
Few Quantum Cryptanalysis Techniques

by

SANCHITA SAHA

under the supervision of

Dr. Debajyoti Bera

submitted

in partial fulfilment of the requirements for the degree of

MASTER OF TECHNOLOGY

to

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI - 110020

May, 2021

CERTIFICATE

This is to certify that the thesis titled "Few Quantum Cryptanalysis Technique",

submitted by Sanchita Saha, to the Indraprastha Institute of Information Technology

Delhi, for the award of the Master of Technology, is an original research work carried

out by her under my supervision. In my opinion, the thesis has reached the standards

fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any

other university or institute for the award of any degree/diploma.

May, 2023 Dr. Debajyoti Bera
Department of Computer Science and Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110020

ACKNOWLEDGEMENTS

I want to express my sincere gratitude to my M.Tech. Thesis supervisor, Dr. Deba-

jyoti Bera, for his invaluable guidance and support throughout this research work. He

has been a constant source of inspiration and motivation for me. I want to thank my

committee members, Dr. Santanu Sarkar and Dr. Subhamoy Maitra, for engaging with

my thesis diligently and enthusiastically and providing insightful feedback. The earlier

discussions on the cryptanalysis of ChaCha cipher with Dr. Maitra, at various stages of

the work led me to look deeper into the algorithms and approaches used.

I am grateful to Dr. Subhabrata Samajder for his valuable insights on the possi-

ble extensions and applications of the current work. His guidance helped me better

understand the cryptographic challenges and solutions.

I thank my family and friends for their unconditional love and encouragement. They

have always stood by me in times of difficulty and joy. I want to acknowledge the

help and cooperation of my labmates, especially Mr. Sagnik Chatterjee and Mr. Thar-

rmashastha SAPV, who have shared their insights and expertise with me. They have

always provided constructive feedback and suggestions for improving my work. I am

also indebted to the IIITD administration and IIITD Computer Science and Engineering

department for providing me with the necessary facilities and resources for conducting

this research. I thank Ms. Priti Patwal for her immense support and cooperation.

I am grateful to all the people who have directly or indirectly contributed to this

thesis. I appreciate their time and effort.

i

ABSTRACT

Quantum algorithms like Shor’s and Grover’s algorithms have proven to break several

cryptographic schemes theoretically. Shor’s algorithm, which can factor numbers ex-

ponentially faster than classical computers, can break asymmetric cryptosystems like

RSA. Grover’s algorithm compromises symmetric key ciphers, as it provides asymp-

totic quadratic speedup for unordered search. However, given the current resource lim-

itations, whether these techniques will be practically realizable is debatable. In this

thesis, we aim to show some evidence that quantum can aid cryptanalysis practically.

Several studies have been conducted on quantum cryptanalysis of block ciphers

like AES etc., but not enough on stream ciphers. ChaCha cipher is a stream cipher

with gaining popularity. It has been included in TLS 1.3. We designed a quantum

version of the ChaCha cipher with reduced depth. The best classical attack on ChaCha7

is a 2214 operation attack. Most classical attacks on ChaCha use the notion of Input

Difference (ID), Output Difference (OD), and Probabilistic Neutral Bits (PNBs). We

proposed two quantum algorithms, one to get the best ID-OD pair and the other to get

the PNBs. However, the oracle used for PNBs is massive, and amplitude estimation on

it would severely blow up the circuit. For a workaround to this, we started exploring

other techniques like linear cryptanalysis.

Linear cryptanalysis uses linear expressions between input or plaintext (n bits) and

output or ciphertext (m bits) bits to attack ciphers. Classically, a linear approximation

table of size 2n×2m is used to count the probability of occurrence of each linear expres-

sion exhaustively. We developed a quantum algorithm to reduce space and time for the

same. Our circuit generates a superposition of all possible linear combinations with am-

plitudes proportional to respective linear probability biases. Applying multi-distribution

amplitude estimation to these states, followed by marking states above a predefined

threshold, and retrieving all the marked states, gives us a list of high-probability linear

expressions of the cipher. These linear expressions could then be used to launch attacks

on the ciphers.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES iv

LIST OF FIGURES v

1 Introduction 1

1.1 Organisation . 1

2 Quantum ChaCha 3

2.1 ChaCha cipher . 3

2.2 Structure of ChaCha . 3

2.3 Quantum ChaCha . 6

3 Quantum approaches for ChaCha cryptanalysis 8

3.1 Related Works . 8

3.2 Differential Cryptanalysis of ChaCha 8

3.3 Finding ID-OD pair . 13

3.4 Quantum Algorithm to find best ID-OD pair 14

3.5 Finding Probabilistic Neutral Bits 21

4 Generic linear quantum cryptanalysis 24

4.1 Linear Cryptanalysis . 24

4.2 Finding Quantum Linear Approximations 27

4.3 Classical Filtering . 29

4.4 Quantum Filtering . 30

5 Conclusion and Future Scope 38

LIST OF TABLES

2.1 Comparison of resource estimation for ChaCha20, i.e., for 20 rounds,
and the final addition phase included 7

3.1 Comparison of complexity of Classical and quantum algorithm for find
good ID-OD pairs for ChaCha cipher, where ϵest is the probability
estimate accuracy, and is upper bounded by ϵt which is threshold for
single differential bias of ChaCha 21

4.1 Time and space complexity comparison of classical and quantum ap-
proach to find linear approximations of a function 36

iv

LIST OF FIGURES

2.1 ChaCha cipher . 4

3.1 Principle of attack of ChaCha . 9

4.1 Finding Linear approximation Quantum Circuit 29

v

CHAPTER 1

Introduction

Classical cryptography relies on mathematical operations that are hard to invert, such as

modular exponentiation and hashing. However, with the advent of quantum computing,

some of these operations have become vulnerable to quantum algorithms that can solve

them faster than classical ones. Instances of these are Grover’s algorithm that gives

asymptotic quadratic speedup for unordered search; and Shor’s algorithm which gives

exponential speedup in factorising numbers. At the same time, if the added quantum

computing capabilities are harnessed appropriately, we might be able to develop better

quantum ciphers. In this paper, we explore the implications of quantum computing for

both encryption of information and cryptanalysis of encryption schemes (ciphers).

We focus on the ChaCha cipher, a stream cipher with increasing popularity in recent

times. It is widely used in applications such as TLS and OpenSSL. Our interest lies in

implementing an efficient and correct quantum circuit for the ChaCha cipher. For the

next part we try to develop quantum subroutines that can could replace computationally

expensive parts in classical cryptanalysis.

Our contributions in this work are: we have designed a quantum implementation of

ChaCha cipher with reduced circuit depth. We gave a quantum algorithm to quantize a

phase of the classical ChaCha cryptanalysis process. This phase is to make a choice of

Input Difference - Output Difference pair based on high probability of occurrence. The

third quantum algorithm we propose is for finding linear approximations for any cipher.

1.1 Organisation

Chapter 2 discusses the scheme of the ChaCha cipher, followed by an efficient quantum

implementation of ChaCha. In chapter 3 we study the various classical techniques used

for cryptanalysis of ChaCha. We emphasise on the concept of Input-Output difference

and Probabilistic Neutral Bits, and give an quantum algorithm to find good ID-OD

pairs. In chapter 4 we give a more generic algorithm to find linear approximations of

any cipher. We conclude finally in 5 by giving a summary of the results and discussing

the possible future directions.

2

CHAPTER 2

Quantum ChaCha

2.1 ChaCha cipher

Stream ciphers are symmetric key ciphers, i.e., the same key is used for encryption and

decryption. In stream ciphers, a given key generates a pseudorandom sequence called

keystream, which is then used to encrypt the plaintext to ciphertext by some operation,

usually XOR.

The ChaCha family of stream ciphers was developed by D. J. Bernstein (2008). It

was proposed as a variant of Salsa20, also designed by Bernstein in 2005. Salsa20

was a finalist in the eSTREAM software-oriented profile (profile 1). The eSTREAM

project was a multi-year effort, from 2004 to 2008, to promote the design of efficient

and compact stream ciphers suitable for widespread adoption (ECRYPT, Accessed on

2023-05-14).

ChaCha has a state of 4 × 4 matrix of 32-bit words, initially comprising constants,

key, counter, and nonce. It is an ARX (add, rotate, XOR) based cipher, which on soft-

ware are fast operations. This makes it consistently faster than AES, which is the most

common encryption method today. ChaCha is, in fact, faster or equally fast as Salsa20.

Moreover, compared to Salsa20, it conjecturally has higher diffusion per round, provid-

ing higher cryptanalytic resistance.

It has been included in TLS 1.3 cipher suite. Google adopted ChaCha20 for sym-

metric encryption and Poly1305 for authentication (MAC) in OpenSSL and NSS in

March 2013.

2.2 Structure of ChaCha

ChaCha consists of a 4× 4 matrix of words, each of size 4 bytes (32 bits) [Figure: 2.1].

There are a total of 512 bits in a ChaCha cipher state.

2.2.1 Initial State:

The rows in the initial state are described as follows:

• First row: Consists of 4 predefined Constant (C), i.e. 128 bits, C0, C1, C2, C3.
In the version proposed by Bernstein, the constants are specified as "expand 32-
byte k". Whereas, the constants for 128-bit key version of ChaCha are C0 =
0x61707865, C1 = 0x3120646e, C2 = 0x79622d36, C3 = 0x6b206574.

• Second and third row: Consists of Key (K), 256 bits, K0, . . . K7. This is the
secret part of the cipher. It is only known to the sender and receiver.
For ChaCha128 it has a 128-bit key structure, 4 keywords make a copy of itself
and fill up the matrix’s second and third row.

• Fourth row: First word (32 bits) is counter (T). The counter starts from 0, and
gets incremented after transmission of each message block of 512 bytes.
Next three words (96 bits) are Nonce (V). Every time for a new message the
nonce is randomly generated. The counter and nonce values are usually publicly
know for each block of message.

Initial State
C= constant, K= key,
T= counter, V= nonce

C0 C1 C2 C3

K0 K1 K2 K3

K4 K5 K6 K7

T V0 V2V1

Column Round

a0 a1

c0 c1 c2 c3

b0

d0 d1 d2 d3

a2 a3

Diagonal Round

a0 a1

b1 b2 b3

c0 c1 c2 c3

b0

d0 d1 d2 d3

a2 a3

b1 b2 b3

1 QR 1 QR 1 QR 1 QR

1
Q

R

1
Q

R

1
Q

R

1
Q

R

#Rounds = R/2 = 20/2 = 10

Keystream

Plain Text

Cipher Text

+ (mod 2n)

n bit

Figure 2.1: ChaCha cipher

2.2.2 Quarter-round

The scheme of the cipher consists of quarter-rounds. Each quarter-round consists of

four ARX rounds: addition modulo 232 (A), circular left rotation (R), XOR (X) opera-

tions. One quarter-round of the cipher on (a, b, c, d) can be described as follows:

ARX-1 : a = a+ b; d = d⊕ a; d = d≪ 16;

ARX-2 : c = c+ d; b = b⊕ c; b = b≪ 12;

ARX-3 : a = a+ b; d = d⊕ a; d = d≪ 8;

ARX-4 : c = c+ d; b = b⊕ c; b = b≪ 7; (2.1)

4

2.2.3 Column and Diagonal Round

ChaChaR consists of R rounds, i.e., R/2 column rounds and R/2 diagonal rounds, ap-

plied alternately. Each column round consists of 4 quarter-rounds, one on each column

of the current matrix state. Similarly, each diagonal round consists of 4 quarter-rounds,

one along each diagonal. A complete column round can be written as:

quarter-round(a0, b0, c0, d0)

quarter-round(a1, b1, c1, d1)

quarter-round(a2, b2, c2, d2)

quarter-round(a3, b3, c3, d3) (2.2)

A complete diagonal round can be written as:

quarter-round(a0, b1, c2, d3)

quarter-round(a1, b2, c3, d0)

quarter-round(a2, b3, c0, d1)

quarter-round(a3, b0, c1, d2) (2.3)

2.2.4 Final addition and encryption

After the R rounds, the matrix state is added (modulo 232) to the initial state. The

final state is then serialized to get a keystream, which is XOR-ed with the plaintext

to get ciphertext or vice versa. The final addition of the initial secret state makes the

transform key-to-keystream-block non-invertible (Aumasson and Green, 2017).

Since the sender and receiver both have access to key (only known to them), counter

and nonce (usually publicly shared), they can generate the same keystream, this ensures

the message integrity.

5

2.3 Quantum ChaCha

The first step of attempting cryptanalysis of any cipher would be to construct a quantum

version of the cipher. This construction can serve as an oracle model for cryptanalytic

investigations. For ChaCha quantum version we want a circuit U (unitary) that imple-

ments the following:

U |X⟩ |0⟩ −→ |X⟩ |ChaCha(X)⟩ (2.4)

where, ChaCha(X) is ChaCha cipher as a function on X , the initial matrix state. The

main objectives of any implementation should be reducing the number of qubits, reduc-

ing the depth and ensuring correctness.

Bathe et al. (2021) gave a quantum implementation of ChaCha cipher. For the

modulo addition operation they used method of Takahashi et al. (2009), which uses no

ancilla. For component-wise XOR they use CNOT gates, and shift operation is done by

rewiring, not requiring any quantum gates.

In our implementation, we have used modulo 2n addition method of Cuccaro et al.

(2004a) using ripple carry adder. This method reduces the depth of the circuit, but

uses additional ancilla of 1 bit. The algorithm for modulo 2n addition is elaborated in

Algorithm 1. For XOR and shift operation we used the same method as was used by

Bathe et al. (2021).

Comparative analysis of our implementation with Bathe et al. (2021) in terms of

resource is given in Table 2.1. Since at most 4 addition occur in parallel, along the four

column/diagonal at a time, thus we need 4 ancilla bit for each. And in the last addition

phase, we have 16 independent additions. In the case where we use 4 ancilla, we do 4

of these 16 additions at a time. There is a reduction in depth by almost half from the

prior work, due to the design choices. In the case where we use 16 ancilla, all the 16

additions are done parallely, this reduces the depth further to 5346. Besides the circuit

depth, we report a reduction in the CNOT and Toffoli gates. The reduction in the

gates and circuit depth is in tradeoff with the number of ancilla qubits.

6

Algorithm 1 Addition modulo 2n (Cuccaro et al., 2004a)
Input: Two n-bit numbers a, b initialized in quantum registers A = a,B = b
Output: Registers with value A = a,B = (a+ b) mod 2n

1: k = n− 1
2: for i = 1 to k − 1: Bi ⊕= Ai

3: X ⊕= A1

4: X ⊕= A0B0 ; A1 ⊕= A2

5: A1 ⊕= XB1 ; A2 ⊕= A3

6: for i = 2 to k − 3:
7: Ai ⊕= Ai−1Bi ; Ai+1 ⊕= Ai+2

8: Ak−2 ⊕= Ak−3Bk−2 ; Z ⊕= Ak−1

9: Z ⊕= Ak−2Bk−1 ; for i = 1 to k − 2: NegateBi

10: B1 ⊕= X ; for i = 2 to k − 1: Bi ⊕= Ai−1

11: Ak−2 ⊕= Ak−3Bk−2

12: for i = 2 down to k − 3:
13: Ai ⊕= Ai−1Bi ; Ai+1 ⊕= Ai+2 ; NegateBi+1

14: A1 ⊕= XB1 ; A2 ⊕= A3 ; NegateB2

15: X ⊕= A0B0 ; A1 ⊕= A2 ; NegateB1

16: X ⊕= A1

17: Bn−1 ⊕= An−1 ; for i = 0 to k − 1: Bi ⊕= Ai

Name CNOT Toffoli Qubits Depth
Bathe et al. (2021) 61984 20832 1024 12635

This work 61648 20496 1024+4 ancilla 6334
This work 61648 20496 1024+16 ancilla 5346

Table 2.1: Comparison of resource estimation for ChaCha20, i.e., for 20 rounds, and
the final addition phase included

7

CHAPTER 3

Quantum approaches for ChaCha cryptanalysis

3.1 Related Works

Classically several works have been done on the cryptanalysis of the ChaCha cipher.

The first significant attempt was a 2165 operation truncated differential cryptanalysis

attack designed by Crowley (2005) on 5-round ChaCha. Subsequently, it was extended

to 6-round ChaCha by Fischer (2008).

Aumasson et al. (2007) proposed a concept called ’Probabilistic Neutral Bits’ (PNBs)

in 2008. This uses a meet-in-the-middle technique, where they find a set of key bits

that has less impact on the position of the output difference at a certain round when

going backwards from the final state. Using this they attacked 7-round ChaCha256

and 6-round ChaCha128 (256 and 128 are the respective key sizes in bits). Shi et al.

(2013) extended the approach by using column chaining distinguisher (CCD). The idea

of using chosen IV cryptanalysis given by Maitra (2015) drastically reduced the com-

plexity to 2239 for 7-round ChaCha. Choudhuri and Maitra (2016) gave a differential

linear approach by considering multiple bit distinguisher of a few next rounds. Dey and

Sarkar (2017) improved the set of PNBs. Beierle et al. (2020) proposed a attack against

7-round ChaCha256 with 2230.86 operations, using a generic framework for differential-

linear attacks with a special focus on ARX ciphers. The best known attack till date

against 7-round ChaCha256 is 2214 by Coutinho and Neto (2021). They proposed an

improved differential-linear distinguisher against ChaCha.

3.2 Differential Cryptanalysis of ChaCha

In this section we discuss the generic technique used for ChaCha as proposed by Au-

masson et al. (2007). It uses differential cryptanalysis to precompute biases, find prob-

abilistic neutral bits (PNBs) and perform a probabilistic backward computation. Then

r rounds

X
(K,V,T)

R-r rounds

Xr
Bias

XR

+

Z

R-r inverse
rounds

X'R

-

Z

X'r

Guess non-PNB
part of K

If Bias appears
here, correct
guess

Figure 3.1: Principle of attack of ChaCha

in the online phase the actual key recovery attack is performed with the help of these

PNBs.

Let the matrix state be X . Matrix state after r rounds is Xr. R is the total number

of rounds. The keystream of 512 bits is obtained as

Z = X0 +XR (3.1)

xi is the i-th word in X , and xi,j represent the j-th bit of xi. The 0-th bit is the least

significant bit for any word.

3.2.1 Precomputation Phase

Single-Bit Differential Biases

Given two states X(r), X ′(r), we denote ∆
(r)
i = x

(r)
i ⊕ x

′(r)
i . And ∆

(r)
i,j = x

(r)
i,j ⊕ x

′(r)
i,j

denotes the difference between two states at the j-th bit of the i-th word after r many

rounds.

Based on the difference ∆
(0)
i,j = 1 to the initial state matrix X(0), which is called

the input difference or ID, we obtain the corresponding initial state matrix X ′(0).

Then, we execute the round function of ChaCha using these two initial state matrices

as inputs and obtain ∆
(r)
p,q = x

(r)
p,q ⊕ x

′(r)
p,q from the r-round output internal state matrices

X(r) and X ′(r), which is called the output difference or OD. From this the single-bit

differential probability over a fixed key, and all possible nonces(V) and counter(T), can

9

be calculated as

Pr
V,T

(∆(r)
p,q = 1|∆(0)

i,j = 1) =
1

2
(1 + ϵd) (3.2)

Here ϵd denotes the OD bias.

Let D0 be the uniform distribution and D1 be a distribution of the truncated OD bit

strings obtained from the internal state of ChaCha. In this case, the target event (3.2)

occurs in D0 and D1 with probabilities of 1
2

and 1
2
+ ϵd , respectively. Based on this,

the number of samples of the best distinguisher between D = D0 and D = D1 can be

estimated as 4
ϵ2d

with an overall probability of error of Pe ≈ Φ(−
√
4/2) = Φ(−1) ≈

0.158655, where Φ(.) is the distribution function of the standard normal distribution

(Miyashita et al., 2021).

Probabilistic Neutral Bit (PNB)

For Probabilistic neutral bit (PNB) we first need the concept of neutrality measure,

which is the degree of influence of the key bit k with respect to the OD. It is formally

defined as:

Definition 3.2.1 (Neutrality Measure). The neutrality measure of the key bit position k

with respect to the OD is defined as γk, where 1
2
(1 + γk) is the probability (over all K

and V,T) that complementing the key bit k does not change the OD.

For example, we have the following singular cases of neutral measure:

• γi = 1: OD does not depend on the i-th key bit (i.e., it is non-significant). These
are the PNBs.

• γi = 0: OD is statistically independent of the i-th key bit (i.e., it is significant).
These are the Non-PNBs

• γi = −1: OD linearly depends on the i-th key bit.

The formula for neutrality measure can be given as

Pr(∆(r)
p,q = Γ(r)

p,q|∆
(0)
i,j = 1) =

1

2
(1 + γk) (3.3)

Γ
(r)
p,q has been defined in Algorithm 2. It gives the process to compute the neutrality

measure and retrieve the set of PNBs.

10

Algorithm 2 Computation of PNBs
Input: Number of rounds R and r(r < R), key bit position k, neutrality measure

threshold γτ
Output: Set of significant and non-significant key bits

1: Start with pair of input states X and X ′, where X ′ is X with ∆0
i,j = 1

▷ The (i, j) pair is the precomputed suitable ID bit.
2: Derive keystream blocks Z = X(0) +X(R) and Z ′ = X ′(0) +X ′(R)

3: Prepare new input pair X
(0)

and X ′(0), such that X and X
(0)

have only key bit
position k is flipped. Similarly, X ′ and X ′(0) have only key bit position k flipped.

4: Compute r-round internal state matrix pair Y (r) and Y ′(r) with Z −X(0) and Z ′ −
X ′(0) as inputs to the inverse round function of ChaCha.

5: Compute Γ
(r)
p,q = y

(r)
p,q ⊕ y

′(r)
p,q for the fixed OD bit, where y(r)p,q denotes the q-th bit of

the p-th word of Y (r) and similarly for Y ′(r)).
▷ The (p, q) pair is the precomputed suitable OD bit.

6: Repeat steps 1 − 4 for T times, using different initial state matrices with the same
ID bit, to get the value of Pr(∆(r)

p,q = Γ
(r)
p,q|∆(0)

i,j = 1) = s(say).
7: Compute γk = 2s− 1
8: Set a threshold γ and place all key bits with γτ < γ into the set of m-bit significant

key bits and those with γτ ≥ γ into the set of n-bit non-significant key bits.
9: Return set of significant and non-significant (PNB) bits.

Probabilistic Backward Computation (PBC)

The r-round bias ϵa is given as:

Pr(∆(r)
p,q = Γ̂(r)

p,q|∆
(0)
i,j = 1) =

1

2
(1 + ϵa) (3.4)

We can obtain the r-round single-bit differential biases for ChaCha20/R from the ob-

tained keystream by performing the following probabilistic backward computation (Al-

gorithm 3). The bias of Γ̂(r)
p,q is denoted as ϵ and given as:

Pr(Γ̂(r)
p,q = 1|∆(0)

i,j = 1) =
1

2
(1 + ϵ) (3.5)

According to Aumasson et al. (2007), the following approximation can be used

ϵ ≈ ϵd.ϵa (3.6)

This is used to compute the overall complexity of the attack on the R-round target

cipher.

11

Algorithm 3 Probabilistic Backward Computation
Input: Number of rounds R and r(r < R), key bit position k
Output: r-round bias ϵa

1: Compute the R-round internal state matrix pair (X(R), X ′(R)) corresponding to the
input pair (X(0), X ′(0)) with ∆

(0)
i,j = 1, and derive the keystream blocks Z = X(0)+

X(R) and Z ′ = X ′(0) +X ′(R), respectively.
▷ The (i, j) pair is the precomputed suitable ID bit.

2: Prepare a new input pair (X̂(0), X̂ ′(0)) with only non-significant key bits reset to a
fixed value (e.g., all zeros) from the original input pair (X(0), X ′(0))

3: Compute the r-round internal state matrix pair (Ŷ (r), Ŷ ′(r)) with Z − X̂(0) and
Z ′ − X̂ ′(0) as inputs to the inverse round function of ChaCha.

4: Compute Γ̂
(r)
p,q = ŷ

(r)
p,q ⊕ ŷ

′(r)
p,q for the fixed OD bit, where ŷ(r)p,q denotes the q-th bit of

the p-th word of Ŷ (r) and similarly for Ŷ ′(r)).
▷ The (p, q) pair is the precomputed suitable OD bit.

5: Repeat steps 1 − 4 for T times, using different initial state matrices with the same
ID bit, to get the value of Pr(∆(r)

p,q = Γ̂
(r)
p,q|∆(0)

i,j = 1) = s(say).
6: Compute ϵa = 2s− 1 and return

3.2.2 Online Phase

After the precomputation phase, the following steps are performed to recover an un-

known key:

Algorithm 4 Online Phase
Input: N keystream block pairs, each pari differeing at ID bit, set of significant

bits, set of non significant bits
Output: Correct key for the keystream blocks

1: For an unknown key, collect N keystream block pairs where each pair is generated
by a random input pair satisfying the relevant ID.

2: For each choice of the subkey (i.e., m-bit significant key bits), the following steps
should be performed

2.1: Derive the r-round single-bit differential biases from the obtained N
keystream block pairs by performing backward computation.

2.2: If the optimal distinguisher legitimates the subkeys candidate as (possi-
bly) correct, perform an additional exhaustive search over the n-bit non-significant
key bits to confirm the correctness of the filtered subkey and identify the n-bit non-
significant key bits.

2.3: Stop if the correct key is reported and output the recovered key.

12

3.2.3 Complexity Analysis

Given N keystream block pairs and a false alarm probability of Pfa = 2−α, the time

complexity of the attack is (Miyashita et al., 2021)

2m(N + 2nPfa) = 2mN + 2256−α,whereN ≈ (

√
α log 4 + 3

√
1− ϵ2

ϵ
)2, (3.7)

for a probability of non-detection Pnd = 1.310−3. In practice, α and thusN are selected

to minimize the time complexity of the attack. Based on an existing study (Aumasson

et al., 2007), generally the median bias ϵ is used in attacks; therefore, the attacks have a

success probability of approximately 0.5.

3.3 Finding ID-OD pair

As we discussed in single bit differential (3.2.1) part, the first step for this complete

process is to identify the suitable pair of input difference (ID) and output difference

(OD) bits. The classical procedure to determine the same is as follows:

Algorithm 5 Find best ID −OD pair
1: Let COUNT be a 2D matrix of to maintain differential bias of each ID −OD pair

over multiple initial states
2: for each initial state X in a set of randomly generated initial states do
3: for all (i, j) (ie. j-th bit of i-th word) do
4: Fix (i, j) as the ID bit
5: Create a second copy X ′ of X by applying flipping bit at ID bit
6: Perform r rounds of ChaCha cipher on both X and X ′

7: for all (p, q) (ie. q-th bit of p-th word) do
8: Calculate the bit difference (OD) at (p, q) bit.
9: If ID = OD, then increment by 1 value of [(i, j), (p, q)] in COUNT

10: If ID ≠ OD, then decrement by 1 value of [(i, j), (p, q)] in COUNT
11: end for
12: end for
13: end for
14: Normalize COUNT
15: Return the ID −OD pair with highest differential bias

In 5 in step 2, when used practically for cryptanalytic attacks, for the set of randomly

generated initial states, number of sample of states taken are in range 220 to 230 since

exhaustively trying all inputs is not possible. If we wanted to exhaustively run the

13

experiments over all states (step 2), i.e., key, nonce and counter the number of iterations

needed would be 2384. Classically, this is infeasible. To overcome this limitation, we

have developed a quantum alternative which has been elaborately explained in the next

section.

3.4 Quantum Algorithm to find best ID-OD pair

To simplify notations let us take index (i, j) in the matrix state as i and (p, q) as p.

Since, this is only a representation of the bit position it would not affect the algorithm

or analysis.

Algorithm 6 Oracle for generating OD: ODGEN

Input: Some initial state X , i bit for ID, p bit for OD, r rounds
Output: The OD at p) bit

1: Take 2 registers. First register has some key(K), nonce(V), counter(T) bit (X =
(K,V, T)). Second register initialised as 0.

▷ |X⟩ |0⟩
2: Apply Hadamard gate on second register

▷ 1√
2
(|X⟩ |0⟩+ |X⟩ |1⟩)

3: Apply CNOT gate to i in first register, conditioned on whether second register |1⟩.
▷ 1√

2
(|X⟩ |0⟩+ |X ′⟩ |1⟩)

4: Perform r rounds of ChaCha. Let W be the unitary corresponding to r-round
ChaCha.

▷ 1√
2
{(|W (X)⟩) |0⟩+ (|W (X ′)⟩) |1⟩}

5: Apply a Z-gate on (p, q) bit of first register
▷ 1√

2

{
(−1)(W (X))p(|W (X)⟩) |0⟩+ (−1)(W (X′))p(|W (X ′)⟩) |1⟩

}
where (W (X))p denotes p bit of W(X)

6: Perform r reverse rounds of ChaCha
▷ 1√

2

{
(−1)(W (X))p |X⟩ |0⟩+ (−1)(W (X′))p |X ′⟩ |1⟩

}
7: Apply CNOT gate to i in first register, conditioned on whether second register |1⟩

▷ 1√
2

{
(−1)(W (X))p |X⟩ |0⟩+ (−1)(W (X′))p |X⟩ |1⟩

}
=

1√
2
|X⟩ [(−1)(W (X))p |0⟩+ (−1)(W (X′))p |1⟩]

8: Hadamard gate on the second register.
▷ (−1)(W (X))p |X⟩ |(W (X))p ⊕ (W (X ′))p⟩

Explanation of step 7, 8: (W (X))p denotes a single bit, and therefore will be either

14

0 or 1. In step 7

If (W (X))p = (W (X ′))p =⇒ State is
(−1)(W (X))p

2
|X⟩ (|0⟩+ |1⟩) (3.8)

If (W (X))p ̸= (W (X ′))p =⇒ State is
(−1)(W (X))p

2
|X⟩ (|0⟩ − |1⟩) (3.9)

When H is applied on this state, we get

If (W (X))p = (W (X ′))p =⇒ State is (−1)(W (X))p |X⟩ (|0⟩) (3.10)

If (W (X))p ̸= (W (X ′))p =⇒ State is (−1)(W (X))p |X⟩ (|1⟩) (3.11)

Collectively we can say,

State is (−1)(W (X))p |X⟩ |(W (X))p ⊕ (W (X ′))p⟩ (3.12)

where the value |(W (X))p ⊕ (W (X ′))p⟩ represents the OD at p for ID at i.

Algorithm 6 gives the OD at a particular bit position. It can be modified to take

input i and p as registers, and give the same result, i.e.,

|i⟩ |p⟩ |X⟩ |0⟩ → |i⟩ |p⟩ |X⟩ (−1)(W (X))p |(W (X))p ⊕ (W (X ′))p⟩ (3.13)

Since all the operations in the algorithm are unitary, we can apply the algorithm linearly

over a superposition of states. Taking the initial state, i and p registers respectively as,

|X⟩ = 1√
2nX

∑
X∈FnX

2

|X⟩ (3.14)

|i⟩ = 1√
2ni

∑
i∈Fni

2

|i⟩ (3.15)

|p⟩ = 1√
2np

∑
p∈Fnp

2

|p⟩ (3.16)

where, nX , ni, np are the number of qubits of theX, i, p registers, and n is the word size

for the matrix state. For ChaCha256, for naive exhaustive search the value of nX should

be 512 and ni, np should be log(512). Generally if word size is n, nX = 12n, ni =

np = log(12n). However, if analyzed carefully some superpostions can be removed.

For instance, as per the scheme of the cipher, practically we should only be allowed

15

to make change in the key bits and the nonce values, thus we can take ni = log 12n

and np = log 12n and nX = 12n. Due to linearity of unitary operations, applying

Algorithm 6 on these superpostion will give the state

1√
2nX+ni+np

∑
i∈FnX

2

∑
p∈Fni

2

∑
X∈Fnp

2

|i⟩ |p⟩ |X⟩ |0⟩

→ 1√
2nX+ni+np

∑
i∈FnX

2

∑
p∈Fni

2

∑
X∈Fnp

2

|i⟩ |p⟩ |X⟩ (−1)(W (X))p |(W (X))p ⊕ (W (X ′))p⟩

(3.17)

Applying appropriate filtering on the above state, can help retrieve the a good ID−OD

pair. We use the algorithm given by Bera and Sapv (2023) to filter. We rewrote their

PROFIL algorithm for our specific problem, as shown in Algorithm 7.

Algorithm 7 Good_ID_OD
Input: Oracle ODGEN, threshold pt, threshold of single differential bias required

in single differential calculation of ChaCha ϵt, accuracy of estimation ϵest(ϵest < ϵt)
Output: One ID_OD pair, such that it has Pr (∆r

r = 1|∆0
i = 1) ≥ pt

1: Generate superposition over all possible i, p,X , where i is possible positions of
ID, p is possible positions of OD, X is possible initial states of ChaCha cipher.

2: With oracle as ODGen, apply amplitude estimation (infact, probability esti-
mation), and good state as ∆ = 0. Size of the estimate register is m-qubit.
m = log 1

ϵt
+ 3

3: Threshold register set as at = 2m

π
sin−1√pt. Transforming relation of the estimate

register and threshold register using operator N : N |a⟩ = |2m − a⟩
4: Applying threshold of estimate register to mark flag qubit as 1.
5: Applying amplitude amplification with good state as flag= 1.
6: Measure and return (i, p) as Good_ID_OD pair

Theorem 3.4.1. Given r rounds of ChaCha, n bit words Good_ID_OD algorithm 7

gives the following gaurantees:

• If there exists an ID−OD pair i, p (indices) such that Pr(∆(r)
p = 1|∆(0)

i = 1) ≥
1
2
+ ϵt = pt then the output register (flag) will be in state |1⟩ with probability ≥

0.8pt, and simultaneous measurement of i, p register gives a good i, p (ID−OD
bit pair).

• If there exists no i, p such that Pr(∆(r)
p = 1|∆(0)

i = 1) ≥ 1
2
+ϵt− 1

2m−3 = pt− 1
2m−3

then the output register (flag) will be in state |0⟩ with probability ≥ 0.8.

where, ϵt=threshold error for ChaCha ID − OD bias, m is the number of qubits

required for estimate register.

16

Proof. We rewrite equation 3.17 for ChaCha word size of n

1√
212n+log(12n)+log(12n)

∑
X∈F12n

2 ,

i∈Flog(12n)
2 ,

p∈Flog(12n)
2

|i⟩ |p⟩ |X⟩ (−1)(W (X))p |(W (X))p ⊕ (W (X ′))p⟩

(3.18)

=
1√

212n+log(12n)+log(12n)

∑
X∈F12n

2 ,

i∈Flog(12n)
2 ,

p∈Flog(12n)
2

|i⟩ |p⟩ |X⟩ (−1)(W (X))p |∆r
p⟩ (3.19)

where ∆r
p = (W (X))p ⊕ (W (X ′))p

Let αi,p,∆ denote measure of number of X for a particular i, p,∆. Then state can be

written as

log(12n)−1∑
i=0

log(12n)−1∑
p=0

αi,p,∆ |i⟩ |p⟩ |∆⟩ |0⟩m (3.20)

=
∑

i,p,∆=0

αi,p,0 |i⟩ |p⟩ |0⟩ |0⟩m +
∑

i,p,∆=1

αi,p,1 |i⟩ |p⟩ |1⟩ |0⟩m (3.21)

with an addition m-qubit register which will be used for amplitude estimation. We

apply amplitude estimation (Brassard et al., 2002) on this with good state as ∆ = 0.

Resultant state is:

∑
i,p,∆=0

αi,p,0 |i⟩ |p⟩ |0⟩ (βi,p,0,s |ãi,p,0⟩+ βi,p,0,s̄ |Ẽi,p,0⟩) +
∑

i,p,∆=1

αi,p,1 |i⟩ |p⟩ |1⟩ |0⟩m

(3.22)

Actual probability =
∣∣α2

i,p,0

∣∣ = pi,p,0 (say). Probability observed = sin2 ãi,p,0
2m

= p̃i,p,0

(say). Here

βi,p,0,s ≥
8

π2
(3.23)

βi,p,0,s̄ ≤ 1− 8

π2
(3.24)

|p̃i,p,0 − pi,p,0| ≤
1

2m−3
(3.25)

Estimate of number of qubits m For all i, p such that pi,p,0 ≥ pt = 1
2
+ ϵt flag

17

register should be |1⟩ and accuracy ϵest = |p̃i,p,0 − pi,p,0| ≤ 1
2m−3 .

We want, ϵest < ϵt, so that, if pi,p,0 > 1
2
+ ϵt, then even in th case of worst accuracy (eest

close to et),

p̃i,p,0 = pi,p,0 − ϵest =
1

2
+ ϵt − ϵest >

1

2
(3.26)

Therefore,

ϵest =
1

2m−3
< ϵt (3.27)

=⇒ m− 3 > log
1

ϵt
(3.28)

=⇒ m > log
1

ϵt
+ 3 (3.29)

Transforming relation: In order to apply threshold to the algorithm we first need

to transform the amplitude appropriately. We have ãi,p,0 in register and at should be

input. They are related to p̃i,p,0 and pt as follows:

p̃i,p,0 = sin2

(
π
ãi,p,0
2m

)
(3.30)

pt = sin2
(
π
at
2m

)
=⇒ at =

2m

π
sin−1√pt (3.31)

For p̃i,p,0 ≥ pt we want to mark flag = |1⟩.

p̃i,p,0 ≥ pt (3.32)

=⇒ sin2

(
π
ãi,p,0
2m

)
≥ sin2

(
π
at
2m

)
(3.33)

=⇒
∣∣∣∣π2 − πãi,p,0

2m

∣∣∣∣ ≤ ∣∣∣π
2
− πat

2m

∣∣∣ (3.34)

=⇒
∣∣2m−1 − ãi,p,0

∣∣ ≤ ∣∣2m−1 − at
∣∣ (3.35)

From the state in 3.22 to obtain state in the form ||2m−1 − ãi,p,0|⟩ we use a negation

operator N : N |a⟩ → |2m − a⟩, where m is the size of the register. Applying N -

operator on amplitude register of 3.22, and adding two registers for threshold and flag,

18

the state becomes:

∑
i,p,0

αi,p,0 |i, p, 0⟩
(
βi,p,0,s |2m−1 − ãi,p,0⟩+ βi,p,0,s̄ |2m−1 − Ẽi,p,0⟩

)
|2m − at⟩ |0⟩

+
∑
i,p,1

αi,p,1 |i, p, 1⟩ |0m⟩ |2m − at⟩ |0⟩ (3.36)

In further steps we will substitute |2m−1 − x⟩ as x̂ for the convenience of notation. For

marking the flag qubit, let us consider the unitary F

F (|x⟩ |y⟩ |b⟩) = |x⟩ |y⟩ |b⊕ f(x, y)⟩ (3.37)

For f(x, y) we consider the following function

f(x, y) =

1 , if x ≤ y

0 , otherwise
(3.38)

For any unitary we can implement the controlled version of it. We apply controlled

unitary F on 4-th, 5-th and 6-th register, with 3-rd register as the control. The state

becomes

∑
i,p,0

αi,p,0 |i, p, 0⟩

{
βi,p,0,s |âi,p,0⟩ |ât⟩ |f(âi,p,0, ât)⟩

+βi,p,0,s̄

(∑
Ê>ât

γi,p,Ê |Êi,p,0⟩ |α̂t⟩ |0⟩+
∑
Ê≤ât

γi,p,Ê |Êi,p,0⟩ |α̂t⟩ |1⟩
)

+
∑
i,p,1

αi,p,1 |i, p, 1⟩ |0m⟩ |ât⟩ |0⟩

}
(3.39)

Rewriting the above state omitting the ât register, since we would not be needing it

anymore.

∑
i,p,0

αi,p,0 |i, p, 0⟩

{
βi,p,0,s |âi,p,0⟩ |f(âi,p,0, ât)⟩

+βi,p,0,s̄

(∑
Ê>ât

γi,p,Ê |Êi,p,0⟩ |0⟩+
∑
Ê≤ât

γi,p,Ê |Êi,p,0⟩ |1⟩
)

+
∑
i,p,1

αi,p,1 |i, p, 1⟩ |0m⟩ |0⟩

}
(3.40)

19

The last register is the flag register. Considering the following two cases:

• Case 1: ∀(i, p), pi,p,0 < pt − ϵest. The state will be:

∑
i,p,0

αi,p,0 |i, p, 0⟩

{
βi,p,0,s |âi,p,0⟩ |0⟩

+βi,p,0,s̄

(∑
Ê>ât

γi,p,Ê |Êi,p,0⟩ |0⟩+
∑
Ê≤ât

γi,p,Ê |Êi,p,0⟩ |1⟩
)

+
∑
i,p,1

αi,p,1 |i, p, 1⟩ |0m⟩ |0⟩

}
(3.41)

In this case there exists no (i, p) such that, pi,p,0 < pt − eest. However, from
equation 3.41, we see some of the estimates Êi,p,0 might be marked as 1, this will
cause an error, which we can bound as follows:
Since, from amplitude estimation, |βi,p,0,s̄|2 < 1− 8

π

2

Pr[flag = 1] =
∣∣∣αi,p,0.βi,p,0,s̄.γi,p,Ê

∣∣∣2 < 1− 8
π2

Therefore, probability that all the flag registers are 0 in Case 1, is given by:
Pr[flag = 0] ≥ 8

π2

• Case 2: ∃(i, p), pi,p,0 ≥ pt. The state will be:

∑
i,p∈good

αi,p,0 |i, p, 0⟩

{
βi,p,0,s |âi,p,0⟩ |1⟩ (3.42)

+βi,p,0,s̄

(∑
Ê>ât

γi,p,Ê |Êi,p,0⟩ |0⟩ (3.43)

+
∑
Ê≤ât

γi,p,Ê |Êi,p,0⟩ |1⟩
)}

(3.44)

+
∑

i,p/∈good

αi,p,0 |i, p, 0⟩

{
βi,p,0,s |âi,p,0⟩ |0⟩ (3.45)

+βi,p,0,s̄

(∑
Ê>ât

γi,p,Ê |Êi,p,0⟩ |0⟩
∑
Ê≤ât

γi,p,Ê |Êi,p,0⟩ |1⟩
)}

(3.46)

+
∑
i,p,1

αi,p |i, p, 1⟩ |0m⟩ |0⟩

}
(3.47)

(3.48)

Since, |βi,p,0,s|2 ≥ 8
π

2 and αi,p,0 = pi,p,0 ≥ pt
∴ Pr[flag = 1|(i, p) ∈ good] = |αi,p,0.βi,p,0,s|2 ≥ 8

π2 .pt

20

3.4.1 Complexity analysis

Table 3.1 gives the comparison of the time and space complexity of finding Good ID-

OD pair using classical exhaustive algorithm and quantum algorithm 7.

Ideally, in classical we would need to exhaustively compute for all possible ID,OD

and initial state X , the probabilities of ID-OD associated. For this we would require

O (n2) space and O (n2 · 212n) time, wheren is the word size of ChaCha cipher matrix

state.

In our quantum algorithm, the estimate of probability should have accuracyO
(

1
212n

)
in the worst case, so we put ϵest as this. Since, we are using the PROFIL algorithm [Bera

and Sapv (2023)], the number of oracle calls to estimate probability with ϵ accuracy

is O(1
ϵ
). Therefore, here for probability estimate accuracy of O

(
1

212n

)
we will need

O(212n) oracle calls and qubits needed is O
(
n+ log 1

ϵest

)
= O(n). Also, here ϵest is

upper bounded by ϵt, which is threshold for single differential bias of ChaCha

Classical Quantum

Time O (n2 · 212n) O
(

1
ϵest

)
= O (212n)

Space O (n2) O
(
n+ log 1

ϵest

)
= O (n)

Table 3.1: Comparison of complexity of Classical and quantum algorithm for find good
ID-OD pairs for ChaCha cipher, where ϵest is the probability estimate ac-
curacy, and is upper bounded by ϵt which is threshold for single differential
bias of ChaCha

3.5 Finding Probabilistic Neutral Bits

Algorithm 8 gives a register value that can be use to get the neutrality measure 3.3. It is

quantum parallel of the Algorithm 2. Steps 2− 7 obtain the ∆ value in the 4-th register,

and steps 8−22 obtain the ∆′ value in the 3-rd register. The last step is to obtain ∆⊕∆′

in a register.

Algorithm 8 consists of a lot of steps, including subtraction circuits which can be quite

large, thus using this as an oracle is not desirable. Unlike the Algorithm 6 which was

smaller and we could as an oracle in with amplitude estimation, we cannot apply the

21

Algorithm 8 Quantum Getting PNBs
Input: Bit for input difference i, bit for output difference p, bit for reverse round

output difference l. In existing cryptanalysis of ChaCha cipher l = p.
Output: The value of ∆r

p ⊕ Γr
p in the 4-th register. (For notation refer step 6 of

algorithm 2) In the algorithm, ∆ = ∆r
p and ∆′ = Γr

p.
1: Take 7 registers. First two registers initialised as intital stateX , 3-rd register for ∆′,

4-th register for ∆, 5-th register for input difference bit i, 6-th register for output
different bit p, 7-th register for l bit

▷ |X⟩ |X⟩ |0⟩ |0⟩, 5th,6th,7th registers not shown since they remain constant
2: Hadamard gate on 4-th register and CNOT on i-th bit in 2-nd register, controlled

on 4-th register
3: ChaCha r-rounds on 2nd register
4: Z-gate on 2-nd register at p bit
5: ChaCha reverse r-rounds on 2-nd register
6: CNOT on i-th bit in 2-nd register, controlled on 4-th register
7: Hadamard gate on 4-th register

▷ (−1)Wp |X⟩ |X⟩ |0⟩ |∆⟩, where W is the state after r-rounds of ChaCha.

8: Hadamard gate on 3-rd register
9: CNOT on i-th bit in 1-st register and 2-nd register, controlled on 3-rd register

10: X-gate on l-th bit in 2-nd register
11: 2-nd register = 1-st register - 2-nd register (We can use method of Cuccaro et al.

(2004b) for this).

▷ (−1)Wp

[
|X⟩ |X − X̄⟩ |0⟩+ |X ′⟩ |X ′ − X̄ ′⟩ |1⟩

]
|∆⟩

12: ChaCha R-rounds on 1st register
13: 1-st register = 1-st register + 2-nd register
14: ChaCha reverse (R− r)-rounds on 1-st register
15: Z-gate on 1-st register at p bit
16: ChaCha (R− r)-rounds on 1-st register
17: 1-st register = 1-st register - 2-nd register
18: ChaCha reverse R-rounds on 1st register
19: 2-nd register = 1-st register - 2-nd register
20: X-gate on l-th bit in 2-nd register
21: CNOT on i-th bit in 1-st and 2-nd register, controlled on 3-rd register
22: Hadamard gate on 3-rd register
23: CNOT on 4-th register controlled on 3-rd register.

▷ (−1)Wp(−1)(Yp) |X⟩ |X⟩ |∆′⟩ |∆′ ⊕∆⟩, where Y is the state as described
in Algorithm 2

24: The resulting state is the output

22

same to this algorithm. This lead us to exploring more generic and simpler cryptanalysis

techniques, as discussed in the next chapter.

23

CHAPTER 4

Generic linear quantum cryptanalysis

4.1 Linear Cryptanalysis

Linear cryptanalysis was first introduced by Matsui as a theoretical attack and later

successfully used in the practical cryptanalysis of DES (Matsui, 1994). Linear crypt-

analysis tries to take advantage of high probability occurrences of linear expressions

involving plaintext bits, ciphertext bits and subkey bits. It is a known plaintext attack,

that is, it is premised on the attacker having information on a set of plaintexts and the

corresponding ciphertexts Heys (2002).

A linear expression is of the following form

Xi1 ⊕Xi2 . . . Xiu ⊕ Yi1 ⊕ Yi2 . . . Yiv = 0 (4.1)

where Xi represents the i-th bit of the input X = [X1, X2, . . .] and Yj represents the

j-th bit of the output Y = [Y1, Y2, . . .], and ⊕ denotes the XOR operation.

Let us assume an arbitrary function f : Fn
2 → Fm

2 such that f(X) = Y , i.e. X is

n bit and Y is m bit. For f(X) if we can find of the form 4.1 that holds with high or

low probability, it means the function f(X) can be approximated as linear expression.

Presence of such strong linear expressions in ciphers is a weakness, since these can be

used to launch attacks.

Equation 4.1 can be re-written using the concept of masks

µ11X1 ⊕ µ12X2 ⊕ . . . µ1nXn ⊕ µ21Y1 ⊕ µ22Y2 ⊕ . . . µ2mYm = 0 (4.2)

µ1.X ⊕ µ2.Y = 0 (4.3)

here µ1, µ2 are the masks of X and Y respectively. µ1 ∈ Fn
2 and µ2 ∈ Fn

2 , and µ1.X

represents the dot product of µ1 and X . If µi is 1, it implies Xi is part of the linear

expression.

The amount by which the probability of a linear expression holding deviates from 1
2

is known as the linear probability bias. That is, if Pr(some event) = 1/2 + ϵ then the

linear probability bias is ϵ.

4.1.1 Process of Linear Cryptanalysis

The aim is to apply linear cryptanalysis on a cipher. Most components consist of smaller

components, like S-boxes, P-boxes or simply repititive rounds of a particular operation.

The idea is to find linear approximations for these smaller components, and then to find

a trail to launch an attack on the complete cipher.

Just like any arbitrary function in the previous section, we can consider these cipher

components to be functions f : Fn
2 → Fm

2 such that f(X) = Y . Classically, to find

linear approximation a Linear Approximation Table (LAT) is used. The features of

the LAT are:

• The rows are columns represent the masks µ1, µ2 respectively.

• Each cell gives a measure proportional to the linear probability bias, of that par-
ticular input and output mask. To record this, for every input for which it holds
we add 1 and if it doesn’t hold we subtract 1. Let us call this value COUNT. Fi-
nally, (2n+m−1) is subtracted from each COUNT. This is the linear approximation
table. If these resultant values are divided by 2n+m, we get the exact value of
linear probability bias.
Alternatively, we could divide COUNT by 2n+m and subtract 1

2
, it would still give

us the linear probability bias.

COUNT − 2n+m−1

2n+m
=

COUNT

2n+m
− 1

2
(4.4)

• The sum of any row or column will be 2n+m−1 Heys (2002).

Piling up Principle

Let two random variables X1, X2 have the following probability distribution:

Pr(X1 = i) =

p1 , i = 0

1− p1 , i = 1

Pr(X2 = i) =

p2 , i = 0

1− p2 , i = 1

(4.5)

25

Let p1 = 1/2 + ϵ1 and p2 = 1/2 + ϵ2, Then,

p1p2 =
1

4
+

1

2
ϵ1 +

1

2
ϵ2 + ϵ1ϵ2

Pr(X1 ⊕X2 = 0) =Pr(X1 = 1, X2 = 1) + Pr(X1 = 1, X2 = 1)

=p1(p2) + (1− p1)(1− p2)

=p1p2 + 1− p1 − p2 + p1p2

=1− p1 − p2 + 2p1p2

=1− 1

2
− ϵ1 −

1

2
− ϵ2 +

1

2
+ ϵ1 + ϵ2 + 2ϵ1ϵ2

=1/2 + 2ϵ1ϵ2 (4.6)

Matsui (1994) gave the piling up lemma as follows: For n independent, random binary

variables, X1, X2, . . . Xn,

Pr(X1 ⊕ . . .⊕X + n = 0) = 1/2 + 2n−1Πn
i=1ϵ (4.7)

or, equivalently,

ϵ1,2,...n = 2n−1Πn
i=1ϵ (4.8)

where ϵ1,2,...n represents the bias of X1 ⊕ . . .⊕X + n = 0. If pi = 0 or 1 for all i, then

Pr(X1⊕ . . .⊕X+n = 0) = 0 or 1. If only one pi = 1/2, then Pr(X1⊕ . . .⊕X+n =

0) = 1/2.

Constructing Linear Approximations for the Complete Cipher

Once the linear approximation information has been compiled for the cipher compo-

nents, we have the data to proceed with determining linear approximations of the overall

cipher of the form of equation 4.1. This can be achieved by concatenating appropriate

linear approximations of the components.

26

4.2 Finding Quantum Linear Approximations

In this section we discuss a quantum algorithm we have designed to obtain linear ap-

proximations from ciphers. Let us Boolean map f : Fn
2 → Fm

2 . Let τ be some threshold

∈ [0, 1]. We want to identify the best mask µ = (µ1, µ2).

Let z : Fn
2 → Fn+m

2 such that z(x) = (x, f(x))

Definition 4.2.1 (Corr). Measure of correlation:

Corr(µ) = Corr((µ1, µ2)) = Prx[x.µ1 = f(x).µ2] = Prx[z(x).µ = 0]

Definition 4.2.2 (Corr’). Corr′(µ) = Corr(µ)− 1
2

Alternatively we can express Corr(µ) as follows:

Corr(µ) = Pr
x
[z(x).µ = 0] =

n1

2n
where n1 = |x : z(x).µ = 0| (4.9)

=⇒ Corr(µ)− 1

2
=
n1

2n
− 1

2
=

(2n1 − 2n)

2n+1
(4.10)

=
n1 − n2

2n+1
where n2 = |x : z(x).µ ̸= 0| (4.11)

=
z̃(µ)

2
(4.12)

where, z̃(µ) =
1

2n

∑
x

(−1)z(x).µ =
1

2n
[n1 − n2] (4.13)

Few observations on z̃(µ) and good µ

∣∣∣z̃(µ)∣∣∣2 = 1

2n
+

1

4n

∑
(

x ̸= y)(−1)µ.(z(x)+z(y)) (4.14)

∑
µ∈F2n

2

z̃(µ)
2
=

4n

2n
+

1

4n

∑
x ̸=y

∑
µ∈F2n

2

(−1)µ.(z(x)+z(y))

= 0 [since z(x) + z(y) ̸= 0 ∴ if x ̸= y] (4.15)

1

2n

∑
µ

z̃(µ)
2
= 1 (4.16)

From equation 4.16 we can say that 1
2n

∑
µ z̃(µ) |µ⟩ =

1
2n

∑
µ 2.Corr

′(µ) |µ⟩ is a valid

quantum state.

Definition 4.2.3 (Good µ). µ is good if |Corr(µ)− 1
2
| ≥ τ ⇔ Corr′(µ) ≥ τ

⇔ z̃(µ) ≥ 2τ

27

Claim: Let N be number of samples required for getting good µ. µ is good if

Corr′(µ) ≥ τ (4.17)

⇔ Corr′(µ)2 ≥ τ 2 (4.18)

⇔ 4

2n
Corr′(µ)2 ≥ 4

2n
τ 2 (4.19)

To ensure that estimated of Corr′(µ) are within ±ϵ, we choose

N = O

(
1

ϵ2
log

1

δ

)
where ϵ =

4τ 2

2n
.
1

100
(4.20)

= O

(
104.22n

16τ 4
log

1

δ

)
(4.21)

For a good cipher, that is close to random function, the distribution will be almost

uniform, i.e., for any µ

4Corr′(µ)2

2n
=

1

22n
(4.22)

⇔ Corr′(µ) =
1

4.2n
(4.23)

⇔ Corr′(µ) =
1

2.
√
2n

(4.24)

If τ ≈ Θ(1√
2n
), number of samples

N ≈ Õ

(
104.22n

16
.22n

)
≈ Õ(24n) (4.25)

Thus if a cipher is good, the number of samples to find linear approximation is Õ(24n),

which is very high. The comparison between classical and quantum approach given by

us, is shown in table 4.1.

Algorithm 9 is a quantum algorithm to get a superposition of all possible masks µ

weighted by the z̃(µ) values. The cipher is taken to be Function (cipher) f : Fn
2 → Fm

2 .

The circuit corresponding to the algorithm is shown in 4.1.

28

Algorithm 9 Quantum Linear Approx
Input: Quantum oracle to access function f is Uf |x⟩|0m⟩ −→ |x⟩|f(x)⟩
Output: Superposition of all µ weighted by the respective z̃(µ) values

1: Take 2 registers of size n and m intialized as |0⟩
▷ |0⟩n |0⟩m

2: Apply Hadamard gate (H⊗n) on first register
▷

∑
x∈Fn

2

1√
2n
|x⟩|0m⟩

3: Apply Uf oracle.
▷

∑
x∈Fn

2

1√
2n
|x⟩|f(x)⟩ =

∑
x∈Fn

2

1√
2n
|z(x)⟩

4: Apply Hadamard on both registers (H⊗n+m)

▷
∑

x∈Fn
2

1√
2n

∑
µ∈Fn+m

2

1√
2n+m

(−1)z(x).µ|µ⟩

=
∑

µ∈Fn+m
2

2.Corr′(µ)√
2n

|µ⟩ =
∑

µ∈Fn+m
2

z̃(µ)√
2n

|µ⟩

H

H

H
Uf

Figure 4.1: Finding Linear approximation Quantum Circuit

4.3 Classical Filtering

Once we get the superposition of all µ weighted by the respective z̃(µ) values from Al-

gorithm 9, we want to retrieve the µ’s with highest z̃(µ). The naive way to do this would

be to take N = Õ(24n) samples, store and process them to find the most frequently oc-

curring elements. Besides the time complexity, this would result in very high space

complexity of O(24n× log fmax), where fmax is frequency of µ with largest frequency.

For any non-trivial cipher component the n is expected to be moderately large, and thus

this approach would not be feasible. However we can use algorithms for Heavy Hitters,

to do this in lesser space complexity.

For understanding, approximately time complexity 230 and space complexity 240 can

be supported by computers today. For 230 space and time, the naive algorithm would

work. This means for n = 8, algorithm will work, but for non-trivial cipher components

we would want n > 8. Like for ChaCha, for one ARX and one quarter-round we would

need n = 96 and n = 128 respectively.

29

4.3.1 Heavy Hitters Algorithm

Heavy Hitters Problem: Given a stream of items, find those items that occur with

most frequency. It has been shown that counter-based methods are the most space-

efficient (Berinde and Indyk). Two types of counter-based methods are used, namely,

FREQUENT and SPACESAVING algorithm. The algorithms are given in Algorithm 10

and Algorithm 11, respectively.

Lemma 4.3.1. Both algorithms FREQUENT and SPACESAVING for space complexity

O(k/ϵ) give an error bound of |fi − f̂i| ≤ ϵ/k.F
res(k)
1 , where fi is the actual frequency

and f̂i is the estimated frequency and F res(k)
1 is the residual tail of the stream, i.e., the

sum of the frequencies of all elements other than the k most frequent ones (heavy hitters)

(Berinde and Indyk).

Algorithm 10 FREQUENT

1: T = ∅
2: for each i do
3: if i ∈ T then
4: ci = ci + 1
5: else if |T | < m then then
6: T = T ∪ i
7: ci = 1
8: else
9: for all j ∈ T do cj = cj − 1

10: if cj = 0 then
11: T = T\{j}
12: end if
13: end for
14: end if
15: end for

4.4 Quantum Filtering

The output of Algorithm 9 is
∑

µ∈Fn+m
2

z̃(µ)√
2n

|µ⟩. From this state, we want to retrieve

all µ such that z̃(µ) is above a certain threshold, i.e., we want to find the masks which

have a high linear probability bias. For this we will use the techniques in Bera and Sapv

(2023).

30

Algorithm 11 SPACESAVING

1: T = ∅
2: for each i do
3: if i ∈ T then
4: ci = ci + 1
5: else if |T | < m then
6: T = T ∪ i
7: ci = 1
8: else
9: j = arg minj∈T cj

10: ci = cj + 1
11: T = T ∪ {i}\{j}
12: end if
13: end for

4.4.1 Estimating z̃(µ)

EQAMPEST is a modification of the Quantum Amplitude Estimation Algorithm given

by Brassard et al. (2002) that takes the good state as input register.

Lemma 4.4.1. Given oracle A : A |0l⟩ = |ψ⟩, EQAmpEstA implements the following

operation:

EQAMPESTA

∑
x

αx |x⟩ |00 . . . 0⟩ |0⟩m) →∑
x

αx βx,s |x⟩ |ψ⟩ |p̂x⟩+
∑
x

αx βx,s̄ |x⟩ |ψ⟩ |Êx⟩ (4.26)

where px = |⟨ψ|x⟩|2 = probability of measuring |x⟩ when |ψ⟩ is measured. On mea-

suring the first and third registers, outcome pair |x⟩ |p̂x⟩ is obtained with probability

|αxβx,s|2 ≥ 8
π2 |αx|2 where sin2(π p̂x

2m
) = p̃x and |p̃x − px| ≤ 1

2m−3 .

In our case, A |0⟩n+m = |ψ⟩ =
∑

µ∈Fn+m
2

z̃(µ)√
2n

|µ⟩. Let, the probability of obtaining µ

on measuring ψ be pµ, i.e, pµ = |⟨ψ|µ⟩|2 = z̃(µ)2

2n
. On applying EQAMPEST over an

equal superposition of all µ, the equation 4.26 will be as follows:

EQAMPESTA

∑
µ

1√
2n+m

|µ⟩ |00 . . . 0⟩ |0⟩k) →

∑
µ

1√
2n+m

βµ,s |µ⟩ |ψ⟩ |p̂µ⟩+
∑
µ

1√
2n+m

βµ,s̄ |µ⟩ |ψ⟩ |Êµ⟩ (4.27)

31

Here, |µ⟩ |p̂µ⟩ is obtained with probability | 1√
2n+m

βµ,s|2 ≥ 8
2n+mπ2 . The estimate of

pµ is given by the register |p̂µ⟩, i.e., p̃µ = sin2(π p̂µ
2k
) and |p̃µ − pµ| ≤ 1

2k−3 . Let the

corresponding estimate of z̃(µ) be z̃est(µ). The equations are shown in 4.28 Let k be

the number of bits required to estimate probability. Let the accuracy of the estimate be

epsilon.

|p̃µ − pµ| ≤
1

2k−3
and pµ =

z̃(µ)
2

2n
and p̃µ =

z̃est(µ)
2

2n
(4.28)

∴ |z̃est(µ)
2

− z̃(µ)
2
| ≤ 2n

2k−3
with probability ≥ 8

2n+mπ2
(4.29)

Also,
1

2k−3
= ϵ (4.30)

4.4.2 Marking by Threshold

From the previous section, the state we have is:

∑
µ

1√
2n+m

βµ,s |µ⟩ |p̂µ⟩+
∑
µ

1√
2n+m

βµ,s̄ |µ⟩ |Êµ⟩ (4.31)

The register |ψ⟩ has been removed from the notation since it will not be affecting the

further steps. We want to mark all states for which p̃µ is above certain threshold τ . For

this part, we use a modification of PROFIL algorithm in Bera and Sapv (2023).

Lemma 4.4.2. For the PROFIL filtering problem:

Input: (log(m) + a)-qubit oracle OD such that OD |0log(m)+a⟩ =
m∑
i=1

√
pi |i⟩ |0⟩a, and

threshold τ

For any choice of parameters 0 < ϵ < τ for additive accuracy and δ for error, there

exists a quantum algorithm that uses O((log(m) + log(1
ϵ
) + a) log(1

δt
)) qubits and

makes O(1
ϵ
√
τ
log 1

δτ
) queries to OD

such that when its final state is measured in the standard basis, we observe the follow-

ing:

1. If px < τ − ϵ for all x then the output register is observed in the state |0⟩ with
probability at least 1− δ

2. If px ≥ τ for any x, then with probability at least 1 − δ the output register is
observed in the state |1⟩ and some x such that px ≥ τ is returned as output.

The algorithm we use for marking is the same as in PROFIL, but we give a different

32

gaurantee for part 1 of 4.4.2. The theorem is given in 4.4.3. We use the oracle Uf for

marking 4.28.

Uf |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩ (4.32)

where, f(x) =

1 , x ≥ τ

0 , x < τ

(4.33)

Theorem 4.4.3. For the choice of parameters 0 < ϵ < τ , we can give the following

gaurantee after the marking by threshold τ :

1. If there exists t number of µ’s such that pµ ≥ τ , then the output register is in state
|1⟩ for all such µ with total probability ≥ 1− 1

2t
.

2. If for all µ, pµ < τ − ϵ then the output register is observed in state |0⟩ for all µ
with probability ≥ 1− 1

2t

Proof. We know that |p̃µ − pµ| ≤ 1
ϵ
. The following cases may arise:

pµ ≥ τ =⇒ p̃µ ≥ τ + ϵ (4.34)

pµ < τ − ϵ =⇒ p̃µ < τ − 2ϵ (4.35)

Proof of part 1

For any µ, probability of getting the state as not marked, when it actually is a good state

can be given as:

Pr[p̃µ < τ |pµ ≥ τ] (4.36)

Let pµ∗ be the least possible value of pµ that should be marked as |1⟩, i.e., pµ∗ = τ .

Since, the estimate of pµ, i.e., p̃µ, has a normal distribution with pµ as mean,

Pr[p̃µ∗ < τ |pµ∗ = τ] ≤ 1

2
(4.37)

For any pµ due to normal distribution we can say,

Pr[p̃µ∗ < τ |pµ∗ ≥ τ] ≤Pr[p̃µ∗ < τ |pµ∗ = τ] (4.38)

≤1

2
(4.39)

33

Using this, probability that a good state is marked correctly can be given as

Pr[p̃µ ≥ τ |pµ ≥ τ] =1− Pr[p̃µ < τ |pµ ≥ τ] (4.40)

≥1− 1

2
(4.41)

≥1

2
(4.42)

Now, probability of getting all good states as marked is given as product of probabilities

that each good state is marked

∏
µ∈good

Pr [p̃µ ≥ τ |pµ ≥ τ] (4.43)

≥
∏

µ∈good

1

2
(4.44)

≥ 1

2t
(4.45)

Proof of part 2: Part 2 of our theorem follows directly from part 2 in Lemma 4.4.2.

4.4.3 Getting Marked States

For this part we will use the method proposed by van Apeldoorn et al. (2023). Once we

have the marked states from previous section, the state can be concisely represented as

∑
µ∈good

1√
2n+m

|µ⟩
(
βµ,s |p̂µ⟩ |1⟩+ βµ,s̄ |Êµ⟩ |0 or 1⟩

)
+

∑
µ/∈good

1√
2n+m

|µ⟩
(
βµ,s |p̂µ⟩ |0⟩+ βµ,s̄ |Êµ⟩ |0 or 1⟩

)
(4.46)

In 4.46 the first component is already correctly marked with flag as 1, due to the pµ

part, thus the error component Eµ will not cause a change in the probability of marking.

However for the second component, Eµ can be 0 or 1. The probability of error would

be the probability of getting such a Eµ marked as 1. For the worst case we can take all

34

Eµ in the second part being marked as 1. We can bound this error probability:

Pr[flag = 1|µ /∈good] = Pr
[
measuring Êµ|µ /∈ good

]
=

∑
µ/∈good

∣∣∣∣ 1

2n+m

∣∣∣∣2 |βµ,s̄|2
<

∑
µ/∈good

1

2n+m

(
1− 8

π2

)
<

2n+m − t

2n +m

(
1− 8

π2

)
< 1− 8

π2
(4.47)

Therefore with a probability of < 1 − 8
π2 , we can get bad µ as marked, this is a low

probability.

The probability that all the good states are marked is ≥ 1 − 1
2t

4.4.3. The probability

that some bad state is marked alongwith the good states is < 1 − 8
π2 4.47. Here, t is

number of good states. For retrieving all the marked states, we will use algorithm given

by van Apeldoorn et al. (2023).

In the remainder of this section we will cover the results given by Apeldoorn for

retrieving multiple marked states given a small quantum memory. The problem can be

defined as: given a bit string x ∈ {0, 1}N , x ̸= 0, find all indices i ∈ [N] such that

xi = 1. They define GROVERMULTIPLEFAST algorithm (outlined in Algorithm 12) to

solve this problem. The analysis of GROVERMULTIPLEFAST is in Lemma 4.4.4.

Lemma 4.4.4. Let x ∈ {0, 1}N with |x| = k ≥ 2, and assume one knows kest ≥ 1

such that k/2 ≤ kest ≤ 3k/2. Let 0 < ρ < 1 and 6 ≤ λ ≤ kest be such that

t = ⌈kest/λ⌉ ≥ log(6kest/ρ). Then

O(
√
Nk(1 +

1√
λ
log(k/ρλ))) (4.48)

quantum queries to x suffice to, with probability ≥ 1− ρ, find all k indices i s.t. xi = 1.

The algorithm uses an additional O(
√
Nkλ log(k/ρ) log(N)) non-query gates.

The functionalities of subroutine algorithms are given below:

• APPROXCOUNT: Probabilistic Algorithm; Returns an approximate number of
marked elements k̃, such that, |k̃ − k| ≤ ϵk, where k = |x|.

35

Algorithm 12 GROVERMULTIPLEFAST

Input: Quantum oracle Ux to access x ∈ {0, 1}N , integer kest ≥ 1 such that k/2 ≤
kest ≤ 3k/2, failure probability ρ > 0, threshold parameter λ ∈ [6, kest]

Output: Classical list of indices J ⊆ [N]

1: Use GROVERCOUPON to find a uniformly random subset J0 ⊆ [N] of τ.k marked
elements, where τ : 0 < τ < 1 is parameter

2: J = J0 ▷ J0 partitions [N] into intervals
3: for each interval (i, j) do
4: Estimate (kj)est by APPROXCOUNT for interval (i, j)
5: Create oracle Uy for the particular interval (i, j)
6: Use GROVERCERTAINTYMULTIPLE(Uy, 2.(kj)est) to find all marked indices

in interval (i, j) and append to set J
7: end for
8: Return J

• GROVERCOUPON: Probabilistic Algorithm; Given a lower bound on number of
marked elements klb, gives a subset of marked elements J such that xj = 1∀ j ∈
J

• GROVERCERTAINTYMULTIPLE: Deterministic algorithm: Given a upper bound
on number of marked elements kub, returns all marked elements J , i.e., j ∈ J if
and only if xj = 1

4.4.4 Analysis

From 4.4.3, the probability with which we get all good µ as marked is ≥ (1− 1
2t
). From

4.4.4 the probability with which we retrieve all marked µ is ≥ (1 − ρ). Therefore, the

probability with which we get all good µ is ≥ (1− ρ)(1− 1
2t
). The classical (fully clas-

Classical Quantum

Time O (22n+m) Õ
(√

2n+m · 2min (n,m)/tϵ2
)
= Õ

(√
2min (n,m)2

3(n+m)
2 /t

)
Space O

(
2min (n,m)/t

)
Õ
(
n+m+ log 1

ϵ

)
= Õ (n+m)

Table 4.1: Time and space complexity comparison of classical and quantum approach
to find linear approximations of a function

sical approach) and quantum (including quantum filtering) time and space complexities

are given in table 4.1. For classical naive approach, we will need a 2D table of 2n rows

for µ1 and 2m columns for µ2, and we need to find all elements ≥ τ . This can be cal-

culate in space by O
(
2min (n,m)/t

)
. For calculation of each cell we need to compute

all possible x ∈ Fn
2 . Thus, time complexity is O (22n+m). However, in the quantum

36

algorithm for estimate with accuracy ϵ we would need O(log 1
ϵ

2
) queries to "Quantum

Linear Approx" oracle (9) and for finding marked state we need O(
√
2n+mt) queries

where 2n+m are the total number of elements and t is the number of good linear ap-

proximations we want. Also, the number of qubits required will be size of the estimate

register and size of µ register and few constant number of registers. In the quantum

algorithm here, the minimum possible value of ϵ can be 1
2n+m .

37

CHAPTER 5

Conclusion and Future Scope

In this thesis, we implemented an Quantum Circuit for ChaCha cipher having reduced

depth at the cost of 4 ancilla qubits. In classical cryptanalysis of ChaCha cipher, finding

the suitable ID − OD bit pair has required a probabilistic approach. Here, we imple-

mented gave a quantum algorithm to retrieve the good ID − OD pairs, which report a

high differential bias. We presented an algorithm for finding the Probabilistic Neutral

Bits but the resulting circuit would be of huge size.

In the last part of the thesis, we discussed linear cryptanalysis and designed a algo-

rithm to get the linear approximations of any arbitrary function. We suggested a hybrid

classical-quantum model and another purely quantum model for the same.

Some of the possible extensions to the current work are as follows:

• Reducing circuit size of Quantum ChaCha: We had tried to use states as a
superposition of the row values in the ChaCha state matrix, instead of each word
as separate states. However, this resulted in entanglement of states which was
posing difficult for the ARX operations. A possible way to circumvent this, might
be to encode the states as phase. However, for that the ARX operations need to
be explored.

• Multibit differential bias of ChaCha: Our algorithm gives the good bit pairs
out of all a single bit differential bias, however there might be relations between
multiple bits differentials that can be explored.

• Higher order approximation: Most ciphers today are built in such a way that
they are immune to linear cryptanalysis. It would be interesting to develop a
quantum approach to identify quadratic or other non-linear approximation in a
cipher

• Quantum version of finding trails Linear Cryptanalysis: In this work we have
discussed algorithm for finding the linear approximations of cipher components.
It would be highly useful if we can come up with a mechanism to find full linear
trails by combining the different linear approximations obtained.

• Differential cryptanalysis: For finding linear approximations we need a deter-
ministic Linear Approximation Table. Similarly for finding high probability dif-
ferential relations, we can define a probabilistic table with masks for the input
and output differentials. If we are able to find the equivalence of these two then
the method discussed in this thesis for linear relations can also be used to find
differential relations.

REFERENCES

1. Aumasson, J.-P., S. Fischer, S. Khazaei, W. Meier, and C. Rechberger (2007). New
Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. Technical Report
472.

2. Aumasson, J.-P. and M. D. Green, Serious Cryptography: A Practical Introduction to
Modern Encryption. No Starch Press, San Francisco, 2017. ISBN 978-1-59327-826-7.

3. Bathe, B., R. Anand, and S. Dutta (2021). Evaluation of Grover’s algorithm toward
quantum cryptanalysis on ChaCha. Quantum Information Processing, 20(12), 394.
ISSN 1570-0755, 1573-1332.

4. Beierle, C., G. Leander, and Y. Todo (2020). Improved Differential-Linear At-
tacks with Applications to ARX Ciphers. Cryptology ePrint Archive. URL https:
//eprint.iacr.org/2020/775.

5. Bera, D. and T. Sapv (2023). Few Quantum Algorithms on Amplitude Distribution.

6. Berinde, R. and P. Indyk (). Space-optimal Heavy Hitters with Strong Error Bounds.
ACM Transactions on Database Systems.

7. Bernstein, D. J. (2008). ChaCha, a variant of Salsa20.

8. Brassard, G., P. Hoyer, M. Mosca, and A. Tapp, Quantum Amplitude Amplification
and Estimation. volume 305. 2002, 53–74.

9. Choudhuri, A. R. and S. Maitra (2016). Significantly Improved Multi-bit Differentials
for Reduced Round Salsa and ChaCha. IACR Transactions on Symmetric Cryptology,
261–287. ISSN 2519-173X.

10. Coutinho, M. and T. C. S. Neto (2021). Improved Linear Approximations to ARX
Ciphers and Attacks Against ChaCha. Technical Report 224.

11. Crowley, P. (2005). Truncated differential cryptanalysis of five rounds of Salsa20, 5.

12. Cuccaro, S. A., T. G. Draper, S. A. Kutin, and D. P. Moulton (2004a). A new
quantum ripple-carry addition circuit. arXiv:quant-ph/0410184.

13. Cuccaro, S. A., T. G. Draper, S. A. Kutin, and D. P. Moulton (2004b). A new quan-
tum ripple-carry addition circuit. arXiv:quant-ph/0410184. URL http://arxiv.
org/abs/quant-ph/0410184. ArXiv: quant-ph/0410184.

14. Dey, S. and S. Sarkar (2017). Improved analysis for reduced round Salsa and Chacha.
Discrete Applied Mathematics, 227, 58–69. ISSN 0166-218X.

15. ECRYPT (Accessed on 2023-05-14). The eSTREAM portfolio page.
https://www.ecrypt.eu.org/stream/.

16. Fischer, S. (2008). Analysis of Lightweight Stream Ciphers, 149.

39

https://eprint.iacr.org/2020/775
https://eprint.iacr.org/2020/775
http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0410184

17. Heys, H. M. (2002). A TUTORIAL ON LINEAR AND DIFFERENTIAL CRYPT-
ANALYSIS. Cryptologia, 26(3), 189–221. ISSN 0161-1194, 1558-1586.

18. Maitra, S. (2015). Chosen IV Cryptanalysis on Reduced Round ChaCha and Salsa.
Technical Report 698.

19. Matsui, M., The First Experimental Cryptanalysis of the Data Encryption Standard.
In Y. G. Desmedt (ed.), Advances in Cryptology — CRYPTO ’94, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 1994. ISBN 978-3-540-48658-9.

20. Miyashita, S., R. Ito, and A. Miyaji (2021). PNB-focused Differential Cryptanalysis
of ChaCha Stream Cipher, 20.

21. Shi, Z., B. Zhang, D. Feng, and W. Wu, Improved Key Recovery Attacks on Reduced-
Round Salsa20 and ChaCha. In T. Kwon, M.-K. Lee, and D. Kwon (eds.), Information
Security and Cryptology – ICISC 2012, Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 2013. ISBN 978-3-642-37682-5.

22. Takahashi, Y., S. Tani, and N. Kunihiro (2009). Quantum Addition Circuits and
Unbounded Fan-Out. arXiv:0910.2530 [quant-ph].

23. van Apeldoorn, J., S. Gribling, and H. Nieuwboer (2023). Basic quantum sub-
routines: finding multiple marked elements and summing numbers. URL http:
//arxiv.org/abs/2302.10244. ArXiv:2302.10244 [quant-ph].

40

http://arxiv.org/abs/2302.10244
http://arxiv.org/abs/2302.10244

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Organisation

	Quantum ChaCha
	ChaCha cipher
	Structure of ChaCha
	Quantum ChaCha

	Quantum approaches for ChaCha cryptanalysis
	Related Works
	Differential Cryptanalysis of ChaCha
	Finding ID-OD pair
	Quantum Algorithm to find best ID-OD pair
	Finding Probabilistic Neutral Bits

	Generic linear quantum cryptanalysis
	Linear Cryptanalysis
	Finding Quantum Linear Approximations
	Classical Filtering
	Quantum Filtering

	Conclusion and Future Scope

