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ABSTRACT

Visual artwork is among the most salient forms of human expression. From prehistoric

cave paintings to Renaissance and modern art, paintings have been a powerful medium

for expressing emotions. With the advent of computing and artificial intelligence, visual

arts may no longer be exclusive to human creativity. Computational creativity involves

the study of creative endeavors ranging from creative writing, poetry, painting, music,

and science to sports through computational approaches. On the intersection of art and

computer science, this thesis involves implementing artificial intelligence models to

generate and classify affective artwork and their human evaluation.

Rooted in the WikiArt data of over 80,000 paintings and their emotion labels from

ArtEmis, we implement Generative Adversarial Networks for generating paintings with

desired emotional content. We first experiment with two broad classes of emotions

(positive and negative) to further deal with nuanced affective categories, viz. amuse-

ment, awe, contentment, excitement, anger, disgust, fear, and sadness. Besides com-

putationally generating affective artwork, we also implement classification models and

validate their performance using relevant metrics. Projected GANs, StyleGAN2-ADA,

and StyleGAN3 are employed for generating artwork for binary and multi-class models

to achieve an FID score of 7.84 for the StyleGAN2-ADA architecture. ResNet50-V2

presents the highest accuracy for the binary classification experiment at 72%.

Beyond the computational evaluation of the generated artwork, we created a ‘Turing

Test for Artist.’ This test randomly presents images of human artwork, and those made

with artificial intelligence to a human evaluator and registers their assessment. For

every image, the test also records the binary human assessment of the affective content

of the artwork. We assess the quality of the generation and classification models after

conducting the Turing Test with a sizeable number of evaluators. We conclude that

while the artificial intelligence approach is capable of producing affective artworks that

compete with human creativity, it is far from replacing it.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

1 Introduction 1

1.1 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . 2

1.1.1 Conditional GANs . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 StyleGANs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Projected GANs . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Emotion-based Art Generation . . . . . . . . . . . . . . . . 3

1.2 Prior Studies on Artwork Classification . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Data Compilation and Annotation 7

2.1 WikiArt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 ArtEmis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 ArtEmis Statistics . . . . . . . . . . . . . . . . . . . . . . 8

2.3 ArtEmis v2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 ArtEmis V2.0 Statistics . . . . . . . . . . . . . . . . . . . . 10

3 Methodology 11

3.1 Computational Framework . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Dominant Emotion Labeling . . . . . . . . . . . . . . . . . 12

3.1.2 Generative Models . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Classification Models . . . . . . . . . . . . . . . . . . . . . 15

iii



3.1.4 Human Assessment . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Generation and Classification of Affective Artwork 18

4.1 Experiments with the Binary Paradigm . . . . . . . . . . . . . . . . 18

4.1.1 Generative Models . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Classification Models . . . . . . . . . . . . . . . . . . . . . 21

4.2 Experiments with Multi-Class Paradigm . . . . . . . . . . . . . . . 25

4.2.1 Generative Models . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Classification Models . . . . . . . . . . . . . . . . . . . . . 29

4.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Human Evaluations: Turing Test and Guess the Emotion 33

5.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Data Sampling for Turing Test . . . . . . . . . . . . . . . . 36

5.1.2 Tech Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 SQLite Database Structure . . . . . . . . . . . . . . . . . . 37

5.1.4 Data Preprocessing and Protocols . . . . . . . . . . . . . . 38

5.2 Results of the Turing Test (Fake or Real) . . . . . . . . . . . . . . . 39

5.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Results for ‘Guess the Emotion’ Test . . . . . . . . . . . . . . . . . 42

5.3.1 Projected GAN . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 StyleGAN2-ADA . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 StyleGAN3 . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions and Discussion 48



LIST OF TABLES

4.1 Performance comparison of GAN models (Binary-class). . . . . . . 18

4.2 Classification Performance of Inception-ResNet-V2 (Binary-class). . 21

4.3 Classification Performance of ResNet50-V2 (Binary-class) . . . . . 22

4.4 Classification Performance of VGG19 (Binary-class). . . . . . . . . 23

4.5 Classification Performance of Inception-V3 (Binary-class). . . . . . 23

4.6 Accuracy comparison of classification models corresponding to data
generated three GAN model architectures (Binary-class). . . . . . . 24

4.7 Performance comparison of GAN models for multi-emotion class ex-
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Classification Performance of Inception-ResNet-V2 (Multi-class). . 29

4.9 Classification Performance of ResNet50-V2 (Multi-class). . . . . . 30

4.10 Classification Performance of VGG19 (Multi-class). . . . . . . . . 30

4.11 Classification Performance of Inception-V3 (Multi-class). . . . . . . 30

4.12 Accuracy comparison of classification models corresponding to data
generated three GAN model architectures (Multi-class). . . . . . . . 31

5.1 Projected GAN: Accuracies for various cut-offs of different ground
truths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 StyleGAN2-ADA: Accuracies for various cut-offs of different ground
truths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 StyleGAN3: Accuracies for various cut-offs of different ground truths. 45

5.4 Combined results showing accuracies for various cut-offs of different
ground truths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



LIST OF FIGURES

2.1 Style-wise artwork distribution in WikiArt dataset. . . . . . . . . . 7

2.2 Frequency distribution for the number of annotators for ArtEmis. . . 9

2.3 Statistics of emotion annotations in ArtEmis dataset. . . . . . . . . 9

2.4 Frequency distribution for the number of annotators for ArtEmisV2.0. 10

2.5 Statistics of emotion annotations in ArtEmisv2.0 dataset. . . . . . . 10

3.1 Computational Framework . . . . . . . . . . . . . . . . . . . . . . 11

3.2 ‘Dominant emotion labeling’ for binaryes class with positive and nega-
tive emotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 ‘Dominant emotion labeling’ for multi-class experiments. . . . . . . 13

3.4 The interpretation of precision and recall for assessing the quality of
generative models. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 FID convergence for various GAN models (Binary-class). . . . . . . 19

4.2 StyleGAN2-ADA: Generated artworks for the positive and negative
emotion classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Projected GAN: Generated artworks for the positive and negative emo-
tion classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 StyleGAN3: Generated artworks for the positive and negative emotion
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Classification Performance of Inception-ResNet-V2 . . . . . . . . 22

4.6 Classification Performance of ResNet50 V2. . . . . . . . . . . . . . 22

4.7 Classification Performance of VGG19. . . . . . . . . . . . . . . . . 23

4.8 Classification Performance of Inception v3 (Binary-class). . . . . . 23

4.9 Illustrations of images of positive and negative classes generated by
StyleGAN2-ADA and predictions made by Inception-ResNet-V2 . . 24

4.10 StyleGAN2-ADA: Generated artwork generated for different emotion
classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.11 Projected GAN: Generated artwork generated for different emotion classes 27

4.12 StyleGAN3: Generated artwork generated for different emotion classes. 27

4.13 FID convergence for various GAN models (Multi-class) . . . . . . . 28

vi



5.1 TTA: ‘Login/Signup Page View’ for both desktop and mobile versions. 34

5.2 TTA: ‘Registration Page View’ for desktop and mobile versions. . . 34

5.3 TTA: ‘Instructions Page View’ for both desktop and mobile versions. 35

5.4 TTA: ‘Main Page View’ for both desktop and mobile versions. . . . 35

5.5 TTA: ‘User Statistics Page View’ for both desktop and mobile versions. 35

5.6 TTA: Distribution of dataset class. . . . . . . . . . . . . . . . . . . 36

5.7 TTA: Distribution of annotations by the evaluators. . . . . . . . . . 39

5.8 Confusion Matrix for the Turing Test for Artist. . . . . . . . . . . . 40

5.9 TTA; Distribution of accuracy corresponding to the real data and eval-
uators’ assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Projected GAN: Accuracies for various cut-offs of different ground
truths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.11 StyleGAN2-ADA: Accuracies for various cut-offs of different ground
truths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.12 StyleGAN3: Accuracies for various cut-offs of different ground truths. 46

5.13 Performance comparison of classifiers for generated images for various
cut-offs of different ground truths. . . . . . . . . . . . . . . . . . . 47

vii



ABBREVIATIONS

CNN Convolutional Neural Networks

DL Deep Learning

GAN Generative Adversarial Networks

DNN Deep Neural Networks

ML Machine Learning

NN Neural Networks

RNN Recurrent Neural Networks

FID Fréchet Inception Distance

KID Kernel Inception Distance

TP True Positive

FP False Positive

FN False Negative

TN True Negative

MCC Matthew’s Correlation Coefficient

ROC Curve Receiver Operating Characteristic Curve

AUC Area Under the Curve

ROC-AUC Area Under the ROC Curve

viii



CHAPTER 1

Introduction

Throughout history, humans have used various art forms such as painting, sculpture,

literature, music, and dance to express their emotions and ideas [1]. Art has also been

used to reflect and comment on society, politics, and cultural norms. It is essential in

contemporary culture and societal issues [2]. Various studies have highlighted the role

of art as a powerful mechanism for evoking an emotional response [3, 4].

For decades after their invention first artificial neural network in the 1950s, compu-

tational models have been underutilized to explore complex human endeavors mainly

due to limited processing capabilities. With increasing computational abilities, compu-

tational approaches were used for performing a broader range of tasks, from simple cal-

culations to complex tasks such as emulating human competence for video games [5].

In the recent past, generative algorithms such as Generative Adversarial Networks

(GANs), Diffusion Models [6, 7, 8], and Variational Autoencoders (VAE) [6, 9, 10]

have emerged as powerful tools for generating visual artworks.

Generative art aims to create unique and exciting visual outputs that the artist does

not predetermine. Artists and painters use their creative abilities to produce visual art-

works through paintings to express their thoughts, ideas, cultural influences, and emo-

tions [11]. The advent of algorithms capable of generating images, texts, and videos

has created exciting propositions. ‘Can computers generate visual artworks with the

same emotional depth and style as human-created art?’ ‘Can computers achieve match

human creativity?’

In this research, we primarily investigate the capabilities of GANs to generate affective

artwork evoking emotional responses resembling those produced by human creations.

We explore how machine learning models can effectively capture emotional attributes in

the generated artwork by implementing GANs to generate affecive paintings and CNN

models for their classification. With these studies, we aim to advance the understand-

ing of the potential of GANs as a tool for creating visually appealing and emotionally

expressive paintings. We use CNN models to classify artwork based on their emotional



attributes. Finally, we have implemented a Turing Test framework for human evaluation

of generated artwork to assess the performance of generative and classification models.

1.1 Generative Adversarial Networks (GANs)

The notion of Generative Adversarial Networks (GANs) was introduced in 2014 by

Goodfellow et al. [12]. GANs comprise two neural network components: the Discrim-

inator model (Discriminator) and the Generative model (Generator). These models are

trained simultaneously, with Generator learning to imitate the training data distribution.

At the same time, Discriminator decides the likelihood of a sample belonging to the

training data rather than the generated data. Training of the Generator aims to maxi-

mize the chances of the Discriminator making errors. The GAN framework employs an

adversarial approach, resembling a competitive game between two players. In this ad-

versarial game, the discriminator learns to accurately distinguish between the real and

generated instances, while the generator aims to minimize the discriminator’s ability to

classify. To illustrate this concept further, imagine a team of forgers (Generators) creat-

ing fake currency and attempting to bypass detection while the police (Discriminator)

strive to catch them. Through this competition, both teams are motivated to enhance

their skills until the fake money becomes virtually unnoticeable from genuine currency.

1.1.1 Conditional GANs

Mirza et al. [13] introduced a method to enhance the control over data generation in

vanilla GANs by incorporating conditioning. In conditional GANs, additional infor-

mation is provided to the unconditioned GAN, typically a class label. This auxiliary

information enables the unconditioned GAN to generate data that aligns with the spe-

cific class label.

1.1.2 StyleGANs

Developed by NVIDIA, Style Generative Adversarial Networks (StyleGANs) [14] has

emerged as a powerful deep learning model. These networks build upon the origi-
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nal GAN algorithm by incorporating insights from style transfer research, leading to

significant advancements in image generation. NVIDIA further refined StyleGAN by

introducing StyleGAN2 [15] in 2019 to incorporate path length regularization and im-

age mixing techniques. StyleGAN2-ADA [16] extended this progress by introducing

the Adaptive Discriminator Augmentation (ADA) training method, allowing the dis-

criminator to adapt and handle diverse generated images, even with limited datasets.

Introduced in 2021, the most recent addition to the StyleGAN series is StyleGAN3 [17].

Despite exhibiting comparable performance to StyleGAN2, StyleGAN3 demonstrates

complete invariance to translation and rotation, even at subpixel levels. This character-

istic makes StyleGAN3 particularly well-suited for applications in video and animation,

opening new possibilities for creating realistic and dynamic visual content. The evalua-

tion of StyleGANs commonly relies on the Fréchet Inception Distance (FID) score [18],

which quantifies the similarity and quality of the generated images compared to real

ones.

1.1.3 Projected GANs

Based on the discovery that the discriminator cannot fully utilize features from deeper

layers of the pretrained model. Sauer et. al. introduced a more efficient approach called

Projected GAN that combines features from different channels and resolutions [19].

This variation of GAN demonstrated compatibility with high-resolution images and

achieved state-of-the-art results on 22 benchmark datasets, as evaluated by the FID

metric. Moreover, Projected GANs exhibit significantly faster convergence than previ-

ous methods, with a convergence speed up to 40 times faster. When applied to WikiArt

painting datasets, Projected GANs were shown to achieve the lowest FID scores, sur-

passing the performance of StyleGAN2-ADA [16] and FastGAN [20]. With the image

resolutions of 256×256 and 1024×1024 datasets (WikiArt data), the FID scores of 27

and 32 were reported, respectively.

1.1.4 Emotion-based Art Generation

Among the few studies that probed the affective attributes of paintings is a research

article titled ‘Art Creation with Multi-Conditional StyleGANs’ [21]. This paper imple-

3



mented StyleGANs to generate art that closely resembles human paintings. The authors

combined ArtEmis and Wikiart datasets to create a comprehensive dataset called En-

richedArtEmis. They employed the StyleGAN2-ADA architecture that supports con-

ditional capabilities to train a multi-conditional GAN. Due to the low resolution of the

generated images, a significant amount of training data was required. Other than the

emotional attribute of the artwork, the conditions considered in the model included art

style, genre, painter, and other associated tags. The generated images produced by

this network were assessed by the authors to be visually compelling and often indis-

tinguishable from human-created art. The model performance was evaluated using the

FID score, with an impressive score of 4.67. The study reported higher FID scores of

10.51 and 9.74 on the metric ‘Emotion Intra-FID’. Other than the FID score, the paper

does not provide any human validation for the quality of generated images.

Another study, ‘The Emotional GAN: Priming Adversarial Generation of Art with Emo-

tion’, probed the affective aspect of paintings [22]. In this article, the authors utilized

WikiArt (2017) [23] and MoMA [24] datasets. Emotions were associated with paint-

ings using a CNN classifier trained on the human-labeled data. The AC-GAN [25]

model was applied to these images to train the GAN and generate art based on emo-

tions. The use of data from different sources with inconsistent labeling strategies is one

of the shortcomings of this study. Also, machine-labeled emotion tags are a potential

noise source due to the model’s under-par performance. Also, the study did not provide

any quantitative evaluation of model performance.

1.2 Prior Studies on Artwork Classification

Zhao et. al. presented a comprehensive evaluation of seven models across three di-

verse datasets to compare their performance in art classification, both with and without

transfer learning [26]. The models were specifically assessed for their ability to classify

genres, styles, and artists. Additionally, they investigated the challenges encountered by

computers when classifying art. The study utilized three prominent painting datasets,

Painting-91 [27], WikiArt-WikiPaintings [26], and MultitaskPainting100k [28], widely

recognized as benchmark datasets in art classification. Notably, the models pre-trained

on ImageNet [29] exhibited the most favorable outcomes in art classification. This find-

4



ing suggests that the classification abilities developed in real-world image classification

tasks can effectively transfer to the domain of art classification. Among the models

tested, ResNeSt (a variant of ResNet [30]) and EfficientNet [31] classifiers presented

the best performance under different experimental conditions.

Aslan et al. introduced a new version of ArtGraph, an artistic knowledge graph for

recognizing emotion in artworks [32]. The ArtEmis dataset [33] was used for training

and testing purposes. They proposed an emotion classification system that integrates

the knowledge graph (ArtGraph) and visual features to enhance the model’s capability

for recognizing emotions evoked by painting. The reported accuracy for binary emo-

tion and multi-emotion classification on the proposed model was 81.57% and 45.39%,

respectively. The study suggests a complex interconnection between style, genre, and

emotion that can be harnessed for various applications including automated art anal-

ysis. Despite its merits, the model evaluation in this study solely relied on accuracy

as a metric, without considering other vital metrics such as precision, recall, F1-score,

and Matthew’s correlation coefficient (MCC). As mentioned in Chapter 2 the ArtEmis

dataset exhibits class imbalance. Therefore, it is essential to report the above-mentioned

metrics for better insights into the potential biases of the model.

1.3 Motivation

While previous studies have probed various aspects of visual artwork generation, its

emotional attributes and affective quality haven’t received much attention.

In one study that focused on the affective quality of the artwork, a multi-conditional

model was developed by incorporating emotion as one of the five conditions. How-

ever, there is a significant gap in the human evaluation of computer-generated affective

artwork. Aslang et. al. identified several gaps in their survey involving emotion recog-

nition in visual artworks [32]. The lack of a well-rounded assessment of models was

notable with the sole focus on accuracy as the metric of evaluation. Also, the study did

not provide a clear interpretation of their results, leaving room for further analysis and

interpretation, discussed in further chapters.

Assessing and appreciating emotions is a complex task even for humans due to a com-

plex interplay of multiple factors and subjective judgements [34]. This research aims

5



to generate visual artworks with desirable emotional attributes using GANs and assess-

ment of emotion using classification models. The idea is also to assess the affective

attributes of the generated artworks using, both, the classifiers and human subjects.

GANs and classifier models employ distinct architectures for feature selection from

the training dataset. Examining their results is an intriguing and interesting task given

the disparity in their approach. Comparing and contrasting can provide valuable in-

sights into the differences between GANs and classifiers with consequences for their

performance and ability to capture relevant features. We intend to assess the results

from the classifiers through human evaluation to examine the alignment between the

machine label and human perceptual judgment. In addition to the conventional evalua-

tion metrics such as FID, KID, precision, and recall, the inclusion of human assessment

provides valuable insights into the disparities between the machine evaluation process

and human judgment. Our study aims to bridge the gap between human and machine-

generated artwork, contributing to future advancements in Computational Creativity.
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CHAPTER 2

Data Compilation and Annotation

In this research, we used data of artworks and annotations describing their emotional

attributes from ArtEmis [33], ArtEmis Dataset V2.0 [35], and the WikiArt dataset [23].

2.1 WikiArt

Figure 2.1: Style-wise artwork distribution in WikiArt dataset.

WikiArt Dataset [23] contains 81,444 visual artwork images with 27 different art styles

and provides information about their style, genre, artist’s name, and title. The data was

obtained from https://archive.org/details/wikiart-dataset (Last

Updated on 29 January 2020). Figure 2.1 presents the distribution of images across

https://archive.org/details/wikiart-dataset


styles. Among the most frequent images are those from the classes Impressionism, Re-

alism, Romanticism, Expressionism, Post-Impressionism, Symbolism, Art-Nouveau,

Baroque, and others.

2.2 ArtEmis

ArtEmis dataset [33] contains 454,684 emotion attributions and explanations from hu-

man volunteers for 80,031 artworks from WikiArt. All WikiArt artworks were anno-

tated by asking at least five annotators per artwork to express their dominant emotional

reactions. They are required to decide their emotional reactions by looking at the art-

work and explaining their response. The annotators were asked to indicate their dom-

inant reaction by selecting one emotion among the eight emotions (anger, amusement,

awe, contentment, disgust, excitement, fear, and sadness) or as ‘something-else,’ the

ninth option. This ‘something-else’ option allows the annotators to express emotions

not explicitly listed and to explain why they might not have had any strong emotional

reaction, such as feeling indifferent to the artwork. In all cases, after this step, the an-

notator was asked to provide a detailed explanation for their choice in the free text that

would include specific references to visual elements in the artwork.

2.2.1 ArtEmis Statistics

Each artwork from WikiArt was annotated by a minimum of five individuals, and 701

had more than 41 annotators. Around 96% of the total artworks were annotated by

either 5 or 6 annotators, as shown in Figure 2.2. On average, there were 5.68 annotators

per artwork. Contentment was the most frequently annotated emotion, with 126,129

annotations, while anger was the least frequent, with only 6,640 annotations, as shown

in Figure 2.3.

For the present study, the emotions were categorized into positive (amusement, con-

tentment, awe, excitement) and negative (anger, disgust, fear, sadness) emotions, with

282,023 annotations for the positive and 119,685 annotations for the negative class as

depicted in Figure 2.3. The positive labels accounted for 62% of all annotations, with

26% negative labels, and the rest were of the ‘something-else’ class.

8



Figure 2.2: Frequency distribution for the number of annotators for ArtEmis.

Figure 2.3: Statistics of emotion annotations in ArtEmis dataset. (a) Number of an-
notations for each of the nine emotion classes. (b) Number of annotations
for the positive (amusement, contentment, awe, excitement) and negative
(anger, disgust, fear, sadness) emotions, and those for ‘something-else’.

2.3 ArtEmis v2.0

The ArtEmis v2.0 [35] is a combined dataset that represents an extended version of

the original ArtEmis dataset, with an additional 260,533 annotations totaling 692,682

annotation instances. There is no significant rise in the number of artworks. There are

notable emotional biases with higher instances of contentment, awe, and sadness. The

positive emotions class constitutes almost 2.4 times the number of annotations in the

negative emotions class, as shown in Figure 2.3.
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2.3.1 ArtEmis V2.0 Statistics

Figure 2.4: Frequency distribution for the number of annotators for ArtEmisV2.0.

Figure 2.5: Statistics of emotion annotations in ArtEmisv2.0 dataset. (a) Number of
annotations for each of the nine emotion classes. (b) Number of annotations
for the positive (amusement, contentment, awe, excitement) and negative
(anger, disgust, fear, sadness) emotions, and those for ‘something-else’.

The combined dataset exhibits an average of 8.56 annotations per artwork. The fre-

quency distribution for the number of annotators is shown in Figure 2.4. The new anno-

tations were intentionally added to address the class imbalance of emotions. Most of the

new annotations belong to the class of sadness, fear, and disgust, thereby increasing the

proportion of negative class instances and mitigating the class imbalance in the dataset.

Positive annotations account for 47%, while negative annotations constitute 43% of the

total annotations shown in Figure 2.5.
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CHAPTER 3

Methodology

Toward achieving the thesis objectives, we put together a computational framework

(Figure 3.1) involving annotating artworks with the dominant emotion, implementing

generation and classification models, and human assessment of generated images. The

experiments used two broad paradigms; binary emotion class, in which the emotions

were bundled into positive and negative classes, and multi-emotion class, in which each

emotion was treated separately.

Figure 3.1: Computational Framework

3.1 Computational Framework

Figure 3.1 depicts the computational framework implemented for generating and classi-

fying affective artworks. It comprises data collection, preprocessing, dominant emotion

labeling, implementation of generation and classification models, and their subsequent

evaluations.

Artworks from ArtEmis V2.0 dataset [35] were used as training data for the generation

task. The preprocessing steps used to prepare the dataset are discussed in Section 3.1.1.

The studies were conducted in two stages. To begin with, we treated the data in binary

classes, where the emotions were categorized as positive or negative. Such coarse-

graining simplified the image classification and generation problem by reducing the



number of classes. Going further, we trained GANs using multi-emotion class labels

(Amusement, Awe, Contentment, Fear, and Sadness) for five emotion classes. The qual-

ity of the generated images was then evaluated using the Fréchet Inception Distance

(FID) score [18], Kernel Inception Distance (KID) [36], precision [37], and recall [37]

Classification models were trained for binary and multi-class experiments using the

ArtEmis V2.0 dataset [35], with variations in the preprocessing steps. The perfor-

mance of the classification model was evaluated in terms of accuracy, precision, recall,

F1-score, Matthews correlation Coefficient (MCC), Receiver Operating Characteristic

(ROC) curve, and Precision-Recall curves. These models, including GANs and classi-

fiers, aim to capture the underlying data distribution and extract visual features such as

colors, objects, and styles. The GANs and classifiers underwent further human evalua-

tion using two types of assessments: ‘The Turing Test’ and ‘Guess the Emotion.’ The

Turing Test evaluates the ability of the generative model to deceive human evaluators,

whereas in the ‘Guess the emotion’ task, evaluators assign emotional attributes to dis-

played images. It is important to note that human evaluation was conducted exclusively

for the binary emotion classification experiment.

3.1.1 Dominant Emotion Labeling

Tagging artworks with emotion labels in ArtEmis was done with the help of multiple

annotators leading to multiple labels assigned to the same artwork. For instance, the

1876 artwork ‘Sowar - The Messenger of The Government’ in the Realism genre by

Vasily Vereshchagin has two annotations each for amusement, contentment, and fear,

and one annotation for awe. On average, each painting had 8.56 annotations, with

each annotator assigning one emotion. To use these data for training image generation

models and classifiers, we needed a single dominant emotion unambiguously attached

to each artwork. For this purpose, we used a many-to-one function f: X → Y, where

X represents the set of artworks and Y represents the set of emotions. This function

ensures that each artwork was tagged with a single dominant emotion. The emotion

was considered as dominant as long as its frequency was beyond a cutoff threshold for

a given artwork.

Figure 3.2 illustrates the preprocessing steps for the binary emotion classes. We aggre-
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Figure 3.2: ‘Dominant emotion labeling’ for binary classes with positive and negative
emotions.

gated the eight original emotions into positive and negative categories. For experiments

with binary emotion classes, we used a cut of 66.6%, and the emotion label was decreed

dominant as long as two-thirds or more of the total annotations are from that class. For

example, if an artwork has seven positive and three negative annotations, it was de-

clared as having positive dominant emotion. Artworks that did not have a dominant

emotion were dropped out to reduce noise in the training data. Not all artworks evoke

an unambiguous dominant emotion and may evoke mixed affective responses thereby

introducing noise into the training dataset. Using the criterion for establishing the dom-

inant emotion with each image, we were left with 41,684 artworks, of which 25,953

were put in the positive class, and the rest of 15,731 were slotted in the negative class.

Figure 3.3: ‘Dominant emotion labeling’ for multi-class experiments.

13



Similarly, for the multi-emotion class experiment depicted in Figure 3.3, every artwork

was linked with a dominant emotion if it had 50% or more annotations. The painting

was dropped from the dataset otherwise to avoid images with noisy labels. We were left

with a total of 19,872 artworks after dominant emotion labeling. These data had images

of the following emotion classes: Amusement (1,026), Awe (1924), Contentment (8431),

Fear (3,521), and Sadness (4,970).

3.1.2 Generative Models

In this study, we used Generative Adversarial Networks (GANs) as generative models to

create artwork with desired emotional attributes. The following are the various aspects

of the image generation.

1. Dataset Preprocessing: To meet the requirements of the generative model, the

ArtEmis dataset was subjected to preprocessing as described in Section 3.1.1.

The preprocessing steps involved data cleaning and normalization. All the images

were downsized to 256×256 resolution.

2. GANs: The study utilized the Projected GANs [19] with the FastGAN Lite gen-

erator [20], StyleGAN2-ADA [16] and StyleGAN3. In, both, StyleGANs, the

adaptive discriminator augmentation (ADA) technique was employed. This tech-

nique is specifically utilized when the dataset available for training is small. The

ADA mechanism plays a crucial role in stabilizing the training process under lim-

ited data regimes and effectively mitigates the risk of overfitting the model [16].

All these GANs were trained on the preprocessed dataset for a certain number

of ‘kimg’. The number of images in thousands needed to show to the discrimi-

nator at the time of training is referred to as kimg. The hyperparameters for the

GANs were set based on the ‘configs.md’ file provided in the GitHub repository

of StyleGANs.

3. Evaluation of Generated Images: The quality of the generated images was eval-

uated using the FID score, a widely accepted metric for assessing the quality of

image generation models [18]. This score measures the distance between fea-

ture vectors calculated for real and generated images. Among all the metrics

computed, FID score is the most indicative of the visual quality of the gener-

ated images. A lower FID score often corresponds to better visual results [38].

Other than the FID score, we have also used the KID score, precision [37] and
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recall [37]. The interpretation of precision and recall is way different when used

for assessing generative models compared to their use for evaluating classification

models (Figure 3.4).

Figure 3.4: The interpretation of precision and recall for assessing the quality of genera-
tive models. (a) Probability Distributions of Real (Pr) (blue) and Generated
Images (Pg) (red). (b) Precision refers to the likelihood that a randomly
selected image from Pg belongs to the set of real images, Pr. (c) Recall rep-
resents the probability that a randomly selected image from Pr is included
in the set of generated images, Pr.

4. Artwork Generation: The trained GAN models were utilized to generate art-

work images. Specifically, we generated 2000 artworks per emotion class for

each GAN model.

3.1.3 Classification Models

Classification is a crucial aspect of this thesis as it assesses the performance of the

generative model outcomes. The following are the various aspects of the classification

task.

1. Preprocessing the Dataset: As mentioned in Section 3.1.1, further to process-

ing done earlier, the ArtEmis dataset was cleaned and normalized to meet the

requirements of the classification algorithm. The results were found to be consis-

tent between experiments done with two variants of image resolutions (224×224

and 256×256).

2. Classification Algorithms: Inception-ResNet-V2 [39], ResNet50-V2 [30], Inception-

V3 [40], and VGG19 [41] classifiers were used for classification experiments.

Transfer learning methods provided by the Keras library were used for efficient

model training.
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3. Model Evaluations: Metrics such as accuracy, precision, recall, MCC, F1-score,

ROC, and precision-recall curve were employed to evaluate the effectiveness of

the models in classification tasks. These metrics provide insights into the perfor-

mance and effectiveness of the classification algorithms.

4. Validation of Generative Models: The images generated by the models were

evaluated using the Classifier to assess their recognition and classification ac-

curacy. This validation step helps determine the effectiveness of the generative

models in producing images that the classification algorithm can label correctly.

3.1.4 Human Assessment

We created a testing framework referred as the ‘Turing Test for Artist’ (TTA) to evalu-

ate the effectiveness of the generative algorithms in producing real-like images with a

desired emotional response in its viewers. After showing a random image from the real

or generated images, the binary classification task records the evaluator’s assessment of

the image as fake (computer-generated) or real artwork. For the same image, the test

also registers their judgement on the emotional response as positive and negative.

This evaluation serves two primary purposes. First, to assess the quality of the generated

images in deceiving human evaluators. And, second to analyze the correlation between

machine and human judgments on emotional quality of the artwork. Details of the

experiment design and results of TTA are provided in Chapter 5.

3.2 Experiments

Two paradigms were used when conducting experiments: binary emotion classes and

multi-emotion classes. In the first paradigm, we focused on binary emotion classes,

namely, positive and negative emotions. This choice was made for two reasons. Firstly,

it is easier for classification models to handle a lesser number of classes. Secondly, it

is also easier for humans to understand and interpret emotions when bundled into two

broad categories. The GANs (Projected GAN, StyleGAN2-ADA, and StyleGAN3) and

classification models were trained on the processed ArtEmis dataset comprising positive

and negative images. The human assessment (TTA) was also conducted for the binary

class experiment (discussed in detail in Chapter 5).
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In the second paradigm, we worked with multi-emotion classes using five of the eight

available emotions. Three emotion classes (Anger, Disgust, and Excitement) were

excluded due to the limited number of associated artworks available for training the

GANs. These emotions had fewer than a thousand artworks, far less than needed for

effectively training a GAN. The data of artworks with the following emotions classes

were used for the multi-emotion class experiments: Amusement, Awe, Contentment,

Fear and Sadness. Similar to the earlier experiments, GANs were trained to generate

2,000 images per emotion, resulting in 10,000 generated artworks for each GAN. classi-

fication models were then trained using these generated images. A detailed explanation

of these experiments can be found in Chapter 4.
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CHAPTER 4

Generation and Classification of Affective Artwork

Using the processed dataset (Chapter 2) and following the described methodology (Chap-

ter 3), below, we present the results of results and observations from generative and

classification models for the binary and multi-class paradigms.

4.1 Experiments with the Binary Paradigm

4.1.1 Generative Models

Table 4.1 presents the performance evaluation of generation models implementing StyleGAN2-

ADA, Projected GAN, and StyleGAN3 architectures.

Generative Model FID Score ↓ KID Score ↓ Precision Recall
StyleGAN2-ADA 7.85 0.00156 0.581 0.235
Projected GAN 8.42 0.00183 0.700 0.144
StyleGAN3 15.19 0.00565 0.568 0.248

Table 4.1: Performance comparison of GAN models (Binary-class).

On the FID score, Projected GAN performed better in the initial epochs but was over-

taken by StyleGAN2-ADA at 2000 kimg, as shown in Figure 4.1. The FID scores for

StyleGAN2-ADA, ProjectedGAN, and StyleGAN3 were 7.85, 8.42, and 15.19, respec-

tively, with StyleGAN2-ADA achieving the best FID score. In terms of KID score,

StyleGAN2-ADA performed best with a score of 0.00156, compared to that of Pro-

jectedGAN (0.00183) and StyleGAN3 (0.00565). The comparative performance of

GANs was consistent for FID and KID scores. It was observed that the model with

a lower FID score also has a lower KID score and suggests better performance. The

ProjectedGAN had the best precision score suggesting its superior ability to produce

high-quality images similar to real ones. The recall score indicates the diversity of the

generated images, and results suggest that StyleGAN3 captures most features from the

training data. In the early epochs, the models had a higher precision and lower recall,



but in later epochs, the models traded precision for recall as both are necessary for ef-

fective image generation. These experiments were primarily conducted on IIIT-Delhi

GPU servers with Nvidia RTX 3090 having 24 GB VRAM. With these hardware con-

figurations, ProjectedGAN, StyleGAN2-ADA, and StyleGAN3 models progressed at

4000, 2000, and 1000 kimg per day. The fastGAN_lite generator is twice as fast as

StyleGAN2-ADA and four times faster than StyleGAN3.

Figure 4.1: FID convergence for various GAN models (Binary-class).

Figure 4.1 depicts the learning curves of three GANs. The choice of the ‘kimg’ cut-off

was made on the basis of the model convergence. As seen in the figure, in the ini-

tial stages ProjectedGAN performs well demonstrating faster convergence compared

to StyleGANs. However, as the training progresses, StyleGAN performance surpasses

ProjectedGAN. We, therefore, infer that for low-end GPU servers, ProjectedGAN is a

favorable option as it requires less VRAM and computational power. The faster conver-

gence of ProjectedGAN makes it an efficient choice during the early stages of training.

Figure 4.3, Figure 4.2, Figure 4.4 present illustrations of artworks generated by all each

of the three models suggestive of positive and negative emotions.
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Figure 4.2: StyleGAN2-ADA: Generated artworks for the positive and negative emo-
tion classes.

Figure 4.3: Projected GAN: Generated artworks for the positive and negative emotion
classes.

Figure 4.4: StyleGAN3: Generated artworks for the positive and negative emotion
classes.
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4.1.2 Classification Models

We utilized Inception-ResNet-V2, ResNet50, VGG19, and Inception-V3 models for

classification studies. 5-fold cross-validation was done to achieve reliable results know-

ing the stochastic nature of classification algorithms. By using different subsets of

training and test data, the cross-validation strategy helps to mitigate stochasticity and

achieve robust inferences.

The classification models were trained for a fixed number of epochs (30) with the Adam

optimizer. We evaluated the accuracy, precision, recall, F1-score, MCC, ROC-AUC,

and precision-recall curve for each fold. ROC curves summarize the trade-off between

true and false positive rates across various probability thresholds, providing insights

into the model’s predictive performance. Similarly, precision-recall curves illustrate the

exchange between the true positive rate and positive predictive value at different prob-

ability thresholds. A subset of 10,000 artworks was chosen from each emotion class

based on the presence of a dominant emotion. Due to the balanced class distribution,

the weighted and macro averages yielded similar results. For a balanced representa-

tion, 2,000 artworks were generated for each emotion class yielding 4,000 paintings per

GAN.

Inception-ResNet-V2 outperformed all other classifiers on ROC-AUC, achieving a mean

value 0.791 in five-fold cross-validation. Figure 4.5 presents the precision-curve and

ROC for this Classifier. Table 4.2 provides an overview of the datasets, where the ‘Test’

column represents the test set obtained from the train-test split of the ArtEmis dataset.

The Inception-ResNet-V2 model exhibits no notable class biases evident from its com-

parable performance on precision, recall, F1-score, and MCC score.

Dataset Accuracy Precision Recall F1-score MCC
Test 0.716 0.716 0.716 0.716 0.432
Projected GAN 0.683 0.695 0.683 0.679 0.378
StyleGAN2-ADA 0.646 0.649 0.646 0.645 0.295
StyleGAN3 0.648 0.658 0.648 0.642 0.307

Table 4.2: Classification Performance of Inception-ResNet-V2: Accuracy, Precision,
Recall, F1-score, and MCC for images generated by different models
(Binary-class).

ResNet50-V2 demonstrated superior performance to other models on average accuracy,

recall, precision, F1-score, and MCC score on the Test dataset reported in Table 4.3.
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Figure 4.5: Classification Performance of Inception-ResNet-V2: (a) ROC Curve and
(b) Precision-Recall Curve

The mean ROC-AUC for ResNet50-V2 was found to be 0.790, slightly lower than that

of Inception-ResNet-V2. The details of ROC and Precision-recall curve are presented

in Figure 4.6.

Figure 4.6: Classification Performance of ResNet50 V2: (a) ROC Curve and (b)
Precision-Recall Curve.

Dataset Accuracy Precision Recall F1-score MCC
Test 0.720 0.720 0.720 0.720 0.440
Projected GAN 0.699 0.703 0.699 0.698 0.402
StyleGAN2-ADA 0.658 0.658 0.658 0.658 0.317
StyleGAN3 0.652 0.661 0.652 0.648 0.313

Table 4.3: Classification Performance of ResNet50-V2: Accuracy, Precision, Recall,
F1-score, and MCC for images generated by different models (Binary-class)

The average ROC-AUC for VGG19 was 0.768, indicating its superior performance in

capturing the trade-off between true positive rate and false positive rate. Furthermore,

VGG19 achieved an average accuracy of 69.9%. Detailed results for all evaluation

metrics can be found in Table 4.4. The ROC and precision-recall curves for VGG19 are

presented in Figure 4.7, providing additional insights into its classification performance.
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Figure 4.7: Classification Performance of VGG19: (a) ROC Curve and (b) Precision-
Recall Curve.

Dataset Accuracy Precision Recall F1-score MCC
Test 0.699 0.701 0.699 0.698 0.400
Projected GAN 0.697 0.706 0.697 0.693 0.402
StyleGAN2-ADA 0.654 0.656 0.654 0.653 0.311
StyleGAN3 0.652 0.658 0.652 0.693 0.309

Table 4.4: Classification Performance of VGG19: Accuracy, Precision, Recall, F1-
score, and MCC for images generated by different models (Binary-class).

The Inception-v3 model achieved a mean ROC-AUC of 0.762 and an accuracy of 0.700.

Detailed results for all evaluation metrics can be found in Table 4.5. Figure 4.5 show-

cases the ROC-AUC and Precision-recall curve specifically for the Inception-v3 model.

Figure 4.8: Classification Performance of Inception v3: (a) ROC Curve and (b)
Precision-Recall Curve (Binary-class).

Dataset Accuracy Precision Recall F1-score MCC
Test 0.700 0.700 0.700 0.700 0.400
Projected GAN 0.670 0.678 0.670 0.666 0.348
StyleGAN2-ADA 0.638 0.638 0.638 0.637 0.277
StyleGAN3 0.635 0.640 0.635 0.631 0.274

Table 4.5: Classification Performance of Inception-V3: Accuracy, Precision, Recall,
F1-score, and MCC for images generated by different models (Binary-class).
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As shown in Table 4.6, the ResNet50-V2 model outperformed other models achiev-

ing the highest accuracy of 0.720. Following closely behind, the Inception-ResNet-

V2 model had an accuracy of 0.716, whereas the Inception-V3 and VGG19 models

achieved an accuracy of 0.700 and 0.699, respectively. On the ROC-AUC metric, the

Inception-ResNet-V2 model exhibited the best performance and achieved a score of

0.792. The ResNet50-V2 model followed closely with a score of 0.790, while the

VGG19 and Inception-v3 models reached 0.768 and 0.762, respectively.

Classification Model Test Projeted GAN StyleGAN2-ADA StyleGAN3
Inception-ResNet-V2 0.716 0.683 0.646 0.648
ResNet50-V2 0.720 0.699 0.654 0.652
Inception-V3 0.700 0.670 0.638 0.635
VGG19 0.699 0.697 0.654 0.652

Table 4.6: Accuracy comparison of classification models corresponding to data gener-
ated three GAN model architectures (Binary-class).

Figure 4.9: Illustrations of images of positive (a) and negative (b) classes generated by
StyleGAN2-ADA. Green and red dots represent the Inception-ResNet-V2
classifier prediction as Positive and Negative emotion class, respectively.

Figure 4.9 showcases illustrations of images of positive and negative classes generated

by StyleGAN2-ADA model and predictions made by Inception-ResNet-V2. We sur-

mise that the classifier predicts the intended emotion with reasonably good accuracy

for most of the generated artwork; however, there are occasional discrepancies in ap-

proximately 30-35% of the cases. This discrepancy suggests that the generation and

classification models successfully capture relevant features of artworks. Going further,

we conducted a human evaluation to assess the results from both the generative and

classification models.
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Aslan et. al. [32] analyzed the recognition of emotions evoked by artworks using vi-

sual features and knowledge graph embeddings and reported an accuracy of 81.57% for

the binary classification. Notably, the logic of dominant emotion labeling used in this

was distinctly different, and each artwork was assigned the most frequently occurring

emotion. For instance, if an artwork receives annotations from 10 users, 6 indicating a

positive emotion, 3 with a negative emotion, and 1 tag suggesting ‘something else’, it

was labeled as having a positive emotion. Consequently, the dataset exhibits a signifi-

cant class imbalance, with approximately 78% positive emotion artworks, 21% negative

emotion artworks, and the remaining artworks falling into other categories. This class

imbalance is also evident in the case of multiple classes. It is worth mentioning that this

research article lacked inclusions of crucial evaluation metrics such as precision, recall,

and F1-score essential for identifying potential biases within the classifier.

Considering evaluation metrics beyond accuracy is essential to address the class imbal-

ance and potential biases. Reliance on ‘accuracy’ as a sole metric can lead to misleading

interpretations. Our study utilized the ArtEmis V2.0 dataset, demonstrating less bias

than ArtEmis V1.0. We employed 10,000 images per class and split the dataset into

an 80:20 training-to-test ratio. Our accuracy on the test data was 72%, which is lower

than the research above due to differences in the test dataset. However, we conducted a

comprehensive evaluation using precision, recall, F1-score, ROC, and precision-recall

curves to assess the model’s performance.

Our model demonstrated resilience to class imbalance since we had an equal number

of samples per class during training. The evaluation metrics, including accuracy, preci-

sion, recall, and F1-score, were similar, indicating a lack of class imbalance. Table 4.6

highlights that the ResNet50-V2 model outperforms other models, aligning with human

evaluation discussed in Chapter 5. While the Inception-ResNet-V2 model achieved the

best ROC-AUC score, there is a close competition between Inception-ResNet-V2 and

ResNet50-V2.

4.2 Experiments with Multi-Class Paradigm

Following exploring the binary class problem, we extended our experiments to address

the same problem in a multi-class setting. The multi-class problem involved a total
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of five emotions. The data preprocessing and image selection steps were carried out

as described in Chapter 3. The framework used for the multi-class problem remained

consistent with the basic framework depicted in Figure 3.1. We trained three GANs:

ProjectedGAN with FastGAN-lite generator, StyleGAN2-ADA, and StyleGAN3.

4.2.1 Generative Models

Generative Model FID Score ↓ KID Score ↓ Precision Recall
Projected GAN 9.36 0.00136 0.630 0.190
StyleGAN2-ADA 9.52 0.00233 0.648 0.240
StyleGAN3 10.41 0.00345 0.584 0.359

Table 4.7: Performance comparison of GAN models for multi-emotion class experi-
ment.

Figure 4.10: StyleGAN2-ADA: Generated artwork generated for different emotion
classes - (amusement, awe, contentment, fear, and sadness)

Table 4.7 presents the results obtained with various GAN models. The performance of

models was evaluated using FID, KID, Precision, and Recall scores. The FID scores for

ProjectedGAN, StyleGAN2-ADA, and StyleGAN3 were 9.36, 9.52, and 10.41, respec-

tively. On KID metric, ProjectedGAN achieved the best performance with a score of

0.00136, followed by StyleGAN2-ADA with 0.00233, and StyleGAN3 with 0.00345.

The ranking GANs based on FID and KID scores are consistent. It was observed that

the model with a lower FID score also had a lower KID score, indicating better per-
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Figure 4.11: Projected GAN: Generated artwork generated for different emotion classes
- (amusement, awe, contentment, fear, and sadness)

Figure 4.12: StyleGAN3: Generated artwork generated for different emotion classes -
(amusement, awe, contentment, fear, and sadness)

formance. The precision values for ProjectedGAN, StyleGAN2-ADA, and StyleGAN3

were 0.630, 0.648, and 0.538, respectively, suggesting that the generator produced high-

quality images similar to real ones. The recall values for ProjectedGAN, StyleGAN2-

ADA, and StyleGAN3 were 0.190, 0.240, and 0.359, respectively. A higher recall

score indicates that the generator captured more features from the real data, resulting
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in a diverse set of generated images. Initially, the models exhibited higher precision

and lower recall, but as the number of epochs increased, they traded precision for re-

call, recognizing the importance of both aspects for effective image generation. The

same computational resources were used for binary and multi-class classification ex-

periments.

Figure 4.13: FID convergence for various GAN models (Multi-class)

Figure 4.13 shows the learning curves of three GANs pointing to the convergence mod-

els. The number of ‘kimgs’ was selected based on the convergence pattern, similar to

the previous analogous experiment. In the case of multi-conditioned training, Project-

edGAN exhibited good performance and demonstrates faster convergence compared to

StyleGANs. Therefore, for low-end GPU servers, Projected GAN should be a preferred

option as it requires less VRAM and computational power. The efficient convergence of

ProjectedGAN makes it well-suited for the initial stages of training. Overall, the learn-

ing curves of the three GANs overlap, indicating minimal differences between their

performances.

Figure 4.10, Figure 4.11, and Figure 4.12 represent samples of generated artworks evok-

ing specific emotional attributes.
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4.2.2 Classification Models

In this study, we utilized widely recognized classification models (Inception-ResNet-

V2, ResNet50, VGG19, and Inception-V3), similar to the binary paradigm. The clas-

sification models were trained for a fixed number of epochs (50) using 5-fold cross-

validation with the Adam optimizer. Notably, we observed that models in multi-class

scenarios required a higher number of epochs to reach the saturation point. The evalu-

ation metrics including accuracy, precision, recall, and F1-score were assessed for each

fold, and the average results across all five folds are presented in respective sections.

Our experiment focused on five specific emotion classes, aligning them with the GANs

used: Amusement, Awe, Contentment, Fear, and Sadness. Initially, the models were

evaluated using the test data, and subsequently, the same models were employed to

assess the generated images from the GANs. Precision, recall, and F1-score were com-

puted, and the weighted average was reported. We ensured a balanced representation of

the generated images by generating 2,000 artworks for each emotion class, resulting in

a dataset with 10,000 paintings per GAN.

Among all the classifiers, Inception-ResNet-V2 achieved the highest accuracy, preci-

sion, recall, and F1-score on the test dataset, with values of 54.6%, 52.7%, 54.6%, and

53.2% respectively, provided in Table 4.8.

Dataset Accuracy Precision Recall F1-score
Test 0.546 0.527 0.546 0.532
Projected GAN 0.480 0.544 0.480 0.455
StyleGAN2-ADA 0.389 0.454 0.389 0.346
StyleGAN3 0.369 0.423 0.369 0.336

Table 4.8: Classification Performance of Inception-ResNet-V2: Accuracy, Precision,
Recall, and F1-score, for images generated by different models (Multi-class).

The test accuracy, precision, recall, and F1-score for ResNet50-V2 are reported as

53.4%, 52.2%, 53.7%, and 52.9%, respectively. The corresponding results of ResNet50-

V2 can be found in Table 4.9.

The test accuracy, precision, recall, and F1-score for VGG-19 are reported as 52.7%,

50.6%, 52.7%, and 50.9%, respectively. The corresponding results of VGG-19 can be

found in Table 4.10.

Inception-V3 achieved a test accuracy of 51.4%, precision of 50.2%, recall of 51.4%,
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Dataset Accuracy Precision Recall F1-score
Test 0.537 0.526 0.537 0.529
Projected GAN 0.476 0.526 0.476 0.452
StyleGAN2-ADA 0.391 0.439 0.391 0.361
StyleGAN3 0.371 0.410 0.372 0.342

Table 4.9: Classification Performance of ResNet50-V2: Accuracy, Precision, Recall,
and F1-score, for images generated by different models (Multi-class).

Dataset Accuracy Precision Recall F1-score
Test 0.527 0.506 0.527 0.509
Projected GAN 0.500 0.569 0.569 0.481
StyleGAN2-ADA 0.384 0.4 0.384 0.354
StyleGAN3 0.373 0.437 0.373 0.339

Table 4.10: Classification Performance of VGG19: Accuracy, Precision, Recall, and
F1-score, for images generated by different models (Multi-class).

and F1-score of 50.6%. These results are presented in Table 4.11.

Dataset Accuracy Precision Recall F1-score
Test 0.514 0.502 0.514 0.506
Projected GAN 0.460 0.495 0.460 0.442
StyleGAN2-ADA 0.373 0.418 0.373 0.348
StyleGAN3 0.344 0.376 0.344 0.320

Table 4.11: Classification Performance of Inception-V3: Accuracy, Precision, Recall,
and F1-score, for images generated by different models (Multi-class).

Despite the imbalance in the training data, no substantial difference was observed be-

tween the accuracy and weighted average of F1-scores. The 10,000 generated im-

ages from GANs (Projected GAN, StyleGAN2-ADA, StyleGAN3) were uniformly dis-

tributed across all classes. This equitable distribution results in smaller differences

between accuracy, precision, recall, and F1-score. In the research, Aslan et. al. [32]

implemented multi-emotion classification using 8 classes and achieved an accuracy of

45.39%. In the classification problem, it is well-known that as the number of classes

increases the number of prediction options and the chances of making mistakes also

increase. Consequently, increasing the number of classes in the classifier decreases ac-

curacy, precision, recall, and the F1-score. We provide a range of evaluation metrics

that suggest the absence of class bias in our model.

On the test dataset, Inception-ResNet-V2 outperformed all other classifiers as men-

tioned in Table 4.12. The table offers a comprehensive comparison of all classifiers
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Classification Model Test Projected GAN StyleGAN2-ADA StyleGAN3
Inception-ResNet-V2 0.546 0.480 0.389 0.369
ResNet50-V2 0.537 0.476 0.391 0.371
Inception-V3 0.514 0.460 0.373 0.344
VGG19 0.527 0.500 0.384 0.373

Table 4.12: Accuracy comparison of classification models corresponding to data gener-
ated three GAN model architectures (Multi-class).

suggesting comparable performances. However, when examining the classification per-

formance of the generated images, VGG19 demonstrated good performance in clas-

sifying Projected GAN and StyleGAN3 generated images, whereas ResNet50-V2 ex-

celled in classifying StyleGAN2-ADA generated images. Furthermore, we observed

that classifiers results were more accurate for the Projected GAN generated in both

these paradigms.

4.3 Observations

According to the study by Brock et al. (2018) [42] and Heusel et al. (2017) [18], having

more data can improve the Fréchet Inception Distance (FID) score of generative image

models, as a more extensive dataset provides the model with more examples to learn

from and can help to reduce overfitting. Similarly, Karras et al. (2017) [43] found that

a larger dataset size can help to improve the quality of generated images and reduce the

FID score.

Consistently, we find that increasing the number of training images per class can reduce

the FID score, indicating that the generated images correlate more with the training

images. It is consistent with the findings of Heusel et al. (2017) and Karras et al. (2017)

mentioned above. However, as noted by Zhang et al. (2018) [44], many factors can

affect the relationship between dataset size and FID score. It is important to consider

these factors in optimizing the performance of generative image models.

Among the three GANs evaluated, StyleGAN2-ADA demonstrated a balanced perfor-

mance in terms of precision and recall. It achieved good FID and KID scores, indicating

high similarity between generated and real images and high precision and recall scores

for both experiments. StyleGAN3 excelled in recall, surpassing the other models. A

higher recall score implies that the model captures more features than the others, indi-
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cating greater diversity in the generated images. Projected GAN performs well in FID,

KID, and precision, but its recall score is significantly lower. It is a good model choice

for scenarios with limited computational power.

In the context of GANs, precision, and recall are crucial metrics for evaluating perfor-

mance. Precision assesses the accuracy of the generator in producing realistic images

that closely resemble the real ones. A higher precision signifies high-quality image gen-

eration. On the other hand, recall measures the proportion of high-quality samples in

the generated dataset, reflecting the facility of GANs to capture important features from

the original dataset. Precision and recall present a trade-off between image quality and

diversity. A higher precision may come at the expense of diversity, while a higher recall

may sacrifice image quality. Striking a balance between precision and recall is essential

for generating high-quality and diverse images [21]. We examined the trade-offs of our

three GANs. Projected GANs prioritize quality over diversity, whereas StyleGAN3 pri-

oritizes diversity over quality. On the other hand, StyleGAN2-ADA strikes a favorable

trade-off by achieving a balance between precision and recall.

Furthermore, a correlation is observed between the precision of a GAN and the accuracy

achieved by classifiers for the artworks generated by that GAN. Higher precision results

in higher accuracy for the generated images. This correlation can be attributed to the fact

that the classifier evaluates whether an image falls within the probability distribution of

the target class.

Among the classifiers evaluated, ResNet50-V2 emerges as the top performer, surpass-

ing the other classifiers when considering multiple metrics collectively. In addition, a

human evaluation was conducted to assess the quality of the GANs and classifiers, as

detailed in Chapter 5.
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CHAPTER 5

Human Evaluations: Turing Test and Guess the Emotion

Human validation is crucial in image generation problems to assess the quality, realism,

and perceptual aspects of generated images. While quantitative metrics such as FID and

KID provide objective evaluations, they do not fully capture the nuances of human per-

ception. Incorporating human validation allows for a more comprehensive assessment

of the generated images.

A study by Salimans et al. (2018) [44] emphasized the significance of human evaluation

in image generation research. They compared GAN models using quantitative metrics

and human ratings, finding that human judgments captured perceived image quality and

diversity more accurately than automated metrics. The need for Turing testing arises

from the desire to assess and evaluate the capabilities of artificial intelligence (AI) sys-

tems, particularly in human-like intelligence and behavior. The Turing test, named after

British mathematician and computer scientist Alan Turing, is designed to determine if

a machine can exhibit intelligent behavior indistinguishable from a human [45]. It is

crucial in assessing and improving the ethical considerations surrounding AI systems,

helping us understand their capabilities, limitations, and potential societal implications.

We have developed an experimental setup called the ‘Turing Test for Artist’ (TTA) to

assess the authenticity and emotional impact of generated art images. We implemented

this test only for binary classification – fake (computer generated) vs. real paintings and

positive vs. negative emotion. We utilized GAN models to generate images as discussed

in the preceding sections. To evaluate the quality of our generator, we have implemented

the TTA, which involves human evaluation of artistic creations. Participants are in-

structed to rate the authenticity of each image on a scale of 0 to 5, where a rating of 0 in-

dicates that the image appears fake or generated. In contrast, a rating of 5 implies that it

seems real. Additionally, participants are asked to assess the dominant emotion evoked

by the art on a scale of 0 to 3, where a rating of 0 represents a negative emotion, and a

rating of 3 represents a positive emotion. The TTA and the Guess the Emotion tasks can

be accessed at the following link: https://cosylab.iiitd.edu.in/tta/)

https://cosylab.iiitd.edu.in/tta/)


5.1 Design of Experiments

Figure 5.1: Turing Test for Artist: ‘Login/Signup Page View’ for both desktop and mo-
bile versions.

Figure 5.2: Turing Test for Artist: ‘Registration Page view’ for desktop and mobile
versions.

From the user’s perspective, this research experiment requires participants to enroll by

providing their email addresses, as shown in Figure 5.1.

Subsequently, the participants receive instructions about the experiment as shown in

Figure 5.3. Upon enrollment, the test commences by offering users two options; to

submit their response or to skip the image as shown in Figure 5.4. If the user wishes

to provide annotations for both options, they can make their selection and click the

submit button. However, if the user finds an image confusing and cannot judge, they

can skip it. Participants can access their statistics in the profile section, which includes

the total number of evaluated images and the number of images skipped. The statistics
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Figure 5.3: Turing Test for Artist: ‘Instructions Page View’ for both desktop and mobile
versions.

Figure 5.4: Turing Test for Artist: ‘Main Page View’ for both desktop and mobile ver-
sions.

Figure 5.5: Turing Test for Artist: ‘User Statistics Page View’ for both desktop and
mobile versions.
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section also provides information about the proportion of real and generated images

and that of positive and negative images presented to the user as shown in Figure 5.5.

To incentivize participation, users are awarded ratings based on the number of pictures

they evaluate. The more the number of pictures evaluated, the more the number of stars

the user is awarded.

5.1.1 Data Sampling for Turing Test

Figure 5.6: Turing Test for Artist: Distribution of dataset class.

For TTA dataset, we have considered a total of 1200 art images. All the generated im-

ages belong to the binary-class experiment. Each image has two attributes: generated

or real and positive or negative emotion. Among the 1200 images, 600 are real, and 600

are fake. Among the 600 fake images, 200 belong to Projected GAN, 200 to Stylegan3,

and 200 to Stylegan2-ADA. Therefore, when considering the distribution of emotions,

out of the total 1200 images, 600 pertain to the positive class and 600 to the negative

class. Within the positive emotion class, 300 images are real, while 100 images belong

to the three GANs. For generated image, if an image is generated to have positive emo-

tion, then we are considering this image as a positive emotion class image. Similarly,

within the negative emotion class, 300 images are real, while 100 images each belong to

the three GANs. A detailed flowchart of dataset distribution is explained in Figure 5.6
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where Real/Fake represents whether the image is fake or real. Positive and negative

represents emotion class. All image selections are made randomly and impartially.

5.1.2 Tech Stack

• Front-end Framework: HTML, CSS, Javascript (Vanilla), am4charts

• Back-end Database Management: Sqlite3

• Integration of Front-end and Back-end: Flask, python

• Data Retrieval and Render: Jinja and Ajax

• Authentication: Google Oauth API

• Server Hosting: Docker

5.1.3 SQLite Database Structure

The name of the database is ‘data.db’. The database has 3 tables: user, image, and

user_evaluation. The ‘image’ table contains information about the dataset. The ‘user’

table stores the information of the user. The ‘user_evaluation’ table contains the infor-

mation of 1 evaluation provided by the user on a particular image. The schema of the

databases are following:

CREATE TABLE Images ( imgId int NOT NULL PRIMARY KEY, filepath varchar(256),

fake_or_real varchar(256), emotion int);

• imgId: ImageId for an image. It is not a null primary key.

• filepath: Contains the path of the file as a string.

• fake_or_real: Contains whether the image is fake or real. If it is real, it is tagged
as real. If the given image is generated, it is associated by its GAN name Projected
GAN, stylegan2, and stylegan3.

• emotion: Contains 0 and 1 where 0 represents negative emotion and 1 represents
positive emotion.

CREATE TABLE user_evaluation( sno INTEGER PRIMARY KEY AUTOINCRE-

MENT, uid varchar(256), imgId int, fake_or_real int, emotion int);

• sno: Serial number of the evaluation.

• uid: Contains the user ID who evaluates the particular image.
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• imgId: ID of the image which is evaluated.

• fake_or_real: Contains an integer between 0 to 5 where 0 represents gener-
ated/fake and 5 represents the real given by the user.

• emotion: Store integer between 0 to 3 where 0 represents negative and 3 repre-
sents the real given by the user.

CREATE TABLE user(uid varchar(256) NOT NULL PRIMARY KEY, email varchar(256),

name varchar(256), random_counter int, total_count int,total_skip int, total_pos int, to-

tal_real int);

• Uid: Unique user ID is given by Google OAuth. The primary key of the table.

• Email: Email ID of the user.

• Name: Name of the user given by Google OAuth.

• random_counter: It is the random image id assigned to the user.

• total_count: Total number of images evaluated.

• total_skip: Total number of skipped images.

• total_pos: Total number of positive emotion classes shown to the user.

• total_real: Total number of real images shown to the user.

5.1.4 Data Preprocessing and Protocols

• Binarization of Evaluator Assessment: The Turing Test for Artist collects hu-

man assessment of an image for it being fake or real on a scale of 0 to 5. For the

purpose of binary analysis, ratings between 0 to 2 were identified as fake, while

those with ratings between 3 and 5 were labeled as real. Similarly, in the ‘Guess

the Emotion’ task, we identify ratings 0 and 1 as negative emotions, while ratings

2 and 3 correspond to positive emotions.

• Random Data Sampling: In order to maintain the randomness and eliminate

class biases in the experiment, several measures were implemented. All 1200

images were randomly selected and distributed equally across the classes.

• Random Presentation of Data: A shuffled list of images was entered into the

‘image’ table. When a new user signs up, a random number between 0 to 1199 is

generated and assigned to the ‘random_counter’ variable. After each evaluation

or image skip, the value of the random_counter is incremented by 1. The image

with (random_counter + 1) % 1200 ID is presented to the user for evaluation,

ensuring a diverse sequence of images.

38



• Unique Data Presentation: Measures were implemented to ensure a user cannot

evaluate the same image twice.

• Stopping Criterion for the Evaluator: Once any user completes the evaluation

for all 1200 images, the evaluation process for the user is declared complete.

• Security: From a security perspective, precautions were taken to prevent SQL

injection attacks on the database.

• Deployment: In terms of hosting and deployment, Docker was employed to fa-

cilitate easy hosting and provide faster deployment and migration.

5.2 Results of the Turing Test (Fake or Real)

Figure 5.7: Turing Test for Artists: Distribution of annotations by the evaluators.

A total of 33 users conducted a total of 1708 evaluations as distribution shown in Fig-

ure 5.7. Most users were Indraprastha Institute of Information Technology, Delhi (II-

ITD) students. However, some users provided few ratings, prompting us to apply a

cutoff for user selection. We considered users who had completed at least 25 evalua-

tions as valid. We implemented this criterion to ensure that users evaluated a sufficient

number of images and to gather meaningful insights regarding their commitment to the
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test. Additionally, we examined whether users evaluated images randomly or not. Due

to the limited number of evaluations for each user, it was not feasible to analyze indi-

vidual users, leading us to apply the cutoff. To avoid bias, we excluded our submissions

from the evaluations.

Assumptions:-

• If a fake image is tagged as fake: True Negative

• If a real image is tagged as fake: False Negative

• If a fake image is tagged as real: False Positive

• If a real image is tagged as real: True Positive

Figure 5.8: Confusion Matrix for the Turing Test for Artist.

The total number of valid evaluations, excluding our submissions, amounted to 1543

with 18 valid users. On average, a user evaluates 85.72 images. The confusion matrix

illustrates the distribution of predictions and ground truth, with 403 True Negatives

(TN), 389 False positives(FP), 585 True Positives(TP), and 166 False Negatives (FN).

The False Positive Rate (FPR = FP/(FP+TN)) for the Turing test is 49.12%, and the

accuracy is 64.03%. The True positive rate (TPR = TP/ (TP + FN)) for the Turing test

is 77.90%.

Regarding the model-wise statistics:

• For Projected GAN, a total of 270 valid evaluations were conducted, with 134

evaluations labeling the images as real and 136 evaluations considered fake. This

indicates that 49.63% of the generated images were labeled as real.
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• For StyleGAN2-ADA, 267 valid evaluations were conducted, with 128 predic-

tions of fake and 139 real predictions. Thus, 52.06% of the generated images by

StyleGAN2-ADA were labeled as real.

• For StyleGAN3, a total of 255 valid evaluations were conducted, with 139 predic-

tions of fake and 116 predictions of real. Consequently, 45.49% of the generated

images by StyleGAN3 were labeled as real.

5.2.1 Observations

Users with high true positive (TP) and true negative (TN) counts are potentially experts,

indicating their ability to distinguish between fake and real images. In our study, the TP

count was 585, and the TN count was 403, significantly higher than the false negative

(FN) count of 166. This suggests that the average user possessed sufficient knowledge

to perform the experiment.

A high false positive (FP) count (403) indicates that our generative models successfully

deceived users. With an FPR of 49.12%, the generator fooled users almost half the time.

It is natural to question if users randomly labeled images as fake or real when the FPR

is close to 50%. However, this can be explained by the high TPR of 77.90%. The TPR

is significantly higher than 50%, demonstrating that users took the experiment seriously

and did not randomly evaluate images.

Ideally, we aim to deceive users, resulting in high FP and low FN counts, while users

should have high TP and TN counts to demonstrate their knowledge and ability to dis-

tinguish between real and fake images. In our case, we observed an FP count of 403 and

an FN count of 166, indicating that the model deceived the average user. Additionally,

the high TP and TN counts suggest that the average user was knowledgeable. Com-

bining these observations, we can conclude that the model successfully fooled genuine

users in many cases.

When considering individual model performance, StyleGAN2-ADA exhibited the best

false positivity ratio. StyleGAN2-ADA deceived users 52.06% of the time, followed by

Projected GAN at 49.63% and StyleGAN3 at 45.49%. This sequence aligns with the

FID score rankings provided in Table 4.1, where StyleGAN2-ADA outperformed Pro-

jected GAN and StyleGAN3. Therefore, based on quantitative, qualitative, and human
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validation results, StyleGAN2-ADA emerges as the superior model among the three.

5.3 Results for ‘Guess the Emotion’ Test

In our study, we concurrently collected evaluations to guess the dominant emotion.

The number of evaluations and users remained the same, as mentioned in the previous

section, and we applied the cutoff criterion of at least 25 evaluations per user. However,

the task of guessing the dominant emotion poses inherent ambiguity. It can vary from

person to person, gender to gender, and place to place [34]. In the context of ArtEmis, a

single artwork can evoke multiple emotions, further emphasizing its ambiguous nature.

Consequently, our users’ perception of guessing the emotion might not align with the

average annotator of ArtEmis.

Figure 5.9: Turing Test for Artist: Distribution of accuracy corresponding to the real
data and evaluators’ assessment.

To address this issue, we introduced an additional cutoff criterion to select evaluators

based on the accuracy of their emotion evaluations on real images. For getting selected,

the accuracy of guessing the emotion on real data should be greater than or equal to

a certain threshold. For instance, if a user evaluates 100 images, consisting of 50 real

and 50 fake ones, we assess the accuracy of the evaluator’s emotion tags compared to
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the ArtEmis annotations (considered ArtEmis as ground truth). Suppose the evaluator

correctly tags the emotions of 30 real images; then the accuracy would be calculated as

30/50, resulting in 0.60. Since all generative and classification models are trained on

the ArtEmis dataset, ensuring that our annotators’ thought processes align with those

of an average ArtEmis annotator is crucial. Given the relatively limited domain of our

evaluator population, divergent perspectives could lead us astray. Therefore, it becomes

necessary to apply different selection cutoff criteria. For each model, we explored var-

ious cutoffs based on evaluations of real images and then calculated the corresponding

statistics for the generated images. In Figure 5.9, it can be observed that most of the

evaluators belong between 0.35 to 0.70 accuracy.

When calculating the accuracy of our evaluators, it is essential to establish ground truth.

For real images, we consider the ArtEmis annotations as the ground truth. However, a

question arises regarding the ground truth for generated images. For instance, if a GAN

generates an image intended to have positive emotion, but a classifier suggests it as

negative, which source should be relied upon? Which is more reliable in classifying the

image, the classifier or the GAN? In this section, we address this issue by considering

different sources as the ground truth, including all classifiers and the GAN, and calculate

accuracies based on these varying ground truths.

5.3.1 Projected GAN

Cutoff Total Evaluation Inception-ResNet-V2 ResNet50-V2 VGG19 Inception-V3 GAN
0.0 270 0.5704 0.5963 0.5259 0.5556 0.5481
0.40 260 0.5808 0.5962 0.5308 0.5615 0.5615
0.50 176 0.5739 0.6136 0.5398 0.5568 0.5682
0.55 143 0.6154 0.6434 0.5734 0.6084 0.5874
0.60 124 0.6452 0.6532 0.5887 0.6048 0.6048
0.65 108 0.6667 0.6852 0.6389 0.6296 0.6204

Table 5.1: Accuracies for various cut-offs of different ground truths. Generated images:
Projected GAN. Ground Truth: Various classification models and Projected
GAN.

The results presented in Figure 5.10 and Table 5.1 clearly demonstrate that increas-

ing the cutoff for real images improves the accuracy of the generated images. Among

the classifiers, ResNet50-V2 exhibits the highest accuracy, indicating that the emotion

portrayed in the projected GAN-generated images aligns most closely with human per-

ceptual judgment when using ResNet50-V2, followed by Inception-ReNnet-V2. Fur-
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Figure 5.10: Projected GAN: Accuracies for various cut-offs of different ground truths.

thermore, VGG19 surpasses InceptionV2 at higher cutoffs. Notably, the number of

evaluations decreases significantly with increased accuracy cutoff.

5.3.2 StyleGAN2-ADA

Cutoff Total Evaluation Inception-ResNet-V2 ResNet50-V2 VGG19 Inception-V3 GAN
0.0 267 0.5543 0.5543 0.5693 0.5280 0.5618
0.40 258 0.5543 0.5620 0.5698 0.5310 0.5698
0.50 190 0.5737 0.5895 0.5842 0.5737 0.5947
0.55 172 0.5930 0.6105 0.5930 0.5814 0.5988
0.60 150 0.5933 0.6133 0.600 0.5733 0.6067
0.65 139 0.5827 0.6043 0.5971 0.5683 0.6043

Table 5.2: Accuracies for various cut-offs of different ground truths. Generated im-
ages: StyleGAN2-ADA. Ground Truth: Various classification models and
StyleGAN2-ADA.

Similar to projected GAN, the accuracy of StyleGAN2-ADA increases across all ground

truth measures, as evident from the Table 5.2 and Figure 5.11. However, the accuracy

differences among the four classifiers are not as pronounced as in projected GAN. Un-

like the Projected GAN and StyleGAN3 model, all classifiers and GAN perform simi-

larly for various cutoffs, suggesting no clear winner among them.
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Figure 5.11: StyleGAN2-ADA: Accuracies for various cut-offs of different ground
truths.

5.3.3 StyleGAN3

Cutoff Total Evaluation Inception-ResNet-V2 ResNet50-V2 VGG19 Inception-V3 GAN
0.0 255 0.5567 0.5529 0.5255 0.5608 0.4706
0.40 242 0.5496 0.5620 0.5331 0.5537 0.4711
0.50 174 0.5690 0.6264 0.5517 0.5862 0.4713
0.55 151 0.5762 0.6556 0.5497 0.5894 0.4635
0.60 131 0.5878 0.6565 0.5649 0.5878 0.4809
0.65 115 0.5913 0.6522 0.5652 0.5913 0.4957

Table 5.3: Accuracies for various cut-offs of different ground truths. Generated images:
StyleGAN3. Ground Truth: Various classification models and StyleGAN3.

Table 5.12 and Figure 5.4 show the apparent relation between cutoff and accuracies

like all other GANs. For lower cutoffs, ResNet50-V2, Inception-V3, and Inception-

ResNet-V2 demonstrate comparable performance, but at higher cutoffs, ResNet50-V2

outperforms the other GAN models. Inception-V3 and Inception-ResNet-V2 exhibit

similar performances. Notably, the disparity between classifier and GAN accuracies is

significantly higher for StyleGAN3 than for the Projected GAN and StyleGAN2-ADA.
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Figure 5.12: StyleGAN3: Accuracies for various cut-offs of different ground truths.

Cutoff Total Evaluations Total evaluators Inception-ResNet-V2 ResNet50-V2 VGG19 Inception-V3 GAN Real data
0.0 1543 18 0.5606 0.5682 0.5404 0.5480 0.5278 0.6045
0.40 1473 16 0.5618 0.5737 0.5447 0.5487 0.5355 0.6171
0.50 1064 12 0.5722 0.6093 0.5593 0.5722 0.5463 0.6717
0.55 914 10 0.5944 0.6352 0.5730 0.5923 0.5515 0.6987
0.60 789 8 0.6074 0.6395 0.5852 0.5877 0.5654 0.7161
0.65 711 6 0.6105 0.6436 0.5994 0.5939 0.5746 0.7249

Table 5.4: Combined results showing accuracies for various cut-offs of different ground
truths. Generated images: From all GANs. Ground Truth: Various classifi-
cation models and relevant GAN.
Combined results showing accuracies on varying ground truths

5.3.4 Observations

• In this section, we evaluated both real and generated images. In Table 5.4, real

image evaluation is provided in the ‘Real data’ column, and it contains the ac-

curacy of the user’s evaluation with ArtEmis (Ground truth). For the classifiers

(ResNet50-V2, Inception-V3, Inception-ResNet-V2, VGG19). ‘GANs’ are re-

ferring to the evaluations of all generated images. Therefore, the columns for

all classifiers and GANs share the same set of evaluations, while the ‘Real data’

column specifically represents evaluations conducted on real images. The evalu-

ations for all generated images, including all GANs, are summarized in Table 5.4

and visualized in Figure 5.13.

• Among the classification models, ResNet50-V2 achieves the highest accuracy,

followed by Inception-ReNet-V2, Inception-V3, and VGG19.
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Figure 5.13: Performance comparison of classifiers for generated images for various
cut-offs of different ground truths.

• Increasing the cutoff value results in higher accuracy for all ground truth mea-

sures, which supports our hypothesis of having annotators with similar perspec-

tives in our study and ArtEmis. It also reflects that models are able to pick visual

features from an painting which effect the emotion conveyed by artwork.

• For all ground truth measures, the classifiers consistently exhibit notably higher

accuracies than the GAN models. This finding suggests that classifiers align more

closely with human perceptual judgment when classifying emotions than GANs.

• In Chapter 4, a close competition between Inception-ResNet-V2 and ResNet50-

V2 was observed. However, in human evaluations, ResNet50-V2 outperforms

Inception-ResNet-V2.

• Given that StyleGAN2-ADA outperforms other GAN models regarding FID score

and the Turing test, our findings further indicate that GANs are more adept at

generating images with specific emotions. Although the difference in accuracy

between the GAN models and the classifiers is not as significant as in other GAN

models, StyleGAN2-ADA emerges as the best performer across nearly all evalu-

ation metrics.
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CHAPTER 6

Conclusions and Discussion

For the artwork generation task, StyleGAN2-ADA emerges as the top-performing model

when considering a combination of overall metrics such as FID, KID, precision, and re-

call. It achieved the best FID score of 7.84 indicating the high similarity between the

generated images and real images. For the classification task, ResNet50-V2 presented

the highest accuracy of 72% for the binary emotion paradigm. This model displayed an

effective balance of all metrics. ResNet50-V2 emerged as the most effective model on

quantitative and qualitative metrics.

The human assessment shows the generators’ ability to successfully produce affective

artwork and the classifiers’ ability to categorize them. Further, this work demonstrates

the machine’s capacity to learn and identify visual features central to eliciting specific

emotions. We obtained a False Positive Rate (FPR) of 49.12% (GAN-generated im-

ages assessed as real artworks by human evaluators) and a True Positive Rate (TPR) of

77.90% (real artworks were correctly judged as human creations by the evaluators). The

accuracy of the Turing test experiment was 64.03%. For all ground truth measures of

generated images (generator models or classifiers), the classifiers consistently exhibit

higher accuracy compared to the GAN models. This finding suggests that classifiers

align more closely with human perceptual judgment when classifying emotions than

GANs. In the ‘Guess the Emotion’ test, ResNet50-V2 outperforms all other classifiers

in predicting emotion.

GANs require a large dataset for effective training. Ideally, millions of data samples

are desirable. In our experiments, however, the Wikiart and ArtEmis datasets consist

of thousands of artworks. Increasing the dataset size would result in a richer, higher

quality dataset and facilitate better training of generative models and enabling them

to capture more visual features. Consequently, this would enhance the ability of the

generative models to produce high-quality artworks.

Although this research focuses on GANs, diffusion models are in vogue and demon-

strably shown to be more effective than GANs. However, Diffusion models require



significantly higher computational power than what was utilized in this study.

We trained generative models on a GPU server with a single RTX 3090, with 24 GB

VRAM. While we trained the GANs using approximately 10k ‘kimgs’ (thousands of

images), it is possible to train them with a much higher number of ‘kimgs’ and larger

batch sizes. However, this would require a high-end GPU, such as a multi-GPU server

with A100 GPUs. Such an upgrade could improve the quality of generated artwork

and reduce the training time. Similarly, for the classification problem, utilizing a high

VRAM GPU would enable an increase in the batch size, potentially leading to improved

results.

Instead of assigning a single emotion to each artwork, an alternative approach is to

utilize multiple emotions for tagging a single artwork. Instead of categorizing artworks

into discrete emotion classes, this approach considers a more nuanced representation

by incorporating multiple emotions to capture the complex emotional aspects of the

artwork.

Both generative and classification models utilize stochastic techniques, meaning they

can produce varying results even with the same configuration and parameters. This

stochastic nature is particularly evident in GANs, where we have observed significant

deviations in FID scores, sometimes up to 7-8, even when using the same dataset and

hyperparameters. These variations highlight these models’ inherent randomness and

sensitivity to different factors, including the initial conditions, optimization process,

and training dynamics.

Assigning emotions to artworks is an inherently ambiguous task that can vary depend-

ing on an individual’s gender, location, and other factors. Through our human assess-

ment (Turing test), we observed variations in our user evaluations, with some aligning

with the average annotator of ArtEmis and others deviating from it. We have engaged

scholars from IIIT-Delhi as evaluators, which limits the diversity of perspectives. To ad-

dress this limitation, involving a broader range of individuals, including artists, design-

ers, historians, archaeologists, psychologists, psychiatrists, and people from different

age groups, would be beneficial. By expanding the pool of annotators, we can gather a

more diverse set of annotations.

In this study, we conducted Turing testing for binary emotion classes only. This can also
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be extended to the multi-emotion experiment. However, for this extension, it is essential

to engage professional annotators due to the nuanced similarities between emotions

such as Contentment, Amusement, and Excitement.

.
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