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Abstract

The latest advancements in the field of 5G telecommunications have proposed the requirements
of high speeds (~1 Gbps per user) and low latency (< 1 ms) for a new world of possible
applications such as AR/VR, autonomous driving, enhanced mobile broadband, and dense
deployments of IoT devices. To achieve such high-performance requirements for the 5G network
components and applications, solutions such as kernel bypass techniques and offload to
programmable data plane hardware have been proposed. The management plane of the 5G
network implements security algorithms to ensure confidentiality and integrity within the wireless
network, between the wireless and the mobile core (wired), and between the components within
the mobile core network. The 5G network implements the New Generation Encryption
Algorithms (NEA) and New Generation Integrity Algorithms (NIA) to support ciphering and
integrity, respectively. Some research has proposed to offload the 5G components, such as the
Access and Mobility Function (AMF), New Generation Node B (gNB), and User Plane Function
(UPF), to the programmable data planes (PDPs) to accelerate the performance and reduce
power consumption. With the offloading of security-related network functions like AMF and gNB,
it becomes crucial to offload the cryptographic algorithms implemented by these functions to
avoid hypervisor/kernel stack traversal, ensure better throughput, and lower network latencies.

Our project aims to design an in-network 5G security solution that promises high speed, low
processing latency, scalability, dynamic reconfigurability, and reduces power consumption by
leveraging FPGA-based network hardware.

Keywords: 5G, in-network processing, cryptography algorithms, FPGA, performance acceleration
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Some Useful abbreviations and definitions :

AKA: Authentication and Key Agreement

NAS: Non-Access Stratum

AS: Access Stratum

USIM: Universal Subscribers Identity Module

UDM: UDM is primarily in charge of generating AKA authentication credentials, storing
and managing all user identity information (SUPI) in the 5G system, and
decrypting SUCI

SUPI: Subscribers Permanent Identifier this is generated and stored in both UDM and
USIM

SUCI: Subscribers Concealed Identifier

GUTI: Globally Unique Temporary UE Identity

AMF: AMF is one of the essential network elements in the 5G core network, which is
responsible for registration management, connection management, reachability
management, and mobility management in 5GS, as well as NAS message
ciphering and integrity protection

MME: Mobility Management Entity; Network Function in 4G core network

S-GW: Serving/Signaling Gateway

P-GW: PDN Gateway

HSS: Home Subscriber Network
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Introduction

The traditional telecommunication infrastructure (e.g., 3G, 4G) was based on fixed-function
networking hardware components. Any changes to the device feature required hardware vendor
intervention and long turn-around times. The recent fifth generation (5G) telecommunication
system follows the software-defined networking paradigm, where the 5G network components
are classified into — the control plane and the data plane; where the control plane is responsible
for deciding forwarding policies, monitoring, and management functions, while the data plane
follows the instructions from the control plane and forwards the mobile user’s data to/fro the
Internet. The control plane components run as software (VMs or containers) over commodity
servers and configure the data plane hardware switches to follow forwarding policies.

Applications such as AR/VR, autonomous driving, enhanced mobile broadband, dense
deployments of IoT devices, highspeed entertainment in a moving vehicle, and delay-sensitive
video applications require high throughput (∼1 Gbps/user), very low processing latencies (<1 ms)
with stringent quality of service (QoS).
A high-performance and low-cost UPF is necessary to meet these requirements.

Traditional Network Components are used to run on commodity servers. They consumed higher
energy and precious compute cycles, increasing latencies during communication between
control plane network functions and communication between control plane and data plane
functions.
With the help of Programmable hardware, researchers were able to offload some of the control
plane network functions to the data planes, which resulted in [1]:

1. Improved performance by reducing the amount of computation done in the control plane.
2. Reduced Complexity of the network by separating the control and data plane .
3. Increased scalability, allowing the data plane to handle more traffic without hampering the
performance of the control plane due to independence.

Traditionally, the devices in the data plane used to follow specific instructions i.e., were fixed to
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what set of actions they could perform, but with the developments in the programmable data
planes(PDP), we could now program hardware devices in the data plane and hence add some
functionality to these hardware devices as per the requirements, unlike the fixed function
devices.

With programmable hardware, researchers have offloaded some control plane functions to
achieve better performance. Offloading of security-related Network functions like AMF and the
gNB has been achieved by researchers. However, because the cryptographic ciphering and
integrity algorithms that are used by these functions are still in the control plane, the network
functions have to call them repetitively from the control plane which increases CPU cycles and
results in higher latencies and inefficient use of energy.
This gives rise to the problem of partial offloading, where offloading the network security
functions remains inefficient. These network functions depend on other security functions
present in the control plane, reducing throughput and efficiency. Our project aims to solve the
problem of partial offloading so that the remaining cryptographic functions can be offloaded to
the data plane, ensuring high speeds,
Lower latency, hardware reusability, scalability, and dynamic reconfigurability by using
FPGA-based network hardware.
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Background

5G network Structure

In the 5G network structure, we can broadly divide the network structure into two parts where
one is the Access network, and the other is Core network.
The access network is designed to ensure connectivity with the end users. The Radio Access
Network(RAN) provides connectivity service to the user and helps the end user connect to the
Core Network.
The Core network contains all the 5G network functions which interact with each other and help
with the 5G functionalities of the network, like authenticating the user, providing and managing
security keys before connection to the network, etc.

The core network can further be divided into two parts where the control plane has various
functions like the Access and Mobility Function(AMF), the Session Management Function(SMF),
the Authentication Server Function(AUSF), and various other functions while in the Data Plane
we have functions like the User Plane Function(UPF).

The AMF is responsible for authenticating the device before it can send any data on the
network. UE first authenticates itself on the AMF before transmitting any data. With successful
authentication with the AMF, UE sends data to the RAN.

The RAN is responsible for connecting the UE with the Core Network, sending the data to the
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internet through the UPF. UPF is an important network function in the 5G network as it is
responsible for processing data packets. The efficient working of the UPF is one of the reasons
for the low latencies and higher throughput of the 5G network.

5G Network Functions and Secure Attachment Procedure

A few of the 5G network components are derived from the traditional 4G components, where the
functionality of 4G components is further broken down into smaller functional components.
Below is a small table to map the relationship between 5G vs 4G network components.

Tabular representation of relationships between some of the essential 5G and 4G components:

In a 5G network, each User Equipment(UE) has a Unique Subscriber Identity Module(USIM)
which stores a provisioned Subscribers Identifier known as SUPI. Each USIM stores the
Subscribers Permanent Identifier(SUPI), which is never transmitted over the network in plain text
to avoid any privacy breach due to the leak of SUPI over the network. The Subscriber
Concealed Identifier(SUCI) is used to conceal the SUPI during transmission to prevent leaking of
SUPI as per 5G security guidelines.
To initiate Authentication, during the initial registration, the UE sends SUCI and the connection
request to the AMF. The AMF forwards the SUCI to the AUSF and the UDM for receiving the
SUPI from SUCI.
The UDM uses SIDF to conceal the SUCI and return the SUPI to the AUSF, which then returns
the SUPI information with the response message for the incoming connection request. The AMF
generates a GUTI, an alternative for temporarily communicating SUPI details over the network;
the AMF maps the GUTI value to a SUPI value and uses this mapping for a future incoming
connection request from the UE.
On authentication completion, the NAS layer security procedure is initiated. The NAS layer
protocol manages the connection between the UE and the core network.

For enabling NAS security, the AMF selects the required ciphering and integrity algorithms for
the communication according to the provided security capabilities of the UE and sends a NAS
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Security Mode Command to the UE. The UE completes the security process with NAS Security
Complete Message. All the NAS layer communications are now ciphered and integrity protected
after the NAS security is complete.

After the AS security, The network assigns an IP address with the Attach Accept message and
contains UE Security Capabilities in the Attach Accept message to initiate the AS security
mechanism. For initiating the AS security mechanism, the gNB generates the AS Security Mode
Command message based on the selected security algorithms in the Attach Accept message
and sends it to the UE. The UE acknowledges the message with an AS Security Mode Complete
message and completes the attachment process.

Figure 2 [image source]
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5G Security

Requirements of the Network Functions

5G networks have TLS and application layer security to ensure security within the operator
domain.
All 5G network functions should support TLS with server and client-side certificates.
The following algorithms should be supported by all 5g network functions [2].

Security Requirements of 5G Network Functions
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Ciphering and Integrity Protection

In the 5G network a new set of algorithms called the New Generation Algorithms are used. For
confidentiality purposes, we have New Generation Encryption Algorithms (NEAx), while for
Integrity, we have New Generation Integrity Algorithms (NIAx). These algorithms are derived
from traditional algorithms like AES-CTR, Snow-3G, etc. but are used with slight modifications.

Ciphering Algorithms Derived from
NEA0 -
NEA1 Snow-3G
NEA2 AES-CTR
NEA3 ZUC algorithm

Integrity Algorithms Derived from
NIA0 -
NIA1 Snow-3G
NIA2 AES
NIA3 ZUC algorithm

Structure of NEAx/NIAx algorithms:
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The ciphering mechanism for the 5G network involves generating a key stream which is then
XORed with the plaintext block to create a ciphertext block. The above mention keystream is
generated from the NEA and the NIA algorithms, which is then used to XOR the plaintext and
produce a ciphertext; the same Keystream is used to convert the ciphertext to plaintext while
decrypting the ciphertext on the receiver end.
The NEA/NIA algorithms generate the keystream and have specific inputs like COUNT,
BEARER, DIRECTION, and LENGTH. Along with the KEY, these go as inputs to the NEA/NIA
block and produce a KEYSTREAM.

Figure 3 [image source]

The working of the NEA/NIA algorithms can be further broken down for a better understanding.
The block diagram of the AES algorithm is shown below, where the AES requires a Key and a
Keystream block to produce the output block, which is then XORed with the plaintext block to
get the ciphertext. In the internal working of the NEA/NIA algorithms, the input apart from the
KEY is used to generate the KEYSTREAM required for the underlying AES algorithm in the case
of the NEA2 algorithm. This derived keystream has then used an input for the underlying
algorithm like AES, Snow3G, etc.

The initial Keystream for the underlying algorithm is generated using the following structure: the
leftmost bits are the most significant bits.
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Figure 4 [image source]

The Integrity protecting algorithms follow the same structure as that of the NEAx algorithms but
instead of the ciphertext, the integrity algorithms produce a 32-bit message authentication code
(MAC) used for Integrity evaluation at the Receiver end. Similar to MAC, the algorithm produces
an Expected MAC(XMAC) at the receiver's end.
The MAC is usually appended at the end of the messages before sending them out in the
network.

AES and AES CTR

Advanced Encryption Standards or AES is a 16-byte block cipher

● The algorithm has an sp network or substitution and permutation network.

● The algorithm uses keys of sizes 128,192 and 256 bits which correspond to 10, 12, and 14
rounds(initial round key addition is excluded)

● The plaintext is XORed with the round key.

● Substitution of bytes from s box(lookup table).

● Shifting rows to add permutation.

● Multiplication with a 16-byte constant matrix

● In the final round mix column step is skipped.
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Figure 6 [Image source]

The AES algorithm has various wrappers which keep the same basic AES at the core and
just change the structure of the Algorithm to derive a new algorithm for the different use
cases.

AES CTR block can be used to run multiple AES blocks in parallel with all of them being
independent of each other unlike the traditional AES ECB or AES CBC which are dependent on
their previous ciphertext for input.
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The structure of the AES CTR mode is as follows:

Figure 7 [image source]

Key features of the algorithm:

● Allows parallelism

● Each block is Independent of one another

● This algorithm has fast decryption as the XOR operation is done in the end and we can
precompute output from cipher blocks without plaintext.

● All counters under one key should have a different value.

● No padding is done in this mode we use only MSB in case of partial blocks hence the
exact length of the plaintext is revealed
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Work Done in the Past Semester

Literature Review and Study
Throughout the duration of the semester I studied and understood various research papers and
5G 3GPP security specifications.
The References of the Research Papers are attached.[3][4][5][6]

Study about 5G Structure, Network Functions, and basics of 5G
I researched and gained information and knowledge about

● 5G Network structure
● 5G network functions
● How communication between UE happens with the Core Network
● How authentication of a UE is done via AMF
● Security requirements of Network Functions
● Basic Definitions like Home Environment and RAN and how are they interconnected.
● Functionality of Security Network functions and various constraints they hold ●
Applications of 5G network

Study and Research on Workings of NEA/NIA algorithms
The internal working of the NEAx and NIAx algorithms used for ciphering and Integrity protection
of 5G data which is explained above in the report was learned during the duration of the BTP. I
learned about various network components and Network functions of 5G like AMF, AUSF, SIDF,
UDF, etc.

The BTP project requires me to implement the NEA2 and ZUC-based algorithm on FPGA by the
end of the entire BTP duration. Before working with the code, I researched the 128NEA2
algorithm from Security Specs. The NEA2 was a ciphering algorithm based on the AES CTR
algorithm and to implement it I gained a sufficient understanding of the AES algorithm before I
could head on to Understand the AES CTR implementation.
The following headers dive deeper to explain the AES and the AES CTR algorithm, but
alongside, I also understood how the AES CTR was modified to generate and use the NEA2
algorithm according to the required algorithm structure.
The NEAx algorithms were developed during the development of the 4G standards for ciphering
and Integrity.
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NEA3-ZUC Algorithm
Before working on the code, I studied about 128 NEA3 algorithms from security specs. To
gain sufficient knowledge of the algorithm, I read the 3GPP specifications and other relevant
technical documents related to the algorithm. NEA3 is a security algorithm used for
encrypting the data in 5G networks. It is based on the ZUC stream cipher algorithm and
uses it to generate a keystream for encryption and integrity protection of user data in 5G
networks.

To successfully complete the BTP project, I demonstrated proficiency in FPGA design,
software development and a thorough understanding of the ZUC algorithms.

Implementation of the algorithm on FPGA

After understanding the algorithm and its design, I implemented it using C.
Implementing these algorithms on an FPGA involves designing and developing the
necessary hardware and software components to enable their operation on the FPGA
platform.

Implementing the ZUC algorithm on an FPGA using HLS code involved several stages of
development, simulation, synthesis, and verification. I started the process by understanding
the algorithm's design, requirements, and constraints. Once the algorithm is understood, the
next step is to choose a hardware description language such as Verilog or VHDL, or in this
case, HLS.
The HLS code is written using C, after which the code is optimized for performance and
resource utilization.
Once the code is written and optimized, it is simulated to ensure correctness and
performance. During simulation, the code is tested using different inputs to ensure it
produces the correct output and meets the performance requirements.

After simulation, the code is synthesized into a hardware design. During synthesis, the code
is translated into a set of hardware components that can be loaded onto the FPGA. The
synthesized code is then loaded onto the FPGA, allowing it to execute the algorithm in
hardware.
Finally, the implementation is verified by testing its functionality and performance on the
FPGA. The verification process involves testing the implementation with different inputs and
analyzing its outputs. If any issues are found, the implementation is iterated and improved
based on the results.
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Results
Apart from the Research and Studies about the 5G Security Standards. I also benchmarked
the reading for ZUC algo on the Lab server. I created a testbed on the server with a Docker
container where I was supposed to test and find out the latency and throughput values. After
writing the code for the ZUC algo, I set a docker file for building the container. The docker
containers were bound to one CPU while running to prevent context switch during the
runtime to get inaccurate results. Then the ZUC code inside the container was run using a
task set to ensure further the process was bound to a CPU. During the runtime, the CPU
usage was checked using the top command to ensure the Test was utilizing 100% CPU
during the execution of the code.

Evaluation

Testbed Setup:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 16
Model name: AMD Ryzen 9 5950X 16-Core Processor
CPU MHz: 2192.454
CPU max MHz: 3400.0000
CPU min MHz: 2200.0000

Software used: Docker and GCC compiler.
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Analysis:

Here we are performing the computation in CPU without involving the communication
latency i.e all the computations are happening over one CPU core, and data is transmitted
from the same machine, the above figures will become significant when we do involve the
communication latency.

The benchmark reading was taken multiple times to ensure no erroneous reading was
taken. The screenshot of the benchmark for 1464 byte-sized packet as input to AES GCM
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Work Done in the Current Semester
The literature review in the previous semester helped me understand the problem
statement. After the literature review, I decided to implement the cryptographic
algorithms required to complete the crypto library for our project.

The 5G architecture required the implementation of the following algorithms:

Ciphering Algorithms Derived from
NEA0 -
NEA1 Snow-3G
NEA2 AES-CTR
NEA3 ZUC algorithm

Integrity Algorithms Derived from
NIA0 -
NIA1 Snow-3G
NIA2 AES
NIA3 ZUC algorithm

We decided on Implementing the NEA2, NIA2, NEA3, and NIA3 algorithms
and
divided the work among ourselves.

Motivation:
Currently, the security algorithms can be offloaded to dedicated hardware chips present
on the SmartNIC. These algorithms are implemented on FPGA, operating efficiently and
achieving a throughput of 100GBps. However, due to evolving requirements, the rigidity
of fixed-function ASICs becomes impractical, necessitating programmable and flexible
hardware accelerators. FPGAs, being both flexible and programmable, emerge as a
suitable solution.

As TLS incorporates multiple algorithms simultaneously, the Edge Server must support a
variety of these algorithms concurrently. To address this, we propose a framework that
dynamically determines which algorithms to place on the FPGA, based on changing
requirements derived from specific metrics.

To optimize FPGA resource utilization in a multi-algorithm environment, we plan to work
with two versions of each security algorithm: one optimized for throughput and another
for accommodating multiple algorithms. The allocation of more hardware resources
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enhances performance but limits the number of algorithms that can be placed on the
FPGA.

The capability to dynamically reconfigure the FPGA (DPR) without disrupting operations
allows on-the-fly algorithm changes based on traffic proportions. Therefore, we are
developing a Scheduler that determines FPGA algorithm configurations based on
monitored metrics fetched by a controller program.

These metrics are obtained from incoming packets and hardware utilization, guiding the
Scheduler's decisions regarding adding, replacing, or reconfiguring specific hardware
IPs for particular algorithms. These metrics also serve as feedback for FPGA
modifications.

To further refine the Scheduler's performance, we aim to establish the proportion of
hardware IPs needed for each algorithm by analyzing incoming traffic patterns. To
achieve this, a testbed for experimentation is being enabled, enabling us to build a
Scheduler capable of dynamically reconfiguring the FPGA based on packet
requirements.
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NEA2 Algorithm
The NEA2 algorithm was based on the AES CTR algorithm, and hence, I
started out by implementing the C Code for the algorithm.
I took around three weeks to implement the AES CTR algorithm in C code
and verified the algorithm with standard test cases from NIST Documentation
[9].

After verification from the Test Cases, I moved on to implement the HLS code
from the AES-CTR C code, where I was required to clean the C code to make
it HLS compatible by removing the function calls from the Libraries that were
not compatible during the compilation of HLS code on FPGA hence I
removed the functions like memcpy and malloc and rewrote code for malloc,
memcpy, memcmp and some other derived function from scratch.

After the code was modified, I started parallelizing the C code and
implementing pragmas in the C code to generate HLS code, and after some
help from our lab mates, I was able to implement AES CTR and generate
HLS code for it.
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Testbed Setup:

.

The following readings were found after testing the AES CTR HLS code on FPGA:
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Motivation Experiment Setup:

I

I then implemented a Baseline setup to calculate end-to-end latencies on a docker
container. With these readings, we would be able to analyze OS and container
overheads, which would have increased overall latencies as described in the abstract of
our Project I have then written the AES CTR code with OpenSSL EVP API so that we
can compare our IP with the standard AES CTR implementation.

Later, I containerized the OpenSSL C code and used it to run our Experiment with the
following readings:
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Analysis:
We then calculated overheads on the commodity server due to Host OS and
Container compared to the FPGA results, which are shown in the following
plot, which compare the two results:

The overhead latencies due to the OS and the container came out to be 93
to 98 percent of the total latency generated during the processing while the
actual processing latency ranged from 3 microsecond to 18 microsecond,
which validates out motivation.
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Future Work

My Next Steps in the project are the following:

Implementation of HLS Code for AES CTR 8X version.
Implementation of Integrity algorithms NEA3, NIA1, NIA2, and NIA3.
Completion and Implementation of Cryptographic Library.
Implement a framework for Automatically Reconfiguring our FPGA with changes
in workload and efficient power utilization.
Developing APIs for our Cryptographic Library for Developers.
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