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Abstract

Extreme Abstractive Summarization of long scientific papers requires domain
knowledge and a concise summary maintaining faithfulness to the source and
covering novel aspects presented in the paper. Human annotations are indeed
expensive for the task, so we propose ExGrapf2, a novel encoder architecture
that uses fractality, FFT, and Graph Convolution Network as its strong
foundation to address the challenge. We observed that when the model is pre-
sented with different views of the source, it extracts more information from
the same amount of data. ExGrapf2 successfully accomplishes the objective
and beats the state-of-the-art models on SciTLDR dataset without any data
augmentation. We also used the contrastive loss to enhance the performance
further. The novelty is not only for the modules but also for how we fuse them.
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Chapter 1

Introduction

1.1 Problem Statement

We worked out the task of TLDR! generation for the scientific papers. The
significance of the problem cannot be denied, given the implausibly prolific
amount of papers published each year [IKB18]. The human annotations for
the same would be overly tedious and impractical. The considerable time a
human annotator spends to create a concise summary is accompanied by the
expert domain knowledge required to write down the TLDR while maintaining
faithfulness to the source and correctness of the written summary. No surprise
that the only dataset to date for extreme summarization of scientific papers is
SciTLDR, introduced in [CLCW20]. The dataset is relatively small, especially
for a generation task, with only 1992 training samples (for AIC version)?.

1.2 Our Idea

This calls for the need to create robust systems that can draw out more infor-
mation given the small amount of data. In this work, we study this objective for
extreme abstractive text summarization of long scientific documents and evalu-
ate the proposed model on the downstream dataset: SciTLDR [CLCW20]. An
attractive option may be to train the model for more prolonged periods. This
leads to overfitting. Is there a way to use every piece of information to make the
model more powerful? We discovered that using distinct modules to encompass
different views of ”the data” really assists the learning for the downstream task,
even with less data.

ITLDR is an acronym that stands for “too long; didn’t read,” which is often used in
informal online discussions (e.g., Twitter or Reddit) about scientific papers. This term was
introduced in the TLDR paper. [CLCW20]

2The dataset has three versions: Abstract Only, AIC, Full Text, more details are provided
in the Dataset section.



We used DistilBART and integrated four major modules that form the strong
foundations of our proposed architecture, ExGrapf2 that stands for Extreme
abstractive summarization using Graph embeddings fused with fractality; and
fft transformer. The first is the FFT3. FFT effectively mixes the tokens and
provides the feed-forward sublayers sufficient access to all of the transformer
tokens [LTAEO21] (FNet paper). The authors of FNet replaced FFT with at-
tention, while ExGrapf2 accompanies it with the attention mechanism. We
observed that FFT could find out some key terms of the source. The intuition
comes from the fact that FF'T, on a basic level, given a mixed signal, simplifies
the components and extracts signal properties and features. Document embed-
ding is also a mixed signal where the simplified components may be sentences
that form the document or the words that appear in the source. This is also
illustrated in the results of our experiment. While the word-level view (FFT)
may seem to find keywords, what about the context? We also need to look
for keywords based on "how the words are used and their distribution over the
scientific paper.” This can be accomplished with fractality. For years, frac-
tals have astonished the world of mathematics because of their ability to create
complex patterns despite their simple formulation. The self-similarity structure
of fractals aligns with how the text is presented in the scientific paper. The
paper can be thought of as a structure with ”“one central concept,” which re-
peatedly occurs in the paper in one form or the other, one way or the other. We
are the first to apply the concept of fractality for abstractive text summariza-
tion. To date, we could only see fractality used primarily for keyword extraction
or extractive summarization. Once done with word-level views, the time calls
for sentence-level view. A Sentence Relation Graph (SRG) is constructed
using MPNet [STQ"20], and SciBERT [BLC19]. Graph Convolutional Net-
work (GCN) applied on the SRG provides a sentence view of the document
and apprehends how a sentence is related to the other sentences of the same
document. Both ideas, fractality and GCN, can be combined to give the word
and sentence info together. Finally, yet importantly, we adopted the idea from
the BRIO [LLRN22] and used a non-deterministic distribution, unlike one-point
target distribution, for the summary generation so that the different candidate
summaries are assigned probability mass according to their quality and using
the contrastive loss.

1.3 Summarize Contributions

To summarize our contributions:

e We propose a novel encoder architecture ExGrapf2, which can readily be
unified with existing encoder architectures and furnish them the capability

3Fast Fourier Transform



to draw out more information from the same amount of data.

o ExGrapf2 uses Fractality-infused Graph Embeddings of sentences and 2D
FFT to apprehend salient details at different levels. It views the task of
extreme summarization at the level of words, sentences, and the document.

— Word View and its interaction with other words: 2D FFT
(Fast Fourier Transform) effectively mixes the transformer tokens,
which provides the feed-forward sublayers sufficient access to all to-
kens [LTAEO21]. It also can capture keywords (one of the findings
of our work).

— Individual Word View: Fractality also caters to keywords cap-
turing but based on the context and its distribution over the entire
document.

— Sentence View: GCN finds out the graph embeddings of the sen-
tences from Sentence Relation Graph to yield a holistic view of sen-
tences and the relation of the sentence w.r.t.* the other sentences.

— Document View: Transformer The transformer generates em-

bedding for the entire document hence encapsulating the document-
level information too.

e We also took the idea from the BRIO [LLRN22] and used a non-deterministic
distribution for the summary generation. It used contrastive loss, unlike
traditional MLE® loss.

4with respect to
5Maximum Likelihood Estimation



Chapter 2

Related Work

2.1 FFT

The vision of applying DFT! instead of attention came from the Google Re-
search Team in FNet paper [LTAEO21] where they showcased that FFT could
also enable token mixing effectively and is a potential substitute for attention,
while ExGrapf2 explored using attention and 2D-FFT together and see if that
makes a difference. We found out that FFT catches the keywords. MHA and
FFT seize complementary information and can provide distinct views when used
together.

2.2 Fractality

For fractality, we are the first to use fractality for abstractive summarization.
[ND15] used fractality to only find the fractal dimension of the words and return
top fractal words as keywords. This worked for them because they had a large
book corpus, but the exact implementation failed for the SciTLDR, dataset. We
modified the fractality calculation a bit and used it for small data. We accom-
panied it with Graph Convolution Network (GCN), to make it more robust.

2.3 Graph Convolution Network (GCN)

GCN was used by [YZMT17] for extractive summarization. They also used
handcrafted features which are difficult to decide and fetch. We never know how
many features are sufficient. ExGrapf2 uses GCN on the sentence-relation graph
formed by sentence transformers, with no reliance on handcrafted features, and
is also used for abstractive summarization.

IDiscrete Fourier Transform, which can be calculated using FFT algorithm.



Chapter 3

Dataset

The dataset used for experimentation is SciTLDR [CLCW20]. It consists of
source and target, a TLDR summary. The dataset comes in three types: Ab-
stract Only, AIC (Abstract, Introduction, Conclusion), Full Text. We used the
AIC dataset for experimental purposes as it is not as short as Abstract Only
and not as long as Full Text. It is observed that most of the paper’s novelty,
the problem it tries to solve, are mentioned in the Abstract, Introduction, and
Conclusion. Hence we go ahead with this setup. The details of the dataset
(train, validation, and test) are stated in Table 3.1.

Table 3.1: Statistics for SciTLDR: Training, Validation, and Test Set. Here,
the source length and target length correspond to the length covering 97% to

98% of documents to avoid noise and not take max length.
’ H Train \ Validation \ Test ‘

source length 2000 2000 2000
target length 50 50 50
num samples 1992 619 618

The training data has only one target summary corresponding to one source
instance. For validation and test set, some samples have one or more target
summaries, and the rouge score can be calculated as the maximum rouge of the
generated summary and candidate summaries. Having multiple gold summaries
per paper is essential for evaluation because of variability in human-written gold
summaries. The results reported in this paper are for the AIC dataset only.



Chapter 4

Methodology

We introduce ExGrapf2 (Extreme abstractive summarization using Graph em-
beddings fused with fractality; and fft transformer), a novel yet intuitive method
for learning to generate TLDRs. Our approach addresses the major challenge
of limited training dataset size.

We propose using four distinct modules of ExGraf2 to pull out more infor-
mation from small data to address the challenge. The proposed architecture is
shown in Figure 4.1. As a base model, we used DistilBART [LLG"19]. The
different modules are explained below.

4.1 2D - Fast Fourier Transform (Word View
and its interaction with other words)

The first module is 2D-FFT*!. ExGrapf2 explored using attention and 2D-FFT
together and see if that makes a difference. This will also help us to know if
they produce at least some complementary information. 2D FFT means DFT
is calculated twice, 1D DFT along the sequence dimension and 1D DFT along
the hidden dimension. We viewed FFT beyond token mixing and expected it to
give some keywords of the scientific paper. The intuition comes from the fact
that when applied to a mixed signal, the FFT simplifies the components and
extracts signal properties and features. A scientific paper can also be viewed
as a mixed signal where simplified components are the words or sentences that
form the document. Note that the novel concept of the paper is repeated and
used more often than the less-important terms, which FFT could intuitively
catch. We kept only the real part of FFT, keeping the rest of the architecture
constant. The equation for the same is

Y = R(Fyeq(Fr(2))) (4.1)

1Fast Fourier Transform



Output (A)

T

Quality(A) > Quality(B)
1

' Losscontrastive
Candidate Output A

EF e

'
Candidate Output B

EEEED

T

DistilBART Decoder Block

o |

A

-~

D

—>(__Add & Norm

] ([ Add &Norm
I

}(—

Feed
Forward

Feed
Forward

—)[ Add & Norm
I

] [ Add & Norm
1

e

DistilBART Encoder

Multi-Head
Attention

‘ ‘ 2D FFT ‘

==

]

<
<€

Add & Norm

\ X

Figure 4.1: ExGrapf2: Model Architecture. The encoder architecture of Distil-
BART is altered, and the decoder remains unchanged. Newly-added modules
in the encoder are shown in double-rounded boxes (2D-FFT, Sentence Relation
Graph (SRG), Graph Convolution Network (GCN), Fractality). The contrastive
loss is used at the decoder end. The details for SRG and GCN are given in Fig-
ure 4.2.

The FFT indeed provides some complementary information?. The rationale

is that the attention looks at the relationship of one token with the others,
which is extensively rich, while FFT could potentially provide some keywords,
though not as rich as attention, but is more helpful for NLP tasks, as it offered
a "word-level” view of the document. Surprising to know that a standard,
unparameterized Fourier Transform could be suitable for the task.

2more details are provided in the Experiments and Analysis Section
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4.2 Fractality (Word-View)

Having read about 2D-FFT, a fascinating idea of fractality gives an assorted
view of the data. Fractals are beautiful to look at and powerful to work with.
Behold a fern that consists of many small leaves that branch off a larger one or
romanesco broccoli that consists of smaller cones spiraling around a large one;
they both are fractals. In simpler terms®, fractals have self-similarity property.
There would be some repeating or iterative procedure that generates fractals.
There need not be an exact match; approx similarity also works. An interesting
fact about fractals is that even if there is the same repeating unit, it can lead
to different structures depending on various factors. For instance, a fern and
a tree have the same repeating unit, but they are distinct structures based
on the position of the branch and the angle. A term in the scientific paper
repeated again and again but with a different context will form a separate unit.
For instance, backpropagation may occur multiple times. For Recurrent Neural
Networks, in some places, it would be standard backpropagation; in other places,
backpropagation would be discussed w.r.t. backpropagation over time. Fractals
can inherently identify repeating units with tweaks.

To implement fractality, we attempted using Mandelbrot or Julia set [Bra89]
formulations, but they didn’t align with the text since they just looked at the
bounded or unbounded behavior of a number. We modeled to find the fractal
dimension of a word through the box-counting method. The fractal dimension
calculation is done similarly to that of [ND15].

The mathematical formulation for the same is given below. In the box-
counting method, the number of boxes touched by the document, N, is inversely
proportional to box size s, raised to the power D, where D is fractal dimension.

N  (1/s)P (4.2)
Equation 4.2, can be written in the following fashion:
N =c (1/s)P (4.3)
The equation 4.3 follows power-law, so applying log on both sides.
log N =log ¢+ D log (1/s) (4.4)

The equation 4.4, is a Linear Regression Equation. The slope of the line will
give the fractal dimension. For our problem, the window size is the box size,
and the box is considered to be touched if the word under consideration appears
in that window. For instance, consider the sentence,

The brown fox jumps over the brown tree with the leaves of brown color. (The
word under consideration: brown)

3a little caveat, more precisely a fractal is by definition a set for which Hausdorff-Besicovitch
dimension (D) strictly exceeds the topological dimension

11



Box size = 2, no. of boxes touched = 3
The brown —— fox jumps —— over the —— brown tree —— with the
—— leaves of —— brown color.

Box size = 8, no. of boxes touched = 2
The brown fox jumps over the brown tree —— with the leaves of brown color.

Box size = 13, no. of boxes touched= 1
The brown fox jumps over the brown tree with the leaves of brown —— color.

The fractal dimension of the word can be calculated as:

Dihuf fied(word)
Dnon—shuffled(word)

fracDim(word) = (4.5)

The Dgpugfiea(word) is calculated as follows where T' is the number of shuf-
fled experiments:

Dnugfied = (4.6)

Z?ﬂ D;
T
The reason for this formulation is stated in [ND15]. We know that a sen-

tence’s sequence of words matters a lot. If the text is shuffled, then the words

won’t make sense. Usually, the unimportant words are uniformly distributed
over the document, while the important words are present in a clustered fashion.

If we have some measure calculated before shuffling, say x, and measure after

shuffling, say y, then the degree of fractality can be given as y/x. Reason: After

shuffling, the important words won’t be clustered, so y will have more value
than x. But for the unimportant words, this would remain the same. Hence,
the above formulation.

This was for the keyword extraction, but we have never seen fractality ap-
plied for abstractive summarization. To view how it’s done, we unfold the

mystery in Section 4.4.

4.3 Sentence Relation Graph and Graph Con-
volutional Network (Sentence-View)

To instill the sentence-level view, we constructed Sentence Relation Graph on
which the GCN can be applied. The steps to generate the graph are stated
below, while Figure 4.2 depicts the same pictorially.

1. For each sentence in a document, compute their MPNet Embeddings.

Why MPNet? A graph consists of edges and nodes, nodes can simply
be sentences with some features, but the question is how to create
the edges. It is intuitive to think that edges must be based on some
similarity. Hence we computed MPNet embeddings and used them to

12



calculate sentence similarity (MPNet is shown to be the benchmark
for semantic text similarity).

The sentences are the nodes of the graph.

2. An edge is created between two sentences if the cosine similarity of the
two sentences is greater than a certain threshold; if the edge is created,
then edge weight is merely the cosine similarity value itself.

3. Reinitialize the node features with the SciBERT embedding of the sen-
tence.

Why SciBERT? SciBERT [BLC19] is a BERT model pre-trained on
scientific papers and would give rich embeddings for the task.

4. Apply GCN [ZTXM19] on this graph to compute the embeddings of the
sentence based on other similar sentences, thereby incorporating the sen-
tence view of the data. The embedding of the sentence now has its infor-
mation and the information of its neighboring sentences.

num_sentences = 4 (say) output dimension =
S =4 (say (num_sentences, 768)

N\
MPNet — Reinitialize Node =
! Form edges in graph | —> 1 — GCN (Graph — =
(Semanticjlcxtial (using cosine similarity) Features with SCIBERT Convolutional Network) =
Similarity) embeddings

empty graph G G has nodes (sentences) G has edges with edge weights initialized with G has node graph embeddings.
node features: mpnet embeddings  cosine similarity values based on node embeddings features changed for document sentences
27..52 [27..52) a1 here embedding size (4,768)
° paz.. 00 gS o

nz.nm 03, | 4
® _Qnr.sy 12..7 gZ N o7 52 (1217 .. 16.2] [4716....

“e7..18 80716 02]

(1065..02] (1063 .02] @.17.216....021

Figure 4.2: SRG and GCN Module of ExGrapf2: Formation of Sentence Relation
Graph (SRG) for sentences in the document and applying Graph Convolution
Network (GCN) to obtain graph embeddings for document sentences.

4.4 Combining Graph and Fractality: (Word View
with Sentence View combined)

Rather than having GCN and Fractality applied individually, we fused them
to form a single robust unit. Now the fractal dimension of the word conveys
the paper’s keywords. We calculated the number of top fractal words present
in the sentence of the document and assigned weight to their graph sentence
embeddings based on the overlap of words in the sentence with top fractal
words. More the amount of top fractal words present in the sentence, the higher
the weight of the corresponding graph embedding. We applied this weighting
mechanism after graph embeddings were obtained from GCN and before feeding
into the encoder layer. We can say that fractality is applied on top of GCN-

13



induced embeddings. This implies that the sentences with keywords would have
more say in the process.

4.5 Contrastive Loss

Finally, adding one more in the bag, the contrastive loss. The notion for the
contrastive loss and having a non-deterministic target distribution came from
BRIO paper [LLRN22|, where the system generates multiple candidate sum-
maries and then learns to rank them too. The idea aligns with our notion of
extracting more information from the same data. Hence we used this training
regime for ExGrapf2.

4.6 Putting all together

Having stated all the modules, how well they come up as a single unit is the
magnificence of ExGrapf2. Figure 4.1 depicts the fusion of these modules into
the encoder architecture. FFT has a parallel branch with Multi-Head Attention,
and in each encoder layer, they add up after the application of the Feed-Forward
Layer. Now, the embeddings add up in the last encoder layer for the graph
and fractality combined module. We used static embeddings because they are
already SciBERT embeddings fused with fractality, and keeping it as a trainable
parameter would make it lose the charm. Hence we added them only with
the last encoder layer’s output. Since the dimensions aren’t the same (the
dimensions of the graph depend on the number of sentences in the document),
we used Dense Layers to keep the consistency and also used 2D-FFT to boost the
performance further and compensate for not making it a trainable parameter.
The decoder remains unchanged. The training regime is contrastive learning
adopted from BRIO [LLRN22].

4this technique can also be used to combine extractive and abstractive summarization
(future work). Extractive summarization gives a high rouge, while abstractive summarization
generates new phrases and may get a low rouge. This idea would use the best of both worlds.

14



Chapter 5

Experiments

5.1 FFT

Our approach was to test the modules independently without pre-trained models
to know their significance. We wanted to know if the output is the result of the
module only, not the pre-trained model. Also, if they complement each other or
produce some similar outputs, based on that, we placed all of them in the final
architecture of ExGrapf2.

Firstly, to check the FFT module, we took the help of a standard transformer
and placed FFT in three ways (Figures 6.1, 6.2, and 6.3, respectively in Section
6.3 (Appendix).

e Way 1: 2D FFT is placed in parallel to Multi-Head Attention (Figure
6.1) and they share same feed-forward network.

Intuition: Multi-Head Attention (MHA) and FF'T capture different as-
pects. MHA looks for relations among tokens, while FFT captures
keywords.

e Way 2: 2D FFT is placed in parallel to Multi-Head Attention (Figure
6.1) and they have different feed-forward networks.

Intuition: Both must have different feed-forward networks to give them
a chance to learn.

e Way 3: 2D FFT is placed in after Multi-Head Attention.

Intuition: FFT can use the information given by MHA.

The results for all three experiments are shown in Table 5.1. The results are
produced when the difference between consecutive training losses is less than
0.001. These figures for rouge are reported for f~-measure.

Analysis of the results: From the results in Table 5.1, we can see that all
ways of FFT outperformed standard transformer except way 3, but to note that

15



transformer produces high rouge than way 3 transformer but the summaries for
way 3 transformers make much more sense than standard transformer. Anyhow,
for way 1 and 2, results also outperform, and the summaries contain some
keywords. For more details, glance at Table 6.2 (given in Appendix Section
6.3). Final Decision: We go ahead with placement way 2 and used 2D-FFT
in parallel with MHA in ExGrapf2. This also shows that MHA and 2D-FFT
produce complementary information and give best results when used parallely.

5.2 Fractality

Followed by FF'T, we performed an extensive evaluation for fractality. We plot-
ted a curve (Figure 5.1) for the training dataset. The curve depicts the overlap
between the top fractal words from the source and target summary. The curve
increases till 100, and later, it begins to saturate. Therefore, we went ahead
with the top 100 fractal words. GCN embeddings would be weighed according
to the top 100 fractal words. We added fractal words as input along with the
source in the standard transformer and further compared the results to validate
fractality’s usage. Table 5.2 confirms the importance of fractality. For divide
+ logio(frequency) the graph may look better than divide only but the analy-
sis shows that when frequency term is added then words like ”the”,”and” also
appears, hence we went ahead with ”divide only”.

14 4

12 4

10 A

— Divide
Divide + log10(Frequency)

No. of overlap words b/w top fractal words & target

T T

T T T T
0 50 100 150 200 250 300

No. of top words chosen as per fractal dimension of word

Figure 5.1: The plot of ?Number of top fractal words chosen from source” (vs)
” Average number of overlapping words between top fractal words and target
summary” for the training dataset. The divide operation looks for the degree
of fractality as the number of boxes touched after shuffling and before shuffling.
In contrast, divide + logio(frequency) also gives importance to the frequency of
words in the document.
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The Dense Layers are added to keep the dimension consistent. We experi-
mented with and without the 2D-FFT layer on the top of Dense Layers & with
and without MHA, and the best setup came up as the one with 2D-FFT.

For the final architecture, ExGrapf2, we played with length penalty, beam
width, learning rate, and the final results are illustrated in Section 6.
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Table 5.1: Results on testing dataset for three ways of placement of 2D-FFT
module. Way 1: 2D-FFT placed in parallel with MHA, and they share the same
feed-forward networks, Way 2: Same as wayl, except that they have different
feed-forward networks, Way 3: 2D-FFT used after MHA.

’ H Rouge-1 \ Rouge-2 \ Rouge-L ‘

Transformer 12.39 1.12 10.28
Transformer+ FFT (Wayl) 13.43 1.12 10.70
Transformer+ FFT (Way2) 14.07 1.49 11.21
Transformer+ FFT (Way3) 11.04 0.63 9.20

Table 5.2: Results on testing dataset for three ways of placement of 2D-FFT
module. Way 1: 2D-FFT placed in parallel with MHA, and they share the same
feed-forward networks, Way 2: Same as wayl, except that they have different
feed-forward networks, Way 3: 2D-FFT used after MHA.
] | Rouge-1 [ Rouge-2 | Rouge-L |
Transformer 12.39 1.12 10.28
Transformer + Fractality 13.54 0.81 10.96

Table 5.3: Test set max Rouge scores (rouge-1, rouge-2 and rouge-L) of extrac-

tive and abstractive baselines and ExGrapf2.
R1 R2 RL

PACSUM [ZL19] 287 98 219
LexRank [ER04] 289 86 204
BERTSUMEXT [LL19] 362 14.7 285
T5 [RSR*20] 374 154 258
BART [LLG*19] 398 192 316

ExGrapf2 (Our Model) 43.7 20.5 34.3
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Chapter 6

Evaluation and Analysis

6.1 Evaluation

The metric used for evaluation is Rouge-Score: rouge-1, rouge-2, and rouge-
L f-measure. We tested extractive and abstractive baselines to evaluate the
performance of our proposed model. Some of the baselines are exactly the
same as SciTLDR paper [CLCW20]. Table 5.3 illustrates the performance of
ExGrapf2 compared to other baselines. ExGrapf2 beats the best-performing
model by 3% even though it uses disilBART.

6.2 Analysis

The system’s summaries are shown in Table 6.1. We can see that generated
summaries are way better than gold-summaries, but the problem lies in the
rouge-score that measures the overlap between words.
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Table 6.1: Summaries produced by ExGrapf2

Example 1 (Target Summary)
We propose using five deep architectures for the cybersecurity task of
domain generation algorithm detection .

Example 1 (ExGrapf2 Summary)

comparing five different architectures for the cybersecurity problem of
DGA detection : classifying domain names as either benign vs. pro-
duced by malware ( i.e. , by a Domain Generation Algorithm ) in terms
of accuracy .

Example 2 (Target Summary)
Presents a variational autoencoder for generating entity pairs given a
relation in a medical setting .

Example 2 (ExGrapf2 Summary)

we introduce a generative model called Conditional Relationship Vari-
ational Autoencoder ( CRVAE ) , which can discover meaningful and
novel relational medical entity pairs without the requirement of addi-
tional external knowledge .

Example 3 (Target Summary)

This paper proposes the Recurrent Discounted Attention ( RDA ) , an
extension to Recurrent Weighted Average ( RWA ) by adding a discount
factor .

Example 3 (ExGrapf2 Summary)
Recurrent Weighted Average ( RWA ) unit captures long term depen-
dencies far better than an LSTM on several challenging tasks .
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6.3 Appendix

The three ways tried to check for the placement of FFT are given in Figures
6.1, 6.2, and 6.3, respectively. The results of the summaries generated in three
ways are also shown in Table 6.2.
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Figure 6.1: 2D FFT is used in parallel with MultiHead Attention, and they
share the same Feed-Forward Network.
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Figure 6.2: 2D FFT is used in parallel with MultiHead Attention, and they have
different Feed-Forward Networks.
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Table 6.2: Results on testing dataset for three ways of placement of 2D-FFT
module. Way 1: 2D-FFT placed in parallel with MHA, and they share the same
feed-forward networks, Way 2: Same as wayl, except that they have different
feed-forward networks, Way 3: 2D-FFT used after MHA.
Target Summary:
the paper presents a multi-view framework for improving sentence rep-
resentation in nlp tasks using generative and discriminative objective
architectures.

Transformer:

a general and effective model for avoiding negatve transfer in neural
network few shot learning

Transformer + FFT (Way 1):

multi view learning improves the semi supervised learning improves
training and dependency relationship

Transformer + FFT (Way 2):

multi view learning improves unsupervised sentence representation
learning

Transformer + FFT (Way 3):

multi view learning improves unsupervised sentence representation
learning

24



Output

1

N x Decoder Block
A
/ —>»( Add&Norm | \

Feed
Forward

i

v

Add & Norm

—

2D FFT

i

Add & Norm

Z
X

Feed
Forward

i

—)[ Add & Norm

Multi-Head
Attention

\_

Positional
Encoding

Input
Embedding

Input

Figure 6.3: 2D FFT is use%g)after MultiHead Attention.



Bibliography

[BLC19)

[Brag9]

[CLCW20]

[ER04]

[IKB18]

[LL19]

[LLG*19]

[LLRN22]

[LTAEO21]

Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained
language model for scientific text. arXiv preprint arXiv:1903.10676,
2019.

Bodil Branner. The mandelbrot set. In Proc. symp. appl. math,
volume 39, pages 75-105, 1989.

Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel Weld. TLDR:
Extreme summarization of scientific documents. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages
4766-4777, Online, November 2020. Association for Computational
Linguistics.

Giines Erkan and Dragomir R Radev. Lexrank: Graph-based lexical
centrality as salience in text summarization. Journal of artificial
intelligence research, 22:457-479, 2004.

John Toannidis, Richard Klavans, and Kevin W Boyack. Thousands
of scientists publish a paper every five days, 2018.

Yang Liu and Mirella Lapata. Text summarization with pretrained
encoders. arXiv preprint arXiw:1908.08345, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-
delrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettle-
moyer. Bart: Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehension. arXiv
preprint arXiw:1910.13461, 2019.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham Neubig.
Brio: Bringing order to abstractive summarization. arXiv preprint
arXiv:2203.16804, 2022.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago On-
tanon. Fnet: Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

26



[ND15]

[RSR*20]

[STQ*20]

[YZM*17]

[Z119]

[ZTXM19)]

Elham Najafi and Amir H Darooneh. The fractal patterns of words
in a text: a method for automatic keyword extraction. PloS one,
10(6):e0130617, 2015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1-67, 2020.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mp-
net: Masked and permuted pre-training for language understand-
ing. Advances in Neural Information Processing Systems, 33:16857—
16867, 2020.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek,
Krishnan Srinivasan, and Dragomir Radev. Graph-based neural
multi-document summarization. arXiv preprint arXiv:1706.06681,
2017.

Hao Zheng and Mirella Lapata. Sentence centrality revisited for un-
supervised summarization. arXiv preprint arXiv:1906.03508, 2019.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
convolutional networks: a comprehensive review. Computational
Social Networks, 6(1):1-23, 2019.

27



