly inserted objects with label P , namely P4 and P5. Thus the
multiple updates for ∆obj(P4, H1,W c) and ∆obj(P5, H1,W c) due to (b) and (c)
should be avoided.

Next, changes in fraction values due to the deletion of objects are discussed. For expla-
nation, the example of Figure 5.6 is used in which object P4 is deleted.

5.4.2 Deletion of object

This subsection presents observations about the effect of deleting an object o ∈ Od on
the fraction values of the objects in W c.

(a) For all the objects o′ ∈ Disk(o, d,W o), fraction values ∆obj(o′, o,W o) and ∆obj(o, o′,W o)
are deleted. This update can be performed by exploring the 1-nbd of o ∈ Od.
Clearly, from the example, fraction values ∆obj(P4, H1,W o), ∆obj(P4, H4,W o),
∆obj(P4, I2,W o) and ∆obj(H1, P4,W o), ∆obj(H4, P4,W o), ∆obj(I2, P4,W o) are
all deleted.

(b) The deletion of o reduces the neighborhood count of o′ ∈ Disk(o, d,W o) with
respect to the label o.l, i.e., | Neigh(o′, o.l, d) |. Thus, for all the objects o′′ ∈
Disk(o′, d,W o) such that o′′.l = o.l, it is necessary to update ∆obj(o′′, o′,W c)
using | Neigh(o′, o.l, d) | (lemma 5.3). This update requires exploration of the
1-nbd and 2-nbd of o ∈ Od.
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For example, the deletion of P4 reduces the neighborhood counts of | Neigh(H1, P, d) |
and | Neigh(H4, P, d) |, | Neigh(I2, P, d) | by 1. Thus the updated value is
∆obj(P3, H1,W c) = 1

2 = ∆obj(P2, H1,W c). Similarly, ∆obj(P2, H4,W c) = 1
2 =

∆obj(P1, H4,W c).

(c) For all the objects o′ ∈ Disk(o, d,W o) and o′′ ∈ Disk(o′, d,W o) such that o′′.l ̸=
o.l, the ∆obj(o′′, o′,W c) values remain unchanged. (lemma 2) i.e., ∆obj(o′′, o′,W c) =
∆obj(o′′, o′,W o)
From the example, the score ∆obj(H4, I2,W c) and ∆obj(I2, H4,W c) will remain
unaffected.

(d) For all the objects o′ ∈ Disk(o, d,W o) and o′′ ∈ Disk(o′, d,W o), such that o′′.l =
o.l, the ∆obj(o′, o′′,W c) values remain unchanged.
From the example, the score ∆obj(H1, P2,W c) and ∆obj(H4, P1,W c) will remain
unaffected as no new object with label H is deleted in their respective neighbor-
hoods.

(e) For all the objects o′ that are neither in the 1-nbd nor in 2-nbd of o ∈ Od, their
scores remain unchanged.
From the example, the score of ∆obj(H2, P1,W c) remains unaffected.

The implementation procedure for updating the fraction values and subsequently
the fraction scores for the changed window using the observation-based approach is
non-trivial. This is because the fraction value that a new object o receives from a
neighboring object o′ requires finding change in the neighborhood of o′. If many objects
were added objects in the neighborhood of o′ other than o that have label o.l, a recursive
call to update the neighborhood count from newly added objects may update the same
neighborhood count multiple times and may give an overcounting problem. The addition
of an object also changes the fraction value of its neighboring objects. Thus, updating
a fraction value requires identifying the effect of addition and deletion on the changed
objects, their neighborhood objects, and so forth. Moreover, for efficient computation,
it is required to update the fraction score (equation 5.2) together with the fraction
value. The computation procedure for updating fraction values and the fraction scores
is discussed in the next section. For finding co-locations, the procedure of Chan et al.
[9] is adopted after computing the support measure for the updated fraction scores.

5.5 Algorithms for Mining Co-locations on Dynamic Data

This Section presents an efficient approach to updating the fraction score (Algorithm 10).
It is based on finding fraction values of pair of objects in the current window W c by
restoring values from the old window W o that remain unaffected, updating values that
change, and computing values that are freshly introduced based on the added objects
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Oa and deleted objects Od. This requires updating neighborhood count and fraction
score of objects based on the observations given in previous Section (5.4.1 and 5.4.2).
Then, updated fraction values to efficiently compute the fraction scores of labeled objects.
Since fraction score changes correspond to fraction value changes, a record of the changed
values in Update_List is maintained.
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Figure 5.7: Deletion of Objects

5.5.1 Fraction_Update_List

This Section explains the structure of the Update_List, its creation, and maintenance.
Update_List is a hash map containing key-value pair and is denoted as Update_List <
Key, V alue >. It stores a combination of the object(o′) and label(l) as a key and a list of
objects in the neighborhood of o′ with label l as the value corresponding to the key. The
Fraction_Update_List procedure is used to create and update this list (Algorithm 7).
In step 1-2, it is checked if the key (o′, l) is already present in the Update_List. If not,
it is initialized to NULL. In step 3-5, the procedure searches for the object o′′ with label
l in 1-nbd objects of o′ and append it to the Update_List if it is found.

As per observation (b) in Section 5.4.2, the deletion object H3 in the running example
of Figure 5.7 updates ∆obj(H4, P1,W c). Hence, object H4 is added to the list as an
entry with key (P1, H). Similarly, as per observation (c) in 5.4.1, adding object P4
updates the ∆obj(P1, H4,W c). Thus, object P1 is added to the list as an entry with
key (H4, P ).
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Figure 5.8: Addition of Objects

Procedure 7 Fraction_Update_List(o′, l, disk)
1: if (o′, l) ̸∈ Update_List.key then
2: Update_List(o′, l)←− NULL
3: for all o′′ ∈ disk do
4: if o′′.l = l then
5: Update_List(o′, l).append(o′′)
6: end if
7: end for
8: end if

5.5.2 Update_Neigh_Deletion

This subsection presents the proposed procedure for updating the neighborhood count of
objects once an object is deleted. The procedure first inserts the Update_list for which
the fraction values need to be updated as explained in the previous subsection. After
that, we reduce the neighborhood count of the objects is reduced as per observation (b)
in Section 5.4.2.

In steps 1-2, a loop is done over the 1-nbd objects of deleted objects. In step-3, we
invoke the Fraction_Update_List is invoked on W r for all the objects in 1-nbd with
respect to the deleted object label. In step 4-5, the neighborhood count of 1-nbd objects
is decremented by 1 as per lemma 5.3.
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Procedure 8 Update_Neigh_Deletion
1: for all o ∈ Od do
2: for all o′ ∈ Disk(o, d,W o) do
3: Call: Fraction_Update_List(o′, o.l,Disk(o, d,W r))
4: if o′ ∈W r then
5: | Neigh(o′, o.l, d) |←−| Neigh(o′, o.l, d) | −1
6: end if
7: end for
8: end for

5.5.3 Update_Neigh_Addition

This subsection presents the procedure to update the neighborhood count of objects once
an object is added. Similar to the Update_Neigh_Deletion procedure, this procedure
also does two tasks. First, it inserts in the Update_list the objects for which the fraction
values need to be updated. Second, the neighborhood count of objects is increased as
discussed in Section 5.4.1.

Procedure 9 Update_Neigh_Addition
1: for all o ∈W c ∧ l ∈Lc do
2: if o ̸∈W r ∨ l ̸∈Lr then
3: initialize | Neigh(o, l, d) | and ∆label(o, l,W c) to 0
4: end if
5: end for
6: for all o ∈ Oa do
7: for all o′ ∈ Disk(o, d,W c) do
8: | Neigh(o, o′.l, d) |←−| Neigh(o, o′.l, d) | +1
9: Set: ∆obj(o, o′,W o)← 0

10: Call: Fraction_Update_List(o′, o.l,Disk(o, d,W c))
11: if o′ ∈W r then
12: | Neigh(o′, o.l, d) | ←−| Neigh(o′, o.l, d) |+ 1
13: end if
14: end for
15: end for

In steps 1-3, the neighborhood counts and fraction scores of newly added objects
are initialized to 0. In step 4-5, the procedure iterates over the 1-nbd objects of newly
added objects in the current window. In step 6 , the procedure calculates the neigh-
borhood count of new objects with respect to the labels of its 1-nbd objects. In step-7
the procedure sets the old fraction value of newly inserted objects with respect to its
neighborhood objects to 0. In step-8 the Fraction_Update_List is invoked on W c for
all the objects in 1-nbd with respect to the newly added object labels. In steps 8-9, the
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neighborhood count of 1-nbd objects is incremented by 1 as per lemma 5.5.

5.5.4 Update Fraction Score

This subsection presents the proposed algorithm to update fraction scores. This al-
gorithm maintains global states of the variables old object set W o, old label set Lo,
updated object set W c, updated label set Lc and distance threshold d. It also includes
a set of computed fraction values ∆obj and fraction scores ∆label(given in equation 5.1
and 5.2). Update_List introduced in Section 5.5.1 is also a part of the global state.
For the computational purpose, a retained object set W r and retained label set Lr are
maintained. W r represents the retained object set, which includes objects that were
present in the previous state without any changes. These are the objects that were re-
tained as-is from the previous state. Lr, similarly, represents the retained label set. It
contains labels that were present in the previous state without any changes, essentially
representing labels that were retained from the previous state. This algorithm takes
new object set Oa and deleted object set Od as inputs. The objective is to update each
fraction score ∆label (equation 5.2) for the current window, which is the output of this
algorithm.

Procedure 10 Update Fraction Scores (UpFS)
Global State: W o, Lo, W c, Lc, d, ∆obj, ∆label, Update_List
Input: Oa, Od

Output: Updated fraction scores ∆label

1: Update W r,Lr, W c, Lc

2: Call: Update_Neigh_Deletion, Update_Neigh_Addition
3: for all o ∈ Oa do
4: for all o′ ∈ Disk(o, d,W c) do
5: ∆obj(o′, o,W c)←− 1/ | Neigh(o, o′.l, d) |
6: ∆label(o′, o.l,W c)←− ∆label(o′, o.l,W c) + ∆obj(o′, o,W c)
7: end for
8: end for
9: for all (o′, l) ∈ Update_List.key do

10: for all o′′ ∈ Update_List(o′, l)) do
11: ∆obj(o′′, o′,W c)← 1/ | Neigh(o′, o.l, d) |
12: ∆label(o′′, o′.l,W c)← ∆label(o′′, o′.l,W c) + ∆obj(o′′, o′,W c)−∆obj(o′′, o′,W o)
13: end for
14: end for

In step-1, W r, Lr is updated by deleting Od and W c, Lc by adding Oa objects.
Further, the set of labels Lr is updated if any label completely disappears after deleting
Od, and the set of labels Lc if any new label is introduced after adding Oa. Consider
Figure.5, which depicts the deletion of objects {H2, H3, S1, C2}, the update of W r =
{H1, H4, P1, P2, P3, S2, I1, I2, C1, C3} and addition of objects {P4, P5,M1, I3}. The
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current window is updated as WC = {H1, H4, P1, P2, P3, P4, P5, S2, I1, I2, I3, C1, C3,
M1}. All the labels are retained in Lr as there is no label that has completely
disappeared due to deletion of Od, but a label M is added to Lc. Hence, Lr =
{H,P, S, I, C} and Lc = {H,P, S, I, C,M}. In step-2, the algorithm updates the neigh-
borhood counts of objects that are affected using the Update_Neigh_Deletion and
Update_Neigh_Addition procedures (see sections 5.5.2 and 5.5.3). In steps 3-5,the al-
gorithm calculates the fraction values of 1-nbd objects with respect to the new object
as per equation 5.1. Step-6 updates the fraction scores of 1-nbd objects as an aggre-
gated sum of ∆ values with respect to the new object label. In steps 7-9,the algorithm
calculates the ∆ values of 2-nbd objects with respect to the 1-nbd objects and also new
objects as per equation 5.1 using the < Key, V alue > pairs inserted in step-2 using
Fraction_Update_List(o′, l, disk) procedure (explained in Section 5.5.1). In step-10
we update the fraction scores of 2-nbd objects as aggregated sum of fraction values with
respect to 1-nbd object labels as per lemmas 5.4 and 5.6. The updated neighborhoods
and fraction scores after deletion and addition are shown in Table 5.2.

Obj Neighborhood Neighborhood Count Fraction score

H P C S I M H P C S I M

H1 H1, P2, C3, P3 1 1 2 0 0 0 1 1 1 0 0 0
H4 H4, P1,P2,P4,

I2
1 3 0 0 1 0 1 1 0 0 1 0

P1 P1,H4 1 1 0 0 0 0 0.33 1 0 0 0 0
P2 P2, P4, H1,

H4,
2 2 0 0 0 0 0.33 1 0 0 0 0

P3 P3, P4, H1, C4 1 2 1 0 0 0 0.33 1 1 0 0 0
P4 P2, P3, P4,

H1, H4, I2
2 3 0 0 1 0 0.66 1 0 0 1 0

S2 S2, M1, C1 0 0 1 1 0 1 0 0 1.0 1 0 1
I1 I1, I3 0 0 0 0 2 0 0 0 0 0 1 0
12 I2, H4, P4 1 1 0 0 1 0 1 0 0 0 1 0
13 I3,I1 0 0 0 0 1 0 1 0 0 0 1 0
C1 C1,S2, M1 0 0 1 1 0 1 0 0 1 1 0 0.5
C3 C3, C4, H1, 1 0 2 0 0 0 0.5 0 1 0 0 0
C4 C3, C4, H1,

M1, P3
1 1 2 0 0 1 0.5 1 1 0 0 1

M1 M1, C1, C4, S2 0 0 1 1 0 1 0 0 1 1 0 1

Table 5.2: Snapshot After Addition

The proposed algorithm reuses the apriori-like search procedure proposed by Chan
et. al. [9], which enumerate candidate co-location patterns iteratively and compute the
support by using a filter and verification approach with combinatorial search. For each
candidate co-location, the algorithm checks if it satisfies the support threshold and add
it to set of co-locations if it is satisfied.
Time complexity: Given λ which is the number of changed objects, t which is the
current time or the number of window changes, the algorithm updates fraction scores
with a best-case complexity time O(λ) and a worst-case time complexity O(|W |).
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5.5.5 Implementations

Three implementations, namely, Dynamic Mining (DM), Dynamic Mining with NBD-
list (DM NBD-list), and Dynamic Mining with NBD- Hash map (DM NBD-HM) are
proposed. DM updates the fraction scores of objects that are changed due to window
movement, i.e., with the addition and the deletion of objects. For this, we identified the
effect of the addition and deletion of objects over the neighborhood objects and proposed
a computational framework for updating fraction scores. DM NBD-list and DM NBD-
HM store the neighborhood of all the objects as the list of objects and as the hash map
of objects over the features respectively. These two algorithms are expected to avoid
the unnecessary computation of searching neighborhood objects while updating fraction
scores in DM. However, if many objects are in the current window (i.e., the number of
changed objects is huge), the time required to update the neighborhood and the memory
requirement to store them will be high. In this case, updating fraction score becomes
costlier, and it will be more beneficial to mine the patterns from scratch as compared to
updating the result set from the past state.

5.6 Experiments and Results

We study the performance of the proposed algorithm in this Section.

5.6.1 Experimental Setup

In order to evaluate the performance of UpFS algorithm experiments were carried out
on both real data and synthetic data. Datasets were obtained from Chan et. al. [9].
To make the dynamic setting we have associated a arrival timestamps for the data. We
have modeled the arrival timestamps using a Poisson process.

Real dataset: This dataset describes points of interest in the UK2. It contains fea-
tures such as restaurants, churches, and banks It consists of 182,334 objects with 36
feature types. This dataset is referred to as Dataset-1 in the experiments.
Synthetic datasets: Several synthetic datasets were generated using the process given
by Huang et. al. [24]. First co-locations were generated and then neighborhoods have
been added followed by the addition of noise. The parameters like size of each co-location
(λ1), spatial framework size (D), size of grid cell (d′), noise label ratio (rnoisy_label), and
noise instance ratio (rnoisy_num), number of co-location (Nco_loc) are set to 5, 106, 10,
0.5, 0.5 and 20 respectively. Dataset-2 refers to a synthetic dataset of 152487 objects
with 462 features, generated with the default values shown in Table 5.3.

2https://www.pocketgpsworld.com/modules.php?name=POIs
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All algorithms were implemented in C/C++ and are memory-based. Whatever algo-
rithms that are proposed for dynamic mining of co-locations used only the participation
index as a prevalence measure. Since we did not find an algorithm for fraction score,
the performance of these algorithms was compared to a baseline algorithm, which is a
customization of the fraction score algorithm3 proposed by Chan et al. [9]. It is adapted
for dynamic data by recomputing the fraction score periodically with the window move-
ment. All experiments were conducted on the Linux operating system running on a 3.20
GHz computer with 32 GB RAM.

Parameter settings: Table 5.3 shows the experimental parameters and the values
used in the experiments. The bold one indicates the default values. λ is the number of
objects added or deleted from the window. S is the minimum support threshold. | W |
is the size of the window. t is the number of times the window is updated. d is the
distance threshold of neighborhoods.

Parameter Meaning Values
λ Data change rate 5 10 15 20 30
S Minimum support thresholds 0.1 0.2 0.3 0.4 0.5 0.6
|W | Window size 500 1000 1500 2000 2500

3000
t Window change rate 5 10 15 20 25 30
d Distance 1 2 3 4 5 6
λ2 The parameter used in Poisson dis-

tribution to construct the instances
for each maximal co-location

40, 50, 60, 70, 80

mclump Number of feature instances for
each co-location in it’s neighbor-
hood

1, 2, 3, 4, 5

moverlap Number of maximal co-locations
generated by appending more fea-
tures into co-locations

1, 1, 5, 10, 15, 20

Table 5.3: Experimental parameters and their values in experiments.

5.6.2 Influence of the distance threshold on performance

The influence of increasing the distance threshold on the algorithms’ performance was
first assessed. Results are shown in in Figure 5.9 and 5.10. For dataset-1, in Figure
5.9, for distances smaller than 3 the time for the three algorithms except DM increases
exponentially. This is due to the fact that dataset-1 consists of objects with locations
from the whole state that are scattered across various cities. For such locally dense but

3https://github.com/harryckh/ICDE19-co-location
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otherwise sparse data, we observe a substantial change in the neighborhood for smaller
distance values up to an extent when the neighborhood starts crossing the city limit.
The same effect is visible in the memory requirement of the algorithms ‘DM NBD-list’
and ‘DM NBD-HM’. Further, even the data within the city is not very dense. As a
result, the time and space requirement of ‘DM NBD-list’ and ‘DM NBD-HM’ is quite
high due to the overhead in maintaining the neighborhood structure. For the baseline,
the re-computation of the fraction score takes more time than any variants of the fraction
score updating algorithm. DM outperforms all the three algorithms on dataset-1. For
dataset-2, in Figure 2, with an increase in distance, time and memory remain constant
unlike results in Figure 5.10. This is because dataset-2 consists of all objects within
distance 1 and does not include a higher number of objects in the neighborhood as the
distance increases. And also there are more features in dataset-2 compared to dataset-
1; as a result, ‘DM NBD-list’ outperforms other algorithms in terms of time. ’DM
NBD-HM’ requires more time and memory because it indexes objects according to their
feature types and stores the list of objects that belong to a feature separately. DM and
the baseline take more time because they have to find the neighborhood objects again
and again.
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Figure 5.9: Performance with Distance Threshold for Dataset-1

5.6.3 Influence of the window size on performance

The effect of increasing the window size on the algorithms’ performance was also eval-
uated. Results are shown in Figure 5.11 and 5.12. For dataset-1 in Figure 5.11.a the
running time increases with an increase in window size. This is clearly due to the in-
crease in the number of objects in the neighborhood. Figure 5.11.a clarifies that for
dataset-1, all the proposed algorithms take less time than the baseline. However, the
memory required by DM NBD-list and DM NBD-HM increases exponentially with an
increase in window size, as shown in Figure 5.11b. For dataset-2 in Figure 5.12a the
running time increases with an increase in the window size. Baseline and DM take more
time compared to the other two due to that fact they have to compute the number of



5. Mining Co-location Patterns on Dynamic Data 109

1 2 3 4 5 6

0.5

1

1.5

2

2.5

Distance Threshold

T
ot
a
l
T
im

e(
s)

(a)Running Time

Baseline
DS

DS NBD-list
DS NBD-HM

1 2 3 4 5 6

0.5

1

1.5

2

·106

Distance Threshold

M
em

o
ry
(i
n
K
il
o
B
y
te
s)

(b)Memory

Baseline
DS

DS NBD-list
DS NBD-HM

Figure 5.10: Performance with Distance Threshold for Dataset-2

neighborhoods again and again. DM NBD-HM takes much time than DM NBD-list
because it has to do indexing for a large number of features in this data. Hence, from
Figure 5.12a it is clear that DM NBD-list takes less time than all other algorithms. In
Figure 5.12b the memory requirement of DM NBD-HM increases exponentially with an
increase in window size because it maintains separate lists for each feature. However, it
is constant for all other algorithms.
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Figure 5.11: Performance with window Size for Dataset 1

5.6.4 Performance with window change rate

The effect of increasing the window change rate on the algorithms’ performance was also
evaluated. Results are shown in Figure 5.13 and 5.14. For dataset-1 from Figure 5.13a,
it is clear that the time increases with an increase in Window change rate. DM is faster
than the other algorithms as it calculates neighborhood objects only for the influenced
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Figure 5.12: Performance with window Size for Dataset 2

objects whereas the baseline to repeated calculations with the arrival of new data. On
the other hand, DM NBD-list and DM NBD-HM take more time than DM due to the
maintenance cost of neighborhood structures. The memory required by DM NBD-list
and DM NBD-HM rises exponentially with the increase in window movements, as shown
in Figure 5.13b. This is because memory requirements increase with the increment rate.
For dataset-2 in Figure 5.14a, it is observed that runtime increases with dynamic update
rate. In this dataset, the computational overhead for computing neighborhood for DM
is almost equivalent to that of the baseline. Whereas DM NBD-list and DM NBD-HM
are taking less time because these algorithms are storing the neighborhoods. In Figure
5.14b, the memory requirement by DM NBD-HM increases exponentially as the window
size is increased because it maintains separate lists for each feature. However, it is
constant for all other algorithms.
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Figure 5.13: Performance with window change rate for Dataset-1
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Figure 5.14: Performance with window change rate for Dataset-2

5.6.5 Influence of data change rate on performance

Another experiment examined the performance of the proposed algorithms as data
change rate is increased. Results are shown in Figure 5.15 and Figure 5.16. For dataset-
1 in Figure 5.15a, it is found that the DM algorithm algorithm takes less time than
the baseline algorithm and the other two. The memory required by DM NBD-list and
DM NBD-HM is more than the other two, as shown in Figure 5.15b. For dataset-2 in
Figure 5.16a DM NBD-list takes less time than all other algorithms because it stores
neighborhood objects instead of recomputing them. DM NBD-HM takes a little more
time than DM NBD-list because it has to create an index on a huge number of features.
DM and the baseline are taking more time as they have to recompute the neighborhood
objects. In Figure 5.16b, the memory required by DM NBD-HM is much more than
other algorithms because it has to maintain a separate list for each feature.

5 10 15 20 25 30

1

2

3

λ

T
ot
al

T
im

e(
s)

(a)Running Time

Baseline
DS

DS NBD-list
DS NBD-HM

5 10 15 20 25 30

0

1

2

3

·106

λ

M
em

or
y
(i
n
K
il
o
B
y
te
s)

(b)Memory

Baseline
DS

DS NBD-list
DS NBD-HM

Figure 5.15: Performance with λ for Dataset-1
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Figure 5.16: Performance with λ for Dataset-2
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Figure 5.17: Performance with Minimum Support Threshold for Dataset -1
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Figure 5.18: Performance with Minimum Support Threshold for Dataset-2
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5.6.6 Performance with Minimum Support Threshold

The influence of the minimum support threshold on the performance of the algorithm
was assessed. Results are presented in Figure 5.17 and 5.18. For dataset-1 Figure 5.17a
shows that the DM algorithm takes less time than the baseline algorithm and the other
two. The memory required by DM NBD-list and DM NBD-HM is more than the other
two, as shown in Figure 5.17b. For dataset-2, Figure 5.18a shows that DM NBD-list
takes less time than the baseline algorithm and the other two. The memory required by
DM NBD-HM is much more compared to all other algorithms because it has to maintain
a separate list for each feature as shown in Figure 5.18b.

5.6.7 Performance with Damped Window

Though we have previously only discussed the temporal-window model it is not a lim-
itation of the algorithm. It can be easily extended for the damped window model by
setting the number deleted objects as Od = 0 and Oa > 0.

In this experiment we consider only the addition of objects into windows. We have
examined the performance effect of the proposed algorithms as the number of objects
being added is increased. Results are depicted in Figure 5.19 and Figure 5.20. For
dataset-1, Figure 5.20 shows that the running time slowly increases as number of added
objects is increased. DM outperforms other algorithms both in terms of time and mem-
ory. For dataset-2 in Figure 5.20a, DM NBD-list takes less time compared to all other
algorithms. The memory required by DM NBD-HM is much more compared to all other
algorithms because it has to maintain a separate list for each feature as shown in Figure
5.20b.
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Figure 5.19: Performance with No. of objects added for Dataset -1
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Figure 5.20: Performance with No. of objects added for Dataset-2

5.6.8 Effect of moverlap on synthetic datasets

The performance of the proposed algorithms was also assessed as the moverlap is in-
creased. Results are shown in Figure 5.21. Running times of DM, DM NBD-list and
the baseline increase with moverlap. However, the running time of DM NBD-list remains
constant. Overall, all the proposed algorithms run faster than the baseline. DM NBD-
HM consumes more memory than all other algorthms.
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Figure 5.21: Effect of moverlap on synthetic Datasets

5.6.9 Effect of mclump on synthetic Datasets

The influence of mclump on the proposed algorithms’ performance was also evaluated.
Results are shown in Figure 5.22. The running times of all algorithms increase with
mclump. This is because the number of objects in the neighborhood of each object
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increases. Besides, DM NBD-HM needs orders of magnitude more memory compared to
all other algorithms.
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Figure 5.22: Effect of mclump on synthetic Datasets

5.6.10 Effect of λ2 on synthetic Datasets

In another experiment, the influence of increasing λ2 on the performance of the algo-
rithms was assessed. Results are shown in Figure 5.23. The performance of all algorithms
remains constant when λ2 is increased, in terms of running time and memory. However
all our algorithms outperform the baseline. Besides DM NBD-list runs faster than the
two other proposed algorithms. DM takes much less memory than all other algorithms.
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Figure 5.23: Effect of λ2 on synthetic Datasets
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5.7 Performance Evaluation and Analysis

5.7.1 Dynamic Mining (DM):

Strengths:

1. Efficiency in Time: DM performs well in terms of time efficiency, particularly
when compared to the baseline (see Figure 5.9).

2. Adaptability: It efficiently calculates neighborhood objects for influenced objects,
contributing to its effectiveness in dynamic scenarios.

Weaknesses:

1. Memory Usage: DM may face challenges with memory usage, especially when
dealing with large datasets or frequent window movements (see Figure 5.9).

2. Scalability: The exponential increase in time with smaller distance values indi-
cates potential scalability issues for locally dense but otherwise sparse datasets (see
Figure 5.9).

5.7.2 Dynamic Mining with NBD-list (DM NBD-list):

Strengths:

1. Time Efficiency: DM NBD-list performs well in terms of time efficiency, espe-
cially compared to DM NBD-HM and the baseline (see Figure 5.11a and Figure
5.13a).

2. Neighborhood Storage: Storing neighborhood objects helps avoid unnecessary
recomputation, contributing to time efficiency.

Weaknesses:

1. Memory Usage: Like DM, DM NBD-list may face challenges with memory usage,
particularly as the window size increases (see Figure 5.11b).

2. Scalability: Exponential growth in memory requirements with increasing window
size suggests scalability concerns (see Figure 5.11b).

5.7.3 Dynamic Mining with NBD-Hash map (DM NBD-HM):

Strengths:
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1. Feature Indexing: DM NBD-HM uses feature indexing, which can be beneficial
in scenarios with a large number of features.

2. Neighborhood Storage: Similar to DM NBD-list, storing neighborhood objects
helps avoid unnecessary recomputation.

Weaknesses:

1. Memory Usage: DM NBD-HM exhibits high memory usage, especially due to
maintaining separate lists for each feature (see Figure 5.12b).

2. Computational Overhead: The feature indexing, while useful, can lead to
higher computational overhead, impacting performance.

5.7.4 Overall Considerations:

1. Baseline (Fraction Score Algorithm):

• Strengths: Provides a benchmark for comparison, especially for fraction
score-related evaluations.

• Weaknesses: May not be optimized for dynamic settings, and re-computing
fraction scores periodically can become computationally expensive.

2. General Observations:

• Scalability Concerns: Several implementations exhibit potential scalability
concerns, particularly with memory requirements and computational time for
larger datasets or frequent updates (see various figures).

• Trade-offs: There seems to be a trade-off between time efficiency and mem-
ory usage, and the choice of the algorithm may depend on the specific char-
acteristics of the dataset and the dynamic scenario.

5.8 Conclusion

This work uses a temporal-window framework to address the problem of co-location
pattern mining for dynamic data. The effect of the change of objects over the frac-
tion score of the neighbouring objects is theoretically analyzed and used to propose
an observation-based technique UpFS for updating the co-location patterns. The pro-
posed technique updates fraction scores by reducing candidate patterns and updating
the required neighborhood counts from the previous state, i.e., the previously computed
patterns and the old data state, and the changes in the data. The three implementations
of UpFS analyze the space and time complexity tradeoff for different datasets. The per-
formance of the proposed algorithms is compared with a baseline approach by varying
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multiple parameters and dataset characteristics such as the window size, number of up-
dates, and distance threshold on both real and synthetic datasets. It is shown that the
proposed technique for mining co-location for dynamic data performs much better than
the baseline approach. As a possible extension to this work, a distributed UpFS mining
algorithm can be designed to increase the dynamic data processing efficiency using dis-
tributed fault-tolerant stream processing systems like Apache Spark streaming. Indeed,
considering statistical significance could provide a more comprehensive evaluation of the
proposed approach.



Chapter 6

Conclusion

In this thesis, three pertinent issues in colocation pattern mining were studied, each
addressing a specific challenge in computing colocation patterns from spatial data.

The colocation mining techniques work with a single distance threshold value. The
choice of this distance threshold is highly data-dependent. This makes it challenging
and time-consuming for the user to find a suitable distance value. As a first work,
We have addressed this issue by introducing a computational framework for prevalent
colocation mining over a distance range query. As per our knowledge, this is the first
work that discusses the issue of distance range query over colocation patterns. First,
a Naïve approach was presented as a basic framework for the problem. This helps in
identifying the computational challenges leading to the proposal of an improved method
called RangeInc−Mining. The RangeInc−Mining employs incremental mining over
the distance range by utilizing the subset relationship between the colocations of the
consecutive distances and updating the colocations of the next stage from the previous
stage. Next, the critical distance of colocation patterns was defined. By leveraging the
structural properties of colocations, an efficient technique for computing critical distances
was developed. This, in turn, led to the efficient single-pass range query algorithm,
named Range − CoMine. The performance of these algorithms was experimentally
evaluated using both real-world and synthetic datasets, and it was observed that Range−
CoMine outperformed the other approaches in terms of time complexity and scalability.
The possible future extension in this domain can be addressing the issues of distance
range query over road networks, for dynamic data, etc. The selection of a minimum
prevalence threshold is also challenging for a user. It can also be looked into that how
this issue of finding a suitable prevalence threshold can be addressed. One possible
approach can be exploring top-k colocation pattern mining with a distance range.

The second work focused on mining high-utility subgraph (colocation) patterns from
a graph database using distributed approaches. To address the issue of the utility mea-
sure not being anti-monotonic, a function was defined to obtain the upper-bound util-
ity of a subgraph pattern. This enabled a systematic search for high-utility subgraph
patterns and reduction of the search space. Various optimization strategies were pro-
posed, including the use of bloom filters to prune non-candidate patterns and tighten the
upper-bound utility estimate. Additionally, a Schimmy design was introduced to reduce

119
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communication of graph data between nodes, and the removal of embeddings from the
pattern object was suggested to minimize data communication. The proposed solution
was shown to be flexible, relying on primitive operations available on most distributed
platforms. Experimental studies demonstrated the efficiency of the solution; however, it
was noted that the upper-bound utility estimate of a pattern was still relatively loose.
As a future direction, the authors planned to explore new mechanisms to improve the
tightness of the upper-bound utility estimate.

Classical co-location mining methods are primarily tailored for static data and lack
efficiency in handling dynamic updates. In the third work, we focus on extracting co-
location patterns from dynamic data, where the dataset undergoes changes over time by
adding and removing objects. In this work, we tackled the problem of mining co-location
patterns for dynamic data using a temporal window. A theoretical framework was pre-
sented for fraction-score updation, and algorithms were developed to effectively update
fraction-scores by modifying neighborhood counts due to object additions or deletions.
The performance of the proposed algorithms was compared to a baseline approach us-
ing various parameters and dataset characteristics, including window size, number of
updates, and distance threshold. The experimental results demonstrated the efficiency
of the proposed co-location mining algorithm for dynamic data updates, outperforming
the baseline approach. For possible future extensions to this problem, increasing the
efficiency of dynamic data processing can be explored. Specifically, distributed UpFS
mining algorithms using fault-tolerant stream processing systems like Apache Spark
streaming can be designed to increase computational complexity.

The thesis made significant contributions to the field of colocation pattern mining
through the introduction of novel approaches and the exploration of various challenges
in prevalent colocation mining, high-utility subgraph pattern mining, and co-location
pattern mining for dynamic data. The experimental evaluations provided evidence of
the effectiveness and efficiency of the proposed solutions. The future extensions and plans
outlined in each work offered valuable directions for further research and development
in these areas.
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