
Exploiting TLS to disrupt privacy of traffic in

web-application

Student Name: Sandipan Biswas

IIIT-D-MTech-CS-IS-12-018
May 2nd, 2014

Indraprastha Institute of Information Technology
New Delhi

Thesis Committee
Dr. Somitra Sanadhya (Chair)

Dr. Shweta Agrawal (IIT Delhi)
Dr. Debajyoti Bera (IIIT Delhi)

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

c©2014 Sandipan Biswas
All rights reserved

Keywords: Side Channel Attack, TLS , Padding, privacy , WPA2 , k-indistinguishability

Certificate

This is to certify that the thesis titled “Exploting TLS to disrupt privacy of web-application’s
traffic ” submitted by Sandipan Biswas for the partial fulfilment of the requirements for the
degree of Master of Technology in Computer Science & Engineering is a record of the bonafide
work carried out by him under our guidance and supervision in the Security and Privacy group
at Indraprastha Institute of Information Technology, Delhi. This work has not been submitted
anywhere else for the reward of any other degree.

Dr. Donghoon Chang Dr. Somitra Sanadhya
IIIT Delhi IIIT Delhi

Abstract

The Transport Layer Protocol (TLS) ensures confidentiality and integrity of traffic between
communicating parties over internet. Almost all web applications commonly use TLS. A block
cipher (such as AES, Camellia etc.) is used in a mode of operation (such as CBC, GCM etc.) to
achieve confidentiality. If the message length is not a multiple of the block size of the underlying
cipher in CBC mode, then message is padded suitably to make it of the right length. Although
CTR mode does not necessarily require message padding but if the sender wishes to hide exact
message length from attackers, then message padding can be used even in this mode.

Chen et. al at IEEE SP (2010) described techniques based on different packet sizes generated
as various events take place in web applications to infer the state of the web-application. This
attack could allow an attacker to breach the privacy of the user. At PETS 2012, Liu. et. al.
proposed a scheme to pad messages in a group to make all the packets of the same size to achieve
k-indistinguishability. They claimed that this scheme could withstand the attacks described in
Chen et. al’s work.

In this work, we analyze privacy and security aspects of encryption modes, padding schemes
and order of padding of messages in TLS during encrypted communication between client and
web-application on the server. We show that using padding schemes to pad all packets to
hide message sizes during communication without considering underlying encryption modes and
padding methodology is not safe .

We consider the technique of Liu et. al when certain combinations of encryption modes and
padding schemes are used in TLS. We show that k-indistinguishability of packets does not
always hold. In particular, we describe a chosen ciphertext attack to show that the MAC-
PAD-ENCRYPT model to generate ciphertext in the TLS record protocol helps the attacker in
disrupting privacy of traffic under certain conditions. We also show how a similar attack can
be carried out on CCMP protocol used in WPA2 to maintain confidentiality and integrity in
wireless networks if MAC-PAD-ENCRYPT is followed.

Acknowledgments

I would like to thank my parents for supporting me throughout my journey. Without their love
and support this would not have been possible.

Firstly, I would like to thank Dr. Donghoon Chang who always motivated me to think harder
and research deeply into any topic. I have seen very few highly motivated and hardworking
people like Dr. Donghoon. From him I could learn how to think in multidimensional ways
about any problem.

I sincerely thank Dr. Somitra Sanadhya to help me during my thesis work. He motivated me to
take cryptography as a thesis subject in the first place. Dr. Somitra’s effort towards perfection
has made this thesis possible.

Thanks to Dr. Pankaj Jalote and other associated members for creating an institute like IIIT-
Delhi. I feel really fortunate to be a part of this institute.

I am also lucky to have friends who have been there throughout my college life. At IIIT-Delhi
also, I got accompany of some great friends like nishant, rohit(jain) , rohit(romley) , aritra,
prateek, veeru, gajendra, anuj, ganesh, pankaj, noufal to name a few.

Lastly, I would like to thank Dr. Shweta Agrawal(IIT-Delhi), Dr. Debajyoti Bera(IIIT-Delhi)
for their presence in thesis committee.

Sandipan Biswas
MT12018
IIIT-Delhi

i

Contents

1 Introduction 1

2 Definitions 3

2.1 Block Cipher . 3

2.2 Side Channel Attack . 3

2.3 Cipher-block chaining (CBC) . 4

2.4 Counter Mode Encryption (CTR) . 4

2.5 Padding . 6

2.6 Message Authentication Code(MAC) . 6

2.7 TLS Protocol . 7

3 Attack model and Previous work 8

3.1 Previous Work . 8

4 Effect of padding order in TLS on k-indistinguishability of traffic 10

4.0.1 Example based on CTR mode . 15

4.0.2 Example based on Cipher Block Chaining Mode 20

5 Effect of padding order in WPA2 on k-indistinguishability of traffic 21

5.1 CCMP processing in WPA2 . 21

5.1.1 Mitigations . 23

5.2 Future Works . 23

5.3 Conclusions . 24

6 Appendix 27

6.1 Chen et. al. Attack . 27

6.2 Other Mitigations . 29

6.2.1 Liu et. al. Mitigation . 29

ii

List of Figures

2.1 Cipher Block Chaining . 5

2.2 Counter Mode Encryption . 6

2.3 Bit-Padding . 6

2.4 Message Authentication and confidentiality.Authentication tied to ciphertext. . . 7

3.1 Attack Model . 8

4.1 (a) Encryption of a message in TLS protocol (b) Size of a message after MAC
generation and padding i.e. si = Actual plaintext size, t= Size of MAC tag,
s− si + 1 = Size of padding (10*) added. 12

4.2 MAC is corrupted due to truncation of original MAC. In the figure l denotes no
of bits truncated from MAC and interpreted as padding. 13

4.3 MAC is not corrupted. 13

4.4 (a) Attacker removes kth block from each message such that it generates error for
intended message only. (b) MAC is corrupted due to block truncation of original
MAC. 14

4.5 (a) Apad Encryption(Client Side) (b) Attacker truncates last 3 bit of ciphertext
(c)Error generated during decryption due to wrong MAC 18

4.6 (a)Bpad Encryption(Client Side) (b)Attacker truncates last 3 bit of ciphertext
(c)Error generated during decryption due to invalid MAC 18

4.7 (a)Cpad Encryption(Client Side) (b)Attacker truncates last 3 bit of ciphertext
(c)C** data is not corrupted during decryption after pad removal. MAC remains
intact. Server accepts. 19

5.1 Fragmentation of MSDU from Logical Link layer into MPDU used in Medium
Access Layer.And subsequent processing of MPDU in MAC layer.Note CCMP
processing is done on MPDU not MSDU. 22

5.2 CCMP processing of a MPDU . 23

iii

List of Tables

4.1 Single Vector,Single Dimension . 16

4.2 Single Vector, Multiple Dimension based on prefix based padding. 16

4.3 Packets after MAC and padded according to bit-padding. Here MAC generated
is appended to message first. Padding is done after MAC generation. 17

4.4 Step 1. Attacker Modified packet content for A*. Part of MAC will be extracted
as padding at server side according to Bit-padding. Thus wrong invalid MAC will
generate error. Here A

′
is the resulting message size after truncation and padding

is stripped off during decryption. 18

4.5 Step 2.Attacker Modified packet content for B*. Part of MAC is removed as
padding in B**.Invalid MAC generated. This causes MAC to be invalid at server.
Here B

′
denotes resulting message size after truncation and padding is stripped

off after decryption at server. 19

4.6 Step 3. Attacker Modified packet content for C*. Original MAC intact even after
padding.Here C

′
denotes resulting message size after truncation and padding is

stripped off after decryption at server. Note that C
′

is same as original message
encrypted at client side. 19

4.7 Message blocks size before encryption. Added numbers denotes size of pad
added.In brackets actual pad contents added is shown. 20

iv

v

Chapter 1

Introduction

Observable attributes from encrypted network traffic, such as packet sizes, timing, etc., have

been used to compromise the security of applications [2, 4, 11]. Even though encryption is used

to ensure that confidentiality of the content of a packet is preserved, attributes like size of the

packet, time taken between receiving the request and reply etc. can still be eavesdropped easily

by an attacker. Attacks utilizing such techniques are known as side channel attacks. Side channel

attacks on many web-applications were shown in [3] where the authors showed that privacy of

AJAX based real-time web applications can be compromised by analyzing traffic attributes.

If messages are not padded to the same size then an attacker can guess the state of application of

a user by observing the packet sizes. To mitigate traffic distinguishability based on packet sizes,

two message padding schemes were proposed in [3]. These were named random padding and

round padding. However, it was shown in [3] that such mitigation is costly due to extra overhead

because of the padding. As a result, it was recommended in [3] to use an application specific

padding instead of application agnostic padding. In similar direction, an approach known as k-

indistinguishability was proposed in [5] which relies on an application agnostic padding scheme.

This scheme works by grouping all packets which could be sent in response to a query. The

reply to this query is formed with a packet padded in such a way that its size is the same as

the maximum size of a packet in the group. This scheme provides k-indistinguishability if the

group size is k.

TLS protocol [7] is used to ensure confidentiality and integrity of traffic at application level. TLS

is a protocol suite which has a number of component protocols. In this work, we concentrate on

the TLS record protocol which deals with symmetric key cryptography (block ciphers, stream

ciphers and MAC algorithms) to ensure that a secure channel is established between a client

and a server. Other protocols in TLS include TLS Handshake Protocol which is responsible for

authentication, session key establishment and ciphersuite negotiation, and TLS Alert Protocol

which carries error messages and helps traffic management. TLS record protocol uses MAC-

PAD-ENCRYPT approach. In this approach, the MAC value is generated on application data

excluding padding. Any padding, if required, is appended later. Thus, if the padding is used

then it is not authenticated. During encryption, this data (including the padding) is encrypted

1

to generate the ciphertext using the selected cipher and encryption mode. It is also possible

to use an authenticated encryption (AE) scheme combining both the authentication as well as

encryption. However, use of AE schemes is not so common in current scenario [1].

Chosen ciphertext attacks like Lucky13 [1] have been demonstrated earlier where MEE construc-

tion in TLS record protocol was exploited. CBC encryption mode along with PKCS7 padding

was used in the Lucky13 attack. This attack used time to compute MAC as the side channel

measure. This attack reveals plaintext only when the attacker is on the same LAN because

timing differences which are used to distinguish packets vary in the order of microseconds. Due

to the small timing differences, this side channel attack over internet is not feasible.

However, the implementation aspects of the padding scheme of TLS in case of certain mode like

counter mode etc. have not been considered in any previous work. In this work, we analyze the

effect of padding scheme in conjunction with the mode of operation of the block cipher in TLS

record protocol to attack the privacy of encrypted traffic.

Our Contribution We are specifically interested in the k-indistinguishability approach pro-

posed by Liu et. al. [5] to mitigate the attack of [3]. We analyze the effect of an encryption

mode along with a padding scheme on the k-indistinguishability. We consider CTR (counter)

and CBC (cipher block chaining) modes and consider the bit padding scheme of the form 10*.

While analyzing the scheme, we also consider the MAC-PAD-ENCRYPT construction in the

TLS record protocol. We exploit unauthenticated padding added to messages during the en-

cryption in TLS to demonstrate our attack. We propose truncation based chosen ciphertext

attack on TLS record protocol to distinguish between packets in the same group having same

sizes based on the error messages generated when wrong MAC is extracted during decryption.

We consider the order of padding in TLS and discuss it’s consequences in our attack. Our attack

demonstrates that padding of messages should be done before MAC generation, and not after

MAC generation in TLS as it can lead to privacy breach of traffic.

We also explore our attack principle on CCMP used in WPA2. Similar kind of truncation based

attack can also be carried out on WPA2.

2

Chapter 2

Definitions

2.1 Block Cipher

In cryptography, a block cipher is a symmetric key cipher operating on fixed length groups

of bits, called blocks, with an unvarying transformation. A block cipher encryption algorithm

might take (for example) a 128-bit block of plaintext as input, and output a corresponding 128-

bit block of ciphertext. The exact transformation is controlled using a second input, called the

secret key. Decryption is similar. The decryption algorithm takes, in this example, a 128-bit

block of ciphertext together with the secret key, and yields the original 128-bit block of plaintext.

If the plaintext is not a multiple of block size then it is padded according to a standard scheme.

A commonly used padding scheme is the “10*” padding. This scheme adds a 1 bit followed by

sufficient number of 0 bits to the plaintext to make it a multiple of block length. The padding

is unique and easily reversible. One only needs to remove all the bits up to the last 1 bit in the

final block to get the unpadded message. The block cipher is typically denoted by the following

notation.

E : {0, 1}k × {0, 1}n ⇒ {0, 1}n

This notation means that E takes two inputs, one being a k-bit string and the other an n-bit

string, and returns an n-bit string. The first input is the key. The second might be called the

plaintext, and the output might be called a ciphertext. The key-length k and the block-length

n are parameters associated with the block cipher. They vary from block cipher to block cipher,

as of course does the design of the algorithm itself.

2.2 Side Channel Attack

Side Channel Attacks are attacks on software/hardware systems which utilize some weaknesses

in the implementation of the cryptographic schemes rather than the design of the scheme itself.

3

Padding Oracle Oracle is a system which perform cryptographic operations on the request of a

user (in our case attacker). A padding oracle is a specific type of oracle that will take encrypted

data from the user, attempt to decrypt it privately, then reveal whether or not the padding

is correct. We’ll get into what padding is and why it matters soon enough. Padding oracle is

realizable in practice in many vulnerable web-applications which upon receiving an encrypted

text send back response informing whether the plaintext padding is valid or not.

2.3 Cipher-block chaining (CBC)

Let, P be the plaintext, Pn be the plaintext of length n blocks, C = the corresponding ciphertext,

Cn= the ciphertext of length n blocks, n = the number of blocks (P and C have the same number

of blocks by definition), IV = the initialization vector which is a random string frequently set to

all zeroes, E() = a single-block encryption operation (any block encryption algorithm, such as

AES or DES, it doesn’t matter which), with some unique and unknown (to the attacker) secret

key (that we don’t notate here), D() = the corresponding decryption operation. We can then

define the encrypted ciphertext C in terms of the encryption algorithm, the plaintext, and the

initialization vector as follows:

C1 = E(P1 ⊕ IV)

Cn = E(Pn ⊕ Cn), ∀ n > 1

CBC decryption is as follows:

P1 = D(C1)⊕ IV

Pn = D(Cn)⊕ Cn−1, ∀ n > 1

First block of ciphertext is decrypted, then XORed with the IV . Remaining blocks are decrypted

then XOR’ed with the previous block of ciphertext. Note that this operation is between a

ciphertext block that we control and a plaintext block that were interested in. This is important.

Once all blocks are decrypted, the padding on the last block is validated. Here, the padding

oracle checks if the padding is valid or not. Response from the oracle to the attacker reveals

information which may lead to unauthorized decryption of the ciphertext. Ideally, a padding

oracle should not be availale to the attacker i.e. an application should not inform a user about

bad padding because this can leak information [9].

2.4 Counter Mode Encryption (CTR)

The Counter (CTR) mode is a confidentiality mode that features the application of the forward

cipher to a set of input blocks, called counters, to produce a sequence of output blocks that are

4

Block1 Block2 Blockk

IV

EK EK EK

C1 C2 Ck

Figure 2.1: Cipher Block Chaining

exclusive-OR’ed with the plaintext to produce the ciphertext, and vice versa. The sequence of

counters must have the property that each block in the sequence is different from every other

block. This condition is not restricted to a single message: across all of the messages that are

encrypted under the given key, all of the counters must be distinct.

In this recommendation, the counters for a given message are denoted T1, T2, .., Tn .

Given a sequence of counters, T1, T2, . . . , Tn , the CTR mode is defined as follows:

CTR Encryption:

Oj = Ek(Tj) for j = 1, 2, . . . , n

Cj = Pj ⊕Oj for j = 1, 2, . . . , n− 1

C∗n = P ∗n ⊕MSBu(On)

CTR Decryption:

Oj = Ek(Tj) for j = 1, 2, . . . , n

Pj = Cj ⊕Oj for j = 1, 2, . . . , n− 1

P ∗n = C∗n ⊕MSBu(On)

where k is key associated with underlying block cipher.

In CTR encryption, the forward cipher function is invoked on each counter block, and the

resulting output blocks are exclusive-OR’ed with the corresponding plaintext blocks to produce

the ciphertext blocks. For the last block, which may be a partial block of u bits, the most

significant u bits of the last output block are used for the exclusive-OR operation; the remaining

b-u bits of the last output block are discarded.

In CTR decryption, the forward cipher function is invoked on each counter block, and the

resulting output blocks are exclusive-OR’ed with the corresponding ciphertext blocks to recover

the plaintext blocks. For the last block, which may be a partial block of u bits, the most

significant u bits of the last output block are used for the exclusive-OR operation; the remaining

b-u bits of the last output block are discarded.

In both CTR encryption and CTR decryption, the forward cipher functions can be performed

5

in parallel; similarly, the plaintext block that corresponds to any particular ciphertext block can

be recovered independently from the other plaintext blocks if the corresponding counter block

can be determined. Moreover, the forward cipher functions can be applied to the counters prior

to the availability of the plaintext or ciphertext data.

Ek

C[1]

M[1]

ctr

Ek

C[2]

M[2]

ctr+1

Ek

C[3]

M[3]

ctr+2

Figure 2.2: Counter Mode Encryption

2.5 Padding

Bit-Padding For a plaintext block M and block cipher or Hash function of minimum input

size |X|, If |M | < |X|, the message M is padded with 1 followed by 0’s where Padded message

= M |10(|X| − |M |).
Bit padding can be applied to messages of any size. A single set (’1’) bit is added to the message

and then as many reset (’0’) bits as required (possibly none) are added. The number of reset

(’0’) bits added will depend on the block boundary to which the message needs to be extended.

In bit terms this is ”1000. . . 0000”. This method can be used to pad messages which are any

number of bits long, not necessarily a whole number of bytes long. For example, a message of

23 bits that is padded with 9 bits in order to obtain a 32-bit block is as shown in Figure 2.3

below.

1011011110011111100110000110 100000000

Figure 2.3: Bit-Padding

2.6 Message Authentication Code(MAC)

MAC ensures authenticity and integrity of messages sent between two communicating parties.

Cryptographic hash function can be used to generate MAC. Essentially, the message authenti-

cation code (MAC) is a small xed-size block of data that is generated based on a message M of

variable length using secret key K as follows. It is also called cryptographic checksum.

MAC = C(K,M).

6

If A wishes to send B a message M , and protects it via a MAC, they rst need to share a secret

key K for the authentication (in addition to an encryption key if they also use encryption).

Then A calculates code MAC as a function of M and K. Then the message M plus the code

MAC are transmitted to B. B performs the same calculation on M, using K to generate a new

code MAC. The received code MAC is compared to the calculated code MAC to verify the data

integrity. As only A and B have the secret key and hence are able to generate the correct MAC,

source authentication is also achieved.

E

k2 C

k1

||

E(k2,M)

C(K1, E(k2,M))

D

k2

M

C

k1 Compare

M

MAC Generation MAC Verification

Figure 2.4: Message Authentication and confidentiality.Authentication tied to ciphertext.

2.7 TLS Protocol

The TLS protocol provides communications security over the Internet. The protocol allows

client/server applications to communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery. According to the protocol’s creators, the goals of the TLS

protocol are cryptographic security, interoperability, extensibility, and relative efficiency.

These goals are achieved through implementation of the TLS protocol on two levels: the TLS

Record protocol and the TLS Handshake protocol.

TLS Record Protocol The TLS Record protocol negotiates a private, reliable connection

between the client and the server. Though the Record protocol can be used without encryption,

it uses symmetric cryptography keys, to ensure a private connection. This connection is secured

through the use of keyed hash functions by using a Message Authentication Code.

TLS Handshake Protocol The TLS Handshake protocol allows authenticated communica-

tion to commence between the server and the client. This protocol allows the client and the

server to speak the same language, allowing them to agree upon an encryption algorithm and

encryption keys before the selected application protocol begins to send data.

7

Chapter 3

Attack model and Previous work

Before explaining previous work and our attack in next chapters, we describe our attack model.

Then we also explain related previous work.

Client

Attacker

Server

Figure 3.1: Attack Model

In this attack model we have three components: Client, Server, Attacker. Client and Server

both are assumed to be secure. Client encrypts a plaintext before sending it to the server and

the server decrypts it based on the shared secret key. The attacker is able to either passively

monitor network traffic or actively modify network traffic contents. Consider a scenario where

the client is accessing a search engine over a secure HTTPS connection and the search engine

is AJAX enabled. As soon as the client starts typing search keywords, application requests are

generated. Now Attacker monitoring the channel can sniff the packets generated due to requests.

We also consider the scenario where the attacker can modify the packets and resend the request

to server. In our attack we consider client and server in a peer-to-peer network where both client

and server can give inputs to each other.

3.1 Previous Work

Attacks on TLS/SSL have been studied extensively over the last few years. There have been

attacks designed on various components of TLS/SSL protocol. For example, the design and

weaknesses of cipher suites used in TLS encryption and key establishment have been studied a

lot in the past. BEAST [6] attack by Doung et. al. showed how a chosen plaintext attack can

be mounted by an attacker exploiting IV which is same as the previous ciphertext block used

in CBC mode of TLS. This attack idea works for long messages. Note that since ciphertext can

8

be eavesdropped, attacker will have to just guess the plaintext corresponding to the ciphertext

to be decrypted and repeatedly send the guessed plaintext to an encryption oracle and match.

Another attack known as CRIME [8] by Rizzo et. al showed how session tokens or other secret

information can be discovered based on compressed size of HTTP requests. CRIME is a brute-

force attack that works by leveraging a property of compression function, and noting how the

length of the compressed data changes. Even though TLS encrypts the content in the TLS

layer, an attacker can see the length of the encrypted request passing over the wire, and this

length directly depends on the plaintext data which is being compressed. Finally, an attacker

can make the client generate compressed requests that contain attacker-controlled data in the

same stream with secret data. The CRIME attack exploits these properties of browser-based

SSL. An extension of this attack known as TIME was proposed by Be’ery et. al which is a

choosen plaintext attack on HTTP responses. The attack model of CRIME gives information

about plaintext based on the length of encrypted and compressed data. TIME uses this model

and timing information differential analysis to infer the compressed payload’s size. BREACH

[10] by Gluck et. al revived the CRIME attack by targeting the size of compressed HTTP

responses and extracting secrets hidden in the response body. As a result of all these attacks,

the compression is now disabled by default in TLS.

We focus on an attack known as Lucky13 [1] showed by AlFardan and Paterson which is a

chosen ciphertext attack based on subtle timing differences caused during decryption. The

attack allows a man-in-the-middle attacker to recover plaintext from a TLS connection when

CBC-mode (cipher-block chaining) encryption is used. There is a subtle timing bug in the

way that TLS data decryption works when using the (standard) CBC-mode ciphersuite. Lucky

Thirteen uses the same attack mechanism as the padding oracle attack [9].

Side channel attacks on web applications were formally researched by Chen et. al [3]. The

authors modeled a web application formally and introduced parameters to decide if a web-

application is vulnerable to such attack. AJAX based web-applications generate packets when

an event takes place in the application. It was shown that based on the sizes of packets generated

during an event, a passive attacker can guess the state of application. As a mitigation approach

they experimented with application-independent padding like random padding for packets or

round padding which incurred significant overhead. Hence application specific padding was

suggested to mitigate such attacks.

Further working on padding schemes, Liu. et. al [5] took two factors into consideration while

providing mitigation to this attack: (1) The Cost of padding should be minimized to be practi-

cally used, and (2) The privacy requirement that packets are indistinguishable from each other is

satisfied. The authors introduced the concept of k-indistinguishability which states that packets

should be grouped into k sized groups such that packets in same group are of the same size. They

proposed novel algorithms to group inputs such that corresponding packet sizes are identical to

each other. As a result, it was shown that while privacy of traffic is maintained ,efficiency has

increased and overhead has decreased. This suggests that such approaches are effective.

9

Chapter 4

Effect of padding order in TLS on

k-indistinguishability of traffic

In this chapter, we give an idea of how to break k-indistinguishability of a padded set of packets

using chosen ciphertext attack given an Oracle which determines whether MAC is valid or invalid.

Each user action in a web-application generates traffic which in turn generates a response from

the server. For example, in a search engine when a user searches a query then each keystroke

generates a list of suggestions which has a specific size. This suggestion list size varies as more

characters are typed by the user. An attacker can use observed sizes and this allows him to map

the lists to the user inputs. Now, when an attacker monitors network traffic generated from

the use of a search engine, based on packet size of response, he can get information about user

inputs. To prevent such distinguishability of packets, user actions are grouped in such a way

that uniform traffic is generated whenever an input from that group is sent to server.

Packets corresponding to actions are padded in the same group if both actions have action as a

prefix. For example, user types {c,d} and {c,e} as two different action sequences in a typical

search engine. Now if grouping is done such that {d,e} is grouped in the same group as prefix

{c} then the attacker cannot distinguish between two different action sequences since {d,e} will

be padded to the same size as the other action sequence.

After such padding, packets in the same group are indistinguishable from each other. Our attack

shows that this claim of k-indistinguishability of packets leading to privacy of user-actions is

incomplete without careful consideration of underlying encryption modes along with position

of padding during MAC generation and encryption of packets. Various encryption modes like

Counter Mode, Cipher Block Chaining etc. have different effects on privacy when used in such

cases. We also show how MAC-PAD-ENCRYPT is not safe in counter mode as well as Cipher

Block Chaining mode. In our attack we show how usage of counter mode and CBC mode with

specific padding scheme like Bit-padding is not privacy safe under chosen ciphertext attack.

We propose a truncation based attack which can disrupt privacy of k-indistinguishability of

traffic by exploiting underlying padding scheme and encryption modes in case of MAC-PAD-

10

ENCRYPT scheme in TLS. Truncation based attack is explained both on cipher block chaining

as well as counter mode. In counter mode, the truncation is bit based and in case of cipher

block chaining mode, the truncation is block based.

Our Assumptions

• We assume that k-indistinguishability is already implemented at server for that particular

application for all possible action sequences.

• To implement padding for k-indistinguishability, bit-padding (10*) has been used.

• Attacker can modify ciphertexts and send it to server for decryption.

• Attacker can monitor network traffic generated due to use of the web-application.

• Messages have been padded after MAC is computed. Since padding is not necessary

in Counter mode in general, padding after MAC computation is a possibility. Further,

padding before MAC computation on the messages can be a overhead.(This assumption

is valid since in TLS and DTLS both padding is done after MAC is computed.This con-

struction has led to earlier attacks as shown in [9].)

• Our work does not require strict client-server interaction. Both the communicating parties

can perform actions and generate responses to each other, as in a peer-to-peer system.

Theory of the Attack

Let us consider that we have j number of packets and respective sizes in group are G =

[s1, s2, . . . , sj], where si is size of a packet, after applying k-indistinguishability on packets gen-

erated while client was interacting with server. All packets belonging to the same group must

be padded to the maximum size of these packets to make these packets indistinguishable from

each other within the same group. Before padding, the MAC will be calculated on all packets to

ensure integrity. Assume that the size of the MAC is t. The MAC is appended to each packet

in the group. After MAC computations, the packets are S = [s1 + t, s2 + t, . . . , sj + t] where

j ≥ k. Bit-padding is done at this stage and after this, the packet sizes are:

S = [s1 + t+ (s− s1 + 1), s2 + t+ (s− s2 + 1), . . . , sk + t+ (s− sj + 1)],

where s is the maximum size of a packet in a group and 10s−si+1 is the padding for ith packet,

i.e. s− si + 1 is the size of padding to make all packets in the same group equal in size. Note

that in counter mode, if the message size is greater than block size of the underlying cipher,

then the message is broken into blocks. However, the last block doesn’t have to be of the block

size of the underlying block cipher. This is unlike the behavior in case of CBC mode. After

padding is done, encryption takes place in the mode being used (counter mode or cipher block

chaining mode).

11

Payload from upper layer protocol

Fragment

Compression

Compressed HMAC

Compressed MAC

Ek

To be Encrypted Fragment

SSL PayloadRPH

1.

2.

3.

4.

5.

6.

7.

8.

PAD(10*)

(a) Processing a message by Record Proto-
col in TLS. Here RPH denotes record pro-
tocol header.

tsi s− si + 1

(b) MAC generation(t) and subsequent
padding

Figure 4.1: (a) Encryption of a message in TLS protocol (b) Size of a message after MAC generation and
padding i.e. si = Actual plaintext size, t= Size of MAC tag, s− si + 1 = Size of padding (10*) added.

We consider TLS protocol in this attack scenario. In Figure 4.1, we assume padding is done

at stage 5, i.e. after MAC is generated and padding is done using Bit-Padding. Our attack

analyzes the effects when such scenario takes place in the context of k-indistinguishability scheme

proposed by Liu et. al. [5].

Effect Of Counter mode In counter mode encryption, we can use bit based truncation where

attacker can truncate number of bits from each message to distinguish a packet from others in

same group.

To learn which packet corresponds to which input, the attacker can follow truncation based

approach. The attacker considers packet for which padding size is maximum. Let’s assume the

maximum padding size to be d. The attacker truncates d−1 bits from all packets and sends the

modified packets to the server. This modification may corrupt all other packets (Case 2 below)

but the current packet in consideration (Case 1 below). Thus the attacker can distinguish

current packet from others. Note that the number of bits interpreted as padding depends on the

position of first 1 from the LSB which is denoted in Figure 4.1 as l. This could be inside the

computed MAC value, or the message itself. In either of the cases, the actual encrypted part of

the packet will be corrupted (since a part of it will be truncated).

For ith packet after truncation and decryption at server, there are two cases as follows.

12

Encrypted Message

Hash Verification Write MAC Secret

Decryption

t (MAC) l bits truncated from MAC as paddingsi − l corrupted message

si − l

MAC does not match since original message is modified.

Figure 4.2: MAC is corrupted due to truncation of original MAC. In the figure l denotes no of bits
truncated from MAC and interpreted as padding.

Encrypted Message

Hash Verification Write MAC Secret

Decryption

t (MAC)si (Original message intact)

MAC matches.Since original message is intact

si

(s− si + 1) − (d− 1) (PAD)

Figure 4.3: MAC is not corrupted.

• If (s − si + 1) ≥ (d − 1) then MAC will not be corrupted and will be valid for message

after padding removal Figure 4.3.

• If (s−si+1) < (d−1) then a part of MAC will be stripped off as padding after decryption,

generating wrong MAC, some part of which will be from the message itself. Packets which

correspond to this case generate invalid MAC error which helps attacker in distinguishing

a particular packet from others in same group Figure4.2.

13

To distinguish other packets, the attacker has a smaller group and hence much better probability

of distinguishing a packet. Same procedure as described above is followed for the remaining

groups. In this way, an attacker can break k-indistinguishability of traffic using such truncation

based attack.

Effect Of Cipher Block Chaining Mode In cipher block chaining mode we cannot use bit

truncation based attack since underlying block cipher needs input to be multiples of block size.

Hence we propose block based truncation instead of bit based truncation. However padding size

of packets needs to be greater than the block size of the underlying block cipher. Only then a

possibility exists that such block based truncation may work.

Here size of maximum in a group needs to be padded to multiple of block size. Thus all other

packets in same group needs to be padded to the padded size of maximum packet size in group.

Let’s say size of largest packet in a group is smax which is not a multiple of underlying block

cipher input size n. Hence packet needs to be padded according to bit-padding with 10n−smax

with a resulting size of k ∗ n where k > 0 is a non-negative integer such that k ∗ n ≥ smax.

Resultant size of all packets in same group will be

S = [s1 + t+ ((k ∗ n)− s1), s2 + t+ ((k ∗ n)− s2), . . . , sk + t+ ((k ∗ n)− sk)].

All these packets will be divided into b blocks of input size of encryption scheme n used in the

CBC mode.

Block1 Block2 Blockk

IV

EK EK EK

C1 C2 Ck

(a) Message is divided into blocks of size
n,where n is input size of block cipher be-
fore encryption at client side

Encrypted Message

Hash Verification Write MAC Secret

Decryption

t (MAC)s∗i corrupted message

MAC does not match since original message is modified.

Wrong Padding

s∗i

Truncated Block

(b) If truncated block contains padding in-
cluding 1 from padding,server generates in-
valid MAC error at server

Figure 4.4: (a) Attacker removes kth block from each message such that it generates error for intended
message only. (b) MAC is corrupted due to block truncation of original MAC.

The attacker removes last block from each message such that MAC generated at server turns out

to be invalid resulting in an error message. Thus the attacker can distinguish one message from

others based on block based truncation scheme. After distinguishing one block, the attacker can

follow the same step for others and hence break k-indistinguishability.

14

4.0.1 Example based on CTR mode

We will explain our attack based on mitigation scheme proposed by Liu et. al. [5]. We build

an example first based on proposed scheme and explain our attack on the example.

Example based on k-indistinguishability mitigation scheme

Before we explain example based on k-indistinguishability, first let’s define some terms.

Given a Web application, we define

• an action a as an atomic user input that triggers traffic, such as a keystroke or a mouse

click.

• an action-sequence a→ as a sequence of actions with known relationships, such as con-

secutive keystrokes entered into real-time search engine or a series of mouse clicks on

hierarchical menu items. We use a[i] to denote the ith action in a.

• an action-set Ai as the collection of all the ith actions in a set of action-sequences. We will

simply use A if all action-sequences are of length one.

• a flow-vector v as a sequence of flows where each flow s is an integer (a directional packet

size). An action corresponds to a flow-vector based on packets it triggers.

• a vector-sequence v→ as a sequence of flow-vectors corresponding to an equal-length action-

sequence a→, with each v[i] corresponding to a[i].

• a vector-set Vi (or simply V) as the collection of all the ith flow-vectors in a set of vector-

sequences, which corresponds to an action-set in the straightforward way.

• SVSD (Single Vector,Single Dimension) can be used to model vector action set for traffic

where there is only one action, each action has only one flow in corresponding flow vector.

Here single vector corresponds to single action in an action sequence. Single dimension

refers to single packet flow generated when an action takes place.

• SVMD (Single Vector,Multiple Dimension) can be used to model vector action set for

traffic where there is only one action, each action has only multiple flow in corresponding

flow vector. However for all actions in an action set have equal number of flows in a

flow vector. Thus dummy packets need to be inserted in case some actions have unequal

number of flows. Here single vector corresponds to single action in an action sequence.

Finally, multiple dimension refers to multiple packet flows generated due to an action.

• In MVMD (Multiple Vector,Multiple Dimension), an action in an action-set generates

multiple flows where multiple action are there in action sequence.

15

Example 1: Assume a and 00 to be the only possible inputs, there are two action-sequences a

and 00, and two action-sets A1 = {a,0} and A2 = {0}.
Example 2: Following Example 1, we have three flow-vectors, v1 = 509, v2 = 505, and v3 = 507

(note that we only model those packets whose sizes can help to identify an action), corresponding

to actions a, 0 (as first keystroke), and 0 (as second keystroke), respectively. We have two vector-

sequences, v1 and v2v3, corresponding to action-sequences a and 00, respectively. We also have

two vector-sets V1 = {509, 505} and V2 = {507} corresponding to the two action-sets A1 and

A2 in Example 1.

We assume 4 action sequences all of equal length. For example, a1 = {a, b}, a2 = {b, c},
a3 = {c, a} and a4 = {a, d}.
Note that: a1 and a4 have same prefix for second keystroke. Prefix is {a}.
Corresponding vector sequences are : v1 = {509, 487}, v2 = {504, 482}, v3 = {502, 501}, v4 =

{509, 497}.
Note: 509 is for single keystroke only{a}. But 487 is for {a, b},two consecutive keystrokes. Size

of bytes transferred for consecutive keystrokes may be smaller or larger than single keystroke.

It depends on the application.

Now according to [5], the vector-set can be formed as V1 = {509, 504, 502, 509}, and V2 =

{487, 482, 501, 497}.
Similarly Action-Set: A1 = {a, b, c, a} and A2 = {b, c, a, d}.
There will be two Vector-Action Set : V A1 = {V1, A1}, V A2 = {V2, A2}. They will come out to

be:

V A1 = {(a, 509), (b, 504), (c, 502), (a, 509),}, and

V A2 = {(b, 487), (c, 482), (a, 501), (d, 497)}.

Input Original Packet Size

a 509

b 511

c 508

Table 4.1: Single Vector,Single Dimension

Input Original Packet Size Prefix

b 487 a

c 482 b

a 501 c

d 497 a

Table 4.2: Single Vector, Multiple Dimension
based on prefix based padding.

After grouping, applying Simple SVSD (Single Vector,Single Dimension) algorithm on first table

: SV A1 = {(c, 508), (b, 511), (a, 509)}, PV A1 = {(c, 511), (b, 511), (a, 511)}[Padding].

After applying SVMD (Single Vector,Multiple Dimension) algorithm and padding: SV A2 =

{(c, 482), (b, 487), (d, 497), (a, 501)}, PV A2 = {(c, 501), (a, 501), (b, 501)(d, 501)}.
For same input string two flows corresponding to ab and ad {511, 501},{511, 501}.
Now attacker cannot distinguish between two input strings. Hence it maintains k-indistinguishability.

16

Attack on the example based on k-indistinguishability

From the above example, we have a group in which all the packets have same sizes after padding.

Now, lets explain our attack on this group to distinguish between inputs present in the set. We

explain our attack in a scenario where bit-padding and encryption modes like CBC and CTR

are used.

To pad packets that belong to the same set of size k, there are two options.

• Pad message in step 3 or 4 (refer Figure 4.1). This scenario is PAD-MAC-ENCRYPT.

• Pad message after MAC is calculated i.e. in step 6(refer Figure 4.1). This is MAC-PAD-

ENCRYPT.

In our attack we show why MAC-PAD-ENCRYPT is unsafe if k-indistinguishability is used to

maintain traffic anonymity. In the following example, we use MAC-PAD-ENCRYPT to demon-

strate that such attacks are possible. Our attack works because the padding is unauthenticated.

Lets say MAC computed on messages is of size 32 bit. Now each packet is padded to the

maximum size of the packet in the set. This is known as Ceiling Padding. Bit-padding is used

for the padding.

For our target example after bit-padding packets are padded according to following table:

Packet Padded Output Input Original Size Pad

Apad a 509+32 100

Bpad b 511+32 1

Cpad c 508+32 1000

Table 4.3: Packets after MAC and padded according to bit-padding. Here MAC generated is appended
to message first. Padding is done after MAC generation.

As mentioned earlier, our target example query set has {a,b,c} all of which has equal size. In

our example attacker is assumed to modify all other members in same set at the same position

such he can identify c. In the following step-by-step approach we have explained how attacker

is able to do so.

Let’s assume client types a first. After encryption of padded query Apad, A* is captured by

the attacker and he truncates 3 bits from all packets in same group. The modified packet is

sent to the server. Server strips off padding from ciphertext after decryption. Now according to

bit-padding, a part of message is stripped off as pad starting from LSB until 1 is encountered.

Since padding is already removed by the attacker, part of a MAC is considered to be pad and

hence wrong value of MAC is taken. The non-padded message is divided into MAC part which

is used to verify the data part in the message. Since MAC part is changed it will be flagged as

invalid and error generated. Thus attacker can know this packet is not the intended one i.e c.

This attack process is described in Figure 4.5.

17

Ek

A*

Apad

ctr

(a) During
Encryption

Client

Attacker

Server

A* A**

Apad Rejects A**

(b) Attacker mod-
ifies A*.Server
respond with error
message

A
′

A
′

(Corrupted Message) MAC

A**(Modified Encrypted Message)

Hash Verification Write MAC Secret

Original Padding Lost

Decryption

1

2

3

Wrong Padding Assumed

MAC doesn’t match.

(c) During decryption of modified
ciphertext

Figure 4.5: (a) Apad Encryption(Client Side) (b) Attacker truncates last 3 bit of ciphertext (c)Error
generated during decryption due to wrong MAC

Modified Encrypted Original Packet size
Input Input Packet Size after truncation

A** A* 509+32(MAC)+3(100) A
′
+32

+(Assumed Padding from MAC)

Table 4.4: Step 1. Attacker Modified packet content for A*. Part of MAC will be extracted as padding
at server side according to Bit-padding. Thus wrong invalid MAC will generate error. Here A

′
is the

resulting message size after truncation and padding is stripped off during decryption.

Ek

B*

Bpad

ctr+1

(a)

During

Encryp-

tion

Client

Attacker

Server

Bpad

B* B**

Rejects B**

(b) Attacker modi-

fies B*. Server again

respond with error

message

MAC

B**(Modified Encrypted Message)

Hash Verification Write MAC Secret

Original Padding Lost

Decryption

1

2

3

Wrong Padding Assumed

MAC doesn’t match.

B
′
(Corrupted message)

B
′

(c) During decryption of modified

ciphertext

Figure 4.6: (a)Bpad Encryption(Client Side) (b)Attacker truncates last 3 bit of ciphertext (c)Error gen-
erated during decryption due to invalid MAC

Let us assume that the client types b as the query. After padding and encryption, B* is received

by attacker, see Figure 4.6. The attacker truncates last 3 bits of packet (B**) and sends it to

server to be decrypted. This modification corrupts original MAC part of the packet. The server

strips off padding (as explained in case of A*) out of received packet after decryption. Since

MAC part is changed it will be flagged as invalid and error is generated. Thus attacker can

know this packet is not the intended one i.e c. This approach is described in Figure 4.6.

18

Modified Encrypted Original Packet size

Input Input Packet Size after truncation

B** B* 511+32(MAC)+1(Pad) B
′
+32(MAC)

+(Assumed Padding from MAC)

Table 4.5: Step 2.Attacker Modified packet content for B*. Part of MAC is removed as padding in
B**.Invalid MAC generated. This causes MAC to be invalid at server. Here B

′
denotes resulting message

size after truncation and padding is stripped off after decryption at server.

Let us assume that the client types c as the query. After padding and encryption C* is received

by attacker.

Ek

C*

Cpad

ctr+2

(a)

During

Encryp-

tion

Client

Attacker

Server

Cpad

C* C**

Accepts C**

(b) Attacker modi-

fies C*

MAC

C**(Modified Encrypted Message)

Hash Verification Write MAC Secret

Decryption

1

2

3

C(508)

C(508)

1

MAC matches.Since MAC is intact.

(c) During decryption of modified

ciphertext

Figure 4.7: (a)Cpad Encryption(Client Side) (b)Attacker truncates last 3 bit of ciphertext (c)C** data is
not corrupted during decryption after pad removal. MAC remains intact. Server accepts.

Attacker next modifies ciphertext to identify c by truncating last 3 bits to create C* and sends

it to the server. But this time server accepts the query since no modification in MAC has taken

place even after padding is stripped off. MAC matches the actual content in packet and the

server accepts. This is explained in Figure 4.7.

Modified Input Encrypted Input Original Packet Size After truncation packet size

C** C* 508+32(MAC)+4(1000) C
′
(508)+32(MAC)+1

Table 4.6: Step 3. Attacker Modified packet content for C*. Original MAC intact even after padding.Here
C

′
denotes resulting message size after truncation and padding is stripped off after decryption at server.

Note that C
′

is same as original message encrypted at client side.

Thus attacker identifies the plaintext query corresponding to a ciphertext. Thus k-indistinguishability

is disrupted since attacker can distinguish one character from others in the group.

19

4.0.2 Example based on Cipher Block Chaining Mode

The attack described above also works when the underlying encryption mode is CBC. Whenever

padding size in a set is more than block cipher size there is a chance that such attack may work.

However since CBC mode works on blocks, the truncation is also required to be done based

on blocks. Let us consider a scenario where we have 3 packets in a set which maintains 3-

indistinguishability by padding each packet to maximum packet size in set. Further, we assume

that underlying block cipher takes 128 bit input.

Set of packets size S = {257, 101, 129} corresponding to inputs say {i1, i2, i3}. Assume MAC is

already included in packet sizes. Each packet is padded to maximum size in set S. Since input

size of block cipher is smaller than amount of padding, packets has to be broken into chunks of

128 bit blocks.

During encryption packets are segregated into blocks as shown in Table 4.7.

Block1 Block2 Block3

128 128 1+127 (10126pad)

101+27(1026) 128(0128) 128(0128)

128 1+127(10126) 128(0128)

Table 4.7: Message blocks size before encryption. Added numbers denotes size of pad added.In brackets
actual pad contents added is shown.

Now if we apply our truncation based attack in this case, we can distinguish between packets.

However here truncation will be block-wise unlike in counter mode where truncation was bit

based.

To distinguish i1 all that the attacker has to do is truncate the last block in all messages. This

truncation will only affect the packet corresponding to i1 since this will corrupt a part of message

and after decryption at server, a part of the actual message will be misinterpreted as MAC

according to bit padding removal method i.e. removing bits from last until 1 is encountered.

This MAC extracted from message will be invalid due to truncation and will produce error

message. Attacker can therefore distinguish which input corresponds to the modified ciphertext.

Similarly, to distinguish packet corresponding to i3, the attacker can remove last two blocks in

ciphertext corresponding to {i2, i3}. This truncation will lead to error message due to invalid

MAC in case of i3 but not i2, which distinguishes i3 too.

Thus we can see how privacy can be compromised using the encryption mode like CBC too using

truncation based chosen ciphertext attack.

20

Chapter 5

Effect of padding order in WPA2 on

k-indistinguishability of traffic

In this chapter, we discuss how the order of padding matters in encryption mode used in WPA2,

a protocol used in wireless networks to maintain confidentiality and integrity affects privacy.

In WPA2, AES-CCMP became a standard and was introduced in IEEE 802.11i. CCMP is

an enhanced data cryptographic encapsulation mechanism designed for data condentiality and

integrity and is based on the Counter Mode with CBC-MAC. Both the primitives use the AES

standard. Vulnerability discovered earlier in WEP protocol had led to the introduction of

WPA2 as the revised version of the wireless messaging protocol. AES-CCM is also one of the

recommended cipher suite in TLS1.2.

5.1 CCMP processing in WPA2

CCMP or counter mode with cipher chaining mode was introduced in WPA2 to provide confi-

dentiality as well as message integrity, in which the underlying block cipher is AES128. AES

provides a method for encrypting data, obscuring the content so it cannot be read by an attacker.

However, and just as important, the receiver needs to know that the message is authentic, i.e. it

has not been modified. This is usually accomplished by adding a message integrity code (MIC).

For efficiency, we want this MIC to be computed using the AES encryption algorithm so it makes

sense that the operating mode should define how to provide both encryption and authenticity.

This scheme is shown in Figure 5.1.

The encryption flow of a packet as shown in Figure 5.1 can be described as follows:

• First the MSDU packet that is coming from upper layer i.e. Logical Link Layer above

MAC layer is fragmented into MPDU packets.

• Next the packets are processed using CCMP which uses counter mode for encryption and

CBC-MAC for message authentication. For both of them, AES is used as an underlying

21

MSDU

Fragmentation

MPDU MPDU

CCMP processing

Encrypted MPDU

Transmission Queue

(AES-CCM)

1.

2.

3.

4.

5.

Figure 5.1: Fragmentation of MSDU from Logical Link layer into MPDU used in Medium Access
Layer.And subsequent processing of MPDU in MAC layer.Note CCMP processing is done on MPDU
not MSDU.

cipher. CCMP adds some header called “CP header” related to its protocol along with

existing MAC header in MPDU.

• To protect message integrity, CBC-MAC is used to generate Message Integrity Code (MIC).

To compute the MIC, the padding algorithm operates on the these three inputs: the MAC

Header, the CP header and the padded plaintext data. The scheme uses AES as the

underlying block cipher. The first block of message is generated using fields from the two

headers. Subsequent blocks of messages are encrypted and XOR’ed with previous blocks

according to CBC-MAC. Note that MAC header and CP header is only authenticated,

but not encrypted.

• To maintain confidentiality, both the MIC and plaintext data are encrypted using AES in

counter mode. No padding is required since the counter mode is used.

The counter mode does not hide plaintext packet sizes, since no padding is necessary in general

in this mode. Therefore, it is necessary to pad the messages to achieve k-indistinguishability.

In the case of AES-CCMP (used in WPA2, as mentioned earlier), padding can be done to hide

plaintext sizes. Position of padding can be either before or after the MAC computation. We

can similarly explore the effects of padding done after MAC computation as shown in step 5

of Figure 5.2. Note that we have considered unauthenticated padding here too. To distinguish

packets padded according to k-indistinguishability we can similarly show a truncation based

attack on AES-CCMP in WPA2 as we have shown in TLS.

22

MAC Header CH Plaintext Data

MAC Header CH (Authenticated Data)

MAC Header CH1st BLK Pad Plaintext Data Pad

MICMAC Header CH Plaintext Data

CBC-MAC

CTR-Mode Encryption(AES)

MAC Header CH Ciphertext

MPDU1.

2.

3.

4.

5.

6.

PAD

Figure 5.2: CCMP processing of a MPDU

5.1.1 Mitigations

In the attack explained earlier, we exploited the vulnerability caused due to the MAC-PAD-

ENCRYPT model used in TLS. As we have explained in earlier sections, if MAC is computed

and padding done after the MAC computation then such a scenario can lead to chosen ciphertext

attacks of the kind described. If padding is applied before MAC computation then it would not

have been possible to carry such an attack. If the padding type is bit-padding, then the size of

the pad should be included in the header and subsequently included into MAC computation as

well. This will allow the attacks of the type we described earlier as the padding length can be

checked in the header by the legitimate use. PKCS7 padding can be used to pad, however this

may be susceptible to padding oracle attacks as shown in [9].

5.2 Future Works

• We have not yet implemented the proposed attacks. To do so will require one to first

implement Liu et. al’s scheme [5]. Implementation of the earlier scheme and our attack is

a possible line of work.

• Once can study other modes of operation which are vulnerable to the type of attack

described in this report. Among authenticated encryption modes we have explored AES-

CCM. Other possible vulnerable modes could be AES-GCM used in TLS, SSH etc.

23

• It is interesting to study other padding schemes and whether our attack can work against

them.

5.3 Conclusions

Traffic indistinguishability is a hard problem. Liu et al. proposed an application agnostic ap-

proach (k-indistinguishability) to pad packets to same sizes. Our attack shows that indifference

to underlying padding schemes and encryption modes and MAC calculation procedure can cause

such privacy preserving schemes to break. Thus schemes to make traffic anonymous not only

have be application agnostic and efficient, but they must also consider how the scheme affects

the underlying cryptographic operation. A detailed analysis of padding scheme, mode of oper-

ation and position of padding are necessary to prevent side channel attacks like the one shown

in this report.

24

Bibliography

[1] AlFardan, N. J., and Paterson, K. G. Lucky thirteen: Breaking the tls and dtls

record protocols. In IEEE Symposium on Security and Privacy (2013), IEEE Computer

Society, pp. 526–540.

[2] Brumley, D., and Boneh, D. Remote timing attacks are practical. Computer Networks

48, 5 (2005), 701–716.

[3] Chen, S., Wang, R., Wang, X., and Zhang, K. Side-channel leaks in web applications:

A reality today, a challenge tomorrow. In IEEE Symposium on Security and Privacy (2010),

IEEE Computer Society, pp. 191–206.

[4] Kocher, P. C. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. In CRYPTO (1996), N. Koblitz, Ed., vol. 1109 of Lecture Notes in Computer

Science, Springer, pp. 104–113.

[5] Liu, W. M., Wang, L., Ren, K., Cheng, P., and Debbabi, M. k-indistinguishable

traffic padding in web applications. In Privacy Enhancing Technologies (2012), S. Fischer-

Hübner and M. Wright, Eds., vol. 7384 of Lecture Notes in Computer Science, Springer,

pp. 79–99.

[6] Smith, B. Rizzo/Duong chosen plaintext attack (BEAST) on SSL/TLS 1.0 (facilitated

by websockets -76). CVE-2011-3389,https://bugzilla.mozilla.org/show_bug.cgi?id=

665814, 2011.

[7] T. Dierks, E. R. The Transport Layer Security(TLS) Protocol. http://www.

rfc-editor.org/rfc/rfc5246.txt, 2008.

[8] Thai Duong, J. R. The CRIME Attack. https://docs.google.com/presentation/d/

11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/, 2012.

[9] Vaudenay, S. Security flaws induced by cbc padding - applications to ssl, ipsec, wtls

... In EUROCRYPT (2002), L. R. Knudsen, Ed., vol. 2332 of Lecture Notes in Computer

Science, Springer, pp. 534–546.

[10] Yoel Gluck, Neal Harris, A. P. BREACH: REVIVING THE CRIME AT-

TACK. Blackhat USA ,http://breachattack.com/resources/BREACH%20-%20SSL,

%20gone%20in%2030%20seconds.pdf, 2013.

25

https://bugzilla.mozilla.org/show_bug.cgi?id=665814
https://bugzilla.mozilla.org/show_bug.cgi?id=665814
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_ -lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_ -lCa2GizeuOfaLU2HOU/
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf

[11] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-vm side channels and

their use to extract private keys. In ACM Conference on Computer and Communications

Security (2012), T. Yu, G. Danezis, and V. D. Gligor, Eds., ACM, pp. 305–316.

26

Chapter 6

Appendix

6.1 Chen et. al. Attack

This attack demonstrates that plain text size is preserved after encryption and using statistical

approach user query or activity on an web-application can be retrieved by attacker by profiling

the web-application on all possible inputs. Depending on ciphertexts generated during user

activity attacker could correspond to original plain texts that could have generated the monitored

cipher texts. Authors modeled web-application as states and transition between states. More

transition and corresponding packet generated reduced ambiguity. It was possible because of

disparate sizes of possible inputs for application. They also attributed this weakness as a result

of non-security aware design patterns followed to develop the application.

Detailed Attack

In this paper they modeled web applications as quintuple (S,Σ, δ, f, V).

S=Set of program states i.e application data on browser(DOM,Cookies),web server

Σ=Set of input i.e User inputs or Database

δ=Transition function from one program state to another

(δ : S × Σ→ S)

f=Observable web flows when transition takes place(δ : S × Σ → V),where V is a set of web

flows. A web flow v is a sequence of directional packet sizes.

Objective of Adversary is to infer sensitive inputs that changes state of application. Consider

an web application in which input set can be divided into different sets each of which can lead

an application into different stage. This transition is accompanied by revelation of observable

attributes.Consider at time t application is at state St. For any web application input set

possible can be decomposed into k semantically disjoint sets each of which brings application

into distinct state St+1 ⊂ S. Each of this transition also reveals web flows vt. Using this set

27

of web flows for each transition i.e vt, vt+1, vt+2, ..., vt+n−1 corresponding to each application

state St attacker knows which input can possibly happen this transition and which might be

the next program state. This method of reducing input set by observing attributes is ambiguity

reduction. More flows attacker can see, more ambiguity he can reduce.Note here ambiguity is in

inputs that might have caused the state transition. reduction factor is defined in this paper as

k/(αβ)

where,

k=Set of inputs possible for the application

α=Set of inputs identified by attacker by observing web flows and previous state.

β=Further reduction as program state continues to change depending on user inputs,based on

web flows revealed in next state transitions.

Threats on an web application depends upon the size of disjoint input sets of an application i.e

k. Today’s web applications can be measured to be threat prone depending on above discussed

parameters:

Ambiguity Reduction Factor indicates how much can the attacker learn from the observed

web flows about the application. More he can learn less ambiguous it will be.

Input Size of Application indicates if it is efficient for attacker to profile the application for

all possible input set and record it’s web flows.

Since web applications are stateful. Thus each web flow vector generated from a transition

increases reduces ambiguity factor since all transitions are dependent on previous transition.

Significant Traffic Distinctions for each web flow generated from a single transition attacker

needs to take into account the objects that are exchanged between browser-server. For most ap-

plications distribution of such objects e.g. images,HTML code,JavaScript etc. are non-uniform

thus leading to distinctions. This disparate size of objects are preserved due to the fact that

underlying ciphers used are not built to mask the sizes without much overhead at HTTPS layer.

Parameter to decide if web-application is vulnerable is density. Density determines how diverse

the sizes of packets in web-application.

Mitigation

To mitigate this attack first thought that comes to mind is uniform distribution of objects. But

at a protocol level its hard to do. Universal mitigation policies is a challenge. Application

specific approaches are likely to mitigate such attack. In this paper they analyzed some possible

universal mitigation policies on selected web applications.

The most obvious strategy is padding. Two types are considered here:

28

Random Padding. Appends every packet with a random length in [0,∆).

Rounding.Round up size of every packet to a nearest multiple of ∆.

It is concluded that even after applying such mitigation it’s not guaranteed that application will

be information leakage free.Moreover they incur huge overhead.Application developers should

understand application vulnerabilities first and then decide policies accordingly,since an appli-

cation agnostic approach is unlikely to be feasible.

6.2 Other Mitigations

6.2.1 Liu et. al. Mitigation

This suggestion attempts to mitigate the above attack by providing a generic solution such that

attacker cannot differentiate the inputs. In this approach authors suggested to group the inputs

based on a specific privacy parameter k,such that all inputs in a group are padded to same

size and padding cost is minimum. After such grouping response corresponding to the inputs

belonging to same group will appear to have same size to attacker,thus attacker has problem

in distinguishing the inputs. To make all packets corresponding to inputs same size padding is

done with a padding scheme of choice.

Heuristic algorithms were designed which strikes a balance between privacy requirement and

padding cost. This work was on application agnostic padding which is a more convenient ap-

proach if efficient,than application specific. Authors applied the concept of privacy preserving

data publishing to mitigate this information leakage. They termed this padding scheme as pri-

vacy preserving traffic padding. This paper analyses side channel mitigation strategies in search

engines.

The Model. In this paper web application is modeled in terms of observer’s and interaction

between users and servers. Each web interaction generates a flurry of packets to and from

server. For some particular packets size varies in each interaction for e.g. due to different

suggestion list sent by server. These size can be used to identify the input string.

Action. User activity upon application which generates observable traffic such as mouse click or

keystroke.

Action Sequence. Related set of actions e.g. consecutive keystrokes.

Action Set. Set of all i’th action of all action sequences. For ex. If input=’a’ and ’00’ are

two different action sequence. Here action is ’a’ and ’00’.Action set as per definition will be

A1 = {a, 0} and A2 = {0}.
Flow vector is set of all flows corresponding to an action.A flow vector sequence is a sequence

of flow vector corresponding to each action in action sequence, each Vseq[i] corresponding to

action in Aseq[i]. For example,we have three flow vectors v1 = 508, v2 = 497, v3 = 578 cor-

responding to action ’a ’and ’b(first keystroke),b(second keystroke)’.So,we have two vector se-

29

quences v1andv2v3. We have two vector set V1 = {508, 497} and V2 = {578}.Vector Action

Set is defined as : Given an action set Ai and corresponding Vi, VA or vector action set is

{(v, a) | v ∈ Vi ∧ a ∈ Ai}. For above ex. V A1 = {(508, a), (497, b)} and V A2 = {(578, b)}.All

algorithms works on vector action set. Web applications are modeled from simpler architecture

to difficult and more real world depending on size of vector flow set and action set.Following

algorithms were suggested based on the no. of web flows and no. of corresponding action

sequence.

• SVSD can be used to model vector action set for traffic where there is only one action

,each action has only one flow in corresponding flow vector.

• SVMD can be used to model vector action set for traffic where there is only one action

, each action has only multiple flow in corresponding flow vector.However for all actions

in an action set has equal no of flows in a flow vector.Thus dummy packets needs to be

inserted in case some has unequal no. of flows.

• In MVMD action in an action-set has multiple flows where multiple action are there in

action sequence.

k-anonymity.This paper introduced k-anonymity, defined as the privacy requirement of the traffic

or a given vector-action set.Basically,vector-action set is divided into k-sized groups based on

minimum padding cost and all flow sizes in that group are same and indistinguishable from each

other.Thus providing k-anonymity.Hence more k means more privacy given a cost.Padding in

groups are done such that privacy cost i.e sum of distance between flows of each flow to maximum

value in the group should be minimum satisfying the privacy requirement.For MVMD,Algorithms

used the actions in same sequence to pad corresponding packets in same size since it puts those

actions in same privacy group of size k.This is defined as prefix-based padding.

30

	Introduction
	Definitions
	Block Cipher
	Side Channel Attack
	Cipher-block chaining (CBC)
	Counter Mode Encryption (CTR)
	Padding
	Message Authentication Code(MAC)
	TLS Protocol

	Attack model and Previous work
	Previous Work

	Effect of padding order in TLS on k-indistinguishability of traffic
	Example based on CTR mode
	Example based on Cipher Block Chaining Mode

	Effect of padding order in WPA2 on k-indistinguishability of traffic
	CCMP processing in WPA2
	Mitigations

	Future Works
	Conclusions

	Appendix
	Chen et. al. Attack
	Other Mitigations
	Liu et. al. Mitigation

