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ABSTRACT 

 

Background: Studying Chromatin Architecture is paramount to an understanding 

of cells or nuclei in disease and normal state. With recent advances in genomic 

technologies and computational power, new domains like Topologically 

associated domains (TAD) have been discovered. Studying TAD in the context of 

cancer cells gives insights into how chromatin folding relates to the survival of the 

patient. Exploiting chromatin interactions from the lens of enhancer-gene 

interactions is of cardinal value since identifying specific chromatin interactions 

(enhancer-gene pairs) in disease state cells which are etiology pairs for the 

disease, and using genomic editing technologies to knockdown these pairs, could 

be a potential precise and accurate model to beat disease cells, especially cancer 

cells. Our study is divided into two parts; in the first part, we build a method to 

understand TAD biology and its implication in estimating patient survival. In the 

second part of our study, we modified a previously proposed method scEChiA to 

detect enhancer-gene pairs interactions in cancer-specific cells using RNA-seq 

profiles. We further validates the predicted interactions with 4D genome2 and 

Activity by Contact (ABC) databases    

 

Results: We identified TAD chr1_171750000_172350000 in Cervical squamous 

cell carcinoma and endocervical adenocarcinoma (CESC) cancer type, which 

according to our curated algorithms and pipelines is found to be the most 

survival TAD with high survival score. We explored this TAD biology of how genes 

in this TAD interplay with each other creating a network that ultimately defines 

this TAD property. From the scEChiA R package, we identified several enhancer-
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enhancer, enhancer-gene, and gene-gene interaction pairs in chromosome 11 of 

Diffuse large B cell lymphoma (DLBCL) cancer type, which was benchmarked 

with 4D genome and Activity by contact chromatin interaction databases.   

Conclusion: Identification of specific TAD, which is most surviving in cancer cell 

lines, and understanding its underlying biology gives a new definition of TAD 

property and function. Chromatin interaction results from scEChiA along 

pipelined developed algorithms give enhancer-gene, enhancer-enhancer, and 

gene-gene interactions, which could be a database for potential target whose 

knockdown could be a potential cure to cancer cells.  
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INTRODUCTION 

 

Topologically Associated domains (TADs) were discovered in 2012 using chromosome 

conformation techniques like Hi-C4,5. These are the regions where DNA sequences 

within it interact with each other more often outside TAD. They occur across all species, 

including prokaryotes, and their understanding is of paramount importance in 

understanding 3D genome architecture, the functionality of the genome, and lastly, how 

genome interaction unfolds across species across cell lines in a novel way. TAD 

formation happens when cohesin rings bind to DNA sliding over CTCF molecules whose 

binding sequences point away from the loop. As soon as each of the rings reaches 

inward directed CTCF sequence loop formation stops6. It is also called or understood as 

the DNA loop extrusion model7. Human cells have a median TAD size of around 1.15 

mb8. 

 

In-vitro Studies have shown that TAD is dynamic in nature, i.e., it shows transient 

behavior9. An important observation that makes studying TAD more important is that 

TAD boundaries remain conserved across cell types in species. TAD conservation 

property extends further in some cases across species as well10. This Topological 

Conservation property of TAD helps in identifying disrupted chromatin loops better, 

along with making way for therapeutics and CRISPR-based approaches on abnormal TAD 

boundaries. Various studies are now focusing on drug targeting TAD instead of the set of 

targeting DNA sequences.   

 

Disruption of TAD boundaries can do many perturbations. It can affect gene expression 

directly or indirectly via changing enhancer-promoter interaction or enhancer-gene 
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interaction11. These disruptions are known to cause cancers or developmental 

disorders12. Hence understanding how genes inside a TAD inter-connect with each other 

and what it means for the fate of the TAD and the ultimate fate of the cell is of unique 

interest.  

 

Recent Studies13 have shown how TAD property is determined by genes present in it. 

The study describes how the number of genes present in a TAD relates to causing a 

disease, how the size of a TAD impacts its own survival outcome and how genes are 

distributed over TADs. These studies do motivate us to more deeply understand the 

Mechanism behind the interplaying of genes among themselves which define TAD 

property, and also shed light on TAD evolution. Hence, we have tried to understand TAD 

biology with respect to cancer by building a pipeline of algorithms.  

 

Another important part of understanding the human genome, particularly TAD 

properties, is to understand the Mechanism of Chromatin Interactions. There is a 

profound amount of data and studies that have concluded how studying chromatin 

interactions can give novel drug targets. Chromatin Interactions through various 

techniques like Multiplex FISH imaging have identified numerous previously unknown 

TADs and Sub-TADs14.  

 

Studying Chromatin Structure gives a new dimension to understanding genome 

architecture. New Techniques like Chromatin interaction analysis with paired-end tag 

sequencing (ChIA-PET)15 and Graph-based approaches16 have further identified genome-

wide long-range chromatin interactions giving further insights into the functioning and 

properties of TAD. Studying long-range chromatin structures in view of TAD-TAD 



17 
 

interactions gives novel insights into the structural feature of the genome at high 

resolution and small bin size.  

 

Recent Algorithms, like Armatus17, have revealed more TAD-like structures, which 

authors called as Alternative Domains that have not been previously identified as TAD 

by methods given by Dixon et al. from chromatin conformation data.  

 

Understanding the Genetics of Diseases involves studying chromatin interactions in the 

purview of enhancer-gene, enhancer-enhancer, and gene-gene interactions. 

Understanding these three categories of interactions gives a broad and comprehensive 

approach to finding the genetic pathophysiology of diseases and finding novel 

biomarkers and therapeutic targets.    

  

A review paper by Daniel J. Gaffney18 beautifully explains how earlier methods of 

enhancer-gene interaction predictions did have a limitation in that they consider these 

interactions within only a range of distance, and they fail to predict long-range 

interactions that have a high significance. The author explains how Capture-C 

experiments are only able to detect interactions within a range of 20kb19, which is not 

the ground truth.  

 

Expression Quantitative trait loci (eQTL) is a recent method to determine genomic loci 

that explain the variation of mRNA expression levels20. There are cis or local-eQTL, 

which determines genomic loci located very near to the gene, whereas trans or distal-

eQTL locates long-range genomic loci interactions. eQTL method has shown that 
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genomic interactions can happen up to 100kb distance. Although there are limitations in 

the eQTL approach as well, sometimes there is a coincidental overlap of GWAS and 

eQTL results21; hence exact causality of predicted genomic loci to query mRNA is 

questionable.  

 

A recent experimental technique by Charles P et al. 3. known as CRISPRi-Flow Fish, in a 

single experiment, maps all enhancers and their target genes without any limiting factor 

of the distance of gene with enhancer. They named their model as Activity by Contact 

(ABC) model. Their method is by far the most accurate since it uses an exact readout of 

enhancer function, which is varying levels of gene expression. Although the ABC model 

does have some limitations, ABC model accuracy goes down when extended to multiple 

cell types. But even then, it is the far-most accurate model to give enhancer-gene 

interactions.  

 

Hence there is a need to build more models to predict enhancer-gene interactions along 

with enhancer-enhancer and gene-gene interactions, giving a more, broad 

understanding of the regulatory network concerning enhancer/s and gene/s. To achieve 

this, we have used the R package scEChiA1 to predict enhancer-gene interactions.  
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Chapter 1  

      Exploiting TADs activity for predicting cancer survival 

Brief Introduction: 

Recent advances in genomic technologies have revelated Topologically associated 

domains (TAD) as one of the important genomic structures whose role and association 

with various Activities of cells is widely being explored and studied. Chapter -1 focuses 

on how TAD survival outcome could be predicted based on genes (present in that TAD) 

activity and how TAD's genes interplay with each other to ultimately define TAD 

property and TAD prognostic score. These studies give more insights into how TAD 

activity could be used for predicting cancer survival and could become a potential base 

for genomic editing technologies to treat cancer patients more precisely.  

Background and Related Work: 

Topologically associated domain (TAD) was discovered in 20124. Since then, numerous 

studies have been done on understanding genome architecture and chromatin folding in 

disease and normal state in the context of TAD.  

The study by Lifei Li et al. 22 beautifully showed how copy number variation in genes 

present inside the TAD defines TAD prognostic score and how it can be used to predict 

patient survival and how TAD prognostic can be used as a biomarker in cancer patients. 

In our work, we computed TAD prognostic scores for different cancer types on the basis 

of Gene Set Variation Analysis scores of genes present in the TAD.  

Studies have shown how disruption of TAD boundaries causes disease state and effect 

gene expression by changing enhancer-promoter interactions11. The study by Muro et 

al. 13 in 2019 explained the importance of genes presents inside TAD in defining TAD 
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property. The study also shed light on how the number of genes in TAD relates to 

disease state, TAD size relation to its survival, and why the distribution of genes in TAD 

is way like it is. However, it did not mention what the 'Mechanism' by which these genes 

present in the TAD interplay with each other to define TAD property. This lack of 

defining Mechanism was our core motivation to propose a mechanism on why and 

how genes present in TAD define TAD property.   

Theory and Methodology Used: Complete pipeline and protocols followed are 

shown in a comprehensive manner in Figure A for Chapter 1 work  

         

          Figure A 

1. Preparing and pre-processing the Data 

 

As discussed above, TAD boundaries are conserved across cell type23. Using this 

principle, we tried to create a common TAD list for all cancers so that our analysis 

across TAD would be a PAN-CANCER analysis rather than single cancer oriented.  
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To create a common TAD list, we first took regions of Topologically Associated 

domains from the University of Miami TADKB database24 server for different bin 

sizes (mainly 10kb to 50kb). Then we performed HiC on four cell lines taken from 

oral cancer cell lines curated by the Genome Institute of Singapore. 3 cell lines 

were from primary oral cancer tumors25–27, while 1 cell line was of metastatic oral 

cancer28. HiC gave us chromatin interactions, and we merged it with the TADKB 

database to curate a novel common TAD list that can represent every cancer cell 

genome architecture.     

 

To create a TAD file with genes present in it, we intersected TAD boundaries with 

the hg19 promoter via bedtools29 to give us genes present in every TAD. Thus, we 

created the TAD-gene-set file, which has been used in the following sections. The 

bin sizes of our TAD-gene-set file were in the range of 0.2 to 70.25 MB. We used 

this TAD-gene-set file in each TCGA cancer analysis since it remains conserved.  

 

*NOTE: I have taken TCGA CESC cell line which is Cervical Squamous Cell 

Carcinoma and Endocervical Adenocarcinoma, throughout the project. If 

anytime the cancer abbreviation is not mentioned, consider it as a CESC cell 

line.  

 

     

2. Gene Set Variation Analysis (GSVA) 

 

Gene-set variation analysis developed by Sonja et al. in 201330 is a widely used, 

powerful, and robust technique that estimates unsupervised variation of 

pathway activity over a sample population. It outperforms other enrichment 

methods when the Data is highly heterogeneous. We used the GSVA-R package 
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to calculate the TAD GSVA score for each cancer type. For each TAD, we run 

GSVA for genes present in the TAD, giving input of gene expression data over 

different samples (patients). This gives us the GSVA score of each TAD over all 

samples (patients) for each cancer.  

GSVA scores for each TAD over all patients give an impression of how much a 

particular gene set (of that TAD) is enriched in a particular sample. GSVA 

computes cumulative density function (CDF) for each gene, then computes the 

rank of genes (lying in our gene set) via Klimigrov random walk statistics. GSVA 

score of TAD is interdependent on other TADs as well since we have used the CDF 

function. GSVA score is actually the Difference between H1 (highest Difference 

between K-S statistics of random walk for gene lying in gene set and gene, not 

lying-in gene-set) and H2 (lowest Difference between K-S statistics of random 

walk for gene lying in gene set and gene, not lying-in gene-set). Positive GSVA 

scores imply that genes are positively enriched in a given gene set, while negative 

GSVA score implies just the opposite. For our case, a Positive GSVA score over a 

patient (sample) implies that genes lying in that TAD on the given patient has 

high enrichment.  

One fundamental challenge in Genomics is to differentiate between correlation 

and causation. When we apply GSVA, output GSVA scores not only represent 

correlation scores but also give an impression of causality. We have used this 

property of GSVA in Bayesian Modeling among genes of specified TAD in our 

course of study. 

For our study, we computed GSVA scores for 20 cancer types and then used 

these scores to study the relation of TAD among themselves via the random 

forest and Bayesian Modeling. GSVA scores were also used as a biomarker to 

calculate the survival -p-value of TAD over all patients in particular cancer. 



23 
 

 

3. Survival analysis  

 

Survival graphs and their score (p-value) are an important estimate to understand 

how a particular biomarker activity given over a number of samples (patients) 

contributes to their survival outcome. Survival p value < 0.05 is generally 

considered as a cut-off to certify our null hypothesis.  

Survival score calculation do require the classification of samples into categories 

(1/0). This classification cut-off is of paramount importance as it will decide the 

survival score. This cut-off is the ultimate benchmarking upon which the whole 

study outcome is inferred and presented. Deciding this cut-off needs proper 

evaluation and requires a proper understanding of Statistics and the nature of 

data. In our case, it is oncological-genomic data. 

 

4. Statistical Approaches to handle Survival analysis 

 

In most studies median is set as the cut off which dichotomizes the biomarker, 

guaranteeing an equal sample size for both groups.31  There are widespread 

studies on how cut-off point variation results in a shift of the ROC curve32. Altman 

et al. in 1994 famously have written the dangers of using optimal-cut-off in 

survival analysis33 and how it gives rise to data-dredging bias31. Finally, in March 

1992, Maximally Ranked Statistics by Lausen34 was proposed, which finds out the 

maxima of standard statistics of all possible cut points. Monte-Carlo simulations 

then give conditional p value31. Minimizing  type-1 error by Altman DG (1994)33 

and α-level adjustment by Miller R (1982)35 and Mazumdar M (2000), 36 were 
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some more improvements done to make sure the right cut-off is decided. Lastly, 

Francisco Tus Tumi mentions that deciding cut-off points will always give some 

bias31. 

Prof Douglas G Altman (professor at Wolfson college at Oxford) is regarded as the 

most trustworthy and final voice in medical statistical analysis, particularly in the 

field of survival analysis on medical/biomedical data. In 1994 did propose the 

dangers of using optimal cut off33, but he did give some liberty to use various cut-

offs, provided that strong biological explanations are provided to justify these cut-

offs, and the optimal cut-off term should be termed minimum-p-value term.   

But Prof Altman came down heavily in the year 2006 when he published an article 

in British Medical Journal37 where he bluntly said that categorizing biomarkers (in 

our case, it is GSVA) will give less statistical power, more probability of true 

positives to becoming false positives and under-estimation of the extent of 

variation in outcome between groups. Therefore he advocated for the use of 

Regression in place of cut-off-based survival analysis.  

Taking note of Prof Altman's above work, we have used Regression as the basis 

for survival analysis.    

 

5. Random Forest Classification 

 

Firstly, for each cancer type input matrix was designed, which contains a patient-

wise GSVA score for all TAD's including a risk column. This risk column is made on 

the principle that the higher the number of days to death, the less risk is, and 

vice-versa. Here we calculate the median of days to death in each cancer type 

and then denote high risk when days to death are less than the median or low 
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risk when days to death are more than the median value. This is how the input 

matrix is designed for the random forest to work upon as input.  

The random forest does the classification of features to sort which features are 

the most appropriate predictors for the response or target variable. Here 

features are our TAD, and the target variable is the risk column (0 or 1) in factor 

format.  

Here an important question arises of what should be the number of trees we 

should use in order to correctly classify TAD which targets risk in high value. Since 

no literature was available on the number of trees used with respect to the 

number of columns to get the best classifying prediction accuracy, some 

illustrations showed the relation of trees used and the rows in dataset 38–40. The 

study by Oshiro et al. 41 shows how doubling the number of trees does not impact 

significant performance gain, and it gives rough estimates of using trees in the 

range of 64-128. But it also showed that as the number of attributes (features) 

increase, the higher number of trees up to 4096 might be an ideal estimate to be 

needed. Hence we did not get a true specified range of trees we should use to 

get to the most optimal classification solution. 

 

 In order to fix this problem, we made an iterating algorithm where each time we 

fixed the number of trees, ran the random classifier forest, and then calculated 

its error rate. We then select the optimal number of trees to be used based on 

the condition where the error rate is at its minimum. 'err. Rate' is one of the 

output parameters in a list of Random forests. It contains a column named Out-

of-bag (OOB) error parameter, which is simply the prediction error out of the 

random forest for each tree used. Simply calculating the median of all OBB errors 

for all number of trees used gives us the error rate for one iteration.  
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For iteration number of trees varied from 50 to 2500. Here the maximum number 

of trees was chosen to be 2500 after many experiments. We observed that the 

OBB error rate does get to a minimum point between 50 to 2500 trees, and 

beyond 2500, the OBB error rate does not get to its global minimum further. For 

cancer wise optimal number of trees also varies. After Running a random forest, 

we then made a sorted matrix where each TAD (feature) has its Mean-Decrease-

Gini-Score. It determines how closely the TAD is related to the risk factor. The 

higher the Mean-Decrease-Gini-Score higher the association and vice-versa. We 

stored this matrix and sent it to the Bayesian Modeling R package – 'bn-learn.' 

 

6. Bayesian Modeling 

Bayesian Modeling gives probabilistic associations between variables via Directed 

acyclic graphs. It gives dependencies among variables given a condition has 

happened. Bayesian networks are an easy-to-understand methodology both 

mathematically and visually and also consume less computational memory 

compared with exhaustive probability tables. Many algorithms are present in 

Bayesian Modeling. There are constraint-based structure algorithms, score-based 

structure learning algorithms, hybrid structure learning algorithms, local 

discovery algorithms, and Bayesian network classifiers.  

Analysis and Studies by Marco Scutari42 and Cowell43 showed that constraint-

based and score-based algorithms select identical discrete Bayesian networks. 

Further study by Marco Scutari42 showed that a score-based algorithm produces 

a high-likelihood network giving realistic models and propagating evidence. Also, 

it showed that score-based algorithms are faster than hybrid and constrain based 

algorithms.  
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Hence, we used score-based algorithms in our study. We used Tabu search in 

place of a hill-climbing algorithm for the simple reason that hill climbing does get 

stuck in local optima while tabu search maintains a tabu list which holds objects 

that are taboo for current iteration use for avoiding getting stuck44,45.  

We used Random Forest for the classification of TAD, which is most likely to be 

affecting the Risk node; Random Forest classification being a supervised bagging 

algorithm, gives us all TADs with their classification or Mean-Decrease-Gini-Score. 

Using these lists of TADs with classification scores, we send these TADs into 

Bayesian networking in an iterating manner where in each iteration, we decide 

number of TADs to be given as input to the Bayesian network. The whole idea of 

sending different amounts of TADs into the Bayesian model is to find the most 

frequently overlapping TAD, which comes from a parent node to a risk node. 

Using this approach, we can identify TAD of Interest which comes as a frequent 

parent node to risk node considering the dynamic nature of Bayesian Modeling.  

We used nine iterations to submit random forest results to Bayesian Modeling. In 

each iteration, a specific top TAD out of the random forest was chosen and sent 

to the bn-learn R package. Specific top TAD numbers for successive iterations 

were from 20 to 200. We chose the endpoint as 200 because beyond the top 200 

TAD, there is almost zero probability that any TAD beyond 200 ranks would be 

featured in the list of TAD of Interest (parent node to risk node) out of Bayesian 

analysis.  

Here for each iteration, we not only calculated Bayesian network parameters for 

the complete dataset, but we also calculated AIC (Akaike Information Criterion), 

which is derived from frequentist probability, and BIC (Bayesian Information 

Criterion), which is derived from Bayesian probability. Both scores are desired to 

be low for a good model to fit into the Bayesian network. However, we analyzed 
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BIC scores since they are more consistent and tolerant and penalize free 

parameters more strongly than AIC.  

We also used one approach to observe whether the TOP parent node does get 

affected by the number of patients (sample size). To achieve this, we divided our 

input matrix into two equal halves, then ran the same tabu search Bayesian 

network on both halves and found which is the top node to risk factor each time. 

We did this for all nine iterations.  

 

7. GSVA combinatorics and Survival 

Once we identify the top prognostic tad for a particular cancer type, we are now 

interested in how genes present in that TAD work as a team/unit to define TAD 

property or make that TAD prognostic or not prognostic. So to identify the novel 

relationship among genes within a TAD, we performed combinatorics GSVA.  

The idea is simple. We make all possible combinations of a set of all genes in 

specified TAD and run GSVA on those combinations. We can call them 

experimental virtual TAD. After GSVA scores are calculated on them, we compute 

survival on all those virtual TADs. Survival scores give us a novel understanding of 

how these genes are interplaying with each other. And we can easily find a 

correlation among different combinations of genes via their survival p-value.  

As discussed above, GSVA scores do give an impression of causality in addition to 

correlation, so GSVA combinatorics and further survival analysis based on GSVA 

scores give us a good footprint of both correlation and causality of survival of 

genes among themselves. 
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This novel technique sheds light on a completely new gene-regulatory network 

that defines particular TAD properties which we believe not has been touched 

upon before by any work by a Research group or individual.  

 

8. Bayesian Modeling of TAD genes 

 

As discussed above, as there is no available data or hypothesis which relates the 

interplay of genes as a unit to define a TAD property, benchmarking our results 

has become a major challenge.  

To certify our results of GSVA combinatorics, we perform unsupervised Bayesian 

Modeling via dynamic Tabu search methodology in R package bn-learn46 to give 

us a network. We have then benchmarked our GSVA combinatorics gene 

regulatory network against the Bayesian output of the genes of the same TAD. 

 

 

Results  

1. For each cancer type TAD, a wise GSVA scores file was generated. A sample 

output via the R Studio window is shown in Fig 1. Columns here are patients, and 

rows determine TADs. In contrast, each cell value is the GSVA score. 
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     Figure – 1 

2. Survival analysis was performed on these GSVA scores and for each TAD survival-

p-value. Fig 2 shows a table showing the Survival value (via Regression) for each 

TAD for CESC cancer type.  

 

        

  Figure 2 

3. Random forest input file for the CESC cancer type is shown in Figure 3   
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      Figure 3 

4. Figure 4 shows the error rate for the different numbers of trees used as input for 

CESC cancer type. Here we can see that when we use 1050 trees in the random 

forest for CESC cancer, we get the least error rate. Hence for further analysis, we 

have used 1050 trees. 

 

                       Figure 4 
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5. Random forest output showing each TAD importance score which gives its 

correlation with risk factor (built on the basis of days to death value) shown in 

Figure-5 

                   

         Figure 5 

 

6. A comparative Table is shown in Figure 6, which shows how many times 

particular TADs appear as the parent node of the Risk factor in CESC cancer type. 

Bayesian analysis was run in 9 iterations by taking the different number of top 

TADs from the output of the Random Forest.  
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 Figure 6 

7. The comparative matrix of CESC cancer type made out of the Bayesian network 

shown in Figure 7 shows the number of TADs as a parent node to risk, the top 

parent node, and their AIC and BIC score. It also shows TOP TAD in the first half of 

the input matrix and likewise in the second half. 

 

               Figure 7 

 

8. When TADs from Figure 6, which appear the greatest number of times as parent 

node to risk, was merged with the database of survival-value for the same CESC 

cancer, we got results as shown in Figure 8 
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     Figure 8 

 

9. Since as we have observed that TAD chr1_171750000_172350000 comes the 

greatest number of times as parent node and also Top parent node to risk node 

when we take 100 or 200 Top TAD from the random forest. Figure 9 shows a 

Bayesian network representing connections of TAD chr1_171750000_172350000 

with other TADs. It can be seen that our TAD chr1_171750000_172350000 is 

acting as the parent node to the risk node. Figure10 shows the survival graph of 

TAD chr1_171750000_172350000 

     

       Figure 9 



35 
 

                                       

      Figure 10 

 

10. Combinatorics of the genes present TAD chr1_171750000_172350000 in CESC   

cancer type were made. Here we removed pseudo-genes and non-coding RNA 

from combinatorics. After the removal of pseudo genes and non-coding RNA, we 

had five genes in our TAD. Making its combinatorics, we got 32 combinations 

matrix as shown in Figure 11  
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           Figure 11 

11. GSVA of each combinatoric TAD chr1_171750000_172350000 was calculated as 

shown in Figure 12 

  

 

     Figure 12 



37 
 

 

12. Using these GSVA scores, a Bayesian network model of all five functional genes in 

our TAD chr1_171750000_172350000 was calculated, as shown in Figure 13 

 

   

      Figure 13 

 

 

 

13. Based on Combinatorics GSVA of our TAD chr1_171750000_172350000, the 

survival p-value was also calculated. Figure 14 shows the survival -the value of 

TADs in ascending order (sorted). In Figure 14, it is mentioned for each row as 

'Experimental (Exp)-TAD- (number of genes in a cluster) **names of genes in 

cluster**. The cluster of genes varies from 1 to 5 since we have five functional 

genes in total in our TAD. In total, there are 32 experimental TADs. 
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      Figure 14   

 

   

14.  Further for analysis, we have also calculated gene-wise Survival for CESC cancer 

type. Figure 15 shows the survival of only five functional genes of our TAD 

chr1_171750000_172350000. 
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                                              Figure 15 

 

Observations and Inferences: 

1. From Figure 2, Survival analysis of CESC cancer type showed that TAD 

chr8_27170000_27460000 shows the best survival p-value (lowest) But Supervised 

Random Forest analysis (target to risk node) output from Figure 6 shows that 

for CESC cancer type, TAD chr3_118840000_119430000 comes at the top on the 

basis of Mean Decrease Gini Score.  

 

a. Since Random Forest does helps in finding importance of TAD in survival 

modeling, it gives a better idea of the TAD which affects risk factors; we 

can conclude that TAD highlighted by random forest 

chr3_118840000_119430000 which also has a significant association to survival 

p-value; hence it is a better choice of further study.  

 

 

2. TAD’s selected by random forest were used in Bayesian analysis are sent in 

iteration to Bayesian network, we observed from Figure 7 that each time parent 

node is different for the different number of input TAD given by Random Forest. 
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When we crosschecked parent nodes' survival p-value for all iterations, we 

interestingly found that all have significant survival p-values. Hence it signifies 

that survival-p-value is an important parameter to deciding TAD prognostic 

nature, although not the only criterion.   

 

3. From Figure 7 itself, we can see that when we divide the matrix in half and pass it 

into the Bayesian network, there is a change in the TOP parent node to the risk 

node. This does signify that Bayesian Modeling also depends on the sample size 

taken. Although we also observed that while the TOP parent node may change 

when we input half matrix, some parent nodes to a risk factor (when the first half 

and second half are input to the Bayesian network) remains common.   

 

4. Figure 7 also shows AIC and BIC scores, but we neglect these parameters for 

iterations up to the top 200 TADs for the simple reason that up to 200 TAD, there 

is a significant change in the parent node list. We can surely consider AIC and BIC 

scores when we take TADs beyond the Top 200 from Random Forest. Then AIC 

and BIC scores (the lower, the better) would give us an idea of which model fits 

best.  

 

5. From Figure 8, we clearly get to observe that making a frequency table for noting 

down which TAD repeatedly comes as a parent node to risk node gives us a 

better approach to identifying our TAD of Interest since Bayesian networks are 

dynamic in nature for each iteration. We observe our TAD of Interest as TAD 

chr1_171750000_172350000, which has a significantly low p-value also.  
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6. The Bayesian network in figure 13 shows the clear linkage of our TAD of Interest 

chr1_171750000_172350000 to the risk node, and also, it's the only parent node 

that targets the risk node.  

 

7. To understand our TAD of Interest chr1_171750000_172350000 biology, GSVA 

Combinatorics and subsequent survival analysis were done as shown in Figure 12 

and Figure 14. Then we did Bayesian Modeling of genes present in TAD of 

Interest chr1_171750000_172350000 as shown in Figure 13. It answers a 

fundamental question about TAD functioning and its properties defined by 

genes present in it. If we closely look at the Survival Outcomes of the 

combinatorics, as in Figure 14, we observe here that when all TAD genes GSVA 

scores are taken into account, they give the best survival score of all of the 

combinatorics. This nature can be explained by again looking at the Bayesian 

Modeling of genes (Figure 13) and Gene wise survival in CESC cancer based on 

expression data (Figure 15) with Combinatorics Survival in a comparative manner. 
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                                                                  Figure 14                                                       

  

   Figure 13              Figure 15 
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Here we observe that TAD chr1_171750000_172350000 itself (or the five combination 

TAD) has a low p-value compared to most of the combinatorics but has a high p-value 

compared to some high survival TAD. 

Note: Here, we define survival score as the score which gives the best survival of the 

gene or the lowest survival p-value and vice-versa.  

We observe that Exp-TAD, which has one gene only, has the same trend of the p-value 

as shown in Figure 15, where gene-wise survival is shown.  

Now we also observe that gene METTL13, in combination with low survival score genes 

like DNM3OS and DNM3, becomes low survival score than only the METTL13 gene, 

implicating that when there is a combination of genes, the overall survival score 

depends on two factors, one factor is how good survival score is of individual gene, 

and the other factor is of how well-combined survival score. A combination of both 

these factors determines the overall experimental TAD survival score. We can confirm 

this conclusion by looking at other genes like MIR214 and how survival score diminishes 

when MIR214 combines with DNM3 and DNM3OS genes.  

Another beautiful observation is that when MI214 and MIR199A2 genes are in 

combination, it performs less than individual MIR214 gene expression, although both 

genes have a high survival score. This is explained by looking at the Bayesian network in 

figure 13, whereby it is shown clearly how MIR199A2 also activates the DNM3OS gene 

(which is a very low survival score gene); hence when M1214 and MIR199A2 are in the 

same TAD, their survival score is low because of hidden linkage between MIR199A2 and 

DNM3OS. This conclusion shows how TAD's overall survival score also depends on the 

third factor as well which is how genes interplay with each other. Any linkage to a low 

survival score gene would reduce TAD's overall survival score, whereas linkage to high 

survival genes would upgrade TAD's overall survival score.  
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Hence overall TAD survival score depends on three factors, as depicted below.  

We can thus conclude that survival score of TAD is combination of two factors, first 

factor being Combination of genes survival score present in the TAD and second being 

survival scores due to interplay of gene network present in TAD.  

Hence by looking at the Bayesian network along with gene survival score when 

expressed independently, our survival results of combinatorics become crosschecked 

and validated.  

The Difference in survival p-value of different combinatorics is due to the survival 

impact of independent genes when expressed independently, along with how these 

genes interact with one another.  

Hence even if genes present in combinations do not have the best survival score when 

expressed independently, they can rank the TAD better in survival score if they impact 

high survival-scoring genes. Hence even if a weak surviving gene is present in the TAD, it 

will still make a good amount of Difference in the overall Survival of the TAD if it is a 

parent node of high survival genes like MIR199A2, MIR214 or METTL13.  

Hence Survival of TAD depends on every individual gene on account of how is their 

survival score when expressed independently plus how every individual gene is 

impacting other genes, impacting other high survival genes would increase the overall 

TAD survival score, whereas if they impact other low survival genes, TAD overall 

survival score is bound to decrease. Hence these patterns are observed.  

Hence these results give the fundamental impression of how genes interplay within a 

TAD and how a TAD property is defined by the union of genes and not only by the 

nature of individual genes. 
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8.  Further we searched for every gene, literature on how it impacts Cervical Cancer 

so that we could validate our study.  

 

a. The study by Xian et al. 47 clearly showed how MIR199A2, which is a 

member of the microRNA-199a family, reduces cell proliferation and 

Invasion of Cervical Cancer cells47. They showed how the expression of 

MIR199A2 is low in CESC cancer cell lines, and high expression of 

MIR199A2 inhibits and promotes AKT/mTOR pathway by targeting B7-

H3 hence suppressing the growth of cervical cancer tumor cells. This 

validates our results and hypothesis as to why experimental TADS with 

MIR199A2 showed a high survival score.  

 

b. The study by Song et al. 48. shows how MIR214 is a known tumor-

suppressive microRNA in cervical cancer. A study showed how SPINT1-

AS1, a non-coding RNA, and MIR214 counter-attack each other, which 

decides the fate of cervical cancer cells. MIR214 power over SPINT1-AS1 

suppresses cervical cancer cell growth. This validates our results and 

hypothesis as to why TAD with MIR214 shows a high survival score.  

 

c. The study by Li et al. 49 showed how METTL13 overexpression increases 

cisplatin sensitivity of cervical cancer cells and further suppresses the 

growth of cervical cancer cells. They explained how METTL13 diminishes 

the functioning of the Receptor for advanced glycation and products 

(RAGE) and thereby protects cervical cells from becoming cancerous. This 

validates our results of why METTL13 expression in TAD leads to high 

Survival in CESC cell lines.   
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d. The same study by Song et al. 48, which showed MIR214 role in cancer 

suppression, also explains how DNM3OS is a transcript of MIR214 and 

how SP1NT1-AS1 blocks cleavage of DNM3OS which in turn represses 

MIR214 bio-genesis activating cervical tumor growth. Hence it somehow 

validates why our Bayesian network shows the impact of MIR214 on 

DNM3OS.  

 

e. The study by Jing Fa50 shows how DNM3 plays an important role in cervical 

cancer tumor repression. Low expression of DNM3 is directly associated 

with a high grade of cervical cancer. The authors showed how over-

expression of DNM3 in cervical cancer patients inhibited the invasion 

and growth of cervical cancer cells. This also somehow explains why our 

Bayesian network does show activating of DNM3 by METTL13 and MIR214. 

Activating by METTL13 and MIR214 (both of which suppress CESC cancer 

cells) also hampers cervical cancer growth by further activating DNM3. 

Hence this study does support our Bayesian Model network of genes.  

 

 

Figure 16 shows how all Genes in TAD chr1_171750000_172350000 interplay 

with each other and how they suppress cervical tumor growth by targeting 

various pathways. It also shows combinatorics Survival Score.  
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Figure 16 
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Chapter 2 

 

Utilizing chromatin domain architecture and highlighting   

relevant enhancers and their target 

 

Brief Introduction: 

Chapter 2 focuses on how the prediction of chromatin interactions is being made by 

using only RNA-seq data of mRNA and enhancers in a cancer-specific manner. 

Chromatin interactions were predicted from R package scEChiA1 developed by Dr. 

Vibhor Kumar's lab using RNA seq data of enhancers and genes. These predictions were 

computed based on various algorithms and designed Methodology. These predictions 

were benchmarked against the 4D genome database2 and Activity by Contact3 

chromatin interaction database. These benchmarked results were analyzed for different 

categories giving insights into how good and reliable scEChiA interactions predictions 

are and how these interaction databases could be used as the base for genomic editing 

technologies to treat cancer patients.   

Background and Related Work: 

Chromatin interactions play a vital role in determining the expression level of genes and, 

ultimately, cell fate. Studying these interactions is of paramount importance, especially 

in cases of diseased (cancer) cells, since it gives insights into the genomic etiology of the 

disease. 
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Most of the studies predicting chromatin interactions are built from chromosome 

conformation techniques like 3C,4C,5C, and HiC, but recent advances in genomic 

technologies like Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-

PET) have provided more precise chromatin interactions.  

Most of the chromatin interaction studies in the context of enhancer-gene interactions 

are on the basis of the physical distance between erna and mrna. The assumption that 

enhancers only target genes that are in close proximity is not ground truth anymore. 

Hence these studies do not represent genome-wide erna-mRNA interactions.  

But a recent technique by Fulco et al. 3. is known as CRISPRi-FlowFISH, which maps 

enhancers directly through perturbation of gene function. This technique predicts 

enhancer-gene interactions on the basis of two factors, one being the approximate 

contact frequency between enhancer and promoter and the second factor being the 

enhancer activity. Combining these factors, the authors proposed Activity by Contact 

Score for all interactions. In our work, we have used the scEChiA R package, which 

predicts chromatin interactions using RNA-seq data, and benchmarked our output 

interactions with the 4D genome and Activity by contact database to make technical and 

biological conclusions.      

    

Theory and Methodology Used: 

An overview of the entire Methodology followed has been described in Figure B. 
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        Figure B 

       

1. Working of scEChiA R package: 

We are going to use scEChiA for our study to find chromatin interactions; hence it 

is important to understand the basics of how scEChiA works.  

 

The scEChiA R package primarily computes chromatin interactions based on its 

two defined functions, "Interaction_Prediction_1" and 

"Interaction_Prediction_2," whose functioning has been described in detail in 

the subsequent section 

 

For both functions, there are some common input variables:  

 Both take expression data sets where the first three columns depict 

chromosome number, chromosome start, and chromosome end 
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position. After the third column, expression data for each sample is 

present. 

 Both functions require a user-defined bin size upon which it decides 

the range of base-pair for each set of chromatin parts that are 

interacting.  

 Both functions require user-defined start and end sample points upon 

which it calculates interactions through a series of algorithms. 

            Difference between two functions: 

 Interaction_1 takes into account HiC profiles as background 

information to decide on the penalty term (described in 

subsequent sections). For computing the average of HiC files, the 

rhomatAvg function is used, which computes the average of two 

different HiC files. Results of rhomatAvg are used in Interaction_1 

as an input parameter which represents background information 

as a HiC matrix, and it helps decide the penalty term Rho(p) for the 

function. 

 Interaction_2 function takes a parameter 'Rho constant' which is 

defined by the user, and it acts like a constant penalty for all 

predicted interactions.  

 

            

             Mathematical algorithms upon which scEChiA predictions are based: 

 Merging of read-count peaks: It firstly divides genomic data into user-

defined bin sizes and then merges peaks from the read-count matrix 
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provided, after which log transformation of the newly formed count 

matrix is taken. 

 Gaussian Graphical Model: In 2008, Friedman et al. 51 described a 

technique called a graphical lasso, which estimates regularized covariance 

matrix and its inverse (which is used for partial correlation calculation). 

The main Advantage of using a graphical lasso is that for the low 

association of variables, it reduces the partial correlation between peak 

pairs by introducing a penalty term rho.  

 Penalty term rho (p): It forms the very core structure of mathematics that 

is used in scEChiA. Penalty terms are in the form of a matrix, where each 

row of the penalty matrix is the penalty for each predicted set of 

chromatin interactions. Penalty term usage in two functions (interaction_1 

and interaction_2) is different. For the Interaction_1 function penalty term 

is a matrix, where it is computed from a formula as shown in Figure 17 

below. 

                         𝒑𝒊𝒋 =
𝜹

𝒉𝒊𝒋+𝜺
 

           Figure 17 (Credits: Pandey et al. 1)  

Here hij represents the average enrichment level of chromatin interaction 

between genomic bins approximated by using background HiC data.  

ε Represents a false count, which halts the penalty terms increase when 

there is no chromatin interaction found. δ is a variable parameter that 

decides the trade-off degree between the number of predicted 

interactions and accuracy.  

 Matrix Factorization method: After the penalty term has been applied, we 

use the matrix factorization method, which gives a better estimation of co-
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occurrence. It gives a better estimation of how strongly are our predicted 

interactions correlated.  

 

2. Preparing and pre-processing the Data: 

 

We collected gene expression data across all patients (samples) across all cancers 

from the TCGA portal. This was available in GEO accession no GSM1536837 

Andrea Bild's Lab, University of Utah. We then collected enhancer (eRNA) 

quantification data from the MD-Anderson Bioinformatics portal for all TCGA 

patients for all cancers. Both expression data of mRNA and erna also contained 

information on their location (chromosome no, start position, and end position)   

 

We then merged both genes (mRNA) expression data with eRNA expression data 

(along with their positions) for all patients (column-wise) and built mrna & erna 

concatenated matrix (patient column-wise) for each cancer type.  

 

Here, since for eRNA only the start position was provided and not the end 

position, hence we kept the enhancer-end position as (eRNA start + 1600 base 

pairs) since eRNA can lie range from -800 to +800 bp in length.  

 

Here we took TCGA- DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lymphoma) 

cancer type in our study. Hence, wherever there is no mention of the cancer 

type, consider it TCGA-DLBC.  

Please note that we took DLBC chromosome number 11 for our analysis scEChiA 

performs or computes chromatin interaction for one chromosome (Intra-

chromosome only).  
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3. Concatenated matrix of mRNA-erna to scEChiA R package: 

 

Once concatenated matrix was made, we took it as input for various functions in 

the scEChiA R package. scEChiA calculates chromatin interactions by two 

methods, 

a.  One Method function is defined as Interaction_2, which takes a 

constant penalty rho(p) for every predicted interaction.  

b. Another method function is defined as Interaction_1, which takes 

background information of two different HiC data files to estimate the 

penalty for each set of chromatin interaction sets. 

 

4. Input to Interaction-2 function: 

Once we have prepared the data, we input our data into interaction-2 for 

different bin sizes. Here we chose bin sizes like 2kb,10kb,25kb, and 30kb. For 

each bin size, our constant Rho (p) or penalty score was kept constant at 0.1.  

 Since we were more interested in finding enhancer-gene interactions 

along with enhancer-enhancer and gene-gene interactions, as our Data is a 

concatenated matrix of mRNA and enhancers, we ran scEChiA 

Interaction_2 function first for the complete data set (mRNA + enhancers 

expression data) then we ran it for only mRNA expression data and then 

we ran it only for enhancer expression data.  

 It was done so that we get true pairs of gene-gene interactions, true pairs 

of enhancer-enhancer interactions, and true pairs of enhancer-gene 
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interactions. We also did this deliberately because of the fact that when 

the complete matrix is run, we get some CONFUSING PAIRS (pairs which 

do not give a clear impression that they are true eRNA-eRNA pair or true 

mRNA-mRNA pair or true eRNA-mRNA pair).  

 Hence to determine where these CONFUSING PAIRS actually belong (either 

to eRNA-eRNA or to eRNA-mRNA or to mRNA-mRNA category), we further 

developed a FILTERING ALGORITHM that can filter these confusing pairs. 

Some confusing pairs (< 5 %) remain in confusing pairs; hence we remove 

these pairs for benchmarking in further analysis.  

 

5. Input to Interaction_1 function:  

 

Same as mentioned above in point 4, we took similar bin sizes classes of 

2kb,10kb,25kb, and 30kb for interaction_1 input. Here we took two different HiC 

profiles. One HiC profile we used was IMR90 which is fibroblast from lung tissue. 

We took IMR90 from 4D Nucleome Data portal52 (4DN portal), Accession no 

4DNFIH7TH4MF from study and experiments by Rao et al. 53. Another HiC profile 

data was of k562, which are lymphoblast cells obtained from bone marrow. 

Accession, no of k562 HiC from the 4DN portal, is 4DNFITUOMFUQ from study 

and experiments by Rao et al. 53 

 As explained in point 4, we performed a similar procedure in the 

interaction_1 function also by predicting interactions for the 

complete dataset (erna + mRNA), only the eRNA data set and only 

the mRNA data set. 
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 For getting chromatin interactions from HiC data for different 

resolutions, we used the straw R package from Aidenlab54. It gives a 

data frame with HiC chromatin interaction data.   

 A similar FILTERING ALGORITHM was applied to sort or give 

directionality to CONFUSING PAIRS. 

 

6. Sorting out scEChiA prediction Results: 

 

Once we got predicted interactions from both functions (Interaction_1 and 

Interaction_2) for different bin sizes, we benchmarked our results with available 

chromatin interaction data from 4D genome webserver2 and Activity by Contact 

GM12878 Chromatin Interaction database55. 4D genome web server contains 

chromatin interactions for different cell types. It also contains chromatin 

interactions obtained from various techniques like 3C, 4C, 5C, Capture-C, HiC, 

ChIA-PET, and IM-PET. We filtered out chromatin interactions for the GM12878 

cell type, which is for B-lymphocyte in Blood tissue. It was chosen because our 

chromatin interactions were done from the DLBC cell line, which is Lymphoid 

Neoplasm Diffuse Large B-cell Lymphoma is also from blood tissue. Activity by 

contact (ABC) database by Joseph Nasser et al. 55 gives chromatin predictions 

sorted out by three scores – Activity, HiC contact, and ABC score. We filtered out 

those interactions which had ABC score > 0. There we over 1 million ABC 

interactions. 

 Benchmarking or comparing chromatin interactions was done using the 

python library 'pgltools' by Greenwald et al. 56. Pgltools compare two 

chromatin interaction datasets and find the intersection of the two.   

 Before intersecting results from GPL tools, chromatin interaction output 

from scEChiA was sorted out by three algorithms. The first algorithm was 
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used to make sure that the start position was less than the end location in 

both loci of chromatin interaction. The second algorithm was used to 

make sure that locus A comes before locus B in our data set. The third and 

last algorithm was used to make sure that the end position of locus A was 

less than the end position of locus B. These three algorithms were used on 

both data sets (data set out of scEChiA and data set from the 4D genome). 

 After this, both the data set (data set out of scEChiA and data set from the 

4D genome) were sorted according to the protocol mentioned by pgltools 

python library command- 'pygl.sort(data)'.  

 

7.  Filtering Algorithm: 

                The basic Methodology followed in the Filtering algorithm is shown in Figure C 

 

            Figure C 

 

 As explained in points 4 and point 5, scEChiA output does give confusing 

pairs when input is complete (mRNA-erna expression data). Confusing 

pairs arise irrespective of the fact that it was the interaction_1 function 
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used or the Interaction_2 function used. To know exactly whether the 

confusing pair is an erna-erna or mRNA-mRNA, or erna-mRNA interaction, 

a FILTERING algorithm was applied.  

 The filtering algorithm is based on very simple observation. The 

observation is that when only the mrna input matrix is passed in scEChiA, 

it is bound to give only mRNA-mRNA interactions, and when only the erna 

input matrix is passed, it is bound to give only erna-erna interactions. 

Hence by this concept, every Confusing pair arising from only the mRNA 

input matrix (CP2) and Confusing pair arising from only the erna input 

matrix (CP3) are actually in ground truth only mRNA-mRNA pairs (for CP2) 

and erna-erna pairs (for CP3). Basically, it means that CP2 and CP3 

representing confusing pairs are False positives. 

 So if we intersect CP1 with CP2 (via pgltools), the output will give expected 

gg (mRNA-mRNA) pairs (l1), and when we intersect CP1 with CP3, the 

output will give expected ee (erna-erna) pairs (l2). Hence from CP1, we 

extracted some expected gg and ee pairs. Hence CP1 pairs got some 

directionality.  

 Now it is possible that gg pairs (l1) and ee pairs (l2) have some intersection 

again (we call it q1 here as shown in Figure C). These intersections are 

confirmed confusing pairs which can't be labeled as pure gg or pure ee 

pairs. Hence we remove them from both expected gg pairs (l1) and 

expected ee pairs (l2). Hence further intersection of l1 and l2 does not give 

any result. q1 thereby represents our algorithm error rate.  

 An important step is to remove these q1 interactions from CP1 data as 

well (CP1-q1) because this q1 will not get directionality further.  
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 These (CP1-q1) pairs, when intersected with (l1-q1), will give New Pure gg 

pairs (Pure-g-g), and the intersection of (CP1-q1) with (l2-q1) will give New 

Pure ee pairs (Pure-e-e).  

 Now we have got new pure gg and ee pairs from CP1. Also, we have found 

out that those pairs (q1) which will never be able to get directionality. 

Hence the simple observation that CP1 was derived from Complete erna-

mRNA data set implies that pairs not coming in q1 or in new gg pairs or in 

new ee pairs are actually erna-mRNA interactions (New e-g). This 

observation gives us new erna-mRNA pairs.  

 Hence the majority of our CP1 confusing pairs have now been given 

directionality except q1 pairs, which still remain confused. 

 Finally, we merge eg1 with New e-g pairs to get overall erna-mRNA pairs. 

Merging gg1 with Pure g-g gave us overall mRNA-mRNA pairs, and merging 

ee1 with Pure e-e gave us overall erna-erna pairs. These pairs are ready to 

be analyzed and benchmarked. 

 For four bin sizes (30kb,25kb,10kb,2kb) and for each category (erna-erna, 

mRNA-mRNA, erna-mRNA), we got overall 12 such chromatin interaction 

pairs for chromatin interaction function_2. For Chromatin 

interaction_function_1, since the strawR package was only able to process 

HiC files at 10kb and 5kb resolution hence, we had six total files. 

 

 

  

8. Random Interaction Pairs (Null-Model) Generation: 
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 Before arriving at any final conclusion, it is always advisable to build and 

benchmark random pairs (or null models) as well, as it represents a better idea of 

whether our predictions are true positives or not.  

 For every 12 files (as explained in point 7 above) in chromatin interactions, we 

created a random interactions dataset of the same dimension as the concerned 

file so as to benchmark it. Random data set was created by using the R 

commands 'expand.grid()' and 'sample()' functions. Hence for the chromatin 

interaction_2 function, we got 24 files to be benchmarked, and for the chromatin 

interaction_1 function, we got 12 files to be benchmarked.   

 

9. Benchmarking of scEChiA chromatin interaction results 

 Finally, the output chromatin interaction data set out of scEChiA was 

intersected with the 4D genome chromatin interaction data set and with 

Activity by Contact GM12878 chromatin interaction database.  

 Benchmarking like intersecting of chromatin interactions was done by 

pgltools command' pygl. intersect2d()'.  

 Benchmark results were plotted in a bar plot in a comparative manner so 

as to understand our results and hypothesis in a better way. 

RESULTS:  

1.  Firstly, chromatin interactions from scEChiA function 2 for different bin sizes 

along with random pairs of different bin sizes of the same dimensions as of 

interaction_2 function output for each category (erna-erna, erna-mRNA, and 

mRNA-mRNA) were intersected with the database of 4D genome GM12878. Its 

result is shown in Figure 18.  
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     Figure 18 

2. Similarly, as done in the previous step for interaction_2 output results, a similar 

Methodology was applied to interaction_1 output results. Figure 19 shows 

comparative interaction results.  

 

     Figure 19 

3. Repeating the previously followed Methodology, we did it for interaction_2 

output results, but this time we changed the benchmarking base to Activity by 
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contact predictions for GM12878. Figure 20 shows the intersected results for the 

same. 

  

     Figure 20 

4. Benchmarking of Interaction_1 results was also done with the base as Activity by 

contact GM12878 data. Figure 21 shows the results.  

 

     Figure 21 

Observation and Inferences: 
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1. Clearly, when the Activity by Contact database is used, the number of intersected 

interactions increases exponentially when compared with the 4D genome 

database. 

2. If we see for interaction_2 function, then for gg pairs average increase in 

intersection comes out to be around 40 times. While for ee pairs, it is nearly 14 

times, and for eg pairs, it is near to 181 times. 

3. If we see for interaction_1 function, then for gg pairs, there was a 26 times 

increase; for ee pairs, it was a 1.5 times increase, and for eg pairs, the increase 

was 88 times. 

4. This abnormal exponential increase can be explained by the fact that Activity by 

contact had over 1 million predicted interactions, while the 4D genome had only 

about 5K interactions.  

5. For Interaction_2 function 

  From Figure 18 and Figure 20, we can observe that for interaction_2 function 

output, for gg and ee pairs (almost), scEChiA seems to be more optimal for a 

25kb bin size. While, eg, the pair's most optimal result is at 10kb resolution. 

 Fig 18 and Fig 20 also show that random pairs intersections for gg and ee pairs 

give satisfactory results as random pairs for particular bin sizes are always less 

than their scEChiA output data having the same bin size. This shows that there 

are fewer false positives in gg pairs results of the interaction_2 function.  

 For eg, in pairs, the interaction_2 function does give false positives, as we can 

observe in figure 18 and figure 20 that for eg, in pairs at low resolution 

(30kb,25kb), random (null) models outperform actual scEChiA output data of 

the same bin sizes. But at high resolution (10kb,2kb), there are fewer false 

positives as null models do not outperform actual results.  

 

6. For Interaction_1_function 
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 From Fig 19 and Fig 21, Random pairs (or null models) do not outperform 

actual scEChiA output intersections with the same bin sizes. This shows that 

there is a very high showcase that our results in the interaction_1 function for 

all bin sizes have the least false positives and can be trusted. This is also true 

for all three categories like of gg or ee or, eg, pairs.  

 Also, if we compare interaction_1 result with interaction_2 results across bin 

sizes and categories, there is one common observation that when the 

interaction_1 function is used, there is a significant difference between actual 

intersections and random model intersections compared to Difference seen in 

interaction_2 function results. This gives a very strong impression that 

interaction_1 result are more trustworthy since false positives are low. 

 

7. The accuracy of our filtering algorithm drops a little bit in the Interaction_1 

function compared to the interaction_2 function for all bin sizes. This might be 

expected due to the fact that interaction_1 does take into account the HiC data 

of two different cell types while calculating the penalty for each row of prediction 

interactions, while the interaction_2 penalty term is constant for each row (given 

by the user). Hence there are more chances that predicted chromatin 

interactions would be of confusing pairs that arise in interaction_1 that are found 

in the q1 category (shown in Figure C- filtering algorithm), which are basically 

related to both mRNA-mRNA and erna-erna category. This is because of the fact 

that background information of different cell types is also used to infer chromatin 

interaction of entirely different cell type  

 

Conclusion & Future Possibility 
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Chapter 1  

Exploiting TADs activity for predicting cancer survival 

 

Conclusion: 

By forming a novel TAD-gene set and via its GSVA scores, we are able to get TAD 

prognostic score (survival p-value). Hence, we were able to identify top prognostic TAD 

for 20 TCGA cancers. Comparing those TAD prognostic scores in all cancers gives us 

PAN-CANCER analysis of prognostic TAD, which may be helpful in novel drug design 

that can target multiple cancer by attacking common top prognostic TAD. Through 

passing Top prognostic TADs into our curated pipeline of various algorithms of Random 

Forest and Bayesian Analysis, we were able to find the most statistically significant TAD 

that is most prognostic considering the Bayesian network score along with its survival-p-

value. For TCGA CESC cancer, we identified chr1_171750000_172350000 as our TAD of 

Interest.  

We then computed our TAD of Interest genes combinatorics, which gave 32 

combinations, and we computed GSVA and subsequent survival analysis on this 32 

combinatorics. Further Bayesian networking of our TAD of Interest genes was computed 

on the basis of their GSVA score. Comparing 32 combinatorics survival scores with 

gene's individual and independent survival scores along with Bayesian networking of 

TAD of Interest genes, we were able to explain the observed gene's Bayesian 

networking pattern by cross-validating it with combinatorics survival score coupled with 

the gene's independent survival score.  

TAD of Interest Genes METTL13, MIR214, DNM3, DNM3OS, and MIR199A2 in relation 

to cervical cancer were found to be highly significant through various published studies. 
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That validated our Combinatorics survival score trend as to why when all genes appear 

together, the TAD becomes a highly surviving TAD with the lowest survival p-value. We 

finally compiled these results in Figure 16 to visualize how 

TAD_chr1_171750000_172350000 is the most surviving TAD in cervical cancer, with 

mentioning each gene co-networking along with their individual pathway to combat 

cervical tumor cells, help TAD of Interest become the best surviving TAD.  

This showed how genes lying within a TAD have a strong correlation network among 

themselves, and these interactions, along with their individual behavior, play an 

important role in determining TAD functional property, specifically its prognostic 

score.  

We also would like to mention that our results, observations, and conclusions 

contradict with findings of Helen S long et al. 57 that genes lying in the same TAD have 

less functional correlation among themselves.   

 

Future Possibility of our work: 

Our work gives a pipeline to help researchers identify the most significant prognostic 

TAD for each different cancer. Further, it explains TAD genes networking among 

themselves and coupled with their individual pathways, it sheds light on TAD biology 

and explains its survival pattern concerning cancer type. This can help researchers 

develop drug targets for the TADs based on their survival score and TAD biology as an 

output from our work. 

                      

Chapter 2 
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Utilizing chromatin domain architecture and highlighting   relevant 

enhancers and their target 

 

Conclusion: 

As mentioned above, earlier techniques to determine chromatin interaction do have a 

limitation in that they detect these interactions within a distance of 20kb. Our results 

from scEChiA predict chromatin interactions well beyond the limit of 20kb giving a 

genome-wide view of chromatin interactions. There were a good number of 

intersected interactions with the 4D genome database, while there was a significantly 

high number of chromatin interactions with Activity by Contact GM12878 interaction 

database, suggesting that our scEChiA model gives interactions on the same line as what 

Activity by contact model predicts. ScEChiA interaction_1 result which used HiC as 

background data to decide dynamic penalty terms, give more trustworthy or less false 

positive results than the interaction_2 function, which uses constant penalty. The 

assumption of enhancer size can dramatically change the output structure of scEChiA 

and, subsequently, the number of intersected chromatin interactions. We took the 

assumption that enhancers are up to 1600 base pairs (bp) in length. Deciding on the 

length of enhancers or taking the different lengths of enhancers in the same scEChiA 

input matrix can impact the number and type of chromatin interactions.  

Enhancer-gene interaction predictions from interaction-2 results for low resolution 

(30kb and 25kb) are not reliable, but for high resolution (10kb, 2kb), these enhancer-

gene interactions give low false positives, so they are reliable. Consideration of HiC 

profiles used for background information in interaction-1 function also changes 

(although not very significantly) the nature and number of predicted chromatin 

interactions. Further usage of different combinations of HiC profiles also impact the 
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accuracy of the filtering algorithm. Varying Parameter δ (as explained in the theory and 

methodology section of chapter 2), which decides a number of predictions out of 

scEChiA at the cost of accuracy, can give more accurate or less false positives results 

from both interaction_1 and interaction_2 functions. 

 

Future work & Possibility: 

 We have proposed a novel method by which, only utilizing RNA-seq data, we 

can identify chromatin interactions in different categories like enhancer-

enhancer or gene-gene or enhancer-gene interactions. The predictions could be 

used directly as the base for CRISPR-based approaches to interested knockout 

pair of enhancers or genes for understanding genomics of cancer/diseases and 

ultimately arise as a genomic technology to treat patients (especially cancer 

patients)  

 Combining our results and prognostic TAD from Chpater-1 together with 

scEChiA results, we can develop and understand chromatin interaction in 

greater depth, giving more insight into how chromatin interactions relate to 

diseases/cancer and in the context of TAD, making CRISPR-based approaches 

more accurate to target specific interactions/TAD in cancer/cell-line specific 

manner.  
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    Data Analysis and Software Used 
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For TAD related analysis, survival graphs and Bayesian network modeling, R was used 

with various libraries.  

For Chromatin Interaction part of work, both R and Python (via Anaconda Service) was 

used to use various tools, libraries and generate graphs.   

For compiling and citing authors, Zotero Software was used.   

For checking plagiarism, Grammarly IIITD account provided by IIITD library was used.  

         Code and Data Availability 

All the datasets used have been mentioned in the thesis methodology itself. Data-set 

and all used R plus Python scripts have been submitted to Dr. Vibhor Kumar's lab, as it is 

a part of a project that is in the pipeline to be sent to a Journal for Publication.  

Any Data or Code/Scripts access request can be made to Dr. Vibhor Kumar on his email 

id vibhor@iiitd.ac.in  
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