Microservice-based in-network AES solution for FPGA NICs

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

M.Tech

BY Lasani Hussain MT21042

[P

Computer Science and Engineering

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI
NEW DELHI- 110020

December 21, 2022

Abstract

Data centers demand high throughput (100 to 400 Gbps) and sub-millisecond la-
tency. The performance of data center applications heavily depends on the efficiency
of the underlying TCP stack. Despite several optimizations, such as kernel bypass
and zero copying, TCP processing consumes up to 60% of the entire CPU cycles
for short-lived connections. Modern data centers are pushing the TCP processing to
programmable data plane hardware (smart NICs) to improve performance and save
CPU cycles. However, the user space application processes the transport layer secu-
rity (TLS) functions, negating the benefits of TCP offload. Some research proposes
offloading TLS state and connection and management but ignores the processing of
compute-intensive TLS crypto algorithms. We aim to offer in-network crypto primi-
tives that TLS offload solutions can incorporate. Our goal is to design an in-network
crypto framework that promises high-speed, low latency, scalability, dynamic recon-
figuration, and low-power by leveraging FPGA-based network hardware. This thesis
presents an FPGA-based AES offload solution aiming to satisfy the required objec-
tives.

Chapter 1

Introduction

Modern data centers can process traffic rates in the range of 100-400 Gbps. Stud-
ies have found that a large proportion of this traffic (>90%) are TCP packets.[1]
Even with optimizations like kernel bypass, more than 60% of clocks are used for
TCP processing. To improve CPU usage, Researchers have offloaded data processing
to the NIC while retaining connection and state management on the CPU. Since TCP
depends on TLS for security, without offloading TLS protocol, packets need to re-
visit the kernel stack for encryption and decryption, defeating the offload’s purpose.
This demands that TLS is also offloaded to NICs but the current design implemen-
tation of NIC does not have ample computing power to provide line rates without
specialized hardware. TLS supports a variety of cryptographic suites with varying
popularity. The addition of a new ASIC accelerator requires enormous development
time and product revision which cannot be done for every new algorithm. Hence the
new addition of FPGA fabric with current NICs can help us develop architectures
where we can generate similar accelerators. We identify the common submodules
among the cipher suites listed in TLS and formulate a DAG to denote the depen-
dency of the modules on each other. By having individual IPs(Intellectual Property)
for these algorithmic sub-blocks, we can efficiently scale up by provisioning only
those IPs which are computation hungry. My work comprised the AES GCM sub-
block, wherein I identified the points in the flow of code which can be optimized
by the HLS tool, wrote appropriate HLS equivalent code for the C implementation
of GCM, and optimized the clock cycles required to execute the algorithm end-to-
end. I also checked my implementation for correctness by writing test benches which
would validate the HW output against the SW output, using RFC test vectors, to be
sure my implementation is robust and fails no corner case. Finally I deployed the
code on the ZCU 106 Evaluation kit and the results are promising.

Chapter 2

Background
21 TLS

Cipher suites, often known as Secure Sockets Layer (SSL) or Transport Layer
Security (TLS), are collections of instructions that enable secure network commu-
nications (SSL). These cipher suites offer the algorithms and protocols necessary to
protect communications between clients and servers in the background. The two par-
ties must first communicate which algorithms they support (i.e., the cipher suite) and
agree on which ones to utilize before they can start exchanging messages. The ex-
change of several messages accomplishes this during the so-called ”TLS handshake.”
The server is the one who ultimately chooses the ciphers.

To guarantee the security, functionality, and compatibility of your HTTPS connec-
tions, selecting and maintaining the proper cipher suites in both the web server and
the client is crucial.

TLS 1.2 supports 37 cipher suites out of which few are listed below :

1. TLS_.DHE_RSA_WITH_AES_256_GCM_SHA384

2. TLS_.DHE_RSA_WITH_AES_128_CBC_SHA

3. TLS_.DHE RSA_WITH_AES_256_CBC_SHA

4. TLS_.DHE_RSA_WITH_AES_128_CBC_SHA256

5. TLS_.DHE_RSA_WITH_AES_256_CBC_SHA256

6. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
7. TLS_ECDHE_ECDSA_WITH_.CHACHA20_POLY 1305

8. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

9. TLS_ECDHE_RSA_WITH_CHACHA20_POLY 1305

Typically, a cipher suite appears as a long string of seemingly random data; yet, every
segment contains crucial data. This data string typically consists of the following
essential elements:

Algorithm for :

* key exchange such as RSA, DH, ECDH, DHE, ECDHE, or PSK

for digital signatures (authentication)like RSA, ECDSA, or DSA

for bulk encryption like AES, CHACHA20,

for the message authentication code (MAC) such as SHA-256, and POLY 1305

1

ey Eathonge Cipher (alnarithm, strenath, mode] Hosh or MAL

ECOHE-ECO5A-AES128-GCM-SHAZ56

Figure 2.1: Parts of TLS Cipher Suite

In the diagram ECDHE determines that the keys will be exchanged during
the handshake using ephemeral Elliptic Curve Diffie Hellman. The authentication
algorithm is called ECDSA, or Elliptic Curve Digital Signature Algorithm. The mass
encryption algorithm is AES128-GCM, which uses a 128-bit key size and AES in
Galois Counter Mode. Finally, the hashing algorithm is SHA-256.

2.2 AESGCM

AES with Galois/Counter Mode (AES-GCM) offers authenticated encryption

(confidentiality and authentication) as well as the capability to verify the authen-
ticity and integrity of extra authenticated data (AAD) that is transmitted in the open
[2].
The AES Encryption algorithm (also known as the Rijndael algorithm) is a sym-
metric block cipher algorithm with a block/chunk size of 128 bits. It converts these
individual blocks using keys of 128, 192, and 256 bits. The AES algorithm uses a
substitution-permutation, or SP network, with multiple rounds to produce ciphertext.
The number of rounds depends on the key size being used. A 128-bit key size dic-
tates ten rounds, a 192-bit key size dictates 12 rounds, and a 256-bit key size has
14 rounds. Each of these rounds requires a round key, but since only one key is in-
putted into the algorithm, this key needs to be expanded to get keys for each round,
including round 0.

The input to the encryption and decryption algorithms is a single 128-bit block.
In FIPS PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This
block is copied into the State array,z which is modified at each stage of encryption or
decryption. After the final stage, State is copied to an output matrix.

Block cipher : The underlying block cipher of the mode is composed of two
inverse functions for any given key. As in the description of the AES method in [3]
choosing a block cipher also entails designating one of the two block cipher functions
as the forward cipher function. Using the inverse cipher function is not possible with
GCM.

Authenticated Encryption : Given the selection of an approved block cipher and key,
there are three input strings to the authenticated encryption function:

* a plaintext, denoted P;

¢ additional authenticated data (AAD), denoted A; and

¢ an initialization vector (IV), denoted IV.

The two types of data that GCM secures are plaintext and the AAD. The plaintext
and the AAD are both protected by GCM, along with the secrecy of the plaintext.
The AAD is not covered by GCM. The AAD may contain fields that specify how
the plaintext should be handled, such as addresses, ports, sequence numbers, proto-
col version numbers, and others inside a network protocol. The bit lengths of the
input strings to the authenticated encryption function shall meet the following re-
quirements:

len(P) <= 2% — 256; .1)
len(A) <= 2% —1; (2.2)
1 <=len(IV) <= 2% — 1; (2.3)

23 HLS

2.3.1 HLS Synthesis

High-Level Synthesis is an automated design process that takes an abstract behav-
ioral specification of a digital system and generates a register-transfer level structure
that realizes the given behavior. The designer needs to create the overall structure
and design of the algorithm in C/C++, considering how it will interact with the out-
side world. However, they do not need to worry about specific micro-architecture
details such as the state machine, datapath, and register pipelines. These can be left
to the High-Level Synthesis (HLS) tool to handle, using input constraints such as the
clock speed, performance pragmas, and target device to generate optimized Register-
Transfer Level (RTL) code.

2.3.2
2.3.3 Vitis HLS

The Vitis High-Level Synthesis (HLS) tool is used to convert C or C++ code into
Register-Transfer Level (RTL) code for implementation on Xilinx programmable
logic devices, such as Versal ACAP, Zynqg MPSoC, or FPGAs. It can be integrated
with the Vivado Design Suite for synthesis, place, and route and the Vitis Core De-
velopment Kit for system-level design and application acceleration. Vitis HLS can
be used to develop and export Vivado IP for use in hardware designs or Vitis kernels
for use in the Vitis application acceleration flow. It automates many of the processes
required to implement and optimize C/C++ code in programmable logic, including
the inference of pragmas to pipeline loops and functions within the code. The gener-
ated RTL can be used as IP within the Vivado tool or Model Composer, or it can be
ccustomized to meet specific interface standards. The development process involves:

* designing the algorithm
* verifying the C/C++ code with a testbench

 generating the RTL with HLS

Sequential Latency = 180

Before Pipelining A ‘ B ‘ C A

W
(@}
>

H

After Pipelining A n

Total Latency = 100

Figure 2.2: Pipeline

* verifying the kernel with C++ outputs, and

* analyzing the synthesis and co-simulation reports to ensure performance goals
are met.

2.34

2.3.5 Pipelining Paradigm

Pipelining [2.2]is a technique used to optimize micro-level architecture by allow-
ing multiple tasks to be executed simultaneously using the same resources over time.
It is typically used in situations where tasks produce or consume data at a high rate,
such as with instruction-level pipelining (ILP).

Chapter 3

Related work
3.1 TCP Offload

FlexTOE [4] is a flexible and high-performance TCP offload engine for wimpy
SmartNICs. It offloads the TCP data path, using the microservices paradigm for par-
allelization by involving pipelining. For scalability and flexibility, they decompose
the TCP data path into fine-grained modules by keeping the stateless design among
the states of pipelines and replicating the states since they are stateless. It is also
flexible, as it supports the modified TCP. It processes the Memcached application,
which scales up to 38% better than the TAS, while saving up to 81% host CPU cy-
cles versus Chelsio. FlexTOE cuts 99.99th-percentile RPC RTT by 3.2 times and
50% versus Chelsio and TAS, respectively.

AccelTCP [3] offloads the TCP layer to the programmable data plane(PDP), i.e
smartNICs, by selectively offloading the states of TCP. As it offloads the Connec-
tion setup/teardown, segmentation/checksum, and connection splicing to the NPU-
SmartNICs, but keeps the TCP data path on the host. AccelTCP enables short-lived
connections to perform comparably to persistent connections. It also improves the
performance of Redis, a popular in-memory key-value store, and HAProxy, a widely-
used layer-7 load balancer, by 2.3x and 11.9x, respectively.

3.2 Reconfigurable hardware solution

Autonomous NIC offloads [[1]]: This work offloads the TLS (i.e L5Ps) without
having to offload the entire layerj= TCP/IP stack into the NIC. The main goal of
the LSP-NIC collaboration is to process L5P messages in the NIC in a way that is
transparent to the TCP/IP stack that serves as an intermediary. They implement au-
tonomous offloads for two L5Ps: (i) NVMe-over-TCP zero-copy and CRC compu-
tation and (ii) https authentication, encryption, and decryption. This implementation
increases the throughput by up to 3.3x and reduces the latency by 0.4x and 0.7 x,
respectively.

Chapter 4

Design
4.1 Decomposition of TLS crypto algorihtms

AES block cipher encrypts a 16B plaintext at a time, for plaintexts larger than
16B , the plaintext is divided into blocks of 16B chunks and these we repeatedly
encrypt these 16B chunks using AES block cipher, now when we have the 16B ci-
phertext chunks, how do we combine them to produce the ciphertext, herein comes
into picture “modes of operation” for AES. Following are the modes of operation for
variable length plaintext encryption :

* ECB mode: Electronic Code Book mode

CBC mode: Cipher Block Chaining mode

CFB mode: Cipher FeedBack mode

OFB mode: Output FeedBack mode

CTR mode: Counter mode

Refer the TLS crypto suite discussed before. The GCM, CCM, and other modes
of operation work in close coordination with AES block cipher as the functioning of
these modes differ in how and with what data these modes of operation invoke the
underlying AES block cipher with.

For example, in the CBC mode of operation plaintext block, P1 is XORed with
IV and then encrypted to get ciphertext block C1 . In the next iteration, P2 is XORed
with C1 and then encrypted i.e. Ci acts as IV for the next iteration (i+1) of CBC
mode. This is different from how GCM operates as GCM counter blocks themselves
are encrypted and later XORed with plaintext. From this, we come to the conclusion
that the modes of operation are closely coupled up with the underlying block cipher,
but the hash or MAC calculation is a logically different step and comes into the
picture once the ciphertext is generated so based on the above observations we can
de-couple MAC calculation(SHA) step from modes of operation, depicted in the
block diagran4.T|below:

As discussed above, the modes of operations differ in how they act as a wrapper
over the AES block, so we can move the common AES block out, to get the following
dependency graph, where A-;B implies A comes later than B in the topological order
of algorithm , hence B has to complete its execution before A can begin.

AES_GCM AES_CCM AES_CTR AES CBC | """ SHA

Figure 4.1: Algorihtms in TLS suite

Figure 4.2: Overlapping submodules

In the diagram [4.2] above AES* means for every execution of AES block, Key
Expansion is executed internally. So if we have a long plaintext that needs to be
encrypted using the GCM mode , then for every 16B chunk of that plaintext that
gets encrypted using AES, Key Expansion is executed, which unnecessarily adds
an overhead, since the same expanded key can be used for the later 16B chunks
encryption belonging to the same plaintext. So it is only logical to move the Key
Expansion block out of AES so that we can reduce the number of unnecessary clocks
wasted to redo the Key Expansion.

So the DAG becomes the following4.3|: Here the AES block does only the en-
cryption part and Key Expansion is moved out. My work is focussed on optimizing
the GCM-AES-KeyExpansion subgraph of the above DAG. In the background sec-
tion as we discussed the GCM algorithm, GCTR was the function that repeatedly
invokes AES for encryption of counter blocks , sending 16B at each such invocation,
and the number of such invocations being the number of 16B chunks the plaintext
can be divided into. Hence it is logical that we disaggregate the GCM algorithm it-
self into blocks , which would help us define clear boundaries about where repeated
invocations are made to AES IP block. The GCM block further gets divided into Pre
GCM, Post GCM and HASH blocks as shown below :

The motive behind all the above disaggregations was to identify common overlap-
ping subblocks of algorithms for which we can make separate IPs and this provides
us with more software-oriented, microservice-based design, each of the blocks can
be used independently as a black box, which additionally can help us with:

* Hardware efficiency: Same FPGA fabric can be used to host multiple different
IP’s

* Reusability : By identifying IP blocks that consume a large fraction of to-
tal computation, we can have multiple instances of such IPs , in our case AES
blocks, so that we can perform multiple encryption operations in parallel , mak-
ing efficient use of hardware resources, increasing throughput and decreasing

2

Key
Expansion

Figure 4.3: Fully disaggregated algorithm blocks

Key
Expansion

Post

GCM HASH

Figure 4.4: Disaggregated GCM

Key Expansion
2

Figure 4.5: GCM Functional Blocks

latency

Following[4.3|is a detailed description of fully disaggregated design of AES GCM
algorithm with parameters being exchanged considering everything apart from the
CPU is an IP.The operations are numbered in chronological order.NOTE: Steps 1
through 14 happen once except for step 7 and 8 which happen in a loop i.e. CPU
sends multiple counter blocks (Ctr) for encryption to AES and gets encrypted counter
blocks EncCltr in return.

Chapter 5

Guidelines
5.1 Guidelines for Algorithm decomposition for FPGA target

* Efficient hardware-friendly code: Code should be written keeping in mind the
operations we execute are going to be executed in hardware, so a basic under-
standing of the mapping of operations to hardware components goes a long
way in writing code that executes faster. So we can treat an iterative operation
over a fixed-length byte(unsigned 8 bit) array (say of length k)as equivalent to
a single operation on 128*k bits For example take the right shift operation on
a byte array of length 16, such that each element is an unsigned 8-bit integer.
A software implementation would right shift each of the 16 elements and use a
carry variable to track whether the LSB of the current element ‘falls off” after
incrementing and appropriately set the MSB of the next byte depending on the
carry variable, incurring 16 clock cycles. The best way to do this would be to
copy all 16 elements into a 128 bit single apuin; 128 variable , then do a single
right shift over the 128 bits and then copying the 128 bits back into byte array
representation incurring a total of 1+1+1=3 clock cycles.

* Pipeline : This can be used in loops that run for a non-fixed number of times i.e.
we can’t know the number of iterations beforehand. Here we can pipeline the
loop so that each iteration gets executed in an overlapped stage of a pipeline.
This increases the hardware resource usage but decreases the clock cycles need
to execute the complete loop

* Unroll : This is used to execute all operations of a fixed length loop i.e.iterations
known during compile time, in a single clock cycle. One should be careful
while using this and not treat it as a silver bullet to be applied in any fixed-
length loop, which can lead to serious bugs. Some pre-requisite for unrolling
a loop, are : There should be no data dependency within loop iterations i.e.
inputs for computations done in later iterations should not depend on result
of previous iterations. The arrays used for doing I/O in the loop need to be
partitioned fully, for the tool to provision parallel memory access.

The above guidelines are not hard and fast, in fact, pipelines can be used in conjunc-
tion with loop unrolls, if constraints required by unrolls and pipelines are respected.
An example of this combination is the GCTR function (refer to background), where
the outer loop runs n times and n is calculated at runtime. We pipeline the outer loop,
and then in the inner loop when we process a large array (elements 1500) in batches
of size 16, we UNROLL the inner loop which runs 16 times and perform a cyclic par-
tition of the array being operated on by a factor of 16, this way the 16 elements get
processed parallelly and this batch processing happens in a pipelined manner where
in the next 16 elements get processed in the next stage of the pipeline.

Chapter 6

Implementation
6.1 Implementation

Refer to Parser: The IP has a single input stream and a single output stream,
with ports packed to the limit i.e. 128 bits of data read/written in a single cycle, to
extract max operations per clock cycle. So any variable length payload that is sent
must be preceded by some custom header that encodes the length of the payload
the stream carries. Scheduler: We first copy all the data into a single contiguous
array of type uint8t, the starting address of which is sent to DMA which treats the
array as a contiguous bit stream. Both the input and output cache is flushed and the
DMA is configured by the respective device id. We then perform 2 asynchronous
DMA transfer operations: one from DMA to IP and the other from IP to DMA. Now
we busy wait for the DMA channels to get free, which would only ensure the cor-
rectness of data in the output array receiving data from the IP. Load generator(put
in testbed ?): We copy and organize our payload data as required by IP along with
headers in array allocated via heap memory, in array in[] a. The address of the ar-
rays along with the device ID is passed to function , repeatedly inside a loop running
some fixed iterations Generic implementation modules : AXI4 stream: The common
interface for connecting components that want to share data is the AXI4-Stream pro-
tocol. The interface can be used to link a single data-generating master and a single
data-receiving slave. When connecting a higher number of master and slave compo-
nents, the protocol can also be utilized. The protocol enables the construction of a
generic interconnect that can carry out upsizing, downsizing, and routing operations
while supporting various data streams utilizing the same set of shared wires. The
processing system (PS) : The Processing System IP is the software interface around
the Zynq® Ultrascale+™ MPSoC Processing System. The Zynq UltraScale MPSoC
family consists of a system-on-chip (SoC) style integrated processing system (PS)
and a Programmable Logic (PL) unit, providing an extensible and flexible SoC solu-
tion on a single die. The Processing System IP Wrapper acts as a logical connection
between the PS and the PL while assisting you to integrate custom and embedded IPs
with the processing system using the Vivado® IP integrator. Interconnect: The AXI
Interconnect IP connects one or more AXI memory-mapped Master devices to one or

M_AXIS_MM2S :«

AXI DMA AES GCM IP

|

Interconnect]

i
[

M_AXI_HPMO |:(>

ZCU 106
Processing
System

S AXI HPO <):|

|

Figure 6.1: PS PL Design

more memory-mapped Slave devices. The AXI interfaces conform to the AMBA®
AXI version 4 specifications from ARM®, including the AXI4-Lite control register
interface subset. The Interconnect IP is intended for memory-mapped transfers only;
AXI4-Stream transfers are not applicable. The AXI Interconnect IP can be used
from the Vivado® IP catalog as a pcore from the Embedded Development ToolKit
(EDK) or as a standalone core from the CORE Generator™ [P catalog DMA: Di-
rect Memory Access module regulates the disparity in data transfer rates be IP: IP
synthesized and exported from vivado hls after being tested against RFC test vectors
Complete AES GCM implementation: Here the complete AES GCM algorithm is
written in HLS and a single IP block is created, the inputs to which are IV, PT, AAD,
and Tlen, and the outputs are CT and Tag. Refer to the figure in background, all the
loops in each of the DOT, GHASH, and GCTR functions are optimized (loop unrolls,
pipelines inserted at all appropriate locations) except for the pipeline over batches of
16B AES encryption of counter blocks and in the loop where batches of 16B plain-
text are XORED with corresponding encrypted counters, which were causing data
dependency errors and thereby the IP to fail in the RTL cosimulation stage.

Chapter 7

Evaluation
7.1 Evaluation

Testbench: We have used Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit for
running our experiments. Based on the ZU7EV silicon part and package in the 16
nm FinFET Zynq® UltraScale+TM MPSoC, the ZCU106 is a general-purpose eval-
uation board for quick prototyping. The ZU7EV gadget combines a dual-core Arm
Cortex-R5F real-time CPU with a quad-core Arm Cortex-AS53 processing system
(PS). Baseline

Container: In this setup, OpenSSL library is used to execute AES GCM on dif-
ferent packet sizes (64B/128B/256B) , with code executing inside a docker container
, pinned to a single core of the x86 CPU to have consistency in the metrics we are
comparing

PS: Here the C code for AES GCM implementation is executed over the a53 ps.
,s0 we are performing the computations on the PS part of the FPGA(cpu of FPGA 1is
less powerful than a x86 processor). Even though we save on communication latency
(no DMA’s involved) , these numbers are worse than GCM Host .

PS+ PL : Here we synthesize the complete code of AES GCM in a single IP with
all optimizations added as mentioned in section(implementation.5) ,. The computa-
tions take place over the PL part of FPGA, and data is communicated from PS to PL
via DMA. PS+ PL scaled : We interpolate our results for the Xilinx SN1000 board
using the fraction of LUTs utilized by our IP

Chapter 8

Results
8.1 Results

Refer below figures for Throughtput [8.2]and Latency8. 1| results

End to end latency (us)

Throughput (in Mbps)

T T T T
Conta:l_ner[AES HI] =
PS+PL(FPGA_(CPU-!—PPGA] _
64 128 256 512 1024 1456
Packet size (in bytes)
Figure 8.1: Latency
T
Container (AES-N1) E DS+DL (FPGA_CPU+FDPGA) ESS<y
PS (FPGA_CPU) — PS+PL_scaled (Xilinx SN1000) EZZZ3
98080 12520.0
10000 | Lorsair.0 08s.0 [%4.0 7.1._6.0 4
2 7
3912867, 0
998.0 7
FA4 1514.0
1000 ¢ 777.0 E
374 399
225 3‘% N N
147
17
100 26, 4
10 E
" 4 " 5 5 5
1k J
0.1
64 128 256 512 1024 1456

Packet size (in byvtes)

Figure 8.2: Throughput

Bibliography

[1] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and D. Tsafrir, “Au-
tonomous nic offloads,” in Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 18-35, 2021.

[2] D. McGrew, “An interface and algorithms for authenticated encryption,” tech.
rep., 2008.

[3] A.E. Standard, “Federal information processing standard (fips) publication 197,”
National Bureau of Standards, US Department of Commerce, Washington, DC,
2001.

[4] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter, “{FlexTOE}: Flexible
{TCP} offload with {Fine-Grained} parallelism,” in /9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), pp. 87-102, 2022.

[5] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “{AccelTCP}: Accelerating net-
work applications with stateful {TCP} offloading,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pp. 77-92, 2020.

	Introduction
	Background
	TLS
	AES GCM
	HLS
	HLS Synthesis
	
	Vitis HLS
	
	Pipelining Paradigm

	Related work
	TCP Offload
	Reconfigurable hardware solution

	Design
	Decomposition of TLS crypto algorihtms

	Guidelines
	Guidelines for Algorithm decomposition for FPGA target

	Implementation
	Implementation

	Evaluation
	Evaluation

	Results
	Results

