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Abstract

Epigenetic memory is a vital cellular process. It regulates the inheritance of certain efficient traits
of normal cells and the traits attained lately by the cells affected by diseases like Cancer from
parents to daughter cells. Understanding the epigenome profile and how the molecular basis of
epigenetic memory governed by histone modifications and other epigenetic markers are erased
and re-established during cellular processes such as embryogenesis and cell differentiation in the
stem cells, somatic cells as well as disease cells will have a significant impact in a deeper
understanding of cellular development and diseases such as Cancer. Here we try to comprehend
the influence of distinct epigenetic marks, such as histone modifications and chromatin
accessibility, in defining the chromatin state for having active or poised enhancers, which further
influences cell type and physiological condition. In our study, we hypothesize that these
epigenetic marks present in active enhancers in the past may not remain bound; however, there
might be several residuals left, which influences the physiological condition of the Cell in the
present. A profound understanding of how these epigenetic marks in enhancers affect the
chromatin state would play a crucial role in advancing the prognostics and diagnostics of disease

states and help the advancement of targeted therapeutics for diseases.
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Introduction

Epigenetics studies heritable alterations in cellular phenotype or gene expression that occur
without any changes to the underpinning DNA pattern. Before the discovery of DNA-based
genetic inheritance, Conrad Waddington invented the phrase “epigenetics”, which is derived from
the Greek word “epigenesis” to connect genetics to the phenotype determinants necessary for the
embryo’s development from an undifferentiated condition [1]. Epigenetic events are caused by
covalent alteration of DNA and histones, the proteins protecting DNA. Therefore, these
alterations control particular gene expression patterns and, in certain instances, may be duplicated

and transferred to daughter cells [2].

Epigenetic memory is the persistence of epigenetic alterations that can affect gene expression and
cellular function across numerous cell divisions and occasionally across generations [3]. In a way,
epigenetic memory describes the traits of germ cells and usually developed cells. It creates
hereditary traits in embryonic cells, their offspring, and cells defining a disease condition [2].
Epigenetic memory is crucial for both health and illness development and for organism
environmental adaptation. For instance, some environmental variables, like diet, stress, and toxin
exposure, can cause epigenetic changes that last for generations and impact offspring's well-being
and disease propensity. Epigenetic memory has also been linked to forming cell identity and

lineage commitment and preserving stem cell pluripotency and differentiation.

Overall, research on epigenetic memory has significant ramifications for comprehending the
intricate interactions between heredity and environment and for creating novel disease prevention

and treatment strategies.



Chapter 1: Epigenetic Memory In
Developmental Lineages

1.1 Epigenetics determine cell functions.

The epigenome comprises several epigenetic marks, such as an assortment of DNA methylation
patterns particular to specific genes, unique combinations of transcription factors, non-coding
RNAs, chromatin remodeling factors, polycomb group proteins, Histone post-translational
modifications, and other epigenetic memory factors. A gene's expression status is assessed by the
unique epigenome specifying the (epi)genomic code linked to that gene. Each gene may have an
epigenomic code specific to a particular state of a disease or a cell type. As a result, similar
genomes can accumulate various groups of epigenomic code to build the distinctive epigenome,

which specifies the general cellular features [4].

In contrast to DNA, histone proteins are subject to several changes, such as acetylation,
methylation, ubiquitylation, and phosphorylation. Depending on the type of alteration and the
particular amino acid changed, these mutations can result in either gene silence or activation [5].
The nucleosome core particle, chromatin's fundamental structural component, comprises an
octamer of histones forming two peripheral heterodimers of H2A and H2B histones, and 146 base
pairs of DNA surround a core tetramer of H3 and H4 histones. Covalent modification of DNA by
DNA methyl transferases (DNMTs), primarily in the presence of CpG dinucleotides, to produce

5- methylcytosine is associated with transcriptional silencing [6].

While DNA undergoes epigenetic changes due to cytosine methylation, histones with lysine and
arginine residues are acetylated and methylated. In contrast, lysines are ubiquitylated and
sumoylated, threonines and serines are phosphorylated, and the tails of glutamic acid are poly-

ADP-ribosylated [7].



Furthermore, residues of arginines are mono and di-methylated, while lysine residues are mono,

di, and tri-methylated, mounting to the intricateness of histone modifications.

Methylation of K4 of H3, i.e., H3K4me2 and H3K4me3, as well as H3K79 and H3K36
methylations and Histone acetylation, are linked to an increase in transcriptional activity, with
H3K4 tri-methylation (H3K4me3) designating promoter. At the same time, H3K9me2 and
H3K27me3 in the euchromatic area signify a suppressed state, and trimethylations of H3K9 or
H4K20 generate heterochromatin [8]. Additionally,5- hydroxymethylcytosine (5-hmC), an
oxidized version of 5-mC, has attracted much interest as an epigenetic mark that controls
chromatin changes and gene transcriptionin embryonic phases, cellular differentiation, and
various malignancies [9]. Overall, it has been discovered that these histone marks are related to

the chromatin’s and cells’ functional condition.

1.2 Epigenetic landscape related to stem cell characteristics.

The transcription master regulators Nanog, Oct4, and Sox2 comprise most of the complex
network that gives rise to pluripotency and stem cell identity. This network is also believed to
possess a feedback system connected to some networks of cofactor-protein interactions [10]. In
contrast to adult stem cells like mesenchymal stem cells, which can differentiate into adipocytes,
osteocytes, etc., embryonic stem cells demonstrate the ability to differentiate into every cell type
of the body, while mesenchymal stem cells exhibit the restricted potential to differentiate into
only the parental organ’s cell types, these stem cells would display different epigenetic signatures
as a result of DMRs, histone changes, and interactions with transcription factors. By controlling
the post-translational modification of histones, Protein structures called the Polycomb and
Trithorax groups either prevent or promote transcription, respectively [11] [12]. Evidence for the
existence of epigenetic cellular memory may include bivalency caused by Polycomb group
proteins mediated silencing associated with H3K27me3 and Trithorax group protein-dependent

activation indicated by the presence of H3K4me3 in the same loci and co-occupation by
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regulatory transcription factors such as Sox2 and Oct4 Additionally to the environment and
concurrent transcription factors; the various DNA methylation patterns may also influence this
process.[13] Based on the stochastic extrinsic and intrinsic signals, they may continue to be
prepared for either repression or induction. These modifications and associations may serve as
the epigenetic gatekeepers for controlling genes associated with development in pluripotency and
pluripotency. Numerous chromatin remodeling and pluripotency- related transcription factors,
including Oct and Sox2, the Polycomb group or Trithorax proteins, and others, are inherited from

the mother and are most likely linked to specific DNA sequences, which could enable the

sequence of events to begin and advance instantly [14].

Table 1.1: Major histone marks and their association with transcription or other roles.

Histone mark Position

macroH2A Compact chromatin, X chromosome (Repressed)
H2A.X Double-strand DNA breaks

H2A.Z Promoters/transcription start sites (Active)
H2BKS5Ac Promoters

H2BK120Ac CpG island promoters

cenH3 (CENP- A) Centromere

H3.3 Promoters (Active)

H3K4Ac Enhancers

H3K4Mel Promoters and enhancers

H3K4Me?2 Transcription start sites, CpG islands, promoters, and enhancers
H3K4Me3 CpG islands, promoters, and enhancers (Active)
H3K9Ac Coding regions (Active)

H3K9Me3 Promoters and enhancers, heterochromatin (Repressed)
H3K14Ac CpG islands, promoters, and enhancers (Active)
H3K27Ac Coding regions (Active)

H3K27Me3 Coding regions, heterochromatin (Repressed)
H3K36Me3 Coding regions (Active)

H3K79Mel Coding regions (Active)

H3K79Me2 Coding regions (Active)

H4K16Ac Euchromatin (Active)

H4K20Me3 Heterochromatin (Repressed)
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Reprogramming the encoded epigenetic memories during the development and differentiation
process has opened up the possibility of putting one's cells in place of the damaged cells. Recent
progress in this field could make it possible to convert or dedifferentiate developed somatic cells
into pluripotent cells [15]. Similarly, it is simple to imagine how the dedifferentiation process
brought on by the loss of epigenetic memories could produce the infamous cancer stem cells that

can act as a pool for the disease’s relapse.

In this study, we analyze the epigenetic profile involving various epigenetic marks such as histone
modification marks, transcription factor, polycomb group proteins, chromatin modifiers, etc., in
ESCs and K562 cells to detect potential epigenetic markers which can promote epigenetic
memory during stem cell differentiation. Analyzing the epigenome of germ cells will reveal
details about the biology of cells since combinatorial chromatin alterations can uncover cis-
regulatory areas [16]. We also examined the epigenome of human embryonic stem cell enhancers
and tracked their state in other progenitor cells, such as neuronal progenitor cells, mesenchymal
cells, BMP4 mesendoderm cells, and BMP4 trophoblast cells, all derived from human embryonic
stem cells. The hypothesis for this study is that enhancers that were active in the past may not
remain bound by the transcription factor, but there might be multiple residual marks left. The
levels of these enduring residual epigenetic memories are influenced by the cells from which they
were derived, and the experimental techniques used to produce pluripotency. Determining how to
deal with these enduring epigenetic memories will be a significant obstacle for researchers as they

work to create stem cell-based therapy.

1.3 Chip-seq Analysis with Dfilter

Dfilter is a generalized signal identification program that uses linear filters to optimize ROC-
AUC for next-generation massively parallel sequencing data analysis. Because of this, it is the
perfect tool for spotting peaks in the tag profile of many sequencing methods, including ChIP-
seq, DNase-seq, ATAC-seq, etc. Additionally, GC bias correction and read-count estimation on a

specific collection of peaks can be done using DFilter.
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DFilter has been developed to find enriched states and regulatory regions using the tag count
information produced by next-gen sequencing. It has been produced utilizing a generalization
technique to analyze data from many assays. Our research used Dfilter to analyze chip-seq data
and create a spatial heat map of different epigenetic markers in stem cells and their lineages to
investigate the chromatin state in active enhancers. Four types of input files are supported by the
DFilter version. A bam or sam file, bedgraph, and bed format for raw tags files is also an option.
Combining tag profiles from many assays to uncover regulatory elements is a unique feature of
DFilter that makes it a more versatile tool. This feature of DFilter is useful when two or more
libraries represent the same regulatory element, such as many histone acetylations at enhancers
or several tests to signify open-chromatin. Spatial heat maps can help visualize ChIP-seq data,
allowing you to see signal intensity distribution across a genome or a genomic region. Outline of

the steps to generate a Spatial heat map using Dfilter are as follows:

1. Peak Files were generated by peak calling using the chip-seq data, a n d the input should
contain filenames of a sample and control, containing tags from high throughput
sequencing. The files can be in bam, bedgraph, or bed formats. Additional option '-pe' for
paired-end bam or sam files should be added; otherwise, the tags will be treated as single-
end reads in peak calling.
run_dfilter.sh -d=CHIPfiles.bed, -c=INPUTfiles.bed -o=OUTPUTPEAKfile.bed f=bed -

ks=100 -Ipval=6 -nonzero —wig

o -d=CHIPfiles.bed”: specifies the input file for the ChIP data.

o -c=INPUTfiles.bed”: specifies the input file for the control data.

o -0=OUTPUTPEAKfile.bed”: specifies the output file for the filtered peaks.
o -f=bed”: specifies the input file format as BED.

o -ks=100": specifies the kernel size for the smoothing function.

o -Ipval=6": specifies the log10 p-value cutoff for peak detection.

o -nonzero”: specifies that only nonzero signals should be considered.

o -wig”: specifies that a WIG file of the smoothed data should also be output.

13



2. Normcore was generated using the peak files in the above step. The normcore in ChiP-
seq data analysis typically refers to the normalization of read counts or peak intensities
across different samples or experimental conditions. Normalization is crucial because it
helps to account for differences in sequencing depthor observed variability that can affect
the interpretation of ChlP-seq data.
run_normscore.sh File_with_PeakFileNames* File_with_ChlIP-
FileNames*File_with_Control-Filenames(or NA)*genome*
fileformat xsame/NAdivide/NAtagcount—window— size/NAzero —mean = auto/filterSize

o File with PeakFileNames (compulsory) is the file name containing (list)jnames of
files having peaks.

o File with PeakFileNames (compulsory) is the file name containing (list)jnames of
files having peaks.

¢ File with Control-Filenames (optional) is the file name containing (list)of tag-
files for control.

e Genome (compulsory) the genome and its version such as hg19, hg18, mm9, etc.

e Format (compulsory) of tag files bed/bam/sam.

e Divide/NA (optional with NA) divide option is passed when ChipSeg- data hasto
be divided by the tag density of control.

e tag-count-window-size/NA (optional with NA)if the user needs tag count ina

larger or smaller window than the default (1kb)

3. Clusters were generated using K-means clustering by taking the union_of peak files and
normalized peak scores. K-means clustering can be used to group these peaks into clusters
based on their signal values. The technique operates by repeatedly allocating each peak to
the closest cluster centroid (i.e., the cluster's center), then updating the cluster centroids
depending on the mean signal levels of the peaks in each cluster. The process is repeated
until the cluster assignments stop changing or the required number of iterations has been
reached. run difcluster.sh unionPeak-file* peak score* number of classes* Fold

14



threshold/NA{pca} run

unionPeak-file is the file name containing the list of peaks in a 3-columned format
(output from normscore function).

Peak score is the normalized tag counts (from different samples or chip) at peaks
provided to the program (output from normscore function).

number of clases a integer value greater than 1(like 2 3 or 10) number of clusters
wanted.

Fold_threshold, or NA is a numeric value (like 1.54 or 5) to cluster only those
peaks which show fold change above the provided threshold; NA can also be
provided if it is not wanted.

Pca if the principal component analysis has to be performed on the selected peaks;

if this option is used, then the output will be saved.

4. A spatial Heatmap was generated using the normalized data from the above steps. It

helps to visualize the signal intensity across the genome or a genomic region of

interest.

run_plotmany.sh kmeanClusters.bed ChipfileNames ControlfileNames hg19 bam

kmeanClusters.bed: This BED file generated from the above step contains the
results of a k-means clustering analysis on ChIP-seq data. It has four columns:

chromosome, start position, end position, and cluster-ID.

ChipfileNames: This is a list of ChIP-seq BAM files containing aligned reads for

the protein of interest.

ControlfileNames: This is a list of BAM files that contain the aligned reads for the

control samples.

hg19: This is the genome assembly version used to align the reads.

15



«  Bam: This indicates that the input files are BAM files, a compressed binary format

for storing DNA sequencing data.

Interpreting the spatial heat map results may involve identifying regions enriched for the protein
of interest, comparing the signal intensity across different samples or conditions, or correlating
the ChIP-seq signal with other genomic featuressuch as gene expression, DNA methylation, and

histone modifications.

1.4 Data Collection

ChIP-seq data can be used to study various protein-DNA inter- actions, including transcription
factor binding, histone modifications, and chromatin accessibility. By understanding these
interactions, researchers can gain insights into how gene expression is regulated and how changes
in gene expression may contribute to diseases like cancer. It's important to note that ChIP-seq data
generation can be a technically challenging process, and some factors can affect the quality and
reproducibility of the data, including antibody specificity, chromatin fragmentation, and
sequencing depth. As a result, careful experimental design, quality control, and validation of the
results are crucial for obtaining meaningful insights from ChIP-seq experiments. ChIP-seq signal
data of various epigenetic marks for different developmental lineages were downloaded from

several sources.

+ H1-ESC (https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone.) They

are derived from the UCSC genome browser, Histone Modifications by ChIP-seq from
ENCODE/Broad Institute.

+ K562 (https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone.) They are

derived from the UCSC genome browser, Histone Modifications by ChIP-seq from
ENCODE/Broad Institute.
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+ NPC derived from HI-ESC (https:/www.ncbi.nlm.nih.gov/geo/query/ acc.cgi).
Derived from Gene Expression Omnibus by NCBI. The dataset canbe accessed by their
GSE accession number (i.e., GSM675542, GSM753429, GSM818039, GSM818056,
GSM908957, GSM956010) and freely downloaded by command line utilities like wget.
The dataset includes chip-seq signals of various histone modifications and DNA

methylation from bisulfite-seq data.

+ Mesenchymal cells derived from HI1 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi), derived from Gene Expression Omnibus by NCBI. The dataset can be
accessed by their GSE accession number (i.e., GSM753437, GSM767344, GSM767352,
GSM&818041) and freely downloaded by command line utilities like wget. The dataset
includes chip-seq signals of various histone modifications and DNA methylation from

bisulfite-seq data.

- BMP4 Mesendoderm Cells derived from HI1 (https:/www.ncbi.nlm.

nih.gov/geo/query/acc.cgi). Derived from Gene Expression Omnibus by NCBIL.The
dataset can be accessed by their GSE accession number (i.e., GSM752968, GSM752978,
GSM752982, GSM807401) and freely downloaded by command line utilities like wget.
The dataset includes chip-seq signals of histone modifications and DNA methylation

from bisulfite-seq data.

- BMP4 Trophoblast Cells derived from H1 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi). Derived from Gene Expression Omnibus by NCBI. The dataset
can be accessed by their GSE accession number (i.e., GSM753436, GSM753439,
GSM818054) and freely downloaded by command line utilities like wget. The dataset
includes chip-seq signals of histone modifications and DNA methylation from bisulfite-

seq data.
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Emission Parameters
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Figure 1.1: Chromatin state of K562 cell line having different histone modifications and

epigenetic marks.



Chromatin states of H1-ESC cell line.
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1.5.3  Tracking the chromatin state of Neuronal Progenitor cells derived
from H1 ESC for human H1ESC Enhancers.
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Figure 1.3: Chromatin states of neural progenitor cells derived from HI1-ESC having different
histone modifications can be potential memory states during the differentiation of neural
progenitor cells from embryonic stem cells.
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1.5.4  Tracking the chromatin state of Mesenchymal cells derived from
H1-ESC for human H1ESC Enhancers.
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Figure 1.4: Chromatin states of Mesenchymal cells derived from HI1-ESC having different
histone modifications can be potential memory states during the differentiation of neural
progenitor cells from embryonic stem cells.

21



1.5.5  Tracking the chromatin state of BMP4 Mesendoderm cells derived
from H1-ESC for human H1ESC Enhancers.
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Figure 1.5: Chromatin states of Mesendoderm cells derived from HI-ESC with different histone
modifications can be potential memory states during the differentiation of Mesendoderm cells
from embryonic stem cells.
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1.5.6  Tracking the chromatin state of BMP4 Trophoblast cells derived
from H1-ESC for human H1-ESC enhancers.
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Figure 1.6: Chromatin states of Trophoblast cells derived from HI-ESC having different histone
modifications can be potential memory states during the differentiation of Trophoblast cells
from embryonic stem cells.
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Chapter 2: Epigenetic Memory in Disease
Progression

2.1 Cancer as an Epigenetic Disease

Cancer is a chronic, curable disease threatening human life and has emerged as a significant
worldwide health issue. The growth and spread of cancer, formally considered a genetic disorder,
1s now recognized to entail anomalies of the epigenome in addition to genetic alterations. In
mammals, tissue-specific gene expression patterns demand epigenetic processes for adequate
growth and sustenance. Disrupting epigenetic structure can lead to gene activity changes and
cancer cells' biological transformation. One of the hallmarks of cancer is the global changes in
the epigenetic landscape [17]. Recent developments in cancer epigenetics have revealed
significant reprogramming of the epigenetic machinery in all disease aspects, including histone
modification and DNA methylation. Cancer cells lack the specific methylation and chromatin
state architecture that controls the normal cellular homeostasis of gene expression patterns. Dense
hypermethylation of the CpG islands linked to gene regulatory areas occurs concurrently with a
worldwide genomic hypomethylation in the transformed cell's genome. The chromosomal
instability, activation of endogenous parasite sequences, loss of imprinting, unauthorized
expression, aneuploidy, and mutations resulting from these abrupt changes may also contribute to
the transcriptional suppression of tumor suppressor genes [18]. Understanding the role of
epigenetics in cancer is vital for developing new diagnostic and therapeutic approaches. For
example, drugs that target epigenetic modifications have shown promise in clinical trials for
certain types of cancer. Oncogene activation or tumor suppressor gene (TSG) repression are
thought to be contributing factors to the development of cancer, these genes are always persistent
with epigenetic alterations. The status of the switch that controls the turning “open” and “off”
states of gene expression is DNA methylation. The most well-known epigenetic modification
pathway in cancer cells is the hypermethylation of CGI promoters, which has been strongly linked

to numerous cancer types. Other than abnormal DNA methylation, malignancies that follow the
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CSC model, having bidirectional conversions are crucial that take advantage of unbalanced
histone modification. The development of embryonic stem cells (ESCs) is where the bivalent
histone marks, activating H3K4me3 and repressive H3K27me3, are initially addressed [51].
Oncofetal genes can be partially deregulated in cancer cells by various forms of Cancer, which
partially recapitulate this bivalency. Other than abnormal DNA methylation, malignancies that
follow the CSC model, in which bidirectional interconversions are crucial, take advantage of
unbalanced histone modification. The development of embryonic stem cells (ESCs) is where the
two bivalent histone marks, the repressive H3K27me3, and the activating H3K4me3 mark, are
initially pointed. [51]. Oncofetal genes can be partially deregulated in cancer cells by various

forms of Cancer, which partially recapitulate this bivalency [9].

Environmental factors, which are diet, toxins exposure, and stress, can also impact the epigenetic
marks on the DNA, potentially increasing the risk of developing cancer. Understanding the role
of epigenetic changes in cancer development and progression is an essential area of research that
may aid in developing novel solutions for cancer diagnosis and treatment [17]. The changeable
nature of epigenetic aberrations has paved the way for the prospective field of epigenetic therapy,
which has already advanced with the FDA's recent approval of three epigenetic medications for

the treatment of cancer.

2.2 Epigenetic Landscape in Cancer

In cancer, epigenetic changes are often observed and can add to the progression of the disease.
These changes can occur at various stages of cancer development, including initiation, promotion,
and metastasis. A critical aspect of the epigenetic landscape in Cancer is DNA methylation.
Methylation is a chemical modification of DNA that can silence genes by preventing their
expression. In Cancer, hypermethylation of specific tumor suppressor genes can lead to their
inactivation, allowing cancer cells to grow and divide uncontrollably. Another significant

epigenetic change in Cancer is alterations in histone modifications. These changes can affect the
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structure of chromatin, the proteins, and the DNA complex in the nucleus of a cell and ultimately
impact gene expression. For example, alterations in histone acetylation or methylation may lead
to the repression or activation of genes involved in Cancer development. Overall, understanding
the epigenetic landscape in Cancer is an essential area of research, as it can aid in a deeper
understanding of the underlying mechanisms of the disease and potentially lead to the discovery

of novel treatments.

2.2.1 DNA Methylation

The most researched epigenetic mechanism is DNA methylation regulation, which can alter gene
expression without changing genetic information and takes part in several biological processes,
including genomic stability, regulation of transcription, embryogenesis, and progression of
Cancer.[20] Human genomic DNA frequently undergoes DNA methylation alterations, which
covalently link CpG dinucleotides' cytosine groups and modify by adding methyl groups to their
fifth carbon to create 5-methyl-cytosine. The human genome's CpG dinucleotide distribution is
uneven, and promoter regions are where they are most prevalent [21]. CpG islands are regions
with a more significant percentage of CpG found in the promoters of more than 60% of genes.
Genes can become inactive through hypermethylation of a CpG island. However, CpG islands of
transcriptionally active DNA sequences are generally unmethylated. For instance, a tiny subset of
CpG islands is methylation in a tissue-specific manner to limit gene expression, even though most
CpG islands in developing and differentiated tissues remain methylated. DNA hypermethylation

can occasionally result in aberrant gene activation [22].

DNA methyl-transferases (DNMTs) are required for the catalysis of DNA methylation. There are
five different varieties of DNMTs, which are DNMT1, DNMT3a, DNMT3b, DNMT2, and
DNMT3L. The first three types are thought to have methyl- transferase activity. De-novo
methylation is used to methylate unmethylated DNA double-strands by Dnmt3 and Dnmt3b,
while DNMT1 primarily controls maintenance methylation (i.e., detecting the modified DNA

strand and methylating the corresponding strand followed by that) [23]. The epigenetic imbalance
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caused by abnormal DNA methylation is a crucial element in the development of tumors.
Compared to somatic cells, cancer cells have higher levels of methylation in the promoter regions
of several cancer suppressor genes, including MGMT, CdHI1, E- cadherin, and BRCAI.
Conversely, cancer cells have lower levels of methylation throughout their entire genome, linked

to higher levels of proto-oncogene expression such as PAX2, ABCB1, and cyclinD2 [22].

2.2.2 Histone Modification

Histone modification is linked to replication, transcription, and repair of DNA through the
interaction of Histone and DNA and Histone and Histone interaction. It affects the chromatin
structure in contrast to DNA methylation, which occurs on gene sequences [24]. The free N-
terminal allows nucleosome histones to be subject to many epigenetic controls. Histone
modification can be classified as acetylation, methylation phosphorylation, adenylation,
ubiquitination, and ADP ribosylation based on the many ways of action. The regulatory
mechanisms of acetylation and methylation are well- known [22]. Acetylation of histones The
most well-studied histone alteration, histone acetylation, iscrucial for chromatin structure, Cancer,
and gene regulation. It is widely acknowledged that high acetylation stimulates gene expression
while low acetylation suppresses it [25]. Histone acetyltransferase (HAT) and HDAC control the
frequent modification of histone acetylation on lysine sites of histone types H3 and H4.
Acetylation of histones is crucial for the growth of Cancer. Tumor suppressor genes and proto-
oncogenes can interact with HDAC and HAT, interfering with how these genes are

regulatedthroughout tumor cell growth, metastasis, and apoptosis [26].

The methylation of histones is also another critical in epigenetic regulation. Histone de- methylase
and histone methyl invertase catalyze the reversible modification of the N- terminal arginine and
lysine residues of histones H3 and H4. The specific biological activity of histone methylation,
which controls the activation and silencing of gene transcription, depends on various sections
of lysine or arginine amino acid residue sites, as well as the type of methylation [27]. For instance,
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histone H3 is trimethylated at lysine K4 and K9 (H3K4me3&H3K9me3), which activates
transcription. In contrast, histone H3 is methylated at lysine 9 (H3K9me), suppressing
transcription. Cancer is directly linked to dysregulation in histone methylation. For instance,
LSD1 is considered a potential target for treating acute leukemia, and it removes the methyl group
from H3K4 and H3K9 sites as an active lysine demethylase. MLLIcan also cause H3K4
methylation, which results in acute lymphoblastic leukemia. [22]

2.3 Epigenetic Memory in Cancer

H3K4mel is a critical mark in promoting epigenetic memory. It is found in the genome frequently,
is associated with enhancers, and has been enriched at enhancer regions throughout the genome.
This modification is distinct from another known modification, such as H3K4me3m, associated
with active gene promoters. This modification also aids in the recruitment of specific proteins and
transcription factors to the enhancer site, where they can interact with the DNA and nearby
promoters to increase or decrease gene expression. This way, H3K4mel regulates gene expression
and is a vital component in the epigenetic landscape that controls gene expression [28]. Open
chromatin refers to the relaxed state of chromatin structure that allows access to DNA by
transcription factors, DNA repair enzymes, and other proteins. Open chromatin is essentia 1 for
controlling gene expression, as it enables the binding of transcription factors to specific regions
of DNA and facilitates the initiation of transcription. DNAse enzymes are endonucleases that can
cut the DNA backbone, and their activity is often used to identify open chromatin regions in the
genome. DNAse hypersensitive sites (DHSs) are DNA regions more susceptible to cleavage by

DNAse enzymes due to their open chromatin structure.

Enhancers are DNA sequences essential in regulating gene expression by recruiting proteins and
transcription factors to initiate gene transcription. Enhancer priming typically involves pioneer
TF binding and H3K4mel pre-marking, which can occur before and aid in activating the

following enhancers. It has been seen enhancers activated in differentiated macrophages lose TF
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binding and H3K27ac instantly while retaining H3K4me1 for much longer. H3K4mel1 persistence
was suggested to aid in the induction of faster and stronger enhancers upon restimulation.
Enhancers, in part, maintain H3K4mel, accumulate fewer heterochromatin marks, and remain
accessible and sensitive to transcriptional activators [29]. Overall, the presence of H3K4mel in
enhancers is a crucial indicator of their regulatory activity, and it provides insights into gene

regulation mechanisms in various cellular processes and diseases.

In this study, we are trying to discover whether H3K4meland some transcription factors bind
enhancers during different stages and progression of Cancer, but not DNAse binding, which is a
lack of DNAse hypersensitive sites i.e., our hypothesis is during development and disease
progression, H3K4mel is persistent even once enhancers become decommissioned, lose their

responsiveness to transcriptional activators and facilitate their eventual reactivation.

2.4 Chip-Seq Analysis with ChromHMM

ChromHMM is a tool used to learn and characterize chromatin states. ChromHMM may combine
numerous datasets on chromatin, such as ChIP-seq data on diverse histone modifications, to
identify the most common spatial and combinatorial markings in patterns. Under a multivariate
Hidden Markov Model, ChromHMM explicitly models each chromatin mark’s existence or
absence. The genome of different cells is systematically annotated using the model that is
produced. ChromHMM facilitates the biological characterization of each state by utilizing. A
large amount of functional and annotation datasets to automatically calculate enrichment of states.
ChromHMM is apowerful tool for analyzing chromatin state data because it uses a statistical
approachto model the co-occurrence of multiple chromatin marks across the genome. It can
identify different combinations of histone modifications that define specific chromatinstates, such

as active promoters, enhancers, repressed regions, and transcriptionally active or inactive regions.

ChromHMM can also integrate other data types, such as DNA accessibility or transcription factor

binding, to improve the accuracy of its predictions. The out-put of ChromHMM analysis is a set
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of chromatin state annotations for the genome, which can be viewed in a genome browser or used
for downstream analyses, such as gene expression profiling or functional enrichment analysis.
One of the strengths of ChromHMM is that it can handle large-scale chromatin profiling data
from multiple cell types or conditions, enabling researchers to compare chromatin states across
different samples or to identify cell-type-specific regulatory elements. This is particularly useful
for studying developmental processes or disease states where changes inchromatin structure and
gene expression patterns are expected. ChromHMM can handle missing or incomplete data shared
in large-scale chromatin profiling experiments. ChromHMM uses an expectation-maximization
algorithm to estimate each genomic region's most likely chromatin state, even when data is
missing for some chromatin marks. ChromHMM has been used in many applications, such as
identifying disease-associated variants affecting chromatin states, predicting enhancer-promoter
interactions, and characterizing cell-type-specific gene regulation. It is a widely adopted tool in
the epigenomics research community, and its output is highly reproducible across different
datasets and analysis pipelines. Our study used ChromHMM to analyze the chromatin state of

varying cancer stages and their cell types. The following steps were followed:

+ Data preprocessing: The first step is to preprocess the raw chromatin profiling data and
generate files in the appropriate format for ChromHMM input. This typically involves
aligning the sequencing reads to the reference genome, calling peaks for each chromatin
mark, and converting the peak files to a binary for- mat indicating whether each genomic

position is marked or unmarked for each chromatin mark.

+ Training the model: Next, the ChromHMM model is trained using the preprocessed data.
This involves specifying the number of chromatin states to be identified, selecting the
chromatin marks to be used, and running the ChromHMM training algorithm to learn the

probabilities of each chromatin state based on theobserved chromatin profiles.
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+ State annotation: Once the ChromHMM model has been trained, it can annotate the
chromatin states for the entire genome. This involves running the ChromHMM
annotation algorithm on the preprocessed data to assign each genomic position to one of

the identified chromatin states.

+ Visualization and interpretation: The final step is to visualize and interpret the results.
This involves generating heatmaps of the chromatin states, identifying genomic regions
enriched for particular states, and exploring the functional implications of the specified

states using Gene ontology.

ChromHMM is a powerful tool for analyzing chromatin states; it requires careful attention to data
preprocessing and model selection to ensure accurate results. Several options and parameters can
be adjusted to optimize the analysis for a particular dataset. Our study used Pancreatic Cancer

metastatic and primary cell chip seq data and Breast cancer cells, both wild-type and mutant.

2.5 Data Collection and Preprocessing

2.5.1 Data Collection

ChromHMM requires genome-wide chromatin data, such as ChIP-seq data for histone
modifications or DNase-seq data for DNA accessibility. We obtain these data sets for our study's
cell type for Cancer.ChromHMM also requires a control dataset (often referred to as input or
background) to normalize the chromatin data. This is typicallya sample of the same cell type or
tissue processed similarly but without the antibody used for ChIP-seq. The chromatin and input
data should be in BAM or BED format, containing the reads mapped to the reference genome at

specific genomic locations.
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Chip-sq primary and metastatic pancreatic cancer and breast cancer wild-type and mutant data
were obtained from Gene expression omnibus. To analyze ChIP-Seq data, SRA files were
downloaded from NCBI Gene Expression Omnibus. GEO is a public data repository for gene
expression data, and related metadata, generated from high- throughput molecular biology
experiments. Datasets can be accessed using their GSE accession number and freely downloaded

by command line utilities like wget.

+ Primary Pancreatic cancer cell Chip-seq Data (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE99311). Derived from Gene Expression Omnibus by

NCBI. Chip-Ses data of the three pancreatic primary cancer cells T3, T6 and T23 having
histone marks of H3K4mel, H3K27ac, and DNAse open chromatin be accessed by their

GSE accession number and freely downloaded by command line utilities like wget.

+ Metastatic Pancreatic Cancer Cell Chip-seq Data.Derived from Gene Expression
Omnibus by NCBI. Chip-Ses data of the three pancreatic metastatic cancer cells M1L,
MI10P, and M3P having histone marks of H3K4mel, H3K27ac and DNAse open

chromatin be accessed by their GSE accession number and freely downloaded by

command line utilities like wget. (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE99311).

- Wild-type Breast Cancer Cell Chip-Seq Data (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE159886). Derived from Gene Expression Omnibus

by NCBI. Chip-Seq data of the three Wild-type Breast cancer cells Sample 3, Sample 4,
and Sample 6, having histone marks of H3K4mel, H3K27ac, and DNAse open
chromatin, be accessed by their GSE accession number and freely downloaded by

command line utilities like wget.

+ Mutant Breast Cancer Cell Chip-Seq Data. (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE159886). Derived from Gene Expression Omnibus by

NCBI.Chip-Seq data of the three mutant Breast cancer cells Sample 9, Sample 12, and

Sample 13 having histone marks of H3K4mel, H3K27ac, and DNAse open chromatin
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be accessed by their GSE accession number and freely downloaded by command line

utilities like wget.

2.5.2 Data Preprocessing

The preprocessing of ChIP-seq data involves several steps to ensure the quality of the data before

downstream analysis.

+ Quality control: Check the quality of the raw sequencing data using a tool such as

FastQC.

+ Alignment: Align the trimmed reads to a reference genome using a read alignments tool
such as Bowtie2, BWA, or HISAT?2. The alignment file is typically stored in SAM/BAM

format.

+ PCR duplicates removal: Removing PCR duplicates to avoid biases caused by over-
amplification of some areas of the genome. Software such as Picard or samtools can be

used for this step.

Peak calling: 1dentifies genome regions that are enriched for the protein of interest using
peak calling software such as MACS2 or SICER. This step will generate a list of genomic

regions with significantly more reads mapped to them than expected by chance.

These preprocessing steps are critical for ensuring the accuracy and reliability of the downstream

analysis of ChIP-seq data. Tools that were used for preprocessing steps are as follows:

+ Bigwig2bed: For downstream analysis of chip-seq data, we would be required to use
either BAM alignment or BED format. Bigwig2bed is used to convert wig data or bigwig
data to bed format. The wig2bed tool typically works by taking a wiggle file as input and
outputting a bed file with the same data by Parsing the input wiggle file and extracting
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the relevant information, such as chromosome, start position, end position, and score or

coverage data.

+ SRA Toolkit: For fetching raw chip-seq data SRA toolkit was used. The SRA Toolkit is a
software package developed by the National Center for Biotechnology Information
(NCBI) to facilitate retrieving and analyzing data from the Sequence Read Archive
(SRA). The SRA Toolkit has command-line tools for downloading, converting, and
analyzing SRA data. These tools include fastq-dump, which can be used to convert SRA
files into standard FASTQ format, and SRA Blast, which can be used to perform BLAST
searches against SRA data.

+ STAT Aligner: For aligning raw reads, STAR aligner was used. STAR aligner is designed
to align high-throughput sequencing accurately reads to a reference genome. STAR
aligner uses a two-pass mapping algorithm that generates a genome index and then aligns
the RNA sequencing reads to the index. The first pass generates a genome index that
contains information on all possible splice junctions within the reference genome. In the
second pass, the STAR aligner uses this index to map the reads to the genome, and it can

detect novel and known splice junctions with high accuracy.

+ Bedtools: Bedtools is a software suite developed for working with genomic interval data.
It provides tools for performing v ar i o u s operations on genomic intervals, including
set operations such as union, intersection, difference, filtering, and annotation. The
software is named after the “BED” file format, a simple tab- delimited text format used

to represent genomic intervals.
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2.6 RESULTS

2.6.1 Tracing the chromatin states of Pancreatic Cancer cell
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Figure 2.1: Chromatin states of Primary (T3) and Metastatic (M1L) Pancreatic Cancer Cell
having open chromatin with H3K4mel is a possible site of memory.
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Figure 2.2: Chromatin states of Primary (T23) and Metastatic (M10P) Pancreatic Cancer Cell
having open chromatin with H3K4mel is a possible site of memory.

F
g . 2 3
e 2 o
c 3 c 3 -
o g ie) 4
g4 7 E 6
o 8 w7
© QU o 8
= < © Q )
" S5E S Bz
nx n ~E g
i) Q qdg
o %
Mark T T
Mark
(a) Chromatin states of (b) Chromatin states of Metastatic
Primary Pancreatic Pancreatic Cancer cell M3P.
Cancer cell T6

Figure 2.3: Chromatin states of Primary (T6) and Primary (M3P) Pancreatic Cancer Cell
having open chromatin with H3K4mel is a possible site of memory.



2.6.2 Tracing the chromatin states of Breast Cancer cell
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Figure 2.4: Chromatin states of Wild-type (Sample 3) and Mutant (Sample 13) Breast Cancer
Cell having open chromatin with H3K4mel is a possible site of memory.
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Figure 2.5: Chromatin states of Wild-type (Sample 5) and Mutant (Sample 12) Breast Cancer
Cell having, having open chromatin with H3K4mel is a possible site of memory.
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Figure 2.6: Chromatin states of Wild-type (Sample 6) and Mutant (Sample 9) Breast Cancer
Cell having, having open chromatin with H3K4mel is a possible site of memory.
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Chapter 3: Post-hoc Analysis for the
Insights about cancer development

Precision medicine is an idea and a practice that follows a deliberate and organized approach to
treating illnesses like cancer [30]. The precision medicine project is heavily focused on treating
cancer, but improvements in targeted, efficient therapies could also help treat a wide range of
other chronic conditions. Precision oncology strives to match each cancer patient with the most
precise and effective treatment based on the patient's genetic profile. Given that every cancer
patient has a unique genetic profile and that the profile may change over time, more people may

benefit if therapeutic alternatives can be tailored to the individual in cancer treatment [31].

Precision therapy, also known as personalized medicine, is an approach to cancer treatment that
involves tailoring treatment plans to an individual’s unique genetic makeup, lifestyle, and other
personal factors. Precision therapy aims to provide more effective and targeted treatment while
minimizing side effects. One type of precision therapy used in cancer treatment is targeted
therapy, which entails using medications that specifically target specific proteins or genes
associated with the development and propagation of cancer. These drugs are often designed to
block the activity of specific overactive or mutated molecules in cancer cells, leaving normal cells
relatively unaffected. Another type of precision therapy is immunotherapy, which utilizes the
immune system of the body to combat cancer cells. Cancer cells need specific proteins to avoid
the immune system, and immunotherapy medications can either boost the immune system to
attack such proteins or inhibit them. Overall, precision therapy has shown promise in improving
outcomes for certain types of cancer, particularly those that are difficult to treat with traditional

chemotherapy and radiation therapy.
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3.1 Epigenetic Modifiers in Precision Therapy of Cancer

Immune treatments have transformed the way that Cancer is treated in recent years. To improve
patient outcomes, it is essential to increase sensitivity to immune therapies because most patients
resist these treatments on a main or secondary level. Epigenetic modifiers might be helpful as
therapeutic agents since, according to some recent lines of evidence, they have inherent
immunomodulatory abilities [32]. Epigenetic modifiers are a class of drugs that can alter the
structure and its associated proteins without changing the under- lying DNA sequence. Epigenetic
changes can regulate gene expression, and alterations in epigenetic marks have been implicated
in many diseases, including Cancer. Several epigenetic modifiers include DNA methylation
inhibitors, histone deacetylase inhibitors, histone methyl-transferase inhibitors, histone

demethylase inhibitors, and bromodomain and extra-terminal (BET) inhibitors.

Histone deacetylase inhibitors (HDACis) and DNA methyl transferase inhibitors (DNMTis),
which have been authorized for treatment in several types of hematologic malignancies, werethe
first epigenetic modifiers to be created. DNMTis, which are cytidine analogs, prevent DNMT
from functioning and make them degrade when integrated into DNA. The re-expression of
abnormally repressed proteins, such as cancer-associated antigens, tumor suppressor genes, and
parts of the antigen presentation apparatus, is encouraged by the subsequent loss of DNA

methylation [33].

Histone deacetylase inhibitors, such as vorinostat and panobinostat, block the enzyme activity of
removal of acetyl groups from histones, which changes the chromatin structure, thereby causing
a change in gene expression. These drugs are authorized to treat cutaneous T-cell lymphoma and
multiple myeloma. Histone methyl- transferase and histone demethylase inhibitors, such as
tazemetostat and GSKJ4, target enzymes that add or remove methyl groups from histone proteins,
leading to changes in chromatin structure and gene expression. Bromodomain and extra-terminal

(BET) inhibitors, such as JQ1 and OTXO015, target proteins called bromodomain and extra-
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terminal (BET) proteins, which help to regulate gene expression. These drugs are being

investigated to treat various cancers, including leukemia, lymphoma, and solid tumors.

3.2 Targeting Neighbouring Enhancers for Cancer Hallmark

Genes for Precision Therapy

Over the past few decades, researchers have identified several “hallmark” genes and Master
Regulator that play critical roles in the development and progression of cancer. One of the aims
of this study is to find out such master regulators in different cancer profiles from the neighboring
memory enhancers which have the memory mark (H3K4mel without DNA hypersensitivity) and
target them for personalized therapy for cancer. This study primarily focused on two hallmarks of

Cancer for analysis: evasion of apoptosis and immune responsiveness.

Apoptosis is a programmed cell death mechanism that plays a critical role in maintaining tissue
homeostasis and preventing the growth of damaged or abnormal cells. Cancer cells, however,
have developed several mechanisms to evade apoptosis, considered one of the hallmarks of
cancer. Cancer cells can evade apoptosis through several means, such as mutations in genes that
regulate apoptosis, upregulation of anti- apoptotic proteins, and downregulation of pro-apoptotic
proteins. By evading apoptosis, cancer cells can survive and continue to grow and divide
uncontrollably. Immune responsiveness is another hallmark of cancer, as cancer cells can evade
the immune system and avoid destruction by immune cells. Cancer cells can do this through
several mechanisms, including downregulating the expression of antigens on their surface,
producing immunosuppressive molecules, and promoting the formation of an immunosuppressive
microenvironment. Together, evasion of apoptosis and immune responsiveness enable cancer
cells to grow and divide uncontrollably, invade surrounding tissues, and metastasize to distant
sites in the body. Understanding these hallmarks of cancer is critical for developing new cancer

therapies and identifying new targets for cancer treatment.

Gene ontology, a standardized system used to describe genes and their products and to annotate

and analyze gene function, was performed in different Cancer Profiles in neighboring memory
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enhancers to find out the standard biological process among these profiles for further analysis.

The genes common to these pathways could be a target in memory enhancers.

List 1 List 2

| Results:

83 common elements in "List 1", "List 2" and "List 3' -
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T cell mediated cytotoxicity
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necrotic cell death

necroptotic process -~

4 ]
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Figure 3.1: Ven diagram showing standard gene function between three primary pancreatic
cancer cell patients followed by the list of common biological functions among these cells.
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List 1 List 2

List 3

Resulits:
1 common element in "List 1", "List 2" and “"List 3":
glycosylceramide biosynthetic process

Glycosylceramide biosynthetic process

Figure 3.2: Ven diagram showing standard gene function between three metastatic pancreatic
cancer cell patients, followed by the list of common biological functions among these cells.
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Results:

5 common elements in "List 1", "List 2"
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regulation of cell activation
regulation of lymphocyte activation
negative regulation of immune system process
negative regulation of protein import into nucleus,

and "List 3":

tr

. »

COMMON BIOLOGICAL PROCESSES IN MEMORY STATE OF MUTANT BREAST CANCER CELLS

regulation of leukocyte activation

regulation of cell activation

regulation of lymphocyte activation

negative regulation of immune system process

negative regulation of protein import into nucleus, translocation

Figure 3.3: Ven diagram showing standard gene function between three wild-type breast cancer
cell patients, followed by the list of common biological functions among these cells.
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Figure 3.4: Ven diagram showing standard gene function between three mutant breast cancer
cell patients, followed by the list of common biological functions among these cells.

47




Regulation of endothelial cell apoptotic process
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T cell proliferation involved in immune response
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Regulation of endothelial cell apoptotic process
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T cell proliferation nvolved in immune response
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Regulation of intrinsic apoptotic signaling pathway
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B cell proliferation involved in immune response
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T cell activation involved in immune response
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Figure 3.5: Genes for apoptotic signaling and immunoregulation found through ontology in
neighboring memory enhancers of Primary and Metastatic Pancreatic Cancer.



Regulation of endothelial cell apoptotic process
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Figure 3.6: Genes for apoptotic signaling and immunoregulation found through ontology in
neighboring memory enhancers of Wild-type and Mutant Breast Cancer memory enhancers.
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3.3 Motif Analysis using HOMER

Homer comes with tools for analyzing sequencing data, including tools for quality checking, read
mapping to a reference genome, differentially expressed genes identification, enriched motif
identification, and transcription factor binding site identification. Examining regulatory elements
in genomics applications (DNA only, no protein) was the motivation behind developing
HOMER’s unique motif discovery method. It uses two groups of sequences and a differential
motif discovery algorithm to find the regulatory elements that are especially enriched in one set
compared to the other. It combines ZOOPS scoring (zero or one occurrence per sequence) with

hypergeometric enrichment computations (or binomial) to calculate motif enrichment.

Additionally, HOMER tries to take sequenced bias in the dataset into consideration. Although it
was created with ChIP-Seq and promoter analysis in mind, it can be used to solve just about any
nucleic acid pattern-finding issue. To identify the regulatory elements that are particularly
abundant in one set of sequences when compared to the other, two groups of sequences are used,
along with a differential motif identification technique. It combines binomial, hypergeometric
enrichment calculations with a ZOOPS score (zero or one occurrence per sequence) to determine
motif enrichment. HOMER makes a further effort to account for the dataset's sequencing bias.
Although ChIP-Seq and promoter analysis were the two primary purposes for its creation, they

may be applied to almost any nucleic acid pattern discovery problem.

In this study, Homer was used to analyzing the motifs of the transcription factors, which is bound
to the memory enhancers having apoptotic and immunoregulatory genes in different cancer
profile of subjects. These transcription factors could act as a master regulator promoting

epigenetic memory, which can be targeted in patients for personalized therapy for cancer.
The following steps were used to analyze Motifs using HOMER:

a. Preparing Input Data: It needs to be prepared in the appropriate format before analyzing

data with Homer. This involves converting your data into a suitable file format or
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organizing it in a specific way.

Running Motif Discovery. The first step in motif analysis with Homer is to use its motif
discovery tool to identify potential motifs in data. This tool uses various algorithms to

identify patterns in data that are statistically significant.

Motif Scanning: Once potential motifs have been identified with the motif discovery tool,
Homer’s motif scanning tool is used to search your genomic sequences for these motifs.
This can help identify potential transcription factor binding sites and other critical

regulatory elements.

Motif comparison: Homer’s motif comparison tool is used to compare the motifs that have
been identified with known motifs in databases such as JASPAR or TRANSFAC. This

helps to identify potential transcription factors that may be binding to the motifs.

Motif annotation: Homer’s motif annotation tool annotates the motifs with additional
information, such as gene ontology terms or pathway information. This helps in a better

understanding of the functional significance of the motifs that have been identified.
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Figure 3.7: Motifs found in neighboring memory enhancers of primary pancreatic cancer cells
T3, T6 & T23 respectively.
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Figure 3.8: Motifs found in neighboring memory enhancers of metastatic pancreatic cancer
cells MIL,M3P& MI10P respectively.
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Figure 3.9: Motifs found in neighboring memory enhancers of Wild-type breast cancer cells
Sample 3, Sample 5 & Sample 6 respectively.
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Figure 3.10: Motifs found in neighboring memory enhancers of Mutant breast cancer cells
Sample 9,Sample 12 & Sample 13 respectively.
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Chapter 4: Conclusion & Future Scope

4.1 Conclusion

Epigenetic memory refers to the ability of cells to remember and maintain gene expression
patterns established during development or in response to environmental cues. Epigenetic
modifications, such as DNA methylation and histone modifications, can influence gene
expression by regulating the accessibility of DNA to the transcription machinery. These
modifications can be passed on to daughter cells during cell division, allowing them to inherit the

same gene expression patterns as the parent cell.

Epigenetic memory is crucial in the context of development, as it allows cells to differentiate into
specific cell types and maintain their identity throughout the organism's lifespan. During early
embryonic development, cells undergo a series of epigenetic modifications that bring about
specific gene expression patterns required for forming different tissues and organs. Once
established, these gene expression patterns can be maintained through cell division and passed to
daughter cells. Epigenetic memory is also thought to play a role in disease development. Aberrant
epigenetic modifications can result in gene expression alterations related to various diseases. Our
study shows that H3K4mel is critical in promoting epigenetic memory in cancer progression.
This mark helps to recruit specific proteins and transcription factors to the enhancer site, where
they can interact with the DNA and nearby promoters to increase or decrease gene expression.
This way, H3K4mel regulates gene expression and is an essential component of the epigenetic
landscape that controls gene expression in diseases; cancer profiles of different subjects were used
to study the importance of H3K4mel in the cancer progression, sites having H3K4mel but no
DNA hypersensitivity is tagged as sites of epigenetic memory, These sites were further studied
for the hallmarks of Cancer namely immunoregulation promotion of apoptosis. Master regulators

or transcription factors were found from these memory sites, which could be targeted with specific
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epigenetic modifiers such as HDAC is or DNMTs for personalized precision therapy in Cancer

patients.

Overall, epigenetic memory is an important mechanism that allows cells to maintain stable gene
expression patterns over time and respond to changing environmental cues. Understanding how
epigenetic memory is established and maintained is crucial for understanding normal
development and disease pathogenesis. Our study suggests that targeting epigenetic memory sites

could be potential therapeutics for cancer treatment.

4.2 Future Scope

Analyzing more data with different profiles of Cancer and other diseases to find the significance
of the memory site (H3K4mel without open-chromatin profile), and through which we might
discover a new state. This may provide some data for ML etc. Study other residues that could act
as potential epigenetic marks, such as a few small RNAs, few types of enzymes - like Histone

modifying enzyme chromatin structure- based proximity, etc.
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