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Abstract

In recent years, Machine Learning (ML) and Artificial Intelligence (AI) have
become one of the hot topics for research and have found their use in various
applications across different sectors like healthcare, automotive, marketing,
finance, agriculture, Natural Language Processing (NLP), etc. However, training
the current state-of-the-art AI-based algorithms are highly energy intensive. For
instance, an energy of 932 MWh is required to train OpenAI’s GPT-3 NLP
model. The large power consumption stems from training these algorithms on
conventional computing systems based on the von-Neumann architecture. In the
von-Neumann architecture, memory and computation are decoupled from one
another, making it energy intensive.

The human brain, comprising about 1011 neurons and 1015 synapses, operates
at a power budget of just 20W. Taking inspiration from the highly dense and
energy-efficient architecture of the biological brain, Spiking Neural Networks
(SNN) aim to model the behavior of the biological neural network in an energy-
efficient manner. The neurons in an SNN communicate via discrete action
potentials or “spikes,” which are sparse in time.

In this work, an energy-efficient SNN is proposed, which can be trained
on-chip in an unsupervised manner using Spike Timing Dependent Plasticity
(STDP). Firstly, to implement an energy-efficient SNN, a Leaky Integrate and
Fire (LIF) neuron has been proposed. The proposed neuron, comprising a Ge-
based PD-SOI MOSFET, can directly receive the incoming voltage spikes and
avoid energy dissipation in generating a summed potential. The smaller bandgap
with dominant direct tunneling of Ge allows the device to operate at a lower
voltage level. The energy consumption per spike of the proposed neuron is 0.07fJ,
which is lower than LIF neuron implementations (experimental or simulated)
reported in the literature. A Ferromagnetic Domain Wall (FM-DW) based device
has been employed to function as a synapse. It comprises a Magnetic Tunnel
Junction (MTJ) with a Heavy Metal (HM) underlayer. The MTJ consists of a free
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FM (CoFe) layer (whose magnetization can be varied) and a pinned FM layer
(whose magnetization is fixed) separated by a tunneling oxide barrier (MgO). A
DW separates two oppositely polarised magnetic regions in the free FM layer. A
programming current flowing through the HM layer results in the movement of
the DW in the free FM layer. A displacement in the position of the DW results
in a change in the conductance of the FM-DW synapse. Secondly, a Ge-based
dual-pocket Fully-Depleted Silicon-on-Insulator (FD-SOI) MOSFETs with dual
asymmetric gates has been proposed that implements on-chip unsupervised
learning using STDP in the SNN. Using a comprehensive device-to-system level
simulation framework, it is demonstrated that a pair of proposed dual-pocket
FD-SOI MOSFETs with dual asymmetric gates can generate a current, whose
magnitude depends exponentially on the temporal correlation of spiking events
between the pre- and post-synaptic neuronal layers. This current drives the HM
layer in the FM-DW synapse and programs the conductance of the synapse in
accordance with the STDP learning rule. The proposed implementation requires
2-3 × fewer transistors and offers a lower latency to implement STDP than
existing literature.

While SNNs have emerged as a suitable contender to Artificial Neural Net-
works (ANN) due to their high energy efficiency, their use is still not prevalent.
One of the major reasons preventing the widespread applicability of SNNs is
the lack of efficient training algorithms that efficiently utilize the temporal in-
formation embedded in discrete spikes. Moreover, the time required to train
the SNN can be substantially longer than ANNs. This is because no learning
occurs in the network until some spiking activity exists in the neurons. Thus,
learning in deeper network layers is time-consuming and often requires multiple
training epochs. A ternary SNN, comprising a ternary neuron, outputs a VDD/2
spike when the membrane potential of the neuron crosses a lower threshold, say
vthresh1 and a VDD spike when it crosses a higher threshold vthresh2, can result in
a substantial speedup in the time required to train the SNN. This is due to the
larger spiking probability of a ternary neuron compared to a conventional spiking
neuron. Moreover, the ternary encoding is a more accurate representation than
the binary encoding and can result in a higher classification accuracy compared
to a conventional SNN. A Dual-Pocket Tunnel Field effect transistor (DP-TFET)
has been proposed to implement a ternary spiking neuron. Two distinct tunneling
mechanisms exist in the device - within-channel tunneling and source-channel
tunneling, which are responsible for the generation of VDD/2 and VDD voltage
spikes, respectively. An FM-DW based device is employed as the synapse, and
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the network is trained on-chip in an unsupervised manner using STDP. Using a
device-to-system level simulation framework, it is demonstrated that the ternary
SNN can be trained to classify digits in the MNIST dataset with an accuracy of
82%, which is better (75%) than that obtained using a binary SNN. Moreover, the
runtime required to train the proposed ternary SNN is 8× less than that required
for a binary SNN.

To summarize, the goal of this work is to develop an energy-efficient frame-
work for Neuromorphic Computing using an SNN. It involves developing an
insight into the state-of-the-art hardware required to implement an SNN and
proposing novel devices that aid in implementing and training the SNN in an
energy-efficient manner.
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Chapter 1

Introduction

1.1 Motivation

In recent years, Machine Learning (ML) and Artificial Intelligence (AI) have

become increasingly prominent in various sectors, including healthcare, automo-

tive, marketing, finance, agriculture, and Natural Language Processing (NLP).

One of the primary reasons for the widespread success of ML algorithms is the

rapid advancement in the semiconductor industry. Gordon Moore, in 1965, gave

the famous Moore’s law of transistor scaling, which stated that the number of

transistors that could be integrated onto a single chip at minimal cost would

double every year [1]. By down-scaling the dimensions of the transistors, not

only did we increase density, but we also improved the performance and reduced

the cost of the chip. This led to faster data processing and cheaper data storage.

ML/AI algorithms utilize Artificial Neural Networks (ANNs) to classify the

dataset into labels by intelligently extracting features from the dataset. Google

AlphaGo is the first AI-based algorithm to defeat world champions in the board
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game Go [2], demonstrating the potential of current AI algorithms, but requires

significant CPU and GPU resources to train. OpenAI’s GPT-3, an auto-regressive

NLP model comprising 175 billion tunable parameters, is estimated to consume

an energy of 932 MWh to train [3]. The large power consumption stems from

training these ML algorithms on conventional computing systems based on

the von-Neumann architecture. In the von-Neumann architecture, memory and

computation are decoupled from one another. The processor needs to fetch

the data from off-chip memory, process it, and store it back in the memory,

making the process energy-intensive. The carbon footprint to train the current

state-of-the-art ML algorithms on conventional computing systems has been

increasing significantly over time [4]. Neuromorphic computing, on the other

hand, takes inspiration from the functioning of the biological brain and aims to

perform computation in an energy-efficient manner. With the approaching end of

Moore’s scaling law, neuromorphic computing presents an opportunity towards

the realization of ultra-low power chips in the future. This requires a departure

from traditional methods of computation and presents the need to develop novel

energy-efficient hardware.

The human brain comprises about 1011 neurons and 1015 synapses while

operating at a power budget of just 20 W. Thus, it is an extremely dense, inher-

ently parallel, and energy-efficient architecture. The neurons in the biological

brain communicate with each other via discrete action potentials or “spikes",

which are sparse in time. Taking inspiration from the highly dense and energy-

efficient architecture of the biological brain, newer forms of computation can
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emerge that benefit from the advancements in ANNs and, at the same time, are

energy-efficient. Spiking Neural Network (SNN), the successor to the widely

popular ANN, aims to model the behavior of the biological neural network in an

energy-efficient manner. In this work, various energy-efficient implementations

of SNN are proposed and investigated.

1.2 Objectives

The goal of this work is to develop an energy-efficient framework for Neuro-

morphic computing using an SNN. It involves developing an insight into the

state-of-the-art hardware required to implement an SNN and proposing novel

devices that aid in implementing and training the SNN in an energy-efficient

manner. Specifically, the objectives of this work are as follows.

• To propose an energy-efficient implementation of a Leaky-Integrate and

Fire (LIF) neuron and investigate its behavior.

• To propose an implementation of an on-chip unsupervised learning frame-

work in an SNN using Spike Timing Dependent Plasticity (STDP) and

assess its performance.

• To propose a ternary SNN and develop a framework to implement unsuper-

vised learning using STDP and compare its performance with a binary SNN

on standard benchmarks.
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1.3 Contributions

The major contributions of this work are summarized below.

• An energy-efficient LIF neuron is proposed to be employed in an SNN. The

proposed neuron, comprising a Ge-based PD-SOI MOSFET, can directly re-

ceive the incoming voltage spikes and avoid energy dissipation in generating

a summed potential. The smaller bandgap with dominant direct tunneling

of Ge [5] allows the device to operate at a lower voltage level. The energy

consumption per spike of the proposed neuron is 0.07fJ, which is lower than

LIF neuron implementations (experimental or simulated) reported in the

literature.

• A Ferromagnetic Domain Wall (FM-DW) based device is employed to

function as a synapse. It comprises a Magnetic Tunnel Junction (MTJ) with

a Heavy Metal (HM) underlayer. The MTJ consists of a free FM (CoFe)

layer (whose magnetization can be varied) and a pinned FM layer (whose

magnetization is fixed) separated by a tunneling oxide barrier (MgO). A

DW separates two oppositely polarised magnetic regions in the free FM

layer. A programming current flowing through the HM layer results in the

movement of the DW in the free FM layer in the direction of the current

flow. A displacement in the position of the DW results in a change in the

conductance of the FM-DW synapse. The weight of the interconnection

between two neurons is stored as the conductance of the synapse.
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• An energy-efficient Ge-based device is proposed that implements on-chip

unsupervised learning in an SNN using STDP. The proposed device config-

uration comprises a dual pocket FD-SOI MOSFET with dual asymmetric

gates. Using a comprehensive device-to-system level simulation framework,

it is demonstrated that a pair of such devices can generate a current, whose

magnitude depends exponentially on the temporal correlation of spiking

events between the pre- and post-synaptic neuronal layers. This current

drives the HM layer in the FM-DW synapse and programs the conductance

of the synapse in accordance with the STDP learning rule.

• A ternary SNN is proposed, which comprises a ternary spiking neuron and a

spintronic synapse. A Dual-Pocket Tunnel Field effect transistor (DP-TFET)

is employed to implement a ternary neuron. Two distinct tunneling mech-

anisms exist in the device - within-channel tunneling and source-channel

tunneling, which are responsible for the generation of VDD/2 and VDD volt-

age spikes, respectively. The network is trained on-chip in an unsupervised

manner using STDP. Using a device-to-system level simulation framework,

it is demonstrated that the ternary SNN can offer a better classification

accuracy and requires a smaller runtime to classify handwritten digits in the

MNIST dataset than a conventional SNN.

5



1.4 List of Publications

1. A. Gupta and S. Saurabh, “An Energy-Efficient Ge-Based Leaky Integrate

and Fire Neuron: Proposal and Analysis,” in IEEE Transactions on Nan-

otechnology, vol. 21, pp. 555-563, 2022, doi: 10.1109/TNANO.2022.3209078.

2. A. Gupta and S. Saurabh, “On-chip Unsupervised Learning using STDP in

a Spiking Neural Network,” in IEEE Transactions on Nanotechnology, vol.

22, pp. 365-376, 2023, doi: 10.1109/TNANO.2023.3293011.

3. A. Gupta and S. Saurabh, “Implementing a Ternary Inverter Using Dual-

Pocket Tunnel Field-Effect Transistors,” in IEEE Transactions on Electron

Devices, vol. 68, no. 10, pp. 5305-5310, Oct. 2021, doi: 10.1109/TED.2021.3106618.

4. A. Gupta and S. Saurabh, “Novel attributes of a dual pocket tunnel field-

effect transistor,” in Japanese Journal of Applied Physics, vol. 61, no. 3, p.

035001, 2022. doi: 10.35848/1347-4065/ac3722.

5. A. Gupta and S. Saurabh, “Unsupervised Learning in a Ternary SNN

Using STDP," in IEEE Journal of the Electron Devices Society, vol. 12, pp.

211-220, 2024, doi: 10.1109/JEDS.2024.3366199

1.5 Organization

The rest of the thesis is organized as follows.

• Chapter 2 presents the background and related work of this dissertation.
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Initially, a brief overview of neural networks is presented. Later, the current

state-of-the-art is reviewed to implement an SNN.

• Chapter 3 presents an energy-efficient LIF neuron. The proposed neuron

can directly accept voltage spikes as input and prevents energy dissipation

in generating a summed potential.

• Chapter 4 presents an energy-efficient Ge-based device that implements

on-chip unsupervised learning in an SNN using STDP. The proposed de-

vice configuration consists of a dual pocket FD-SOI MOSFET with dual

asymmetric gates. A pair of these devices can be employed to generate

a current that is exponentially dependent on the temporal correlation of

spiking events between the pre-synaptic and the post-synaptic neuronal

layers. This generated current modulates the conductance of the synapse in

accordance with the STDP learning rule.

• Chapter 5 presents a ternary SNN. In the proposed implementation, a ternary

spiking neuron has been implemented using a Dual-Pocket Tunnel Field

Effect Transistor (DP-TFET). The network is trained in an unsupervised

manner using STDP. The ternary SNN was trained to classify handwritten

digits in the MNIST dataset.

• Chapter 6 concludes the dissertation and discusses the possible future re-

search directions.
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Chapter 2

Background and Related Work

In this chapter, the first part provides a brief overview of neural networks. The

second part of this chapter reviews the current state-of-the-art in building an

SNN.

2.1 Introduction to Neural Networks

A neural network is essentially a network of neurons interconnected via synapses

designed for some information-processing task. The synapse stores the weight

of the interconnection between two neurons. Fig. 2.1 shows a simple feed-

forward neural network. It consists of an input layer, one or more hidden

layers, and an output layer. The input layer of neurons receives stimuli from the

external environment. The hidden layers of neurons process that information

received from the input layer in a meaningful manner, and finally, the output

layer generates suitable output stimuli. There can be different configurations

of neural networks other than the feed-forward connection, as shown in Fig.
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2.1. These are recurrent (connections between neurons in the same layer) or

backward propagation (feedback connection) [6, 7].

Figure 2.1: A simple feed-forward neural network

Training a neural network involves modulating the weights stored in the

synapses such that the network gives the correct output for a given input. The

neural network can be trained in a supervised or unsupervised manner. In

supervised training, for each input pattern, the desired output is available. A loss

function compares the output generated by the network with the desired output.

This loss function is then utilized to modulate the weights of the synapses with

the goal of minimizing this loss function. In unsupervised training, the desired

output for a given input is not available with the network. The network must

adjust its weights accordingly to generate the correct output for a given input

pattern. Now that we have a brief understanding of what a neural network is, it

will be beneficial to discuss the types of neural networks.
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2.1.1 Biological Neural Network

A biological neural network consists of a vast network of biological neurons,

which form the fundamental unit of our brain and nervous system. Sensory

neurons receive information from the external environment, which is then pro-

cessed in our brain, and finally, the motor neurons direct our muscles to take the

appropriate action. Fig. 2.2 shows the structure of the neuron [8].

Figure 2.2: The biological neuron [8]

The biological neuron comprises the soma (cell body), dendrites, and axon.

A gap between two neurons is called a synapse. The dendrites receive the inputs

due to spiking activity in the pre-synaptic neurons. The membrane potential

of the neuron is stored in the soma. Spiking activity in the neighborhood of a

particular neuron results in an increment in the membrane potential. When it

exceeds a threshold, the neuron outputs an electrical spike, which transfers along

the length of the axon. The nerve endings present at the end of the axon convert

the electrical impulse into a chemical signal in the form of neurotransmitters.

This neurotransmitter is sensed by the dendrite of a post-synaptic neuron, which
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results in a change in the membrane potential of the post-synaptic neuron.

2.1.2 Artificial Neural Network

Artificial Neural Networks (ANNs) aim to model the functionality of the bio-

logical neural network with the help of artificial neurons and synapses. Maass

classified the ANN models into three generations on the basis of their computa-

tional units, i.e., neurons and synapses [9].

The first generation of neural networks consists of a network of artificial

neurons called perceptrons. The perceptron comprises two sections: sum and

threshold, as shown in Fig. 2.3. The sum section is connected with the preceding

layer of perceptrons via synapses. Boolean output from the perceptrons is

weighted by the weights (w1, ...wN ) stored in the synapses, and a thresholding

operation is performed on the result of the sum. If the sum is greater than the

threshold, the state of the perceptron is active (output = 1). Otherwise, the

perceptron is inactive (output = 0). The first generation of neural networks

can also be trained by adjusting the weights of the synapses. The weights

can be updated in accordance with some learning rule such that for a given

input the network generates the desired output. Training the first generation

of neural networks having one or more hidden layers in a supervised manner

was infeasible because it required the output generated by the perceptron to

be continuous in nature. However, the outputs generated by the perceptron

are discontinuous. It was not feasible to compute the derivative of the loss

function and back-propagate the error to modulate the weights of the synapses.
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Unsupervised training employing some form of Hebbian learning rule, which

stated that “neurons that fire together, wire together," was much more suited to

train the perceptron.

Figure 2.3: The first generation of ANNs, as categorized by Maass, comprising a network of
artificial neurons, called perceptrons [9].

The second generation of neural networks comprises the perceptron, as in

the first generation of neural networks. However, the thresholding function

used in the first generation of neural networks was replaced with an activation

function, which mapped the input to a continuous output y ∈ [0, 1]. Thus,

the state of the neuron no longer represented whether the neuron fired or not,

but rather represented a probability of firing. The second generation of ANNs,

as categorized by Maass, is shown in Fig. 2.4. Since, the neuron now had a

continuous nature of the output, training the network in a supervised manner

using algorithms such as gradient descent was feasible. It garnered a lot of

success in recent times.

The third generation of neural networks, as categorized by Maass, comprising

spiking neurons as the computational units are shown in Fig. 2.5. The transition

from the discontinuous spike outputs in the first generation of neural networks to
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Figure 2.4: The second generation of ANNs, as categorized by Maass, comprised a network of
artificial neurons with an activation function, which mapped the input to a continuous output.

continuous spike outputs in the second generation of neural networks resulted in

the development of supervised training algorithms like gradient descent, which

led to a lot of success in the fields of ML, AI, and deep learning. However,

the power consumed in training these networks became prohibitively large and

presented a need to develop energy-efficient models of neurons, which could be

used to train the network in an energy-efficient manner. The spiking neuron had

a discontinuous output, similar to that in the first generation of artificial neurons,

but had a notion of time built into it, in the form of the membrane potential of the

neuron changing over time. When the membrane potential crosses a particular

threshold, the neuron outputs a discrete spike, and subsequently, its membrane

potential is reset. Thus, the output of the spiking neuron will be in the form of a

spike train. The information can be encoded by the temporal firing event of a

neuron. The third generation of artificial neural networks, comprising spiking

neurons, is popularly known as the Spiking Neural Network (SNN).
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Figure 2.5: The third generation of ANNs, as categorized by Maass, comprising spiking neurons,
is popularly known as the Spiking Neural Network (SNN).

2.2 Spiking Neural Network

The two fundamental building blocks in an SNN are neurons and synapses.

In this section, we study how spiking neurons and synapses are modeled in

literature. Next, we will study how these spiking neurons can be interconnected

using synapses in an energy-efficient manner. Further, we will look at some

techniques that can be used to train the SNN by modulating the weights stored

in the synapses for a particular application.

2.2.1 Modeling Spiking Neurons

The biological neuron is widely modeled in literature, ranging from biologically

plausible to those inspired by biology having simpler computational models. The

latter models are inspired by ANN models rather than by biological brains. The

spiking neuron models can be divided into the following three broad categories:

• Biologically plausible: Models the behavior observed in the biological

neuron.
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• Biologically inspired: Aims to mimic the behavior of the biological neuron,

but not necessarily in a way that is consistent with biology.

• Integrate-and-fire: A simpler implementation of biologically-inspired neu-

rons.

1. Biologically plausible: The Hodgkin-Huxley neuron model is the most

popular biologically plausible model [10]. It is a highly complex neuron

model comprising four-dimensional non-linear differential equations used

to describe the ion transfer dynamics of the neuron. The Hodgkin-Huxley

neurons have been widely used in neuromorphic implementations that at-

tempt to model biological neural systems due to their biological plausibility

accurately.

2. Biologically inspired: The biologically inspired neuron models aim to model

the behavior of the biological neuron rather than emulating the physiological

activity in the biological nervous systems. The computational complexity

of these models is much less than that of biologically plausible models. The

Izhikevich neuron model is popular in neuromorphic literature due to its

simpler implementation and biologically realistic behavior [11].

3. Integrate-and-fire: The integrate-and-fire (IF) neuron models have lesser

computational complexity than their biologically inspired counterparts.

These are less biologically realistic but are easier to implement in hard-

ware [12]. The simplest IF neuron model integrates incoming spikes from

the pre-synaptic layer onto its membrane potential. In the absence of in-
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coming spikes, the membrane potential does not decay with time. When the

membrane potential exceeds a certain threshold the neuron fires and then

resets its membrane potential. The Leaky Integrate and Fire (LIF) neuron

model introduces a leaky term where the membrane potential decays with

time. The LIF model is one of the most popular models in neuromorphic

systems [13].

The appropriate model to choose from the three broad categories of spiking

neurons discussed above can vary from application to application. For example,

suppose it is desired to simulate the biological brain to study neuroscience. In that

case, a biologically plausible neuron model can be chosen since it would emulate

the behavior of the biological brain realistically. However, if it is required to train

an ML model for image classification, then a biologically inspired model or an IF

spiking neuron model with a simpler hardware implementation may be used. In

this work, our main focus is to implement an energy-efficient SNN, which can be

used to train an ML model in hardware. Hence, the neuron models used in this

work belong to the IF family. In particular, we will focus on the energy-efficient

hardware implementation of a LIF model due to its computational simplicity and

biological realism.

Several hardware implementations of the LIF neuron exist in the literature

[14–21]. In [15], a CMOS-based implementation of the LIF neuron is proposed,

which comprises about 20 transistors to realize a single neuron. Considering the

highly dense and power-efficiency requirements of the neuromorphic system,
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such an implementation is infeasible in terms of area and power consumption.

In [16–18], a Partially-Depleted Silicon on Insulator (PD-SOI) based MOSFET

was used to implement the LIF neuron. The device used to implement the LIF

neuron in [16] is as shown in Fig. 2.6(a) with the biasing scheme shown in Fig.

2.6(b).

Figure 2.6: Impact Ionization based neuron [16]

Device operation can be explained using the following four phases [16].

During the equilibrium phase, the voltage applied on the drain (VDG) and source

(VSG) terminals are 0V . The electrons present at the source do not have sufficient

energy to surmount the energy barrier and reach the drain. Hence, no current

flows through the device. During the leaky integration phase, a large voltage

(VDG = 2.8V ) is applied to cause Impact Ionization (II) in the device. Now,

at VSG = 0V , some current due to the thermionic emission of carriers flows

through the device, but it is not sufficient to generate enough excess carriers

required for the neuron to spike. Due to the spiking activity of neurons in the
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pre-synaptic layer, a negative voltage appears at the source, i.e., VSG < 0V . A

negative VSG results in decreasing the height of the potential barrier and results

in an exponential increase in the number of electrons reaching the drain. This

causes an exponential increase in the generation of excess carriers in the device

due to II and results in the storage of holes in the potential well formed in the

channel. At the same time, some of the accumulated holes leak through the

source barrier. Due to the accumulation of charge in the channel region, the

potential barrier seen by the electrons present in the source reduces, causing

more II in the device. This results in positive feedback in the device, and there

is a sharp increase in current through the device. At steady state, the rate of

accumulation of holes becomes equal to the rate of leakage of holes through

the source barrier. The current flowing at steady state is called the threshold

current. When this state is reached, the neuron is said to have fired. The neuron

is then reset by triggering a reset circuitry, which removes the voltage applied

to the drain. This causes the accumulated holes in the channel to leak away

through the source and drain barriers, and eventually, the equilibrium condition

is reached. After a fixed period, called the refractory period, the entire process

can be repeated.

The PD-SOI-based implementation of the LIF neuron used Impact Ionization

(II) to generate excess carriers and required a large voltage to be applied at

the drain to cause II in the device, making it inefficient in terms of energy

consumption. Moreover, II is not an efficient method to generate excess carriers,

i.e., electron-hole pairs (EHP) in the device. It requires imparting high kinetic
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energy to the carriers using a high electric field, and only 0.1% of the drain

current is responsible for the generation of EHPs [20]. Hence, voltage spikes,

which go away after a short duration of time, cannot lead to an efficient generation

of EHP. Thus, a summing circuitry, as shown in Fig. 2.7, comprising an op-amp

and a capacitor, is required to sum up the currents received in the form of spikes

from the pre-synaptic neuronal layer to generate a fixed voltage, which is then

applied to a terminal (source terminal in ref. [16]) of the device. The capacitor

keeps charging continuously with incoming spikes and discharges if there is no

spiking activity, thereby dissipating significant power. Considering the highly

dense architecture of an SNN, this implementation has a considerable overhead

in terms of area and energy dissipation. The assumption of this summing

circuitry is not accounted for in the energy consumption per spike reported in

these studies [16–18]. Using SPICE simulations, we show that charging and

discharging of the capacitor leads to about 10-50% overhead in terms of energy

consumption. Hence, we cannot ignore this component of power dissipation.

Additionally, the reset circuitry also consumes significant power due to the

requirement of using a large drain voltage to cause II in the device. Das et al.

reported an II-based energy-efficient NIPIN diode-based LIF neuron, which

did not require a large voltage for its operation [19]. However, it required the

fabrication of a thin P+ pocket in the channel, making it difficult to fabricate.

LIF neurons which operate on the principle of Band to Band Tunneling

(BTBT), as proposed in [20, 21], can offer a higher energy efficiency when

compared to II-based neurons because BTBT-based LIF neurons can operate
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Figure 2.7: Summing circuitry used to generate a fixed potential, which is then applied to the
subsequent neuron [16–18].

at smaller supply voltages and can spike at much smaller currents compared

to II-based neurons. A Si-based PD-SOI MOSFET was used to implement the

LIF neuron in [20]. The gate terminal is grounded and is used as the reference

terminal. The source is kept at a small positive value (VSG = 0.4V ) to bias

the device in deep OFF-state and reduce leakage. The input, in the form of

accumulated potential from pre-synaptic neurons, is applied to the drain terminal

(VDG = Vinput), and the voltage output is taken from the body terminal (VBG).

When the accumulated potential is of the order (VDG ∼ 1V ), the minority

electrons in the body tunnel into the drain, leaving behind holes in the floating

body, resulting in an increase in body potential. A fraction of these accumulated

holes leak through the source barrier. Due to the storage of holes in the body,

the potential barrier seen by the electrons in the source decreases, resulting in

an increase in the leakage of holes through the source barrier. At steady state,
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the rate of accumulation of holes equals the rate of leakage of holes. The body

potential, at steady state, is called the threshold potential. When the steady state

is reached, the neuron fires and subsequently resets by connecting the device’s

body terminal to the ground. This results in the removal of the stored holes. The

larger the accumulated potential at the drain, the larger the BTBT generation rate

will be, resulting in a higher spiking frequency.

In this work, a Ge-based PD-SOI MOSFET employing BTBT has been

proposed to implement the LIF neuron. BTBT current in a Ge-based device

that has a smaller bandgap and dominant direct tunneling mechanism [5] can

easily generate EHP in contrast to Si-based devices that utilize II or BTBT. Thus,

even if voltage spikes are used as input, EHP are generated efficiently in the

proposed neuron. Hence, we can directly apply the spikes to the neuron and at

lower voltages, thus saving power dissipated in both the neuron and the summing

circuitry.

2.2.2 Modeling the Synapse

Two neurons are interconnected via a synapse. We can classify the synapse

models into two broad categories: biologically plausible and those inspired by

biology. The biologically plausible synapse models aim to replicate the chemical

interactions of biological synapses, such as the ion pumps or neurotransmitter

interactions [22–24]. The synapse used in an SNN stores the weights of the

interconnection between two neurons. Since the synapse is the most repeated

element in an SNN, it is paramount that its implementation in hardware is area
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and energy-efficient.

Synaptic plasticity refers to the ability of the synapse to modulate its weight

over time and thus effectuate learning. Algorithms such as gradient descent

cannot be used to train an SNN because taking a derivative of discrete action

potentials is not feasible. We can train an SNN using Spike Timing Dependent

Plasticity (STDP) by following the Hebbian form of learning [25], which states

that “neurons that fire together wire together." This essentially means that if a

pre (post) synaptic neuron spiking event is followed by the spiking event on

the post (pre) synaptic neuron, the relationship is considered to be causal (anti-

causal), and the strength of the synapse is increased (decreased). This increase

(decrease) in the synapse’s strength depends exponentially on the temporal

correlation between the two layers of spiking neurons, in accordance with the

STDP learning rule.

There are several implementations of the artificial synapse in hardware.

In [26], the synaptic weight is stored in an 8-T Static Random Access Memory

(SRAM) with a precision of 4 bits. This implementation required 32 transistors

per synaptic element and was inefficient in terms of area and energy consumption.

Moreover, the stored weight is lost when the SRAM is powered off. Artificial

synapses based on emerging memory technologies are promising from the per-

spective of the area and energy-efficient hardware implementation. A synapse

has been modeled in the literature using Non-Volatile Memories (NVM) like

memristors [27–30], floating gate transistors [31], Phase Change Memories

(PCM) [32], Ferroelectric RAM (FeRAM) [33], spintronic devices [34–36], etc.
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A memory resistor or memristor is perhaps the most ubiquitous device-

level component in neuromorphic systems. The conductance of the memristor

(GRRAM ) can be incrementally modified by controlling the current through it.

In [27], a one-transistor/one-resistor (1T1R) Resistive Random access Memory

(RRAM) is proposed to implement a binary synapse. A binary synapse has

only two states - a low resistance state (LRS) and a high resistance state (HRS).

The RRAM device consists of a Si-doped HfO2 layer sandwiched between

a TiN bottom electrode (BE) and a Ti top electrode (TE). A positive voltage

(Vset ∼ 1.5V ) at the TE with respect to the BE results in the set transition where

the device switches from the HRS to the LRS. Application of a negative voltage

(Vreset ∼ −1V ) at the TE with respect to the BE results in the reset transition

where the device switches from the LRS to the HRS. Both the set and reset

mechanisms are abrupt, resulting in a binary synapse. A pre-synaptic neuron

firing event (Vspike) results in the generation of a current (I = GRRAM × Vspike),

which is added at the post-synaptic neuron and results in an increment in its

internal potential. The 1T1R structure, as proposed in [27] is shown in Fig. 2.8.

The PRE spike voltage is applied to the gate of the transistor (VG). The POST

spike controls the TE voltage and is set to a low constant voltage (VTE = 20mV )

called the communication voltage by default. Every PRE spike activates the

transistor and results in a current flow, which varies inversely with the resistance

of the RRAM device. This current is collected by the POST neuron, which also

collects currents from other synapses. Every POST neuron spike not only results

in a voltage spike but also generates a VTE signal, as shown in Fig. 2.8. The
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Figure 2.8: The 1T1R synapse structure proposed in [27]

signal VTE has two phases after a POST spike, the first phase with VTE+ = 2.5V

for a duration of 1 ms followed by 0V for 9 ms and the second phase with

VTE− = −1.6V for a duration of 1 ms followed by 0V for 9 ms. After the two

phases have elapsed, VTE is set to the communication voltage of 20 mV. The PRE

spike corresponds to the first phase of the voltage of 2.1V for a time duration of

10 ms and a second phase of voltage 0V for 10 ms. When the first phase of the

PRE spike overlaps with the first phase of VTE (i.e., VTE+), the RRAM device

undergoes the set transition (or potentiation). However, when the first phase of

the PRE spike overlaps with the second phase of VTE (i.e., VTE−), the RRAM

device undergoes the reset transition (or depression). Thus, the abrupt set/reset

transitions in the RRAM result in bistable STDP, which contrasts with gradual

weight tuning in biological STDP.

In [28], a memristor-based synapse was proposed and STDP was demon-

strated using CMOS circuits. The temporal correlation between spiking events is
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translated into pulse width with the help of CMOS transistors, which is applied

to the memristive synapse. A larger pulse width results in a larger increase or

decrease in conductance depending on the polarity of the applied voltage to the

memristor, resulting in synaptic plasticity.

A floating gate transistor is used to implement a synaptic element that stores

the weight in a non-volatile manner [31]. The synapse’s strength can be mod-

ulated based on the temporal correlation of spiking events between the pre-

and post-synaptic neurons in accordance with the STDP learning rule. If the

post-synaptic neuron firing event follows the pre-synaptic neuron firing event,

electrons are added to the floating gate via Hot Carrier Injection (HCI) mech-

anism, increasing the weight of the synapse. However, when the pre-synaptic

firing event follows the post-synaptic firing event, electrons are removed from

the floating gate via the Fowler-Nordheim (FN) tunneling mechanism, decreas-

ing the weight of the synapse. A pre-synaptic computation block is required

per pre-neuron, which generates a triangular waveform after every pre-synaptic

neuron spike. All the post-neurons share this computation block. Large voltages

(∼ 15V )are required to cause FN tunneling in the device, which is energy-

inefficient. Also, the circuitry operates at a timescale of a few ms, resulting in a

higher latency to modulate the weight of the synapse.

A phase-change memory (PCM) is utilized to emulate biological synapses

[32]. A phase change material exhibits switching between its amorphous (high

resistance) and crystalline (low resistance) states by application of voltage pulses,

which generate the heat required for the material to transform its phase. GST
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(Ge2Sb2Te5) is used as the phase-change material, which is sandwiched between

the bottom electrode (W) and top electrode (TiN). Switching from the High

Resistance State (HRS) to the Low Resistance State (LRS) is called set, while

switching from the LRS to HRS is called reset. The GST layer is polycrystalline

with a resistance of about 500Ω in the fully set state and amorphous with a

resistance of about 2MΩ in the fully reset state. Intermediate resistance states

can be programmed between the fully set and reset states, in line with the analog

nature of biological synapses. A pre-spike, in the form of a pulse train, is applied

to the top electrode of the PCM synapse, and a post-spike, also in the form of

a spike train, is applied to the bottom electrode. STDP is used as the learning

mechanism to modulate the resistance of the PCM synapse. An energy of about

50pJ is required per synaptic update during the reset phase, and the circuitry

operates at a timescale of a few ms, resulting in a higher latency to modulate the

weight of the synapse.

A Ferroelectric-gate Field effect transistor (FeFET) is used to demonstrate

a synaptic element [33]. The FeFET comprises a ZnO/Pb(Zr, T i)O3 (PZT)

structure where the conductance of the device can be switched by changing

the polarization of the ferroelectric layer by applying the appropriate voltage

on the gate. The time difference of spiking activity between the pre- and post-

synaptic neuron is translated into a pulse height of a fixed width. A positive pulse

is generated if the post-synaptic neuron firing event follows the pre-synaptic

neuron firing event. However, if the pre-synaptic neuron firing event follows

the post-synaptic neuron firing event, a negative pulse is generated. The larger
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the temporal correlation of spiking events between the pre- and post-synaptic

neurons, the larger the height of the voltage pulse generated. This voltage

pulse is applied to the gate of FeFET and results in a change in polarization

of the ferroelectric layer. Thus, the device’s conductance is modulated per

the STDP learning rule. The FeFET-based synapse is a three-terminal device

that simultaneously supports signal processing and learning, unlike resistive

switching devices (2 terminal devices), where learning can only be performed

when signal transmission between neurons is aborted. The STDP circuitry

operates at a timescale of a few µs, offering a lower latency than floating-gate or

PCM-based synapse implementations.

In [34], a Magnetic Tunnel Junction (MTJ) Heavy Metal (HM) based binary

stochastic synapse is proposed. In a binary synapse, potentiation (depression)

would result in the maximum (minimum) conductance states of the synapse.

However, in a binary stochastic synapse, synaptic plasticity is achieved by

stochastically switching the conductance of the MTJ-HM synapse between their

high and low conductance states. The conductance state of the MTJ stochastically

switches in the presence of the thermal noise with a finite probability, which

depends on the temporal correlation of spiking events between the pre- and

post-synaptic spiking activity in accordance with the STDP learning rule. Thus,

the higher the temporal correlation in spiking events, the higher the switching

probability. A stochastic binary synapse can be considered equivalent to its

analog counterparts and results in gradual weight tuning as in biological STDP.

The MTJ-based binary stochastic synapse and CMOS-based circuitry used to
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implement synaptic plasticity using STDP as proposed in [34] is shown in Fig.

2.9.

Figure 2.9: The MTJ-based binary stochastic synapse

The MTJ shown in Fig. 2.9 consists of a free Ferromagnetic (FM) layer

(whose magnetization can be varied) and a pinned FM layer (whose magnetiza-

tion is fixed) separated by a tunneling oxide barrier (MgO). The MTJ exhibits

two stable conductance states depending on the orientation of the free FM layer

with respect to the pinned FM layer. It is said to be in the high (low) conductance

state if the magnetization of the free FM layer is parallel (anti-parallel) with

respect to the pinned FM layer. The magnetization of the free FM layer can be

varied by passing a current through the Heavy metal (HM) layer beneath the

free FM layer. A CMOS-based circuitry is used to generate the current, whose

magnitude depends on the temporal correlation of spiking events in the pre- and

post-synaptic neurons.

In [35], a Ferromagnetic-Domain Wall (FM-DW) synapse is proposed wherein
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the conductance of the synapse varies continuously in an analog manner between

the minimum and maximum values. The synaptic element, comprising an MTJ

with an HM underlayer, is shown in Fig. 2.10. The MTJ consists of a free FM

(CoFe) layer (whose magnetization can be varied) and a pinned FM layer (whose

magnetization is fixed) separated by a tunneling oxide barrier (MgO). A DW

separates two oppositely polarised magnetic regions in the free FM layer. A

programming current flowing through the HM layer (between terminal T2 and

T3) results in the movement of the DW in the free FM layer in the direction of

the current flow. At the extreme ends of the free FM layer, two pinned FM layers

with opposite directions of magnetization exist to stabilize the DW for sufficiently

large magnitudes of current flowing through the HM layer. A displacement in

the position of the DW results in a change in the conductance of the FM-DW

synapse. The FM-DW synapse has decoupled read and program paths wherein

learning and spike transmission between neurons can occur simultaneously.

Figure 2.10: FM-DW synapse with decoupled read and program paths. The read current flows
between terminals T1 and T3 while the programming current flows between terminals T2 and T3.

Let us denote the conductance of the FM-DW synapse in the parallel (anti-
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parallel) configuration of magnetization of the free layer with respect to the fixed

FM layer to be GP (GAP ). The conductance of the synapse (GS), when the DW

is displaced by x along the length of the FM free layer, is given as follows [35]:

Gs(x) = GP (
x

L
) +GAP (1−

x

L
) (2.1)

where L denotes the length of the FM free layer in the MTJ. The parameters GP ,

L, and GAP are constants; hence, GS varies linearly with the position of the DW

in the FM free layer. It is to be noted that the maximum (minimum) value of

conductance is GP (GAP ), and their ratio is called Tunneling Magnetoresistance

Ratio (TMR).

The FM-DW synapse described above requires a programming current (in

the range of a few µA) to flow through the HM layer of the synapse for a short

duration of time (a few ns). Thus, the FM-DW synapse offers a better energy

efficiency (in fJ) and lower latency than synapse implementations with other

NVMs like memristive switching devices [27–30], floating gate transistors [31],

PCM [32], and FeFET [33]. Therefore, in this work, we have employed an

FM-DW-based device as a synaptic element.

While the FM-DW synapse can be programmed in the timescale of a few

ns, the CMOS-based circuitry necessary to generate a suitable programming

current operates at a timescale of a few µs. Thus, in the existing literature

[34–36], STDP is implemented with a higher latency (µs) than is supported

by the FM-DW synapse (ns). The CMOS-based circuitry used to generate the
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programming current is shown in Fig. 2.11. The following paragraph explains

the working of the same.

Figure 2.11: The CMOS-based circuitry used to generate a programming current in accordance
with the STDP learning rule as proposed in [34]

When a pre-synaptic neuron firing event is observed (VPRE), an external

capacitor (CPOT ), initially at a potential VRESET , starts to linearly charge towards

VDD via a PMOS transistor (MTPOT ) operating in the subthreshold regime. This

capacitor is connected to a PMOS transistor (MPOT ). Now, if a post-synaptic

neuron firing event is observed shortly after the pre-synaptic neuron firing event,

a programming current (order of few µA) flows through the synapse for a short

duration of time (1 ns), which modulates the conductance of the synapse. The

smaller the time difference between the spiking events in the pre- and post-

neuron, the smaller will be the potential at the gate of MPOT , and consequently,

a larger current will flow through the synapse. This will result in a larger

probability of switching the conductance of the synapse. If there is no post-

neuronal spiking activity, CPOT slowly charges to VDD (in a few µs) via a

subthreshold current (a few nA) and returns to its resting potential VRESET .

Since the spiking activity in the pre-synaptic neuronal layer is much higher than
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in the post-synaptic neuronal layer, every spiking activity at the pre-synaptic

neuron will not result in spiking activity in the post-synaptic neuron. Thus,

energy is expended in needlessly charging and discharging CPOT when there is

no need to modulate the conductance of the synapse (no post-neuron firing event

was observed). A similar problem exists in the CMOS-based implementation of

the STDP learning circuitry proposed in [35, 36] as well.

In this work, the STDP learning rule is implemented wherein such a CMOS-

based circuitry is not required, and there is no charging/discharging of external

capacitors. A programming current is generated only when it is required to

program the conductance of the synapse. Also, the proposed implementation

operates at a time frame of the order of a few nanoseconds (because no external

capacitor needs to be charged). It offers much lower latency when compared with

existing literature [34–36], which operates at the order of a few µs. Moreover,

the proposed implementation requires 2-3× fewer transistors to implement the

STDP learning rule compared to CMOS-based implementations [28, 29, 34–36].

2.2.3 Network Models

Network models describe the topology with which neurons are interconnected

via synapses and how spikes are transmitted along the network. The selection

of an appropriate network model depends on several factors. One of these

factors can be whether the target application involves biological inspiration or

the complexity of the chosen neuron and synapse models. Another factor can be

the applicability of the existing training algorithms to train the chosen network

32



model. The network models range from Spiking feed-forward networks [37–39],

Spiking Deep Neural Networks (DNN) [40–42], Spiking Recurrent networks

[43–45], Spiking Convolutional Neural Network (CNN) [46], Spiking Deep

Belief Networks (DBN) [47], Spiking Winner Take All (WTA) networks [48,49],

etc.

The Spiking feed-forward neural network is by far the most popular imple-

mentation of an SNN. It comprises multiple layers of neurons, where each neuron

in a layer is connected to neurons in the subsequent layer. Neurons in this type

of network do not form a cycle, i.e., no back connections exist. The information

in these types of networks always traverses forward, hence the name. As the

training progresses in a spiking feed-forward network, the weights stored in

the synapses get modulated with each forward pass of the input in accordance

with the training algorithm employed. A feed-forward SNN comprises an input

layer of neurons, an output layer of neurons, and one or more hidden layers of

neurons. When the number of hidden layers in an SNN becomes substantially

large, these are referred to as spiking DNNs. Recurrent Neural Networks (RNN),

unlike feed-forward networks, allow feedback between internal nodes in the

network, thereby forming cycles. Thus, it exhibits a dynamic temporal behavior,

causing the output from a previous time step to affect the input to the current

time step. RNNs are commonly employed for temporal problems, like Natural

Language Processing (NLP), speech recognition, etc. Fig. 2.12 shows a spiking

feed-forward and recurrent neural network.

Convolutional Neural Networks (CNNs) are widely used for image classifica-
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Figure 2.12: Spiking Feed-forward and recurrent neural network models

tion and computer vision applications. It leverages principles of linear algebra,

specifically matrix multiplication, to identify patterns within images. CNNs

comprise three main layers of neurons, viz., a convolutional layer, a max pooling

layer, and a fully connected layer of neurons. The convolutional layer is the main

building block of a CNN. In this layer, a dot product operation is performed

between the convolution kernel (of size n× n) and the input matrix. The kernel

is shifted, and the process is repeated until the kernel has swept across the entire

image. A feature map is obtained after convolving the entire image with the

kernel. This feature map is fed to one or more convolutional layers or to a max

pooling layer. In the max pooling layer, a filter sweeps across the entire feature

map and, during each stride, selects the maximum value as output, thereby

reducing the dimensions of the data. Finally, the fully-connected layer performs

the task of classification based on the features extracted through the previous

layers. A spiking CNN is shown in Fig. 2.13.

Winner-take-all (WTA) networks utilize recurrent inhibitory connections such
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Figure 2.13: A spiking Convolutional Neural network

that the spiking activity of all output neurons except one is inhibited, i.e., only one

output neuron can fire at a time. For example, in [49], a WTA SNN is proposed to

classify handwritten images in the MNIST dataset. The network comprised 784

input neurons, one corresponding to each pixel in the input image. Each neuron

in the input layer is fully connected to each of the 100 neurons in the excitatory

layer. The third layer comprises 100 inhibitory neurons, each connected to the

corresponding neuron in the excitatory layer. A spiking event at a neuron in

the excitatory layer results in a spiking event at the corresponding neuron in

the inhibitory layer. Each neuron in the inhibitory layer is connected to all the

neurons in the excitatory layer via inhibitory synapses, except the one it receives

a connection from. The weights of the inhibitory synapses are programmed such

that a spiking event at an inhibitory neuron inhibits all the excitatory neurons

except the excitatory neuron from which it receives a connection.

In hardware, a layer of pre-synaptic neurons can be efficiently connected to a

layer of post-synaptic neurons by following a crossbar architecture with synapses

present between neurons, as shown in Fig. 2.14. The crossbar architecture has

the advantage that currents due to spiking activity in the pre-neuronal layer can
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be weighted by the conductance stored in the synapse and then added at each

post-neuron. This essentially means that memory (weight stored in synapse)

and compute (multiply and accumulate) are collocated. In a traditional von-

Neumann-based architecture, during each training cycle, weights would have to

be fetched from memory, then updated by the processor, and finally stored back

in memory, resulting not only in performance bottlenecks but also in additional

power consumption. Thus, the crossbar architecture allows us to implement an

SNN in an energy-efficient manner.

Figure 2.14: A crossbar architecture that can be employed to efficiently connect a layer of
pre-synaptic neurons to a layer of post-synaptic neurons [35].

2.2.4 Learning Algorithms

The algorithms employed to train the SNN are broadly classified into two cat-

egories - supervised and unsupervised. The choice of a suitable algorithm to
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train an SNN depends on the chosen models for neurons and synapses and the

network topology employed. Another issue that dictates the choice of an algo-

rithm is whether the training is performed on-line in an unsupervised manner

(training necessarily on-chip), whether off-chip supervised training is necessary,

or whether a combination of the two is necessary.

2.2.4.1 Supervised Learning

Supervised learning is the most popular learning methodology in Deep Artificial

Neural Networks (ANNs). The most common supervised learning algorithm is

that of the gradient descent where the Root Mean Square (RMS) error (calculated

from the desired response and the observed response for a particular input

pattern) is backpropagated all the way from the output layer to the input layer

[50]. The weights of the connections are adjusted such that the RMS error is

minimized. Thus, with each forward pass of the network, a backward pass is

performed, which adjusts the weights of the connections such that the difference

between the desired response and the observed response for a given input is

minimized. This requires the computation of the gradient of the RMS error

with respect to the weight of the connection. The backpropagation algorithm

can be implemented in ANNs since the activation functions (Sigmoid, ReLU,

etc.) employed are continuous and thus differentiable in nature. However, in an

SNN, the computation of the gradient is not feasible since the output of a spiking

neuron is a discrete action potential and not a continuous function, as in the case

of an ANN. A summary of the supervised training algorithm used to train an
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ANN is shown in Fig. 2.15.

Figure 2.15: A summary of the supervised training algorithm used to train an ANN

There have been several approaches in the literature that involve training

a traditional ANN and devising conversion algorithms that translate the ANN

weights to equivalent spiking counterparts [13, 51, 52]. For example, in [13], a

softened rate model is proposed where the hard threshold response of an LIF

neuron is substituted with a continuous differentiable function to make it suitable

for use in backpropagation. Subsequently, they trained the ANN with the rate

model and transformed it into an SNN made up of LIF neurons. In all these prior

conversion-based algorithms, the training is performed using continuous signals,

which do not imbibe the temporal information embedded in spikes.

2.2.4.2 Unsupervised Learning

Due to the non-differentiable nature of the discrete action potentials in spiking

neurons, the gradient-descent-based supervised learning techniques involving

backpropagation cannot be employed to train SNNs. Hence, unsupervised
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learning is the most popular learning rule in SNNs. Some early neuromorphic

implementations of unsupervised learning involved some form of Hebbian learn-

ing rule and its derivatives. The Hebbian learning rule states that “neurons that

fire together, wire together." This rule means that if a pre-synaptic neuron firing

event results in a firing event at the post-synaptic neuron, then the strength of the

connection between them should be increased because the relationship between

firing events was causal. However, if the firing event at the pre-synaptic neuron

follows the post-synaptic neuron firing event, the strength of the connection

between them should be decreased because the relationship between firing events

was anti-causal. Spike Timing Dependent Plasticity (STDP), the most widely

used on-line unsupervised learning mechanism in neuromorphic systems, has

recently become prominent [53, 55]. The STDP learning rule states that the

change in the synapse’s strength depends exponentially on the temporal correla-

tion of spiking events between the pre- and post-synaptic neurons, as shown in

Fig. 2.16.

Figure 2.16: STDP [53]
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If the pre (post)-synaptic neuron firing event is followed by the firing event at

the post (pre)-synaptic neuron, the strength of the synapse connecting the two is

increased (decreased). The smaller the time difference between spiking events,

the larger the change in the synapse’s strength.

In this work, the SNN is trained on-line in an unsupervised manner using the

STDP learning rule. Training the network using the STDP learning rule is more

biologically plausible than conversion-based supervised learning rules, which do

not imbibe the temporal information embedded in discrete spikes.
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Chapter 3

An Energy-efficient Leaky Integrate and

Fire Neuron

An energy-efficient Ge-based Leaky Integrate and Fire (LIF) neuron is proposed

in this chapter, and its analysis is conducted using a well-calibrated 2D simula-

tion model. Direct reception of incoming voltage spikes by the proposed neuron

prevents energy dissipation in generating a summed potential. This process

involves the accumulation of holes in the channel due to the incoming voltage

spikes, resulting in the reduction of the potential barrier and a subsequent in-

crease in current. When the current reaches a predefined threshold, a firing, and

subsequent reset circuitry are activated. The device’s operation at a lower voltage

level is facilitated by the smaller bandgap and the dominant direct tunneling of

Ge. The energy consumed per spike in the proposed implementation amounts to

0.07fJ, a value lower than that of LIF neuron implementations (experimental or

simulated) documented in the existing literature. Moreover, the power consumed

by the reset circuitry can be decreased due to the lower drain voltage requirement
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of the proposed device. The work done in this chapter is published in [54].

3.1 Device Structure and Simulation Model

Fig. 3.1 depicts the schematic cross-sectional view of the device employed to

realize a LIF neuron. The gate oxide utilized in this study is SiO2. Additional

crucial parameters of the device are listed in Tab. 3.1.

Figure 3.1: Structure of the proposed LIF neuron.

Table 3.1: Device Parameters of the proposed LIF neuron

Device Parameter Symbol Value
Drain Voltage (V ) VD 0.35(Ge)/0.85(Si)

Source Voltage (V ) VS 0.3
Substrate Voltage (V ) Vsub 0
Channel Length (nm) LC 50

Gate Oxide thickness (nm) tox 3
Buried Oxide thickness (nm) tBOX 20

Channel thickness (nm) tB 20
Gate workfunction (eV ) ϕm 4.6(Ge)/4.8(Si)

Channel Doping (p-type) (cm−3) NC 1× 1017

Source Doping (n-type) (cm−3) NS 1× 1020

Drain Doping (n-type) (cm−3) ND 1× 1020

The simulations were carried out using Synopsys Sentaurus, version N-
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2020.09-SP2 [56]. Germanium, due to its smaller bandgap and a dominant

direct tunneling mechanism compared to Silicon, is used as a base material in

this work [5]. This results in a larger BTBT generation rate. Thus, the LIF

neuron can be operated at a smaller supply voltage and has the potential to

deliver higher energy efficiency compared to Si-based devices. However, there

are certain drawbacks associated with using Ge over Si. It has a higher leakage

current, and the absence of a high-quality native oxide in Ge makes Si the go-to

choice for designers [57]. However, due to the advent of high-k dielectrics,

the interface between Ge and the dielectric is of high quality and free from

defects. To suppress high leakage currents due to a lower bandgap of Ge, SiGe

homojunction [58] or a Ge source heterojunction [59] may be employed to curb

leakage, but they have a lower BTBT generation rate than pure Ge. Furthermore,

Ge has a lower thermal stability compared to Si and, thus, cannot be operated

at high temperatures. Since the device shall be employed in an energy-efficient

SNN, the heat dissipated in the network is expected to be small. However, the

application of such a device in an environment with high ambient temperature

should be avoided, and in such conditions, SiGe can be the material of choice.

The non-local BTBT model, employing fitting parameters from [5], was em-

ployed for simulations. The proposed device, a Ge-based PD-SOI MOSFET,

utilizes BTBT as the mechanism for charge (hole) storage within the floating

body of the device. Consequently, calibration of the BTBT parameters utilized in

the non-local BTBT model was necessary. This calibration process involved sim-

ulating a Ge-based TFET (illustrated in the inset of Fig. 3.2) while concurrently
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considering direct and indirect tunneling parameters, as suggested in ref. [5].

The comparison between simulation outcomes and the published results for the

Ge-based device in ref. [5] is presented in Fig. 3.2.

Figure 3.2: Comparison of the results produced by the simulation model and published results
for the Ge device in ref. [5]. The device structure used in our simulation and ref. [5] is shown in
the inset.

A close agreement between these results serves as a confirmation of the

appropriateness of the calibrated BTBT model. Shockley-Read-Hall (SRH)

recombination model has been accounted for. Additionally, the Slotboom Band-

Gap Narrowing (BGN) model has been incorporated to accommodate the impact

of highly doped source and pocket regions. Moreover, a concentration-dependent

Philips unified mobility model has been activated. Tunneling through the gate

oxide has been neglected [60, 61].
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3.2 LIF neuron characteristics

The operational principle of the LIF neuron is explained in this section. Fig. 3.3

provides comprehensive band diagrams along the cutline AA’, presenting the

carrier movement within the device during distinct operational phases: leaky

integration, firing, and reset. At equilibrium, when no voltages are applied, the

band diagram of the device is depicted in Fig. 3.3(a). A constant voltage of 0.3

V is applied at the source to create a potential barrier for electrons at the source

and prevent them from reaching the drain. Moreover, a voltage of 0.35 V is

applied at the drain to facilitate leaky integration (Fig. 3.3(b)). This arrangement

ensures minimal BTBT at the drain-channel interface in the absence of any

incoming spike. Throughout the integration phase, constant voltages are applied

at the drain and source terminals. The occurrence of an incoming spike from

the pre-neuronal layer (-0.7V and 1ns duration) at the gate triggers BTBT at

both the drain-channel and source-channel interfaces (illustrated in Fig. 3.3(c)).

This BTBT process leads to the creation of vacancies (holes) in the channel as

electrons undergo BTBT, consequently inducing the generation of electron-hole

pairs (EHP) [56].

For demonstration purposes, the spikes are presented in a deterministic pattern

with arrivals every few nanoseconds at the gate. In practical scenarios, however,

the spikes are expected to arrive randomly. Fig. 3.3(d) illustrates the evolution

of the band diagram with time in response to incoming spikes. The 2D contour

depicting hole density (cm−3) within the device illustrates the accumulation

45



Figure 3.3: (a) LIF neuron band diagram at equilibrium, (b) LIF neuron band diagram with
biasing applied to enable the integration phase, (c) LIF neuron band diagram during application
of a voltage spike causing BTBT of electrons at the drain-channel and source-channel junctions
leaving behind vacancies (holes) in the channel, (d) Evolution of the LIF neuron band diagram
with incoming spikes and 2D contour of hole concentration (cm-3) demonstrating accumulation
of holes in the channel with the incoming spikes, and (e) LIF neuron band diagram after the
reset event demonstrating leakage of holes into the drain and source regions, thereby causing the
neuron to return to its equilibrium state.

of holes within the channel due to incoming spikes. This accumulation of

holes leads to a reduction in the potential barrier encountered by electrons at

the source, consequently yielding an increase in current. Simultaneously, the

accumulated holes in the channel leak into the source and drain regions due to

thermionic emission. In the absence of incoming spikes, leakage of accumulated

holes results in an increase in the potential barrier seen by the electrons in

the source. This correlates to a reduction in current as shown in Fig. 3.4,

demonstrating leakage. Also, in the absence of incoming spikes, the neuron

retains the stored charge for a notable duration (on the order of tens of µs).

This attribute establishes the proposed LIF neuron as a reliable candidate for

neuromorphic applications.
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Figure 3.4: LIF neuron characteristics demonstrating rise in current with incoming spikes

At equilibrium, the rate of accumulation of holes equals the rate of leakage

of accumulated holes. At this stage, the current through the device reaches

a threshold (Ith = 10−7A/µm), and the neuron fires a spike. Thereafter, the

neuron is reset by removing the voltages applied on the source/drain terminals.

This reduces the potential barrier for the accumulated holes, and they leak away

quickly into the source and drain regions (as can be seen from Fig. 3.3(e)). Thus,

the neuron is rapidly restored to its equilibrium state in a short period (about

50ns). This phenomenon is associated with a steep drop in current, as depicted

in Fig. 3.4.

It should be noted that Fig. 3.4 considers deterministic occurrence of spikes.

In reality, however, the occurrence of spikes shall be random. Fig. 3.5 shows

the evolution of the drain current through the device with random occurance

of spikes. The maximum number of spikes that the LIF neuron can handle
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before reaching threshold will depend on the spiking activity in the pre-synaptic

layer of neurons. Since the rate of spiking activity in Fig. 3.4 was large the

neuron reached the the threshold in fewer number of spikes. However, if the

frequency of spiking activity in the pre-synaptic layer of neurons is low, the LIF

neuron will require a larger number of spikes to reach the threshold than the

case when the frequency of spiking activity in the pre-synaptic layer of neurons

is high. This is because, in the absence of spiking activity in the pre-synaptic

layer of neurons, the accumulated holes in the channel will leak away with time

and greater number of spikes shall be required for the LIF neuron to reach its

threshold.

Figure 3.5: LIF neuron characteristics demonstrating rise in current with random spikes

The architecture of the proposed LIF neuron is depicted in Fig. 3.6. It consists

of a control circuitry, which is responsible for identifying when the drain current
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attains the threshold, Ith. The input to the neuron is voltage spike, which in

turn results in a flow of current through the device. This current is sensed by

the control circuitry and does not propagate to the downstream neurons. Once

the threshold current is reached for a specific neuron (let’s say N11), the control

circuitry generates a voltage signal V11 lasting for a duration of tspike (spike

duration). This voltage signal is then applied to a high threshold voltage pass

transistor (M11), resulting in the generation of a current spike. When the current

remains below Ith, the gate of such a pass transistor is held at VSS . Several such

current spikes (if they are generated simultaneously) are weighted and summed

for the neurons in the pre-neuronal layer at a particular time step for a particular

post-neuron. The resulting current spike is transformed into a voltage spike by

utilizing a transistor (L1 in Fig. 3.6) operating in the triode region. Following

the firing of neuron N11, the control circuitry generates a reset signal. This

signal serves to eliminate the voltages applied to the source (VS,11) and drain

(VD,11) terminals of the device, thereby eliminating the accumulated holes within

the channel. This action enables the neuron to return to the equilibrium, as

depicted in Fig. 3.3(e). The inclusion of a reset circuitry is essential for other

neurons proposed in the existing literature as well [16–20]. The operation of the

reset circuitry depends on the voltages applied to the drain/source terminals. In

contrast to other LIF neurons, such as II-based neurons that operate at around

3 V, the proposed neuron is capable of operating at a lower voltage of 0.7 V.

Consequently, a reduction in power dissipation within the reset circuitry is

anticipated in the proposed implementation.
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Figure 3.6: Architecture of the proposed LIF neuron

The architecture diagram displayed in Fig. 3.6 shows a control circuitry which

is shared by a group of neurons. If we employ a control circuit for every neuron,

then its area and energy consumption would blow up out of proportion and

such a configuration would not be optimal for a dense and energy-efficient SNN

architecture. Thus, sharing of the control circuitry among a group of neurons

seems to be the best way forward. Since, the application does not demand to

be operated at very high frequencies, we can share the control circuitry for a

group of neurons in a particular layer and sense whether a particular neuron in

that group has reached its threshold or not at a given frequency. The fact that

the frequency of spiking activity reduces in deeper layers in the SNN can be

leveraged to save power consumed by the control circuitry for a group of neurons

present deeper in the network. For instance, in the input layer if the spiking

activity is 50 Hz, then a group of 20 neurons can be formed and control circuitry

be shared among them, which senses the threshold current for each neuron at,
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say 10KHz. If there are a 1000 neurons in the input layer, 50 such groups shall

be formed (saving power at the cost of area). Further, suppose a layer deep inside

the network has a spiking activity of 5 Hz, then a group of 200 neurons may be

formed and control circuitry be shared among them, which senses the threshold

current for each neuron at 10KHz. If there are a 1000 neurons in this layer, only

5 such groups shall be formed (saving area at the cost of power). Thus, there is a

direct trade-off between area and power consumed by the control circuitry and

such an architectural choice needs to be made on the basis of actual overhead in

terms of power, performance and area consumed, and which parameter is more

critical for the desired application.

The aforementioned process is repeated after a specific duration known as the

refractory period, during which the neuron remains in its equilibrium state. In this

refractory period, if the neuron receives a spike, there is minimal band overlap

at the drain-channel and source-channel junctions, as depicted in Fig. 3.7(a).

Consequently, the BTBT generation rate is low, resulting in negligible hole

accumulation within the channel, as illustrated in Fig. 3.7(b). Any accumulated

holes disperse rapidly due to the comparatively shorter potential barrier than

when drain/source voltages were applied.

The minimal refractory period corresponds to the time needed for the neu-

ron to restore its equilibrium state after firing, a value dictated by the device’s

characteristics. For the proposed neuron, the minimum refractory period was

determined to be approximately 50 ns. The control circuitry can generate suit-

able biases (VS, VD) with a refractory period surpassing the defined minimum
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Figure 3.7: (a) Band diagram along cutline AA’ and (b) 2D BTBT generation contour (cm-3s-1)
demonstrating negligible BTBT when a spike is incident during the refractory period of the
neuron

refractory period for a given neuron. Moreover, an optimal refractory period

for neurons will depend on the specific application and will be determined by

design objectives such as accuracy, functionality, energy efficiency, and other

system-level considerations. Following the refractory period, when the neuron is

prepared to process additional spikes, the control circuitry applies appropriate

voltages to the source and drain terminals, initiating a new LIF cycle.

In this study, the transient simulations have been performed using the device

simulator Synopsys Sentaurus. For small-sized circuits, mixed-mode simulations

can be performed in Sentaurus. Additionally, circuit simulations can be con-

ducted in SPICE by constructing a model for the proposed LIF neuron. Given

that the device utilizes BTBT to generate holes, it is imperative to incorporate

a model for the BTBT generation rate. Prior research has introduced compact

SPICE models for Tunnel FETs [62–64]. The proposed LIF neuron can also

be appropriately modeled in SPICE using a Verilog-A model. This process

involves extracting the device’s Current-Voltage (I-V) characteristics (both trans-

fer and output) and parasitics from the device simulator. Subsequently, these
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extracted data can be compiled into a look-up table format for incorporation into

the Verilog-A model. This approach allows the SPICE simulation platform to

emulate the behavior of the proposed LIF neuron.

3.3 Device Optimization

This section analyzes various parameters pertaining to the Ge-based LIF neuron

and their influence on the characteristics of the neuron. Specifically, the conse-

quences of altering the channel thickness and the gate oxide thickness on the

attributes of the LIF neuron are explored.

3.3.1 Channel Thickness

LIF neuron characteristics strongly depend on the choice of channel thickness.

As the channel’s thickness increases, the channel’s capacity to store charge

increases. With incoming spikes, holes get accumulated in the channel. As a

result, there is an increase in current. At the steady state, the rate of accumulation

of holes with incoming spikes equals the rate of leakage of holes. Consequently,

with incoming spikes, a negligible increase in current is observed at the steady

state. This trend is evident in Fig. 3.8, where it can be observed that more

spikes are required to attain the steady state for a channel thickness of 20 nm in

comparison to thicknesses of 15 nm and 10 nm, respectively. This observation

signifies that the ability to store holes is greater for a channel thickness of 20 nm

compared to thicknesses of 15 nm and 10 nm.
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Figure 3.8: Plot of Drain current for different channel thicknesses

A channel with a thickness of 10 nm is fully depleted, making it challenging

to store charge effectively in such a thin structure. As a result, a thicker channel

that is only partially depleted is chosen for the LIF neuron, enabling it to better

retain stored charge for an extended duration.

In the absence of incoming spikes, the accumulated holes gradually dissipate

into the source and drain regions due to thermionic emission over the potential

barrier. This process is indicated by a decrease in current, as demonstrated in

Fig. 3.8. As the holes continue to leak over time, the potential barrier gradually

increases, leading to a reduction in the rate of hole leakage. Consequently, the

rate at which the current declines also decreases with time. Fig. 3.9 presents

band diagrams for a channel thickness of 20 nm at various time intervals (after

achieving steady-state) in the absence of incoming spikes. Notably, the potential

barrier exhibits a rapid initial increase, followed by a deceleration in the rate

54



of increase over time. Furthermore, for a thicker channel, the stored holes will

remain within the channel for a longer duration (i.e., a longer retention time). For

instance, with a channel thickness of 10 nm, the retention time is approximately

200 ns, while for a thickness of 20 nm, it extends to around 17.4µs. The retention

time is measured as the time taken by the current to reduce to its value on reset

from its value at threshold.

Figure 3.9: Band diagrams for 20 nm channel thickness along cutline AA’ at different time
instances after reaching the steady state in the absence of incoming spikes.

Nevertheless, it is important to note that a thicker device will result in a higher

average current flow. Consequently, the threshold current will be significantly

higher for a thicker channel, reaching approximately 1× 10−6A/µm for a 30 nm

channel thickness. Consequently, the energy consumption per spike (Espike) is

likewise elevated compared to a narrower channel device. To mitigate this, opting

for a narrower channel becomes crucial in order to reduce Espike. Selecting a 20

nm channel thickness balances between a high retention time for stored holes
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and maintaining Espike at acceptable levels.

It is important to consider that the presence of a floating body in the PD-SOI

MOSFET can potentially lead to phenomena like the kink effect or history effect,

particularly when Impact Ionization (II) phenomena occurs in the device [65].

This condition might also contribute to increased subthreshold slope, heightened

parasitic effects, and elevated power dissipation, generally surpassing what is

observed in FD-SOI MOSFETs. However, since the proposed device relies on

BTBT for its charge storage mechanism rather than II, it is not anticipated to

exhibit the kink effect. It is worth noting that while a PD-SOI MOSFET might

introduce some performance loss, this trade-off can be acceptable within the

context of the proposed application. This is due to the fact that the PD-SOI

structure allows for the storage of charge in the floating body for a longer period

of time. This extended storage duration prevents rapid leakage of accumulated

charge, resulting in significant memory retention for the neuron. Furthermore,

the potential loss in performance can be tolerated within this application, as it

is not a stringent requirement to operate the neural network at extremely high

frequencies. This aligns well with the intended functionality of the proposed

neuron and its application.

3.3.2 Gate dielectric thickness

A gate dielectric layer (SiO2) with a thickness of 3 nm is used in this work.

Similar to previous research work [60, 61, 66–68], tunneling through the gate

dielectric has been neglected. To further curtail gate leakage, we investigate the
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impact of employing a thicker gate dielectric on the characteristics of the LIF

neuron.

As the gate dielectric thickness increases, the degree of gate control over the

channel diminishes. Fig. 3.10(a) illustrates the band diagram along cutline AA’

when a spike is applied to the gate of the LIF neuron, considering various gate

dielectric thicknesses. Noticeably, as the gate dielectric thickness increases, the

overlap of the valence band in the channel with the conduction bands of the

drain and source decreases. This translates to an exponential reduction in the

BTBT generation rate, as depicted in the 2D BTBT generation rate contours in

Fig. 3.10(b). This leads to an increased requirement on the number of spikes

required to reach the threshold current, thereby resulting in a reduction in the

output firing frequency for a given input firing frequency.

Figure 3.10: (a) Band diagram along cutline AA’ and (b) 2D BTBT generation (cm−3s−1)
contours when a spike is incident on the neuron for different gate dielectric thickness

To sustain an equivalent output firing frequency with a thicker dielectric, a

larger Vspike must be applied. This, however, leads to a an increased energy

consumption per spike. Hence, for the implementation of a low-power LIF
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neuron, a smaller gate dielectric thickness is desirable. However, it is crucial

to acknowledge that a reduction in gate dielectric thickness can potentially

result in an elevation of gate leakage current. Consequently, a slight increase

in the static power dissipation of the LIF neuron can be expected. Nonetheless,

this gate leakage can be effectively mitigated by employing a thicker high-

κ dielectric like HfO2, which simultaneously suppresses gate leakage and

maintains performance.

3.4 Energy efficiency

In this section, we explain the superior energy efficiency exhibited by a Ge-based

LIF neuron in comparison to II-based or BTBT-based Si LIF neurons. The energy

consumption per spike (Espike) in an LIF neuron can be defined as follows:

Espike = Vspike × Ith × tspike (3.1)

where Vspike is the magnitude of the incoming spike, Ith is the threshold current

at which the firing circuitry is triggered, and tspike is the time duration of the

spike. Tab. 3.2 compares the energy consumption per spike for the proposed

implementation with other implementations in the literature. In the proposed

implementation, the energy consumption per spike is measured as 0.07fJ, a value

notably lower than that of all LIF neuron implementations (whether experimental

or simulated) documented in the existing literature.
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It should be noted that the energy consumption of 0.07 fJ per spiking event

corresponds to 20 nm channel thickness. Since the ability of a thinner channel

to store charge is lesser than that of a thicker channel, a neuron with a thinner

channel has a smaller Ith than a neuron with a thicker channel. Consequently, the

energy consumption per spike for 10 nm channel (with Ith=1.5× 10−8A/µm)

thickness is 0.01 fJ per spiking event, for a 15 nm channel (with Ith=4 ×

10−8A/µm) is ∼0.03 fJ per spiking event and that for 20 nm channel thickness

(with Ith=1× 10−7 A/µm) is ∼0.07 fJ per spiking event. A thicker channel can

store the charge for a longer period of time (retention time ∼20 µs). A suitable

choice of channel thickness could be application dependent and a channel thicker

than 20 nm can be chosen if a larger retention time is desired at the cost of high

energy consumption per spike.

The duration of spiking activity (tspike) plays a big role in the high energy-

efficiency of the proposed LIF neuron. The proposed LIF neuron is capable of

operating with tspike in the order of ∼ns due to the dominant direct tunneling

mechanism in Ge, which allows the device to be operated at low voltages. The

frequency of spiking activity considered in this work is of the order of ∼MHz

and operating the neuron at such a high frequency can result in a higher power

dissipation in the peripheral circuitry of the neuron. The same circuit, with a

few modifications, can be used to implement an LIF neuron where the operating

frequency is more bio-realistic. Currently, the LIF neuron is implemented with a

Ge-based PD-SOI MOSFET with channel thickness of 20 nm. The neuron can

accept spikes in a timescale of a few ns and has a retention time of ∼20µs. If
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the neuron is to be operated at bio-realistic frequencies, it must have a larger

retention time in accordance with the frequency it is operated at. A thicker

channel shall be required to increase the retention time of the neuron and bring it

closer to bio-realistic numbers.

Analyzing Tab. 3.2, it becomes evident that II-based LIF neuron implementa-

tions [16–19] consume more energy when compared to BTBT-based implemen-

tations. This observation aligns with expectations, as II-based implementations

necessitate a higher voltage to induce impact ionization within the device. Ad-

ditionally, these implementations exhibit significantly larger threshold currents

(Ith) than their BTBT-based counterparts.

Table 3.2: Comparison of energy consumption per spike for the proposed implementation with
the state-of-the-art

Reference Device Type Vspike (V) Ith (A) tspike (ns) Espike (fJ) Eadd (fJ) Etotal (fJ)

[14] PCMO RRAM – – – 4.8× 103 – 4.8× 103

[15] CMOS – – – 9× 105 – 9× 105

[16] PD-SOI MOSFET (II) 2.8 0.5× 10−3 25 3.5× 104 2.23× 103 3.72× 104

[17] Bulk FinFET (II) 3 0.35× 10−6 6 6.3 0.96 7.26
[18] JL-FET neuron (II) 0.4 0.5× 10−3 5.7 1.14× 103 0.58× 103 1.72× 103

[19] Si NIPIN diode (II) 0.8 2.4× 10−3 62.5 1.2× 105 0.3× 105 1.5× 105

[20] Si PD-SOI MOSFET (BTBT) 1.5 8× 10−6 0.26 3.2 1.4 4.6

Proposed
neuron

Ge PD-SOI MOSFET (BTBT) 0.7
1× 10−7 1

0.07
–

0.07
Si PD-SOI MOSFET (BTBT) 2.0 0.2 0.2

First, we analyze why a BTBT-based Ge LIF neuron demonstrates superior

energy efficiency compared to a BTBT-based Si LIF neuron [20]. For the

sake of facilitating an effective comparison, Ith and tspike have identical values

across different materials. The BTBT generation rate in a Ge-based device is

significantly higher due to its dominant direct tunneling mechanism and a smaller

60



band gap. Consequently, with incoming spikes, there is a rapid accumulation of

holes within the channel. This leads to the attainment of the threshold current

using a smaller Vspike. In a BTBT-based Si LIF neuron, a larger band overlap is

necessary (manifested as a larger Vspike) to balance the BTBT generation rate

in a BTBT-based Ge LIF neuron. This requirement for a larger Vspike results in

sub-optimal energy efficiency in a BTBT-based Si LIF neuron.

Fig. 3.11 illustrates the band diagram of the LIF neuron both with and

without spike voltage at the gate, alongside the corresponding 2D band-to-band

generation rate contours for both Si and Ge-based devices. Notably, in the Si

case, a substantially higher Vspike of -2V is employed as compared to -0.7V

for Ge. This adjustment in voltage is necessary to balance the elevated BTBT

generation rate in Ge-based devices. Additionally, the band profile in pure

Ge device appears more symmetrical. This symmetry promotes BTBT at both

the drain-channel and source-channel interfaces, thereby facilitating a swifter

accumulation of holes in the channel when compared to a Si-based device.

Furthermore, the examination of Fig. 3.11 reveals that a higher drain voltage

(0.85V) must be applied in the case of Si, in contrast to 0.35V for Ge, to

facilitate leaky integration. This difference in drain voltage requirements leads

to a reduction in the power consumed by the reset circuitry in Ge-based LIF

neuron implementations compared to their Si-based counterparts. This serves as

an additional contributing factor to the improved energy efficiency exhibited by

the Ge-based BTBT LIF neuron.
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Figure 3.11: LIF neuron band diagram with and without the presence of spike voltage at the
gate and the corresponding 2D band-to-band generation rate (cm-3s-1) contours for (a) Si and (b)
Ge-based device

Through SPICE simulations, an assessment of the energy dissipated per spike

(Eadd) was conducted in the charging and discharging process of the capacitor

within the fixed voltage generating summer circuit, illustrated in Fig. 2.7. The key

attributes of the spike (Vspike, Ith, and tspike) have been obtained from the relevant

studies [16–20]. By selecting appropriate resistance (R) and capacitance (C)

values, we have ensured that an increment in potential on the order of millivolts

(∼mV) is achieved across the capacitor in response to an input current spike.

The fixed number of spikes needed to generate a specific voltage, as indicated in

the respective studies, is represented as Nspike. Using SPICE simulations, the
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energy dissipated in the resistor-capacitor over Nspike spikes has been computed,

and the resulting average energy dissipated per spike (Eadd) is shown in Tab.

3.2. A noteworthy observation is that Eadd contributes to roughly 10-50% of the

energy consumption reported in the literature. It is essential to recognize and

incorporate this component of power dissipation when evaluating overall energy

consumption in the implementation of LIF neurons.

3.5 Dynamic response

The impulse parameters (Vspike, Ith, tspike, and frequency of pre-neuronal spiking

activity (fin)) play a significant role in influencing the output firing frequency

(fout) of a given LIF neuron. However, predicting the exact dynamic response

of the proposed LIF neuron can be challenging. In a real-world system-level

implementation, where multiple LIF neurons are interconnected via synapses, the

voltage spike incident on a specific LIF neuron would typically be scaled down

by the synapse’s weight. Furthermore, the precise timing of spike arrivals is

often uncertain. Initial layers within the network might experience higher spiking

activity than deeper layers. Consequently, the achievable spiking frequency can

greatly vary based on the specific application and the architecture of the SNN,

particularly the number of layers involved. For the purpose of illustration, we

have selected the following values for the impulse parameters (Vspike = −0.7V ,

Ith = 1× 10−7A/µm, tspike = 1ns, and fin = 250MHz). Using these values,

we have explored the behavior of fout by individually varying each parameter

while keeping the others constant. It is important to note that these values are
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chosen for illustrative purposes and may not correspond to real-world scenarios

due to the aforementioned complexities in actual network implementations and

varying application demands.

3.5.1 Magnitude of incoming spike

If the magnitude of the incoming spike (Vspike) is increased, meaning a more

negative value, it would result in a greater band overlap of the channel with the

source/drain. This occurrence subsequently results in a larger BTBT generation

rate and an accelerated accumulation of holes within the channel. Consequently,

the output firing frequency (fout) would exhibit an exponential increase as Vspike

grows. This behavior is driven by the exponential relationship between the BTBT

generation rate and the band overlap. Fig. 3.12 illustrates how fout changes for

various Vspike values. The resultant curve appears linear on this logarithmic plot

due to the exponential nature of the relationship between the parameters. These

results demonstrate the strong impact of Vspike on the LIF neuron’s output firing

frequency.

Figure 3.12: Output firing frequency for different magnitudes of incoming spikes
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3.5.2 Time duration of incoming spike

Fig. 3.13, illustrates how the output firing frequency (fout) varies for different

values of tspike. When the duration of the incoming spike increases, the time

available for electrons to tunnel also increases, ultimately resulting in a more

substantial accumulation of holes within the channel. This phenomenon results

in a linear increase in the output spiking frequency as the spike’s width increases.

Figure 3.13: Output firing frequency for different tspike

3.5.3 Threshold current

As Ith increases, it is expected that the output firing frequency (fout) will decrease.

This expectation arises from the fact that a larger number of spikes would be

necessary to significantly reduce the potential barrier, and generate a larger

current. This increment in spike count leads to a decrease in fout. When a larger

Ith is chosen, the rate of leakage will be considerably higher as the output current

approaches the vicinity of Ith. This increased leakage is attributed to the presence

of a smaller barrier that facilitates the rapid leakage of holes into the source and
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drain regions. Fig. 3.14 demonstrates a decline in fout as Ith rises.

Figure 3.14: Output firing frequency for different Ith

3.5.4 Input firing frequency

An increase in the frequency of spiking activity in the pre-neuronal layer (fin)

is expected to result in an increase in the output firing frequency (fout). The

relationship between the two variables is likely to be linear for higher values of

fin. This is because when incoming spikes are closer together temporally, the

potential barrier has less time to recover between spikes, leading to reduced leak-

age. However, the scenario changes for lower fin values. In this case, significant

leakage of holes occurs, necessitating more spikes to reach the threshold current

(Ith). Consequently, for decreasing fin, there is an exponential decrease in the

output spiking frequency (fout). The curve depicted in Fig. 3.15 demonstrates

the relationship between fout and fin. Notably, the curve’s slope is higher for

smaller fin values, gradually decreasing as fin becomes larger. This trend can be

attributed to the more significant reduction in fout when fin decreases, driven by
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the higher component of leakage.

Figure 3.15: Output firing frequency for different input firing frequency

3.5.5 Interface Trap Charges

The presence of trap charges at the semiconductor-oxide interface can have detri-

mental effects on the device performance due to Trap Assisted Tunneling (TAT).

This phenomenon not only degrades device performance but also reduces device

reliability and overall longevity. Thus, investigating the impact of Interface Trap

Charges (ITCs) on device performance becomes crucial.

The ITCs can be positively charged, negatively charged or neutral depending

on their energy level with respect to the Fermi energy level and the midband

energy level. It behaves like an acceptor trap if its energy level is above the

midband energy level and a donor trap if its energy level is below the midband

level [69]. An acceptor trap is negatively charged if its energy level is below

the fermi level by accepting an electron and neutral if its energy level is above

the fermi level. Similarly, a donor trap is positively charged if its energy level
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is above the fermi level and neutral if its energy level is below the fermi level.

For a p-type channel, having its fermi level near to the valence band, the donor

trap states are partially filled, while the acceptor trap states are empty, making

the interface charge positive in nature. On the other hand, for an n-type channel,

the acceptor states are partially filled and the donor states are empty, making the

interface charge negative in nature.

In this particular use case of the LIF neuron, the PD-SOI MOSFET is operated

in the accumulation mode, due to the application of a negative voltage on the gate.

Thus, the channel is predominantly p-type in nature. This results in positively

charged donor traps at the interface. These repel the accumulated holes and an

electron-hole recombination occurs due to the electron emitted by the donor state.

Now, more number of voltage spikes shall be required to counter this positive

charge at the interface. Thus, there is no trapping of holes after repeated LIF

operations.

To incorporate ITCs into our analysis, we introduced a fixed charge of ±(1×

1012)cm−2 at the semiconductor-oxide interface. This choice of value is based

on prior simulation studies [70,71], which explored ITC densities in the range of

±(1× 1011 − 1× 1013)cm−2. Fig. 3.16 illustrates fout for varying magnitudes

of ITCs. The figure shows that negative (acceptor) ITCs tend to enhance the

accumulation of holes in the channel by boosting the BTBT generation rate.

Conversely, positive (donor) ITCs reduce the BTBT generation rate, decreasing

the output spiking frequency.
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Figure 3.16: Output firing frequency for different interface charge concentrations

Notably, positive ITCs at the semiconductor-oxide interface can lead to per-

formance degradation and a decrease in energy efficiency (assuming a constant

spiking frequency). However, this reduction in spiking frequency due to positive

ITCs remains acceptable in neuromorphic chips, as these chips do not require

extremely high operating frequencies. The trade-off between performance and

reliability is essential in designing such devices.

3.6 Conclusions

In this chapter, using a well-calibrated simulation model, an energy-efficient

BTBT-based Ge LIF neuron has been demonstrated. The energy consumption

per spike in the proposed LIF neuron is 0.07fJ, which is lower than the LIF

neurons reported in the literature. The proposed implementation is also more

biologically plausible than those presented in the literature, wherein summer

circuits are required. From the system-level standpoint, such additional circuitry

can incur a much larger area and power penalty. Further, a reduction in power
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consumed by the reset circuitry is also achieved by lowering the drain bias. The

channel thickness should be carefully optimized such that the stored charge can

be retained for a longer duration of time while keeping energy consumption at

acceptable levels.
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Chapter 4

On-chip Unsupervised Learning using

STDP in a Spiking Neural Network

This chapter proposes an energy-efficient Ge-based device that implements

on-chip unsupervised learning in an SNN using STDP. The approach involves

utilizing a Ferromagnetic Domain Wall (FM-DW) based device as a synapse.

The proposed device configuration consists of a dual pocket Fully-Depleted

Silicon-on-Insulator (FD-SOI) MOSFET equipped with dual asymmetric gates.

Using a carefully calibrated 2D device simulation model, we demonstrate that a

pair of these devices can produce a current output that is exponentially dependent

on the temporal correlation between spiking events in the pre- and the post-

synaptic neuronal layers. This current drives the FM-DW synapse, leading to

the adjustment of the synapse’s conductance in line with the STDP learning

rule. The proposed implementation requires 2-3× fewer transistors and offers

a lower latency than the existing literature. Further, we demonstrate the real-

world applicability of the proposed device at the system level. Specifically,
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we showcase its performance by employing it to train an SNN for recognizing

handwritten digits in the MNIST dataset. Remarkably, this implementation

achieves a classification accuracy of 84%, thereby underlining the device’s

potential for practical applications and its utility in advancing neural network

capabilities. The work done in this chapter is published in [72].

4.1 Simulation framework

In this section, a hierarchical simulation framework is developed to demon-

strate on-chip unsupervised learning using STDP in an SNN. Fig. 4.1 shows

an overview of the hierarchical simulation framework employed in this work.

The framework is comprised of several stages, each addressing a specific as-

pect of the overall process. Initially, a device-level simulation is performed

in mumax3 [73]. This simulation focuses on the FM-DW spintronic synapse,

aiming to capture the change in conductance resulting from a current of a specific

magnitude and duration traversing through the HM layer of the FM-DW synapse.

Following this, device-level simulation is performed in the device simulator

Synopsys Sentaurus [81] to show the functionality of the proposed dual-pocket

FD-SOI MOSFET. Subsequently, mixed-mode circuit simulations are performed

in the device simulator Synopsys Sentaurus, employing a pair of dual-pocket

FD-SOI MOSFETs, which generate a programming current. The magnitude

of this current is expected to show an exponential dependence on the tempo-

ral correlation between spiking events in the pre- and post-synaptic neuronal

layers. This phenomenon essentially executes the STDP learning algorithm.
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The programming current serves to modulate the conductance of the FM-DW

synapse. The final step in the framework involves integrating the results and

characteristics from both the device-level and circuit-level simulations to derive

the system-level behavior. With the modeled synapse in place, an SNN is trained

using STDP to recognize handwritten digits in the MNIST dataset. This training

and benchmarking is achieved via the BindsNET platform [74].

Figure 4.1: The hierarchical simulation framework to demonstrate on-chip unsupervised learning
in an SNN.

4.1.1 Spintronic Synapse

This section describes the device physics that governs the functioning of the

FM-DW synapse. The synaptic element, which comprises a Magnetic Tunnel

Junction (MTJ) coupled with an HM underlayer, is depicted in Fig. 4.2. The
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MTJ, at its core, is constructed by combining two key components: a free

Ferromagnetic (FM) layer comprised of CoFe, whose magnetization can be

varied, and a pinned FM layer, whose magnetization remains fixed. These two

FM layers are separated by a tunneling oxide barrier made of MgO. An intrinsic

component of this setup is the presence of a Domain Wall (DW), a boundary

that demarcates two distinct magnetic regions within the free FM layer, each

characterized by an opposite polarization.

Figure 4.2: FM-DW synapse with decoupled read and program paths. The read current flows
between terminals T1 and T3 while the programming current flows between terminals T2 and T3.

A Domain Wall (DW) is created by spin-orbit coupling at the free ferro-

magnetic layer and the HM interface, which induces Dzyaloshinskii-Moriya

Interaction (DMI) [75–78]. When an in-plane current flows through the HM

underlayer, it deflects opposite spin-polarized electrons to the top and bottom

surfaces of the HM layer, generating a transverse spin current [77, 78]. Conse-

quently, the flow of current through the HM layer induces a Spin-Orbit Torque

(SOT) that propels the DW in the free FM layer to shift along its length. This

DW movement is reinforced by opposing magnetizations in the two pinned FM
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layers located at the ends of the free FM layer, resulting in the stabilization of

the DW under the influence of sufficiently high currents within the HM layer.

The magnetization dynamics of the free FM layer’s chiral DW are described by

the Landau-Lifshitz-Gilbert (LLG) equation [75]. To simulate the DW’s motion

due to the current flow through the HM layer, comprehensive simulations were

conducted using mumax3 [73]. Some essential simulation parameters used in

these simulations are enumerated in Tab. 4.1, with their values adopted from

a previous study [78]. The simulation aims to model the synapse behavior,

quantifying how its conductance changes due to to the flow of a current through

the HM layer.

Table 4.1: FM-DW synapse simulation parameters

Device Parameter Symbol Value
Saturation Magnetization MS 700 KA/m

Exchange Correlation constant Aex 1× 10−11J/m
Perpendicular Magnetic Anisotropy Ku 4.8× 105J/m3

Effective DMI constant Dind −1.2× 10−3J/m2

Gilbert damping factor α 0.3
Spin Hall angle θ 0.07

Heavy metal thickness tHM 10 nm
Free FM layer dimensions 500× 20× 0.6 nm3

Grid size 4× 1× 0.6 nm3

The FM-DW synapse described above has decoupled read and program

paths. Specifically, the program path pertains to the programming current that

flows through the HM layer, traversing between terminals T2 and T3. The

consequence of this programming current is the motion of the DW within the

free FM layer. This behavior is depicted in Fig. 4.3(a), where the displacement

of the DW in response to a current density (J = 1 × 1011A/m2) is illustrated.

The corresponding DW velocity for varying current densities is shown in Fig.
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4.3(b). The Domain Wall’s (DW) velocity does not depend on the time duration

of current spike through the Heavy Metal (HM) layer. A longer duration of

current spike results in a larger displacement of the DW in the free ferromagnetic

layer, it does not result in a larger velocity of the DW. It is worth noting that these

micromagnetic simulation results, which detail the DW’s position modulation

due to the flow of a current density (J = 1× 1011A/m2) through the HM layer,

correlate well with previously published results [78].

Figure 4.3: (a) DW displacement due to the application of a current density (J = 1×1011A/m2)
along the HM layer and (b) DW velocity plotted as a function of current density through the HM
layer.

A spatial shift in the DW position results in a corresponding modulation in the

conductance of the FM-DW synapse. When the magnetization of the free layer is

aligned parallel to the fixed FM layer, the synapse exhibits a conductance of GP .

Conversely, when the magnetization of the free layer is oriented anti-parallel to

the fixed FM layer, the synapse’s conductance is GAP . The conductance of the

synapse (GS), accounting for the DW’s displacement by x along the FM free

layer’s length, is described as follows [35]:
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Gs(x) = GP

(x
L

)
+GAP

(
1− x

L

)
(4.1)

where L denotes the length of the FM free layer in the MTJ. The conductance

GS follows a linear relationship with the DW’s position in the FM free layer due

to the constant values of GP , L, and GAP . In this context, the maximum and

minimum values of the conductance are GP and GAP , respectively. The ratio

between these values constitutes the Tunneling Magnetoresistance Ratio (TMR).

The Resistance-Area (RA) product of the MTJ, set at 10 Ωµm2, coupled with a

TMR value of 600%, as reported in [79], further characterizes the properties of

the synapse.

The linearity parameters represent the number of pulses (of a certain amplitude

and duration) required to change the conductance of the synapse from minimum

to maximum (αp) and vice-versa (αd). Linearity parameters are essential in

synaptic devices where the conductance change is non-linear due to the abrupt

set and reset transitions. For STDP, the change of conductance depends on the

temporal correlation of spiking events, so linearity does not play a big role here.

On the other hand, read current flows through the MTJ between terminals

T1 and T3. The voltage VS applied at terminal T1 drives a read current IS =

GS · VS through the synapse. The conductance GS of the synapse depends on

the DW’s position in the free FM layer, and this dependence arises from the

linear relationship between GS and DW position. It is essential to ensure that the

magnitude of the read current does not surpass the DW depinning current. The
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DW depinning current is the current threshold required to initiate the movement

of the DW along the length of the free FM layer. Keeping the read current

below this threshold is crucial to prevent unintentional modulation of the DW’s

position, which would otherwise disturb the synaptic weight and could result in

undesirable changes to the synapse behavior. This control ensures the stability

and reliability of the synaptic operation.

The main reason behind opting for a spin-based synapse was the decoupled

nature of spike transmission and learning in the synapse. The 3-terminal FM-

DW synapse allowed learning during network operation, which is a crucial

requirement for STDP based learning to take place. Moreover, the FM-DW

synapse allows continuous conductance states, i.e., the conductance (weight)

of the synapse can be modulated by the position of the domain wall in the free

ferromagnetic layer, which in turn can be tuned by passing a current through

the HM layer. Generating such a current whose magnitude was a function of

the temporal correlation of spiking events between the pre- and post-synaptic

layers of neurons with a few CMOS transistors or a pair of dual-pocket FD-SOI

MOSFET’s with dual asymmetric gates (proposed in this work) was indeed

possible. Furthermore, the conductance of the FM-DW synapse varies linearly

with the position of the domain wall, while for the case of memristive synapses,

the conductance may switch abruptly between high and low resistance states.
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4.1.2 Device-Level simulation

The schematic cross-sectional view of the proposed device, which includes a

dual pocket Ge-based FD-SOI MOSFET with dual asymmetric gates, is depicted

in Fig. 4.4. In the next subsection, it will be demonstrated that a pair of such

devices can generate a current based on the temporal correlation of spiking

events between the pre-synaptic and post-synaptic neurons. This current is fed

to the HM layer of the FM-DW synapse, and it governs the modulation of the

synapse’s conductance in accordance with the STDP learning rule.

Figure 4.4: Structure of the proposed device used to train the SNN using STDP.

The proposed device comprises two pockets. The first pocket, known as

the Source Pocket (SP), is doped with p+ dopants, having a length of LPP and

a doping concentration of NPP . This narrow, fully depleted pocket is placed

at the source-channel interface, enhances the sharpness of the band profile at

this interface and thereby enhances the BTBT generation rate. To achieve a

sharp band profile, the optimization of pocket parameters NPP and LPP has

been undertaken. The second pocket, termed as Channel Pocket (CP), is doped

79



with n+ dopants, possessing a length of LNP and a doping concentration of

NNP . Located at the center of the channel, its purpose is to establish electrical

isolation between the two channel regions. Fabrication of these pockets can be

accomplished by initially defining the region for the larger n+ pocket through

a suitable mask and subsequent doping. The second p+ pocket can then be

produced by implementing a tilt implant followed by spike annealing, as outlined

in [80]. The proposed device is equipped with dual-asymmetric gates, with one

allocated for each channel region. The gate situated near the source (GS) has a

length of LG,S, whereas the gate adjacent to the drain (GD) possesses a length

of LG,D. An HfO2 gate oxide with a thickness of 5 nm is employed to enhance

gate control over the channel while concurrently minimizing leakage attributed

to the gate tunneling current. Additional device parameters are presented in Tab.

4.2. The rationale for utilizing a thin, fully-depleted body in conjunction with

dual-asymmetric gates will be elucidated during the discussion of the operating

principle of the proposed device.

Table 4.2: Device Parameters of the proposed device used to train the SNN using STDP

Device Parameter Symbol Value
Drain Voltage (V ) VD 0.4

Source Voltage (V ) VS 0.3
Channel Length (nm) LC 100

Gate Oxide thickness (nm) tox 5
Body thickness (nm) tB 10

Gate workfunction (eV ) ϕm 4.4
Channel Doping (p-type) (cm−3) NC 1× 1017

Source Doping (n-type) (cm−3) NS 1× 1020

Drain Doping (n-type) (cm−3) ND 1× 1020

p+ Pocket Doping (p-type) (atoms/cm3) NPP 1× 1019

p+ Pocket Length (nm) LPP 4
n+ Pocket Doping (n-type) (atoms/cm3) NNP 4× 1019

n+ Pocket Length (nm) LNP 20
Length of gate near source (nm) LG,S 40
Length of gate near drain (nm) LG,D 25
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Germanium, due to its smaller bandgap and a dominant direct tunneling

mechanism compared to Silicon, is used as a base material in this work [5].

This results in a larger BTBT generation rate compared to a Si-based device. A

non-local BTBT model has been used for simulations with fitting parameters

adopted from [5]. The detailed simulation model employed in this study has

been presented in section 3.1.

The principle of operation for the proposed device will now be explained.

Fig. 4.5 shows detailed band diagrams along the cut-line AA’ to illustrate the

movement of carriers across the device based on the temporal correlation of

spiking events between pre- and post-synaptic neurons for the case when a

post-synaptic neuron spiking event follows a pre-synaptic neuron spiking event.

The initial state, without any applied voltages to the device, is represented by

the band diagram in Fig. 4.5(a). Subsequently, by applying a constant voltage of

0.4V to the drain and 0.3V to the source, the resulting band diagram is depicted

in Fig. 4.5(b). In the presence of a pre-neuronal spike (Vpre= -0.7 V and 1ns

duration) at GD, as illustrated in the band diagram of Fig. 4.5(c), BTBT of

electrons occurs at the drain-channel interface. This results in the generation of

electron-hole pairs due to the formation of vacancies (holes) in the channel [81].

Due to the gate underlap of GD with respect to CP, BTBT is suppressed at the

CP-channel interface. This ensures equivalent BTBT generation rates within

the device during both pre- and post-neuronal spiking occurrences. Subsequent

to the accumulation of holes in the channel, the removal of Vpre results in a

reduction of the potential barrier seen by electrons at the drain terminal, as
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Figure 4.5: Detailed band diagrams for the proposed device along cutline AA’ to illustrate
the movement of carriers across the device based on temporal correlation between pre- and
post-neuronal spiking activity a post-synaptic neuron spiking event follows a pre-synaptic neuron
spiking event. (a) Band diagram at equilibrium, (b) Band diagram with applied bias, (c) Band
diagram during application of a pre-neuronal voltage spike (Vpre) at GD causing BTBT of
electrons at the drain-channel interface leaving behind vacancies (holes) in the channel, (d)
Evolution of the band diagram after removal of Vpre spike demonstrating leakage of accumulated
holes in the channel with time, (e) Band diagram during application of the post-neuronal voltage
spike Vpost (immediately after Vpre) at GS causing BTBT of electrons at the source-channel and
the CP-channel interfaces leaving behind vacancies (holes) in the channel, and (f) Evolution
of the band diagram after removal of Vpost demonstrating leakage of accumulated holes in the
channel with time.
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presented in Fig. 4.5(d). Despite this reduction in the potential barrier, the

current due to thermionic emission remains minimal due to the large potential

barrier at the source end. Due to the device’s thin body, the accumulated holes

quickly dissipate into the drain, consequently elevating the potential barrier at

the drain end. As depicted in Fig. 4.5(d), the temporal evolution of band diagram

illustrates an increase in the potential barrier, which is attributed to the leakage

of holes from the channel.

When a post-neuronal spike (Vpost= -0.7 V and 1ns duration) is applied at

GS, as illustrated in the band diagram of Fig. 4.5(e), BTBT occurs both at the

source-channel and the CP-channel interface. The addition of the SP increases

the sharpness of the band profile at the source-channel interface, increasing the

BTBT generation rate. Despite a smaller band overlap during the post-neuronal

firing event due to a reduced source bias compared to the pre-neuronal firing

event (drain side), it is ensured that the BTBT generation rate remains uniform

throughout both pre- and post-neuronal events. The band diagram in Fig. 4.5(e)

corresponds to the scenario where Vpost follows immediately after Vpre. Upon

the removal of Vpost, the potential barrier at the source end reduces, as depicted

in the band diagram of Fig. 4.5(f), resulting in the flow of current on the order

of a few µA through the device. The accumulated holes gradually dissipate

into the source, drain, and CP regions over time, causing an increase in the

potential barrier at both the source and drain ends. This phenomenon leads to an

exponential decline in current. The temporal evolution of the band diagram, as

shown in Fig. 4.5(f), illustrates the increasing potential barrier at the source and
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drain ends due to the leakage of accumulated holes from the channel.

The magnitude of current flow is dependent on the temporal correlation

between the spiking events of the pre- and post-neurons. The proximity of these

two spikes directly influences the amplitude of the current. This relationship

arises from the rapid dissipation of accumulated holes triggered by the pre-

neuronal spiking event, causing an increase in the potential barrier at the drain

end. Prior to the occurrence of the post-neuronal spiking event, the potential

barrier at the source end is sufficiently high, resulting in an almost negligible

current flow. Simultaneously, the channel region near the drain end continues to

experience hole leakage, thereby increasing the potential barrier at that end. If the

temporal interval between the two spikes surpasses 100ns, the potential barrier at

the drain end becomes prohibitively high. In such a scenario, even following the

post-neuronal spiking event, the device exhibits minimal current flow. The thin

body of the device facilitates rapid leakage of holes. Consequently, the current

due to the thermionic emission diminishes in an exponential manner as the

temporal gap between the pre- and post-neuronal spiking events increases. Fig.

4.6 shows the current flow across the device and demonstrates how the current

changes as the temporal interval of spiking events between the pre- and the

post-synaptic neuronal spiking events varies, for the case when the post-neuron

firing event follows a pre-neuron firing event and vice-versa.

Subsequently, we consider the scenario in which the pre-neuronal firing event

takes place after a post-neuronal firing event. In this situation, the initiation

of a post-neuronal spike (Vpost = -0.7 V and 1ns duration) triggers BTBT of
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Figure 4.6: Current flow through the proposed device for the case when the post-neuron firing
event follows a pre-neuron firing event and vice-versa for different time intervals between the
two spiking events.

electrons at both the source-channel and CP-channel interfaces. This leads to

the accumulation of holes within the channel. The potential barrier at the source

end decreases upon removal of the post-neuronal spike. Due to the device’s

thin body, these accumulated holes swiftly leak into the source and CP regions.

As a consequence, a rapid increase in the potential barrier at the source end

ensues. By the time the pre-neuronal spiking event occurs, the potential barrier

at the source end becomes sufficiently high to impede current flow across the

device. Fig. 4.6 displays the current flow through the device when a pre-neuron

firing event follows a post-neuron firing event. Notably, the current amplitude

in this sequence is notably lower compared to the case where a post-neuron

firing event follows a pre-neuron firing event. Furthermore, it is evident that
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the current declines exponentially as the temporal gap between the two spiking

events increases.

4.1.3 Circuit-level simulation

This section elaborates on the methodology employed to derive the STDP charac-

teristics using the proposed circuit. To achieve the desired STDP characteristics,

certain prerequisites need to be fulfilled. Firstly, the synapse’s strength should

be either potentiated or depressed depending upon the temporal correlation of

spiking activity between the pre- and the post-synaptic neurons. Specifically, if a

firing event in the pre-neuron is succeeded by a firing event in the post-neuron,

the connecting synapse between the two neurons should be potentiated. Con-

versely, if a post-neuron firing event is followed by a pre-neuron firing event,

the synapse should undergo depression. Additionally, the modulation in the

synapse’s weight should vary exponentially based on the temporal correlation

between the spiking events of the pre- and post-synaptic neurons. A smaller

temporal gap between these events should correspond to a more substantial

increase or decrease in the synapse’s weight. The proposed circuit configuration,

which employs a pair of dual-pocket FD-SOI MOSFETs to drive the HM layer

within the FM-DW synapse, is depicted in Fig. 4.7.

The proposed circuit’s functionality and ability to achieve the desired STDP

characteristics are explained as follows. A constant voltage (V1 = 0.4V ) is

applied to the drain terminal of transistor T1. The device T2 is connected in series

with T1, with the source terminal of T2 connected to a constant voltage source
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Figure 4.7: The proposed circuit used to tune the conductance of the FM-DW synapse using
STDP.

(V2 = 0.2V ). The drain terminal of T2 is connected with the source terminal of

T1, and it is also connected to the HM layer of the FM-DW synapse via an access

transistor MA2. The HM layer’s opposite end is connected to a constant voltage

source (V3 = 0.3V ) through another access transistor MA4. Upon detection of a

post-neuronal spiking event, the PROG signal is activated, which facilitates the

programming of the synapse by enabling the access transistors MA2 and MA4.

Importantly, the PROG signal’s magnitude is set to a level that circumvents

any significant threshold voltage (Vt) reduction across the access transistors.

Subsequently, when the PROG signal is not active, the synapse is configured in

the read mode.

The dissimilarity in BTBT generation rates between T1 and T2 is due to

the difference in the drain and source voltages applied to these transistors. To

equalize the BTBT generation rates in both devices and achieve symmetrical
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STDP characteristics, a 20% increase in the channel width for T2 is made. Mixed-

mode simulations are performed in the Sentaurus device simulator. The HM

layer within the FM-DW synapse is simulated as a resistor, with a resistance

of 200Ω, attributed to Pt’s relatively low resistivity. When the post-neuronal

firing event is observed after the pre-neuronal firing event, T1 witnesses a higher

current conduction compared to the capacity of T2 to sink. The disparity in

these currents manifests as a net current flowing through the HM layer within

the FM-DW synapse. Notably, the time gap between these two spiking events

inversely influences the magnitude of the current flowing through the HM layer.

Following the post-neuronal firing event, the accumulated holes escape, leading

to a rapid exponential decrease in current through T1, ultimately equalizing it

with the current through T2 within a brief time span of the order of ns. As a result,

the net current through the HM layer diminishes to zero. This transient surge

of current in the HM layer causes the DW to shift in the direction of the current

flow. The DW’s velocity is proportional to the current’s magnitude through the

HM layer, increasing the synapse conductance. Importantly, this increase in

conductance is exponentially dependent on the temporal correlation between the

pre- and post-neuronal spiking events. The current inflow into the HM layer is

plotted against the interval between the pre- and post-neuronal spiking events in

Figure 4.8. The figure indicates the exponential reduction in current through the

HM layer in proportion to the temporal interval (tpost − tpre) between spiking

activities of pre- and post-neuronal elements.

In the scenario where the pre-neuronal spiking event follows the post-neuronal
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Figure 4.8: The current flowing through the HM layer plotted as a function of the time interval
(tpost − tpre) between the pre- and the post-spiking neuron.

spiking event, the current dynamics differ. In this case, transistor T2 sinks

more current compared to the current sourced by transistor T1. This current is

supplied by voltage source V3. Consequently, the current through the HM layer

flows in the opposite direction, contrary to the previous scenario. The domain

wall (DW) movement is also altered; it now moves toward the current flow’s

direction, shifting toward the left side of the device. As a result, the synapse’s

conductance reduces, an effect that is once again exponentially related to the

temporal correlation between the pre- and post-synaptic spiking neuronal events.

The time interval between the pre- and post-spiking neuron activities influences

the decrement in conductance. The representation of current inflow into the HM

layer against the temporal interval between the pre- and post-spiking neurons

is shown in Fig. 4.9. The negative current spikes displayed in the graph signify
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current flow in the opposite direction, i.e., the current supplied by voltage source

V3. The trend depicted in Figure 4.9 demonstrates the exponential decline in the

magnitude of current flow through the HM layer as a function of the temporal gap

(tpost − tpre) between pre- and post-spiking neuronal activities. The requirement

for bidirectional current flow through the HM layer in the FM-DW synapse

necessitates the use of a pair of dual-pocket FD-SOI MOSFETs in this work.

Figure 4.9: The current flowing into the HM layer plotted as a function of the time interval
(tpost − tpre) between the pre and the post-spiking neuron.

If the synapse is equally potentiated and depressed for the absolute value to the

time difference (δw α |tpre− tpost|) between spiking activities in the pre-synaptic

and post-synaptic layer of neurons, then the characteristics are symmetric. In

the STDP based learning circuitry proposed in this work, the characteristics

can be made symmetric by increasing the width of transistor T2, such that the

magnitude of current generated by the learning circuitry is equal for both events
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(pre-synaptic event followed by post and vice-versa).

Fig. 4.10 illustrates a crossbar architecture suitable for establishing connec-

tions between the pre-synaptic neurons (Npre) and the post-synaptic neurons

(Npost) through synapses. The architecture of the neuron is not shown in the

figure. However, the same may be referred from the Fig. 3.6. The input to

the neuron is a voltage spike, which also goes as input to the learning circuitry.

Once a threshold current is reached, the control circuitry generates a voltage

spike (Vpre,1) in Fig. 4.10. This voltage spike generates a current spike using

the architecture proposed in Fig. 3.6. This current spike will transmit through

the synapse and its magnitude is modulated in the process in accordance with

the conductance of the synapse. A weighted sum of these current spikes from

different neurons in the pre-synaptic neuronal layer at a particular time instant for

a particular post-neuron is then converted into a post-synaptic voltage spike using

an interface circuitry. This post-synaptic voltage spike is applied to the learning

circuitry. Thus, on the basis of temporal correlation of spiking events between

the pre- and post-synaptic neurons, an appropriate current is generated, which

modulates the conductance of the synapse in accordance with the STDP learning

rule. This architecture can efficiently add the current from the pre-neuronal

spiking activity at the post-neurons. Essentially, this design collocates mem-

ory (where weights are stored within synapses) and computation (performing

multiplication and accumulation operations).

The proposed circuitry operates by receiving voltage spikes from both the pre-

synaptic (Vpre) and the post-synaptic (Vpost) neurons. It then generates a current
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Figure 4.10: A crossbar architecture that can be employed to interconnect neurons via synapses.

that adjusts the conductance (weight) of the synapse when the corresponding

PROG signal is activated. Subsequently, when the PROG signal is deactivated,

the synapse enters read mode. When a voltage spike occurs in the pre-neuronal

layer, it triggers a current spike whose magnitude depends on the weight of the

synapse. This current is subsequently transmitted to the post-neuron. For each

synaptic element, two pass transistors (MA1 and MA2) are necessary. Addition-

ally, per post-neuron (not depicted in Fig. 4.10), two pass transistors (MA3 and

MA4 in Fig. 4.7) are required. These pass transistors (MA3 and MA4) are shared

among all pre-neurons and serve to multiplex between the voltage source V3

during writing and the corresponding post-neuron during reading, depending
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on the state of the PROG signal. Such pass transistors are required in other

reported implementations also [34–36]. These transistors enable the connec-

tion between post-neurons (during reading) and ground (during writing) to be

multiplexed. Furthermore, access transistors like MA1 and MA2 ensure isolation

between the read and write paths during the respective operations. Despite the

incorporation of these pass transistors, the proposed approach requires fewer

transistors within the crossbar array due to the minimized number of transistors

necessary to generate current in compliance with the STDP learning rule.

4.1.4 System-level simulations

Using data obtained from device-level and circuit-level simulations, an SNN is

trained to recognize handwritten digits from the MNIST dataset. The MNIST

dataset comprises grayscale images of handwritten digits with dimensions of

28×28 pixels [82]. The constructed neural network is composed of three layers:

the input layer containing 784 neurons (one per pixel), the second layer com-

prising 100 excitatory neurons fully interconnected with the input layer through

excitatory synapses, and the third layer consisting of 100 inhibitory neurons,

each linked to its corresponding neuron in the excitatory layer.

The proposed circuitry, which contains a pair of dual pocket FD-SOI MOS-

FETs, plays a crucial role in updating the weights of the FM-DW synapses

between the input and excitatory neurons. When an excitatory neuron fires in the

network, it triggers the corresponding inhibitory neuron to spike, thereby leading

to lateral inhibition of all excitatory neurons except for the one connected to the
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firing inhibitory neuron.

The training of the SNN utilizes the algorithm devised by Diehl and Cook

[49], as illustrated in the crossbar array representation depicted in Fig. 4.11.

The Diehl and Cook algorithm is implemented using BindsNET [74], which

converts the differential equations governing neuronal behavior into discrete

difference equations, which are solved at defined time intervals (dt). Furthermore,

this code was extended to map the weight updates obtained from device- and

circuit-level simulations, which reflect changes in the synapse’s conductance,

to corresponding weight updates in the excitatory synapses during system-level

simulations.

Figure 4.11: The SNN topology used to interconnect neurons via synapses in the form of a
crossbar array.

The behavior of the neuron is characterized using Leaky Integrate-and-Fire

(LIF) dynamics. The membrane potential (v(t)) of the LIF neuron evolves

according to the following equation:
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τe
dv

dt
= −(v(t)− vrest) + I(t) (4.2)

where τe represents the membrane time constant of the excitatory neuron, vrest

denotes the resting potential of the neuron, and I(t) is the input potential to the

neuron at time instant t. The incoming spikes from pre-synaptic neurons are

weighted by the synapse weight and summed together to form the total input

potential I(t) at a post-neuron at time t. When the membrane potential reaches

the threshold (vth), the neuron fires a spike and resets its membrane potential

to vreset. After firing a spike, the neuron remains at the resting potential during

the refractory period (tref ), during which it does not integrate incoming spikes.

After the refractory period, the neuron resumes its LIF cycle. To prevent a

single neuron from dominating the firing activity in the output layer, an adaptive

thresholding technique is used. The threshold voltage of the neuron is not fixed

at θ0 but varies with time according to the equation:

vth = θ0 + θ(t) (4.3)

Whenever a neuron fires, θ(t) is incremented by θplus and decays exponentially

to zero in the absence of firing activity, as described by the equation:

τθ
dθ

dt
= −θ(t) (4.4)

where the decay of the threshold voltage is governed by the time constant τθ.

Tab. 4.3 presents various essential parameters utilized in the simulation. The
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time constants are expressed in multiples of the simulation’s time step duration.

Table 4.3: System-level simulation Parameters

Parameter Symbol Value
No. of excitatory/inhibitory neurons 100

No. of time steps per image 350
Membrane time constant τe 20

Resting potential vrest -65 mV
Reset potential vreset -65 mV

Threshold Voltage θ0 -52 mV
Adaptive threshold voltage increase θplus 5 mV

Time constant of Adaptive threshold voltage τθ 1000
Refractory period tref 5

The images are rate encoded using the Poisson distribution and are subse-

quently presented to the SNN’s input layer. The spiking rate at the input layer

is directly proportional to the pixel intensity in the input image. The weights

of the excitatory synapses within the network are adjusted following the STDP

learning rule proposed in this study. Utilizing device-level simulations of the

FM-DW synapse, it is determined how the synapse’s conductance changes when

a current of specific amplitude and duration passes through the HM layer of

the FM-DW synapse. Additionally, circuit-level simulations of a pair of dual

pocket FD-SOI MOSFETs generated a suitable current based on the temporal

correlation of spiking between pre- and post-synaptic neurons, conforming to

the STDP learning rule. By combining data from both device and circuit-level

simulations, the variation in synapse conductance is determined in relation to the

temporal correlation of spiking events between pre- and post-synaptic neurons.

Subsequently, the change in the conductance of the synapse, derived from these

simulations, is translated to a corresponding modification in the weight of the

synapse within the system-level simulations.
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The MNIST dataset is composed of 60,000 training images and 10,000 test

images. Initially, the weights of the synapse in the network are initialized with

random values. As the training progresses, these weights are adjusted based

on the STDP learning rule. These synapses connected to each neuron in the

excitatory layer gradually learn the spiking patterns corresponding to the classes

of different representative digits present in the input images. Consequently, the

neurons become more responsive to the class of images representing the digit

associated with the stored synaptic weight. In Fig. 4.12(a), the normalized

synaptic weights (ranging from 0 to 0.3) are plotted in a 28 × 28 array for

each neuron in the excitatory layer before the commencement of training. Fig.

4.12(b) depicts the normalized synaptic weights post-training the network with

60,000 training images, illustrating the diverse representative digits encoded in

the synaptic weights.

Figure 4.12: (a) Normalized synaptic weights plotted in a 28 × 28 array for each neuron in the
excitatory layer before the beginning of the training process and (b) Normalized synaptic weights
after training the network with 60,000 training images illustrating the various representative
digits being stored in the synaptic weights.

The classification accuracy of 75% is obtained using 100 neurons in the exci-
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tatory layer. The accuracy improves to 84% if the number of neurons is increased

to 400. The primary reason for the relatively lower classification accuracy can

be attributed to the architectural configuration employed in training the SNN.

The training process is restricted to a single layer of synapses interconnecting

the input and the excitatory neurons. The classification accuracy obtained in this

work is compared with prior literature in Tab. 4.4. The results demonstrate that

the accuracy obtained in this work is at par with existing literature that adopts a

similar architecture and a comparable number of neurons in the excitatory layer

[34, 49]. It is worth noting that the classification accuracy could be enhanced

by introducing additional layers of neurons into the SNN; however, this would

entail a considerable increase in the time required for training the network. Fur-

thermore, for tasks requiring high accuracy in image classification, the adoption

of a Spiking Deep Belief Network (DBN) or a Spiking Convolutional Neural

Network (CNN) would be more suitable [40, 47].

Table 4.4: Comparison of classification accuracy on MNIST dataset among various SNN
architectures

Reference Architecture Learning Method No. of excitatory neurons Accuracy

[34] SNN [49] STDP (2 layer) 100 57%
400 73%

This work SNN [49] STDP (2 layer) 100 75%
400 84%

[49] SNN [49] STDP (2 layer) 6400 95%
[47] Spiking DBN Offline learning, Conversion 95%
[40] Spiking CNN Offline learning, Conversion 99.1%

4.2 Impact of Variations

To obtain symmetrical STDP characteristics, matching the pair of devices respon-

sible for synaptic plasticity is essential. This matching is necessary to achieve
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equal potentiation and depression in the synaptic weight based on the relative oc-

currence of spiking activity in the pre- and the post-synaptic neuronal layers, thus

facilitating efficient training of the SNN. The matching process accounts for the

differences in the BTBT generation rate between the two devices—specifically,

the BTBT rate in device T2 is lower due to the application of smaller drain and

source voltages. In order to equalize the current flowing into the heavy-metal

(HM) layer of the synapse, the width of device T2 is increased by 20%, as

mentioned earlier.

However, it is important to recognize that the process-induced variations can

potentially lead to asymmetrical STDP characteristics. Such asymmetry would

favor either potentiation or depression in synaptic weight, thereby hampering

efficient training by prolonging the time required to train the network. Process-

induced variations can arise from various sources, but the impact of variations

in parameters like body thickness (TB) and gate oxide thickness (tox) can be

particularly significant. Consequently, this section investigates the effect of

process-induced variations — specifically variations in TB and tox on the STDP

characteristics in the pair of proposed devices.

4.2.1 Body Thickness

The symmetry of the STDP characteristics achieved using the pair of proposed

devices will be influenced by the body thickness (TB) of both devices. To

achieve symmetrical STDP behavior, it is important that both devices have a

body thickness of 10nm, with device T2 having a 20% larger channel width than
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device T1. However, real-world manufacturing processes introduce variations,

resulting in potential deviations from the nominal values.

Considering these variations, each device can have a body thickness (TB)

with some standard deviation (σ) around a mean value (µ). Given the large

number of synapses involved in constructing the SNN, some devices might have

significantly skewed TB values compared to the mean. To investigate the impact

of such process-induced variations, we analyze the resulting STDP characteristics

when the body thickness of each device is independently varied within a range of

±2nm around the mean value of 10nm. An effect of these variations is presented

in Fig. 4.13, which illustrates the resulting STDP characteristics as the body

thickness of both devices is varied within the specified range.

Figure 4.13: Impact of variation in body thickness (TB) on the STDP characteristics.

An increase in TB of the device leads to an increase in its cross-sectional area,
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which subsequently lowers the device’s resistance. Consequently, the current

through the device increases. If a mismatch arises in the TB of the two devices,

such as device T1 having a higher TB compared to device T2, it leads to different

current flow behaviors during different spiking scenarios. For instance, when

the post-synaptic neuron spiking event follows the pre-synaptic neuron spiking

event, there is an increase in current flow into the HM layer. This is due to the

increased cross-sectional area and reduced resistance of device T1. On the other

hand, when the pre-synaptic neuron firing event follows the post-synaptic neuron

firing event, the current flow through the HM layer is relatively smaller. This

is because the device T2 is unable to effectively sink more current, resulting

in a mismatched STDP response. As a result, such asymmetrical behaviors

in the current flow can lead to asymmetrical STDP characteristics, impacting

the efficacy of the learning process in the network. The implications of these

variations will be explained in the next section.

4.2.2 Gate oxide thickness

The gate oxide thickness (tox) of the devices is another factor influencing the

symmetry of the STDP characteristics. In the context of the proposed devices,

when both devices have identical tox values, symmetrical STDP characteristics

were obtained. This condition was met when both devices had tox = 5nm, and

T2 had a 20% larger channel width compared to T1. However, due to the inherent

variations in the manufacturing process, the gate oxide thickness can exhibit

variations across different devices. This variation can lead to asymmetrical
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STDP characteristics. To study this phenomenon, the gate oxide thickness of

both devices was independently varied within a range of ±1nm from the mean

value of 5nm. The resulting STDP characteristics are shown in Fig. 4.14.

Figure 4.14: Impact of variation in oxide thickness (tox) on the STDP characteristics.

As tox is reduced, the coupling between the gate and the channel improves,

leading to a higher rate of BTBT generation when a voltage spike occurs. This re-

sults in a larger accumulation of holes within the channel and a more pronounced

reduction in the potential barrier. Consequently, the current flowing through the

device increases. In cases where there is a mismatch in the gate oxide thickness

between the two devices, such as when T1 has a smaller tox compared to T2, an

increase in current flow into the HM layer is observed when the post-neuronal

spiking event follows the pre-neuronal spiking event. Conversely, when the

pre-neuronal firing event succeeds the post-neuronal firing event, the current
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flow through the HM layer is hindered due to the limited capacity of T2 to sink

additional current.

Figs. 4.13 and 4.14 illustrate that when the pair of devices (T1 and T2) exhibit

skewed device parameters (TB and tox), significant asymmetry is observed in

the resulting STDP characteristics. Such asymmetry can negatively impact the

training of the SNN. Consequently, it becomes crucial to establish quantifiable

boundaries for device variations that yield acceptable STDP characteristics even

in the presence of process-induced variations. To accomplish this, a parameter

called the Skew Difference (SD) has been introduced, which serves as a metric

to gauge the degree of imbalance in the STDP characteristics. This parameter is

defined as follows:

SD = ||Imax(+)| − |Imax(−)|| (4.5)

Imax(+) represents the maximum current flowing through the HM layer in the

positive time window, while Imax(−) represents the maximum current in the

negative time window. The positive time window corresponds to cases where

(tpost − tpre) > 0, and the negative time window corresponds to cases where

(tpost − tpre) < 0. The behavior of SD with the percentage variation in TB and

tox of device T1 with respect to T2 is illustrated in Fig. 4.15.

When the STDP characteristics are symmetrical, SD = 0 is obtained, and

in cases where the STDP characteristics are asymmetrical, SD will be greater

than zero. The acceptable range for SD can vary depending on the specific
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Figure 4.15: SD plotted as a function of the percentage variation in TB and tox of device T1

compared to T2.

application’s requirements. For example, assume that we define acceptable STDP

characteristics for the pair of devices T1 and T2 as having SD = 5µA/µm. From

Fig. 4.15, it is apparent that in order to achieve this SD value, the mismatch

between device parameters (TB and tox) should not exceed 20%.

4.3 Conclusions

In this chapter, using a well-calibrated hierarchical simulation framework, a

Ge-based device has been demonstrated that enables on-chip unsupervised learn-

ing using STDP in an SNN. The proposed circuit generates a current, which

depends exponentially on the temporal correlation of spiking events in the pre-

and the post-synaptic neuronal layer. This current modulates the conductance

of the synapse in accordance with the STDP learning rule. The proposed imple-
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mentation requires 2-3× fewer transistors to implement the STDP learning rule

compared to existing literature and is expected to result in an area- and energy-

efficient implementation of the SNN. Further, the application of the proposed

device to train an SNN to recognize handwritten digits in the MNIST dataset is

demonstrated.
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Chapter 5

A Ternary Spiking Neural Network

In this chapter, an implementation of ternary SNN is proposed. In the first part

of this chapter, a novel device called Dual-Pocket Tunnel Field Effect Transistor

(DP-TFET) is proposed and examined. Subsequently, a pair of DP-TFETs have

been employed to implement a ternary inverter. Later, in the second part of this

chapter, a ternary neuron is implemented using the proposed DP-TFET with

appropriate biasing. The ternary neuron is employed in a ternary SNN, and the

network is trained in an unsupervised manner using STDP. The behavior of the

proposed ternary SNN implementation is investigated in detail.

5.1 Dual-Pocket Tunnel Field-effect Transistor

In this section, a novel device called a Dual-Pocket Tunnel Field Effect Transistor

(DP-TFET) is proposed and examined. The work presented in this subsection is

published in [83].
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5.1.1 Tunnel Field-effect Transistor

This work proposes a special type of Tunnel Field-Effect Transistor (TFET)

called a Dual Pocket Tunnel Field-Effect Transistor. Hence, for completeness,

background information on TFETs is provided in this section. MOSFETs, which

operate on the principle of thermionic emission of carriers over a potential

barrier, are constrained by a fundamental limitation on achieving a minimum

subthreshold swing, typically around 60 mV/decade at room temperature [84].

This limitation poses a challenge when attempting to reduce supply voltage while

maintaining operational speed and hampers further CMOS scaling [85–88]. As

an alternative device, a TFET, which leverages the principle of band-to-band tun-

neling (BTBT), has emerged. TFETs offer distinctive advantages, including low

OFF-state current (IOFF ) and a subthreshold swing (SS) below 60mV/decade

at room temperature [89–92]. These properties enable a concurrent reduction in

both static and dynamic power consumption within integrated circuits, making

TFETs particularly promising for low-voltage, low-power applications. How-

ever, TFETs encounter a limitation in the ON-state current (ION ), particularly

evident at smaller supply voltages [61, 68, 93]. To surmount this challenge,

innovative architectures, novel heterostructures, and advanced materials have

been proposed [94–98, 111].

5.1.2 Device Structure and Simulation Model

Fig. 5.1 shows a schematic cross-sectional view of the proposed DP-TFET.
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Figure 5.1: Structure of the proposed DP-TFET.

It consists of two pockets located on the source side of the device. The

first pocket is n+-doped with a concentration of NNP and length of LNP . The

inclusion of this thin, fully depleted pocket adjacent to the source results in

an increase in the built-in electric field at the source-channel junction [80].

Consequently, a sharp curvature of the conduction band at the source-channel

junction is obtained, which leads to a reduced tunneling width. Hence, the

probability of tunneling increases, and a smaller SS is obtained when compared

to conventional TFET (C-TFET). This TFET with a single pocket adjacent to the

source is referred to as a Single-Pocket TFET (SP-TFET). In this work, a second

pocket, which is p+-doped, with a concentration of NPP and length LPP , is

employed at a controlled distance (LI) from the first pocket. The existence of the

p+ pocket and its interaction with the n+ pocket modify the energy bands at the

source-channel junction such that a sharper band profile is obtained compared

to the SP-TFET. Consequently, the proposed DP-TFET is expected to switch

ON more abruptly and exhibit superior electrical characteristics compared to

C-TFET and SP-TFET. In the later part of this work, the electrical characteristics

of the proposed DP-TFET are compared with those of the SP-TFET and C-TFET.
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The fabrication of the two pockets in the proposed DP-TFET can be done by first

lithographically defining the region for the larger p+ pocket using a suitable mask,

followed by appropriate doping. Then, the second n+ pocket can be fabricated

by employing a tilted implant followed by spike annealing as proposed in [80].

The gate oxide used in this study is SiO2. Other important device parameters

are shown in Tab. 5.1.

Table 5.1: Device Parameters

Device Parameter C-TFET SP-TFET DP-TFET
Supply Voltage (VDD) (V ) 1.0 0.5-1.0 0.5-1.0
Si film thickness (tSi) (nm) 10 10 10
Channel Length (LC) (nm) 25-100 25-100 25-100

Gate Oxide thickness (tox) (nm) 3 3 3
Gate workfunction (ϕm) (eV ) 4.1 4.2 3.9-4.1

Channel Doping (NC) (n-type) (atoms/cm3) 1× 1017 1× 1017 1× 1017

Source Doping (NS) (p-type) (atoms/cm3) 1× 1020 1× 1020 1× 1020

Drain Doping (ND) (n-type) (atoms/cm3) 5× 1018 5× 1018 5× 1018

N+ Pocket Doping (NNP ) (n-type) (atoms/cm3) - 3× 1019 1× 1019-4× 1019

N+ Pocket Length (LNP ) (nm) - 4 2-5
Length of intermediate region between pockets (LI ) (nm) - - 0-12

P+ Pocket Doping (NPP ) (p-type) (atoms/cm3) - - 5× 1018-2.5×1019

P+ Pocket Length (LPP ) (nm) - - 5-30

In this work, the simulations are done in Silvaco Atlas, version 5.22.1.R

[99]. Non-local BTBT model has been used for simulations. Shockley-Read-

Hall (SRH) recombination model has been taken into account. Moreover, the

Band-Gap Narrowing (BGN) model has also been enabled to account for the

presence of highly doped source and pocket regions. A concentration-dependent

mobility model is also enabled. Tunneling through the gate oxide has been

neglected, and the doping profiles are assumed to be abrupt [61, 66–68, 101,

102]. The narrow intrinsic region between the two pockets is prone to quantum

confinement, and a bandgap widening model is implemented to include the

effect of quantum confinement in the region. The model assumes a rectangular
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infinite potential well and assumes zero density of states until the first sub-band

in the conduction band and valence band is encountered, thus giving the effect

of bandgap widening.

5.1.3 Electrical Characteristics

Next, the band diagrams of the proposed DP-TFET are compared with other

devices. Subsequently, the root cause of its superior electrical characteristics is

analyzed. For a fair comparison, in this work, the pocket doping and the pocket

width of the SP-TFET have been optimized to obtain the best performance.

Fig. 5.2(a) compares the band diagrams at the onset of tunneling for the

three TFET configurations, namely C-TFET, SP-TFET, and DP-TFET. For a fair

comparison, the workfunction of the gate is adjusted in all three cases so that the

current in the transfer characteristics takes off at 0 V . The gate voltage at which

the current takes off in the transfer characteristics is referred as VOFF . From

Fig. 5.2(a), it can be inferred that the band profile at the source-channel junction

is the sharpest for DP-TFET, followed by SP-TFET and C-TFET. The narrow

tunneling width in the DP-TFET is expected to boost the ION .

Fig. 5.2(b) compares the transfer characteristics of the three devices. It

is observed that DP-TFET switches ON more abruptly compared to C-TFET

and SP-TFET. To quantify the improvement in the electrical characteristics, we

extract the point subthreshold slope SSpoint from the transfer characteristics as

follows:
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Figure 5.2: Comparison of C-TFET, SP-TFET (NNP = 3 × 1019/cm3, LNP=4 nm) and DP-
TFET (NNP=3 × 1019/cm3, LNP=4 nm, LI=6 nm NPP=1 × 1019/cm3, and LPP=20 nm) at
VDS=1 V (a) band diagrams at the onset of tunneling (b) transfer characteristics

SSpoint =

[
Max

(
d(log(ID))

d(VGS)

)]−1

(5.1)

where ID is the drain current and VGS is the gate voltage. Furthermore, for future

low-power applications average subthreshold slope (SSavg) is an important

measure for a device. Therefore, we have extracted SSavg as follows:

SSavg =
Vth − VOFF

log(IV t)− log(IOFF )
(5.2)

where Vth is the threshold voltage of the transistor, IV t is the drain current when

the gate voltage is Vth and IOFF is the drain current when the gate voltage is

VOFF . In this work, Vth is taken as the gate voltage when the drain current

reaches 1×10−7A/µm with the drain terminal biased at the supply voltage. ION

is the drain current when VGS = VDS = VDD, where VDD is the supply voltage.

Another figure of merit useful in evaluating the performance of sub-60 mV/dec

devices is I60. It is defined as the drain current at which the point subthreshold
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Table 5.2: Comparison of point SS, avg. SS, ION , and I60 for C-TFET, SP-TFET and DP-TFET

TFET Point SS (mV/dec.) Avg. SS (mV/dec.) ION (µA/µm) I60 (µA/µm)
C-TFET 39.3 70 7.7 1×10−5

SP-TFET 24.2 41.8 90 4×10−3

DP-TFET 12.2 25.4 290 6×10−2

swing is 60 mV/dec. The I60 current is essentially independent of the gate

workfunction used, and those devices whose I60 is of the order of 1-10 µA/µm

can be considered as contenders to the state-of-the-art CMOS devices [103].

The extracted electrical parameters for the three devices are shown in Tab.

5.2. The point subthreshold swing reduces by 69% compared to C-TFET and

by 49% compared to SP-TFET. The average subthreshold swing reduces by

64% compared to C-TFET and by 39% compared to SP-TFET. Moreover, the

ION improves by 37× compared to C-TFET and by 3× compared to SP-TFET.

Moreover, the extracted I60 for the DP-TFET is four orders greater than that of

C-TFET and one order more compared to that of SP-TFET. Thus, the proposed

technique of employing a double pocket is effective in improving the electrical

characteristics of a TFET.

In Tab. 5.3, the I60 of the DP-TFET is compared with other TFETs published

in the literature. The I60 of the DP-TFET is lower than many other TFETs

proposed in the literature.

5.2 Ternary Inverter implementation

In this section, a Standard Ternary Inverter (STI) has been implemented by

employing a pair of DP-TFETs. Through the utilization of a well-calibrated
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Table 5.3: DP-TFET’s I60 benchmarked against different TFETs published in literature

Published work Material system Geometry I60 (µA/µm)
Gandhi [104] Si GAA NW 5×10−5

Knoll [105] s-Si Planar 1×10−6

Memisevic [106] InAs/GaAsSb/GaSb GAA NW 0.056

Wu [107]
Si-Ge

Planar
6×10−4

GaAs-InAs 1
Li [57] Ge pocket Planar 0.2

Cheng [108]
Si-Ge (T=77 K)

Planar
0.08

Si-Ge (T=4.9 K) 0.1
DP-TFET
(This work)

Si(EOT=3 nm)
Planar

0.06
Si(EOT=0.75 nm) 0.45

Wang [43] GeSn/SiGeSn Planar 0.7
Lu [109] AlGaSb/InAs Planar 3

Zhang [62] Bi2Se3 2D 10

two-dimensional device simulation framework, it is demonstrated that by care-

fully selecting suitable doping concentrations and lengths for the dual pocket,

the device can exhibit Voltage Transfer Characteristics (VTC) resembling those

of a ternary inverter. This unique VTC configuration encompasses three distinct

stable output voltage levels. The emergence of these ternary inverter characteris-

tics can be attributed to the combined influence of two tunneling mechanisms

intrinsic to the device: (1) gate bias-independent within-channel tunneling and

(2) gate bias-dependent source-channel tunneling. Furthermore, the ternary in-

verter can be operated at various supply voltage levels by controlling the pocket’s

doping concentration. The work presented in this section is published in [112].

5.2.1 Motivation

At sub-micron technologies, the power density has been increasing significantly

with scaling, particularly due to the increasing leakage currents. To mitigate the

increasing power density in the chip, the adoption of multi-valued logic, such as
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ternary logic [113–115] is attractive. Ternary logic introduces three stable states,

in contrast to the binary logic’s two, offering enhanced information storage

capacity per unit area. In the context of Very Large Scale Integration (VLSI) chip

design, this directly translates to a reduced footprint and assists in minimizing

the number of pins and interconnects required in the resultant chip. Numerous

implementations of ternary inverters based on CMOS and Carbon Nanotube

(CNT) Field-effect Transistors have been proposed in the literature [116, 117].

However, CMOS-based designs often necessitate multiple voltage sources and

resistors, leading to increased area and power consumption. The resistive load

CNTFET approach requires an off-chip resistor [118], while CNT diameter-

controllable multi-threshold transistor-based ternary inverters necessitate at least

six transistors [119]. More recently, TFET-based ternary inverters have emerged

as a solution, exhibiting reduced area and static power dissipation compared

to CMOS-based counterparts [120]. Nonetheless, these TFET-based inverters

often face challenges in terms of their Static Noise Margins (SNM), which are

comparatively low.

Ternary TFETs face intrinsic limitations due to their inherently low ON-state

current (ION ), especially when operating at smaller supply voltages, making

them inferior to CMOS technology. However, in the context of neuromorphic

applications that aim to replicate the functioning of the human brain, specific

requirements emerge. These applications prioritize a high degree of paralleliza-

tion and operation at low frequencies [121–123]. In scenarios where low power

consumption, low-frequency operation, and a highly parallel architecture are
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crucial, ternary TFETs can offer advantages over traditional CMOS technology.

5.2.2 Device Structure and Simulation Model

SiGe with 20% Ge content is used as a base material in the proposed DP-TFET

to operate the ternary inverter at a lower supply voltage compared to a Si-based

DP-TFET. An SiO2 gate oxide is employed. Essential simulation parameters of

the device can be found in Table 5.4.
Table 5.4: Device Parameters of the proposed DP-TFET

Device Parameter Symbol Value
Supply Voltage (V ) VDD 0.8

Channel thickness (nm) Tch 10
Channel Length (nm) LC 100

Gate Oxide thickness (nm) tox 3
Gate workfunction (eV ) ϕm 4.0

Channel Doping (n-type) (atoms/cm3) NC 1× 1017

Source Doping (p-type) (atoms/cm3) NS 1× 1020

Drain Doping (n-type) (atoms/cm3) ND 5× 1018

N+ Pocket Doping (n-type) (atoms/cm3) NNP 1.5× 1019

N+ Pocket Length (nm) LNP 4
Length of intermediate region between pockets (nm) LI 6

P+ Pocket Doping (p-type) (atoms/cm3) NPP 2× 1019

P+ Pocket Length (nm) LPP 20

For the present study, simulations have been conducted using Synopsys Sen-

taurus, version N-2017.09-SP2 [100]. The simulations have been performed

by enabling the non-local band-to-band tunneling (BTBT) model, with fitting

parameters ABTBT = 6.5× 1015cm−3s−1 and BBTBT = 8.1× 106V/cm [110].

Shockley-Read-Hall (SRH) recombination model has been taken into account.

Furthermore, the Slotboom Band-Gap Narrowing (BGN) model has been acti-

vated to account for the influence of highly doped source and pocket regions. A

concentration-dependent Philips unified mobility model is also enabled. Tun-

neling through the gate oxide has been neglected. Additionally, for the sake of
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simplicity, abrupt doping profiles have been assumed [61, 66–68, 101, 102]. To

ensure the accuracy of the simulation model, calibration has been carried out

based on the experimental results presented for SiGe TFET in [110]. In Fig. 5.3,

a comparison is shown between the results produced by the simulation model

and the results obtained from measurements for the SiGe device, as reported

in [110].

Figure 5.3: Calibration of the simulation model for SiGe TFET. The measurement data were
taken from Fig. 2(a) in [110].

A good match between the simulation model’s results and the experimental

results confirms the suitability of the simulation model. The narrow intrinsic

region between the two pockets is particularly susceptible to quantum confine-

ment effects. In order to accurately account for this phenomenon, a bandgap

widening model has been incorporated. This model operates under the premise

of an infinite rectangular potential well, assuming a zero density of states until

the first sub-band is encountered. This approach effectively captures the effect

of bandgap widening resulting from quantum confinement [124].
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5.2.3 Device operation

In this section, the operation of DP-TFET is discussed in detail. In Fig 5.4, a

comparison is shown between the band diagrams at two distinct gate voltages:

0V and 0.4V. It becomes evident that tunneling occurs within the channel due to

band overlaps [126]. This phenomenon is attributed to the presence of a highly

doped p+ pocket within the channel. The inset shown in Fig. 5.4 demonstrates

the BTBT generation rate at VGS = 0.4V, thereby confirming the existence of

within-channel tunneling. However, a further increase in the gate voltage to

0.55V does not yield a substantial increase in current (as depicted in Fig. 5.6),

owing to the misaligned valence band in the source and conduction band in the

channel.

Figure 5.4: DP-TFET band diagrams along cut-line AA’ for within-channel BTBT at different
gate voltages (NNP=1.5×1019/cm3, LNP=4 nm, LI=6 nm, NPP=2×1019/cm3, LPP=20 nm). The
inset shows the BTBT generation rate at VGS = 0.4V.
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Once the gate voltage surpasses 0.55V (as shown in Fig. 5.5), an abrupt

increase in current is observed due to the alignment in the valence band in the

source and the conduction band in the channel. It can be observed that the

drain current arising from within-channel tunneling remains unaffected by the

gate voltage and exists even after the onset of source-channel tunneling, a fact

validated by the band diagram presented in Fig. 5.5. The inset within Fig. 5.5

corroborates that the BTBT at the source-channel interface notably exceeds the

within-channel tunneling as it showcases the BTBT generation rate at VGS =

0.8V.

Figure 5.5: DP-TFET band diagrams along cut-line AA’ for BTBT at the source–channel junction
at different gate voltages (NNP=1.5×1019/cm3, LNP=4 nm, LI=6 nm, NPP=2×1019/cm3, LPP=20
nm). The inset shows the BTBT generation rate at VGS = 0.8V.

It should be noted that once the electrons are introduced into the channel

through source-channel tunneling, they encounter a hump in the channel due to

the presence of the highly doped p+ pocket. These electrons must overcome this
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potential barrier through thermionic emission to advance toward the drain and

participate in conduction. This phenomenon explains why the increase in current

does not exhibit the anticipated sharpness in TFETs.

To realize a ternary inverter, a p-type device was designed with similar char-

acteristics as the n-type DP-TFET. The dimensions and doping concentrations

of the pockets for the p-type device correspond to those of the n-type device.

However, the doping type for all regions is the opposite of the n-type DP-TFET.

The p-type device has a gate material with a workfunction of 5.35 eV . All other

device parameters are similar to those specified in Tab. 5.1. As demonstrated

in Fig. 5.6, the n-type and p-type devices exhibit nearly symmetrical transfer

characteristics, a quality that is desirable for an inverter.

Figure 5.6: DP-TFET transfer characteristics (NNP=1.5×1019/cm3, LNP=4 nm, LI=6 nm,
NPP=2×1019/cm3, LPP=20 nm).

In conclusion, the current conduction within the device can be attributed to

two predominant tunneling mechanisms: (1) within-channel tunneling and (2)
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source–channel tunneling. The source–channel tunneling current is accountable

for the binary inverter Voltage-Transfer Characteristic (VTC), while the within-

channel tunneling current contributes to the establishment of a stable third voltage

level around VDD/2.

5.2.4 Ternary inverter

The ternary VTC derived from a pair of p-type and n-type DP-TFETs are shown

in Fig. 5.7. Definitions for various voltage levels associated with the STI are

introduced to facilitate easy explanation. The maximum input voltage that is

regarded as logic ‘0’ is denoted as VIL, with the corresponding output voltage

denoted as VOH (logic ‘2’). Conversely, the minimum input voltage that is

regarded as logic ‘2’ is denoted as VIH , with the corresponding output voltage

being VOL (logic ‘0’). Additionally, there exist two intermediate input voltages,

VIML and VIMH (both representing logic ‘1’), accompanied by corresponding

output voltages (both logic ‘1’) VOMH and VOML, respectively. Achieving a

distinct intermediate state in a ternary inverter necessitates the drain current to

remain unaffected by variations in the gate voltage for VIML ≤ VGS ≤ VOML.

If the current displays significant fluctuations within the above mentioned gate

voltage range, a stable third output voltage level might not be reliably established.

When the gate voltage falls below VIL, the pull-up device operates in sat-

uration while the pull-down device remains in the cut-off state, leading to an

output voltage of VOH . Conversely, when the gate voltage surpasses VIH , the

pull-down device enters saturation while the pull-up device is cut off, resulting
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Figure 5.7: DP-TFET exhibiting ternary inverter VTC (NNP=1.5×1019/cm3, LNP=4 nm, LI=6
nm, NPP=2×1019/cm3, LPP=20 nm).

in an output voltage of VOL. For gate voltages near VDD/2 (i.e., falling within the

range of VIML < Vin < VIMH), both the pull-up and pull-down devices exhibit

weak conduction, causing the output voltage level to rely on the resistive voltage

divider network created between these devices. A stable third output voltage

level mandates a balanced current between the pull-up and pull-down devices.

The butterfly curve, depicted in Fig. 5.8, is generated by reflecting the DP-

TFET ternary VTC discussed earlier. Determining the noise margin entails

measuring the diagonal of the largest square that can be inscribed within the

butterfly curve. Compared to a binary CMOS inverter with only two noise

margins, a ternary inverter has four noise margins. The Static Noise Margin

(SNM) for the ternary inverter is derived from the smallest of these four diagonals,

which is found to be 120 mV. To enhance the SNM, broadening the intermediate

voltage level state within the ternary inverter would be beneficial.
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Figure 5.8: Butterfly curve for DP-TFET ternary VTC (NNP=1.5×1019/cm3, LNP=4 nm, LI=6
nm, NPP=2×1019/cm3, LPP=20 nm).

It is important to highlight that the within-channel tunneling current is sig-

nificantly lower than the source–channel tunneling current, primarily due to

the larger tunneling width as shown in Fig. 5.4. This discrepancy in tunneling

currents can result in time delays that are imbalanced across different transitions,

owing to the substantial difference in average charging and discharging currents.

For instance, suppose the input to the ternary inverter is initially at GND (0V) and

then gradually rises toward VDD. The output will drop from VDD as the output

capacitance discharges. Given the smaller within-channel tunneling current, the

n-type DP-TFET will require more time to discharge the output capacitance to

VDD/2. On the other hand, the transition of the output from VDD/2 to GND (0

level) will be driven by a considerably higher source–channel tunneling current.

Consequently, the transition from VDD to VDD/2 will be slower than the transition

from VDD/2 to GND. In circuit design, these imbalances in delay must be taken
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into account. Nevertheless, the slightly increased delay caused by the lower

within-channel tunneling current can be tolerated in applications that involve

low-frequency neuromorphic operations.

5.2.5 Device Optimization

This section examines the effect of various parameters of the DP-TFET on

the ternary inverter VTC. The DP-TFET parameters are varied one at a time

while keeping the other parameters at their nominal values. The within-channel

tunneling current should be independent of the gate voltage to obtain a stable

intermediate output voltage level. It is also desirable to increase the SNM of

the resulting ternary inverter. We modify the DP-TFET’s parameters to increase

SNM and obtain a stable intermediate output voltage level.

5.2.5.1 Effect of change in NNP

The n+ pocket doping concentration (NNP ) is varied from 1× 1019 − 2× 1019

cm−3 around its nominal value of 1.5 × 1019cm−3 while keeping the other

parameters at their nominal values (LNP= 4nm, Li= 6nm, NPP= 2× 1019 cm−3,

LPP= 20nm). It can be observed from the band diagram in Fig. 5.9(a) that an

increase in NNP results in an increase in the sharpness of the band profile at the

source-channel junction. Consequently, a higher NNP results in an earlier onset

of source-channel tunneling than a lower NNP . Further, NNP should be chosen

to obtain symmetrical ternary inverter voltage transfer characteristics. If NNP

is increased to 2× 1019cm−3, then the tunneling initiates at the source-channel
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junction at a much smaller VGS (0.5V), and ternary inverter VTC can be obtained

at a smaller VDD (0.65V). Thus, a higher NNP may be used for low-power

applications. However, the SNM of the resulting ternary inverter would be lower

in this case.

Figure 5.9: Band diagram and corresponding transfer characteristics for different NNP (LNP=
4nm, Li= 6nm, NPP= 2×1019 cm−3, LPP= 20nm) demonstrating earlier onset of source-channel
tunneling at higher NNP .

5.2.5.2 Effect of change in LNP

The n+ pocket length (LNP ) is varied from 3 - 5 nm around its nominal value

of 4 nm while keeping the other parameters at their nominal values (NNP=

1.5×1019cm−3, Li= 6nm, NPP= 2×1019 cm−3, LPP= 20nm). It can be observed

from the band diagram in Fig. 5.10(a) that an increase in LNP increases the

sharpness of the band profile at the source-channel junction. Consequently, a

larger LNP results in an earlier onset of source-channel tunneling than a smaller

LNP . Thus, by opting for a higher LNP , the ternary inverter could be operated at

a smaller supply voltage but at the cost of a decrease in SNM. As a trade-off, the

LNP of 4 nm is selected, corresponding to the ternary inverter being operated at
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VDD=0.8V and an SNM of 120mV.

Figure 5.10: Band diagram and corresponding transfer characteristics for different LNP (NNP=
1.5× 1019cm−3, Li= 6nm, NPP= 2× 1019 cm−3, LPP= 20nm) demonstrating earlier onset of
source-channel tunneling at higher LNP .

5.2.5.3 Effect of change in Li

The length of the intrinsic region between the two pockets (Li) is varied from 4 -

8 nm around its nominal value of 6 nm while keeping the other parameters at

their nominal values (NNP= 1.5× 1019cm−3, LNP= 4nm, NPP= 2× 1019 cm−3,

LPP= 20nm). It can be observed from the band diagram in Fig. 5.11(a) that as

Li decreases, the abruptness in the change of doping in the channel from n-type

to p-type increases, while it is more gradual for a larger Li. Thus, a lower Li

results in an early reversal of the band profile while going from the n+ pocket to

the p+ pocket and a delayed onset of source-channel tunneling.

5.2.5.4 Effect of change in NPP

The p+ pocket doping concentration (NPP ) is varied from 1.5 × 1019 - 2.5 ×

1019 cm−3 around its nominal value of 2 × 1019cm−3 while keeping the other
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Figure 5.11: Band diagram and corresponding transfer characteristics for different Li (NNP=
1.5× 1019cm−3, LNP= 4nm, NPP= 2× 1019 cm−3, LPP= 20nm) demonstrating earlier onset of
source-channel tunneling at higher Li.

parameters at their nominal values (NNP= 1.5 × 1019cm−3, LNP= 4nm, Li=

6nm, LPP= 20nm). It can be observed from the band diagram in Fig. 5.12(a)

that as NPP is increased, the height of the barrier in the p+ pocket region (hump)

increases, which results in an increase in within-channel tunneling current (due

to increased band overlap). It can be observed that when NPP= 1.5× 1019cm−3,

the height of the barrier is so low that there is no band overlap, and ternary

inverter VTC is not obtained. It can also be observed that the step in the transfer

characteristics is observable till NPP=2.5 × 1019/cm3. With a doping more

than this, the ternary behavior is lost due to monotonically increasing current.

Also, it is expected that as NPP is increased, it would be difficult to obtain a

stable third output voltage level since the gate voltage considerably changes

within-channel tunneling current. A wider intermediate region is obtained for

NPP=2.2× 1019cm−3, resulting in a higher SNM of 140mV.
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Figure 5.12: Band diagram and corresponding transfer characteristics for different NPP (NNP=
1.5× 1019cm−3, LNP= 4nm, NPP= 2× 1019 cm−3, LPP= 20nm).

5.2.5.5 Effect of change in LPP

The p+ pocket length (LPP ) is varied from 15 - 25 nm around its nominal value

of 20 nm while keeping the other parameters at their nominal values (NNP=

1.5× 1019cm−3, LNP= 4nm, Li= 6nm, NPP= 2× 1019cm−3). It can be observed

from the band diagram in Fig. 5.13(a) that as LPP is decreased, the height of

the barrier in the channel reduces. This results in a decrease in band overlap,

and consequently, the within-channel tunneling current reduces, as seen in Fig.

5.13(b). Furthermore, with a smaller LPP , the range of VGS for which the current

is relatively constant is small, which results in a thinner intermediate region and

a smaller SNM.

5.2.6 Variability Analysis

In this section, the impact of variations of the device parameters is analyzed

on the ternary inverter VTC. The p-type device parameters have also been
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Figure 5.13: Band diagram and corresponding transfer characteristics for different LPP (NNP=
1.5× 1019cm−3, LNP= 4nm, NPP= 2× 1019 cm−3, NPP= 2× 1019cm−3).

varied in accordance with the n-type device so as to obtain symmetrical transfer

characteristics.

5.2.6.1 Gate workfunction

As the gate workfunction is varied, it is observed that the transfer characteristics

shift along the X-axis (voltage axis), as demonstrated for the n-type DP-TFET in

Fig. 5.14(a). When the workfunction of the n-type device is increased to 4.1eV,

the source-channel tunneling initiates at a larger gate voltage when compared

to a smaller gate workfunction. Consequently, the within-channel tunneling

current flows for a larger range of gate voltage. The workfunction of the p-type

device was decreased to 5.25eV to obtain symmetrical transfer characteristics.

Due to the current being constant for a larger range of VGS for a larger n-type

gate workfunction, a wider intermediate state was obtained, as shown in Fig.

5.14(b). Thus, appropriate workfunctions need to be chosen for both p-type and

n-type devices to obtain symmetrical ternary VTC and the required width of the
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intermediate region.

Figure 5.14: Effect of changing gate workfunction on (a) transfer characteristics of the TFET (b)
ternary inverter VTC.

5.2.6.2 Gate dielectric thickness

As the gate dielectric thickness tox is reduced, the coupling of the gates with the

channel becomes stronger. Consequently, the onset of source-channel tunneling

occurs at a lower VGS , as shown in the transfer characteristics in Fig. 5.15(a). It

can be observed from Fig. 5.15(b) that for smaller gate dielectric thicknesses

(tox < 2.7nm), the ternary behavior is lost. This is due to the current being

constant for a relatively small range of VGS. Thus, to observe two distinct

mechanisms of tunneling and obtain a stable ternary behavior, tox must be

maintained sufficiently high (tox > 2.7nm).

5.2.6.3 Channel thickness

The channel thickness is varied ±10% around its nominal value of 10 nm. Fig.

5.16(a) and 5.16(b) show the transfer characteristics and the corresponding VTC

for different channel thicknesses. As the channel thickness decreases, the top and
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Figure 5.15: Effect of changing gate dielectric thickness on (a) transfer characteristics of the
TFET (b) ternary inverter VTC.

the bottom gates come closer and control the channel potential more strongly.

As a result, the valence band and the conduction band get misaligned, as shown

in Fig. 5.16(c). Though a hump exists in the channel due to the highly doped

p+ pocket, the tunneling width inside the channel region increases significantly

for a thinner channel (8 nm) compared to a thicker channel (10 nm). Hence,

no within-channel tunneling is observed for a thin-channel (less than 8 nm)

DP-TFET. In contrast, the source–channel tunneling enhances when the channel

is made thinner due to a stronger coupling of the top and the bottom gates.

Therefore, source–channel tunneling initiates at a lower gate voltage for a thinner

channel. The combined result of the above effects is the suppression of the

step-like behavior in the transfer characteristics for a thin-channel DP-TFET.

Consequently, the ternary behavior disappears in the inverter implemented using

thin DP-TFETs. Therefore, to obtain a stable ternary behavior, we need to keep

the thickness of the channel sufficiently high (> 9 nm).
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Figure 5.16: Effect of changing channel thickness on (a) transfer characteristics of the TFET (b)
ternary inverter VTC (c) band diagram and tunneling width for within-channel tunneling.

5.2.6.4 Interface traps

Interface traps (Dit) at the semiconductor–oxide interface can deteriorate device

performance. In TFETs, interface trap charges can also lead to trap-assisted

tunneling (TAT). To account for the interface traps, a fixed charge of ±(5 ×

1012−1×1013)cm−2 is considered at the semiconductor–oxide interface. Hurkx

TAT model has been included to account for tunneling due to traps [100]. Fig.

5.17 shows the transfer characteristics and the corresponding VTC for different

interface fixed trap charges. A positive fixed charge results in an early onset

of source-channel tunneling, resulting in a narrow intermediate level in the

corresponding VTC. Therefore, we should ensure that the interface trap charge
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does not exceed 5× 1012cm−2 to obtain a stable ternary operation.

Figure 5.17: Effect of interface trap charge concentrations (Dit cm-2) on (a) transfer characteristics
of the TFET (b) ternary inverter VTC.

Thus, the design parameters, such as pocket dopings and width, gate workfunc-

tion, gate dielectric thickness, and channel thickness, must be chosen carefully

to obtain a stable ternary operation with appreciable SNM. The optimum design

parameters for the n-type DP-TFET are listed in Tab. 5.4. Further, the work-

function of the n-type (4.0 eV) and p-type (5.35 eV) devices must be matched to

obtain symmetrical ternary VTC. A deviation from these optimized parameters

can result in a deterioration in the SNM of the resulting ternary inverter.

5.3 Ternary Spiking Neural Network

This section proposes a novel implementation of a Ternary SNN and investigates

it using a hierarchical simulation framework. The ternary neuron employed

in the ternary SNN is implemented using the proposed DP-TFET, and the net-

work is trained in an unsupervised manner using STDP. The behavior of the

proposed ternary SNN implementation is investigated in detail. Furthermore, it
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is demonstrated that the proposed ternary SNN can be trained to classify digits

in the MNIST dataset with an accuracy of 82%, which is better (75%) than

that obtained using a binary SNN. Moreover, the runtime required to train the

proposed ternary SNN is 8× less than that required for a binary SNN. The work

presented in this section is published in [125].

5.3.1 Motivation

The classification accuracy obtained by training an SNN using STDP is still

not at par with its ANN counterparts, which are trained in a supervised manner

using the gradient-descent backpropagation algorithm. Moreover, the training

time for SNN is significantly longer in comparison to ANNs. This is because no

learning occurs in the network until some spiking activity exists in the neurons.

This is particularly problematic in deep SNNs comprising multiple layers of

neurons. This is due to the decreased spiking probability of neurons deep in the

network, referred to as vanishing forward-spike propagation. Thus, learning in

deeper network layers is time-consuming and often requires multiple training

epochs. A ternary SNN, comprising a ternary neuron that generates a VDD/2

spike when its membrane potential crosses a threshold, say vthresh1 and a VDD

spike when it crosses a higher threshold vthresh2, can lead to a substantial speedup

in training the SNN. This is due to the larger spiking probability of a ternary

neuron compared to a conventional spiking neuron. Moreover, the ternary

encoding of the rate-based spike train is a more accurate representation of the

input dataset than the binary-encoded rate-based spike train. Fig. 5.18 compares
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the reconstructed image from the MNIST dataset [82] using a binary and a

ternary spike. It can be observed that the reconstructed image with ternary spikes

is a more accurate representation of the input image compared to its binary

counterpart.

Figure 5.18: Comparison of the reconstructed input image in the MNIST dataset (a) Original
image (b) Reconstructed image with binary spikes (c) Reconstructed image with ternary spikes
[82]

A binary spike train of length 350 samples is created by rate encoding the

original grayscale image in the MNIST dataset. The binary reconstructed image

is produced by taking one such sample of the binary spike train. The binary re-

constructed image shows that there is some loss of information as the probability

of spiking activity for a pixel with low intensity is low, and that is represented as

a black pixel in the binary reconstructed image. A ternary spike train is derived

from the binary spike train itself by considering multiple samples from the binary

spike train at a time. We defined 10 windows comprising of 35 samples each

and the spike count was summed across all 35 time instances for each pixel in

the image. This procedure results in the generation of a ternary spike train of 10

time instances for every pixel in the image based on the summed spike count,

in accordance with equation 5.4. The ternary reconstructed image presents one
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such window. It can be observed that a ternary representation is much closer

to the original image than its binary counterpart. Thus, it can be inferred that

more information can be embedded in fewer number of ternary spike train (10

instances) than compared to a binary spike train (350 instances)

5.3.2 Ternary Spiking Neuron

This work employs a Ge-based DP-TFET, as shown in Fig. 5.19, to implement a

ternary spiking neuron.

Figure 5.19: The DP-FET used to implement a ternary spiking neuron.

The ternary spiking neuron outputs a VDD/2 spike when the membrane

potential of the neuron surpasses a threshold, say vthresh1 and a VDD spike when

it crosses a higher threshold vthresh2. The weight of the interconnection between

neurons is stored as the conductance of a synapse using a Magnetic Tunnel

Junction (MTJ) with a Heavy Metal (HM) underlayer. Further, a pair of dual-

pocket FD-SOI MOSFETs are employed to produce a current, that tunes the

synapse’s conductance according to STDP. The gate oxide used is HfO2. Table

5.5 contains other device simulation parameters.

In this work, Germanium is preferred over Silicon. This is attributed to its
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Table 5.5: DP-TFET Ternary Neuron Parameters

Parameter Symbol Value
Channel thickness (nm) Tch 20
Channel Length (nm) LC 100

Gate Oxide thickness (nm) tox 5
Gate workfunction (eV ) ϕm 4.1

Channel Doping (p-type) (atoms/cm3) NC 1× 1017

Source Doping (p-type) (atoms/cm3) NS 1× 1020

Drain Doping (n-type) (atoms/cm3) ND 5× 1018

Source Pocket Doping (n-type) (atoms/cm3) NNP 1.5× 1019

Source Pocket Length (nm) LNP 4
Distance between pockets (nm) LI 6

Channel Pocket Doping (p-type) (atoms/cm3) NPP 3× 1019

Channel Pocket Length (nm) LPP 20

smaller bandgap and the prevalence of a dominant direct tunneling mechanism

[5]. This leads to a higher BTBT generating rate. The non-local BTBT model is

employed with fitting parameters taken from [5]. The detailed simulation model

employed in this study has been presented in section 3.1.

A ternary inverter has been implemented using a DP-TFET, as described

in the previous section. Two tunneling regions exist in the DP-TFET - one

within the channel and another at the source-channel junction. The tunneling

region within the channel comprises a larger tunneling width (shown in Fig.

5.20(a)) than at the source-channel junction (shown in Fig. 5.20(d)). Thus,

the within-channel tunneling current is much smaller in magnitude compared

source-channel tunneling current.

A summed voltage from the pre-synaptic layer of neurons is applied as input

to the gate terminal of the device. Fig. 5.21 shows the summer circuitry used

to sum the pre-synaptic stimuli and generate an input potential for the ternary

neuron, similar to the one used in [16,17]. The integration of charge, however, is
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Figure 5.20: Principle of operation of a ternary spiking neuron (a)-(c) Generation of a VDD/2
voltage spike, and (d)-(f) Generation of a VDD voltage spike.

happening inside the DP-TFET ternary neuron. During the integration phase, the

reset circuitry generates a voltage of 0.3V, which is applied to the drain while

the source terminal is grounded.

The integration of charge inside the device and the generation of VDD/2 and

VDD spikes is now discussed. Fig. 5.22 shows the band diagram along cutline

BB’ showing a decrease in the within-channel tunneling width and an increase
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Figure 5.21: Ternary neuron architecture showing how the pre-synaptic stimuli are summed and
the reset circuitry controlling the potential applied onto the drain terminal.

in the band overlap with an increase in the gate voltage, resulting in an increase

in the within-channel tunneling current.

Figure 5.22: Band diagram along cutline BB’ showing a decrease in tunneling width and an
increase in band overlap with an increase in the gate voltage

In Fig. 5.20(a), the band diagram along cutline BB’ at a gate voltage (VGS =

0.5V ) is shown, illustrating the within-channel tunneling of electrons. As a

consequence, an accumulation of holes occurs in the channel pocket region

within the floating body of the device, leading to a gradual reduction in the
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height of the potential barrier over time, as depicted in Fig. 5.20(b). This

causes a decline in the BTBT generation rate, and a consequent decrease in

the within-channel tunneling current is observed. Simultaneously, due to the

thermionic emission, the accumulated holes in the channel pocket region undergo

leakage into the source, causing an increase in the potential barrier in the same

region. At equilibrium, the rate of holes leaking from the channel pocket region

becomes equal to the rate of holes accumulating in the same region. At this

stage, the current due to within-channel tunneling reaches a threshold value

(Ith1 = 5 × 10−8A/µm), and the drain voltage is removed with the help of a

reset circuitry, causing a rapid decrease in the current, as shown in Fig. 5.20(c).

Note that the drain current has an initial overshoot that crosses Ith1 when VDS

transitions to 0.3V from 0V. The reset circuitry removes the VDS at this stage and

triggers an external circuitry to generate a VDD/2 voltage spike. For smaller gate

voltage (for example, VGS=0.4V), Ith1 is never reached, and meanwhile, there is

an integration of holes in the hump region in the device. Fig. 5.20(c) is shown

only to illustrate the integration of holes (charge) happening in the hump region

of the device with the evolution of the drain current with time.

Once the neuron fires a VDD/2 spike, its drain voltage is removed using the

reset circuitry, and the neuron enters into a refractory state. During the refractory

period, its summed potential is allowed to climb further due to incoming pre-

synaptic stimuli. VDS is re-applied by the reset circuitry after a refractory period

has elapsed. As long as the neuron’s summed potential stays above the threshold

potential (Vth1), it does not fire another VDD/2 spike. However, it may fire a
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VDD spike if it crosses a higher threshold potential, Vth2. In the absence of the

pre-synaptic stimuli, the summed potential decreases with time. Now, after the

refractory period has elapsed, if it goes below Vth1, the neuron can fire a VDD/2

spike again when its potential crosses Vth1.

Once the accumulated potential resulting from the spiking activity of pre-

synaptic neurons (gate voltage) reaches 0.7V, the onset of a source-channel

tunneling current occurs. The presence of a hump in the band diagram in the

channel causes the current flow through the device in a two-step process. First,

BTBT of electrons from the source results in an accumulation of electrons in the

region between the two pockets. Subsequently, due to the thermionic emission,

the accumulated electrons surmount the barrier and reach the drain.

Fig. 5.20(d) displays the band diagram along cutline AA’ at a gate voltage

(VGS = 0.7V ) showing within-channel tunneling of electrons. As a consequence,

holes accumulate in the channel pocket region, gradually reducing the potential

barrier within the channel pocket region over time, as depicted in Fig. 5.20(e).

As the potential barrier reduces, a greater number of electrons that had previously

tunneled due to source-channel tunneling can now reach the drain. This leads

to an increase in the current flowing through the device. Additionally, the

accumulated holes in the channel pocket region leak away into the source,

causing an increase in the height of the potential barrier. At equilibrium, the

rate of holes leaking from the channel pocket region becomes equal to the rate

of holes accumulating in the same region. At this stage, the current reaches

a threshold value (Ith2 = 1 × 10−6A/µm), and the drain voltage is removed,
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causing a rapid decrease in current, as shown in Fig. 5.20(f). At this stage,

an external circuitry is triggered to generate a VDD voltage spike. After the

neuron has fired a VDD voltage spike, the accumulated potential due to pre-

synaptic stimuli is reset to 0V . Such a reset circuitry has been employed in

prior literature [16, 17, 19, 20] as well (for a binary neuron) and can be tailored

for a ternary neuron as well. An external circuitry will be required to generate

the VDD/2 and VDD spikes. A control circuitry will sense when the neuron has

reached the threshold currents Ith1 and Ith2 and trigger the external circuitry to

generate the VDD/2 and VDD spikes respectively.

The energy consumption per spiking event for the VDD/2 spike is ∼0.45

fJ (0.3V × 50nA × 30ns) and for the VDD spike is ∼22.5fJ (0.3V × 1µA ×

75ns). These numbers do not contain the energy consumed by the external firing

circuitry, reset circuitry, and the control circuitry. The actual energy consumption

by the ternary neuron at the system-level is difficult to ascertain and shall depend

on the architecture of the network.

The third state of the ternary neuron can lead to high stand-by power. After

the firing of a VDD/2 spike, the ternary neuron enters into a refractory state,

where its drain voltage is removed, but its gate voltage is allowed to vary with

time and incoming spikes from the pre-synaptic layer of neurons. During the

refractory period, the leakage current is larger than “0” state, but since the drain

voltage is not applied, it is still not very high. Thus, the intermediate stage can

result in a larger stand-by power consumption in the device.
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However, the proposed ternary SNN is expected to deliver a better classifi-

cation accuracy at a smaller energy footprint due to faster convergence of the

weights of synapses (8× lesser inference time, as shown later in section 5.3.4).

This is attributed to the faster learning in the ternary SNN due to occurrence of

VDD/2 spikes and more information being embedded in ternary spikes in compar-

ison to a binary SNN. Thus, even though the implementation of a ternary neuron

can present some overhead in terms of a larger footprint and energy consumption

compared to a binary neuron, it is expected be more energy-efficient from a

system-level standpoint.

5.3.3 Implementation of STDP

This section shows how a pair of Ge-based dual-pocket FD-SOI MOSFETs

can implement unsupervised learning in a ternary SNN using STDP. Fig. 4.7

shows the pair of dual-pocket FD-SOI MOSFETs, which produce a current that

exponentially reduces in magnitude as the duration of the spiking events between

the pre-synaptic and the post-synaptic neurons increases.

A detailed description of the device-circuit co-simulation framework em-

ployed to produce a current, which exponentially reduces in magnitude as the

duration of spiking events between the pre-synaptic and the post-synaptic neu-

rons increases, is explained in section 4.1. The pair of dual-pocket FD-SOI

MOSFETs takes pre- and post-synaptic voltage spikes as inputs to generate a

current, which tunes the synapses’ conductance as per the STDP learning rule. A

pre-synaptic VDD/2 voltage spike can result in a VDD/2 or a VDD post-synaptic
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voltage spike. Similarly, a pre-synaptic VDD voltage spike can result in a VDD/2

or a VDD post-synaptic voltage spike. We choose the VDD/2 voltage spike of

magnitude -0.6V and the VDD voltage spike of magnitude -0.7V. This is because

the BTBT generation rate reduces exponentially with the applied voltage. Fig.

5.23 shows the current generated by the pair of dual-pocket FD-SOI MOSFETs

for different pre- and post-synaptic firing events, which exponentially reduces as

the duration of the spiking events between the pre-synaptic and the post-synaptic

neurons increases. A current density (J = 1011A/m2) is necessary to displace

the domain wall in a CoFe strip with cross-section 160nm× 0.6nm by 1µm in

30ns [35]. This corresponds to a current of 9.6µA. The peak current generated

by the pair of dual-pocket FD-SOI MOSFETs is around 8µA/µm. Thus, a

gate width of 1− 1.2µm for the MOSFETs would be sufficient to generate this

current.

Figure 5.23: The current generated by the pair of dual-pocket FD-SOI MOSFETs for different
pre and post-synaptic spiking events plotted as a function of the duration of firing events between
the pre- and post-synaptic neurons.

143



5.3.4 Application of Ternary SNN

In this section, the proposed ternary SNN is trained to perform digit classification

in the MNIST dataset using STDP. The results produced from the device- and

circuit-level simulations are utilized to tune the synapse’s weight based on the

interval of firing events between the pre-synaptic and post-synaptic neurons.

The ternary SNN consists of three layers. The first layer contains 784 neurons,

the second (excitatory) and third (inhibitory) layers comprise 800 neurons each.

The first layer’s neurons are completely interconnected with the 800 excitatory

neurons in the second layer through excitatory synapses. Each neuron in the third

layer is connected one-to-one with the neuron in the excitatory layer such that

when an excitatory neuron fires, an inhibitory neuron fires in response. Lateral

inhibition is implemented wherein an inhibitory neuron firing event suppresses

all other excitatory neurons except the one it obtains a connection from. The

ternary SNN is trained by Diehl and Cook’s algorithm [49]. LIF dynamics is

utilized to model the neuron. The LIF neuron’s membrane potential (v(t)) is

governed by the following equation:

τe
dv

dt
= −(v(t)− vrest) + I(t) (5.3)

where vrest signifies neuron’s resting potential, τe denotes the excitatory neuron’s

membrane time constant, and I(t) signifies neuron’s input voltage at time t.

A pre-synaptic neuron spiking event, after being weighted by the excitatory

synapse, results in an increase in the post-synaptic neuron’s membrane potential.

144



When the membrane potential of the neuron reaches the lower threshold value

(vthres1), it emits a VDD/2 spike and enters into its refractory state. At this

stage, its membrane potential is allowed to increase further due to incoming

pre-synaptic stimuli. However, in the absence of incoming voltage spikes, the

membrane potential decreases with time due to the leaky nature of the neuron.

After the refractory period has elapsed, if the membrane potential goes below

vthres1, the neuron can fire a VDD/2 spike again. However, if it remains above

vthres1, the neuron can emit a VDD spike upon crossing the higher threshold

value (vthres2). After firing a VDD spike, the neuron’s membrane potential is

reset to vreset. Following the firing of a VDD spike, the neuron enters into its

refractory state, where its membrane potential is clamped to vrest. After the

refractory period, another LIF cycle begins. Tab. 5.6 lists the values of a few key

parameters that were employed in the simulation. The time constants’ units are

defined in terms of the time step (dt) utilized in the simulation.

Table 5.6: System-level simulation Parameters

Parameter Symbol Value
Membrane time constant τe 20

Resting potential vrest -65 mV
Reset potential vreset -65 mV

Lower threshold potential vthres1 -58 mV
Higher threshold potential vthres2 -52 mV

Refractory period tref 5

The network is trained using 80 images, selected at random, from each class

of digits in the MNIST dataset. A binary spike train of length 350 × dt for each

pixel in the image is created using rate encoding of pixels in the image. The

frequency of firing activity at a particular pixel is proportional to that pixel’s

intensity in the image. This binary spike train is further converted to a ternary
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spike train. A sample window is defined comprising 35 time instances each,

and the spike count is summed across all 35 time instances for each pixel in the

image. This procedure results in the generation of a ternary spike train of 10

time instances for every pixel in the image based on the summed spike count as

follows:

Spike =


0 if Spike Count ≤ 2

1 if 2 < Spike Count ≤ 4

2 otherwise

(5.4)

The ternary spike train is now fed to the ternary SNN. At the beginning of

the training process, the synapse’s weights are initialized with random values.

When the network receives the ternary spike train, the synaptic weights undergo

modulation through STDP. The synaptic weights slowly settle to the desired

values, and the training is stopped at that point. The classification accuracy

of 75% was obtained using the binary SNN on the same benchmark dataset.

However, the proposed ternary SNN resulted in a higher classification accuracy

of 82%. This is because the ternary encoding of the dataset is a more accurate

representation of the dataset than its binary counterparts since encoding involves

some loss of information. The classification accuracy obtained in this work is

compared against existing literature in Tab. 5.7. It can be observed that the

classification accuracy obtained by training the ternary SNN on the MNIST

dataset is lesser in comparison to [49] and [112], despite employing a larger
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number of neurons in the network. This can be attributed to the fact that only

a subset of the MNIST dataset (80 randomly selected images for each digit) is

presented to the network during training. On the other hand, in [34, 49, 112], the

entire dataset (60,000 images) was used to train the network. This technique

was adopted due to the limited computation resources available. Moreover,

our aim was to compare the classification achievable with a ternary SNN and

compare it with a binary SNN and not to demonstrate the maximum achievable

classification accuracy. Thus, the accuracy drop was due to only a subset of the

dataset provided to train the network.

Table 5.7: Comparison of classification accuracy by training different SNN architectures on
MNIST dataset

Reference Architecture Learning Method
No. of

excitatory
neurons

Accuracy

[112] SNN [49] STDP (2 layer) 400 84%

[34]
SNN [49] STDP (2 layer)

100 57%
400 73%

[49]
SNN [49] STDP (2 layer)

100 82.9%
400 87%
1600 91.9%
6400 95%

This work
(subset of
dataset)

SNN [49]
STDP (2 layer)

800

75%
Ternary

SNN
82%

[47]
Spiking

DBN
Offline learning,

Conversion
95%

[40]
Spiking

CNN
Offline learning,

Conversion
99.1%

Further, due to the smaller ternary spike train (10 time instances) compared

to the much larger binary spike train (350 time instances), the inference time per

image is observed to reduce 8 × for the ternary SNN compared to the binary

spiking neural network. Hence, the system-level simulations demonstrate that
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the proposed ternary spiking neural network can be more accurate and easier to

train than the traditional binary spiking neural network.

5.3.5 Variability analysis

The results presented in this work have been obtained while considering ideal

DP-TFET device characteristics with no variability. Device-to-device variability

has now been considered, as there might be process-induced variations during

the fabrication process. These might impact the behavior of the ternary spiking

neuron and the classification accuracy achievable with the implemented ternary

SNN. Some of the parameters of the DP-TFET that are more susceptible to

process-induced variations are the length of the intrinsic region between the two

pockets (Li), the doping of the n+ pocket (NNP ), the doping of the p+ pocket

(NPP ), the thickness of the gate dielectric (tox) and the positional deviation of

the gate with respect to the source/drain regions. We will analyze the impact

of varying these parameters one at a time while keeping the others fixed on the

DP-TFET ternary neuron characteristics.

5.3.5.1 Impact of n+ pocket doping (NNP )

NNP was varied from 1 × 1019 − 2 × 1019 cm−3 around its nominal value of

1.5 × 1019 cm−3 while keeping the other parameters at their nominal values

(NPP = 3 × 1019 cm−3, LI = 6nm, tox = 5nm). Fig. 5.24 shows the band

diagrams along cutline BB’ for different NNP . It can be observed from the band

diagram that with an increase in the NNP , the sharpness of the band profile at the
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source-channel junction increases. This causes an alignment of the Valence Band

(VB) in the source and the Conduction Band (CB) in the channel at a smaller

VGS compared to the case with a smaller NNP . Thus, the neuron can fire a VDD

spike at a smaller accumulated potential (VGS) compared to the case with a lower

NNP .

Figure 5.24: Band diagram along cutline BB’ for different NNP (NPP = 3 × 1019 cm−3,
LI = 6nm, tox = 5nm)

5.3.5.2 Impact of change in length of intrinsic region between pockets (LI)

LI was varied from 4-8 nm around the nominal value of 6 nm while keeping the

other parameters at their nominal values (NNP = 1.5× 1019 cm−3, NPP = 3×

1019 cm−3, tox = 5nm). Fig. 5.25 shows the band diagrams along cutline BB’

for different Li. It can be observed from the band diagram that as LI decreases,

the abruptness in the change of doping in the channel from n-type to p-type

increases, while it is more gradual for a larger LI . Thus, a lower LI results in

an early reversal of the band profile while going from the n+ pocket to the p+
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pocket. Consequently, a neuron with a lower LI will exhibit a delayed VDD

spiking event (at a higher VGS) compared to the one with a higher LI . It should

be ensured that a minimum distance is maintained between the two pockets;

otherwise, a very high VGS will be required to cause source-channel tunneling.

Such a high VGS might not be achievable, and thus the affected neuron might

never fire a VDD spike.

Figure 5.25: Band diagram along cutline BB’ for different LI (NNP = 1.5 × 1019 cm−3,
NPP = 3× 1019 cm−3, tox = 5nm)

5.3.5.3 Impact of p+ pocket doping (NPP )

NPP was varied from 2.5 × 1019 − 3.5 × 1019cm−3 around the nominal value

of 2.5× 1019cm−3 while keeping the other parameters at their nominal values

(NNP = 1.5 × 1019cm−3, LI = 6nm, tox = 5nm). Fig. 5.26 shows the band

diagrams along cutline BB’ for different NPP . It can be observed from the band

diagram that as NPP increases, the height of the barrier increases. This causes

an increase in band overlap and results in an increase in the within-channel
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tunneling current. Due to this, the neuron fires a VDD/2 spike for a smaller

accumulated potential (VGS) than the neuron with a lower NPP .

Figure 5.26: Band diagram along cutline BB’ for different NPP (NNP = 1.5 × 1019 cm−3,
LI = 6nm, tox = 5nm)

5.3.5.4 Impact of change in thickness of gate dielectric (tox)

tox was varied from 4-6 nm around the nominal value of 5 nm while keeping the

other parameters at their nominal values (NNP = 1.5× 1019 cm−3, LI = 6nm.

NPP = 3× 1019 cm−3). Fig. 5.27 shows the band diagrams along cutline BB’

for different tox. It can be observed from the band diagram below that with

a decrease in tox, the tunneling width for within-channel tunneling decreases,

resulting in an increase in the within-channel tunneling current. Consequently,

the neuron with a thinner tox fires a VDD/2 spike at a smaller VGS compared to

the one with a thicker tox. Also, it can be observed that a neuron with a thinner

tox can fire a VDD spike at a smaller VGS compared to that with a thicker tox.
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Figure 5.27: Band diagram along cutline BB’ for different NPP (NNP = 1.5 × 1019 cm−3,
LI = 6nm. NPP = 3× 1019 cm−3)

5.3.5.5 Impact of change in gate alignment

The results shown so far have considered an ideal alignment of the gate electrode

with respect to the source/drain regions. However, due to process-induced varia-

tions, there may be a misalignment of the gate, resulting in an overlap/underlap

of the gate with respect to the source/drain. An overlap/underlap of up to 5nm is

considered on the source and drain sides around the ideal case while keeping the

pocket parameters at their nominal values (NNP = 1.5× 1019 cm−3, LI = 6nm.

NPP = 3× 1019 cm−3, tox = 5nm). Fig. 5.28 shows the band diagrams along

cutline BB’ for different gate underlap/overlap with respect to the source/drain

regions. It can be observed that with a 5nm underlap of the gate with respect to

the source side, the gate no longer influences the n+ pocket region, and there is

no band bending with an increase in gate voltage. The ternary neuron can never

fire a VDD spike in such a scenario. Hence, the gate underlap can be detrimental
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to the functionality of the device, and this situation should be avoided by allowing

sufficient margins for process-induced variations. As the gate underlap decreases

from 5nm, the gate regains control over the n+ pocket region, and the neuron

can fire a delayed VDD spike. A band profile similar to the ideal gate alignment

is obtained for a gate overlap with the source region. Hence, the gate overlap

is not expected to impact the device functionality significantly. However, the

increased overlap capacitance can impact the dynamic response of the device.

Figure 5.28: Band diagram along cutline BB’ for different gate electrode underlap/overlap with
respect to source/drain regions (NNP = 1.5× 1019 cm−3, LI = 6nm. NPP = 3× 1019 cm−3,
tox = 5nm)

From a system-level standpoint, it can be inferred that due to device-to-device

variability, there can be an earlier or delayed firing event between two neurons

in adjacent layers. For instance, suppose that a neuron in the pre-synaptic layer

was skewed such that it fired a VDD spike earlier than it was supposed to (at a

lower VGS) and a post-synaptic neuron was skewed such that it is skewed to fire

a VDD spike later than it was supposed to (at a higher VGS), or vice-versa, then
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change in the weight of the synapse connecting them would be small as the two

spikes would have been further apart in time. This can lead to a slower training

of the network compared to the case when both neurons are nominal.

5.3.6 Conclusions

The classification accuracy of 75% was obtained using the binary SNN on the

MNIST dataset, as shown in section 4.1.4. However, the proposed ternary SNN

resulted in a higher classification accuracy of 82%. This is because the ternary

encoding of the dataset is a more accurate representation of the dataset than its

binary counterparts since encoding involves some loss of information. Moreover,

due to the smaller ternary spike train (10 time instances) compared to the much

larger binary spike train (350 time instances), the inference time per image is

observed to reduce 8 × for the ternary SNN compared to the binary spiking

neural network. It must be ensured that the process-induced variations do not

result in a large device-to-device variability to avoid training to slow down. In

particular, the two pockets should be fabricated at a minimum controlled distance

from one another, and the gate underlap should be controlled to allow firing

activity for those neurons. Hence, the device-, circuit-, and system-level results

demonstrate that ternary spiking neural networks can be a promising framework

for brain-inspired computing.
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Chapter 6

Conclusion and Future Work

6.1 Summary

Machine Learning and Artificial Intelligence have been gaining a lot of traction

in recent years and have found their use in various applications across different

sectors like healthcare, automotive, finance, etc. Training the current state-of-the-

art ML algorithms using Artificial Neural Networks is highly power intensive.

Neuromorphic Computing, which draws inspiration from the functioning of the

biological brain, presents an energy-efficient solution to train neural networks.

In this thesis, an energy-efficient SNN has been proposed, where training

has been conducted on-chip in an unsupervised manner using STDP. In the

proposed SNN, a LIF neuron has been implemented using a Ge-based PD-SOI

MOSFET, which can directly receive the incoming voltage spikes as input and

avoid energy dissipation in generating a summed potential. The smaller bandgap

with dominant direct tunneling of Ge allows the device to operate at a lower

voltage level. The energy consumption per spike in the proposed LIF neuron
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is 0.07fJ, which is lower than LIF neuron implementations (experimental or

simulated) reported in the literature. A Ferromagnetic Domain Wall (FM-DW)

based device, which has decoupled read and write paths, is used as a synapse in

this work. The conductance of the synapse can be modulated by passing a current

through the Heavy Metal (HM) layer of the FM-DW synapse. Further, a pair

of dual pocket Fully-Depleted Silicon-on-Insulator (FD-SOI) MOSFETs with

dual asymmetric gates can be employed to generate a current, which depends

exponentially on the temporal correlation of spiking events in the pre- and post-

synaptic neuronal layers. This current is fed to the HM layer of the FM-DW

synapse, which in turn modulates the conductance of the synapse in accordance

with the STDP learning rule. The proposed implementation requires 2-3× fewer

transistors and offers a lower latency to implement STDP than existing literature.

While SNNs have proven to be a suitable contender to ANNs due to their

high energy efficiency, their use is still not prevalent. One of the major reasons

preventing the widespread applicability of SNNs is the lack of efficient training

algorithms that efficiently utilize the temporal information embedded in discrete

spikes. The classification accuracy obtained by training an SNN using STDP is

still not at par with its ANN counterparts. Moreover, the time required to train

the SNN is substantially larger compared to ANNs. This is because no useful

computation (learning) occurs in the network until and unless there is some

spiking activity in the network. A ternary SNN, comprising a ternary neuron,

which outputs a VDD/2 spike when the membrane potential of the neuron crosses

a threshold, say vthresh1 and a VDD spike when it crosses a higher threshold
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vthresh2, can result in a substantial speedup in the time required to train the

SNN. This is due to the larger spiking probability of a ternary neuron compared

to a conventional spiking neuron. Moreover, the ternary encoding of the rate-

based spike train is a more accurate representation of the input dataset than

binary encoding. This thesis explores an energy-efficient ternary SNN, where a

ternary neuron has been implemented using a DP-TFET. Two distinct tunneling

mechanisms exist in the device - within-channel tunneling and source-channel

tunneling, which are responsible for the generation of VDD/2 and VDD voltage

spikes, respectively. An FM-DW device is used as a synapse and a pair of

dual-pocket FD-SOI MOSFETs with dual asymmetric gates are employed to

implement on-chip learning using STDP in the ternary SNN. The proposed

ternary SNN can be trained to classify digits in the MNIST dataset with an

accuracy of 82%, which is better (75%) than that obtained using a binary SNN.

Moreover, the runtime required to train the proposed ternary SNN is 8× less

than that required for a binary SNN.

6.2 Future Work

There are numerous ways in which this work can be extended, improved, and

employed for practical applications. The following are some potential future

research directions:

• The behavior of the biological neurons and synapses in the brain is inherently

stochastic in nature. Thus, an artificial Stochastic SNN (SSNN) comprising
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a stochastic neuron and a stochastic synapse can result in a more biologically

plausible implementation than a deterministic SNN due to the inherent

stochasticity present in the biological nervous systems.

• A synapse is the most repetitive element in an SNN. Each neuron in the net-

work often has an average fan-out of 10,000, i.e., each neuron is connected

to 10,000 other neurons via synapses. Thus, the synaptic element should

not only be highly energy-efficient but should present a very small load to

the neuron driving it. The future work of this study involves research into

more energy-efficient synaptic elements with a smaller load compared to

the existing literature. This involves research from the materials perspective

to the system-level implementation of the synaptic element, which can be

deployed in future SNNs.

• Robotics, in particular, is a niche application area that can leverage the

capabilities of SNNs and result in more human-like decision-making. Since

the SNN is a highly energy-efficient architecture, a 3D interconnection of

neurons can result in an area-efficient implementation of the SNN. Lever-

aging the extremely low-energy footprint of the network, a 3D stacking of

neurons will not result in excessive generation of heat. Thus, the future work

for this study involves developing an insight into different SNN topologies

that are amenable to 3D integration.

• Orch theory, postulated by Sir Roger Penrose and Stuart Hameroff, infers

that human cognition is based on quantum computation. The functioning
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of the biological brain itself is not completely understood. Thus, imple-

menting a Neuromorphic Computing framework using deterministic devices

and circuits would be an incorrect approximation of the biological system.

Exploring Neuromorphic Computing from the purview of Quantum Com-

putation can not only lead to a more biologically plausible model of the

biological nervous system but can also help in a better understanding of the

biological nervous system.
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