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Abstract—For robust face biometrics, a reliable anti-spoofing
approach has become an essential pre-requisite against attacks.
While spoofing attacks are possible with any biometric modality,
face spoofing attacks are relatively easy which makes facial
biometrics especially vulnerable. This paper presents a new
framework for face spoofing detection in videos using motion
magnification and multifeature evidence aggregation in a win-
dowed fashion. Micro- and macro- facial expressions commonly
exhibited by subjects are first magnified using Eulerian motion
magnification. Next, two feature extraction algorithms, a con-
figuration of local binary pattern and motion estimation using
histogram of oriented optical flow, are used to encode texture and
motion (liveness) properties respectively. Multifeature windowed
videolet aggregation of these two orthogonal features, coupled
with support vector machine classification provides robustness
to different attacks. The proposed approach is evaluated and
compared with existing algorithms on publicly available Print
Attack, Replay Attack, and CASIA-FASD databases. The pro-
posed algorithm yields state-of-the-art performance and robust
generalizability with low computational complexity.

Index Terms—Face recognition, anti-spoofing, obfuscation, mo-
tion magnification

I. INTRODUCTION

Biometrics based authentication is now being utilized in
several applications including national identification schemes
such as India’s UID project. As the popularity of biometric
systems grow, there is an increased threat of malicious attacks
to circumvent the system. Corresponding to various stages of a
biometric system’s pipeline, Ratha et al. [1] have identified dif-
ferent points of vulnerability such as sensor attacks, overriding
feature extraction, tampering feature representation, corrupting
matcher, tampering stored template, and overriding decision.
With such attacks, it is possible to circumvent a biometric
system, gain unauthorized access, and impersonate another
individual. Among different vulnerabilities of a biometric
system design, the weakest link is the capture phase [2].
For example, surgically altered fingerprints [3] or face [4],
fake fingerprints (using silicone, geltin, latex, and wood glue)
[5], fake iris texture [6], cosmetic contact lenses [7], [8],
disguise [9] or various spoofing approaches enable attackers
to gain unauthorized access. Some such examples are shown
in Fig. 1. To prevent these attacks, a biometric system must be
fortified with special mechanisms that ensure the integrity of
the system. In this research, we focus on spoofing techniques
pertaining to 2D face biometrics.
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Fig. 1. An illustration of some known vulnerabilities for face (masks),
fingerprint (gummy prints1) and iris (color/textured contact lens) biometrics
at capture phase.

(a) (b) (c)

Fig. 2. An illustration of spoofing attacks on 2D face recognition systems,
(a) real access, (b) print attack, and (c) replay attack.

Face spoofing is a simple and an efficient method to
circumvent face recognition systems that are often unattended.
The ‘low-tech’ nature of face spoofing techniques makes face
biometric systems vulnerable. As illustrated in Fig. 2, literature
on 2D spoofing detection generally discusses two types of
spoofing attacks, namely print and replay. In print attack,
printed photographs of a subject are used to spoof 2D face
recognition systems, whereas a replay attack, a video of a
person is presented to evade liveness detection. A replay attack
video could also be of a digital photograph or a video replayed
on a screen. To mitigate the spoofing attempts, anti-spoofing
techniques are developed that can have several advantages;
they can (i) help to increase the cost of obfuscating a biometric
system, (ii) allow face recognition and biometrics in general
to become truly operator independent, and (iii) facilitate non-
repudiation as the user is unable to deny his/her physical
presence [10].

A. Literature Review

Depending on the type of features used for information
extraction and representation, face anti-spoofing techniques in
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literature can be classified into liveness and texture analysis
based approaches. Liveness techniques primarily encode signs
of vitality, such as eye blinking and mouth movements. Such
approaches are similar to anti-spoofing approaches in finger-
print that use body temperature and blood flow detection. Tex-
ture based approaches rely on the observation that face frames
of a real person exhibit some unique spatiotemporal properties
when compared to spoofed frames. Recent techniques also
present combination approaches that combine evidence from
multiple sources for robust anti-spoofing. The literature review
is divided into three parts: datasets available for research,
different types of approaches proposed to detect spoofing, and
competitions organized by researchers to assess the state-of-art
for spoofing.

Datasets: Anjos et al. [11] introduced the Print Attack dataset
consisting of real and spoof videos of subjects with print
attacks. A more challenging Replay Attack dataset consisting
of both print and video replay spoofing captured using a
display device kept in front of the camera, was presented in
[12]. The CASIA-FASD spoofing dataset [13] consists of more
challenging variants of both print attack and replay attack at
different resolutions. The introduction of these three publicly
available datasets (samples frames illustrated in Fig. 8) are the
basis of experimental evaluation in recent literature.

Liveness based approaches: Early approaches to face anti-
spoofing relied on liveness estimation usually by modeling
eye-blinking. Pan et al. [14] modeled eye blinking by capturing
blink behavior in a conditional random field framework. The
different stages of blinking are learned from an annotated
dataset of 20 subjects. Kollreider et al. [15] presented a
combination approach to liveness detection by combining eye
blinking and mouth movement with 3D properties of the face.
Facial motion such as eye blinking and head movement were
used to determine liveness by some participants of the IJCB
facial spoofing competition [16]. To recognize subtle facial
features in long videos, such as in case of person interrogation,
Shreve et al. [17] presented a temporal stain metric computed
from optical flow patterns obtained from facial regions. The
problem of spoofing is particularly compounded with mobile
devices enabled with face recognition. For instance, the Face
Unlock feature, that uses face recognition to unlock a phone, is
vulnerable to spoofing attacks [18], despite having a blinking
based liveness detection. Recently, Anjos et al. [19] presented
a motion correlation approach using optical flow. Wang et
al. [20] re-constructed a 3D model from a single camera for
liveness detection.

Texture based approaches: Texture analysis of face video has
also been shown to provide evidence of spoofing. Määttä et al.
[21] showed that concatenation of three Local Binary Patterns
(LBP) descriptors of different configurations is more efficient
than local phase quantization as well as Gabor wavelet based
descriptor for print attack spoofing detection on the NUAA
dataset [22] of 15 subjects. Määttä et al. [23] also proposed a
score level fusion approach using LBP, histogram of oriented
gradients, and Gabor wavelets computed from the local blocks
of a face image. For each descriptor, the histogram computed

from all the blocks were concatenated, thus resulting in three
feature vectors. Kernel approximations of the three feature
vectors were computed and a linear Support Vector Machine
(SVM) was used for classification. Further, the match scores
of all three SVMs were fused to provide the final result. The
authors reported 0% Half Total Error Rate (HTER) on the Print
Attack dataset. It was observed that Support Vector Machine
outperformed both Linear Discriminant Analysis (LDA) and
χ2 distance based classification. The performance of various
approaches were evaluated on the Print Attack dataset [11]
and it was observed that texture based approaches resulted in
0% HTER. Power spectrum and LBP features were used in a
fusion approach by Gahyun et al. [24] on a print attack dataset
collected using a camera of an automated teller machine.

Pereira et al. [25] explored the utility of LBP from three
orthogonal planes (termed as LBP-TOP) [26] for spoofing
detection on the Replay Attack dataset. LBP-TOP explicitly
utilizes the temporal information by computing LBP his-
tograms in XT and YT planes along with spatial information
in XY plane. In their experiments, multi-resolution LBP-
TOP with SVM classifier achieved the best HTER of 7.6%
on the Replay Attack dataset; however, it is computationally
expensive. Several entries to the 2nd ICB counter measure
to 2D facial spoofing competition [27] presented variants of
LBP texture analysis based approaches. The CASIA-FASD
spoofing dataset [13] consists of more challenging variants of
print attack as well as replay attack at different resolutions.
A baseline of 17% equal error rate (EER) is reported using
difference of Gaussian approach. However, the approach se-
lects a random subset of frames from a video and does not
utilize the temporal information of the video. The performance
of LBP-TOP on the CASIA-FASD spoofing dataset yielded
an EER of 21.59% [28]. Yang et al. [29] used component
analysis for liveness detection using Fisher criterion analysis
for pooling evidence from informative regions of the face.
Recently, Pereira et al. [30] further analyzed the performance
of LBP-TOP approach on the Replay Attack dataset and
CASIA-FASD spoofing dataset. The analysis shows that the
approach encodes temporal information that aids in spoofing
detection.

Combination approaches: The use of a combination of experts
to determine spoofing has been acknowledged in literature.
Schwartz et al. [31] combined several low level texture fea-
tures to form a high dimensional vector (feature length over a
million) and classified it using partial least squares approach.
An EER of 1.67% is reported on the Print Attack dataset.
Komulainen et al. [32] suggested fusion of computationally
inexpensive linear classifiers for robust anti-spoofing. Using
motion correlation analysis and LBP, HTER of 5.1% is
reported on the Replay Attack dataset. The top performing
teams in the 2nd ICB counter measure to 2D facial spoofing
competition [27] combined motion and texture features. Both
the approaches used variants of LBP and background to fore-
ground motion estimation from an input video and obtained
0% HTER.

Competitions: To promote the research in face spoofing,
researchers have organized several competitions in different
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conferences. Chakka et al. [16] evaluated the performance
of six different spoofing detection algorithms as part of the
IJCB counter-measures to 2D facial spoofing competition.
Chingovska et al. [27] presented the results from the 2nd

ICB counter measure to 2D facial spoofing competition. Both
the competitions evaluated various liveness based, texture
based, and combination approaches. However, texture based
approaches have been found to provide better performance for
the Print and Replay datasets.

B. Research Contributions

Wide availability of portable display devices with high res-
olution has brought spoofing attacks into the purview of face
biometrics. To enable deployment of unattended face recogni-
tion systems in access control situations, it is imperative that
they must be robust to spoofing attacks. It is our assertion
that face recognition systems must be equipped with a pre-
processing stage that evaluates an input video of the subject
for possible spoofing. This paper presents a new framework for
face spoofing detection. The proposed framework is based on
the observation that different types of spoofing attacks have
different effects on the face. For instance, photo attack will
not have facial movements across the video whereas replay
attack will have the motions but the texture may vary due to
the replay attack. Therefore, the algorithm should be able to
encode both the information to be resilient to multiple types of
attacks. The key contributions of this paper can be summarized
as follows:

• A motion magnification based preprocessing algorithm to
enhance facial motion exhibited by a person.

• A multiscale configuration of LBP (referred as multi-
LBP) is proposed that encodes the texture of videos and
SVM is used for classifying into spoof and non-spoof.

• A novel spoofing detection algorithm is proposed based
on motion estimation using optical flow encoded with a
Histogram of Oriented Optical Flow (HOOF) [33].

• The proposed framework is a combination approach
that utilizes both texture and motion estimation along
with preprocessing using motion-magnification. HOOF
based motion estimation approach provides evidence of
liveness, whereas, multi-LBP based texture analysis of
motion magnified videos distinguishes between texture of
spoofed faces and real faces. The combination of these
diverse approaches, aggregated in small number of video
frames, termed as videolets, provides an effective anti-
spoofing approach.

An evaluation on three spoofing databases, namely, the Print
Attack, Replay Attack, and the CASIA-FASD databases, using
the official protocols, show state-of-the-art performance along
with lower computation time. A cross-database experiment is
also performed to analyze the generalizability of the proposed
algorithm [28].

II. PROPOSED FRAMEWORK

Fig. 3 illustrates the steps involved in the proposed frame-
work for spoofing detection. It consists of three main steps:
(1) preprocessing using motion magnification to enhance the
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Input 
Video 

Spoofing 
Detection 

Fig. 3. The steps involved in the proposed framework for detecting face
spoofing. Motion magnification of input video may accentuate facial expres-
sions thereby aiding spoofing detection techniques. This research combines
the evidence of both motion and texture to perform spoofing detection.

liveness nature of a face video, (2) feature extraction using
multi-LBP and HOOF, and (3) evidence fusion aggregated
over videolets (video frames of short durations). Details of the
proposed framework are discussed in the subsections below.

A. Motion Magnification

Faces exhibit micro-movements primarily near the lip and
eye regions which are visible only on close inspection of
the video. It is our assertion that enhancing these subtle
facial movements such as blinking, saccadic and conjugate
eye motion can provide evidence of liveness. Therefore, we
propose a motion magnification based preprocessing algorithm
that operates on a video to enhance these subtle motions
exhibited by a face.

Motion magnification techniques are primarily of two types:
Lagrangian and Eulerian approaches. Lagrangian approaches
are based on explicitly tracking a pixel’s trajectory over time.
These are computationally expensive and difficult to compute
around occlusion boundaries. On the other hand, an Eulerian
approach to motion magnification directly amplifies temporal
intensity changes at a given position without the need for
explicit estimation [34]. Therefore, the proposed preprocessing
algorithm utilizes Eulerian approach to motion magnification.

Eulerian motion magnification combines appropriate tem-
poral and spatial filtering to localize and magnify the desired
motion. Consider a video signal V , such that V (x, y, t) =
f(x + δx(t), y + δy(t)), where V (x, y, 0) = f(x, y) and
δx(t), δy(t) are the displacement functions in x and y di-
rections respectively. The goal of video magnification, for an
amplification factor α, can be expressed as

V̂ (x, y, t) = f (x+ (1 + α)δx(t), y + (1 + α)δy(t)) (1)

Under the first order Taylor series expansion about x and y
directions, the video V can be represented as,

V (x, y, t) ≈ f(x, y) + δx(t)
∂f

∂x
+ δy(t)

∂f

∂y
(2)

A temporal bandpass filter B(x, y, t) is applied on the input
video V such that all the components except f(x, y) are
filtered. This filter can be expressed as,

B(x, y, t) = δx(t)
∂f

∂x
+ δy(t)

∂f

∂y
(3)

Assuming that motion δx(t) and δy(t) are captured within the
band, the motion magnified video V̂ can be constructed as,

V̂ (x, y, t) = V (x, y, t) + αB(x, y, t) (4)
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(a) 
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Fig. 4. Sample frames at regular intervals of a subject from the Replay Attack dataset. Frames in (a) are original while (b) contains corresponding frames
from the corresponding motion magnified video. (c) illustrates the heat map of the mean of absolute differences of corresponding frames. The activity in eye
regions represent the blinking motion of the eyes. More videos are available at http://research.iiitd.edu.in/groups/iab/facespoofing.html for better visualization.

Combining Eqs. 2, 3, and 4 we have,

V̂ (x, y, t) = f(x, y) + (1 + α)

[
δx(t)

∂f

∂x
+ δy(t)

∂f

∂y

]
(5)

Assuming that Taylor series expansion holds for a magnified
video, Eq. 5 is approximated to the desired form of Eq.
1. To avoid undesirable artifacts during magnification, the
magnification factor α is suitably attenuated with respect to
a spatial cut-off frequency. This reduces α for bands of higher
frequencies and minimizes the artifacts in the resultant video.
Laplacian decomposition is applied to the input video spatially
and then magnification process is performed on each level with
varying α. It must be noted that the effect of magnification
is highly dependent on the filter and the magnification factor
α used. In this research, an optimal value of α is chosen by
visual inspection of processed videos from the training set.

Fig. 4 demonstrates the results of the proposed preprocess-
ing algorithm for motion magnification in face videos. Fig.
4(a) shows the frames taken at equal intervals from an original
video where the micro-movements are not visible but after
applying the proposed preprocessing algorithm, the movement
is clearly visible in the corresponding motion magnified frames
shown in Fig. 4(b). The heat map pertaining to the mean
absolute differences of all the corresponding frames of the
sample video is shown in Fig. 4(c). From the heat map it is
evident that the magnification approach enhances the blinking
motion of eyes. Further, some regions in cheek areas show that
the approach is also able to magnify micro-facial movements.

B. Feature Extraction

Motion magnified video of a subject can be utilized for
spoofing detection using either texture or motion based fea-
tures. In this research, we propose a texture and a motion based
feature extraction algorithms followed by their combination to
efficiently classify spoofed and non-spoofed videos.

1) Multi-LBP: In literature, LBP has been used to encode
texture information in several applications. Depending on the
application, LBP can be configured to provide a coarser or
finer encoding. Existing spoofing detection algorithms have
proposed feature level concatenation of global LBP features.
However, with motion magnification, comparatively coarser
features may be sufficient for spoofing detection. Based on
this hypothesis, we propose to encode texture information at

multiple scales via feature concatenation of three LBP con-
figurations: LBPu28,1, LBPu28,2, and LBPu216,2, collectively termed
multi-LBP. Fig. 5 illustrates the steps involved in the proposed
multi-LBP feature extraction algorithm.

LBPu2P,R represents uniform local binary pattern computed
at P sampling points on a circle of radius R. A uniform local
binary pattern at (x, y) with sampling points (xp, yp), p =
0, 1, 2, . . . , P − 1, is computed as,

LBPu2P,R =

{
ΣP−1
p=0 s(gp − gc)2p if U((x, y), P,R) ≤ 2

P (P − 1) + 3 otherwise
(6)

Here gp and gc are the pixel intensities at positions (xp, yp)
and (x, y) respectively, and functions s and U are defined as

s(x) =

{
1 if x ≥ 0

0 otherwise
(7)

U((x, y), P,R) = |s(gP − gc)− s(gP−1 − gc)|+
ΣP−1
p=1 |s(gp − gc)− s(gp−1 − gc)|

(8)

U computes the number of bitwise transitions for circular bit
patterns. It encodes the definition that a local binary pattern
is called uniform if the binary pattern contains at most two
bitwise transitions from 0 to 1 or vice versa. The resultant
binary pattern at each pixel can take one of the distinct (P (P−
1) + 3) values which translates to a histogram with the same
number of bins. As illustrated in Fig. 5, the feature vector
corresponding to the kth frame, Fk, of the input video V is
computed as

lFk = [LBPu28,1(Fk) LBPu28,2(Fk) LBPu216,1(Fk)] (9)

As opposed to Määttä et al. [21] that computes overlapping
local histograms of LBPu28,1, resulting in a feature vector of size
833; multi-LBP computes global histograms at three scales,
thereby resulting in a descriptor of size 361 (i.e. 59+59+243).
The algorithm is applied individually at every frame and the
features of an input video consisting of n frames can be
represented as:

lbpV = [lF1 lF2 lF3 . . . l
F
n ] (10)

For classification, SVM [35] with Radial Basis Function (RBF)
kernel is used. Further, each frame is pre-processed to remove
illumination based variations [36].
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Fig. 5. Illustrating the proposed texture based spoofing detection approach with motion magnification.
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Fig. 6. An illustration of the proposed liveness based feature extraction approach. HOOF descriptors obtained between pairs of frames at a fixed interval are
concatenated to create a single feature vector.

2) Histogram of Oriented Optical Flows: Micro-
movements in the consecutive frames of a face video
are unique characteristic of liveness and challenging to
imitate in spoofing. Therefore, encoding such variations in
consecutive frames can provide efficient features for spoof
detection. Optical flow is a dense motion estimation technique
that computes the motion of each pixel. Optical flow has
already been used for motion estimation in several applications
including identification of facial micro-expressions in videos
[17].

∂V

∂x
Gx +

∂V

∂y
Gy +

∂V

∂t
= 0 (11)

θ = arctan
Gy
Gx

, m =
√
G2
x +G2

y (12)

In an image, the flow in both horizontal (Gx) and vertical
(Gy) directions are used to compute the orientation based flow
vector by solving the optimization problem shown in Eq. 11.
In this research, conjugate gradient approach [37] is used to
solve the optimization problem due to its low computational
complexity. Raw optical flow per pixel may be too spatially

constrained and encode redundant background or unwanted
motion. Therefore, as illustrated in Fig. 6, the flow vectors
are computed and pooled over local block regions weighted
by the corresponding magnitude. Specifically, optical flow is
computed between the frames at a fixed interval (k). From
Eq. 12, the histogram of optical flow orientation angle (θ)
weighted by the magnitude (m) is computed over local blocks
and concatenated to form a single vector. Instead of using
the histogram of optical flow magnitude, magnitude weighted
orientation bins are utilized, and the vector thus obtained is
termed as HOOF [33]. The final feature vector (hoofV,k) for
a video V with n frames F1,...,n and a sampling interval of
k is obtained by concatenating the HOOF vector for all the
sampled frames as shown in Eq. 13.

hVp,q = HOOF (Fp, Fq)

hoofV,k = [hV1,1+k h
V
2+k,2+2k . . . h

V
n−k,n] (13)

In this research, k = 2 sampling interval is chosen empiri-
cally which results in a feature vector of size 81 per frame pair.
Low interval ensures that small differences in motion between
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consecutive frames are also encoded. The feature vector is
classified using SVM with RBF kernel.

C. Videolet Score Aggregation and Evidence Fusion

Thus far, this research presents two approaches to spoofing
detection, namely texture analysis with multi-LBP and motion
analysis using HOOF descriptor. HOOF based motion analysis
encodes micro-movements of a face. It is proficient as a
liveness approach and provides a real-face classification. On
the other hand, LBP texture analysis encodes the texture of a
facial region which manifests differently for a live face than
a spoofed face. For instance, the texture of facial region is
affected by the reflective properties of the printed surface,
mask or display device used for spoofing. Since there are
different types of attacks such as print and replay, using only
texture based or only motion based feature may not always
yield the best results. Therefore, we propose to combine
both texture and motion features for improved performance.
The fusion is performed by combining the prediction scores
obtained by SVM classification of motion magnified multi-
LBP (PMag−LBP ) and HOOF (PMag−hoof ) features.

In several existing approaches, feature extraction is per-
formed on the entire length of the available video. The
extracted features are then concatenated to create a single
descriptor of fixed length. However, with videos of varying
length, only the minimum number of frames can be considered
to maintain fixed length of feature vector. As illustrated in Fig.
7, we propose a windowed approach to effectively utilize all
the information present in a video (V ), without constraining
the size of the input video. In this approach, both HOOF and
multi-LBP features are divided into overlapping windows of
size w, similar to [32], with a step size of half the window
size. The frames corresponding to a single window are termed
as videolet.

Motion magnified video is divided into η = ( 2N
w − 1)

videolets followed by extraction of multi-LBP and HOOF fea-
tures from each of these videolets. These scores are combined
using sum rule to generate the fused prediction scores (P ) per
videolet. The prediction scores are then combined using Eq.
14 to generate the final score (F ).

F =
1

η

η∑
j=1

(P jt ) (14)

A threshold T is applied on F for classification of video
as either spoofed or real. The proposed videolet aggregation
approach with LBP texture analysis combined with HOOF
motion analysis on motion magnified videos is summarized in
Algorithm 1.

III. DATASET AND PROTOCOL

A spoofing detection technique must be robust to different
types of attacks. Therefore, the experiments are performed on
three publicly available databases, namely (1) Print Attack
dataset [11], (2) Replay Attack dataset [12], and CASIA-
FASD dataset [13]. Fig. 8 shows sample images from the three
databases and the details of these datasets are summarized in

Algorithm 1 Spoofing Detection in video V
input: A video V ={F1, F2, . . . FN}, trained models:
SVMhoof and SVM lbp, videolet size w, interval k, and
decision threshold T .
V mag = Motion magnification of input video V
FMag−LBP = lbpFmag (as in Eq. 10)
FMag−hoof = hoofFmag,k (as in Eq. 13)
η = ( 2N

w − 1) (number of videolets)
s = 1
iterate: i = 1 to η do
videoletMag−LBP= {FMag−LBP

j |s ≤ j ≤ (s+ w)}
videoletMag−hoof= {FMag−hoof

j |s ≤ j ≤ (s+ w)}
s = s+ (w2 )
PMag−LBP= SVM lbp(videoletMag−LBP )
PMag−hoof= SVMhoof (videoletMag−hoof )
P it = PMag−LBP + PMag−hoof (Evidence fusion)
end iterate.
F= 1

η

∑η
j=1(P jt ) (Videolet aggregation)

Output: report if (F > T ) “spoof” else “non-spoof”

TABLE I
DETAILS OF THE DATABASES USED FOR EVALUATION.

Print Replay CASIA
Attack [11] Attack [12] FASD [13]

Size 200/200 200/1000 150/600(real/attack)
Length 14 sec 14 sec 1-19 sec
Resolution 640 × 480 Varied

Background Controlled/ Lab
Adverse Illumination Setting

Attacks Print Print, Print, Wrap,
Replay Replay

Table I. The details of the structure of the databases and pre-
defined (official) protocols are provided below.

• The Print Attack dataset [11] consists of 200 real ac-
cess and 200 printed-photo attack attempt videos of
50 subjects. For spoofing detection, the dataset is split
into training (120 videos), development (120 videos),
and testing (160 videos) subgroups. The training and
development subgroups contain 60 real access videos and
60 print attack videos each, whereas the testing subgroup
contains 80 real access and 80 print attack videos. The
videos are captured under both controlled and adverse
lighting conditions.

• The Replay Attack dataset [12] consists of 1200 videos
that include 200 real access videos, 200 print attack
videos, 400 phone attack videos, and 400 tablet attack
videos. The evaluation protocol splits the dataset into
training (360 videos), development (360 videos), and
testing (480 videos) subgroups. The training and devel-
opment subgroups contain 60 real access videos and 300
attack videos each, whereas the testing subgroup contains
80 real access and 400 attack videos. Fig. 8 illustrates
some sample frames from the Print and Replay datasets.

• The CASIA-FASD dataset [13] consists of 600 videos
corresponding to 50 subjects, separated as 240 videos
in training and 360 videos in testing. In addition to



7

Fig. 7. An illustration of the windowed approach. The prediction scores obtained for each videolet are aggregated over the entire length of a video.
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Fig. 8. Samples images from a) Print and Replay Attack datasets [11], [12]
and b) CASIA-FASD dataset [13].

print and replay attacks using photos and replayed videos
from tablets, wrapped photos are used to simulate the
cylindrical nature of the face. Further, print attack photos
are manually cut around the eyes to deter eye-blinking
based techniques. Sample frames from this database are
shown in Fig. 8. The challenging nature of the dataset is
furthered by variations in resolution, quality, and video
length (ranging from 1 to 19 seconds).

To demonstrate the effectiveness of the proposed frame-
work, three experiments are performed as described below.

1) Experiment 1: The Print and Replay Attack databases

are used with the pre-defined experimental protocols
described earlier in the section. The same experiment
is performed using both normal and motion magnified
videos.

2) Experiment 2: The performance of the proposed ap-
proach is evaluated on the challenging CASIA-FASD
dataset. Since no development set is provided, cross
validation is used by randomly dividing the training data
into five folds, as described in [30]. The average test
HTER that is obtained from the five training models
is reported. The EER results for the same dataset are
reported as per the pre-defined protocol of the dataset
[13].

3) Experiment 3: A study by Pereira et al. [28] on existing
techniques shows low generalization across different
datasets. In order to evaluate the generalizability of the
proposed approach, two evaluations are performed:
(i) CASIA→ REPLAY: The training set of the CASIA-
FASD dataset is used as per Experiment 2. The proposed
approach is evaluated on the development as well as test
sets of REPLAY attack.
(ii) REPLAY → CASIA: The training and development
sets of the REPLAY attack are used as per Experiment 1.
The performance of the proposed approach is computed
on the test sets of CASIA-FASD dataset.

All the input frames are first pre-processed by cropping the
face region based on eye coordinates obtained from a commer-
cial face recognition system to a fixed resolution (130×150).
In order to correct for small inconsistencies in eye detection,
global image registration [39] is applied with the first frame as
reference. This process also minimizes the motion in videos
that are not facial motion. The normalization process may also
reduce the effect of hand motion in spoofing attacks (while
holding up a printed image or a display device). For computing
texture based features, all the frames are converted to gray
scale.

The same pre-processed videos (eye-detection and frame
registration) are used in all the experiments performed in this
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TABLE II
EXPERIMENT 1: CLASSIFICATION PERFORMANCE OF VARIOUS APPROACHES IN TERMS OF HTER (%) AND EER (%) ON THE PRINT AND REPLAY

ATTACK DATABASES.

Algorithm
Print Attack Replay Attack

Normal Videos Motion Magnified Videos Normal Videos Motion Magnified Videos
Window Size = Video Length

HTER EER HTER EER HTER EER HTER EER
Dev Test Test Dev Test Test Dev Test Test Dev Test Test

Multi-LBP [38] 5.00 4.37 5.00 3.33 3.12 3.75 15.00 20.62 20.25 6.67 5.62 5.00
HOOF [38] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00

Window Size = 1 second (25 frames)
Multi-LBP 3.33 2.50 3.75 3.33 1.87 1.25 18.50 17.25 17.50 16.66 13.75 13.00
HOOF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HOOF + Multi-LBP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

Window Size = 2 seconds (50 frames)
Multi-LBP 5.00 2.50 2.50 3.33 1.87 2.50 18.33 19.00 14.50 16.66 12.75 12.00
HOOF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HOOF + Multi-LBP 1.66 1.87 1.25 0.00 0.625 0.00 1.66 1.25 0.00 0.33 0.00 0.00
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(c) CASIA-FASD: 1 sec Window
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Fig. 9. ROC plots of the proposed approach on the test sets of the Print, Replay, and CASIA-FASD datasets with different window sizes. The curves with
0% EER overlap with axes.

evaluation. To be consistent with existing literature, the results
of spoofing detection are reported in terms of both Half Total
Error Rate (%) and Equal Error Rate (%) on the test set.
However, the HTER on the test set at a threshold computed
on a development set represents a more realistic scenario.

The parameters of SVM are determined using a grid search
where the objective of grid search is defined in terms of
optimizing the equal error rate on the development set. The
threshold used for computing HTER on the test set is also
obtained from the development set. For motion magnifica-
tion, optimal parameters are empirically determined to be
α = 50, λc = 10, and an ideal bandpass filter with band
100− 120 Hz.

IV. EXPERIMENTAL EVALUATION

Using the protocols described in the previous section, three
experiments are performed and the results are described below.
Later the results are also compared with those reported in
literature on the same experimental protocol.

A. Experiment 1: Print and Replay Attack Datasets

Table II illustrates the results of Experiment 1 for HOOF,
multi-LBP, and the proposed spoofing detection approach. The
error plots on the test set of both Print and Replay Attack
datasets are also illustrated in Fig. 9. Salient observations are
presented below.
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Performance of Multi-LBP and HOOF:
• Texture based multi-LBP and SVM classification yields

2.50% HTER on the Print Attack dataset and 17.25%
on the Replay Attack dataset for a window size of one
second.

• The proposed HOOF + SVM provides perfect classifi-
cation performance on both the datasets (0% HTER on
both Print Attack and Replay Attack).

Effect of Motion Magnification on Multi-LBP:
• We investigate the effect of motion magnification on the

two feature extraction algorithms. The HTER of multi-
LBP reduces to 1.87% (from 2.50%)and 13.75% (from
17.25%) for Print and Replay attacks when the videos
are preprocessed using motion magnification. We also
observe that motion magnification significantly improves
the performance of each component of multi-LBP.

• The distribution of SVM scores of the multi-LBP descrip-
tors shown in Fig. 10 indicates an improved separation
between the real and spoof classes when using motion
magnification. For further analysis, we compute the abso-
lute difference of descriptors from a small video snippet
as shown in Fig. 11. The histograms illustrate that the
effect of motion magnification on LBP descriptor is more
evident for real videos than for attack videos. Motion
magnification enhances the subtle variations in texture of
faces obtained from a real person and those obtained by
spoofing.

• As shown in Eq. 5, given a video V , the motion magnified
form V̂ is a function of the given frame (f ) and the
residual from a bandpass filter (B). From Eq. 3, the
components of the filtered signal are a function of δx(t)
and δy(t) that describe the displacement of each pixel in x
and y directions. It is our assertion that the displacement
functions for attack videos are different from a real video.
Hence, the motion magnification operation changes the
frame texture differently, leading to more separated LBP
texture patterns.

• Another important difference between a real face pre-
sented in front of a camera, compared to a replay attack
video (played on a portable video screen) is the variation
in sampling rate of capture. Specifically, real face can
be viewed as a continuous signal available for sampling
from a video camera. On the other hand, a replay attack
video presented on a display screen (refresh rate of
30 frames/sec) is re-sampled by a video camera at 25
frames/sec. The disparity in this capture rate leads to
a different texture that is further enhanced by motion
magnification. Hence, the LBP descriptor obtained from
a motion magnified video may be more discriminating
for spoofing attacks.

Effect of Motion Magnification on HOOF:
• Since HOOF already yields 0% error rate, applying

motion magnification does not change the accuracy. How-
ever, the separation of SVM scores of the two classes
increases on preprocessing with motion magnification.

• The proposed HOOF approach encodes the motion vari-
ations at block level by estimating the displacement

vectors, δx(t) and δy(t), via optical flow. When motion
magnification is applied, the displacements are magnified
and the separation between spoof and non-spoof classes
increases.

Performance of the Proposed Approach:
• The proposed fusion approach (using motion magnified

HOOF and multi-LBP with videolets) provides 0% EER
with uncontrolled illumination and background on both
the datasets. As mentioned earlier, motion estimation
using HOOF encodes the liveness features of a face
thereby acting as a good live-face classifier. On the
other hand, multi-LBP encodes the texture of real faces
differently from that of spoofed faces. Hence, sum rule
fusion of these classifiers provides a robust and accurate
anti-spoofing measure.

• As shown in Fig. 9(a), (b), (d) and (e), it is consistently
observed that the window size of 1-2 seconds provides
better classification performance on the Print and Replay
attack videos, and also accommodates for varying video
lengths. It is also observed that the performance of the
proposed approach saturates after accumulation of 12
videolets in the case of Print Attack and 8 videolets for
Replay Attack datasets.
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Fig. 10. Histograms of SVM scores for multi-LBP on Replay dataset.
Motion magnification helps to reduce the overlap between the real and attack
distributions.

• Computational Efficiency: The time is reported for
MATLAB2012 implementation on a machine with Intel
Quad Core CPU Q8300 at 2.5GHz and 4GB RAM. For
a video with 375 frames (15 seconds in length), 14
videolets are created, each of 25 frames. The proposed
approach involves registration (293.8s), motion magnifi-
cation (28.4s), HOOF extraction (15.2s), and multi-LBP
feature extraction (14.3s) requires a total of 351.7s to
process the entire video serially. We believe that a parallel
implementation can further reduce the processing time.

B. Experiment 2: CASIA-FASD Dataset

The results of Experiment 2 on the CASIA-FASD dataset
are shown in Table III and Fig. 9(c) and (f) show the ROC
plot. With motion magnification, the proposed multi-LBP
approach provides 21.11% HTER with a window size of one
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Fig. 11. An illustration on the effect of motion magnification on LBP descriptor of a single videolet from real and attack videos. The absolute difference
between the histograms shows a larger change in the descriptor of the real videos compared to an attack video.

TABLE III
EXPERIMENT 2: CLASSIFICATION PERFORMANCE OF VARIOUS APPROACHES IN TERMS OF HTER (%) AND EER (%) ON THE CASIA-FASD DATASET.

Window Size Algorithm

CASIA-FASD
Normal Videos Motion Magnified Videos
HTER EER HTER EER

Dev Test Test Dev Test Test

1 second (25 frames)
Multi-LBP 13.31 19.00 17.77 12.77 21.77 15.74
HOOF 14.51 32.07 22.22 16.98 28.37 21.11
HOOF + Multi-LBP 10.12 19.51 15.55 10.13 17.59 14.44

2 seconds (50 frames)
Multi-LBP 17.16 21.95 20.29 13.32 22.05 18.99
HOOF 18.50 34.14 24.95 16.66 27.66 23.64
HOOF + Multi-LBP 14.76 19.49 15.64 13.67 17.86 14.52

TABLE IV
EXPERIMENT 2: CLASSIFICATION PERFORMANCE IN TERMS OF EER (%) ON SUB-SETS OF THE CASIA-FASD DATASET [13].

Test Protocol Low Normal High Warped photo Cut photo Video Overall
quality quality quality attack attack attack

Multi-LBP 12.77 16.66 26.66 15.55 25.55 17.77 17.77
Mag-Multi-LBP 7.22 13.33 29.44 14.44 22.22 13.33 15.74
HOOF 16.66 30.00 26.11 15.55 17.77 38.88 21.11
Mag-HOOF 17.22 33.33 22.77 12.22 20.00 36.60 22.22
HOOF + Multi-LBP 9.44 20.55 16.66 10.00 16.66 24.44 15.55
Proposed 6.11 23.33 13.88 10.00 14.44 20.00 14.44
Zhang et al.(2012) [13] 13.00 13.00 26.00 16.00 6.00 24.00 17.00

second whereas the HOOF approach provides 28.80% HTER.
On combining the two, the proposed fusion approach yields
17.59% HTER and 14.44% EER at a window size of 25
frames. The windowed approaches provide better performance
since they ensure that the evidence obtained from the entire
duration of the videos is considered. Comparatively larger
error rates on the CASIA-FASD dataset may be attributed
to the challenging nature of the dataset, specially, varied
length videos, variations in capture devices, resolution, and
types of spoofing attacks. Table IV shows the performance
of the proposed approach on the six sub-sets of the CASIA-
FASD test dataset. The subsets are divided based on the type
of spoofing attack (print, cut, and wrapped) and quality of
the video samples (low, normal, and high). SVM is trained
from the training set as before. The results showcase the
advantage of fusing HOOF and multi-LBP. In each of the six
experiments, the performance of Mag(HOOF + multi-LBP)
is superior to that of HOOF + multi-LBP, which suggests
that motion magnification improves the performance of the
proposed approach in all cases. On this database, as observed

previously, motion magnification amplifies the difference in
texture from real and spoofed video frames.

C. Experiment 3: Cross Datasets

Experiment 3 evaluates the generalizability of the proposed
approach with an inter-database experiment and the results are
shown in Table V. In the first evaluation, the trained models
from Experiment 2 of the CASIA-FASD dataset are used to
evaluate the performance on the development and test sets of
Replay attack dataset. Since the CASIA dataset consists of
instances from three different types of attacks, the proposed
fusion of HOOF and multi-LBP yields an EER of 41.50%
and 41.12% on the print, cut and video attacks respectively.
Further, a marginal improvement in performance (both in
terms of HTER and EER) is observed when motion mag-
nification is applied before feature extraction. In the second
evaluation, trained models obtained from Experiment 1 of the
Replay attack dataset are used to evaluate the performance on
the CASIA-FASD dataset. The performance of the proposed
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TABLE V
EXPERIMENT 3: CLASSIFICATION PERFORMANCE OF THE PROPOSED FUSION ALGORITHM IN TERMS OF HTER AND EER (%). THE ALGORITHMS ARE
TRAINED USING THE CASIA-FASD DATASET AND TESTED ON THE REPLAY ATTACK DATASET, AND VICE VERSA. FOR EACH EXPERIMENT, TOP TWO

RESULTS ARE HIGHLIGHTED.

Algorithm
Test: Replay Attack (Train: CASIA) Test: CASIA-FASD (Train: Replay)

Dev Test Dev Test
HTER EER HTER EER HTER HTER EER

Multi-LBP 53.93 46.66 52.47 48.75 53.58 55.55 52.22
Mag-Multi-LBP 51.16 60.00 50.97 61.00 53.07 53.14 55.55
HOOF 48.30 43.33 49.62 42.50 48.29 49.81 43.51
Mag-HOOF 35.76 32.00 37.45 37.50 51.36 52.59 43.51
HOOF+Multi-LBP 51.10 41.66 51.10 41.25 48.43 51.66 47.77
Proposed 50.00 41.50 50.20 41.12 43.86 50.37 46.66

TABLE VI
COMPARISON WITH SOME EXISTING ALGORITHMS IN TERMS OF HTER (%) AND EER (%).

Algorithm Print Attack Replay Attack CASIA-FASD
HTER EER HTER EER HTER EER

Anjos et al.(2011) [11] Motion correlation 8.98 – – – – –
Schwartz et al.(2011) [31] Partial least squares – 1.67 – – – –
Zhang et al.(2012) [13] DoG baseline – – – – – 17.00

Pereira et al.(2013) [28]
Motion correlation – – 11.79 11.66 30.33 26.65
LBPu2

8,1 – – 15.45 14.41 23.19 24.63
LBP-TOPu2

8,8,8,1,1,1 – – 8.51 8.17 23.75 21.59
Yang et al.(2013) [29] Component approach – 1.20 – – – 11.80

Pereira et al.(2014) [30]

Motion correlation – – 11.79 – – –
LBPu2

8,1 – – 15.16 – – 16.00
LBP-TOPu2

8,8,8,1,1,1 – – 8.51 – – –
LBP-TOPu2

8,8,8,1,1,1 with average of feature – – – – – 10.00
LBP-TOP8,8,8,1,1,[1−2] – – 7.60 – – –

Proposed Mag-HOOF + Mag-Multi-LBP 0.00 0.00 0.25 0.00 17.59 14.44

approach on the development set is 43.86% HTER, whereas,
the performance on the test set is 50.37% HTER and 46.66%
EER. Note that in this case, EER is reported only on the test set
of CASIA-FASD dataset since there is no development set for
this dataset under the pre-defined experimental protocol [13].
The comparatively larger error rates in the second evaluation
may be attributed to the lack of training samples in Replay
attack dataset to tackle to various types of spoofing and varying
quality of videos in the CASIA-FASD dataset. Also, the results
indicate that the motion-based approach (mag-HOOF) is more
resilient to cross dataset settings compared to texture-based
approach (multi-LBP). Compared to the published results of
Pereira et al. [28], these results are marginally better.

D. Comparison with Existing Approaches

As stated previously, the performance of the proposed
algorithm has been evaluated using the pre-defined (official)
experimental protocols provided with the databases. Therefore,
the error rates of the proposed algorithm can be directly
compared with that of the existing results results. Table VI
presents the comparison with some existing approaches on
the three datasets. On the Print and Replay attack datasets,
the proposed algorithm outperforms existing algorithms with
near perfect performance. On the CASIA-FASD dataset, the
proposed algorithm provides comparable results in terms of
EER and outperforms existing approaches in terms of HTER.

V. CONCLUSION AND FUTURE DIRECTIONS

For secure face recognition systems, it is important that
face anti-spoofing techniques are robust and computationally
efficient to improve the practicality of face biometrics. This
research presents a novel framework for facial spoofing de-
tection using motion (liveness) and texture (anti-spoofing)
features. Using motion magnification, an input video of a
subject is enhanced to exaggerate subtle macro- and micro-
facial expressions usually presented by a real person. Our
experiments indicate that motion magnification improves the
performance of LBP texture features, including that of the pro-
posed computationally efficient configuration of LBP features
(multi-LBP). Further, a motion descriptor is computed using
HOOF to encode liveness features. Finally, combining evi-
dence from both texture and motion analysis ensures efficient
solution that is robust to a diverse range of spoofing attacks.
The proposed approach achieves state-of-the-art accuracy on
different publicly available databases and requires reasonable
computational time. Since the majority of the computational
time required for registration step, time complexity can be
further reduced by parallelizing the registration process. How-
ever, cross dataset performance improvement and new attack
methods such as face masks [40] are important future research
directions.
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