
Hardware Software Co-Design of Deep Learning
Augmented Wireless Channel Estimation

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

M.Tech

Electronics and Communication Engineering

BY
Animesh Sharma

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI
NEW DELHI– 110020

December 19, 2022



Certificate
This is to certify that the thesis titled “Design and performance analysis of

Deep-Learning based channel estimation on System-On-Chip” submitted by Ani-
mesh Sharma for the partial fulfillment of the requirements of Master of Technology
in Electronics and Communications Engineering is a record of the bonafide work
carried out by her under my guidance and supervision at Indraprastha Institute of
Information Technology, Delhi.
This work has not been submitted anywhere else for the reward of any other degree.

Dr. Sumit J Darak Date: December 19, 2022
Associate Professor
Department Of Electronics and Communication
Indraprastha Institute of Information Technology, Delhi

i



Acknowledgement
I want to take this opportunity to express my sincere gratitude to the people who

have supported me during my thesis work. Foremost, I would like to express my
sincere gratitude to my advisors, Dr. Sumit J Darak and Syed Asrar Ul Haq, for their
invaluable guidance, encouragement, and support throughout my thesis work. Their
constructive feedback and regular work discussions helped me accomplish the task
with great clarity.
Also, i would like to thank the research group at Algorithms to Architecture lab at
IIITD for making the lab environment engaging and fun for everyone.

This work has been established in collaboration and support of IIT Indore’s DR-
ISHTI CPS foundation as CHANAKYA PG fellowship. I need to duly acknowledge
their support throughout the project duration.

Last but not least, I would like to thank my family and friends for supporting me
through challenging times and for their guidance in managing my thesis work effi-
ciently.

ii



Abstract
The feasibility study of deep learning (DL) approaches for reliable, flexible, and

high throughput wireless physical layer (PHY) has received significant interest from
academia and industry. In this direction, 3GPP has set an ambitious goal of introduc-
ing standards for intelligent and reconfigurable PHY by 2028. Channel estimation
is one of the critical signal processing units of the wireless PHY, and recent works
have shown the potential use-case of DL approaches to improve the performance of
state-of-the-art statistical channel estimation approaches such as least-square (LS)
and linear minimum mean square error (LMMSE). Existing DL-based channel esti-
mation approaches have not yet been realized on system-on-chip (SoC). Our prelim-
inary study shows that their complexity exceeds the complexity of the entire PHY.
The high latency of DL is another concern. The work presented in this thesis aims
to offer innovative solutions at the algorithm and architecture levels to address these
challenges.

The first contribution is efficiently mapping LS, LMMSE and DL-based chan-
nel estimation approaches on heterogeneous SoC. Via hardware-software co-design
and fixed point analysis, we compare the functional correctness, resource utilization,
and execution time of existing architectures for a wide range of signal-to-noise ratios
(SNR) and wireless channels. Specifically, we highlight the high complexity and
latency of existing DL approaches. The second contribution of the thesis is to de-
sign a compute-efficient deep neural network (DNN) augmented LS-based channel
estimation (LSDNN) algorithm and its efficient mapping on the SoC. We demon-
strate substantial savings in complexity and latency without significant degradation
in functional accuracy. Specifically, the proposed LSDNN approach offers 88-90%
lower latency and 38-85% lower resources than recent DL-based channel estimation
approaches. In addition, it offers 75% lower latency and 90-94% lower resource uti-
lization than the LMMSE. The hardware IPs and demonstration on Zynq SoC offer
opportunities for commercialization and a framework for verification of upcoming
channel estimation algorithms on SoC.
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Chapter 1: Introduction

1.1 Motivation

In wireless networks, the physical layer (PHY) at the transmitter transmits the data
over the wireless radio channel, and PHY at the receiver receives and decodes the
transmitted data. For reliable communication over a noise-fading channel in the pres-
ence of interference and hardware impairments, transmitter PHY performs channel
coding and modulation on the data and inserts pilots, i.e., known data, at regular inter-
vals over time and frequency. The receiver PHY performs channel estimation using
the pilots and equalization on the received data. This is followed by data demodula-
tion and channel decoding [3] [4]. Over the last two decades, various innovations in
the algorithm and architecture have led to substantial improvement in the through-
put, reliability, and latency of the wireless PHY [5] [6]. For instance, the throughput
of the wireless networks has increased from 9.6 kilobits per second (kbps) in 1G to
10 Gigabit per second (Tbps) in 5G. Similarly, latency has been reduced from 1000
milliseconds (ms) in 1G to 1 ms in 5G. Such evolution of wireless PHY has enabled
service operators to bring data-intensive multimedia and ultra-reliable low-latency
services into reality [7].

Channel estimation and equalization is one of the most computationally complex
tasks at the receiver PHY. With the introduction of new services ranging from data-
intensive multimedia and ultra-reliable low latency to vehicular communication, chan-
nel estimation has become increasingly complex due to large bandwidth and high
throughput requirements resulting in demand for fewer pilots and support for a wide
range of wireless channels with different fading and mobility constraints. Along with
reliable data reception, channel estimation enables the estimation of channel state in-
formation (CSI) at the receiver. The CSI is communicated by the receiver to the
transmitter, and the transmitter uses it to select the PHY parameters for subsequent
communication. The upcoming services are sensitive to CSI estimation accuracy.
Conventionally, statistical least-square (LS) and linear minimum mean square esti-
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mation (LMMSE) are widely used for channel estimation. The LS is popular due
to its simple design and low latency. However, various studies have shown that the
LS performs poorly and may not be suitable for next-generation applications and
services. The LMMSE needs prior knowledge of wireless channel parameters and
is more computationally complex than LS. It is not optimal for non-linear and non-
stationary channels. Furthermore, the fixed-point realization of MMSE is challeng-
ing, resulting in a huge area, delay, and power overhead [1].

Recently, machine learning (ML) and deep learning (DL) have been extensively used
in various applications. The feasibility study of DL approaches for reliable, flexible,
and high throughput wireless physical layer (PHY) has received significant inter-
est from academia and the wireless industry. This is because DL approaches can
more accurately optimize non-linear signal degradation due to channel, interference,
and hardware impairments than conventional approaches [2] [8]. Furthermore, DL
approaches involve simple computations that can be parallelized compared to con-
ventional techniques such as LMMSE which involves large-size matrix inversion. In
this direction, 3GPP has set an ambitious goal of introducing standards for intelligent
and reconfigurable PHY by 2028.

Channel estimation is one of the critical tasks of the wireless PHY, and recent works
have shown the potential use-case of DL approaches to improve the performance
of statistical channel estimation approaches. Existing DL-based channel estimation
approaches have not yet been realized on system-on-chip (SoC), and our preliminary
study shows that their complexity exceeds the complexity of the entire PHY. The
high latency of DL is another concern. The work presented in this thesis aims to
offer innovative solutions at the algorithmic and architectural levels to address these
challenges.

1.2 Objectives and Contributions

The work presented in this thesis aims to design compute-efficient DL-based channel
estimation for wireless PHY and efficiently map it on Zynq System-on-Chip (SoC)
via hardware-software co-design. The main contributions are summarized below:

1. The first contribution is to study and efficiently map LS, LMMSE and ex-
isting DL-based channel estimation approaches on Zynq SoC. We study the
functional accuracy, resource utilization, and latency of various architectures
obtained via hardware-software co-design and word-length analysis.
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2. The second contribution is to design a compute-efficient deep neural network
(DNN) augmented LS-based channel estimation (LSDNN) and its efficient
mapping on the Zynq SoC. We demonstrate substantial savings in complex-
ity and latency without significant degradation in functional accuracy. Specifi-
cally, the proposed LSDNN approach offers 88-90% lower latency and 38-85%
lower resources than recent DL-based channel estimation approaches. In ad-
dition, it offers 75% lower latency and 90-94% lower resource utilization than
the LMMSE.

3. The hardware IPs and demonstration on Zynq SoC offer opportunities for com-
mercialization and framework for verification of upcoming channel estimation
algorithms on SoC.

1.3 Literature Survey

Numerous works have shown that traditional frameworks such as Detection-theory
[9], Shannon theory [10], and Queuing theory [11]-based wireless physical layer
suffer from accuracy loss because of the random nature and variability of wireless
channels. Rather than just investigating approximate frameworks, the modern data-
centric approaches along with their ability to solve difficult-to-model complications,
provide a viable substitute for improving wireless-PHY robustness [12] [13]. In ad-
dition, there have been quite a few studies that demonstrate the superior performance
of machine and deep learning (DL) based approaches in tackling challenges posed
by complex wireless communication networks. The Deep Learning-based techniques
allow extracting features from the data itself, removing the requirement of manually
extracting features [14]. As a result, a slew of DL-based techniques for several PHY
complications like spectrum sensing [15], localization [16], modulation classifica-
tion [17] [18] direction-of-arrival estimation [19] [20], MIMO high-resolution chan-
nel feedback [21] [22]. The current frameworks struggle with scalability challenges
due to the high cost of exhaustive searches and repetitive heuristic algorithms in-
volved in large-scale heterogeneous networks [23] [24]. And data-centric techniques
can prove to be more efficient in overcoming such scalability challenges [25] [26].
There are many issues like as potential use cases, feasible gain and complexity trade-
offs, data-set availability, and standard compatibility implications, that must be ad-
dressed to make Deep Learning-aided intelligent and re-configurable wireless PHY
a reality.

The deep learning-based PHY can either consist of a whole receiver and transmitter
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omitted by a standalone DL architecture or have independent DL blocks for each sub-
block or combinations of sub-blocks in PHY [18] [27] [28][ [2]]. The main downside
of replacing a transmitter and receiver completely with DL is that it won’t provide
access to intermediate outputs, creating it incompatible with current standards. In
this thesis, we follow the second approach replacing each block or group of blocks of
PHY with DL architecture without compromising on the compatibility with wireless
standards. In this thesis, we focus on the channel estimation task in wireless PHY.

Communication systems based on rigid mathematical channel models struggle in
complex scenarios because these models are unable to capture imperfections in prac-
tical channels. Thus, there has been a lot of recent study in the literature to find
an ideal estimation approach. Since the channel matrix is a 2-D matrix, convo-
lution neural networks (CNNs) based channel estimation was the first choice, and
thus one of the earliest DL-based approaches used CNNs to improve the perfor-
mance of the channel estimation. ChannelNet [1] consists of two consecutive CNN
models, a super-resolution network (SRCNN [29]) followed by a denoising network
(DnCNN [30]). The received reference pilot symbols are first LS estimated, then
interpolated to whole frame dimensions, then passed through SRCNN, followed by
DnCNN, to finally get the whole channel estimated. The estimation procedure can
be seen in figure 1.1. ChannelNet consists of 23 convolution layers, which incurs
huge computational complexity, large memory and high latency.

Channel Net

Estimated
Channel

Pilots
Interpolated

Channel

Figure 1.1: ChannelNet architecture in [1] for channel estimation.

The drawback of ChannelNet were addressed by ReEsNet [8], which introduces
residual learning neural network instead of two large CNN blocks of ChannelNet.
This helps in reducing complexity and even improves performance. The IReSNet [2]
replaces the transposed convolution layer in ResNet with a bi-linear interpolation
layer, to make the model lighter and make it more compatible with flexible pilot
patterns. Still, the complexity is huge compared to conventional channel estimation
approaches making it difficult to realize in real networks. The work presented in this
thesis aims to address these challenges.
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ResNet Res-BlockEstimated
Channel

Pilots

Figure 1.2: ReEsNET architecture in [2] for channel estimation.

1.4 Thesis Organisation

The thesis is organized as follows - Chapter 2 gives an overview of the end-to-end
system model of the simulated environment used for the evaluation of different chan-
nel estimation schemes. Chapter 3 gives a detailed description of two conventional
approaches (LS and MMSE) and two Dl-based approaches (IReSNet and LS-DNN).
Chapter 4 shows the in-depth results and analysis for all the discussed channel esti-
mation approaches and compares and compares them based on accuracy, latency and
resource utilization. Chapter 5 concludes the work and summarises the results.

1.5 Notation

The notation used throughout the work is shown below in Table 1.1.

Table 1.1: Notations

Symbols Representation
Vectors Boldface lower case
Matrices Boldface upper case
Transmitted Signal X
Received signal y

Channel Matrix Ĥ

AWGN noise ˆ̂Z
LS estimated value HLS

MMSE estimated value HMMSE

Auto-correlation matrix RHPHP

Cross-correlation matrix RHHP

Average power of Noise σ2
N

Average power of Transmitted signal σ2
N
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Chapter 2: System Model Overview

In this chapter, we discuss the system architecture considered throughout this thesis
work, which is an orthogonal frequency-division multiplexing (OFDM) system based
on pilots symbols in the data frame. We consider a downlink scenario in a single-
input and single-output (SISO) system simulated for a wide range of SNR from -5
dB to 25 dB, where the receiver can have a random mobile velocity of up to 50 kmph
(Doppler=97 Hz). All the channel estimation approaches we are discussing in this
thesis are pilot-based estimation techniques evaluated under 3GPP (3rd-generation-
partnership-project) channel environments.

2.1 Wireless Channel

The distinct feature in mobile wireless channels is it’s variation of the channel strength
over time and frequency. This variation in channel strength is called fading. There
are broadly two types of fadings: 1) Large-scale fading, that occurs because of path
loss of signals and shadowing by large obstacles such as buildings and hills. This fad-
ing is generally frequency independent and is the matter of consideration for cell-site
planning, and 2) Small-scale fading, that happens due to the interference of multi-
ple signal paths between transmitter and receiver. This fading happens at the spatial
scale of the order of the carrier wavelength, and is frequency dependent. The ef-
fects of small scale fading are mitigated at the receiver using an equalizer which uses
channel state information in the form of channel frequency response, also known as
channel estimates.

2.2 OFDM PHY

The main idea of OFDM is to use multi-carrier modulators with overlapping spectra
and densely spaced sub-carriers. Although the spectrum of subcarriers is overlap-
ping, the time domain components should be chosen to be mutually orthogonal. The
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needed orthogonality is achieved using the Fast Fourier Transform (FFT). The key
benefit of using an OFDM-system lies in its ability to handle transmitted data over
fading channels. The maximum delay-spread is one of the most crucial parameters
for describing fading channels, and when OFDM transmitters divide the input bit
stream into several parallel bit-streams, the symbol length increases, and the rela-
tive delay spread decreases. As a result, OFDM systems can accommodate fading
channels better.

2.3 OFDM-based transmitter and receiver PHY

The OFDM transmitter and receiver block diagram can be seen in figure 2.1. The
data is first modulated using a QPSK modulator block, followed by Pilot insertion,
which inserts known reference symbols into the data frame at predefined pilot loca-
tions. The modified frame is then passed into the IFFT block and CP addition block,
after which the frame is passed to the final OFDM transmitter block, which produces
the transmitted signal for the wireless channel. At Rx, the frame goes through CP re-
moval and FFT blocks, followed by pilot extraction. This pilot-extracted data matrix
is the input of the channel estimation block.

Receiver

Transmitter

Wireless Channel

IFFTPilot
Insertion

CP 

Addition

Parallel

to


Serial
Data Modulator

FFTPilot 

Extraction

CP 

Removal

Serial

to


parallel

BER 

Calculation Equalization

Channel
Estimation

Channel State
Information


(CSI)

Figure 2.1: OFDM Tx Rx block

2.4 Frame Structure

The OFDM frame is generally a 2-dimensional matrix representing different OFDM
symbols for every sub-carrier. Pilot symbols (known reference signals) are used in
the data frame to track the modifications carried out by the channel effects on the
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transmitted data. In literature, there has been a lot of work on different types of pilot
arrangement used on the data-frame for respective pilot-based channel estimation.
The different types of pilot arrangements include, Block type channel estimation,
in which the pilots are periodically inserted into all sub-carriers of OFDM symbols,
comb type channel estimation, where pilots are uniformly inserted in each transmit-
ted OFDM sysmbol but with certain sub-carriers separated from each other within
a specific period of time, or decision directed channel estimation, which includes
preamble pilot symbols along with pilots in the data-frame. Owing to its high over-
head, decision directed channel estimation is suitable for fast fading channel models
and the block type for slow fading channel models. The frame structure used in this
thesis is represented in figure 2.2

The data frame consists of 72 sub-carriers and 14 OFDM symbols. In this data
frame, the 1st and 8th OFDM symbol, are defined as pilot symbols and for every
pilot symbol, every third sub-carrier is again a pilot signal and all other sub-carriers
of pilot symbols are null sub-carriers. Thus, we get 24 x 2 pilot values from this
data-frame. These pilot values are the key inputs for pilot-based channel estimation.

Carrier Symbols

Su
b-

ca
rr

ie
r

Time

Fr
eq
ue
nc
y

Pilot Signal

Zero Padding

Data signal

Pilot Symbols

Figure 2.2: Frame Structure

2.5 Channel Estimation overview

In OFDM systems, the input-output relationship of the kth symbol and the ith sub-
carrier is represented as:

Yi,k = Hi,kXi,k + Zi,k; (2.1)

where, Yi,k corresponds to received signal, Xi,k and Zi,k corresponds to transmitted
data and additive white gaussian noise, respectively. Hi,k represents channel matrix
at ith symbol and kth sub-carrier.
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Figure 2.3: General Channel Estimation approach

The typical method of channel estimation is by adding known reference subcarriers,
called pilot subcarriers, at predefined locations in the data frame and estimating the
channel at these locations using the pilots. Channel at data subcarriers is estimated
by interpolating the channel at pilot locations to entire frame. Such a channel esti-
mation approach utilizing the pilot reference symbols is called pilot-based channel
estimation, as shown in Figure 2.3.

2.6 Simulation Environment

The entire PHY of OFDM system i.e. OFDM transmitter, receiver and the wireless
fading channel is simulated using MATLAB. All the channel estimation algorithms
and approaches have been carried out on MATLAB for simulation results, whereas
the hardware performance results have been carried on AMD Xilinx’s Zynq series
hetrogeneous SoC Zc-706, consisting of both a processing system (ARM Cortex A9)
as well as an FPGA fabric on board.

The system is simulated over a wide range of SNRs (-5 dB to 25 dB), different
Doppler shifts and 3GPP’s multi-path fading channels: Extended Pedestrian A model
(EPA), and Extended Typical Urban model (ETU). These channels differ in their
delay profiles. The EPA channel model is a low delay spread environment, and while
ETU is high delay spread environment as shown in 2.1

The prime focus in this work is on observing the performance (MSE as well as BER)
of all the discussed estimation approaches evaluated on different channel conditions.
For every SNR, 2000 frames were processed and evaluated to produce the corre-
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Channel
Model
Delay

profiles

EPA
Excess tap delay (ns) 0 30 70 90 110 190 410
Relative power (dB) 0 –1.0 –2.0 –3.0 –8.0 –17.2 –20.8

ETU
Excess tap delay (ns) 0 50 120 200 230 500 1600
Relative power (dB) –1.0 –1.0 –1.0 0 0 0 –3.0

Table 2.1: Channel Model delay profiles

sponding readings. A summary of all the system parameters and there values is
represented in the table 2.2.

Parameter Particuar

Modulation Type QPSK

Guard interval type Cyclic Prefix (CP)

Noise model AWGN

Pilot Subcarriers 24

Pilot Symbols 2

Number of deployed subcarriers 72

CP Length 16

Bandwidth 1.08 MHz

Carrier frequency 2.1 GHz

Subcarrier Spacing 15 KHz

Number of frame per slot 1

Number of OFDM symbols per slot 14

Table 2.2: BASEBAND PARAMETERS
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Chapter 3: Channel Estimation Approaches

In this chapter, we provide a detailed discussion of all channel estimation approaches
explored throughout this project: the algorithm, its positives, its negatives, and lastly,
the proposed hardware architecture for them.

3.1 Conventional Channel Estimation

The conventional Channel estimation approaches are generally mathematically mod-
eled and try to exploit the statistical relationship between the pilot symbols to pro-
duce an improved channel estimate and channel state information (CSI).

But the problem with them is that either they are not able to perform satisfactorily
well in the low SNR conditions or require to know the accurate channel characteris-
tics beforehand, which is simply not a realistic alternative.

Let us now discuss each of the two conventional approaches in detail: Least Square
(LS) estimation and the Minimum mean square Error (MMSE) estimation.

3.1.1 LS Estimation

The least square estimator just minimizes the squared difference between the re-
ceived symbol and the golden channel response. The Least square estimate of the
wireless channel at any pilot position p is given by-

HLS = min(||yp −HpXp||2) (3.1)

Where, yp is the received channel response at pilot position p,Hp is channel matrix
value at position p, and Xp corresponds to the transmitted signal at pilot position p.

Further, optimizing 3.1, we get the following result:
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HLSp = Yp/Xp (3.2)

Where, yp is the received channel response at pilot position p and Xp corresponds to
the transmitted signal at pilot position p.

Now, from 3.2, it is evident that the Least Square estimation does not depend on any
prior information regarding the channel statistics and noise.
And since the pilot values are generally a constant value, thus LS estimator just
involves a simple complex division of a constant complex value with the received
complex signal value at pilot positions.

But this estimation would only produce LS estimated results at pilot positions. To
get the estimation of the points other than pilot locations, we need to interpolate the
LS estimated values at pilot positions to eventually get LS estimations spread over
the whole channel matrix.

3.1.2 Hardware Architecture

Least Square channel estimation involves division operation of a received complex
symbol and a predefined complex long training symbol. A complex division opera-
tion involves six real operations and can be implemented as shown in figure.
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Figure 3.1: LS Hardware architecture
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LS estimation is the most simplest estimation approaches of all.Owing to it’s simpler
design, it is expected to be light on hardware utilization as well as be quicker in terms
of latency.

But in difficult situations i.e. low SNR conditions, it fails to produce sufficiently
satisfactory results. And this is a massive disadvantage when it comes to critical
communication applications, because this approach would simply fail systems during
low SNR conditions.

3.1.3 LMMSE Channel Estimation

The Linear minimum mean square error (LMMSE) estimator is an improved version
of LS estimator that uses LS estimates along with second order channel statistics, in
order to produce improved channel estimation results.

By minimizing the Euclidean distance between H and HLS , linear MMSE channel
estimate at the pilot symbol can be concluded as :

HMMSE = RHHP
× (RHPHP

+ I × σ2
N

σ2
X

)−1 ×HLS; (3.3)

Where H is the channel gain matrix at the pilot symbol, Hp denotes the real measured
channel gain matrix for the pilot sub-carriers and σ2

N

σ2
X

denotes the numerical reciprocal
of the signal-to-noise ratio (SNR) and the HLS denotes to the LS estimate of the
corresponding pilot position. The scalars σ2

X , σ2
N denote the average power of the

transmitted signal and the AWGN noise respectively.RHHp and RHpHp are the cross-
correlation matrices of H , Hp and the auto-correlation matrix of HP .

This LMMSE estimate is only able to estimate the values of the pilot symbols. Thus,
Bi-linear interpolation is used to interpolate and get an estimate of the remaining
frame values.

As evident from 3.3, LMMSE estimation involves a lot of complex matrix opera-
tions in comparison to just an LS estimator. The usual flow of MMSE computation
includes first a matrix addition of diagonal matrice consisting of constant 1

SNR
value

and auto-correlation matrix, followed by a matrix inverse operation and then two
vector multiplication operations of resultant matrix with cross-correlation matrice
and LS estimated pilot symbol vector.
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Figure 3.2: LMMSE algorithm flow

3.1.4 Hardware Architecture:

The LMMSE channel estimation requires prior knowledge of the channel correlation
matrix (Rh) and SNR in addition to LTS symbols. The LMMSE architecture is shown
in Fig. 8 and is based on Eq. 4. In the beginning, Rh is separated into real and
imaginary matrices, and the term (1/SNR) is added with each diagonal element of
the real matrix of Rh. Then, the inverse of the Rh matrix is performed. This is
followed by various matrix multiplication and addition operations.
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Figure 3.3: LMMSE hardware architecture

We have modified Xilinx’s existing matrix multiplication and matrix inversion refer-
ence examples to support the complex number arithmetic since the baseband wire-
less signal is represented using complex samples. The well-known lower-upper (LU)
decomposition method is selected for matrix inversion. We parallelize individual
operations like element-wise division and Matrix Multiplication on the FPGA. Ev-
ery element in the matrix is parallelly processed to compute division, and every row
column dot product in matrix multiplication is performed in parallel to speed up the
computation. In the end, multiple instances of these IPs are integrated to get the
desired LMMSE functionality, as shown in Fig. 8.
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3.2 Deep Learning based Channel Estimation

The mathematically modelled traditional channel estimation techniques generally
fail to produce sufficient accuracy in low SNR conditions, as they are not able to
figure out the impact of random noise in the channel. Meanwhile data driven deep
learning based channel estimation approaches prove to a better candidate as they
are able to learn the imperfections in the channel in a much efficient manner due
to proper neural network training.Thus, producing much improved channel estimate
results compared to the conventional approaches.

Channel

Noise
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? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?

Trained
NN Upscaling

Transmitted Grid
Recieved Grid

Pilot

Positions

Estimated Channel

Figure 3.4: DL-based Estimation

The foremost benefit of moving to deep learning based approaches is that they can
provide us better performance as well as an opportunity to accelerate the computa-
tions via leveraging the parallel processing abilities of FPGA systems. This is where
hardware software co-design comes in to help optimize mapping of an algorithm on
a System-on-chip (SoC).

3.2.1 CNN-based Channel Estimation

The channel matrix is a 2-dimensional matrix representing corresponding symbols
on x-axis and sub-carriers on the y-axis. And since, Convolution Neural Networks
are widely known to process 2-D data better, using CNNs for this application was an
ideal choice. And as discussed in section 1.3, there has been a lot of work on the type
and size of CNNs suited for channel estimation application.

So, we pick the most recent work [2], where the authors propose residual learn-
ing based Neural network called Interpolated ResNet (IReSNet), which outperforms
all the previous versions of the CNN-based Channel Estimation approaches. Thus, in
this project, we will be exploring this architecture to evaluate and compare the results
against other prominent estimation techniques.
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3.2.2 IReSNet

IReSNet is an improved version of ResNet [31] neural model developed for pilot
based OFDM channel estimation using residual learning which proved to be highly
efficient in terms of accuracy as well as total learn-able parameters compared to
previous CNN based estimations.

The key modification in IReSNet compared to previous ReEsNet implementation
is the omission of up-sampled convolution (also known as Transposed convolution
layer) with Bi-linear interpolation layer, which not only helps in cutting down re-
sources, but also leads to an improved performance in almost all SNR conditions.

Figure 3.5: IReSNet

As depicted in 3.5, the IReSNet network consists of total 26 layers compromising of a
number of convolution layers, addition layers and an interpolation layer. The network
involves 1 convolution layer at front, followed by 4 successive Residual blocks con-
sisting of CONV+ReLU+CONV arrangement, and the result is again passed through
convolution layer before passing it into Bi-linear interpolation layer, which inter-
polates the pilot estimated values to whole channel matrix. Then lastly, a single
convolution layer is used at the end after the interpolated channel estimate.

The LS estimated pilot values are given as an input to the IReSNet network and a
whole estimated channel matrix is obtained at the output. The obtained results pro-
duce the best results compared to other approaches in literature and simulations, but
the network consists of 10 convolution layers, 5 addition layers and 1 interpolation
layer. Hence, the performance would definitely be having trade-offs with latency and
resources required.

Since, the IReSNet network is fairly deep and memory intensive. So, there is always
a scope of the model being over-parameterized. So, we also try to explore different
flavours of IReSNet design in this project by reducing the number of residual Neural
Blocks in the architecture.We explore and analyse these observations in much detail
moving ahead in the Results chapter 4.
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3.2.3 Hardware Architecture:

Convolution operations are the most computationally intensive part of the CNN. Be-
ing highly capable of parallelism, these are ideal candidates for FPGA based acceler-
ation on the target heterogeneous SoC. In our proposed design, we build one generic
convolution layer module that executes layer-wise CNN operations and exploits the
parallelism opportunities in MAC operations of convolution operation using hard-
ware optimizations like array partitioning and pipe-lining. And the Addition layers
and interpolation layer are kept on SW (ARM cortex a9) in order to get benefit from
the heterogeneous architecture of the target SoC.

Figure 3.6: HW/SW co-design of IReSNet

3.2.4 DNN-based Channel Estimation

DNN-based channel estimation involves the use of fully connected layers in order
to learn the imperfections of channel and better estimate the channel matrix. The
functionality of a single neuron involves MAC operation among inputs as seen in the
figure below:

Figure 3.7: Working of a Neuron in DNN

In fully connected layers, the neuron of a layer is connected to the all the neurons of
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previous and next layers having separate weights as well as biases for each connec-
tion.

Figure 3.8: Fully connected Layer

Fully connected layers also present a great scope of parallelism due to the possibility
of parallel MAC operation computation of each neuron in every layer. But, since here
each of the connections has it’s own weights and biases, the learn-able parameters
are higher than a comparable Convolution layer, where the learn-able data is just
the small kernel matrix. thus, we can say Fully connected layers are generally more
memory intensive compared to the CNNs.

3.2.5 LS DNN Channel Estimation

A fully connected neural network (FCNN) will be augmented to least square channel
estimation to improve the performance. As shown in the block diagram below, first
pilots will be extracted and the channel at pilot positions will be estimated using LS.
Then the LS estimated channel will be passed through an FCNN to get the improved
performance. To get the channel at data locations, the estimated channel will be
interpolated using Bi-Linear interpolation layer.

Layer Weights Bias
Input Layer 96x48 48

Hidden Layer-1 48x2016 2016
Output Layer - -

Table 3.1: Layer description of LS-DNN network

The learn-able parameter in LS-DNN are 101.3k, which is approximately 10x times
more than what IReSNet required (9.3k).
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3.2.6 Hardware Architecture

The hardware architecture of the DNN involves array partitioning the weights of
each layer to be able to execute concurrent MAC operations of each layer with inputs
vector and biases. A descriptive view of the hardware architecture is shown in the
figure below:
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Chapter 4: Performance Analysis and
Complexity Comparison

In this chapter, we compare the functional accuracy of various channel estimation ap-
proaches for a wide range of SNRs, wireless channels, and word length. We use the
mean square error (MSE) of channel estimation output and bit-error-rate (BER) of the
end-to-end transceiver as performance metrics. Then, we compare the resource uti-
lization and execution time of various architectures obtained via hardware-software
co-design and word-length optimization. All the architectures are implemented on
AMD Xilinx’s ZC-706, a state-of-the-art Xilinx’s Zynq series heterogeneous SoC
platform consisting of a hard processor (ARM Cortex A9) and FPGA fabric (pro-
gramming logic). Here, we consider four channel estimation approaches: 1) LS, 2)
LMMSE, 3) IReSNet, and 4) LSDNN. In the case of IReSNet, we consider three dif-
ferent architectures for a block size of 2, 3, and 4. They are referred to as IReSNet 2,
IReSNet 3, and IReSNet 4, respectively. Similarly, for LSDNN, we consider two
architectures: 1) Compute-efficient architecture, LSDNN CE, and 2) Low execution
time, i.e. low latency architecture, LSDNN LL. We do not consider ChannelNet [1]
and ReEsNet [8] since it is already shown that the IReSNet [2] has lower complexity
than them.

4.1 Functional Accuracy Verification

In this section, we compare the functional accuracy of various architectures using
floating-point arithmetic. Later, we optimize the word length of each architecture
such that it does not lead to significant degradation in functional accuracy. We
consider two well-known multipath fading channels Extended Pedestrian A model
(EPA), and Extended Typical Urban model (ETU). We consider the SNR range from
-5 dB to 25 dB.
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4.1.1 Double Precision Floating Point (DPFP) Word Length

In Fig. 4.1, we compare the MSE of all architectures for a wide range of SNRs in
the presence of EPA and channels. As expected, MSE decreases with the increase in
SNR. In both channels, LMMSE offers lower MSE than LS. It can be observed that
DL-based approaches outperform LS and LMMSE and they do not need prior knowl-
edge of the channel as in LMMSE. The performance of IReSNet degrades with the
decrease in block size. The MSE performance of the LSDNN is slightly worse than
that of the IReSNet. Note that each of the DL algorithms is trained independently for
the respective channel and prior knowledge of channel type is needed. Please refer
to Chapter 5 for more details.
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Figure 4.1: Comparison of MSE for different channel estimation approaches over a
wide range of SNRs for (a) EPA Channel, and b) ETU Channel.

Next, we compare the BER of end-to-end transceiver systems for a wide range of
SNRs in the presence of EPA and channels. It is well known that BER is a preferred
metric to analyze the performance of wireless PHY compared to MSE. It can be ob-
served that the BER of the LMMSE is better than that of the LS. Furthermore, DL
approaches offer lower BER than LS and LMMSE, especially at high SNR. Though
LSDNN incurs higher MSE at low SNR than IReSNet, the BER of both approaches
is nearly identical. Thus, we can conclude that the overall channel estimation perfor-
mance of DL approaches is better than LS and LMMSE. Also, IReSNet and LSDNN
offer identical BER performance for both types of channels.
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Figure 4.2: Comparison of BER for different channel estimation approaches over a
wide range of SNR for (a) EPA Channel, and b) ETU Channel.

4.1.2 Fixed Point Word Length

Since architecture with SPFP WL suffers from high resource consumption, latency,
and power consumption, fixed-point WL is preferred. Fixed point WL is represented
as < W, I > where W, I is the number of total and integer bits, respectively. Thus,
(W − I) represents the total number of fractional bits. The fixed-point WL selection
involves identifying a number of bits to represent integer and fractional parts. Since
each algorithm has different arithmetic operations and hence, the dynamic range of
intermediate outputs, WL needs to be selected independently for each architecture.

Fixed-Point WL Selection for LS:
For LS, we compare the average MSE for different WL with respect to that of SPFP
WL. As shown in Table 4.1, we fixed the number of fractional bits to a high value
of 12 and vary the total number of integer bits. It can be observed that the MSE
degrades significantly for I lower than 4.

Table 4.1: Selection of I for LS

Word Length (W − I) Average MSE
SPFP - 0.29778

<15,3> 12 0.52125
<16,4> 12 0.29778
<17,5> 12 0.29778

Next, for fixed I = 4, we find out the minimum possible W . In Fig. 4.3, we compare
the effect of (W ) on the MSE performance of LS for fixed I = 4 and it can be
observed that the MSE does not improve for any W ≥ 8. Thus, we have selected the
WL of <8,4> for the LS architecture.
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Figure 4.3: Effect of (W ) on the MSE performance of LS for fixed I = 4.

In Fig. 4.4, we compare the MSE of LS with SPFP WL, and two fixed point WL
of <8,4> and <8,3>. It can be observed that even single-bit reduction results in a
significant increase in MSE thereby validating the selection of <8,4> WL for LS.
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Figure 4.4: Comparison of the MSE for different WL architectures of LS over a wide
range of SNR.

In Fig. 4.5, we compare the resource utilization of LS architecture for different WL.
It can be observed that architecture with WL of <8,4> offers significant savings
in resources over LS SPFP architecture without compromising functional accuracy.
Numerically, architecture with WL of <8,4> offers 66%, and 33% savings in flip-
flops (FF) and look-up-table (LUT) in FPGA. In addition, it eliminates the need for
embedded digital signal processing (DSP) units in FPGA.

Fixed-Point WL Selection for LMMSE:
Since LMMSE involves matrix inversion, the dynamic range of intermediate outputs
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Figure 4.5: Comparison of the FPGA resource utilization for different WL architec-
tures of LS.

is high. Hence, we could not get desirable accuracy with the fixed-point implemen-
tation of the LMMSE.

Fixed-Point WL Selection for IReSNet:
For IReSNet, we compare the average MSE for different WL with respect to that of
SPFP WL. As shown in Table 4.2, we fixed the number of fractional bits to a high
value of 12 and vary the total number of integer bits. It can be observed that the MSE
degrades significantly for I lower than 4.

Table 4.2: Selection of I for IReSNet

Word Length
<W,I> W − I MSE

SPFP - 0.099368
15,3 12 0.228793
16,4 12 0.099639
17,5 12 0.099891

Next, for fixed I = 4, we find out the minimum possible W . In Fig. 4.6, we compare
the effect of (W ) on the MSE performance of LS for fixed I = 4 and it can be
observed that the MSE does not improve for any W ≥ 16. Thus, we have selected
the WL of <16,4> for the IReSNet architecture.
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Figure 4.6: Effect of (W ) on the MSE performance of IReSNet for fixed W − I = 4.

In Fig. 4.7, we compare the MSE of IReSNet with SPFP WL, half-precision floating
point (HFFP) WL, and three fixed point WL of <16,4> <12,5> and <8,5>. It can
be observed that WL of <16,4> offers similar performance as that of SPFP WL.
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Figure 4.7: Comparison of the MSE for different WL architectures of IReSNet over
a wide range of SNR.

In Fig. 4.8, we compare the resource utilization of IReSNet architecture for different
WL. It can be observed that architecture with WL of <16,4> offers significant sav-
ings in resources over IReSNet SPFP architecture without compromising functional
accuracy. Numerically, architecture with WL of <16,4> offers 50%, 85%, 60%, and
49% savings in block RAM (BRAM), DSP, FF, and LUT in FPGA.

Fixed-Point WL Selection for LSDNN:
For LSDNN, we compare the average MSE for different WL with respect to that of
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Figure 4.8: Comparison of the FPGA resource utilization for different WL architec-
tures of IReSNet.

SPFP WL. As shown in Table 4.3, we fixed the number of fractional bits to a high
value of 18 and vary the total number of integer bits. It can be observed that the MSE
degrades significantly for I lower than 8.

Table 4.3: Selection of I for LSDNN

Word Length
<W,I> W − I MSE

sw - 0.125617
25,7 18 0.249926
26,8 18 0.125617
27,9 18 0.125617

Next, for fixed I = 8, we find out the minimum possible W . In Fig. 4.9, we compare
the effect of (W ) on the MSE performance of LS for fixed I = 8 and it can be
observed that the MSE does not improve for any W ≥ 26. Thus, we have selected
the WL of <26,8> for the LSDNN architecture.

In Fig. 4.10, we compare the MSE of LSDNN with SPFP WL, and two fixed point
WL of <26,8> and <26,7>. It can be observed that even single-bit reduction results
in a significant increase in MSE, thereby validating the selection of <26,8> WL for
LSDNN.
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Figure 4.9: Effect of (W ) on the MSE performance of LSDNN for fixed W − I = 4.
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Figure 4.10: Comparison of the MSE for different WL architectures of LSDNN over
a wide range of SNR.

In Fig. 4.11, we compare the resource utilization of LSDNN architecture for different
WL. It can be observed that architecture with WL of <26,8> offers significant sav-
ings in resources over IReSNet SPFP architecture without compromising functional
accuracy. Numerically, architecture with WL of <26,8> offers 19%, 20%, 30%, and
20% savings in block RAM (BRAM), DSP, FF, and LUT in FPGA.

4.2 Hardware Software Co-design

In this section, we discuss various configurations of each architecture obtained by
hardware-software co-design (HSCD) on Zynq SoC. Specifically, each configuration
differs from others depending on which part of the architecture is realized in the pro-
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Figure 4.11: Comparison of the FPGA resource utilization for different WL archi-
tectures of LSDNN.

cessing system (PS) i.e. ARM processor, and programmable logic (PL), i.e., FPGA.
In the end, the architecture which offers lower latency and fewer FPGA resources is
selected.

4.2.1 HSCD: LS

The LS is relatively simple to implement and consists mainly of LS computation
and interpolation (INTP) to the channel estimate over the entire OFDM frame. We
considered four configurations obtained by moving LS and INTP operations between
PS and PL. From table 4.4, it can be observed that the realization of LS-based channel
estimation is that PS offers the lowest latency; hence, FPGA-based acceleration is not
needed.

Table 4.4: HW-SW Co-design for LS

S. No. PS PL Execution Time BRAM DSP FF LUT
1 LS + INTP NA 0.070028 - - - -
2 LS INTP 0.098543 0 8 2045 3016
3 INTP LS 0.071297 0 10 8801 3703
4 NA LS + INTP 0.070528 0 12 10524 5605
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4.2.2 HSCD: LMMSE

In the case of LMMSE, we have realized it completely in PL due to computationally
complex floating-point matrix operations.

4.2.3 HSCD: IReSNet

The IReSNet architecture consists of three computational blocks: B1) Convolution
layer (CONV), B2) Addition layer (ADD) and B3) Interpolation layer (INTP). As
shown in Table 4.5, the realization of CONV in PL offers a significant improvement
in latency.

Table 4.5: HW-SW Co-design for IReSNet

S. No. PS PL Latency BRAM DSP FF LUT
1 B1+B2+B3 - 40.25 - - - -
2 B1+B2 B3 40.45 0 8 2045 3016
3 B1+B3 B2 36.86 0 10 1024 1153
4 B2+B3 B1 18.26 112 100 10042 9590
5 B3 B1+B2 18.99 112 116 12009 12417
6 B2 B1+B3 19.24 112 108 12352 12648
7 - B1+B2+B3 19.26 112 126 14620 15244

4.2.4 HSCD: LSDNN

The LSDNN architecture consists of LS and two DNN layers, L1 and L2. Based
on previous results, LS is realized in PS. From Table 4.6, the architecture with both
layers in FPGA offers the lowest latency.

Table 4.6: HW-SW Co-design for LSDNN

S. No. PS PL Execution Time BRAM DSP FF LUT
1 L1+L2 - 0.76345 - - - -
2 L2 L1 0.723881 32 160 19638 15051
3 L1 L2 0.114685 264 32 12735 9773
4 - L1+L2 0.08123 290 40 14735 10766

4.3 Comparison of Fixed-Point Architectures

This section compares the functional accuracy, resource utilization, and latency of
various architectures obtained via HSCD and word-length analysis. As shown in
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Fig. 4.12, DL-based channel estimation architectures offers better performance than
LS and LMMSE at the lowest possible WL.
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Figure 4.12: MSE comparison of various fixed-point architectures.

In Table 4.7, we compare various fixed-point architectures’ resource utilization and
latency. For IReSNet, we consider three variations depending on the block size. All
of them have identical functional accuracy, but they differ in latency.

Similarly, we consider two architectures for LSDNN. In LSDNN CE, resource uti-
lization is reduced with a slight increase in latency. In LSDNN LL, latency is reduced
with a slight increase in resource utilization. It can be observed that the latency of
LSDNN CE and LSDNN LL is 88% and 98% lower than that of IReSNet. At the
same time, LSDNN CE offers is 85%, 60%, 35%, and 38% savings in BRAM, DSP,
LUTs and FFs, respectively, over IReSNet. Similarly, LSDNN CE offers 75% lower
latency along with 93%, 94%, 90% and 94% savings in BRAM, DSP, LUTs and FFs,
respectively.
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Table 4.7: Comparison of Various Fixed-point Architectures

S.No. Architecture Word Length Latency BRAMs DSPs LUTs FFs

1 LS
SW 0.070028 - - - -

SP-FL 0.070787 0 10 8801 3703
FP 8 4 0.070558 0 0 2950 2462

2 LMMSE SPFL 2.81965 114 101 25416 52564

3 IReSNet 2
SW 39.82998 112 100 10042 9590

FP 16 4 6.50355 56 15 3956 4844

4 IReSNet 3
SP-FL 39.275744 112 100 10042 9590

FP 16 4 6.373281 56 15 3956 4844

5 IReSNet 4
SW 40.25315 - - - -

SP-FL 18.36422 112 100 10042 9590
FP 16 4 6.63591 56 15 3956 4844

6 LSDNN LL
SW 0.76345 - - - -

SP-FL 0.08784 290 40 14727 10766
FP 26 8 0.08632 234 32 10234 8561

7 LSDNN CE
SP-FL 0.7962 8 6 2939 3543

FP 26 8 0.714885 8 6 2554 3021
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Chapter 5: Conclusion and Future Scope

In this thesis, we studied the feasibility of deep learning (DL) based channel es-
timation for the wireless physical (PHY) layer on system-on-chip (SoC). We have
realized the existing statistical and DL-based channel estimation approaches on SoC
via hardware-software co-design and word-length analysis. We show that the exist-
ing DL approaches offer improved mean square error and lower bit-error rate than the
least square (LS) and linear minimum mean square error (LMMSE) approaches. We
observed that DL-based approaches are relatively easy to implement and optimize on
FPGA than LMMSE due to simple arithmetic operations. However, they have very
high complexity and latency. We designed LS augmented deep neural network (LS-
DNN) algorithm, which has significantly lower complexity and latency than existing
DL approaches for a given MSE and BER performance. Via in-depth experimental
results for a wide range of SNR and wireless channels and complexity analysis, we
demonstrated the superiority of the proposed LSDNN approach over existing works.

One of the main drawbacks of the DL-based approach is the dependence on the train-
ing dataset. We observed that the performance of LMMSE and DL-based channel es-
timation degrades significantly in unknown channel environments. Even in a known
channel environment, LMMSE and DL-based approaches are sensitive to channel
parameters such as Doppler frequency. Still, they perform significantly better than
LS approach. The degradation in performance due to unknown channel conditions
can be addressed in two ways”. The first approach is to design generalized DL ar-
chitecture, which works well in multiple channel conditions. However, such gener-
alized architectures are computationally complex. The second approach addresses
this problem at the hardware level via reconfigurable architecture. We can configure
the hardware with appropriate DL architecture based on the current channel condi-
tions. This will enable the use of small DL models resulting in lower complexity
and latency. However, we need an additional intelligence layer to identify the current
channel conditions and corresponding DL models. The design of such intelligent and
reconfigurable channel estimation is part of future work.
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One more limitation of existing SoC-based approaches is that the training of DL
models is done offline. In the future, we plan to develop a real-time framework for
training on SoC so that optimal models can be trained on-the-fly for a given channel
condition.
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