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Abstract

With the growing awareness regarding user privacy and the demand for transparency,
traditional distributed machine learning algorithms are becoming taboo that uses the
user’s data without any restriction or privacy. The corporation uses this paradigm to
harvest user data to gain more insights into user interaction with their application to
provide a better experience. However, the end-user has no control over the private data
used by these companies. This necessitates the adoption of a decentralized paradigm in
which the data is safe with the user. Federated Learning (FL) is a distributed learning
paradigm that can learn a global model from decentralized data without exchanging
sensitive data across the users. Through our work, we intend to study the application of
Federated Learning in the domain of Computer Vision for image classification. Through
our thesis, we aim to understand the real-world scenario where different commercial im-
age sources can collaborate in a Federated setting to perform the image classification
task with privacy preservation. Most previous research works applied the Federated
Learning algorithm on a single dataset distributed among the clients in an IID or non-
IID manner. This is not close to a real-world scenario where different clients may have
different data distributions due to domain shifts. To address this, we propose our own
dataset derived from 8 different commercial sources to understand the application of
Federated Learning in real-world scenarios and understand how different commercial
sources can collaborate in a federated setting. Also, another challenge in Federated
Learning is the convergence issue when the data distribution is different among the
clients, which may increase the communication cost between the clients and the cen-
tral server and leads to suboptimal model performance. For this part, we specifically
worked on the Domain shift issue. To tackle this, we worked on proposing two novel
methods, namely Fed-Cyclic and Fed-Star. In the final part of our work, we worked
on the problem of class-label imbalance among different clients and explored different
techniques to mitigate the issue and create robust models that can effectively learn
from non-IID data.
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Chapter 1

Introduction

Federated Learning (FL) is a distributed learning paradigm that can learn a global
model from decentralized data without having to exchange sensitive data across the
clients [6] [2].

Traditional Machine Learning requires users to upload their data to the centralized
server for the learning and inference task. The end-user has no power and control
over how the data is used [7]. Moreover, uploading the data to a central server incurs
severe costs. Maintaining such a vast volume of data and communicating the learning
parameters back to the user is costly. To overcome the privacy challenges and issue of
maintaining a large amount of data in the centralized setting, the Federated Learning
paradigm was proposed by Google [8], which aims to overcome these issues.

The Federated Learning framework addresses sensitive data privacy and data access
issues [9]. Federated Learning models are trained via model aggregation rather than
data aggregation. It requires model to be trained locally on the data owner’s machine or
the local edge devices, and only the model parameters are shared. Federated Learning
has found successful applications in the IoT, healthcare, finance, etc [10] [11]. The
traditional Federated Learning optimization methods involve local client training on the
local datasets for a fixed number of epochs using an SGD optimizer. The local clients
then upload the model weights to the central server, where the weights are averaged to
form a global model whose parameters are shared with the local client. This method is
known as FedAvg [2], which facilitates the local client to learn features from different
clients while preserving privacy. However, FedAvg may have convergence issues in case
the clients exhibit statistical heterogeneity, which may lead to non-convergence of the
model [12] [13] [3]. Thus, a simple FedAvg algorithm may not be helpful when dealing
with device-level heterogeneity. The working is shown in figure 1.2.

In this work, we aim to understand the real-world scenario where different com-
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Figure 1.1: High level architecture of Federated Learning [1]. In this method, clients
train the model locally and only share the weight with the central server, where the
weights are aggregated and shared back with the clients without any data sharing or
privacy violation. This enables the local clients to learn from one another without
sharing the data.

mercial image sources can collaborate in a Federated setting to perform the image
classification task with privacy preservation.

1.1 Background

With the advent of technology, more and more users are connecting to the internet and
mass-media consumption has increased. People are using different applications such as
Youtube, Netflix, amazon etc., depending on their needs in large numbers. However,
the companies behind these applications also want to provide a personalized experience
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to the user for monetary benefit. To do so, they analyze the user-shared data with
unrestricted access to understand the interaction pattern. However, this may lead to
gross privacy violations since users cannot control how these organizations use or share
their data. With increased awareness, users want more control over how their data is
used. This necessitates the adoption of a decentralized paradigm in which the data is
safe with the user. On the other, the paradigm should facilitate the organization to
leverage the user data without any privacy violation to provide an improved experience.
Federated Learning (FL) is a distributed learning paradigm that can learn a global
model from decentralized data without exchanging sensitive data across the users. The
global model can help organizations better understand the usage pattern while the data
is safe with the end user.

1.2 Motivation

We are the first to explore a possible collaboration amongst commercial image sources
to carry out image classification using Federated Learning for image classification .

Figure 1.2: Collaboration among different commercial sources via Federated Learning
for image classification.
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We aim to study the Federated Learning methodology in the computer vision do-
main, where we want to understand the application and practicality of the paradigm
in real-world scenarios. Most previous research works applied the Federated Learning
algorithm on a single dataset distributed among the clients in an IID or non-IID man-
ner. This is not close to a real-world scenario where different clients may have different
data distribution due to domain shift (statistical heterogeneity) among them [14] [15].
Another challenge in Federated Learning is the convergence issue when the data dis-
tribution is different among the clients, which may increase the communication cost
between the clients and the central server and leads to suboptimal model performance.

Motivated by the above challenges, we propose our dataset in which each client’s
dataset is sampled from different commercial image sources to simulate the real-world
scenario where each client exhibits a domain shift. This is because each commercial
image source has its own unique image set, causing domain shift amongst clients. The
dataset contains 23,326 images collected from eight different commercial sources and
classified into 31 categories, similar to the Office-31 dataset [5]. We also propose two
novel algorithms, namely Fed-Cyclic and Fed-Star. Fed-Cyclic is a simple algorithm
in which, a client gets weights from the previous client, trains the model locally and
passes the weights to the next client in a cyclic fashion. In this way, a global model is
being passed from one client to another in a cyclic manner. The global server need not
involve here. Even if it is required that we want to involve it to preserve anonymity,
the global server does not have to perform any computation. It can be used only to
pass one client’s parameters to another. Fed-Star requires each client to receive weights
from all the other clients during pre-aggregation in a star-like manner after the local
training of each client on its train set. While pre-aggregating, every client prioritizes
learning the outlier features present in different clients while retaining the common
features to train a more robust model impervious to statistical heterogeneity among
the client’s data distribution, followed by aggregation via a global server after a fixed
number of periods. This is followed by using Fed-Cyclic on the pre-existing datasets
to understand how well our algorithm performs on the different scenarios of non-IID
distribution schemes.

1.3 Experiments

We have performed the image classification task using our own dataset, inspired by the
Office-31 dataset. We collected close to 24,000 images distributed among 31 different
classes and performed the task of image classification method using baselines and our
own proposed methods. We also extend the experimentation to the Office-31 dataset
to further show that our models generalize well when handling the task of domain
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shift among the clients’ data distribution. We further performed experimentation to
demonstrate personalized model training using the Fed-Star algorithm. Finally, to
conclude our research work, we concluded our experimentation by dividing the data in
a non-IID manner using Dirichlet distribution among the clients and proposing Fed-
Cyclic combined with label averaging that can mitigate the issue of imbalanced class
label distribution among the clients on the CIFAR-10 dataset beating the baselines.

1.4 Contributions

To summarize, our contributions are five-fold:

• We are the first to explore a possible collaboration among commercial image
sources to carry out image classification using Federated Learning for image clas-
sification.

• We propose the image classification dataset specifically designed for Federated
Learning, which is close to a real-world scenario where each client has a unique
dataset demonstrating domain shift.

• We propose Fed-Cyclic, a communicationally efficient simple algorithm that at-
tains higher accuracy than baselines.

• We propose the Fed-Star algorithm, which trains a model that prioritizes learn-
ing of generalized and outlier features to create a model personalized to each
client’s heterogeneous dataset distribution and attains faster convergence than
the baselines with higher accuracy.

• We propose Fed-Cyclic algorithm combined with label averaging that can han-
dle non-IID distribution of data in terms of imbalanced class label distribution
among the clients and performs better than the baseline when tested on CIFAR-10
dataset.

15



Chapter 2

Related Works

Many distributed optimization algorithms have been developed to process and draw
inferences from the data uploaded [16], [17], [18] [19] [20]. However, such distributed
method requires uploading of data to the central server, which incurs the considerable
cost of maintaining data centrally and processing it requires a lot of power [21] [22].
Also, the privacy issue persists as the user has no control over how personal data is
used and shared.

The first application of the Federating Learning algorithm is FedAvg, proposed by
McMahan et al. [2]. FedAvg performs reasonably well when the data distribution is IID
among the clients and shows faster convergence of the global model. The issue arises
in real-world scenarios when the data follow the non-IID distribution as proposed by
Zhao et al. [23].

2.1 Federated Learning with data heterogeneity

The vanilla FedAvg faces convergence issues when data heterogeneity exists among the
clients. To tackle this challenge, different methods have been proposed. FedProx [6]
adds a proximal term by calculating the square distance between the server and client
with local loss to optimize the global model better. FedNova [24] proposes normalized
averaging to eliminate objective inconsistency with heterogeneous Federated optimiza-
tion. This method considers the heterogeneous work done by the different clients and
optimizes the weight updation of the global model, considering the variational work
done by each client. FedMax, as proposed by Chen et al. [25], aims to mitigate activa-
tion divergence by making activation vectors of the same classes across different devices.
To achieve this, FedMax uses a prior based on the principle of maximum entropy. This
prior assumes little knowledge about the activation prior and intends to make them
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similar across different classes for better learning. FedOpt proposed by Reddi et al.
[26] applies different optimizers to the server, like Adam, Yogi, and AdaGrad and shows
how different optimizers affect the convergence of the global model on heterogeneous
data in the non-convex setting. VRL-SGD [27] incorporates variance-reduction into
local SGD, decreasing the communication cost among different clients and increasing
accuracy. This method also incorporates parallelization in which multiple devices can
be trained parallelly to accelerate the training of the models. FedCluster [28] pro-
poses grouping local devices into different clusters so that each cluster can implement
any Federated algorithm. In this method, models are trained cyclically within each
cluster. Therefore, each learning round of FedCluster consists of multiple cycles of
meta-update that boost the overall convergence. RingFed, proposed by Yang et al.
[4], minimizes the communication cost by pre-aggregating the parameters among the
local clients without involving the global server. After performing multiple cycles of
pre-aggregation, the model updates the parameters to the global client for global aggre-
gation. Pre-aggregation among local clients reduces the communication overhead with
global clients. SCAFFOLD [29] uses variance-reduction to mitigate client drift among
the local updates and attains faster convergence and higher accuracy with lower commu-
nication cost in comparison to FedAvg. Chen et al. [30] proposes FedSVRG that uses
stochastic variance reduced gradient-based method to reduce the communication cost
between clients and servers while maintaining accuracy. This paper deals with reducing
the cost of uploading the parameters to the central server and reduces the problem to a
finite-sum optimization problem. This is followed by using the FedSVRG method that
decreases the number of iterations between the participants and server from the system
perspective while maintaing the accuracy. Jeong et al. [31] proposes Federated aug-
mentation (FAug), which involves the local client jointly training the generative model
to augment their local dataset and generate the IID dataset. This paper aims to train
models robust to data heterogeneity with faster convergence and lower communication
costs via our proposed algorithms. One of our proposed method, Fed-Star is similar
to RingFed [4]. RingFed involves simple pre-aggregation of weights between adjacent
clients, whereas our method involves pre-aggregation of weights between all the local
clients using the accuracy metric.

2.2 Personalized Federated Learning

FedAvg also suffers from creating a generalized global model as the parameters are
averaged, which gives poor representation to a client with heterogeneous data. Per-
sonalized Federated Learning involves training the global model using any Federated
vanilla algorithm followed by personalizing the model for each client via locally train-
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ing the model on each client [32] [33] [23] [7]. Data heterogeneity among clients is
the reason for personalized Federated Learning. Data augmentation is explored to ac-
count for local data heterogeneity and involves local clients jointly generating IID data
distribution [34] [35]. Wang et al. [36] proposes FAVOR, an experience-driven con-
trol framework that intelligently chooses the client devices to participate in each round
of federated learning to counterbalance the bias introduced by non-IID data and to
speed up convergence. This is followed by a proposal of a mechanism based on deep
Q-learning that learns to select a subset of devices in each communication round to
maximize a reward that encourages the increase of validation accuracy and penalizes
the use of more communication rounds. Chai et al. [37] proposes the TiFL method
to cluster the clients in different tiers to avoid the issue of staggler clients. In this
method, devices are grouped into different tiers based on resource and data quantity
heterogeneity. TiFL uses an adaptive tier selection strategy to adjust the tiering on the
fly based on the observed training performance and accuracy over time to tame further
the heterogeneity brought on by non-IID(Independent and Identical Distribution) data
and resources. TiFL accomplishes substantially faster training performance while main-
taining (and occasionally improving) overall test accuracy. Sattler et al. [38] proposes
Clustered Federated Learning (CFL), a Federated Multi-Task Learning (FMTL) frame-
work that groups the client population into clusters with concurrently trainable data
distributions by utilising geometric characteristics of the FL loss surface. CFL applies
to general non-convex objectives and doesn’t require any changes to the FL commu-
nication mechanism. Clustering is only done once Federated Learning has reached a
stationary point; therefore, CFL can be thought of as a post-processing technique that,
by enabling clients to create more specialised models, will always perform better than
standard FL. Xie et al. [39] proposes a multi-centre aggregation mechanism to cluster
clients using their models’ parameters. It learns multiple global models from data as
the cluster centres and simultaneously derives the optimal matching between users and
centres. We then formulate it as an optimization problem that can be efficiently solved
by a stochastic expectation maximization (EM) algorithm Deng et al. [40] proposes
the APFL algorithm to create a mixture of local and global models optimally to at-
tain the personalization. There are different clustering-based approaches as explored
by different authors [41] shows that it may not be optimal to train a single global
model when faced with the non-IID distribution. The paper proposes a hierarchical
clustering step to separate clusters of clients by the similarity of their local updates to
the global joint model. Once separated into different clusters, clusters are trained sep-
arately and parallelly, allowing more clients to attain higher accuracy. [42] captures the
settings where different groups of users have their own objectives but by aggregating
their data with others in the same cluster (same learning task), they can leverage the
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strength in numbers to perform more efficient federated learning. [43] applies Feder-
ated Learning in a clinical context. The paper applies the community-based federated
learning method to group the data into clinically meaningful communities creating a
global model for each community. CBFL outperformed the baseline federated machine
learning. [44] proposes a clustered federated learning (CFL) framework FedGroup, in
which the training of clients is grouped based on the similarities between the clients’
optimization directions for high training performance, followed by the construction of a
new data-driven distance measure to improve the efficiency of the client clustering pro-
cedure. The algorithm also implements a newcomer device cold start mechanism based
on the auxiliary global model for framework scalability and practicality. FedGroup can
achieve improvements by dividing joint optimization into groups of sub-optimization
and can be combined with FL optimizer FedProx attaining higher accuracy than the
SOTA CFLs. Tan et al. [45] provides a deeper analysis of a personalized Federated
framework. In our work, we aim to personalize the model at the global level by propos-
ing an algorithm that better captures the outlier features of the client while retaining
the generalized features.

2.3 Federated Image classification datasets

Most Federated Learning algorithms are simulated on datasets belonging to a single
domain with an artificial partition among the clients or use existing public datasets.
The dataset distribution may differ for different clients in the real-world scenario as the
clients exhibit domain shift. The first work proposing the real-world image dataset [46]
contains more than 900 images belonging to 7 different object categories captured via
street cameras and annotated with detailed boxes. The image dataset has applications
in object detection. In our work, we propose the first real-world image dataset for
the image classification task to better understand the performance of the Federated
algorithm in a real-world setting.

2.4 Non-IID distribution techniques

[2] proposes the pathological distribution of the data in which each client has data
from only two classes. [3] proposes the synthetic non-identical client data distribution
in which every client training example are drawn independently with class labels fol-
lowing a categorical distribution over N classes parameterized by a vector q. Here, To
synthesize a population of non-identical clients, we draw q ∼ Dir(p) from a Dirichlet
distribution, where p characterizes a prior class distribution over N classes, and α >
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Figure 2.1: Depiction of Pathological data distribution as implemented in [2].

0 is a concentration parameter controlling the identicalness among clients. Figure 2.1
and Figure 2.2 show the two types of data distribution. We have covered the use case
of domain shift among different clients. We also studied different non-IID distribution
techniques covering the use case of imbalanced class distribution among the clients to
understand how our proposed model works. We found out that our model Fed-Cyclic
combined with label averaging performed better than SOTA techniques.
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Figure 2.2: Depiction of Dirchlet data distribution as implemented in [3].
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Chapter 3

Proposed Methodology

3.1 Objective

In Federated Learning (FL), different clients (sayK clients) collaborate to learn a global
model without having to share their data. Let the weights of such a model be w, and
let the loss value of the model for sample (xi, yi) be L(xi, yi;w). The objective now is
to find optimal w such that the following objective is achieved:

min
1

|D|

|D|∑

i=1

L(xi, yi;w) (3.1)

where D denotes the union of all the data owned by different clients, as shown below:

D =
K⋃

k=1

Dk (3.2)

where Dk denotes the data owned by the kth client. Given this, we can rewrite our
objective function as follows:

min
1

|D|
K∑

k=1

|Dk|∑

i=1

L(xi, yi;w) (3.3)

If we represent the average local loss Lk of kth client using

Lk =
1

|Dk|

|Dk|∑

i=1

L(xi, yi;w), (3.4)
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we can reformulate the objective as follows:

min
K∑

k=1

|Dk|
|D| Lk (3.5)

which suggests that our objective is to minimize the weighted sum of local losses in-
curred by our clients, and the weights are proportional to the number of data samples
clients have with them. This objective function is the same as [2]. We discussed it to
make our work self-contained.

Global Model

…

W1 W2 W8

3

1 1

 Wk: Weights of kth client

 DK : Data of kth client

3

1. Sharing weights to clients
2. Local training
3. Sharing weights to Global 
model
4. Weight averaging

1

2 2 2

3

4

D1 D2 D8

Local 
Models

Figure 3.1: FedAvg algorithm [2]

This formulation motivated FedAvg [2] to aggregate the local model weights in the
weighted averaging manner to obtain w as shown below:

w =
K∑

k=1

|Dk|
|D| wk (3.6)
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This aggregation happens iteratively, where, in a given iteration, the central server
sends the global model to the local clients, where local models are updated and then
sent back to the global server for aggregation, as shown in Figure 3.1. This happens
until the global model converges.

However, it can take several communication rounds for the FedAvg algorithm to
converge, especially when there is statistical heterogeneity in clients’ datasets. As a
result, the accuracy drops too [47]. Also, FedAvg creates a generalized model by av-
eraging the parameters from the local clients, forcing the local model with statistical
heterogeneity to learn a generalized representation that may differ from its data distri-
bution, leading to poorly trained local clients. In that case, local clients do not find the
global model satisfactory.

Considering these limitations of FedAvg, we propose Fed-Cyclic and Fed-Star algo-
rithms, which cater to the statistical heterogeneity of data across the clients and ensure
the satisfactory local performance of global models despite that.

3.2 Fed-Cyclic

We propose the Fed-Cyclic algorithm to overcome the challenges faced by the FedAvg
algorithm, which suffers from a communication bottleneck due to a large number of
edge devices uploading the parameters to the central server, which causes congestion
in the network. The model visualization is shown in Figure 3.2

In the Fed-Cyclic algorithm, we use a global model to initialize the weight of one
of the clients in the network, followed by training the client’s local model for E local
epochs. The optimizer used is SGD at the local client. The updated weights are then
used to initialize the weight of the next client in the network, as shown in equation (3.7),
and the process continues until all the clients are trained cyclically in this manner,
constituting one training round. In our Fed-Cyclic algorithm, the clients can either
directly pass the weights to the next client or involve the global server to do so to
preserve the anonymity of the last client. After the end of each round, the global
weights w get updated.

It is a communication-efficient algorithm since the clients can directly pass the
weights to the next client without involving the global server. Even if the global server
is involved in passing the weights from one client to another, no processing is done, and
only parameters from a single client are passed at a time. We explain it in Algorithm
1 in greater detail. The most important step is the following:

wr
k+1 ← wr+1

k (3.7)
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Figure 3.2: Proposed model using Fed-Cyclic showing passing of weights cyclically by
the clients after local training.

where we use kth client to initialize (k + 1)th client.
The algorithm is robust to statistical heterogeneity as every client gets an opportu-

nity to train the global model on the local data. Moreover, we can take the view that
the global model is being periodically trained on different portions of the dataset (D),
as if they are mini-batches (Dk). Hence, this algorithm is somewhat analogous to a
typical deep-learning approach from the point of view of the global model. As a result,
convergence also gets ensured, unlike FedAvg, where we expect convergence for simple
aggregation of weights.
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Algorithm 1 Proposed Fed-Cyclic Algorithm

Input Initial weights winit, number of global rounds R, number of local epochs E,
learning rate η, K clients indexed by k (with local data Dk and local weights wk) and local
minibatch size b.

Output Global weights wR (after R rounds)
Algorithm:

Initialize w0 ← winit // Global weights initialized
w0

1 ← w0

for r=0 to R− 1 do
for k=1 to K − 1 do

wr+1
k ← ClientUpdate(wr

k, k) using SGD
wr

k+1 ← wr+1
k

wr+1
K ← ClientUpdate(wr

K , K) using SGD
wr+1

1 ← wr+1
K

wr+1 ← wr+1
K

function ClientUpdate(w, k)
B ← (split Dk into batches of size b)
for e=1 to E do

for d ∈ B do w ← w - η∇g(w;d)
return w
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3.3 Fed-Star

Although Fed-Cyclic can converge faster than FedAvg, it is a very simple algorithm,
similar to FedAvg. Also, it lacks aggregation of any kind. Here, we propose the Fed-
Star algorithm, where we address these limitations. In Fed-Star, for some time, the
local models are trained locally for some epochs in a parallel manner. Once the given
epochs are complete, we perform pre-aggregation of weights locally at each client by
sharing their models with each other. Each client gets models from every other client,
and they are evaluated on the client’s local training set. The accuracy obtained helps
us determine how much weightage should be given to the models of each client during
pre-aggregation. These pre-aggregated weights are now used to reinitialize the local
model for training. These steps are iteratively carried out, and these iterations are
called periods. This interaction for model sharing is analogous to star network topology,
where every client interacts with every other client in a network. After a certain number
of periods P , the local weights are aggregated on the central servers, so a round has
P periods in it, where local models are being shared with each other, they are getting
pre-aggregated at each client for initialization to train the model in the next period.

3.3.1 Pre-aggregation at local level for Personalization

In any period p of round r, a weightage matrix M gets developed, which is computed
as follows:

M(k, j) = 1− Acc(wr,p+1
j , Dk)/100 (3.8)

where Acc(wr,p+1
j , Dk) denotes the training accuracy of wr,p+1

j on training set of dataset

Dk. It denotes the weightage value for the model coming from jth model while pre-
aggregating at kth client.

Note here that we give more weightage to the client significantly different from the
reference client during pre-aggregation because we want each client to learn the outlier
features from the clients while retaining the generalized features during pre-aggregation.

The pre-aggregated weights for kth client are depicted as follows:

wr,p+1
k =

K∑
j=1

M(k, j) ∗ wr,p+1
j

K∑
j=1

M(k, j)

(3.9)
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Figure 3.3: Proposed model using Fed-Star demonstrating pre-aggregation of the pa-
rameters in star topology manner among local clients and is given by equation (3.9).
This is followed by the transferring of weight to the global model where aggregation of
weights is performed.

where we normalize the weightages with their sum while performing the pre-aggregation
of weights.

Thus, each local model tends to learn more from the other client that is significantly
different. The Fed-Star algorithm is explained further in Algorithm 2 and can be
visualized through Figure 3.4.

This algorithm is communication intensive since each client has to interact with
every other client. Still, the total communication overhead is reduced significantly
as the pre-aggregation step among clients decreases the reliance on the global server
for convergence. Our algorithm attains faster convergence than FedAvg with lesser
communication overhead with the global server and higher accuracy. Fed-Star retains
outlier features well and helps create a global model that is also personalized to the
local clients.
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Algorithm 2 Proposed Fed-Star Algorithm

Input: Initial weights winit, number of global rounds R, number of local epochs
E, learning rate η, K clients indexed by k (with local data Dk and local weights wk),
local minibatch size b, number of period P , and weight matrix M of dim K ∗K.

Output: Global weights wR (after R rounds)
Algorithm:

Initialize w0 ← winit // Global weights initialized
for r=0 to R− 1 do

wr,0
k ← wr,∀k ∈ {1, · · · , K}

for p ∈ {, · · · , P − 1} do
for k ∈ {1, · · · , K} parallely do

wr,p+1
k ← ClientUpdate (wr,p

k , k)
for j ∈ {1, · · · , K} do

transfer wr,p+1
j to kth client

M(k, j) = 1− Acc(wr,p+1
j , Dk)/100

wr,p+1
k =

K∑
j=1

M(k,j)∗wr,p+1
j

K∑
j=1

M(k,j)

wr+1 = 1
K

K∑
k=1

|Dk|
|D| w

r,P
k

function ClientUpdate(w, k)
B ← (split Dk into batches of size b)
for e=1 to E do

for d ∈ B do w ← w - η∇g(w;d)
return w

function Acc(w,D)
return Accuracy of w on train set of D
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3.3.2 Comparison with RingFed

RingFed [4] also involves pre-aggregation of the client’s weight to attain faster conver-
gence. Still, their pre-aggregation technique involves the adjacent clients exchanging
weights with each other controlled by a hyperparameter γ which decides how much
weightage should be given to the weights of the adjacent client. The same is show in
the In Fed-Star, we pre-aggregate the weights for a completely different reason. We
perform pre-aggregation to learn the outlier features and generalized features done lo-
cally by the clients. Through our work, we intend to attain faster convergence with
better accuracy by meaningfully addressing the statistical heterogeneity of data distri-
bution among clients. Although we also use a pre-aggregation step, our objective and
formulation are completely different.

3

Fig. 1. Flow-charts of FedAvg and RingFed.

generalized distributed learning that makes all kinds of smart
equipment contribute to developing an excellent intelligent
model, which keeps data at each device and reduces delays
of inference. We consider K clients in total, and the server
randomly selects a certain percentage of K (K ⊂ K) clients
for the training task in each communication round, i.e., the
clients involved in the training task differ in each communica-
tion round. Formally, a local function is used for optimization
at each client, which can be expressed as

fk(w) =
∑

k∈Dk

1

|Dk|
Fk(w), (1)

where fk(w) = L(xj ,yj ;w) denotes the loss function whose
values indicate how well the model performs after one or more
training epochs, xj is the j-th input real vector consisting of
the processed features, yj is the corresponding label, and w is
the parameters that construct the ML model. Dk is the training
dataset generated by the k-th client locally and |·| denotes the
cardinality of the dataset. Clearly, ∪|Dk|

j=1 (xj ,yj) = Dk. During
an epoch e, each client k runs SGD with:

wk = wk − ηg(wk; ζk), (2)

where η is the learning rate, g(wk; ζk) is the statistical gradient
descent value of Fk(w), and ζk denotes that the dataset Dk
is sampled randomly at epoch e. In our work, we only focus
on the DL loss function which means Fk(w) is non-convex
and the non-IID distribution of the dataset. We also assume
that Eζk∼Dk

[g(wk; ζk)] = ∇Fk(wk), which we realize in
experiments by setting codes properly.

The ultimate aim for FL is to minimize the global model,
which can be expressed in finite-sum form as

f(w) =

K∑

k=0

|Dk|
|D| fk(w), (3)

where D denotes all the data of K clients with ∪Ki=1Di =
D, and all the data cannot be accessed by the server out of
preserving privacy.

A. Federated Averaging (FedAvg)

Due to the bottlenecks of limited network bandwidth and
non-IID data in FL, FedAvg is proposed to reduce the number
of communication rounds and mitigate the influence of non-
IID datasets.

As illustrated in Fig. 1, during an intact communication
round of FedAvg, the central server first sends the parameters
of the original global model to all clients.

w = wt (4)

Then, k clients are selected by the central server randomly.
Next, these clients train models locally with their own data
for E epochs by SGD in (2), after which the clients send
parameters back to the central server. Finally, the central server
averages all the uploaded parameters as an update of the global
model in accordance with

wt+1 =
1

K

K∑

k=0

wk (5)

The procedure of FedAvg is described in Algorithm 1.
In paper [9], the average of two models using two small

subsets of the total dataset is proven to achieve significantly
lower loss on the training dataset than the best model achieved
by training on either of the small subsets.

However, the limitations of FedAvg restrict its performance,
which requires further improvement. On the one hand, as
the number of clients increases, the non-IID distribution of
datasets overall is strengthened. It is difficult for FedAvg to
fine-tune the hyperparameters (e.g., learning rate and number
of layers) of neural network models if the overall dataset

Figure 3.4: The images shows the pre-aggregation at the local level in the RingFed [4].
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3.4 Fed-Cyclic with label-averaging

The above algorithms perform very well in case the client shows a shift in the domain.
However, to handle the case of non-IID distribution due to class label imbalance among
the client.

In this method, all the clients will not share the data but share the number of images
they have for each class with the global server. Once the global server receives class-
distribution statistics for each client, it calculates each class’s global label distribution
average and passes it back to each client. This step is performed once.

This method is a slight modification of the Fed-Cyclic method. Here, a client re-
ceives the updated weights from the previous client. Before going for the local training,
the client will first compare how many samples of each label it has with the average
label distribution across the network. If the samples of a class are lesser, it will re-
sample it making it equal to the global label distribution average for that class. Else
it will proceed directly. In this manner, even minority classes will get a better rep-
resentation in the training phase. This method ensures that the trained local model
will focus on classifying each class better and that the global model formed after the
global aggregation of local weights is also robust to classify each class more efficiently
in case of non-IID data distribution. The working of the algorithm is depicted in figure
3.5, which shows how each client shares their class label distribution with the global
server, which calculates the global average distribution vector and shares it back with
the client. Each client uses this global distribution vector during training to randomly
resample minority classes with distribution less than the global average class distribu-
tion in conjugation with Fed-Cyclic to mitigate the issue of non-IID data. This is shown
in figure 3.6. The algorithm is explained in 3
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Algorithm 3 Proposed Fed-Cyclic Algorithm with Label averaging

Input Initial weights winit, number of global rounds R, number of local epochs E,
learning rate η, K clients indexed by k (with local data Dk and local weights wk), Global
model G,number of classes N ,global vector gvec[n] of dimension n, class vector C[n] of
dimension n for each client k and local minibatch size b.

Output Global weights wR (after R rounds)
Algorithm:

Initialize w0 ← winit // Global weights initialized
w0

1 ← w0

gvec ← GlobalAverageV ectorCalculation(n, k)
for r=0 to R− 1 do

for k=1 to K − 1 do
for n=1 to N do

if C[n]k < gvec[n] then
randomly sample x images as Xn

D
′

k ← Dk ∪ Xn

wr+1
k ← ClientUpdate(wr

k, k) using SGD
wr

k+1 ← wr+1
k

wr+1
K ← ClientUpdate(wr

K , K) using SGD
wr+1

1 ← wr+1
K

wr+1 ← wr+1
K

function ClientUpdate(w, k)
B ← (split D

′

k into batches of size b)
for e=1 to E do

for d ∈ B do w ← w - η∇g(w;d)
return w

function GlobalAverageV ectorCalculation(n, k)
for k=1 to K do

for n=1 to N do
gvec[n] ← gvec[n] + C[n]k

gvec ← gvec ÷ K
return gvec
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Figure 3.5: The image shows the calculation global average class label distribution
calculation to be used by each class in conjugation with the Fed-Cyclic to overcome the
issue of non-IID data.
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Figure 3.6: The image working of Fed-Cylic with label averaging with the help of global
average distribution vector.
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Chapter 4

Datasets

4.1 Proposed dataset

We propose a dataset containing 23,326 images which we collected from 8 different
image-hosting websites. Each of the 8 sources represents 8 different clients in our Fed-
erated learning setting. Each source’s average number of images is approximately 2916,
divided across 31 categories. This dataset is inspired from the Office-31 dataset [5],
which contains common objects in the office settings like keyboard, printer, monitor,
laptop, and so forth. Our dataset includes the same categories of images in the Office-
31 dataset. We took extra care to ensure that only relevant and high-quality images
from each source were taken. We manually curated the dataset by removing poor qual-
ity, duplicate or irrelevant images. The statistics showing how images are distributed
within the classes and across the sources are summarized in Tables 4.1 and 4.2. The
sample images are shown in Figure 4.1.

4.2 Other datasets

Office-31

We have also performed the same experiments we performed with our dataset on the
original Office-31 dataset. The Office dataset contains 31 object categories in three
domains: Amazon, DSLR and Webcam. The categories are objects in office settings
like keyboards, mouse, phone etc. The Amazon domain contains on average 90 images
per class and 2817 images in total. The merchant captured these images against a
clean white background in uniform resolution. The DSLR domain contains 498 low-
noise, high-resolution images with dimensions of 4288×2848. There are 5 objects per
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Figure 4.1: Sample images from our dataset.
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Classes Mean Std. dev. Total Img.

back pack 108.50 37.98 868
bike 108.62 31.73 869
bike helmet 94.25 26.54 754
book shelf 77.13 25.93 617
bottle 89.38 11.61 715
calculator 111.50 31.43 892
desk chair 125.38 27.61 1003
desk lamp 106.87 24.87 855
desktop computer 99.00 19.13 792
file cabinet 65.38 20.13 523
headphone 105.63 22.36 845
keyboard 76.38 35.14 611
laptop 111.38 25.39 891
letter tray 26.38 13.47 211
mobile phone 84.88 15.06 679
monitor 112.38 37.35 899
mouse 116.87 25.97 935
mug 117.38 25.19 939
notebook 98.00 23.78 784
pen 108.50 25.20 868
phone 113.63 21.80 909
printer 108.25 22.64 866
projector 72.63 33.86 581
puncher 66.88 32.37 535
ring binder 65.63 31.26 525
ruler 90.13 19.50 721
scissors 127.13 51.77 1017
speaker 67.63 18.6 541
stapler 105.25 21.75 842
tape dispenser 82.38 37.9 659
trashcan 103.25 33.36 826

Table 4.1: The mean, standard deviation and the total number of images in the classes
across different commercial sources.

category. Each object was captured from different viewpoints on average 3 times. For
Webcam, the 795 images of low resolution (640×480) exhibit significant noise and colour
as well as white balance artefacts. The sample images from the dataset are shown in
figure 4.2.
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Source Mean Std. dev. Total Img.

123rf 94.16 26.96 2897
Adobe Stock 101.16 27.25 3104
Alamy 102.80 40.65 3155
CanStockPhotos 95.06 33.24 2915
Depositphotos 101.41 38.59 3112
Getty Images 63.06 21.99 1923
iStock 90.10 33.01 2761
Shutterstock 112.61 36.34 3459

Table 4.2: The mean, standard deviation of images distribution across the classes of
the dataset together with total images in each source.

Figure 4.2: Sample images from Office-31 dataset [5].

CIFAR-10

The CIFAR-10 dataset consists of 60,000 images of dimension 32x32. The images are
coloured images distributed in 10 classes, with 6000 images per class. The number of
training images is 50,000 and the number of testing images is 10,000. The dataset is
divided into five training batches and one test batch, each with 10000 images. The test
batch contains exactly 1000 randomly-selected images from each class. The training
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batches contain the remaining images in random order, but some training batches may
have more images from one class than another. Between them, the training batches
contain exactly 5000 images from each class. The sample images from the dataset are
shown in figure 4.3.

Figure 4.3: Sample images from CIFAR-10 dataset.
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Chapter 5

Experimentation and Results

5.1 Implementation details

Domain Shift

In this section, we describe the experiments we performed to evaluate our Federated
image classification algorithms on the task of Domain shift. We leverage the pretrained
VGG-19 [48] network available from PyTorch pretrained model library [49] for initial-
ization purpose. We freeze its convolutional layers and replace the rest of the network
with three new fully connected layers (of size 1024, 256 and 31) and a softmax layer. In
the first two fully connected layers, we use ReLU activation and a dropout rate of 0.5.
We have used SGD optimizer with a batch size of 64. We use the 80:20 train-test split
of the data at any client. The images were resized to 224 x 224. The evaluation metric
used is classification accuracy, but we have also evaluated using Macro F1 score and
weighted F1 score. The default learning rate is 3e-4 (3x10−4). These experiments were
performed on our proposed dataset and the Office-31 dataset. The different iteration
parameters used are given in Table 5.1.

Method Local Epochs (E) Period (P ) Global Rounds (R)

FedAvg 3 - 250
RingFed 3 2 50
Fed-Cyclic 3 - 150
Fed-Star 3 2 50

Table 5.1: Iteration Parameters for Office-31 dataset and our proposed dataset
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Non-IID (Class label imbalance)

In this section, we describe the experiments we performed to evaluate our Federated
image classification algorithms using CIFAR-10 dataset divided among the clients in
non-IID fashion. We leverage the VGG-19 [48] network available from PyTorch [49] for
initialization purpose. We use the convolutional layer as it is and replace the rest of the
network with three new fully connected layers (of size 512, 512 and 10) and a softmax
layer. In the first two fully connected layers, we use ReLU activation. We have used
SGD optimizer with a batch size of 32 for the train set and batch size 1000 for the test
set. We use the 80:20 train-test split of the data at any client. The evaluation metric
used is classification accuracy, but we have also evaluated using Macro F1 score and
weighted F1 score. The default learning rate is 0.01. The different iteration parameters
used are given in Table 5.2.

Method Local Epochs (E) Global Rounds (R)

FedAvg 5 150
Fed-Cyclic 5 150
Fed-Cyclic w/ L.A. 5 150

Table 5.2: Iteration Parameters on CIFAR-10 dataset

5.2 Results

5.2.1 Domain-shift task on our proposed dataset

We evaluate all four algorithms (FedAvg [2], RingFed [4], Fed-Cyclic, Fed-Star) on our
proposed dataset. For RingFed, we kept γ=0.8, as we obtained the best accuracy for
RingFed using this value, as shown in Table 5.3.

We provide results of both global evaluation and local evaluation on our proposed
dataset. While local test sets are used for local evaluation, their union is used for global
evaluation. As we can see in Table 5.9, where we provide the global evaluation results,
our two proposed methods, Fed-Cyclic and Fed-Star, perform better than FedAvg and
RingFed. Fed-Star performs the best among the four, with an accuracy of 91.72%.
Moreover, our methods converge very fast. Fed-Star requires 50 global rounds on our
dataset, as mentioned in Table 5.1. Although RingFed also requires the same number
of global rounds, its accuracy is lower than Fed-Star.
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γ Accuracy

0.2 89.22%
0.5 88.96%
0.8 89.65%
1.0 89.39%

Table 5.3: γ vs accuracy for RingFed

Method Accuracy Weighted F1 Macro F1

FedAvg [2] 89.11% 88.98% 88.47%
RingFed [4] 89.65% 89.53% 89.14%
Fed-Cyclic (ours) 91.15% 90.89% 90.33%
Fed-Star (ours) 91.72% 91.17% 90.58%

Table 5.4: Experimental results show that both the Fed-Star and Fed-Cyclic attain
higher accuracy than FedAvg and F1-scores on our proposed dataset. Here, red denotes
the best value and blue denotes the second best value.

Method Accuracy Weighted F1 Macro F1

FedAvg [2] 83.71% 82.48% 88.24%
RingFed [4] 84.85% 84.29% 83.94%
Fed-Cyclic (ours) 85.42% 85.16% 85.23%
Fed-Star (ours) 90.28% 89.57% 89.38%

Table 5.5: Experimental results show that both the Fed-Star and Fed-Cyclic attain
higher accuracy than FedAvg and F1-scores on the office-31 dataset as well which
shows our model generalizes well in domain-shift scenario. Here, red denotes the best
value and blue denotes the second best value.

To show that our methods generalize well for the task of domain shift, we also evalu-
ated our proposed methods on the Office-31 dataset. We sampled the classes repeatedly
to keep the average number of classes in Webcam domain. Our evaluation shows that
The two baselines FedAvg and RingFed attain accuracies of 83.71% and 84.85%. Re-
garding our proposed algorithms Fed-Cyclic and Fed-Star are concerned, they perform
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Clients Accuracy

3 87.58%
4 88.08%
6 88.72%
8 89.11%

Table 5.6: No. of clients vs accuracy for FedAvg

better with accuracy of 85.42% and 90.28%, respectively. The hyperparameters remain
the same as the ones mentioned in table 5.1 with a learning rate of 3e-4. The results
are tabulated in table 5.5.

As part of benchmarking our proposed dataset, We started with the FedAvg al-
gorithm and tested how the model performance varies with changing the number of
clients. For FedAvg, the accuracy steadily decreases as we sample fewer clients out of
a pool of 8 clients for the given no. of epochs, with accuracy dropping to 87.58% when
3 clients are sampled in each training round. The accuracy value for different values of
clients for FedAvg is summarized in Table 5.6. The same is shown in figure 5.1 We

Figure 5.1: The graph shows how the accuracy of FedAvg by sampling different clients
for training

have also benchmarked RingFed for our dataset. We played with two different hyper-
parameters, namely γ, which determines how much weight each client in a ring gives to
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its adjacent client during pre-aggregation. We have experimented with different values
of γ to find the optimal one. The best result is obtained when the γ value is 0.8 with
an accuracy of 89.65% on our dataset, and the worst is obtained when γ is 0.5 with
an accuracy of 88.96% . We have used 8 clients while playing around with γ. Detailed
results are captured in Table 5.3.

5.2.2 Learning Rate (η) Experiments

Figure 5.2: The graph shows how the accuracy of FedAvg, RingFed, Fed-Cyclic and
Fed-Star changes with different learning rates (lr).

We also performed our experiments while varying the learning rate. For FedAvg,
we have observed that accuracy steadily increases with the decrease in the learning
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Learning FedAvg RingFed Fed-Cyclic Fed-Star
Rate (η) [2] [4] (Ours) (Ours)

1e-3 91.39% 91.81% 92.42% 92.77%
3e-3 91.43% 92.09% 92.52% 92.68%
7e-3 91.33% 92.17% 92.35% 92.53%
3e-4 89.11% 89.65% 91.15% 91.72%

Table 5.7: The table shows the accuracy value after convergence attained by FedAvg,
RingFed, Fed-Cyclic and Fed-Star for different values of learning rates.

rate, and maximum accuracy is obtained for the learning rate of 3e-3 with the value
of 91.43%. For RingFed, we observed that the value of accuracy increased with an
increase in learning rate from 1e-3 to 7e-3 (91.81% to 92.17%), followed by dropping
in accuracy for the learning rate of 3e-4 to 89.65%. For the Fed-Cyclic algorithm,
maximum accuracy is obtained for the learning rate of 3e-3 with an accuracy value of
92.52% and minimum accuracy of 91.15% for the learning rate of 3e-4. Fed-Star attains
maximum accuracy of 92.77% for a learning rate of 1e-3. The accuracy drops with an
increase in the learning rate, falling to the value of 91.72% for the learning rate of 3e-4.
The detailed results are captured in Figure 5.2 and Table 5.7.

5.2.3 Personalized Learning

In Table 5.8, where we provide the results of the local evaluation, we compare our
methods with competing Federated Learning methods and the baseline of the respective
local model (using E = 250). FedAvg and RingFed do not show much personalization
as their global models perform worse than local models. FedAvg performs poorly than
those trained locally for 5 out of 8 clients. In contrast, RingFed performs poorly for
4 out of 8 clients and therefore fails to capture the statistical heterogeneity of the
clients. Fed-Cyclic also performs better than the local clients for 6 out of 8 sources but
performs marginally inferior on the Depositphotos and iStock datasets than the client
trained locally. Fed-Star outperforms all the models trained locally and attains higher
accuracy than all Federated algorithms evaluated on the different sources. We verified
our hypothesis that Fed-Star captures the statistical heterogeneity and domain shift
among the clients well, generates a global model fair to all local clients with different
data distribution, and converges in fewer global rounds with higher accuracy.
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Dataset Model Test Accuracy

123rf

Local Model 85.51%
FedAvg 83.79%
RingFed 84.47%

Fed-Cyclic (Ours) 86.38%
Fed-Star (Ours) 88.90%

Adobe Stock

Local Model 92.43%
FedAvg 91.46%
RingFed 92.07%

Fed-Cyclic (Ours) 94.52%
Fed-Star (Ours) 94.96%

Alamy

Local Model 86.84%
FedAvg 87.32%
RingFed 87.98%

Fed-Cyclic (Ours) 88.90%
Fed-Star (Ours) 90.14%

CanStockPhotos

Local Model 89.53%
FedAvg 89.20%
RingFed 89.56%

Fed-Cyclic (Ours) 90.40%
Fed-Star (Ours) 91.68%

Depositphotos

Local Model 98.07%
FedAvg 96.95%
RingFed 97.76%

Fed-Cyclic (Ours) 97.91%
Fed-Star (Ours) 98.33%

Getty Images

Local Model 89.35%
FedAvg 90.13%
RingFed 91.06%

Fed-Cyclic (Ours) 92.72%
Fed-Star (Ours) 93.87%

iStock

Local Model 85.71%
FedAvg 83.72%
RingFed 84.68%

Fed-Cyclic (Ours) 84.89%
Fed-Star (Ours) 86.47%

Shutterstock

Local Model 89.45%
FedAvg 89.60%
RingFed 90.16%

Fed-Cyclic (Ours) 91.56%
Fed-Star (Ours) 92.11%

Table 5.8: Fed-Star outperforms all the local models trained using traditional ML
method and baselines and Fed-Cyclic on different sources showing its personalization
capabilities.
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5.2.4 Non-IID (class label imbalance) data evaluation

We evaluate all three algorithms (FedAvg [2], Fed-Cyclic and Fed-Cyclic with Label
Averaging) on CIFAR-10 dataset. We have divided the dataset in 80:20 for the train-
test split and the train data is divided into 20 clients for FedAvg in which we selected 12
clients. For the Fed-Cyclic and Fed-Cyclic with label averaging, we selected 12 clients
from the total of 12 clients. The results are summarized in table 5.9. Both of our
methods perform better than the baseline with an average increase of more than 1% in
classification accuracy.

Method Accuracy Weighted F1 Macro-F1

FedAvg 88.91% 88.80% 89.80%
Fed-Cyclic 90% 89.92% 89.92%
Fed-Cyclic w/ L.A. 90.35% 90.12% 90.08%

Table 5.9: Image classification result on CIFAR-10 for baseline and proposed methods.
Here, red denotes the best value,blue denotes the second best value. Our method
Fed-Cyclic in conjugation with Label Averaging performs better than the SOTA.
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Chapter 6

Conclusion & Future Scope

6.1 Conclusion

Through our work, we accomplished multiple goals. We studied the collaboration of
different commercial sources in a real-world setting using Federated Learning. We pro-
posed a new federated image classification dataset collected from 8 commercial image
sources, making the setup much closer to a real-world scenario than other image clas-
sification setups where an existing dataset is artificially divided. We benchmarked it
used to truly understand the application of Federated Learning in the field of computer
vision in real-world scenarios. We successfully tackled the problem caused by domain
shift among the clients due to heterogeneous data sources. We proposed two algo-
rithms namely Fed-Cyclic and Fed-Star. Our algorithms have better convergence and
better accuracy than the SOTA algorithms. Also, they perform much better from the
personalization point of view, making them very relevant for meaningful collaboration
among clients having statistical heterogeneity (domain shift). We validated our results
on different datasets to show that our algorithm works well with generalisation.

In the second part of our work, we applied our algorithms to understand how they
work with publicly available datasets to handle the real-world scenario of non-IID data
due to a class-label imbalance among different clients. We combined Fed-Cyclic with
label averaging to mitigate the issue of non-IIDness among the clients and performed
better than SOTA.
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6.2 Future Scope

For the initial part of the work, where we worked on the problem of domain shift,
we can work by further extending our experimentation on different publicly available
datasets. We can also include some more SOTA methods to further validate or improve
our work.

For the second part of the work, we can further explore different techniques to
overcome the issue of class-label imbalance since we explored only one single approach.
We can also work on different publicly available datasets. We can also make further
improvements by finding better techniques to tackle the problem of class-label imbalance
by improving the proposed model and at the dataset level. We can also improvise our
algorithms and compare them with other SOTA methods to identify the strength and
weaknesses of our proposal correctly.
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