
  

1 
 

Decoding the molecular basis of  

Iterative Stress Response (ISR) 

by 

Anmol Aggarwal 

under the supervision of 

Dr. Gaurav Ahuja 

 

Submitted in partial fulfilment of the requirements for the 

degree of Master of Technology, Computational Biology 

 

 

 

 

 

 

Center for Computational Biology, 

Indraprastha Institute of Information Technology - Delhi  



  

2 
 

Certificate 

 
This is to certify that the thesis titled “Decoding the molecular basis 

of Iterative Stress Response (ISR)” being submitted by Ms. Anmol 

Aggarwal to the Indraprastha Institute of Information Technology Delhi, 

for the award of the Master of Technology in Computational Biology, is an 

original research work conducted by her under my supervision. In my 

opinion, the thesis has reached the standards fulfilling the requirements 

of the regulations relating to the degree. 

The results contained in this thesis have not been submitted in part or 

full to any other University or Institute for the award of any 

degree/diploma. 

 

 

 

Sep,2023           Dr. Gaurav Ahuja, 

Delhi                Associate Professor, 

Department of Computational Biology, 

Indraprastha Institute of Information Technology, Delhi, 

New Delhi 110020  



  

3 
 

Declaration 

 
I submit this project entitled “Decoding the molecular basis of Iterative 

Stress Response (ISR)” to the Department of Computational Biology, 

Indraprastha Institute of Information Technology, Delhi -110020. I declare 

that this is my original work carried out under the guidance of Dr. Gaurav 

Ahuja, Associate Professor, Department of Computational Biology at IIIT-

Delhi. 

 

 

 

 

Aug,2023             Anmol Aggarwal, 

Delhi         M.Tech Student (Dec 2020 -  Sep 2023), 

Department of Computational Biology, 

Indraprastha Institute of Information Technology, Delhi, 

New Delhi 110020  



  

4 
 

Acknowledgement 

I would like to express my deepest gratitude to all those who have supported and 

guided me throughout this research journey, without whom this thesis would not have 

been possible. 

First and foremost, I am immensely thankful to my supervisor, Dr. Gaurav Ahuja, for 

their unwavering guidance, invaluable insights, and continuous encouragement. His 

expertise and dedication have been instrumental in shaping the direction of this 

research. 

I extend my thanks to Ms. Aayushi Mittal, my mentor, and a PhD student in our lab. 

Her assistance in aligning and channelizing my work, timely inputs, and unwavering 

support in addressing all my doubts, whether trivial or complex, are deeply 

appreciated. 

I would also like to express my gratitude to the faculty members and staff of the 

Department of Computational Biology at IIIT Delhi. Their constant support has been 

invaluable throughout our college journey. A special note of appreciation goes to the 

IT helpdesk for their ongoing assistance in granting access to the college's IT 

infrastructure. 

Lastly, I extend my gratitude to my constants: my parents and siblings, along with all 

my lab mates and batchmates, for their continuous support throughout my dissertation 

journey.  



  

5 
 

Index 

S.No  Contents  Pg.no 

I  Abstract  12 

II  
Introduction  

II.1 - Yeast as a model organism 

II.2 - Yeast in Thermal-stress studies 

II.3 - Limitations in utilizing Yeast for Thermotolerance 

Exploration 

14 

15 

15 

 

17 

III 
Literature Review  

III.1 - A Chronological Overview 

III.2 - Global analysis of the Heat shock response screen 

III.3 - Computational Progress 

 
18 

 
19 

 
 

21 
 

24 

IV  
Methodology                                                                                   

IV.1 - Experimental design of PULSER Experiment  

IV.2 - RNA-seq read alignment and read counting Assay 

IV.2.1 - The Seed-and-vote mapping paradigm. 

IV.2.2 - FastQC 

IV.3 - Data Transformation and Statistical Analysis 

IV.3.1 - Regularized log (rlog) transformation 

 

26 

27 

 

28 

28 

 

29 

29 

29 

 



  

6 
 

 

IV.3.2 - Principal Component Analysis (PCA) 

IV.3.3 - Multidimensional scaling (MDS) 

IV.3.4 - Elbow Method 

IV.3.5 - K- means Clustering. 

IV.4 - Analysis of genes with differential expression (DEGs) 

IV.4.1 - Volcano Plot 

IV.4.2 - Hierarchical clustering tree 

IV.4.3 - Protein-protein interactions (PPI) 

IV.5 - Pathway Analysis 

IV.5.1 – PGSEA 

IV.6 – Seurat 

IV.6.1 - Linear dimensionality reduction 

IV.6.2 - Jackstraw Plot 

IV.6.3 -Silhouette Analysis 

IV.6.4 – Clustering 

IV.6.5 - Non-linear dimensionality reduction 

IV.7 -Similarity Index 

IV.7.1 – Correlation 

IV.7.2 – Covariance 

IV.7.3 – Euclidean 

30 

30 

30 

30 

31 

31 

31 

31 

32 

32 

32 

32 

33 

33 

33 

33 

34 

34 

34 

34 



  

7 
 

IV.8 - MuSiC Deconvolution 

IV.9 – Experimental design of Apoptotic Assay 

35 

36 

 

 Results and Discussions  

V.1 – Objective 1: Transcriptome Analysis of thermo-pulsed Yeast 

cells 

V.1.1 - Pre-processing and EDA 

V.1.2 - Differentially expressed genes (DEGs) 

V.1.3 – Gene Ontology 

V.2 – Objective 2: Deconvolution of Bulk RNA-seq samples using 

single-cell transcriptomes 

V.2.1 – Seurat Analysis 

V.2.2 – MuSiC Deconvolution 

V.3 – Objective 3: Functional characterization to elucidate the 

impact of thermo-pulsing on yeast 

38 
 

39 

 

39 

 

41 

44 

45 

 

45 

58 

 

59 

VI  Conclusion  65 

VII  References  67-71 

 

 

 

 

 



  

8 
 

List of figures 

 

S.No  Title  Pg.no 

1  Classification of proteins detected through 

comparative proteomics using gene ontology 

23 

2  Schematic workflow of PULSER 28 

3  Illustration of seed and vote mapping 28 

4  Overview of MuSiC framework 35 

5  Workflow of Apoptotic Stress Assay 37 

6  Total read counts per sample and 

distribution of transformed data 

39 

7  PCA analysis (a), MDS analysis (b), and 

Hierarchical clustering (c) 

40 

8  The elbow plot with optimal cluster count as four, and K-means 

clustering 

40 

9  The elbow plot with optimal cluster count as four, and 

K-means clustering 

41 

10  Visualization of enriched GO terms using (a) 

Network and (b) Protein-protein interactions (PPI) 

Network 

41 



  

9 
 

11  Enrichment plot for DEGs in PULSER experiment 42 

12  Gene Dendrogram of 1000 most variable genes in PULSER 42 

13  Distribution of molecular pathways of DEGs 44 

14  Heatmap for first 15 principal components 45 

15  Jackstraw plot for first 15 PCs 46 

16  (a) Elbow Plot, (b) Optimum Cluster with Silhouette score 46 

17  Linear (PCA) and non-linear (tSNE, UMAP) 2-D cluster 

visualization plots 

47 

18  Heatmaps for DEGs  48 

19 Top 10 most variable genes in sc RNA-seq data 

of heat-shock in S. cerevisiae 

49 

20 Comparison between expression levels of 

SSA4 in (a) Normal, (b) Recursive heat stress 

50 

21 Feature Plots to visualize PULSER DEGs 

expression in normal stress condition 

51 - 53 

22 Violin plots to visualize expression of DEGs 

under non-recursive heat stress 

54 - 56 

23  Visualization of Similarity Index between 

samples and clusters 

57 

24 Dendrogram of hierarchical clustering of sc 

RNA-seq clusters 

58 



  

10 
 

25 Cell Type proportions of sc RNA-seq data in 

PULSER samples 

58 

26 Yeast Growth curve with Pulsed thermal stress 

of in Test sample 

59 

27 Yeast Growth curve with continuous thermal 

stress of in Test sample 

59 

28 Integrated graph with growth curves for Pulsed, 

non-pulsed and optimum thermal environment 

60 

29 S. cerevisiae population of Group A (50 mM AA) 

with FDA fluorescence (485 nm) measured at 

interval of 1 hour for a period of 4 hours. 

60 

30 S. cerevisiae population of Group B (100 mM 

AA) with FDA fluorescence (485 nm) measured 

at interval of 1 hour for a period of 4 hours 

61 

31 S. cerevisiae population of Group C (200 mM 

AA) with FDA fluorescence (485 nm) measured 

at interval of 1 hour for a period of 4 hours 

61 

32 S. cerevisiae population of Group A (50 Mm AA) 

with PI fluorescence (544 nm) measured at 

interval of 1 hour for a period of 4 hours 

62 

33 S. cerevisiae population of Group B (100 Mm 

AA) with PI fluorescence (544 nm) measured at 

interval of 1 hour for a period of 4 hours 

62 

34 S. cerevisiae population of Group C (200 Mm 

AA) with PI fluorescence (544 nm) measured at 

interval of 1 hour for a period of 4 hours 

63 

 

 



  

11 
 

List of Tables 
 

S.No  Title  Pg.no 

1  Cross-Species Conservation of HSR Proteins and Associated 

Human Diseases 

16 

2  Hsp70 chaperones in Saccharomyces cerevisiae 22 

3  Literature Survey of DEGs and 

reference of available relevant research 

43 

  



  

12 
 

 

 

 

 

 

 

 

 

 

ABSTRACT 



  

13 
 

I – Abstract: 

Across evolutionary history, every organism has developed the ability to adapt to 

fluctuations in environmental conditions, thereby striking a balance between efficient 

growth and survival. In the case of yeast, when exposed to mild stress, it triggers an 

enhanced tolerance towards subsequent and magnified stresses. This adaptive 

response showcases yeast's ability to proactively prepare for future challenges, 

enhancing its survival and adaptability in a dynamic environment. Former studies have 

demonstrated this phenomenon with varied intensity and exposure to stress, 

elucidating the genetic and molecular processes that underpin cellular adaptation to 

elevated temperatures. In an effort to comprehend the genomic expression responses 

of the budding yeast Saccharomyces cerevisiae, we conducted a novel experiment 

where thermal stress was given to yeast in a pulsing manner at fixed intervals. We 

could identify a subpopulation within cells given conventional heat shock with more 

than 60% proportion in Pulsed samples. A comparative analysis of gene profiling 

showed that prominent HSPs differentially expressed in cells undergoing thermal 

stress in a pulsed manner behave exactly opposite in the case of regular thermal-

stress population, denoting yeast’s ability to preserve the direction of transcriptome 

regulation and regulate it’s intensity with recurring stress stimuli.  
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II - Introduction: 

II.1 - Yeast as a model organism: 

Yeast (Saccharomyces cerevisiae) is a quintessential model organism for studying 

heat stress, owing to its genetic versatility, conserved cellular processes, and practical 

advantages. The advanced state of yeast's genetic and molecular toolkit has 

consequently established it as the principal foundation for creating numerous high-

throughput methodologies encompassing transcriptome, proteome, and metabolome 

screenings5. It’s simple yet manipulable genome enables precise genetic experiments, 

unveiling molecular pathways in heat stress responses. Yeast growth could be 

externally controlled, benefiting from its rapid replication rate (90 minutes). 

Additionally, strains with removed genes, labelled proteins, and comprehensive 

databases detailing Protein-Protein Interactions (PPI), subcellular positioning, and 

gene regulation collectively facilitate a swifter comprehension of biological facets. 

Evolutionary conservation allows findings in yeast to shed light on analogous 

mechanisms in higher organisms6. Its rapid reproduction accelerates evolutionary 

studies under heat stress. The well-understood heat shock response in yeast forms a 

robust foundation for investigating stress reactions.  

 

II.2 - Yeast in Thermal-stress studies: 

Using yeast as a model organism in thermal-stress studies has proven to be a fruitful 

endeavour, yielding valuable insights into the cellular response to temperature 

fluctuations and offering potential implications for understanding human pathology. 

Studying yeast's response to heat stress holds immense value for understanding 

human diseases, as it uncovers conserved molecular mechanisms. In recent times, 

yeast models that are genetically modified have emerged as potent instruments for 

investigating the molecular foundation of intricate human ailments such as 

neurodegeneration, specifically targeting intrinsic or foreign proteins associated with 

the onset of the disease7. 
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Table 1: Cross-Species Conservation of HSR Proteins and Associated Human Diseases 

S. cerevisiae H. sapiens Function Disease-Associated 

HSP70 Family 
SSA1, SSA2, 

SSA3 

HSPA1A,  HSPA1B, 
HSPA6 

Protein folding and 
aggregation 

Alzheimer's, Parkinson's, and 
Huntington's diseases 

HSP90 Family 
HSP82 

HSP90AA1, 
HSP90AB1 

Protein folding and 
stabilization 

Cancer and 
neurodegenerative disorders 

HSP60 
(Chaperonin 

Family) 
HSPD1 

Folding newly 
synthesized protein 

Mitochondrial diseases and 
neurodegenerative disorders 

HSF1 HSF1 
Activating expression of 

HSR protein 

Cancer, neurodegenerative 
diseases, and aging-related 

disorders 

HSP27 HSPB1 
Protecting cells from 

stress-induced 
apoptosis 

Charcot-Marie-Tooth disease 
(CMT2F) 

SOD1,SOD2 SOD1, SOD2 Scavenge ROS 
Amyotrophic lateral sclerosis 

(ALS) 

CAT(Catalase) 
CTT1 

CAT Protect cells from H2O2 
Neurodegenerative diseases 
and cardiovascular disorders 

Ubiquitin 
UBI4 

UBB, UBC Protein degradation Parkinson's and Alzheimer's 

SSA4 HSPA4 
Protein folding and 

quality control 
Kawasaki, neurodegenerative 
disease; and schizophrenia 

Thioredoxins 
(TRX) 
TRX2 

TXN, TXN2 
Maintain cellular redox 

balance 

Alzheimer’s, Parkinson’s, 
Huntington’s, Brain Stroke, 

Multiple Sclerosis 

HOG1 (MAPK) 
HOG1 

MAPK14 (p38 MAP 
Kinase) 

High Osmolarity 
Glycerol (HOG) 

pathway 

Inflammatory diseases, 
cardiovascular disorders, and 

cancer 

MSH2, MSH6 MSH2, MSH6 
DNA mismatch repair 

 High-grade dysplasia 

RAD51 RAD51 
DNA repair, genomic 

integrity 
Breast and ovarian cancers 

CPR1 PPIA, PPIB, PPIC 
Histone deacetylation, 
regulation of meiosis 

Inflammatory diseases, viral 
infections, and cancer 

SIS1 DnaJB1 

Involved in proteasomal 
degradation of 

misfolded cytosolic 
proteins 

Neuromuscular disorders 
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II.2 - Limitations in utilizing Yeast for Thermotolerance Exploration: 

Yeast (Saccharomyces cerevisiae) is not an ideal model organism to study heat stress 

due to its lack of a fully developed thermoregulatory system, limited cellular 

complexity, and absence of specific stress response pathways found in higher 

organisms. While yeast has provided valuable insights into heat stress responses, its 

simplistic nature and differences from more complex organisms pose challenges for 

directly translating findings to other systems. 

S. cerevisiae has undergone significant genetic manipulation and domestication, 

which may affect the relevance of stress responses to natural systems. Yeast lacks 

behaviours often associated with animal stress, such as mobility, avoidance, or 

complex physiological reactions. While many stress response pathways are 

conserved between yeast and higher organisms, some paths may differ significantly. 

This can limit the direct translation of findings from yeast stress studies to more 

complex organisms. For example, research on the unfolded protein response (UPR) 

in yeast might only partially represent the UPR in mammalian cells4.  Additionally, 

Yeast metabolism differs from that of higher organisms. The metabolic characteristics 

of yeast affect how stressors are sensed and responded to, which can limit the 

relevance of findings to other organisms. Neurological disorders are often driven by 

specific pathways and molecular mechanisms unique to higher organisms. Yeast's 

lack of a nervous system makes it less relevant for testing potential treatments for 

neurological disorders. Hence, drugs showing promise in yeast-based assays might 

translate to something other than effective treatments for human neurological 

conditions. 

In conclusion, while yeast may not fully mimic heat stress responses in higher 

organisms, it remains a valuable tool for understanding fundamental cellular 

mechanisms. By integrating advanced technologies, conducting comparative studies, 

and using genetic engineering approaches, researchers can enhance the relevance 

and applicability of yeast-based heat stress studies. 
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II - Literature Survey: 

In the last 35 years, substantial advancements have occurred in comprehending how 

yeast cells react to heat stress. This involves the discovery of precise transcription 

factors accountable for controlling gene activity, as well as the metabolic adjustments 

that empower cells to withstand extended periods of slight temperature increases 

without being overwhelmed by the pressure. 

II.1 - A Chronological Overview: 

In the 1940s and 1950s, early genetic studies in yeast laid the groundwork for 

understanding its inheritance patterns and the role of genes in cellular processes. In 

the 1960s, pioneering research by Lee Hartwell and colleagues identified essential 

genes involved in yeast cell cycle regulation. The first use of Yeast as a model 

organism to study function conservation dates back to 1985 when the sequence for 

mammalian ras proto-oncogene was expressed in S. cerevisiae lacking homologous 

genes (RAS1 and RAS2) essential for its viability. The restored viability indicated a 

profound conservation extending beyond the sequence and encompassing intricate 

biological functions5. Later, a seminal study by Lindquist and Craig laid the foundation 

for understanding the heat shock response in yeast. The researchers demonstrated 

that yeast cells respond to elevated temperatures by inducing the expression of heat 

shock proteins (HSPs). They identified the heat shock transcription factor (HSF) 

responsible for activating HSP gene expression. This work contributed to unravelling 

the molecular mechanisms underlying the cellular response to thermal stress6. For 

example, HSPs are linked with various cellular roles such as constructing large 

molecular structures, moving proteins, regulating transcription, orchestrating 

programmed cell death, and disassembling as well as restructuring aggregates of 

proteins that have been altered due to stress7,8,9,10. In a subsequent investigation, 

researchers pinpointed the HSP104 gene as the primary contributor to yeast's 

acquired ability to withstand higher temperatures, which was also crucial for the 

prolonged lifespan resulting from short-term heat exposure. An association between 

mitochondrial petite mutations and heat stress was discovered, implying that 

mitochondria might be vital for extending lifespan through brief heat challenges. The 

findings propose the potential involvement of RAS genes and mitochondria in the 
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epigenetic transfer of the decreased mortality advantage facilitated by mild, temporary 

heat stress11.  

In the 1990s, researchers identified the Unfolded Protein Response (UPR) in yeast. 

This stress response mechanism is activated when the endoplasmic reticulum (ER) 

becomes overwhelmed by unfolded or misfolded proteins, triggering a series of events 

to restore protein homeostasis. During the 2000s, noteworthy progress was made in 

understanding the oxidative stress response in yeast. Studies revealed how yeast cells 

manage reactive oxygen species (ROS) and adapt to oxidative stress by activating 

specific signalling pathways and antioxidant defense mechanisms12. Understanding 

these regulatory mechanisms provided insights into how yeast cells sense and cope 

with heat stress at a molecular level. Queitsch et al. (2002) explored the role of yeast 

Hsp90 in mediating evolutionary change, specifically by affecting developmental 

transitions13. It provided a link between heat shock proteins and evolutionary 

processes. More studies gave insight to how modulating Hsp90's buffering capacity 

offers a valuable approach to unlocking cryptic genetic variation and gaining insights 

into the complex interactions among genotypes, environmental factors, and stochastic 

events that govern phenotypic expression14,15. In the 2010s, research focused on the 

Target of Rapamycin (TOR) pathway's role in yeast stress response. TOR is a central 

regulator of cell growth and metabolism, and its modulation was found to influence 

yeast adaptation to various stress conditions, including nutrient deprivation16.  

Over the past decade, as Systems Biology and Computational Modelling gained 

momentum, researchers started using integrative approaches to study the heat stress 

response in yeast comprehensively. These studies identified conserved pathways and 

regulatory networks. They highlighted potential therapeutic targets for human 

pathologies, suggesting that modulating the expression or activity of specific HSPs 

might have therapeutic potential in treating protein misfolding diseases17. For instance, 

activating heat shock proteins (HSPs) could protect against protein misfolding and 

aggregation, a hallmark of neurodegenerative diseases like Alzheimer's, Parkinson's, 

and Huntington's disease18,19. Certain HSPs, including sphingolipidoses, have been 

explored as potential therapeutic targets for treating lysosomal storage disorders. 

These disorders are characterized by the accumulation of specific lipids within 

lysosomes, leading to cellular dysfunction. HSP modulation may enhance the 
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chaperone machinery and facilitate the proper folding and trafficking of lysosomal 

enzymes, potentially improving disease phenotypes20,21,22. 

 
II.2 - Global analysis of the Heat shock response: 

Much like the investigation of transcriptional networks in yeast, the advent of DNA 

microarray technology has bestowed an unprecedented comprehension of the far-

reaching consequences of the heat shock response throughout the complete genome. 

Two comprehensive research endeavours employed microarray methods to unveil 

shifts in gene expression under diverse stress circumstances, encompassing heat 

shock, osmotic stress, and nutrient scarcity. Impressively, around 10% of the genome 

experienced substantial expression alterations during one or more of these stress 

factors, underscoring the profound impact of stress-triggered transcription on the 

overall transcriptome23,24. 

The comprehensive analysis of genome-wide studies can discern a multitude of 

additional insights. It becomes evident that the Heat Shock Response (HSR) exhibits 

a proportionate relationship with the intensity of the stress imposed. Specifically, when 

subjected to a temperature shift from 25° to 37°, the HSR demonstrates a prolonged 

duration and a more pronounced amplitude of change in gene expression in 

comparison to a shift spanning 29° to 33°. The data indicate that yeast cells can detect 

gradual changes in temperature stress until they reach a critical threshold point, 

beyond which the system, particularly Hsf1, becomes maximally activated25,26. 

Notably, a small subset of Hsf1 target genes, such as CUP1 and HSP82, exhibit 

significantly more robust induction at 39° compared to 37°, strongly suggesting that 

this threshold lies within the temperature range of 39° to 40°. 

 In the absence of stress, cells show moderate resistance to various environmental 

challenges. However, their capacity to endure future insults is significantly enhanced 

when subjected to mild stress. A key factor contributing to cytoprotection during the 

Heat Shock Response (HSR) is the disaccharide trehalose27. Extensive research in 

the late 1990s established trehalose as a potent stabilizer of proteins and membranes 

in diverse biological systems, including yeast28. 

 

The yeast "chaperome": The introduction of whole genome sequencing has enabled 

the identification and characterization of the complete chaperones within organisms, 
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collectively known as the chaperome29. This concept includes both chaperones and 

other Heat Shock Proteins (HSPs) that exist during regular growth circumstances and 

those whose levels rise or are specifically generated in response to the Heat Shock 

Response (HSR). 

In the past, HSPs of considerable importance were primarily identified by their 

prevalence during heat shock. This was because their augmented synthesis made 

them easily detectable through radioactive pulse-chase analysis. Meanwhile, the 

synthesis of the remaining proteome was concurrently suppressed30. These heat 

shock proteins (HSPs) acquired their names based on their observed molecular sizes, 

leading to the familiar group of Hsp100, Hsp90, Hsp70, Hsp60, along with the small 

HSPs that are present universally in eukaryotic cells. 

    

Table 2: Chaperones of the Hsp70 type in the yeast Saccharomyces cerevisiae 

Gene Name Allocation Role References 

Ssa1, Ssa2, 
Ssa3, Ssa4 

Intracellular fluid Regular folding 
Werner-Washburne et al. 

(1987) 

Ssb1, Ssb2, 
Ssz1 

Ribosomes 
Folding of nascent 

protein 
Nelson et al. (1992)  

Sse1, Sse2 Intracellular fluid 
Binding with 

substrate 

Dragovic et al. (2006); Raviol et al. 

(2006); Shaner et al. (2006) 

Kar2 
Endoplasmic 

Reticulum 
Regular folding Vogel et al. (1990) 

Lhs1 
Endoplasmic 

Reticulum 

Binding with 

substrate 
Baxter et al. (1996); Steel et al. 

(2004) 

Ssc1, Ecm10 Mitochondria 

Post import 
modification 

 

Craig et al. (1989), Baumann 
et al. (2000) 

Ssq1 Mitochondria 
Iron/Sulphur 

assembly 
Dutkiewicz et al. (2003) 

 

Cellular stress response: The cellular stress response is a unifying biological 

principle. It proposes that in response to abrupt environmental changes, nearly all life 

forms induce a set of conserved proteins. This response addresses macromolecular 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib364
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib364
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib241
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib71
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib275
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib275
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib296
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib355
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib317
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib317
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316637/#bib75
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damage, with similar types of cellular damage caused by various environmental 

stressors leading to the up-regulation of a shared gene set. These environmentally 

responsive proteins, including molecular chaperones, DNA damage and repair 

proteins, proteolytic enzymes, and specific metabolic enzymes, mitigate 

macromolecular damage and stabilize essential cellular functions. Notably, these 

proteins involved in the cellular stress response exhibit significant conservation across 

the three super kingdoms of life, underscoring their fundamental importance31,32. 

 

Figure 1: Classification of proteins detected through comparative proteomics using gene 
ontology33 

 

The reaction to Oxidative Stress: Although elevated temperature acts as the main 

initiator during heat shock, as previously mentioned, a notable subsequent result 

involves the creation of reactive oxygen species (ROS). All living organisms encounter 

ROS due to regular aerobic metabolism or exposure to substances that produce 

radicals34. However, like all living organisms, S. cerevisiae possesses efficient 

antioxidant defense mechanisms. These mechanisms neutralize ROS as they are 

made and maintain a reduced intracellular redox environment. An oxidative stress 

situation arises when the production of ROS overwhelms these defense mechanisms, 

leading to genetic deterioration and disruptions in physiological function. Ultimately, 

this cascade can culminate in cellular demise. The arsenal of antioxidant defences 

encompasses a variety of protective enzymes located within distinct subcellular 

compartments, and their expression can be heightened in response to exposure to 

ROS. Non-enzymic reasons include small molecules that serve as scavengers for free 

radicals. Presently, only ascorbic acid and GSH have undergone thorough 

investigation and characterization within yeast's nonenzymatic defense mechanism.3
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II.3 - Computational Progress: 

Advancements in computational techniques have revolutionized stress research in 

yeast, leading to groundbreaking insights into cellular responses and molecular 

mechanisms. These innovations have enabled scientists to probe stress-related 

phenomena with unprecedented depth and precision, enhancing our understanding of 

yeast biology and its implications for broader biological systems. 

1. Genome-Wide Analysis: Computational tools have allowed researchers to 

perform genome-wide analyses of yeast under stress conditions. This approach 

has revealed intricate gene expression patterns, uncovering critical regulatory 

networks involved in stress response. High-throughput sequencing and 

bioinformatics pipelines have identified stress-responsive genes, promoters, 

and regulatory elements. 

2. Systems Biology: Integration of computational modelling and experimental data 

has facilitated the development of comprehensive models of stress responses 

in yeast. These models simulate the complex interactions between genes, 

proteins, and metabolites, shedding light on how different components 

collaborate to mitigate stress. Systems biology approaches have illuminated 

feedback loops and crosstalk between stress pathways, enhancing our grasp 

of the holistic cellular response. 

3. Network Analysis: Computational techniques have empowered the construction 

and analysis of molecular interaction networks in yeast. By mapping protein-

protein interactions and genetic pathways, researchers have discerned how 

stress-related proteins coordinate their actions. This network perspective has 

unveiled previously unrecognized connections and bottlenecks in stress 

signalling cascades. 

4. Structural Biology: Advanced computational methods, such as molecular 

dynamics simulations and structural modelling, have elucidated the three-

dimensional structures of stress-responsive proteins. These insights offer a 

detailed view of protein conformational changes during stress and how these 

alterations affect protein function. Understanding structural dynamics has 

paved the way for rational drug design targeting stress-related proteins. 
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5. Evolutionary Analysis: Comparative genomics and phylogenetic approaches, 

driven by computational algorithms, have enabled the study of stress responses 

across yeast species. By analysing evolutionary conservation and divergence 

of stress-related genes, researchers have unearthed ancient and lineage-

specific stress adaptation strategies, offering insights into the adaptive 

evolution of stress responses. 

6. Machine Learning and AI: Machine learning algorithms have been instrumental 

in predicting stress-responsive elements, classifying stress types, and 

identifying novel regulatory motifs in yeast genomes. AI-driven models have 

accelerated the analysis of large-scale datasets, enabling the extraction of 

meaningful patterns and predictive insights that guide experimental design. 
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IV - Methodology: 

IV.1 - Experimental design of PULSER Experiment: 

The terminology 'Pulser' was adopted due to its correlation with the specific technique 

employed to induce heat stress in the test sample. The investigation into the 

transcriptome of yeast cells experiencing thermal pulsation encompassed a 

comprehensive analysis undertaken through a series of sequential steps: 

1. A 50µl inoculum (derived from a glycerol stock) of the yeast strain BY4741 of 

S. cerevisiae (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was cultured overnight 

in 5 ml of autoclaved YPD medium at 30°C with agitation at 150rpm. This is 

secondary culture. 

2. The OD600 reading was approximately 0.7 at the 20-hour mark. 3 replicates 

were created for both the Test and Control samples by transferring 100µl of the 

secondary culture into the first row of Deepwell plates. Subsequently, 1.9ml of 

YPD media was added to each well to achieve a total volume of 2ml for the 

culture. The initial two columns of the second row in these plates served as 

blanks, containing 2ml of YPD media. 

3. During Cycle 0, the procedure consisted of placing both plates in the incubator 

at 30°C for 30 minutes. Following this, OD600 measurements were taken using 

a microplate reader. 

4. In the subsequent 15 cycles, the Test plate underwent a 'pulsing' procedure 

involving alternating temperature conditions of 30°C and 37°C for 15-minute 

intervals, totalling 30 minutes. In contrast, the Control plate was kept 

undisturbed at 30°C. 

5. RNA was isolated and subsequently forwarded for sequencing analysis. 
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Figure 2: Schematic workflow of PULSER 
 

IV.2 - RNA-seq read alignment and read counting:  

Illumina paired-end sequencing generated two fastq files per sample. Bioconductor 

package, Rsubread, was used to convert fastq files to raw count matrix. 

IV.2.1 - The Seed-and-vote mapping paradigm: 

This strategy to map the genome employs a collection of overlapping seeds, known 

as subreads, from each individual read. All seeds collectively influence the optimal 

position for the read. Subsequently, the algorithm employs conventional alignment 

methods to elucidate specific mismatches and indel details amid the subreads within 

the prevailing voting block. The provided illustration depicts the proposed seed-and-

vote mapping method through a simplified example. 

 

Figure 3: Illustration of seed and vote mapping36 

 

https://doi.org/10.1093/nar/gkz114
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For mapping of paired-end reads was achieved, the following equation was used to 

derive a collection of potential mapping positions for every pair of reads: 

PEscore = w*(V1 + V2) 

V1 and V2 represent how many votes each of the two reads in a pair gets. The variable 

'w' is set to 1.3 if the two reads are mapped close together as expected, and it's one if 

they are not. This helps us decide how much weight to give to the votes based on the 

distance between the mapped positions of the reads. 

 

IV.2.2 - FastQC: 

Quality assessments of the post-trim and pre-trim sequencing data were performed 

using FastQC. It calculates a quality score for each base in every read. This score is 

usually represented as a Phred score, which quantifies the base-calling accuracy. 

FastQC plots these quality scores across the length of the reads, helping you identify 

regions with poor or fluctuating quality. 

The Phred score is connected to the base-calling error probability (P) through a 

logarithmic relationship, which is defined by the following formula: 

Q = -10 * log10(P) 

Here, Q is the Phred score, and P is the base-calling error probability. A higher Phred 

score corresponds to a lower error probability and better quality. 

 

 

IV.3 - Data Transformation and Statistical Analysis: 

iDEP (integrated Differential Expression and Pathway analysis) was used for a 

thorough examination of the count matrix of the PULSER experiment.  

IV.3.1 - Regularized log (rlog) transformation: 

The first step in pre-processing of count data was rlog transformation which stabilized 

the variance across the range of expression values while preserving the underlying 

biological variability. After adding a pseudo count value to each count with zero value, 

the counts were normalized by the library size (total number of reads) of each sample. 

This step ensured that samples with high sequencing depth didn’t dominate the 

transformation. The regularized log transformation was applied to the normalized 

counts.  

https://hbctraining.github.io/Intro-to-ChIPseq/lessons/02_QC_FASTQC.html
http://ge-lab.org/idep/
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The rlog-transformed values, denoted as 𝑥𝑖𝑗, can be calculated using the following 

formula: 

𝑥𝑖𝑗 = log

(

 
𝑦𝑖𝑗 + √𝑦𝑖𝑗

2 + 𝛼2

𝑠𝑗
)

  

Where 𝑦𝑖𝑗 is the normalized count for gene i and sample j, α is a regularization 

parameter that prevents division by zero. And 𝑠𝑗  is a sample-specific size factor 

(normalized library size) for sample j.  

IV.3.2 - Principal Component Analysis (PCA): 

Biological samples were projected onto a Principal Component Analysis (PCA) plot to 

visualize and analysed their relationships and variations in a lower-dimensional 

subspace derived from the original data. PCA uses eigenvalues and eigenvectors to 

reduce the dimensionality of data. It calculates the covariance matrix, finds 

eigenvectors with corresponding eigenvalues, and ranks them by variance. These 

eigenvectors define a new coordinate system. Data points are projected onto these 

components, forming a reduced-dimensional plot.  

IV.3.3 - Multidimensional scaling (MDS): 

MDS was performed on counts data to explore the relationship between samples. As 

opposed to PCA, MDS is focused on preserving the original relationships or rankings 

between objects. It does not necessarily aim to capture the maximum variance in the 

data. 

IV.3.4 - Elbow Method: 

To determine the optimal number of clusters for clustering analysis, an Elbow plot was 

constructed. In this approach for determining the value of 'k,’ continuous iteration over 

the range from 'k=1' to 'k=n' is performed. For each 'k' value, we compute the sum of 

squared distances within clusters, known as the within-cluster sum of squares (WCSS) 

value. 

IV.3.5 - K- means Clustering: 

Normalized count data was subjected to K-means clustering to visualize the clusters 

derived from the Elbow plot. K-means clustering, a commonly used unsupervised 

learning technique for examining data clusters, begins by randomly selecting an initial 
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group of centroids. These initial centroids act as reference points for each cluster, and 

then, through iterative calculations, the algorithm refines the placement of these 

centroids. 

IV.4 - Analysis of genes with differential expression (DEGs): 

DESeq2, an R package was used to determine and visualize the significantly 

differentially expressed genes. It employs a negative binomial distribution model to 

identify genes that show statistically significant differences in expression levels 

between different conditions or groups. DESeq2 performs normalization, estimation of 

variance-mean dependence, and statistical testing to assess differential expression, 

providing valuable insights into gene regulation and biological processes. 

IV.4.1 - Volcano Plot: 

The plot displayed the interplay between the statistical significance (-log10 p-value) and 

the magnitude of fold change for 4668 features on being compared between the two 

groups (Control and Test). A cutoff of less than 0.1 for the false discovery rate (FDR) 

and a fold change greater than 2 were utilized to assign distinct color shades to 

upregulated and downregulated genes in a selective manner. 

IV.4.2 - Hierarchical clustering tree: 

Enrichment analysis of the DEGs was conducted using the hypergeometric 

distribution. Due to the presence of duplications in various GO terms, the 

measurement of inter-term distance was conducted by calculating the percentage of 

genes shared. This distance metric was then employed to create a hierarchical 

clustering tree for GO terms. 

IV.4.3 - Protein-protein interactions (PPI): 

Utilizing the STRINGdb package, iDEP analysed sets of DEGs by employing the 

STRING API37 to perform enrichment analysis and retrieve PPI networks. It achieves 

this by integrating diverse sources of biological data, such as experimental evidence, 

computational predictions, and curated databases, to construct comprehensive and 

context-specific PPI networks. 

 

IV.5 - Pathway Analysis: 

To uncover the underlying biological processes that are affected by changes in gene 

expression, pathway analysis was performed using KEGG as gene sets. 

https://rdcu.be/djfEL
https://pypi.org/project/stringdb/
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IV.5.1 - PGSEA: 

PGSEA (Parametric Gene Set Enrichment Analysis) is a statistical method and 

software tool used for gene set enrichment analysis. PGSEA fits a parametric 

distribution (Gaussian) to the gene expression values within each gene set and 

compares the fitted distribution of the gene set with the overall distribution of gene 

expression values in the dataset. We run PGSEA for pathway analysis on our bulk 

RNA-seq dataset using the gene set database as KEGG. 

IV.6 - Seurat: 

Aimed at exploring the molecular dynamics of non-pulsed heat-shocked S.cerevisiae, 

single-cell RNA-seq data of cells given 42℃ thermal shock, mDrop-seq datasets38 

were downloaded from the NCBI Gene Expression Omnibus (GEO). Both Test and 

Control, consisting of two biological replicates, were integrated using Seurat39. 

IV.6.1 - Linear dimensionality reduction: 

The integrated Seurat object (6794 Features x 11646 Cells) was subjected to quality 

control, normalization, and scaling. A subset of data with 2000 most variable features 

was subjected to Principal Component Analysis. The expression values of these 

genes were transformed into principal component scores, and the top principal 

components were retained based on their explained variance. Further, the original 

gene expression data was projected onto the selected principal components to reduce 

its dimensionality. The number of principal components was decided by taking the 

minimum of the following two metrics - 

1. The point at which the principal components account for only 5% of the 

standard deviation individually, while their cumulative contribution reaches 90% 

of the standard deviation. 

2. The point at which the successive principal components exhibit a percent 

change in variation of less than 0.1%. 

 

IV.6.2 - Jackstraw Plot: 

The Jackstraw Plot was used to assess the significance of principal components (PCs) 

obtained through linear dimensionality reduction. This involves randomly reshuffling 

data points for each PC while maintaining the original PC scores. After reshuffling, a 

https://doi.org/10.3390/vaccines10010030
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154515
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4672376
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4672372
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new PCA is conducted to generate alternative principal components. Comparison 

between permuted and original PCs aims to gauge their statistical difference. The plot 

displays negative logarithmic p-values for this comparison, with each point 

representing a principal component. 

IV.6.3 -Silhouette Analysis: 

The selection of the resolution value yielding the highest Silhouette score and the 

optimal number of clusters was achieved using the chooseR tool, a framework40 based 

on subsampling. The silhouette score S for a data point is given by: 

S = (b−a)/ max (a, b) 

Here, a is the average distance between the data point and other data points in the 

same cluster (cohesion), b is the smallest average distance between the data point 

and data points in a different cluster (separation). 

IV.6.4 – Clustering: 

Clusters of cells were detected at the obtained resolution following silhouette analysis, 

utilizing a clustering algorithm based on shared nearest neighbor (SNN) modularity 

optimization. Initially, the algorithm computed k-nearest neighbors and established the 

SNN graph. Subsequently, the modularity function was iteratively refined using the 

Louvain algorithm to delineate distinct clusters. The Louvain algorithm, tailored for 

identifying communities in intricate networks, systematically refines node grouping to 

enhance modularity, a metric signifying the robustness of community organization. 

IV.6.5 - Non-linear dimensionality reduction: 

After the clustering step, we employed Uniform Manifold Approximation and Projection 

(UMAP) as well as t-distributed Stochastic Neighbor Embedding (t-SNE) algorithms 

for nonlinear dimensionality reduction. These methodologies were employed with the 

overarching aim of constructing reduced-dimensional embeddings for high-

dimensional datasets, thereby facilitating the preservation of local and global 

similarities among cells within the manifold space. 

IV.7 -Similarity Index: 

Three analyses involving similarity coefficients were conducted, and the results were 

depicted using a heatmap to identify resemblances between the mean expression 

https://github.com/rbpatt2019/cluster.stability.git
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vectors of cell types from sc-RNA sequencing and those derived from PULSER 

samples. 

IV.7.1 - Correlation: 

Pearson correlation coefficient "r" was calculated between two variables, "x" and "y", 

based on a set of paired data points (x_i, y_i), is as follows: 

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥)

𝑛

𝑖=1
(𝑦𝑖 − 𝑦)

√ΣΣ𝑖=1
𝑛

(𝑥𝑖 − 𝑥)2√∑Σ𝑖=1
𝑛

(𝑦𝑖 − 𝑦)2
 

Where: 

 n is the number of data points. 

 𝑥𝑖 and 𝑦𝑖  are the values of the two variables in the i-th data point. 

 𝑥 and 𝑦 are the means (averages) of the respective variables. 

IV.7.2 - Covariance: 

To assess the direction and strength of the relationship between Cell types and 

PULSER samples, Covariance between them was determined using the following 

formula: 

cov (x, y) =  
∑ (
𝑛

𝑖=1
𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

𝑁−1
 

Where: 

 N is the number of data points. 

 𝑥𝑖  and 𝑦𝑖  are the values of the variables in the i-th data point. 

 𝑥 and 𝑦 are the means of the respective variables. 

IV.7.3 - Euclidean: 

Euclidean distance is a direct measure of geometric distance between two points in 

the space defined by the features. 

Euclidean Distance = √(𝑥𝐴1 − 𝑥𝐵1)
2
 + (𝑥𝐴2 − 𝑥𝐵2)

2
 +. . . . . . . + (𝑥𝐴𝑛 − 𝑥𝐵𝑛)

2
  

Where, 𝑥𝐴𝑖and 𝑥𝐵𝑖 are the values of the i-th feature for samples A and B, respectively. 

n is the number of features. 
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IV.8 - MuSiC Deconvolution: 

MUlti-Subject SIngle Cell deconvolution (MuSiC)41 method was employed to 

deconvolute the cell types of in Bulk RNA-seq data from PULSER experiment using 

the single-cell RNA-seq (scRNA-seq) data of heat shock stimulated S. cerevisiae at 

42℃. The data can be downloaded from - GEO Accession viewer (nih.gov).                                      

Beginning with multi-subject single-cell RNA sequencing (scRNA-seq) data, MuSiC 

functions on the basis that cells within each subject have been categorized into a 

predefined set of consistent cell types, showcasing consistent characteristics across 

different subjects. MuSiC’s gene weighting mechanism highlights genes that display 

consistency across subjects, affording greater significance to those with minimal inter-

subject variability (termed informative genes). Conversely, genes with higher inter-

subject variability (considered less informative) are downplayed. 

To mitigate collinearity challenges arising from interrelated cell types within solid 

tissues, MuSiC employs a tree-guided approach that systematically zooms in on 

strongly associated cell types. Initially, akin cell types are clustered together into 

shared clusters, enabling the precise estimation of cluster proportions. Subsequently, 

this iterative process is applied recursively within each cluster. 

 

Figure 4: Overview of MuSiC framework. 

https://xuranw.github.io/MuSiC/articles/MuSiC.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154515
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IV.9 – Experimental design of Apoptotic Assay: 

1. A 50µl inoculum (derived from a glycerol stock) of the yeast strain BY4741 of 

S. cerevisiae (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was cultured overnight 

in 5 ml of autoclaved YPD medium at 30°C with agitation at 150rpm. This is 

secondary culture. 

2. The OD600 measurement yielded approximately 0.60 after a 20-hour interval. 

Subsequently, three Deepwell plates were autoclaved and labelled as Group 

A, Group B, and Group C, corresponding to distinct thermal conditions of 30°C, 

37°C, and 30°C/37°C pulsing, respectively. Each group comprised 95 biological 

replicates, with a well composition of 95µl media and 5µl culture. Additionally, 

one well was allocated as a blank control, housing 2ml of YPD media. 

3. During Cycle 0, OD600 measurements were captured immediately following 

the setup. 

4. In the subsequent 15 cycles, Group ‘A’ and Group ‘B’ plates were kept in 

incubator at their respective temperature. However, the Group ‘C’ deep well 

plate underwent a 'pulsing' procedure involving alternating temperature 

conditions of 30°C and 37°C for 15-minute intervals, totalling 30 minutes. All 

these plates were covered with a breath easy membrane to avoid spillage. 

5. For a period of 7.5 hours, OD600 was measures for all groups after an interval 

of 30 minutes. 

6. After 15 cycles, all the three groups were further divided into 6 replicates each 

for Acetic Acid treatment at varied concentrations of 50mM, 100mM and 

200mM. The last two rows of setup were kept as blanks for measuring 

background noise in media. And one column for each group was kept as 

control, lacking Acetic Acid. 

7. Cells were given apoptotic stress for 4 hours and fluorescence of live and dead 

cells was measured using FDA/PI (15µg/ml) staining solution after an interval 

of 1 hour incubation for a period of four hours. 
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Figure 5: Workflow of Apoptotic Stress Assay 



  

38 
 

 

 

 

 

 

 

 

 

 

 

 

Results and Discussions 

 

 

 

 

 

 

 



  

39 
 

V - Results and Discussions: 

V.1 – Objective 1: Transcriptome Analysis of thermo-pulsed Yeast cells 

The provided files consisted of a read count matrix from the PULSER experiment 

along with a corresponding design file. Upon uploading the read count data, iDEP 

accurately identified Saccharomyces cerevisiae as the probable species, determined 

by the quantity of matched gene IDs. 

V.1.1 - Pre-processing and EDA 

Following Ensembl ID conversion and applying the default filter (requiring a minimum 

of 0.5 counts per million in at least one sample), the gene pool was reduced to 5067 

genes out of the initial 7127. A bar graph depicting the cumulative read counts for each 

library is produced, revealing limited discrepancies in library sizes. A scatter plot 

illustrating the relationship between samples demonstrates minor differences among 

replicates. The distribution of rlog transformed data is visualized through a density plot 

and a box plot.                                                                          

 

 

Figure 6: Total read counts per sample and distribution of transformed data. 
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Figure 7: PCA analysis (a), MDS analysis (b), and Hierarchical clustering (c) collectively 

demonstrate significant dissimilarity among thousands of genes triggered by Thermo-Pulsing. 

Replicates exhibit minimal diversity. 

 

 

 

Figure 8: The elbow plot with optimal cluster count as four, and K-means clustering 
 

a 

b 

c 
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V.1.2 - Differentially expressed genes (DEGs): 

With the DESeq2 package, 10 upregulated and 40 downregulated genes were found 

employing a criterion threshold of false discovery rate (FDR) < 0.1 and a fold-change 

exceeding 2. Both the volcano plot and MA plot depict a pronounced transcriptomic 

response induced by Thermo-pulsing stress. 

 

 

 

 

 

 

 

 

Figure 9: Summary plots for differential expression analysis using DESeq2. a) Barplot showing 

10 upregulated and 40 downregulated DEGs with b) no overlap depicted by Venn diagram. (c) 

Volcano plot and (d) MA plot displaying a peak log fold change value of three 

 

 

a b 

c d 

a b 

Figure 10: Visualization of enriched GO terms using (a) Network and (b) Protein-protein 

interactions (PPI) Network 
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Selecting GO Cellular component within the Gene Ontology framework, it was 

observed that subjecting S. cerevisiae to repeated thermal stress leads to the inhibition 

of genes responsible for the Meiotic II cell cycle process and the organization of 

chromosomes during the meiotic cell cycle. Enrichment analysis and the retrieval of 

Protein-Protein Interaction (PPI) networks unveiled a strongly interconnected network 

involving URA1, ABZ2, DAL4, and GIS2. These genes are downregulated in heat 

pulsed yeast culture, implying that the recurring thermal stress may disrupt translation 

regulation under stress conditions. 

 

 

 

 

Figure 11: Enrichment plot for DEGs in PULSER experiment 

Figure 12: Gene Dendrogram of 1000 most variable genes in PULSER 
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Table 3: Literature Survey of DEGs and reference of available relevant research 

S.No Gene Reference S.No Gene Reference 

1 TIR1 
 

https://pubmed.ncbi.nlm.nih.gov/87
33242/ 

26 YEH2 N/A 

2 SFI1 
https://pubmed.ncbi.nlm.nih.gov/10

455233/ 
27 YOX1 N/A 

3 BUD4 
https://pubmed.ncbi.nlm.nih.gov/22

185758/ 
28 SNR18 N/A 

4 MET3 
https://pubmed.ncbi.nlm.nih.gov/15

583009/ 
29 MNT2 N/A 

5 BRF1 
https://pubmed.ncbi.nlm.nih.gov/31

676685/ 
30 TYS1 N/A 

6 GIS2 
https://pubmed.ncbi.nlm.nih.gov/30

089646/ 
31 FMP40 N/A 

7 DAL4 N/A 32 TRE1 N/A 

8 NGL3 N/A 33 CYS3 N/A 

9 URA1 N/A 34 IMP1 N/A 

10 ABZ2 N/A 35 RUF5-2 N/A 

11 SSA4 
https://pubmed.ncbi.nlm.nih.gov/12

818212/ 
36 SSL1 N/A 

12 RSC4 
https://pubmed.ncbi.nlm.nih.gov/20

015969/ 
37 YIG1 N/A 

13 RUF5-1 
https://pubmed.ncbi.nlm.nih.gov/12

853629/ 
38 RDH54 N/A 

14 DSK2 
https://pubmed.ncbi.nlm.nih.gov/18

199679/ 
39 DSC3 N/A 

15 PEX12 
https://mediatum.ub.tum.de/doc/12

86993/1286993.pdf 
40 SCR1 N/A 

16 PSA1 
https://pubmed.ncbi.nlm.nih.gov/33

439673/ 
41 SEC9 N/A 

17 PHO85 
https://pubmed.ncbi.nlm.nih.gov/28

637746/ 
42 BIT2 N/A 

18 HSP30 
https://pubmed.ncbi.nlm.nih.gov/22

654157/ 
43 SPP2 N/A 

19 YDC1 
https://pubmed.ncbi.nlm.nih.gov/11

694577 
44 AIM36 N/A 

20 RPR1 
https://pubmed.ncbi.nlm.nih.gov/80

83243/ 
45 APL2 N/A 

21 FUS3 
https://pubmed.ncbi.nlm.nih.gov/29

273704/ 
46 MAM1 N/A 

22 TIP1 
https://pubmed.ncbi.nlm.nih.gov/12

818212/ 
47 POA1 N/A 

23 IML3 N/A 48 GOR1 N/A 

24 SRC1 N/A 49 SNR42 N/A 

25 MRPS5 N/A 50 LEO1 N/A 

 

 

https://pubmed.ncbi.nlm.nih.gov/8733242/
https://pubmed.ncbi.nlm.nih.gov/8733242/
https://pubmed.ncbi.nlm.nih.gov/10455233/
https://pubmed.ncbi.nlm.nih.gov/10455233/
https://pubmed.ncbi.nlm.nih.gov/22185758/
https://pubmed.ncbi.nlm.nih.gov/22185758/
https://pubmed.ncbi.nlm.nih.gov/15583009/
https://pubmed.ncbi.nlm.nih.gov/15583009/
https://pubmed.ncbi.nlm.nih.gov/31676685/
https://pubmed.ncbi.nlm.nih.gov/31676685/
https://pubmed.ncbi.nlm.nih.gov/30089646/
https://pubmed.ncbi.nlm.nih.gov/30089646/
https://pubmed.ncbi.nlm.nih.gov/12818212/
https://pubmed.ncbi.nlm.nih.gov/12818212/
https://pubmed.ncbi.nlm.nih.gov/20015969/
https://pubmed.ncbi.nlm.nih.gov/20015969/
https://pubmed.ncbi.nlm.nih.gov/12853629/
https://pubmed.ncbi.nlm.nih.gov/12853629/
https://pubmed.ncbi.nlm.nih.gov/18199679/
https://pubmed.ncbi.nlm.nih.gov/18199679/
https://mediatum.ub.tum.de/doc/1286993/1286993.pdf
https://mediatum.ub.tum.de/doc/1286993/1286993.pdf
https://pubmed.ncbi.nlm.nih.gov/33439673/
https://pubmed.ncbi.nlm.nih.gov/33439673/
https://pubmed.ncbi.nlm.nih.gov/28637746/
https://pubmed.ncbi.nlm.nih.gov/28637746/
https://pubmed.ncbi.nlm.nih.gov/22654157/
https://pubmed.ncbi.nlm.nih.gov/22654157/
https://pubmed.ncbi.nlm.nih.gov/11694577
https://pubmed.ncbi.nlm.nih.gov/11694577
https://pubmed.ncbi.nlm.nih.gov/8083243/
https://pubmed.ncbi.nlm.nih.gov/8083243/
https://pubmed.ncbi.nlm.nih.gov/29273704/
https://pubmed.ncbi.nlm.nih.gov/29273704/
https://pubmed.ncbi.nlm.nih.gov/12818212/
https://pubmed.ncbi.nlm.nih.gov/12818212/
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V.1.3 – Gene Ontology: 

Among the set of 50 Differentially Expressed Genes (DEGs), 4 were classified as non-

coding RNAs (ncRNA), 2 were small nucleolar RNAs (snoRNA), and 4 were coding 

genes with yet undiscovered functions. Notably, genes associated with gene 

expression mechanisms exhibited significant downregulation within the thermos 

pulsed population. This downregulation strongly suggests a disruption in cellular 

processes caused by the heightened temperature—a response intricately woven into 

the cell's adaptation strategy to thermal stress. Additionally, genes linked to both lipid 

metabolism and cellular repair pathways displayed downregulation. This indicates a 

strategic shift in the cell's allocation of resources and energy, redirecting focus away 

from normal functions towards immediate mechanisms for stress survival. Such 

adaptation not only fortifies the cell's capacity to endure challenging circumstances 

but also potentially expedites its recuperation once the stressor subsides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 13: Distribution of molecular pathways of DEGs 
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V.2 – Objective 2: Deconvolution of Bulk RNA-seq samples using single-cell 

transcriptomes. 

V.2.1 – Seurat Analysis 

The fusion of single-cell RNA sequencing (scRNA-seq) data yielded a matrix 

comprising 6794 attributes and 11646 individual cells. This composite matrix was 

preserved within the Seurat object as the RNA assay. After subjecting this data to 

feature engineering, the matrix was subsequently transformed to a dimension of 

2000x11646, wherein the top 2000 variable genes were selected. This modified matrix 

was then designated as the Integrated Assay. Subsequent analysis was conducted 

specifically on the RNA assay data. Utilizing a Jackstraw plot and generating a 

heatmap based on the initial 15 principal components (PCs), it became evident that 8 

principal components held significant relevance. 

 

 

 

 

 

 

Figure 14: Heatmap for first 15 principal components 
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The total count of principal components (PCs) was subsequently validated as 7 

through examination of an Elbow plot. Silhouette analysis further pinpointed an optimal 

division into 13 clusters, with an impressive silhouette score of 0.75. The 

implementation of the FindClusters() function, employing the Louvain algorithm with a 

resolution of 1.1, facilitated the attainment of the desired optimal clusters. To enhance 

visualization in two-dimensional space, non-linear dimension reduction techniques, 

namely t-SNE and UMAP, were harnessed to depict these clusters. 

 

 

 

 

 

 

 

 

 

 

Figure 16: (a) Elbow Plot, (b) Optimum Cluster with Silhouette score 

 

 

 

 

Figure 15: Jackstraw plot for first 15 PCs 

a 
b 
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Figure 17: Linear (PCA) and non-linear (tSNE, UMAP) 2-D cluster visualization plots 
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To elucidate the behavioural dynamics of differentially expressed genes derived from 

the PULSER experiment within a cellular population subjected to non-pulsed heat 

shock at 42°C, a comprehensive heatmap visualization was conducted. Notably, this 

visualization revealed a distinctive pattern wherein specific genes that manifest 

considerable downregulation in the PULSER experiment's test samples exhibit a 

marked upregulation in the unpulsed cell population, and conversely, genes that are 

upregulated in the PULSER experiment appear downregulated in the unpulsed 

population. 

 

 

 

Figure 18: Heatmaps for DEGs (a) Downregulated and (c) Upregulated in PULSER. (b) 

represents the non-coding genes among the PULSER DEGs, expressed in sc RNA-seq data 
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A prominent instance exemplifying this trend is the gene encoding the HSP70 

chaperone SSA4. This gene is widely acknowledged for its heightened induction in 

response to heat stress, as substantiated both by the heatmap data and the existing 

scientific literature. Paradoxically, within the context of the PULSER experiment, SSA4 

emerges as the most profoundly downregulated gene. This intriguing observation 

prompts a noteworthy hypothesis: within the realm of recurring heat stress, the yeast 

species S. cerevisiae appears to strategically fortify its metabolic landscape, 

resembling that of an unstressed environment. Evidently, this cellular response hints 

at the retention of a memory mechanism for recurrent stress occurrences. 

A visual depiction illustrating the contrast in expression levels of SSA4 between the 

PULSER dataset and scRNA-seq data substantiated the inversely correlated pattern 

of SSA4 expression during typical stress conditions and repetitive stress events. 

Figure 19: Top 10 most variable genes in sc RNA-seq data of heat-shock in S. cerevisiae 
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Figure 20: Comparison between expression levels of SSA4 in (a) Normal, (b) Recursive heat 

stress 

 

Utilizing Feature Plots, the differentially expressed genes (DEGs) from the PULSER 

experiment were graphically represented alongside scRNA-seq data to facilitate the 

visualization of gene-specific expression patterns within distinct clusters. Remarkably, 

among the genes significantly upregulated during repetitive heat stress, a striking 

observation emerged: nine out of ten of these genes exhibited marked downregulation 

in the Test samples under typical stress conditions. This intriguing phenomenon 

potentially implies that cells cultured under optimal growth circumstances retain an 

evolutionary memory of stress across multiple generations. Consequently, when 

subjected to successive rounds of stress, these cells surpass the expression levels of 

genes associated with normal growth conditions, thereby orchestrating a concerted 

effort to sustain a uniform metabolomic state. 

Some of the DEGs from PULSER experiment having profound expression in sc RNA-

seq data are shown below. For visualizing all fifty DEGs, please refer to Appendix-I, 

publicly available at : APPENDIX - I 

Similarly, Violin Plots of these significantly expressed DEGs are pasted below. In order 

to visualize the distribution of expression of all fifty PULSER DEGs, kindly refer to 

Appendix-II, publicly available at : APPENDIX-II 

 

 

 

 

a b 

https://drive.google.com/file/d/1xY5WZFVXPe62MKZBaab0uTOnw9Y1fcI6/view?usp=drive_link
https://drive.google.com/file/d/1P69dQ256xFFeP0bnVmBbxHbgrdvIAbMN/view?usp=drive_link
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Figure 21: Feature Plots to visualize PULSER DEGs expression in non-recursive stress 

condition. 
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Figure 22: Violin plots to visualize expression of DEGs under non-recursive heat stress. 
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The plots depicting correlation, covariance, and Euclidean distance didn't reveal any 

resemblance between the PULSER sample and scRNA-seq data clusters. This 

disparity could potentially be attributed to the presence of batch effects. 

Nevertheless, it's noteworthy that the PULSER samples exhibited a strong degree of 

similarity among each other in terms of the similarity index. 

 

 

Figure 23: Similarity among clusters and PULSER samples visualized through (a) Correlation, 

(b) Covariance and (c) Euclidean distance. 

a 

b 

c 
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V.2.2 – MuSiC Deconvolution: 

Hierarchical clustering of clusters obtained from normally heat stressed cells resulted 

in further clustering them in four groups.  

 

 

 

 

 

 

 

Deconvolving bulk samples from PULSER experiments revealed that the '2_Ctrl' cell 

type dominated the composition (~0.6), followed by '8_Ctrl' and '10_Ctrl' types. 

Strikingly, the subclusters within the 'Control' cell population, closely mirrored the high 

proportions observed in PULSER samples. Notably, the '8_Ctrl' cell type exhibited a 

more pronounced presence in cell populations exposed to iterative stress, surpassing 

even the baseline control population. This finding reinforces the proposition of an 

evolutionary memory mechanism in yeast, operative within a subset of S. cerevisiae 

populations. This mechanism assists yeast in recognizing and combatting recurrent 

stress instances. 

Figure 24: Dendrogram of hierarchical clustering of sc RNA-seq clusters 

Figure 25: Cell Type proportions of sc RNA-seq data in PULSER samples 
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V.3 – Objective 3: Functional characterization to elucidate the impact of 

thermo-pulsing on yeast. 

The growth profiles of S. cerevisiae BY4741 indicated a pronounced exponential 

phase in cells subjected to continuous thermal stress, as opposed to both thermo-

pulsed conditions and cells cultivated under optimal growth circumstances. 

Interestingly, prior studies42 have suggested a potential inverse relationship between 

stress survival and growth rate. 

A comparison between the growth curves of pulsed and unpulsed thermal stress indicate a clear 

acceleration of growth in cells undergoing continuous thermal stress as opposed to recursive 

thermal stress.  

Figure 26: Yeast Growth curve with Pulsed thermal stress of in Test sample 

Figure 27: Yeast Growth curve with continuous thermal stress of in Test sample 
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Follow-up studies conducted to assess the ability of these cultures to withstand varying 

concentrations of Acetic Acid (an apoptotic agent) produced a nuanced result 

concerning the comparative stress resistance capabilities of the non-thermal-pulsed 

and thermal-pulsed populations. 

 

 

One hour after exposure to a 50mM acetic acid treatment, cells subjected to repeated 

thermal stress displayed the greatest number of viable cells. This pattern persisted in 

the following hour, indicating the resilience of the intermittent population to the 

Figure 28: Integrated graph with growth curves for Pulsed, non-pulsed and optimum 

thermal environment. 

Figure 29: S. cerevisiae population of Group A (50 mM Acetic Acid treatment) with FDA 

fluorescence (485 nm) measured at interval of 1 hour for a period of 4 hours. 
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apoptotic agent. After three hours, cells cultured under constant thermal stress at 37°C 

exhibited the highest count of viable cells, followed by the intermittent stress group. 

Nevertheless, after four hours, cells grown at the optimal temperature and those 

subjected to intermittent stress demonstrated an equal number of viable cells, with the 

continuously thermal stressed population trailing behind. 

 

Figure 30: S. cerevisiae population of Group B (100 mM Acetic Acid treatment) with FDA 

fluorescence (485 nm) measured at interval of 1 hour for a period of 4 hours. 

Figure 31: S. cerevisiae population of Group C (200 mM Acetic Acid treatment) with FDA 

fluorescence (485 nm) measured at interval of 1 hour for a period of 4 hours. 



  

62 
 

The pattern witnessed in the live population subjected to repeated thermal stress 

persisted in Group B (100 mM Acetic Acid). However, in the case of Group C (200 

mM Acetic Acid), the pulsed population displayed the highest number of cells among 

all the samples after one hour of acetic acid treatment. 

 

 

Figure 32: S. cerevisiae population of Group A (50 mM Acetic Acid treatment) with PI 

fluorescence (544 nm) measured at interval of 1 hour for a period of 4 hours. 

Figure 33: S. cerevisiae population of Group B (100 mM Acetic Acid treatment) with PI 

fluorescence (544 nm) measured at interval of 1 hour for a period of 4 hours. 
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For both Group A and Group B, one hour after being treated with acetic acid, cells that 

experienced repeated thermal stress exhibited the highest count of non - viable cells. 

This trend remained consistent in the subsequent hour, highlighting the endurance of 

the intermittent population against the apoptotic agent. After three hours, cells cultured 

at the optimal temperature displayed the greatest number of viable cells, with the 

intermittent stress group following suit. This identical pattern persisted into the fourth 

hour as well. 

 

At 200mM concentration of acetic acid, intermittent population outperformed all samples in 

terms of robustness to apoptotic stress till three hours of exposure.  

 

 

 

 

 

 

 

 

 

 

Figure 34: S. cerevisiae population of Group C (200 mM Acetic Acid treatment) with PI 

fluorescence (544 nm) measured at interval of 1 hour for a period of 4 hours. 
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VI - Conclusion: 

Applying recursive thermal stress to S. cerevisiae cells conferred them with increased 

resilience against apoptotic stress within a defined timeframe, in comparison to cells 

cultivated under optimal conditions or subjected to non-recursive heat stress. 

Additionally, it was observed that even within a population of cells grown at an ideal 

temperature, a subset of cells consistently exhibited characteristics indicative of heat-

shock response. This distinct subset of cells exhibited differential gene expression 

profiles that shared similarities with the PULSER population. 

Particularly intriguing was the significant downregulation observed in the expression 

of heat shock response (HSR) proteins, including SSA4, within the PULSER 

population. This finding raises questions about how this downregulation might 

contribute to the enhanced robustness of these cells during instances of apoptotic 

stress. Through the utilization of single-cell RNA sequencing (scRNA-seq) data 

obtained from an experiment involving a 42°C heat shock applied to the BY4741 strain, 

the deconvolution of bulk samples revealed the proportions of different cell types 

present within the intermittent population that underwent recursive heat stress. 

These discoveries shed light on what could be termed as an "evolutionary memory" of 

stress within S. cerevisiae cells. This memory appears to have developed as an 

adaptive response to the dynamic and frequently changing laboratory environmental 

conditions experienced by yeast cell lines, including processes like thawing. The 

technique of employing recursive stress induction in yeast cells, resulting in minimized 

protein denaturation, holds significant promise for addressing stress-related disorders 

such as neurodegenerative conditions like Parkinson's. 
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