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Abstract. Many RFID protocols use cryptographic hash functions for
their security. The resource constrained nature of RFID systems forces
the use of light weight cryptographic algorithms. Tav-128 is one such
light weight hash function proposed by Peris-Lopez et al. for an RFID
authentication protocol. In this article we show that Tav-128 is not col-
lision resistant. We show a practical collision attack against Tav-128 and
produce message pairs of arbitrary length which produce the same hash
value under this hash function. We also study the constituent functions
of Tav-128 and show that the concatenation of nonlinear functions A and
B produces a 64-bit permutation from 32-bit messages. This could be a
useful light weight primitive for future RFID protocols.
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1 Introduction

RFID technology has gained wide acceptance in the market-place in the
last decade. Due to the security vulnerabilities found in various RFID
protocols and implementations, researchers have been focusing on de-
signing secure RFID protocols. RFID tags have hard constraints on their
size, the chip area and power consumption. Due to these constraints pub-
lic key cryptography becomes generally impractical for use in the RFID
protocols. Consequently, researchers have relied on cryptographic hash
functions [6, 10, 9, 3, 2] or block ciphers [4] in the design of RFID pro-
tocols. Unlike block ciphers, hash functions do not require exchange of a
key before operation and hence RFID community has thought them to be
simpler to implement. However, Feldhofer and Rechberger [5] have shown
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that the number of gates required to implement most common hash func-
tions on an RFID chip is much higher than that for some block ciphers.
This has resulted in the development of lightweight hash functions which
can be used in securing RFID protocols.

Tav-128 is a lightweight cryptographic hash function developed by
Peris-Lopez et al. [8] which is utilized in an RFID authentication pro-
tocol. In this work we show that Tav-128 is not a strong hash function
and practical collisions can be found for it for messages of any arbitrary
length. The organization of the paper is as follows. In § 2, we present the
notation used and describe the security requirements of a cryptographic
hash function. In § 3 the structure of Tav-128 is explained. In § 4, we
describe our collision attack and provide colliding message pairs for Tav-
128. We conclude with some open problems on the constructions of light
weight primitives for secure protocols in § 5.

2 Notation and Preliminaries

2.1 Notation

In this work, the following notation are used.
+ : Addition modulo 232.
− : Subtraction modulo 232.
|| : Concatenation of two quantities.
≪: Left bit-shift operator (on 32-bit quantities).
≫: Right bit-shift operator (on 32-bit quantities).

2.2 Security requirements of cryptographic hash functions

A cryptographic hash function produces a fixed length digest for an arbi-
trary sized message. It must satisfy some or more of the following prop-
erties, depending on the intended use of that hash function [7].

Pre-image Resistance: A hash function h(.) is pre-image resistant
if it is computationally infeasible to find an x for any given y such that
h(x) = y.

Second Pre-image Resistance: A hash function h(.) is second
pre-image resistant if it is computationally infeasible to find an x2 given
any x1 such that h(x1) = h(x2) and x1 6= x2.

Collision Resistance: A hash function h(.) is collision resistant if
it is computationally infeasible to find a pair (x1, x2), x1 6= x2 such that
h(x1) = h(x2).



By “computational infeasibility”, we mean that the complexity of an
algorithm to break any one of the security properties is less than the
generic attack for breaking that property. For a hash function producing
an ℓ-bit digest, the complexity of birthday attack is 2ℓ/2, and that for
the pre-image and the second pre-image attack is 2ℓ. If an attack can be
described against any one of these properties and that attack has better
complexity than these generic attacks then it is known as a “breaking”
of the hash function.

In this work we attack the collision resistant of Tav-128 which pro-
duces 128-bit digests. Thus any attack requiring effort less than 264 will
be considered a break for Tav-128.

3 The Tav-128 hash function

As mentioned already, Tav-128 has been designed as a lightweight hash
function to be used in an RFID authentication protocol [8]. The hash
function outputs a digest of 128-bit for a message of any length. The
structure of Tav-128 is as shown in Figure 1. Hashing for a message of
length 32× k is done following the Merkle-Damg̊ard structure where the
compression function f : {0, 1}32 × {0, 1}160 → {0, 1}160 is iterated k

times. The reference implementation of Tav-128 from [8] is provided in
Appendix B.

3.1 The compression function f

Each call to the f function with a 32-bit message m updates 5 variables,
each of which is of size 32 bits. These 5 variables are the register a0 and the
states S[0], S[1], S[2] and S[3]. The f function utilizes 4 functions A, B, C

and D to update these variables and also uses two internal variables
h0 and h1 in this process. The schema of the compression function is
described in Figure 2. The symbol ⊕ in this figure denotes bitwise XOR
of two 32-bit quantities.

4 Collision attack on Tav-128

The compression function of Tav-128 first initializes the variables h0 (resp.
h1) with a constant and then a non-linear function A (resp. B) updates
this value depending on the 32-bit message m. The two functions A and
B are shown in Table 1 below.

The authors of the hash function justify the inclusion of these two
functions by stating that [8] “We have also tried to include a filter phase



Fig. 1. The Merkle-Damg̊ard structure of Tav-128. Compression function f is {0, 1}32×
{0, 1}160 → {0, 1}160. Final transformation g simply outputs the final state S.
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Fig. 2. Schema of the compression function f of Tav-128.
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Table 1. Nonlinear functions A and B in Tav-128.

A(h0, m) B(h1, m)

for(i=0; i<32; i++) for(i=0; i<32; i++)

h0 = (h0 ≪ 1) + (h0 + m) ≫ 1 h1 = (h1 ≫ 1) + (h1 ≪ 1) + h1 + m



(corresponding to algorithms A and B) in the input of the Tav-128 func-
tion, in order to avoid the attacker to have direct access to any bit of
the internal state. Not having this possibility, some attacks that have been
found on other cryptographic primitives in the past are precluded.”.

In § 4.1, we investigate if the claim above is true and whether the
application of these two functions weaken or strengthen the hash design.

4.1 Non-existence of collisions at the level of functions A and
B

We note that the functions A(h0, ·) and B(h1, ·) are not permutations. It
is easy to find collisions on m in either of the two functions A or B. Some
such examples are presented in Table 2. Some more analysis of functions
A and B is presented in Appendix A.

Table 2. Examples of collision in A and B functions.

S. Function A Function B

No. h0 m A(h0, m) h1 m A(h1, m)

1 0x768c7e74 0x74093e01 0x6dabc1e3 0x768c7e74 0x4505b289 0x3d8fd817

0x09057d79 0x62ee7bbd

2 0x0 0x1bd18de3 0x099587a6 0x0 0x51b70ece 0xd3502587

0x554216d3 0x17cac654

Despite the fact that collisions in A and B are easily found, it does not
appear easy to find collisions in both A and B simultaneously. Note that
the only place where the message m is used in the compression function
f is in functions A and B. Further computations in functions C and D

only operate on the intermediate values h0 and h1 and state variables
S[0], S[1], S[2] and S[3]. Therefore, if a message pair m1 and m2 could be
found such that A(h0, m1) = A(h0, m2) and B(h1, m1) = B(h1, m2) for
the IV specified values h0 = h1 = 0x768c7e74, then the pair (m1, m2)
will constitute a collision for the full hash function Tav-128. In order
to find collisions in Tav-128, we therefore investigate collisions in the
concatenation of outputs of functions A and B.

To search for collisions in A(h0, m)||B(h1, m) we used the following
strategy.

1. Create a table of size 232 corresponding to all 32-bit messages m con-
taining the triplet (A(h0, m), B(h1, m), m).

2. Sort this table.



3. Look for a pair of adjacent rows in the sorted table where the first
two entries are equal.

Since the size of the file in the strategy above will be of around 128
Gigabytes, sorting it would become computationally expensive on a stan-
dard PC. Therefore we modified the strategy slightly by dividing the file
into 16 chunks of roughly equal size and then using disk sorting on each
file of approximately 8 GB. Finally we combined these 16 files by using
the merge sort algorithm. For sorting individual files, we used disk based
sorting algorithm psort [1]. Our search reveals that there is no pair of
messages on which both A and B functions collide starting from the IV.
Thus there does not exist any collision on 32-bit messages at the level of
A and B function.

4.2 On the map (m||m) → A(h0, m)||B(h1, m)

As remarked in [8], individual functions A and B are quite efficient, requir-
ing very few gates to implement them. Thus they seem to have potential
applications in light weight protocols. However, our discussion in § 4.1
shows that it is very easy to find collisions in these individual functions.
Therefore the use of these functions in any application where collisions
in these functions could cause loss of security is immediately ruled out.
Contrary to what one would expect, however, we have found that the
64-bit map (m||m) → A(h0, m)||B(h1, m) is a permutation. Since this is
a light weight permutation, constructed from two light weight primitives,
it may be a useful tool for future protocols requiring low cost constructs.

4.3 Finding collisions at the level of C and D functions

From Figure 2 we note that if the intermediate values h0 and h1 collide
for two different messages just after one application of C and D func-
tions, then S[0] will have the same value for both the messages. Since the
message does not get used in subsequent computations, all the register
values (h0, h1, S[0]i, . . ., S[3]) and hence the final hash output will also
be same for these messages.

We used a strategy similar to the one described in § 4.1 to generate
such message pairs. We obtained 11 message pairs which collide for Tav-
128. Two of these pairs, the colliding hash value and the intermediate
values of h0 and h1 after the fist application of C and D function are
presented in Table 3 next.



The cost of the attack: The estimate of effort is about 232 calls to
about 1/4th of the hash function, followed by sorting the lists of h0 and
h1 and subsequent search for colliding pair. The whole process of creating
the files, sorting them, merging to create one file and finally searching for
colliding pairs on this merged file took less than 1 working day on a
standard PC. We estimate the effort to be about 237 calls of Tav-128.
This is significantly below the birthday bound of 264 for a hash function
producing 128-bit digests.

4.4 Colliding message pairs

Two pairs of colliding messages are presented in Table 3. Since the chain-
ing variables h0, h1, S[0], S[1], S[2] and S[3] are all equal for each message
pair, appending any arbitrary message at the end of the colliding pair
will still collide for Tav-128. Given the results in Table 3, it is trivial to
construct messages of any length ≥ 32-bit which will collide for Tav-128.

Table 3. Colliding message pair for Tav-128. Both the message pairs are 32 bits and
the hash output H(M) is 128 bits. h0 and h1 are the intermediate values of the variables
after one iteration of the C and D functions.

S.No. M h0 h1 H(M)

1 0x80e19efb 0x9feaad6c 0x58b49a48 11a208c1 822c7b31 c41dd0a4 10a9c8c0

0x8e474d73

2 0x1f399d6d 0xa148201c 0x97094b03 dd7d4e3a b426513a 6631c011 9241384f

0x90adacf0

5 Conclusions and Open problems

In this paper we presented collisions for the hash function Tav-128. The
collisions presented are for 32-bit messages but are easily extended to mes-
sages of any length by appending any randomly chosen message to these
colliding message pairs. We can state that Tav-128 is not a cryptograph-
ically secure hash function. However, the design of Tav-128 provides the
starting point of a useful primitive which can have potential applications
in future light weight protocols.

The construction of a library of light weight primitives having colli-
sion resistance and difficult inversion property is an open problem. Such
a library will certainly be of use to designers of light weight secure proto-
cols, not limited to just RFID applications. The cost comparison of such



primitives and conditions on the optimal cost of an individual primitive
also remain interesting open problems.
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A Some properties of functions A and B

In this section we comment on some combinatorial properties of the func-
tions A and B. As already mentioned, these functions are not permuta-
tions over input messages.

A.1 Analyzing function A

The for loop runs 32 times and updates h0. Let the initial value of h0

before the loop starts be h0,0 and the updated value of h0 after the ith

iteration be h0,i. In step i, the loop will perform the following operation.

h0,i = (h0,i−1 ≪ 1) + (h0,i−1 + m) ≫ 1.

We therefore analyze the following equation.

x = (y ≪ 1) + (y + m) ≫ 1 (1)

In the equation above, there are 3 variables: x, y and m. Consider the
problem of solving for y given x and m. We make the following observa-
tions on this problem.

1. For all pairs of x and m, there exist two distinct values of y satisfying
Equation 1.

2. Let these two values of y be y1 and y2. The difference of y1 and y2 is
always 0x55555555 (or its additive inverse modulo 232, i.e.0xaaaaaaab

since the addition in Equation 1 is modulo 232). Note that the 32-bit
constant 0x55555555 represents alternating sequence of 0 and 1 bits.

3. Note that Equation 1 can be written as

(x − y ≪ 1) = (something) ≫ 1.

The most significant bit (msb) of the rhs is always zero, hence the
msb of (x − y ≪ 1) must also be always 0.

Despite the inversion of a single step of Equation 1 being trivial for
a message m (given x and y), the problem of inverting the for loop (i.e.
finding an m given h0,0 and h0,32) is difficult.

A.2 Analyzing function B

Similar to the analysis above, let us try to study the following equation.

(y ≪ 1) + (y ≫ 1) + y + m = x (2)

We would like to solve Equation 2 for y, given the values of x and m. It
is interesting that unlike in the case of Equation 1, this time we may or
may not be able to solve the equation. The following cases can occur:



1. For some values of (x, m), there is no solution for y. For example: x =
0x7409c642 and m = 0x3d303017.

2. For some values of (x, m), there is exactly one value of y satisfying
Equation 2. E.g. x = 0x152e1fdb and m = 0x3d77b373, for which
y = 0xcfeafa67.

3. For some values of (x, m), there are two values of y satisfying Equa-
tion 2. E.g. x = 0x4a6cd8f5 and m = 0x10dff39b, for which y =
0x5995f863 and 0xa2ba8aac.

The probability of occurrence of the three cases above are roughly 1

3
.

Similar to the case of function A, the inversion of the for loop (com-
puting m from h1,0 and h1,32 where the symbols have similar meaning)
corresponding to 32 calls to Equation 2 is a difficult problem.

B Tav-128 reference code from [8]

/************************************************************************/

Process the input a1 modifying the accumulated hash a0 and the state

/************************************************************************/

void tav(unsigned long *state, unsigned long *a0, unsigned long *a1)

{

unsigned long h0,h1;

int i,j,r1,r2,nstate;

/* Initialization */

r1=32; r2=8; nstate=4;

h0=*a0; h1=*a0;

/* A - Function */

for(i=0;i<r1;i++){h0=(h0<<1)+((h0+(*a1))>>1);}

/* B - Function */

for(i=0;i<r1;i++){h1=(h1>>1)+(h1<<1)+h1+(*a1);}

/ * C and D - Function */

for(j=0;j<nstate;j++) {

for(i=0;i<r2;i++) {

/* C - Function */

h0^=(h1+h0)>>3;

h0=((((h0>>2)+h0)>>2)+(h0<<3) +(h0<<1))^0x736B83DC;

/* D - Function */

h1^=(h1^h0)>>1;

h1=(h1>>4)+(h1>>3)+(h1<<3)+h1;

} // round-r2

state[j]+=h0;

state[j]^=h1;

} // state



/* a0 updating */

*a0=h1+h0;

}

/***********************************************************************************/

Initialization of the state and a0 with random values obtained from www.random.org

/***********************************************************************************/

void init state(unsigned long *state, unsigned long *a0)

{

state[0]=0xa92be51d;

state[1]=0xba9b1ef0;

state[2]=0xc234d75a;

state[3]=0x845c2e03;

a0[0]=0x768c7e74;

}


