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ABSTRACT

The reproducibility of experiments has been a long-standing obstruction for farther sci-

entific evolution. Computational methods are being involved to accelerate and to econ-

omize drug discovery and the development process. In this work several computational

models using matrix completion techniques including matrix factorization, deep ma-

trix factorization, binary matrix completion and graph regularised techniques (graph

regularised deep matrix factorisation, graph regularised matrix factorization, graph reg-

ularised binary matrix completion and graph regularised matrix completion) have been

proposed to predict bacteria-drug association. Here drug-bacteria association matrix

is formed. Along with it we gather similarity information using the chemical struc-

ture of drugs and genome-genome distance calculator Meier-Kolthoff et al. (2022) for

bacteria. Using several matrix completion tools, the bacteria-drug association data and

similarity data, the present study predicts the set of best possible drugs corresponding

to each bacteria in the database. The graph regularised techniques consider the drug-

bacteria association matrix along with the similarity information for prediction. To eval-

uate robustness of the model, cross validation settings on different scenarios have been

adopted on the training data. The AUC-AUPR metric is being reported corresponding

these scenarios and association between drug-bacteria is being predicted with the help

of various graph and non graph regularised methods. The result produced by graph reg-

ularised methods are better compared to non graph regularised methods. Hence it can

be concluded that the graph regularised methods predicts the association data well. We

anticipate that this work will provide opportunities to develop drugs for newly discov-

ered bacteria and, conversely, enable the identification of potential bacteria targets for

existing drugs
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CHAPTER 1

INTRODUCTION

Recognising drug target and drug-bacterial interactions are one of the most essential

steps in the area of drug-discovery. Successful computational drug discovery techniques

are proved to be an effective blueprint for economising and stimulating drug discovery

and development process. These computational methods can also reduce time required

by the experimental methods. In the year 2020 we witnessed a severe situation where

a huge number of people got died due to COVID-19 Zhou et al. (2020); Dotolo et al.

(2021). The disease causes dreadful respiratory syndrome coronavirus 2 which was

being outspread across more than 100 countries. This epidemic vandalized people’s

life, global economy heavily from all perspectives and mostly the pillar of the human

race. In this circumstance the analysis involved to develop a new drug is Laborious and

require several phases of considerable trials. Hence to deal with this type of scenario

the finest way is to repositioning existing drugs. This is no doubt a well-known tech-

nique where the existing drugs (which have already been endorsed in the market for

release) are analysed or examined for a new disease Ashburn and Thor (2004). Drug-

repositioning is generally cost-effective and requires less amount of time compare to

introducing new drug as its consequences are well examined. The COVID-19 Zhou

et al. (2020); Dotolo et al. (2021)pandemic brought drug repurposing research on viral

infections at the forefront. However, we could not find any methodical study on drug

repositioning for bacterial infections. According to a recent estimate 7.7 million people

die in the world every year from bacterial infections1. This motivates our current work.

In this study, we curate a database for drug-bacteria-association and benchmark state-of-

the-art algorithms. Practically, this type of techniques could also help clinicians in de-

veloping effective treatments for speedily mutating bacteria by pruning the anti-bacteria

drug space Ezzat et al. (2019). In this work a computational approach is adopted which

takes into consideration the genomic distance of the bacteria or their similarity to decide

the drug for the bacteria. Hence for any newly introduced bacteria this computational

1https://www.reactgroup.org/news-and-views/news-and-opinions/
year-2022/7-7-million-people-die-from-bacterial-infections-every-year/

https://www.reactgroup.org/news-and-views/news-and-opinions/year-2022/7-7-million-people-die-from-bacterial-infections-every-year/
https://www.reactgroup.org/news-and-views/news-and-opinions/year-2022/7-7-million-people-die-from-bacterial-infections-every-year/


method can also determine the corresponding drug by calculating the genome distance

or similarity between the new one and the existing bacteria which would be helpful to

decide the treatment of bacterial infections. In pursuit of this objective we have formed

bacteria-drug association matrix in conjunction with the similarity measures affiliated

with drugs (chemical structure similarity) and bacteria (genome-genome distance) and

follow a machine learning based approach. There can be various procedures like neigh-

borhood models,feature-based classification models, matrix completion models etc to

predict bacteria drug association. A recent experimental study on firmly established

drug-target interaction databases shows superlative prediction performance by matrix

completion models Ezzat et al. (2019). In computer science matrix completion method

is used in recommendation systems. The general problem of drug-Infection can be con-

sidered as a recommendation system, where drugs are being recommended to treat Bac-

terial Infections. Here also we deploy matrix completion techniques followed by matrix

factorisation, deep matrix factorisation and graph regularised techniques like graph reg-

ularised matrix completion, graph regularised matrix factorization, graph regularised

deep matrix factorization and graph regularised binary matrix completion to anticipate

drug-Infection associations. To validate the robustness of the algorithms we perform

10-fold cross validation in training data on several scenarios by masking or hiding few

entries(10% associations in scenario1,10% bacteria in scenario2,10%drugs in scenario3

selected randomly) in the association matrix and predict the corresponding association

using several graph and non graph regularised algorithms. We believe there are three

ways our work can benefit researchers and clinicians working in this area. First, it can

help in identifying usage of existing antibiotics for known bacterial infections. Second,

it can help in repurposing existing antibiotics for new bacteria. Third, it can help find

potential existing bacterial infections that benefit from a newly developed antibiotic.

Of these, we assume that the second point is of prime importance. This is because of

the rise of antimicrobial resistance Dadgostar (2019); Murray et al. (2022).Over time,

through mutations and selection bacteria develops defenses against antibiotics. In such

cases, the clinicians need to find newer ways of treatment Schrader et al. (2020).We

believe that clinicians may use our approach to screen such treatment plans.
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CHAPTER 2

Methods

2.1 Dataset Definition

The information about the bacterial infections and the corresponding effective drugs are

taken from the antibiotic guidelines 2018 of Christian Medical College, Vellore1 and

the antibiotic policy manual of AIIMS(all india institute of medical sciences),jodhpur,

rajasthan2. In these two manuals bacterial infections including the causative organ-

isms(bacteria) and the effective drugs or antibiotic are specified.

As mentioned in the introduction, we would be using matrix completion based ap-

proach for drug-bacteria-association. In this approach the antibiotics are along the rows

and the bacteria along the columns (or vice versa). From the aforementioned guide-

line, wherever a drug is known to be effective against a bacteria, we have marked it

as 1 in the matrix. These are the true positives. Ideally the drugs that are known to

be ineffective against a certain bacterial infection should have been marked as the true

negative. Unfortunately, this information is not available in the guideline. This problem

is not unique to our dataset, it must be noted that almost all biological interaction prob-

lems such as drug-target-interaction Shi and Yiu (2015),drug-disease-interaction Got-

tlieb et al. (2011); Luo et al. (2016),drug-drug-interaction Wishart et al. (2018),drug-

virus-interaction Mongia et al. (2021)etc.The ensuing matrix is of size 53 X 61; there

are 53 antibiotics and 61 bacteria.

This DBA (drug bacteria association) database is useful to analyse and propose anti-

bacterial drug for bacteria. In conjunction with this it may also be utilised to computa-

tionally recognise bacteria that a recently identified drug might aim at. The correlated

metadata (information about the drugs and the corresponding bacteria) may also assist

the clinicians to analyse manually and to have a deeper insight.

1https://github.com/sayantika21175/Thesis_2023/blob/main/
Antibiotic%20guidelines%20for%20adults%202018-%20CMC%20vellore.pdf

2https://www.aiimsjodhpur.edu.in/quick%20docs/Antibiotic%20Policy%
20AIIMS%20JDH%202018.pdf

https://github.com/sayantika21175/Thesis_2023/blob/main/Antibiotic%20guidelines%20for%20adults%202018-%20CMC%20vellore.pdf
https://github.com/sayantika21175/Thesis_2023/blob/main/Antibiotic%20guidelines%20for%20adults%202018-%20CMC%20vellore.pdf
https://www.aiimsjodhpur.edu.in/quick%20docs/Antibiotic%20Policy%20AIIMS%20JDH%202018.pdf
https://www.aiimsjodhpur.edu.in/quick%20docs/Antibiotic%20Policy%20AIIMS%20JDH%202018.pdf


As mentioned before, we will be using graphical matrix completion approaches in

this work. This takes into account associated metadata for the drugs and the bacteria.

All the associated information on drugs is obtained in the DrugBank vocabulary3. From

here the unique DrugBank Id for the antibiotics are obtained. However, we do not need

the raw data for the drugs but the structural similarity between the drugs. The similarity

is computed via the SIMCOMP score Hattori et al. (2010). For computing this score,

one needs to access the Kyoto Encyclopedia of Genes and Genomes (KEGG). Kane-

hisa et al. (2006) The KEGG Id (kid) is the unique identifier for each KEGG object.

The linkage between KEGG and DrugBank is available at the linking file4; Wishart

et al. (2006) In case the drugs were missing in the file it was manually appended. This

linked each antibiotic with a DrugBank ID to a corresponding KEGG ID on the KEGG

Compound/KEGG Drug database5 of the KEGG.

For bacterial information Full Genome sequence (nucleotide sequences in FASTA

format) is considered. Genome sequence helps in determining the working of the

genomes as a whole. It also gives an insight into the biology of many bacterial pathogens

and also identify novel antibiotic target. This sequence is fetched from the NCBI (Na-

tional Center for Biotechnology Information) genome database 6 National Center for

Biotechnology Information (Accessed May 5, 2023). This NCBI genome database

also contains protein sequence, genome annotation in GFF, GenBank format, Genome

Blast, all the genome list for particular species. Each bacteria has its own full genome

sequence. Hence, we have total 61 genome sequences. These genome sequences of

bacteria are used as an input to calculate similarity among bacteria.

2.2 Similarity Computation

Here analogy among drugs and analogy among the bacteria are calculated with the

chemical information of drugs and genome sequences of bacteria respectively. These

similarities are useful to design this recommendation system mentioned in this work.

3https://www.drugbank.ca/releases/latest#open-data
4https://www.drugbank.ca/releases/latest#external-links
5https://www.genome.jp/kegg/compound/ and https://www.genome.jp/kegg/

drug/
6https://www.ncbi.nlm.nih.gov/genome/

4
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2.2.1 Similarity calculation among Drugs

DrugBank IDs of the drugs are there along with the corresponding KEGG IDs. These

DrugBank IDs and the corresponding KEGG Compound IDs are mapped together to

form a new dataset containing DrugBank ID, KEGG compound ID, KEGG Drug ID

and the Drug Name. The drugs either have KEGG compound ID or KEGG Drug ID

corresponding DrugBank ID. To compute the similarity among the drugs their chemical

significances or chemical structure is considered. There is SIMCOMP (SIMilar COM-

Pound) server for the chemical similarity search. Chemical structure similarity between

two drugs is calculated with the help of SIMCOMP score Hattori et al. (2010). It is a

graph-based method which is based upon the maximum common substructures between

the chemical structure of the compounds using the KEGG API page at GenomeNet 7.

To calculate SIMCOMP score cutoff is set as 0.001. The drugs with no KEGG IDs

available and the drugs for which the SIMCOMP score was smaller than the predefined

threshold (0.001)are being allotted a similarity score of 0 to other drugs in the dataset

and 1 to themselves.

2.2.2 Similarity calculation among Bacteria

Genome-Genome distance calculator8 Meier-Kolthoff et al. (2022) is used to find out

the similarity in between two bacteria using their genome sequences. It is a futuristic in

silico method to compare genomes of various organisms, thus truly imitating the con-

ventional DDH Meier-Kolthoff et al. (2013), except for its pitfalls. GGDC (Genome-

Genome distance calculator) Meier-Kolthoff et al. (2022) works much faster compare

to other techniques. We have also tried Stretcher (Emboss) the global alignment tool

to calculate the similarity but it took around 10 hours to compute similarity between

two genome sequences. GGDC gives best result within very small-time frame. In this

GGDC web server genome sequences (FASTA format) of several bacteria are being

passed as the query genome and a single genome sequence of bacteria as a reference

genome is being passed as inputs. The output of the comparison is collected via e-mail.

We also tried to calculate similarity between bacteria using NCBI Blast database. The

protein sequences (FASTA format) of bacteria are passed as an input in the database

7https://www.genome.jp/tools/gn_tools_api.html
8https://ggdc.dsmz.de/ggdc.php#

5

https://www.genome.jp/tools/gn_tools_api.html
https://ggdc.dsmz.de/ggdc.php#


and it gives the similarity results. But it also very tedious and the result is not accurate

as compare to GGDC.

2.3 Algorithms Used

Matrix completion is a relatively matured area of research. As mentioned before, we

are solving the drug-bacteria-association problem as one of matrix completion. From

the known entries, some portion are assumed to be unknown and are hidden (10%

around in several experimental scenarios). Matrix completion is used to recover these.

Once the recovery is done, the recovered entries are compared with the ground-truth

(hidden) values.

Let X is the entire drug-bacteria association matrix of size m × n denoted by Xm×n.Here

m is the number of drugs and n is the number of bacteria. The association matrix con-

tains the binary values(1 denotes that the drug is known to act against the bacteria and

0 denotes no association or not known). The goal is to estimate X. What is available is

the partially sampled version of X in Y; i.e. Y is the actual observation available. Let

M be the masking operator.Then, the data fidelity term is expressed as:

Y = M(X) (2.1)

This is an under-determined system, more variables (X) than the number of equations

(Y). Therefore there can be infinitely many solutions. In Matrix completion the as-

sumption is that the underlying matrix to be recovered (X) is of low rank. Under such a

condition, the number of free variables are reduced and one can expect to estimate the

underlying matrix Sun and Luo (2016); Candes and Plan (2010).

2.3.1 Matrix Factorization

The most elementary method to deal with the low-rank matrix completion problem is

matrix factorization. It is a way to find out the latent features during the multiplication

of two different entities. In this case the data matrix X is disintegrated into two latent

factor matrices Um×q and Vq×n where q specifies the number of latent (hidden) factors

6



which conclude if a drug is affiliated with a bacteria or not and the matrix X can be

expressed as the multiplication of U and V. hence the equation 2.1 looks like:

Y = M(UV ) (2.2)

Where the data matrix X is represented by:

X = UV (2.3)

And X is reconstructed by solving U and V. By minimizing the Frobenius norm of the

below problem these two matrices U and V can be solved.

min
U,V
||Y −M(UV )||2F (2.4)

this equation 2.4 is being solved by using Majorization-Minimization (MM) technique Chouzenoux

et al. (2013); Sun et al. (2016). The majorization step mainly dissociate the problem

(from M), so that the optimization problem can be solved by solving:

min
U,V
||B − UV ||2F (2.5)

where Bk+1 = Xk+
1
a
MT (Y −M(Xk) and k is the number of iteration.Here, Xk is the

matrix at iteration k and a is a scalar parameter used in the MM technique. The equation

2.5 has been resolved by alternating least squares method Hastie et al. (2015) to get U

and V.In ALS (alternating least squares) algorithm while updating U, V is assumed to

be constant, and U is supposed to be constant while updating V.

Uk ← minU ∥B − Uk−1Vk−1∥2F (2.6)

Vk ← minV ∥B − UkVk−1∥2F (2.7)

The complete algorithm is discussed in Mongia et al. (2019).

7



2.3.2 Nuclear Norm Minimization based matrix completion

Matrix factorization is a bilinear and leads to a non-convex minimization problem.

Hence it does not guarantee global convergence. Furthermore in order to solve for

matrix factorisation one needs to have an estimate on the rank of X. This is not always

possible, especially for a problem such as ours. Ideally in order to estimate a low-rank

matrix one needs to solve:

min
X

rank(X) such that Y = M(X) (2.8)

Unfortunately this is an NP hard problem. Theoretical investigations demonstrated that

it is possible To ease the NP-hard rank penalty by its closest convex surrogate - the

nuclear norm Candes and Recht (2012); Candès and Tao (2010). This leads to:

min
X
∥X∥∗ such that Y = M(X) (2.9)

Here ∥∥∗ is the nuclear norm and is defined as the sum of the singular values of the asso-

ciation matrix X. Its quadratic program is solved by with the unconstrained Lagrangian

version.

min
X
∥Y −M(X)∥2F + λ ∥X∥∗ (2.10)

Here also ∥∥∗ denotes the nuclear norm and λ is known as the Lagrange multiplier. To

solve 2.10, MM is invoked once again. Here Q(X) = ∥Y − A(X)∥2F + λ ∥X∥∗, we

can represent 2.10 in the below way in every iteration k,

min
X
∥B −X∥2F + λ ∥X∥∗ (2.11)

where Bk+1 = Xk+
1
a
MT (Y −M(Xk). With the help of the inequality ||Z1−Z2||F >=

||s1− s2||2, where s1 and s2 are singular values of the matrices Z1 and Z2 respectively,

the following problem can be solved in lieu of solving the minimization problem men-

tioned in equation2.11:

min
sx
∥sB − sX∥22 + λ ∥sX∥1 (2.12)

Here, sX is the singular values of X and sB is the singular values of B and ∥sX∥1 is the

sum of absolute values of sX or the l1 norm.

8



This problem in equation 2.9 addressable via semi-definite programming, but faster

algorithms like singular value thresholding Cai et al. (2010b) and singular value shrink-

age Mongia et al. (2019) are available.

2.3.3 Deep matrix factorization

In recent days, deep learning has pervaded nearly all facets of computational science.

It is an extension of matrix factorization. Instead of factoring X into two matrices, one

can factor it into more. Inspired by the triumph of deep dictionary learning Tariyal

et al. (2016),deep factorization algorithm is being recommended. In this algorithm the

data matrix X is disintegrated into multiple factor matrices to acquire complicated latent

structures in the data. Integrating the DMF into the equation 2.1 leads to:

Y = M(U1U2V ) (2.13)

Where, X is the data matrix and X is represented as:

X = U1U2V (2.14)

We can consider it as the minimization problem with 3-layer matrix factorization and it

is is formulated as:

min
U1,U2,V

∥Y −M(U1U2V )∥2F such that U1>=0, U2>=0 (2.15)

This is a multi-linear problem and therefore is non-convex. There are no guarantees on

global convergence. Since this is a new topic, there are no off-the-shelf algorithms for

solving this. However, prior studies have extended multiplicative updates Trigeorgis

et al. (2016) and alternating least squares Mongia et al. (2020) to solve it efficiently.

The problem mentioned in equation 2.3 is a bilinear (Bilinearity means that it is linear

in each of the variables (U and V) if the other variable kept constant (V and U respec-

tively)) problem and equation 2.14 is a trilinear problem. They are different. Hence

the features extracted from single layer matrix factorization problem are not same with

the features extracted from 2-layer matrix factorization or Deep matrix factorization

problem. The entire algorithm is discussed in Mongia et al. (2020).

9



2.3.4 Binary Matrix Completion

The algorithms we have discussed so far are applicable for Real matrices. However, our

drug-bacteria-association problem is binary in nature. Whereas, one can apply the pre-

vious algorithms and then use some kind of thereholsing scheme to binarise the output

matrix, a more natural choice is to go for 1-bit / binary matrix completion Davenport

et al. (2014). The original paper proposed a probabilistic formulation; we are not going

into the details. In the deterministic framework, we are following the problem would

be posed as:

f(X) = ∥Y −M(X)∥2F + λ∥X∥∗, s.tX ∈ [0, 1] (2.16)

where ∥∥∗ is the nuclear norm. X is the binary matrix needs to be restored. The entire

algorithm is discussed in Davenport et al. (2014).

2.3.5 Graph regularised matrix factorization(GRMF)

All the aforementioned algorithms are applicable to problems where the objective is to

complete a partially filled matrix when no other metadata is known about the rows or

columns. In our case, that is not the scenario. We have the genomic structure of bac-

teria and chemical structure of the drugs. From these, we have computed to similarity

matrices for the rows and columns. These are easily integrated into the matrix comple-

tion framework using graph regularization. The first technique we will briefly discuss

is graph regularized matrix factorization Cai et al. (2010a). In case graph regulariza-

tion the model introduces a graph laplacian penalty to the cost function. This graph

laplacians have been obtained from the weights between the nodes in drug/bacteria or

row/column graphs and encrypt the information of row/column entities. The formula-

tion is as follows:

U ∈ Rm×q (for drugs) and V ∈ Rq×n (for bacteria) which optimize the LRA objec-

tive:

min
(U,V )
∥Y −M(UV )∥2F (2.17)

Here ∥∥F is the Frobenius norm and q is the number of latent features in U and V.

10



Sparsification of the Similarity Matrices

Sparsification of the Similarity Matrices is a procedure that is applied before graph

regularization Cai et al. (2010a).In this case also we incorporated a p-nearest neighbour

graph from each of the bacteria and drug similarity matrices, Sb, Sd. the p-nearest

neighbor graph is formed as:

∀i, j, Nij =


1, if j ∈ Np(i) and i ∈ Np(j)

0, if j /∈ Np(i) and i /∈ Np(j)

0.5, otherwise

(2.18)

Here Np(i) represents the set of p nearest neighbors to drug di. N is applied to sparsify

the similarity matrix Sd as:

∀i, j, Ŝd
i,j = Ni,jS

d
i,j (2.19)

It produces similarity matrix (sparse matrix) for drugs. The same procedure is incorpo-

rated for the bacteria similarity matrix Sb .

Regularization is incorporated by introducing graph Laplacian penalties to the cost

function of matrix factorization as shown below:

min
U,V
∥Y −M(UV )∥2F + µ1 tr(U

⊤LdU) + µ2 tr(V LbV
⊤), (2.20)

Where µ1 > 0 and µ2 > 0 denote the coefficients which penalize the graph regu-

larization Laplacian terms and tr is the trace of the matrix.Ld = Dd − Sd and Lb =

Db − Sb are the graph Laplacians Chung (1997) for Sd(row/drug similarity matrix)

and Sb(column/bacteria similarity matrix),respectively, and Dii
d =

∑
j S

ij
d and Dii

b =∑
j S

ij
b are the associated degree matrices.The second term specifies the graph regular-

ization for drug. The distance between latent feature vectors of two neighboring drugs

is minimized by this regularization. The last(third) term is the graph regularization for

bacteria. A resolution technique for the above formulation has been shown in Ezzat

et al. (2016).

11



2.3.6 Graph Regularised Matrix Completion

Like matrix factorization, graph regularization can be incorporated into the nuclear

norm minimization framework. In this case graph Laplacian penalties have been in-

corporated to consider the similarity between drugs and the similarity between bacteria.

However, unlike the previous case where the factor matrices for the drugs and bacteria

are well defined, we have to apply the regularization along the rows and columns of X

instead. The minimization problem can be written as:

min
X
∥Y −M(X)∥2F + λ ∥X∥∗ + µ1 tr(X

⊤LdX) + µ2 tr(XLbX
⊤). (2.21)

where ∥∥∗ denotes the nuclear norm. λ > 0, µ1 > 0 and µ2 > 0 denote the coefficients

which penalize the graph regularization Laplacian terms and tr is the trace of the matrix.

The above problem was solved with the help of ADMM (alternating direction method of

multipliers) Mongia and Majumdar (2020b). The standard nuclear norm minimization

is a convex problem and the introduced graph regularization penalties are also convex,

so entire minimization problem mentioned in the equation 2.21 is convex as this is a

sum of convex functions.

2.3.7 Graph Regularized Deep Matrix Factorization

Graph regularisation has also been incorporated into the deep matrix factorisation frame-

work Sun et al. (2016). Since the basic deep matrix factorization model has been

already discussed before, we are not repeating it. The formulation for the graph reg-

ularized three factor model is: The idea is to decompose X into more than two factor

matrices. The formulation for a 3-factor model is:

Y = M(U1U2V ) (2.22)

U1, U2 and V are estimated by resolving the below least square problem to recover

X. To deploy graph regularised Deep matrix factorization, two extra terms have been

added to the standard formula using the graph Laplacian established on and bacteria

12



entities from first and last factor matrix. The objective function is represented as:

min
U1,U2,V

∥Y −M(U1U2V )∥2F + µ1 tr(U
⊤
1 LdU1) + µ2 tr(V LbV

⊤), (2.23)

where µ1 > 0 and µ2 > 0 denote the coefficients which penalize the graph regular-

ization Laplacian terms and tr is the trace of the matrix. Here it is assumed that U1

refers to the drugs and V refers to the bacteria. However, unlike the two factor model

where there was a clear one-to-one mapping between drugs, bacteria and the factor ma-

trices, the deeper model suffers from identifiability issues. One cannot say for certain

if U1 pertains to drugs or if U1*U2 pertains to drugs, or if V pertains to bacteria or if

U2*V pertains to bacteria. For separating the mask M from equation2.23 Majorization-

Minimization Sun et al. (2016) is applied. Hence the new objective function is:

min
U1,U2,V

∥B − (U1U2V )∥2F + µ1 tr(U
⊤
1 LdU1) + µ2 tr(V LbV

⊤), (2.24)

where Bk = (U1U2V )k−1+
1
a
MT (Y −M(U1U2V )k−1). k is the number of iterations.

U1, U2 and V are solved to recover X.

U1 ← ∥B − (U1U2V )∥2F + µ1 tr(U
⊤
1 LdU1) (2.25)

U2 ← ∥B − (U1U2V )∥2F (2.26)

V ← ∥B − (U1U2V )∥2F + µ2 tr(V LbV
T ) (2.27)

By iteratively executing the below update step U2 can be solved:

U2 = UΓ
1 BV Γ (2.28)

To solve U1,equation2.25 has been differentiated w.r.t U1 and equate it to 0 which

provides the below equation:

µ1LdU1 + U1U2V (U2V )T = B(U2V )T (2.29)

This is nothing but a sylvester equation A1X + XA2 = A3(Here,A1 = µ1Ld,A2 =

13



U2V (U2V )T ,A3 = B(U2V )T ). The equation for V has been solved and obtained the

below sylvester equation:

(U1U2)TU1U2V + V (µ2Lb) = (U1U2)TB (2.30)

The entire algorithm has been discussed in Mongia and Majumdar (2020a).

2.3.8 Graph Regularised Binary Matrix Completion

We mentioned before that the drug disease association prediction is a natrual applica-

tion of one-bit matrix completion problem. Like other graph regularised algorithms, a

prior study introduced graph regularization into the binary matrix completion frame-

work Wishart et al. (2006). Similarity sparsification is also done here as the pre-

processing step. The minimization problem looks like:

min
X
∥Y −M(X)∥2F+λ ∥X∥∗+µ1 tr(X

⊤LbX)+µ2 tr(XLdX
⊤), s.tX ∈ [0, 1] (2.31)

Where, λ ∥X∥∗ denotes the nuclear norm. λ > 0, µ1 > 0, µ2 > 0. The variables

have the same meaning as mentioned in other graph regularised matrix completion al-

gorithms. To solve this equation parallel proximal algorithm (PPXA) Pustelnik et al.

(2011) has been used. In this algorithm, X is being solved by considering a proxy vari-

able for each of the terms in equation 2.31 and an additional proxy variable to guarantee

that the scores which are being predicted are in range [0,1].

X̂
(k)
1 = argmin

X

θ

2
∥Y −MX∥2F +

1

2

∥∥∥X(k−1)
1 −X

∥∥∥2

F
(2.32)

X̂
(k)
2 = argmin

X
λθ∥X∥∗ +

1

2

∥∥∥X(k−1)
2 −X

∥∥∥2

F
(2.33)

X̂
(k)
3 = min

(
max

(
X

(k−1)
3 , 0

)
, 1
)

(2.34)

X̂
(k)
4 = argmin

X
θµ1 tr(X

⊤LbX) +
1

2

∥∥∥X(k−1)
4 −X

∥∥∥2

F
(2.35)
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X̂
(k)
5 = argmin

X
θµ2 tr(XLdX

⊤) +
1

2

∥∥∥X(k−1)
5 −X

∥∥∥2

F
(2.36)

Here, θ represents the number of terms considered in parallel, that is θ = 5.

• X̂
(k)
1 is resolved by taking the gradient of equation 2.32 and equate to 0.

θ(−MT )(Y −MX̂1

(k)
) + (X̂1

k
− (X

(k−1)
1 ) = 0 (2.37)

θ(MTMX̂1

(k)
)− θ(MTY ) + X̂1

(k)
−X

(k−1)
1 = 0 (2.38)

(θMTM + I)X̂
(k)
1 = X

(k−1)
1 + θMTY (2.39)

Here I is the identity matrix. This equation is being resolved by the least square

solutions.

• X̂2
(k)

can be calculated by the singular values(soft-thresholded) of Xk−1
2 and mul-

tiplying the singular value matrix (thresholded) by the right and left singular vec-
tor matrices of Xk−1

2 i.e.

X
(k−1)
2 = US(k−1V T (2.40)

Ŝ(k−1) = soft

(
S(k−1),

λθ

2

)
(2.41)

X̂
(k)
2 = UŜ(k−1)V T (2.42)

where soft
(
S(k−1), λθ

2

)
= sign

(
S(k−1)

)
max

(
0,
∣∣S(k−1)

∣∣− λθ
2

)
. Here S(k−1) rep-

resents the singular value matrix, V and U are the right and left singular matrices
of X2

(k−1) , found after SVD decomposition.

• X̂
(k)
3 can be solved by applying max-thresholding and after that min-thresholding

on X
(k−1)
3 .

• Similarly, X̂(k)
4 can be solved using the similar approach as for X̂(k)

1 and equate
the gradient of 2.35:

2θµ1LbX̂
(k)
4 + X̂

(k)
4 = X

(k−1)
4 (2.43)

X̂
(k)
4 = (2θµ1Lb + I)†X

(k−1)
4 (2.44)
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• Same way X̂
(k)
5 can be found as below:

X̂
(k)
5 = X

(k−1)
5 (2θµ2Ld + I)† (2.45)

Where Here A† is the Moore-Penrose pseudo inverse of A

The next iterate X(k) is found by taking the average of five proximal values, as

below:

X̂(k) =
1

θ
(X̂

(k)
1 + X̂

(k)
2 + X̂

(k)
3 + X̂

(k)
4 + X̂

(k)
5 ) (2.46)

With θ = 5. Here each of the proxy variables is updated via the following update rule:

X̂
(k)
i = X

(k−1)
i + 2X̂(k) − X̂(k−1) − X̂

(k)
i (2.47)

The complete algorithm is mentioned in Mongia et al. (2022).
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CHAPTER 3

Results

We evaluate the proficiency of several matrix completion techniques in this section. All

of the algorithms have been outlined in the Algorithms used subsection. Eight matrix

completion algorithms or methods are used, which are divided into three categories

given below.

• Basic frameworks (Matrix factorization(MF) Wang and Zhang (2012); Mongia
et al. (2019) and Matrix completion(MC) or Nuclear norm minimization Mongia
et al. (2019) and Binary Matrix completion Davenport et al. (2014)).

• Deep frameworks (Deep matrix factorization) Mongia et al. (2020)

• Graph regularized frameworks (Graph regularized matrix factorization(GRMF) Ez-
zat et al. (2016), Graph regularized matrix completion(GRMC) Mongia and Ma-
jumdar (2020b), Graph regularised deep matrix factorization(GRDMF) Mongia
and Majumdar (2020a), Graph regularized binary matrix completion(GRBMC) Mon-
gia et al. (2022))

Figure 3.1, illustrates the schematic flow of the proposed work. The graph regu-

larised methods consider all three datasets(drug-bacteria association data,drug similar-

ity and bacteria similarity) to predict the associations or to reconstruct the data matrix.



Figure 3.1: Schematic diagram illustrating the DBA framework
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Experimental protocols

To exemplify and compare the potential of different algorithms specified above to re-

trieve drug-Infections associations available in our curated dataset we conduct some

experimental protocols. The protocol proposes 10-fold cross validation settings(CV)

on three different scenarios. We perform these 10-fold cross validation on training set

and deploy eight matrix completion algorithms to predict the results.The details of ex-

perimental protocols or scenarios are mentioned below:

• 10-fold Cross validation setting on scenario1(CV1):10% of drug-bacteria asso-
ciation selected randomly are masked or left out as test set and the rest used as
training set. This allows to determine the ability of each algorithm to predict
associations between existing drugs and bacteria.

• 10-fold Cross validation setting on scenario2(CV2):10% of bacteria selected ran-
domly are masked or left out as test set and the rest used as training set. This helps
to predict drug corresponding novel bacteria,those which do not have association
information.

• 10-fold Cross validation setting on scenario3(CV3): 10% of drug selected ran-
domly are masked or left out as test set and the rest used as training set. This
helps to predict bacteria corresponding novel drugs,those which have no associa-
tion information.

Hyperparameter settings

The hyperparameters(step size, regularization parameters, latent factor dimensions)

used in the algorithms in different scenarios are tuned using the experimental pro-

tocols described above (in the subsection Experimental protocols).We have also per-

formed grid search on training data to select the values of the hyperparameters(step

size,regularization parameter,latent factor dimensions) used in these algorithms.The hy-

perparameter used in CV2 are utilised to predict drug for multidrug resistance bacteria.

Similarly the hyperparameters used in CV3 are utilised in predicting bacteria for any

novel drug. The hyperparameters used in each scenario for different algorithms are

found in tables Table 3.1,Table 3.2,Table 3.3.
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Table 3.1: Parameters used in several algorithms for CV1

Algorithms Used Hyperparameters for CV1

MC delta=5.05

MF k=5;alpha=0.5;

BMC sigma=0.4

DMF alpha=2; k1=25;k2=5;

GRMC pp=7; lamda=0.03; mu1=0.02; mu2=0.005; nu1=0.4; nu2=0.3

GRMF p=7; lambda_l = 0.05; lambda_d = 0.03; lambda_t = 0.03;

GRDMF mu1=0.1; mu2=0.05; alpha=1; k1=25; k2=5; p=2;

GRBMC pp=2; lamda=0.8; mu1=0.1; mu2=0.1;

Table 3.2: Parameters used in several algorithms for CV2

Algorithms Used Hyperparameters for CV2

MC delta=15.15

MF k=20; alpha=0.05;

BMC sigma=0.3

DMF alpha=0.7; k1=30; k2=20;

GRMC pp=2; lamda=0.1; mu1=0.01; mu2=1; nu1=0.4; nu2=0.1

GRMF p=8; lambda_l = 1.5; lambda_d = 0.1;lambda_t = 0.5;

GRDMF mu1=0.06; mu2=1.6; alpha=20; k1=25; k2=20; p=2;

GRBMC pp=2; lamda=0.5; mu1=3; mu2=0.02;

Table 3.3: Parameters used in several algorithms for CV3

Algorithms Used Hyperparameters for CV3

MC delta=5.05

MF k=5;alpha=0.5;

BMC sigma=0.5

DMF alpha=1.5; k1=20;k2=5;

GRMC pp=2; lamda=0.01; mu1=1; mu2=0.1; nu1=0.4; nu2=0.1

GRMF p=7; lambda_l = 0.0413; lambda_d = 0.02; lambda_t = 0.03;

GRDMF mu1=0.09; mu2=0.01, alpha=1; k1=25; k2=5; p=2;

GRBMC pp=2; lamda=0.8; mu1=0.08; mu2=1;
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3.0.1 Experimental evaluation:

As described in the subsection Experimental protocols different experimental scenarios

are adopted by hiding few data selected randomly. These masked data which is hidden

or left out as test set is being predicted by the algorithms mentioned. We calculated the

AUC and AUPR for all algorithms used. Table 3.4 shows the results of AUC and AUPR

for all the algorithms used in CV1. Table 3.5 shows the result of AUC and AUPR for all

the algorithms used in CV2. Table 3.6 shows the result of AUC and AUPR for all the

algorithms used in CV3. In this subsection we illustrate and correlate the proficiency of

different algorithms used to retrieve the drug-bacteria association matrix. As mentioned

above in CV1 10% of association selected randomly are masked. In CV2 and CV3 10%

of the entire bacteria and 10% of complete drug entities selected at random are masked.

To evaluate the model two standard metrics AUC(Area under the Receiver Operating

Characteristic curve) and AUPR(Area under the precision-recall curve) are considered.

AUC is used to represent the ability of the model to differentiate positive and negative

classes. It presumes that the classes are balanced evenly. But the problems in drug-

bacteria association is highly imbalanced classes due to which AUPR is considered as

more convenient metric for evaluation Ezzat et al. (2016); Burez and Van den Poel

(2009).

Table 3.4, Table 3.5 and Table 3.6 shows the results of the experiments performed

in CV1, CV2 and CV3 in terms of AUC, AUPR for all eight algorithms applied here.

It is observed that graph regularised matrix factorization techniques have the better

AUC, AUPR compare to non graph factorization techniques. This is expected, since

the graphical versions have more information - similarity among drugs and similarity

among bacteria, compared to the non graphical versions.

The scenario CV1 depicts a problem where existing drugs can be repurposed for

treating existing infections. This is not much practical importance; it has been per-

formed since it is a standard benchmark in drug-disease-association. Here we can see

that MC performs the worst; this is counter intuitive since it is mathematically a stronger

technique. However, it has been observed in the past that nuclear norm minimization

(MC), in practice, performs worse than matrix factorization (MF) Gu et al. (2010).

Compared to MC, its binarized version (BMC) yields better results; this probably re-

sults from the binary nature of our problem. Both MF and DMF improve over MC and

21



BMC by a vast margin. However, MF performs slightly better than DMF. This may

be because our dataset is small, and going deeper is resulting in overfitting. For this

scenario (CV1), the graph regularized versions perform very similar to each other.

The second scenario CV2 is the one of most practical importance. It simulates the

problem where existing drugs can be treated for new bacterial infections. This is the

scenario which depicts the reality of treating new strains of bacterial infections. The

discussion from CV1 is pertinent here as well; we see similar trends with few slight

deviations; the deeper versions perform better than the shallower counterparts.

In scenario CV3 the problem is to check which of the existing bacterial infections

are treatable with new antibiotics. This is of practical importance when new antibiotics

are developed. The results show that MC performs better than both MF and BMC; we

could not pinpoint the reason behind this anomaly. The graph regularized versions yield

better results (as expected) than non graph regularized counterparts; the deeper versions

improve over shallower ones.

Although graph regularised techniques yield enhanced outcome in this case also by

delivering good AUC-AUPR value. The top performing algorithm is GRBMC which

exhibits AUC and AUPR of 0.8029 and 0.5825 respectively.

Table 3.4: The association prediction results by all techniques under CV1

Metric MC MF BMC DMF GRMC GRMF GRDMF GRBMC

AUC 0.5318 0.9239 0.6890 0.9168 0.9313 0.9558 0.9277 0.9501

AUPR 0.2484 0.8270 0.4129 0.7961 0.8108 0.8928 0.8378 0.8775

Table 3.5: The association prediction results by all techniques under CV2.

Metric MC MF BMC DMF GRMC GRMF GRDMF GRBMC

AUC 0.4703 0.5138 0.5087 0.6049 0.7340 0.7096 0.7316 0.7301

AUPR 0.2306 0.2233 0.2099 0.3383 0.4315 0.3922 0.4236 0.4320
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Table 3.6: The association prediction results by all techniques under CV3

Metric MC MF BMC DMF GRMC GRMF GRDMF GRBMC

AUC 0.5206 0.5018 0.4791 0.5837 0.7969 0.7904 0.7288 0.8029

AUPR 0.2521 0.3080 0.2133 0.2856 0.5523 0.5480 0.4443 0.5825

3.0.2 Prediction of drugs against unknown bacterial strain

We have taken three multi drug resistance bacteria strains(Mycobacterium tuberculosis

strain NIRTX011,Klebsiella pneumoniae strain U25 and Neisseria gonorrhoeae strain

H041) and predict the effective drugs against these strains with the help of graph reg-

ularised methods GRMF(graph regularised matrix factorization),GRDMF(graph reg-

ularised deep matrix factorization),GRBMC(graph regularised binary matrix comple-

tion) and GRMC(graph regularised matrix completion). The names of the predicted

drugs against Mycobacterium tuberculosis strain NIRTX011 is mentioned in Table 3.7.

The names of the predicted drugs against Klebsiella pneumoniae strain U25 is men-

tioned in Table 3.8 and the names of the predicted drugs against Neisseria gonorrhoeae

strain H041 is mentioned in Table 3.9. It is observed that top predicted drugs are com-

mon in all these methods. We have also highlighted the predicted drugs which are

common in all graph regularised techniques irrespective of top prediction. The pre-

dicted drugs those are common in any three graph regularised methods among four are

also specified here.
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Table 3.7: Predicting drugs for Mycobacterium tuberculosis strain NIRTX011

Algorithm Used Recommended drugs

GRMF

Vancomycin
Ceftriaxone
Tazobactam
Piperacillin

Cefoperazone
Sulbactam
Teicoplanin

Metronidazole
Ampicillin
Meropenem

GRDMF

Ceftriaxone
Vancomycin
Doxycycline
Clavulanate
Amoxicillin
Tazobactam
Piperacillin

Levofloxacin
Metronidazole
Azithromycin

GRBMC

Ceftriaxone
Vancomycin
Amoxicillin
Clavulanate
Doxycycline
Levofloxacin
Azithromycin
Meropenem
Penicillin G
Oseltamivir

GRMC

Ceftriaxone
Vancomycin
Doxycycline
Clavulanate
Amoxicillin
Levofloxacin
Meropenem

Azithromycin
Oseltamivir

Metronidazole
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Table 3.8: Predicting drugs for Klebsiella pneumoniae strain U25

Algorithm Used Recommended drugs

GRMF

Tazobactam
Piperacillin
Vancomycin

Amikacin
Colistin

Ceftriaxone
Meropenem
Sulbactam

Cefoperazone
Imipenem

GRDMF

Piperacillin
Tazobactam

Colistin
Amikacin
Ertapenem

Levofloxacin
Meropenem

Sulfamethoxazole
Trimethoprim
Teicoplanin

GRBMC

Tazobactam
Piperacillin
Amikacin
Colistin

Meropenem
Vancomycin

Cefoperazone
Sulbactam
Imipenem

Teicoplanin

GRMC

Piperacillin
Tazobactam

Colistin
Amikacin

Meropenem
Sulbactam

Cefoperazone
Teicoplanin
Cilastatin
Imipenem
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Table 3.9: Predicting drugs for Neisseria gonorrhoeae strain H041

Algorithm Used Recommended drugs

GRMF

Ceftriaxone
Clavulanate
Amoxicillin
Vancomycin
Penicillin G
Ampicillin
Gentamicin
Tazobactam
Piperacillin
Sulbactam

GRDMF

Ceftriaxone
Vancomycin
Piperacillin
Tazobactam
Ampicillin
Gentamicin
Clavulanate
Amoxicillin
Sulbactam

Cefoperazone

GRBMC

Ceftriaxone
Tazobactam
Piperacillin
Vancomycin
Clavulanate
Amoxicillin
Sulbactam

Cefoperazone
Ampicillin

Metronidazole

GRMC

Ceftriaxone
Tazobactam
Piperacillin
Vancomycin
Clavulanate
Amoxicillin
Ampicillin
Sulbactam

Cefoperazone
Gentamicin

Table 3.10: Colour Specification used in Table B.4,B.5 and B.6

Top most predicted drug common in all methods
Drugs predicted(not top most) common in all methods

Predicted drugs common in any 3 methods
Predicted drugs common in any 2 methods
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CHAPTER 4

Discussion

We have collected the bacterial information and the effective drugs and form a drug-

bacteria association database (DBA). The similarity information associated with bac-

teria and similarity information associated with drugs are also incorporated (find in

Method). On this database, several matrix completion techniques including graph reg-

ularised techniques have been deployed.

The drug-bacteria associations and the associated metadata(similarity information)

are accumulated as three matrices which are drug-bacteria association matrix (Y), bac-

teria similarity matrix(Sb) and drug similarity matrix(Sd). There are eight matrix com-

pletion techniques are executed and analysed. The matrix completion methods which

do not take into account the similarity information consider the association matrix as

input (it is assumed that it is a sparse matrix from which the full low-rank association

matrix will be reconstructed). It also takes into account the the masking operator where

the information about the position of test and train indices are stored. The graph regu-

larised methods not only consider the association matrix but also take into account the

associated metadata in terms of similarity information. The drug similarity information

is found with the help of the chemical structures of drugs and the similarity information

of bacteria is found by calculating the genome distance among bacteria.These metadata

along with the association matrix is passed to the graph regularised algorithms as input.

It is clearly observed from Table 3.4, Table 3.5 and Table 3.6 that the graph regularised

methods which considers the similarity information among bacteria and similarity in-

formation among drugs generate superior performance(AUC and AUPR is improved in

case of graph regularised methods) in association prediction than the non graph regu-

larised methods.

We have also taken few multidrug resistance bacteria strains(Mycobacterium tuber-

culosis strain NIRTX011,Klebsiella pneumoniae strain U25 and Neisseria gonorrhoeae

strain H041) and recommend the drugs(top 10) against these strains using graph regu-

larised method the result of which are shown in Table 3.7,Table 3.8 and Table 3.9.



CHAPTER 5

Conclusion

Computational techniques have the integral advantage as they are able to learn from the

large volume of data which is important when it comes in studying drugs and bacteria.

Having this ability to inspect huge amounts of data, these techniques are capable to

identify potential treatments more efficiently, making it easier for clinicians to narrow

down the search space for clinical trials. By this work, it can be shown that how such

techniques can be utilised to predict the drugs which could act against a bacterial infec-

tion. This also helps to identify the bacteria infections treated by any newly introduced

drug. This acts nothing but a recommendation system by which it is possible to recom-

mend drug against a bacterial infection and vice versa. This work is expected to lead

to new scientific ideas to re-purpose the existing drugs as antibacterial medications. It

is also expected that the proposed work helps clinicians in the process of analysing and

testing potential antibacterial drugs. In other words, it is believed that this work will

contribute to the development of new and effective antibacterial drugs, as well as to the

process of classifying and testing such drugs in a clinical setting.



REFERENCES

1. Ashburn, T. T. and K. B. Thor (2004). Drug repositioning: identifying and developing
new uses for existing drugs. Nature reviews Drug discovery, 3(8), 673–683.

2. Burez, J. and D. Van den Poel (2009). Handling class imbalance in customer churn
prediction. Expert Systems with Applications, 36(3), 4626–4636.

3. Cai, D., X. He, J. Han, and T. S. Huang (2010a). Graph regularized nonnegative
matrix factorization for data representation. IEEE transactions on pattern analysis and
machine intelligence, 33(8), 1548–1560.

4. Cai, J.-F., E. J. Candès, and Z. Shen (2010b). A singular value thresholding algorithm
for matrix completion. SIAM Journal on optimization, 20(4), 1956–1982.

5. Candes, E. and B. Recht (2012). Exact matrix completion via convex optimization.
Communications of the ACM, 55(6), 111–119.

6. Candes, E. J. and Y. Plan (2010). Matrix completion with noise. Proceedings of the
IEEE, 98(6), 925–936.

7. Candès, E. J. and T. Tao (2010). The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5), 2053–2080.

8. Chouzenoux, E., A. Jezierska, J.-C. Pesquet, and H. Talbot (2013). A majorize-
minimize subspace approach for \ell_2-\ell_0 image regularization. SIAM Journal on
Imaging Sciences, 6(1), 563–591.

9. Chung, F. R., Spectral graph theory, volume 92. American Mathematical Soc., 1997.

10. Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. Infection and
drug resistance, 3903–3910.

11. Davenport, M. A., Y. Plan, E. Van Den Berg, and M. Wootters (2014). 1-bit matrix
completion. Information and Inference: A Journal of the IMA, 3(3), 189–223.

12. Dotolo, S., A. Marabotti, A. Facchiano, and R. Tagliaferri (2021). A review on drug
repurposing applicable to covid-19. Briefings in bioinformatics, 22(2), 726–741.

13. Ezzat, A., M. Wu, X.-L. Li, and C.-K. Kwoh (2019). Computational prediction of
drug–target interactions using chemogenomic approaches: an empirical survey. Brief-
ings in bioinformatics, 20(4), 1337–1357.

14. Ezzat, A., P. Zhao, M. Wu, X.-L. Li, and C.-K. Kwoh (2016). Drug-target interac-
tion prediction with graph regularized matrix factorization. IEEE/ACM transactions on
computational biology and bioinformatics, 14(3), 646–656.

15. Gottlieb, A., G. Y. Stein, E. Ruppin, and R. Sharan (2011). Predict: a method for
inferring novel drug indications with application to personalized medicine. Molecular
systems biology, 7(1), 496.

29



16. Gu, Q., J. Zhou, and C. Ding, Collaborative filtering: Weighted nonnegative matrix
factorization incorporating user and item graphs. In Proceedings of the 2010 SIAM
international conference on data mining. SIAM, 2010.

17. Hastie, T., R. Mazumder, J. D. Lee, and R. Zadeh (2015). Matrix completion and
low-rank svd via fast alternating least squares. The Journal of Machine Learning Re-
search, 16(1), 3367–3402.

18. Hattori, M., N. Tanaka, M. Kanehisa, and S. Goto (2010). Simcomp/subcomp:
chemical structure search servers for network analyses. Nucleic acids research,
38(suppl_2), W652–W656.

19. Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa (2006). From genomics to chemical ge-
nomics: new developments in kegg. Nucleic acids research, 34(suppl_1), D354–D357.

20. Luo, H., J. Wang, M. Li, J. Luo, X. Peng, F.-X. Wu, and Y. Pan (2016). Drug repo-
sitioning based on comprehensive similarity measures and bi-random walk algorithm.
Bioinformatics, 32(17), 2664–2671.

21. Meier-Kolthoff, J. P., A. F. Auch, H.-P. Klenk, and M. Göker (2013). Genome
sequence-based species delimitation with confidence intervals and improved distance
functions. BMC bioinformatics, 14, 1–14.

22. Meier-Kolthoff, J. P., J. Sardà Carbasse, R. L. Peinado-Olarte, and M. Göker
(2022). Tygs and lpsn: a database tandem for fast and reliable genome-based classifica-
tion and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801–D807.

23. Mongia, A., E. Chouzenoux, and A. Majumdar (2022). Computational predic-
tion of drug-disease association based on graph-regularized one bit matrix completion.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(6), 3332–
3339.

24. Mongia, A. and A. Majumdar, Deep matrix completion on graphs: Application in drug
target interaction prediction. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020a.

25. Mongia, A. and A. Majumdar (2020b). Drug-target interaction prediction using multi
graph regularized nuclear norm minimization. Plos one, 15(1), e0226484.

26. Mongia, A., S. K. Saha, E. Chouzenoux, and A. Majumdar (2021). A computational
approach to aid clinicians in selecting anti-viral drugs for covid-19 trials. Scientific
reports, 11(1), 9047.

27. Mongia, A., D. Sengupta, and A. Majumdar (2019). Mcimpute: matrix completion
based imputation for single cell rna-seq data. Frontiers in genetics, 10, 9.

28. Mongia, A., D. Sengupta, and A. Majumdar (2020). deepmc: Deep matrix com-
pletion for imputation of single-cell rna-seq data. Journal of Computational Biology,
27(7), 1011–1019.

29. Murray, C. J., K. S. Ikuta, F. Sharara, L. Swetschinski, G. R. Aguilar, A. Gray,
C. Han, C. Bisignano, P. Rao, E. Wool, et al. (2022). Global burden of bacterial
antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–
655.

30



30. National Center for Biotechnology Information (Accessed May 5, 2023). NCBI.

31. Pustelnik, N., C. Chaux, and J.-C. Pesquet (2011). Parallel proximal algorithm for
image restoration using hybrid regularization. IEEE transactions on Image Processing,
20(9), 2450–2462.

32. Schrader, S. M., J. Vaubourgeix, and C. Nathan (2020). Biology of antimicro-
bial resistance and approaches to combat it. Science translational medicine, 12(549),
eaaz6992.

33. Shi, J.-Y. and S.-M. Yiu, Srp: A concise non-parametric similarity-rank-based model
for predicting drug-target interactions. In 2015 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE, 2015.

34. Sun, R. and Z.-Q. Luo (2016). Guaranteed matrix completion via non-convex factor-
ization. IEEE Transactions on Information Theory, 62(11), 6535–6579.

35. Sun, Y., P. Babu, and D. P. Palomar (2016). Majorization-minimization algorithms
in signal processing, communications, and machine learning. IEEE Transactions on
Signal Processing, 65(3), 794–816.

36. Tariyal, S., A. Majumdar, R. Singh, and M. Vatsa (2016). Deep dictionary learning.
IEEE Access, 4, 10096–10109.

37. Trigeorgis, G., K. Bousmalis, S. Zafeiriou, and B. W. Schuller (2016). A deep ma-
trix factorization method for learning attribute representations. IEEE transactions on
pattern analysis and machine intelligence, 39(3), 417–429.

38. Wang, Y.-X. and Y.-J. Zhang (2012). Nonnegative matrix factorization: A comprehen-
sive review. IEEE Transactions on knowledge and data engineering, 25(6), 1336–1353.

39. Wishart, D. S., Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed,
D. Johnson, C. Li, Z. Sayeeda, et al. (2018). Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic acids research, 46(D1), D1074–D1082.

40. Wishart, D. S., C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard,
Z. Chang, and J. Woolsey (2006). Drugbank: a comprehensive resource for in silico
drug discovery and exploration. Nucleic acids research, 34(suppl_1), D668–D672.

41. Zhou, Y., F. Wang, J. Tang, R. Nussinov, and F. Cheng (2020). Artificial intelligence
in covid-19 drug repurposing. The Lancet Digital Health, 2(12), e667–e676.

31


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Methods
	Dataset Definition
	Similarity Computation
	Similarity calculation among Drugs
	Similarity calculation among Bacteria

	Algorithms Used
	Matrix Factorization
	Nuclear Norm Minimization based matrix completion
	Deep matrix factorization
	Binary Matrix Completion
	Graph regularised matrix factorization(GRMF)
	Graph Regularised Matrix Completion
	Graph Regularized Deep Matrix Factorization
	Graph Regularised Binary Matrix Completion


	Results
	Experimental evaluation:
	Prediction of drugs against unknown bacterial strain


	Discussion
	Conclusion

