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Abstract

Self-orthogonal codes, self-dual codes, and linear codes with complementary du-

als (LCD codes) constitute the three most important and well-studied classes of

linear codes. These codes have nice algebraic structures and are of great signifi-

cance both from the practical and theoretical points of view. Self-orthogonal and

self-dual codes have nice connections with the theory of designs and are useful in

constructing secret-sharing schemes with nice access structures. LCD codes are

useful in designing orthogonal direct-sum masking schemes, which protect sensitive

information against side-channel attacks (SCA) and fault injection attacks (FIA).

In the 1990s, it was shown that many binary non-linear codes can be viewed as

Gray images of linear codes over the ring Z4 of integers modulo 4. Since then, much

research has been devoted to studying self-orthogonal, self-dual, and LCD codes

over finite commutative chain rings. In fact, the problem of the determination of

enumeration formulae for self-orthogonal, self-dual, and LCD codes has attracted a

great deal of attention, as these enumeration formulae are useful in classifying such

codes up to equivalence.

In this thesis, we obtain enumeration formulae for all self-orthogonal and self-dual

codes of an arbitrary length over finite commutative chain rings of odd characteris-

tic. As special cases, one can obtain enumeration formulae for self-orthogonal and

self-dual codes over quasi-Galois rings and Galois rings of odd characteristic. How-

ever, we observe that this enumeration technique can not be extended to count all

self-orthogonal and self-dual codes over quasi-Galois rings and Galois rings of even

characteristic. We modify this enumeration technique and provide explicit enumer-

ation formulae for all self-orthogonal and self-dual codes of an arbitrary length over

vii



viii Abstract

quasi-Galois and Galois rings of even characteristic. We also obtain explicit enumer-

ation formulae for all �-LCD codes of an arbitrary length over finite commutative

chain rings. Besides this, we show that the class of �-LCD codes over finite com-

mutative chain rings is asymptotically good. We also show that every free linear

code over a finite commutative chain ring is equivalent to a �-LCD code when the

residue field of the chain ring is of order at least 5. We also explicitly determine all

inequivalent �-LCD codes of length n, rank k and Hamming distance d over a finite

commutative chain ring when k 2 {1, n� 1} and 1  d  n.

We further study additive codes over finite commutative chain rings and their

dual codes with respect to the ordinary trace bilinear form in the Galois additivity

case. We derive necessary and su�cient conditions under which an additive code

over a finite commutative chain ring is (i) self-orthogonal, (ii) self-dual, and (iii)

an additive code with complementary dual (or an ACD code). We further provide

enumeration formulae for all additive self-orthogonal and self-dual codes of an ar-

bitrary length over finite commutative chain rings in certain special cases. We also

count all ACD codes of an arbitrary length over finite commutative chain rings.

We further show that a free additive code over a finite commutative chain ring is a

maximum distance separable code (or an MDS code) if and only if its Torsion code

is an additive MDS code. This motivates us to introduce and study two new classes

of additive codes over finite fields, viz. additive generalized Reed-Solomon (addi-

tive GRS) codes and additive generalized twisted Reed-Solomon (additive GTRS)

codes, which are extensions of linear GRS codes and linear GTRS codes, respec-

tively. Unlike linear GRS codes, we note that additive GRS codes are not MDS

codes in general. We also identify several new classes of additive MDS and almost

MDS codes within the families of additive GRS and GTRS codes. We also note

that, unlike linear codes, the dual code of an additive MDS code need not be an

additive MDS code. We identify several classes of additive MDS codes whose dual

codes are also MDS within the families of additive GRS and GTRS codes. We pro-

vide constructions of additive MDS self-orthogonal, self-dual and ACD codes over

finite fields through additive GRS and GTRS codes. We also obtain several classes

of additive TRS codes that are not monomially equivalent to additive RS codes.

Based on additive MDS codes whose dual codes are also MDS, we provide a perfect
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threshold secret-sharing scheme that can detect cheating, identify a certain number

of cheaters among the participants, and correctly recover the secret.
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1
Introduction

The object of this thesis is

• to enumerate all self-orthogonal and self-dual codes of an arbitrary length over

finite commutative chain rings of odd characteristic.

• to obtain explicit enumeration formulae for all self-orthogonal and self-dual

codes of an arbitrary length over quasi-Galois rings of even characteristic.

• to count all self-orthogonal and self-dual codes of an arbitrary length over

Galois rings of even characteristic.

• to study and enumerate linear codes with complementary �-duals (i.e., �-LCD

codes) over finite commutative chain rings.

• to study and enumerate additive self-orthogonal, additive self-dual, and ad-

ditive codes with complementary duals (ACD codes) over finite commutative

chain rings.

1



2 Introduction

• to introduce and study some new classes of additive MDS and almost MDS

codes over finite fields.

We first proceed to describe the problems that we have explored in this thesis.

1.1 Self-orthogonal and self-dual codes over finite

commutative chain rings

Self-orthogonal and self-dual codes form the two most important and extensively

studied classes of linear codes. These codes have nice connections with the theory

of designs [5, 60] and the theory of modular forms and unimodular lattices [8, 37,

44, 84]. These codes are also useful in constructing quantum error-correcting codes

[4, 57, 93] and designing secret-sharing schemes with nice access structures [17, 39].

This motivated several coding theorists to study these codes and provide methods

to construct these codes [42, 45, 57, 83].

In the 1990s, it was shown that many binary non-linear codes (e.g. Kerdock,

Preparata, Goethals and Delsarte-Goethals codes) can be viewed as Gray images

of linear codes over the ring Z4 of integers modulo 4 [20, 21]. Since then, there

has been much interest in studying self-orthogonal and self-dual codes over finite

commutative chain rings [13, 37, 38, 45, 47, 75–77, 93]. In particular, the problem

of determination of explicit enumeration formulae for self-orthogonal and self-dual

codes over various finite commutative chain rings has also attracted a lot of attention,

as these enumeration formulae are useful in the classification of these two classes

of codes up to equivalence [12, 13, 31, 77, 100]. Below, we summarize the results

known in this direction.

Pless [83] obtained explicit enumeration formulae for self-orthogonal and self-

dual codes over finite fields. Gaborit [45] obtained explicit enumeration formulae

for self-dual codes over the ring Z4 and the quasi-Galois ring Fq[u]/hu2
i. Betty

et al. [13] provided enumeration formula for self-dual codes over the quasi-Galois

ring Fq[u]/hu3
i. Further, with the help of this enumeration formula, they classified

all self-dual codes of lengths 2 and 4 over Fq[u]/hu3
i, where q 2 {2, 3, 4, 5, 7, 8, 9}.

Galvez et al. [47] obtained the enumeration formula for self-orthogonal codes over

the quasi-Galois ring Fq[u]/hu2
i. As a special case of this result, they deduced
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the enumeration formula for self-dual codes over Fq[u]/hu2
i, as derived earlier by

Gaborit [45]. In the same work, they also counted all self-orthogonal codes over

the quasi-Galois ring Fq[u]/hu3
i, where q is an odd prime power. With the help

of these enumeration formulae, they also classified all self-orthogonal and self-dual

codes of lengths 2, 3, 4, 5, 6 and 7 over the ring F2[u]/hu2
i and all self-orthogonal

and self-dual codes of lengths 2, 3, 4, 5 and 6 over the ring F3[u]/hu2
i. Betty and

Munemasa [12] obtained the enumeration formula for all self-orthogonal codes over

the ring Zp2 of integers modulo p
2
, where p is a prime. They also established the

enumeration formula for all even quaternary codes (i.e., self-dual codes over Z4

with the Hamming weight of each codeword divisible by 8). Using this enumeration

formula, they derived the enumeration formula for all Type II quaternary codes (i.e.,

even quaternary codes containing the all-one vector 1 = (1, 1, . . . , 1)) as a special

case. In a related work, Nagata et al. [76] gave a characterization of all self-dual

codes over the ring Zp3 of integers modulo p3, where p is a prime. They also provided

the explicit enumeration formula for all self-dual codes over Zp3 . In a subsequent

work, Nagata et al. [77] obtained the enumeration formula for all self-dual codes

over the ring Zpe of integers modulo p
e, where p is an odd prime and e � 4 is

an integer. In another related work, Nagata et al. [75] explained the sequential

structure of self-dual codes over the ring Z2e of integers modulo 2e, where e � 3 is

an integer. They also provided the enumeration formula for all self-dual codes over

the ring Z2e .

In Chapter 2, we first recall some basic properties of finite commutative chain

rings and their special classes such as Galois rings and quasi-Galois rings. We

further discuss algebraic structures and some basic properties of linear codes over

finite commutative chain rings and their special classes such as self-orthogonal, self-

dual and linear codes with complementary duals (LCD codes). We next state some

basic results on the geometry of symplectic, unitary, orthogonal and quadratic spaces

over finite fields. We also present enumeration formulae for all self-orthogonal and

self-dual codes over finite fields obtained by Pless [83]. These results are needed

to count all self-orthogonal, self-dual and LCD codes over finite commutative chain

rings.

Now let e and r be positive integers, and let p be a prime number. Let Re,r
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denote a finite commutative chain ring with the maximal ideal hui of nilpotency

index e. Then the quotient ring Re,r = Re,r/hui is a finite field and is called the

residue field of Re,r. Suppose that the residue field Re,r is of order pr. One can see

that the characteristic of the chain ring Re,r is a power of p. When e = 1, we note

that R1,r ' Fpr and that the enumeration formulae for self-orthogonal and self-dual

codes over R1,r are obtained by Pless [83]. So we assume, throughout this thesis,

that e � 2.

In Chapter 3, we assume that the characteristic of the chain ring Re,r is odd, i.e.,

p is an odd prime. We first provide a recursive method to construct a self-orthogonal

(resp. self-dual) code of the type {k1, k2, . . . , ke} and length n over the chain ring

Re,r from a self-orthogonal (resp. self-dual) code of the type {k1 + k2, k3, . . . , ke�1}

and length n over the finite commutative chain ring Re�2,r = Re,r/hu
e�2

i, and vice

versa, where e � 4 is an integer and k1, k2, . . . , ke are non-negative integers satisfying

2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for d e+1
2 e  i  e. This recur-

sive method gives rise to a recurrence relation between the number of self-orthogonal

(resp. self-dual) codes of the type {k1, k2, . . . , ke} and length n over Re,r and the

number of self-orthogonal (resp. self-dual) codes of the type {k1 + k2, k3, . . . , ke�1}

and length n over the chain ring Re�2,r = Re,r/hu
e�2

i. By repeatedly applying this

recurrence relation, we obtain explicit enumeration formulae for all self-orthogonal

and self-dual codes of a given length and a given type over Re,r. From this, we

obtain enumeration formulae for all self-orthogonal and self-dual codes of an arbi-

trary length over Re,r. As special cases, one can obtain enumeration formulae for

all self-orthogonal and self-dual codes over quasi-Galois and Galois rings of odd

characteristic. With the help of these enumeration formulae and by carrying out

computations in the Magma Computational Algebra System, we classify all self-

orthogonal and self-dual codes of lengths 2, 3, 4 and 5 over the quasi-Galois ring

F5[u]/hu2
i and of lengths 2, 3 and 4 over the quasi-Galois ring F7[u]/hu2

i.

In Chapter 4, we observe that when p = 2 and Re,r = F2r [u]/hue
i (a quasi-

Galois ring of characteristic 2), each self-orthogonal (resp. self-dual) code over

Re,r/hu
e�2

i ' F2r [u]/hue�2
i can not be lifted to a self-orthogonal (resp. self-

dual) code over F2r [u]/hue
i through the construction method employed in Chapter 3.

Thus the enumeration technique employed in Chapter 3 to count all self-orthogonal
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(resp. self-dual) codes over finite commutative chain rings of odd characteristic

can not be extended as it is to enumerate self-orthogonal (resp. self-dual) codes

over the quasi-Galois ring F2r [u]/hue
i. In fact, the enumeration formula for self-

orthogonal codes over the quasi-Galois ring F2r [u]/hue
i is known only when e = 2,

while the enumeration formula for self-dual codes over the ring F2r [u]/hue
i is known

only when e 2 {2, 3}. In this chapter, we provide a modified recursive method to

construct self-orthogonal and self-dual codes of the type {k1, k2, . . . , ke} and length

n over F2r [u]/hue
i from a self-orthogonal code of the same length n and dimension

k1 + k2 + · · · + kd e

2 e over F2r , and vice versa, where n is a positive integer and

k1, k2, . . . , ke are non-negative integers satisfying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+

ke�i+3 + · · · + ki  n for d
e+1
2 e  i  e. Further, by using this modified recursive

method, we obtain explicit enumeration formulae for all self-orthogonal and self-dual

codes of an arbitrary length over F2r [u]/hue
i for each integer e � 2. We also obtain

complete lists of inequivalent self-orthogonal and self-dual codes of lengths 2, 3, 4

and 5 over the ring F2[u]/hu3
i and of lengths 2, 3 and 4 over the ring F4[u]/hu2

i.

Next, let Re,r denote the Galois ring of characteristic 2e and cardinality 2er. The

Teichmüller set Tr of the Galois ring Re,r can be viewed as the finite field of order 2r

under the addition operation � and the multiplication operation of Re,r, where for

a, b 2 Tr, a� b is the unique element in Tr satisfying a� b = (a+ b) (mod 2). When

r = 1, Nagata et al. [75] counted all self-dual codes over the ring Re,1 = Z2e using the

enumeration formula for doubly even codes over T1 = {0, 1} obtained by Gaborit [45,

Th. 7]. When r � 2, we observe that the enumeration technique employed by Nagata

et al. [75] can not be extended as it is to count self-orthogonal and self-dual codes

over Re,r. This is because, when r � 2, one needs to count solutions of the system

(5.4.2) consisting of linear as well as non-linear equations over Tr. When r = 1, the

system (5.4.2) reduces to the system of linear equations over T1 and one can write

down its matrix form representation and count its solutions. However, the same

technique can not be employed to count solutions of the system (5.4.2) over Tr when

r � 2. Besides this, one needs to count certain special linear codes of length n over

Tr, which we shall call doubly even codes over Tr (see Definition 5.2.1 and Section

5.3). When r = 1, Gaborit [45, Th. 7] provided the explicit enumeration formula for

doubly even codes of length n over T1(' F2) by noting that c ·c ⌘ wH(c) (mod 4) for
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all c 2 T
n

1 and further applying the well-known MacWilliams identity for Hamming

weight enumerators of binary linear codes. Nagata et al. [75] applied Theorem 7 of

Gaborit [45] to count self-dual codes over Re,1 = Z2e . However, when r � 2, we note

that c · c ⌘ wH(c) (mod 4) does not hold for all c 2 T
n

r
, and hence the enumeration

technique for counting doubly even codes over T1(' F2), employed in [45], can not

be extended to count doubly even codes over Tr when r � 2. In this chapter, we

first count all doubly even codes over Tr and their two special classes, viz. the codes

containing the all-one vector and the codes that do not contain the all-one vector,

by studying the geometry of a certain special quadratic space over Tr. One can

deduce the enumeration formula for binary doubly even codes obtained in [45, Th.

7] from the enumeration formula for doubly even codes over Tr as a special case,

which gives rise to another proof of Theorem 7 of Gaborit [45]. We further provide

a modified recursive method to construct self-orthogonal and self-dual codes of the

type {k1, k2, . . . , ke} and length n over Re,r from a (k1+k2+ · · ·+kb e

2 c)-doubly even

self-orthogonal code of the same length n and dimension k1+k2+ · · ·+kd e

2 e over Tr,

where n is a positive integer and k1, k2, . . . , ke are non-negative integers satisfying

2k1+2k2+ · · ·+2ke�i+1+ ke�i+2+ ke�i+3+ · · ·+ ki  n for d e+1
2 e  i  e. With the

help of this recursive construction method and the enumeration formulae for doubly

even codes over Tr and their two special classes, we obtain explicit enumeration

formulae for all self-orthogonal and self-dual codes of an arbitrary length over Re,r.

Using these enumeration formulae, we classify all self-orthogonal and self-dual codes

of lengths 2, 3 and 4 over R2,2 up to monomial equivalence.

1.2 �-LCD codes over finite commutative chain

rings

Linear codes with complementary duals (or LCD codes) are linear codes, which

intersect with their respective dual codes trivially. These codes constitute one of

the most important and well-studied classes of linear codes and play a significant

role in counter-measures to passive and active side-channel analyses on embedded

cryptosystems [18, 25, 26, 90]. Besides applications in cryptography, these codes

have several applications in communication systems, consumer electronics, and data
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storage [24, 72]. This motivated many researchers to further study these codes and to

provide several methods to construct these codes [28, 29, 55, 64, 66, 68, 89]. Besides

this, the problem of determination of the explicit enumeration formula for LCD codes

has recently attracted a lot of attention [27, 69, 91], as these enumeration formula

are useful in classifying such codes up to equivalence [3]. Below, we summarize some

of the significant results known in this direction.

Massey [72] gave an algebraic characterization of LCD codes over finite fields

and showed that asymptotically good LCD codes over finite fields exist. He also

showed that LCD codes provide an optimum linear coding solution for the two-user

binary adder channel. Later, Sendrier [89] showed that LCD codes over finite fields

meet the asymptotic Gilbert-Varshamov bound using the hull dimension spectra of

linear codes. Carlet et al. [29] showed that any linear code over the finite field Fq

of order q is equivalent to a Euclidean LCD code over Fq when q > 3 and that any

linear code over the finite field Fq2 of order q
2 is equivalent to a Hermitian LCD

code over Fq2 when q > 2. Liu et al. [67] characterized and studied LCD codes over

finite commutative chain rings in particular and over finite principal ideal rings in

general. In another work [66], they investigated �-LCD codes of length n over the

finite commutative chain ring R, where � is a mapping from R
n into itself satisfying

certain conditions. They also constructed new entanglement-assisted quantum error-

correcting codes with maximal entanglement by using Gray images of �-LCD codes

over the chain ring Fq[u]/hu2
i. In a recent work, Bhowmick et al. [14] showed

that an LCD code over a finite commutative local Frobenius ring is free. They also

derived a necessary and su�cient condition for the existence of an LCD code over

a finite commutative local Frobenius ring. They also identified some new optimal

cyclic LCD codes over the ring Z4 of di↵erent lengths. In a related work, Araya

and Harada [3] gave a complete classification of LCD codes of lengths up to 13 over

F2 and LCD codes of lengths up to 10 over F3. They also explicitly determined all

inequivalent LCD [n, 1, d]-codes and [n, n� 1, d]-codes over F2 and F3.

Now let �0 be an automorphism of Re,r, and let �0 be the corresponding auto-

morphism of the residue field Re,r of Re,r, defined as �0(a + hui) = �0(a) + hui for

all a + hui 2 Re,r. Let � be an automorphism of Rn

e,r
corresponding to the auto-

morphism �0 of Re,r, defined as �(v1, v2, . . . , vn) = (�0(v1), �0(v2), . . . , �0(vn)) for all
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(v1, v2, . . . , vn) 2 R
n

e,r
.

In Chapter 6, we obtain explicit enumeration formulae for all �-LCD codes of an

arbitrary length over the chain ring Re,r when �
2
0 is the identity automorphism of

Re,r. With the help of these enumeration formulae and by applying the classification

algorithm, we classify all Euclidean LCD codes of lengths 2, 3, 4 and 5 over the

quasi-Galois ring F2[u]/hu2
i and of lengths 2, 3 and 4 over the quasi-Galois ring

F3[u]/hu2
i, and all �-LCD codes of lengths 2, 3 and 4 over the quasi-Galois ring

F4[u]/hu2
i, where �0 is an automorphism of F4[u]/hu2

i such that the corresponding

automorphism �0 of the residue field F4 has order 2. Besides this, we show that

the class of �-LCD codes over Re,r is asymptotically good, and that every free

linear [n, k, d]-code over Re,r is equivalent to a �-LCD [n, k, d]-code over Re,r when

|Re,r| > 4. We also explicitly determine all inequivalent �-LCD [n, 1, d]-codes and

[n, n� 1, d]-codes over Re,r for 1  d  n.

1.3 Additive codes over finite commutative chain

rings

Linear codes are further extended to additive codes, which have nice algebraic

structures and are useful in constructing quantum stabilizer codes [15, 22, 93].

Calderbank et al. [22] first introduced and studied additive codes over the finite

field F4 and their dual codes with respect to the ordinary trace bilinear form. They

also constructed quantum error-correcting codes from additive self-orthogonal codes

over F4. Later, Bierbrauer and Edel [15] developed the theory of additive codes

over arbitrary finite fields. In a related work, Hu↵man [52] studied additive codes

over finite fields and their dual codes with respect to the ordinary and Hermitian

trace bilinear forms. He also derived the MacWilliams identity and a Singleton type

bound for additive codes over finite fields. Mahmoudi and Samei [71] studied ad-

ditive codes over Galois rings. They studied algebraic structures of these codes by

establishing a one-to-one correspondence between linear codes over Zpe and additive

codes over the Galois ring GR(pe, r), where p is a prime and e, r are positive inte-

gers. Cao et al. [23] studied cyclic additive codes over Galois rings and provided a

canonical form decomposition for these codes. With the help of this decomposition,
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they further enumerated all cyclic additive codes of an arbitrary length over Galois

rings. Moro et al. [74] studied cyclic additive codes over finite commutative chain

rings with respect to two di↵erent notions of additivity, viz. Galois-additivity and

Eisenstein-additivity. Recently, Sidana and Kashyap [93] constructed entanglement-

assisted quantum error-correcting codes (EAQECCs) from additive codes over finite

commutative local Frobenius rings. They also provided a formula for the minimum

number of entanglement qudits required to construct an EAQECC from an additive

code over a Galois ring.

Now let r � 1, m � 2 and e � 2 be integers. Let

Re,r =
GR(ps, r)[x]

hg(x), ps�1xti

and

Re,rm =
GR(ps, rm)[x]

hg(x), ps�1xti

be two finite commutative chain rings, where g(x) = x
 + p(a�1x

�1 + · · ·+ a1x+

a0) 2 GR(ps, r)[x] is an Eisenstein polynomial with a0 as a unit in GR(ps, r), e =

(s � 1) + t, and 1  t   when s � 2, while t =  when s = 1. Note that Re,r

is a subring of Re,rm. By Theorem 4.3.1 of [16], we see that Re,rm is the Galois

extension of Re,r of degree m. If u := x + hg(x), ps�1
x
t
i, then one can easily see

that e is the least positive integer satisfying u
e = 0 in Re,r (and in Re,rm) and that

hui is the unique maximal ideal of both Re,r and Re,rm. Note that the residue field

Re,r = Re,r/hui of Re,r is of order p
r and the residue field Re,rm = Re,rm/hui of

Re,rm is of order p
rm

. One can easily see that the set R
n

e,rm
of all n-tuples over

Re,rm can be viewed as an Re,r-module under the component-wise addition and the

component-wise scalar multiplication. Now an additive code C of length n over

Re,rm is defined as an Re,r-submodule of Rn

e,rm
.

In Chapter 7, we study additive codes over Re,rm and their dual codes with

respect to the ordinary trace bilinear form. We also study their three special classes,

viz. additive self-orthogonal codes, additive self-dual codes and additive codes with

complementary duals (ACD codes) with respect to the ordinary trace bilinear form.

We also derive necessary and su�cient conditions under which an additive code

over Re,rm is (i) self-orthogonal, (ii) self-dual, and (iii) ACD. Besides this, we derive
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necessary and su�cient conditions for the existence of an additive self-dual code over

Re,rm. As an application of these results, we obtain explicit enumeration formulae

for all additive self-orthogonal and self-dual codes of an arbitrary length over Re,rm

in the following three cases: (i) both p and m are odd (ii) p = 2 and s = 1, and (iii)

p = 2,  = 1 and m is odd. We will also count all ACD codes of an arbitrary length

over Re,rm, where e � 2, r � 1 and m � 2 are arbitrary integers. We also note that

a free additive code C over Re,rm is a maximum distance separable (MDS) code if

and only if its Torsion code Tor1(C) is an additive MDS code over Re,rm, where an

additive code of length n over Re,rm is defined as an Re,r-subspace of R
n

e,rm
.

MDS codes are optimal codes that attain the well-known Singleton bound. These

codes achieve the highest possible Hamming distance for given code length and

size. As the Hamming distance of a code measures its error-detecting and error-

correcting capabilities, these codes exhibit the maximum error-detecting and error-

correcting capabilities for given code length and size. Singleton [94] first introduced

and studied MDS codes, because of their usefulness in constructing constant-weight

binary codes with large sizes and large Hamming distances. Reed and Solomon [86]

introduced and studied generalized Reed-Solomon (GRS) codes, constituting the

most important and well-studied class of linear MDS codes. These codes are useful

in improving the reliability of compact discs and digital audio tapes due to their

burst error-correction capabilities. These codes are also useful in designing DNA

error-correcting codes [97, 98] and locally recoverable codes for distributive storage

systems [50, 96]. Besides GRS codes, there are other well-known constructions of

linear MDS codes with the help of n-arcs in projective geometry [48, 70] and circulant

Cauchy matrices [87]. In general, MDS codes have found applications in network

coding, cryptography, data storage, and quantum mechanics [9, 35, 43, 50]. Besides

this, these codes have nice connections with geometric objects such as n-arcs and

combinatorial objects such as orthogonal arrays [48, 53]. This motivated several

coding theorists to study these codes and provide construction methods for these

codes [10, 35, 55, 65, 86].

In a recent and related work, Beelen et al. [11] introduced and studied twisted

Reed-Solomon (TRS) codes with one twist as a natural generalization of RS codes

and showed that these codes are not MDS in general. They also identified two
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classes of TRS codes, which are MDS. In another work, Beelen et al. [9] observed

that the dual codes of TRS codes are not TRS codes in general. They further

identified a class of TRS codes whose dual codes are also TRS. Besides this, they

identified a class of TRS codes that resist Sidelnikov-Shestakov and Wieschebrink

attacks on the McEliece cryptosystem. Beelen et al. [10] further studied TRS codes

with ` twists and identified several classes of TRS codes, which are MDS. They also

identified several classes of TRS codes that are not monomially equivalent to RS

codes. Fang and Fu [43] constructed six new classes of MDS self-dual codes over

finite fields through GRS and extended GRS codes. Jin [55] constructed several

classes of MDS LCD codes over finite fields through GRS codes. Liu and Liu [65]

provided methods to construct MDS LCD codes over finite fields through generalized

twisted Reed-Solomon (GTRS) codes with ` twists.

Additive MDS codes over finite fields have nice connections with geometric ob-

jects such as pseudo-arcs [7] and are also useful in constructing quantum stabilizer

codes [61]. Recently, Shi et al. [92] remarked that only the additivity and com-

plementarity properties (and not the linearity property) of a code are needed to

design orthogonal direct-sum masking schemes, which are useful in protecting sen-

sitive information against side-channel attacks (SCA) and fault injection attacks

(FIA). Hence additive codes with complementary duals (ACD codes) can also be

used in counter-measures to passive and active side-channel analyses on embedded

cryptosystems. One can easily see that the security parameter of such schemes is

equal to the Hamming distance of the code. In another recent work, Choi et al. [32]

provided methods to construct ACD codes over finite fields. They also listed some

ACD codes with good parameters over F4, F8 and F9, and identified some MDS

ACD codes among these codes.

In Chapter 8, we introduce and study two new classes of additive codes over

finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes and ad-

ditive generalized twisted Reed-Solomon (additive GTRS) codes, which are exten-

sions of linear generalized Reed-Solomon (GRS) codes and generalized twisted Reed-

Solomon (GTRS) codes, respectively. Unlike linear GRS codes, we note that additive

GRS codes are not MDS codes and the dual code of an additive GRS code need not

be an additive GRS code in general. We derive necessary and su�cient conditions
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under which an additive GRS code is MDS. We further apply this result to iden-

tify several new classes of additive MDS codes and a class of additive MDS codes

whose dual codes are also MDS within the family of additive GRS codes. We also

identify several new classes of additive codes that are either MDS or almost MDS

within the family of additive GTRS codes. We also obtain several classes of additive

TRS codes that are not monomially equivalent to additive RS codes. Besides this,

we identify classes of monomially inequivalent additive MDS TRS codes and addi-

tive MDS RS codes, whose dual codes are also MDS. We also provide methods to

construct additive MDS self-orthogonal, self-dual, and ACD codes through additive

GRS and GTRS codes. Based on additive MDS codes whose dual codes are also

MDS, we present a perfect threshold secret-sharing scheme that can detect cheating,

identify a certain number of cheaters among the participants, and correctly recover

the secret.

1.4 Conclusion and future work

In Chapter 9, we mention a brief conclusion and state some interesting open

problems.



2
Some preliminaries

In this chapter, we will first state some basic properties of finite commutative

chain rings. We will also discuss algebraic structures and some basic properties of

linear codes over finite commutative chain rings and their special subclasses such as

self-orthogonal, self-dual and linear codes with complementary duals (LCD codes).

We will next state some basic results on the geometry of symplectic, unitary, or-

thogonal and quadratic spaces over finite fields. We will also present enumeration

formulae for all self-orthogonal and self-dual codes over finite fields obtained by Pless

[83]. These results are needed to count all self-orthogonal, self-dual and LCD codes

over finite commutative chain rings.

2.1 Finite commutative chain rings

A finite commutative ring R with unity is called (i) a local ring if it has a

unique maximal ideal and (ii) a chain ring if all its ideals form a chain under the

13
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set-theoretic inclusion relation. One can easily see that a finite commutative chain

ring has a unique maximal ideal, and hence is a local ring. However, a local ring

need not be a chain ring. For example, one can easily see that the quotient ring

F2[u, v]/hu2
, v

2
, uv � vui is a local ring, but not a chain ring. Now the following

theorem provides a characterization of finite commutative chain rings.

Theorem 2.1.1. [36, Prop. 2.1] For a finite commutative ring R with unity, the

following statements are equivalent:

(a) R is a local ring and the maximal ideal of R is principal.

(b) R is a local principal ideal ring.

(c) R is a chain ring.

If R is a finite commutative chain ring and M is the maximal ideal of R, then

the quotient ring R = R/M is a finite field and is called the residue field of R. Some

examples of finite commutative chain rings are finite fields, quasi-Galois rings and

Galois rings [73].

A quasi-Galois ring is defined as a quotient ring of the form Fq[u]/hue
i, where

Fq is the finite field of order q and e is a positive integer. In particular, when e = 1,

we note that Fq[u]/hui is the finite field Fq. One can easily see that all the ideals of

Fq[u]/hue
i form a chain {0} ⇢ hu

e�1
i ⇢ hu

e�2
i ⇢ · · · hui ⇢ h1i = Fq[u]/hue

i. Thus

by Theorem 2.1.1, the quotient ring Fq[u]/hue
i is a finite commutative chain ring

with the maximal ideal hui.

We will next define Galois rings and state their basic properties. A finite com-

mutative ring R with unity is called a Galois ring if all its zero-divisors (including 0)

form an ideal of R generated by a prime number. Some examples of Galois rings are

finite fields and rings of integers modulo prime powers. If R is a Galois ring whose

zero-divisors (including 0) form an ideal of R generated by a prime number p, then

by Lemmas 14.2 and 14.4 of [101], we see that the ring R has characteristic p
s and

cardinality p
sr
, where s and r are positive integers. Further, for a prime number p

and positive integers s and r, the following theorem provides a method to construct

a Galois ring of characteristic p
s and cardinality p

sr and shows that such a Galois

ring is unique up to isomorphism.
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Theorem 2.1.2. [101] Let p be a prime number and s, r be positive integers. Let Zps

be the ring of integers modulo p
s
, and let Zps [x] be the ring of all polynomials in the

indeterminate x over Zps . Let h(x) 2 Zps [x] be a monic basic irreducible polynomial

of degree r, (such a polynomial h(x) always exists in Zps [x] by Theorem 13.9 of

[101]). Then the quotient ring Zps [x]/hh(x)i is a Galois ring of characteristic ps and

cardinality p
sr
. Furthermore, any Galois ring of characteristic p

s and cardinality p
sr

is isomorphic to the quotient ring Zps [x]/hh(x)i.

By the above theorem, we see that for every prime number p and positive integers

s and r, there exists a unique (up to isomorphism) Galois ring of characteristic p
s

and cardinality p
sr
, which we will denote by GR(ps, r). By Lemma 14.4 of [101], we

see that all the ideals of the Galois ring GR(ps, r) form the chain {0} ⇢ hp
s�1

i ⇢

hp
s�2

i ⇢ · · · ⇢ hpi ⇢ h1i = GR(ps, r). Thus by Theorem 2.1.1, the Galois ring

GR(ps, r) is a chain ring. From this, it follows that the ideal hpi is the maximal ideal

of GR(ps, r) and that the quotient ring GR(ps, r) = GR(ps, r)/hpi is the finite field of

order pr and is called the residue field ofGR(ps, r). Further, by Theorem 14.8 of [101],

we see that there exists an element ⇠ 2 GR(ps, r), which is a root of a monic basic

primitive polynomial of degree r over Zps and has multiplicative order pr � 1. One

can easily see that GR(ps, r) = Zps [⇠] = {a0+a1⇠+ · · ·+ar�1⇠
r�1 : ai 2 Zps for 0 

i  r � 1}. Furthermore, the cyclic group generated by ⇠ is the only subgroup of

the unit group of GR(ps, r), which is isomorphic to the multiplicative group of the

residue field GR(ps, r). The set {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} is called the Teichmüller set of

the Galois ring GR(ps, r). By Theorem 14.8 of [101], we see that each element in the

Galois ring GR(ps, r) can be uniquely expressed as a0 + a1p+ a2p
2 + · · ·+ as�1p

s�1
,

where a0, a1, a2, . . . , as�1 2 {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

}.

Now the following theorem provides a method to construct all finite commutative

chain rings as extensions of Galois rings.

Theorem 2.1.3. [73, Th. XVII.5] For a prime number p and positive integers s

and r, the quotient ring

R =
GR(ps, r)[x]

hg(x), ps�1xti

is a finite commutative chain ring, where g(x) = x
+p(a�1x

�1+ · · ·+a1x+a0) 2

GR(ps, r)[x] is an Eisenstein polynomial with a0 as a unit in GR(ps, r) and 1  t  
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when s � 2, while t =  when s = 1. If u := x+ hg(x), ps�1
x
t
i, then the ideal hui is

the unique maximal ideal of R and has nilpotency index e = (s � 1) + t, and the

residue field R = R/hui is of order p
r
. Furthermore, all the ideals of the chain ring

R are given by

{0} ⇢ hu
e�1

i ⇢ hu
e�2

i ⇢ · · · hui ⇢ h1i = R.

Conversely, any finite commutative chain ring is isomorphic to a quotient ring of the

form R for some prime number p, positive integers s, r,  and t, and the Eisentein

polynomial g(x) 2 GR(ps, r)[x].

(The integers p, s, r, and t are called invariants of the chain ring R with the max-

imal ideal of nilpotency index e = (s� 1) + t.)

From this point on, we assume, throughout this thesis, that p is a prime number

and e, r are positive integers. Let Re,r denote a finite commutative chain ring with

the invariants p, s, r, and t, the maximal ideal hui of nilpotency index e = (s�1)+t

and the residue field Re,r = Re,r/hui as the finite field of order pr. By Theorem 2.1.3,

we see that all the ideals of Re,r are given by {0} ⇢ hu
e�1

i ⇢ hu
e�2

i ⇢ · · · ⇢ hui ⇢

h1i = Re,r. Further, we note that |hui
i| = p

r(e�i) for 0  i  e.

Theorem 2.1.4. [73] The following hold.

(a) The characteristic of Re,r is p
s for some positive integer s.

(b) We have |Re,r| = |Re,r|
e

= p
re.

(c) The Galois ring GR(ps, r) is the largest Galois ring contained in Re,r and is

called the coe�cient ring of Re,r. Furthermore, the Teichmüller set Te,r =

{0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} of the coe�cient ring GR(ps, r) is also considered as the

Teichmüller set of the chain ring Re,r.

(d) Each element a 2 Re,r can be uniquely expressed as

a = a0 + ua1 + · · ·+ u
e�1

ae�1, where ai 2 Te,r for 0  i  e� 1,

(such a representation of elements of Re,r is called the Teichmüller representa-

tion). Moreover, a is a unit in Re,r if and only if a0 6= 0.
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(e) If ⇠ is a root of a monic basic primitive polynomial of degree r over Zps , then

GR(ps, r) = Zps [⇠]. Each element a 2 Re,r can also be uniquely expressed as

a =
�1X

i=0

� r�1X

j=0

aij⇠
j
�
u
i
,

where aij 2 Zps for 0  i  t � 1 and 0  j  r � 1, while aij 2 Zps�1 for

t  i  � 1 and 0  j  r � 1.

One can define a canonical epimorphism � : Re,r ! Re,r as a 7! ā = a+ hui for

all a 2 Re,r. Note that the function ��Te,r : Te,r ! Re,r is a bijection.

Next, let �0 be an automorphism of Re,r, and let �0 be the corresponding auto-

morphism of the residue field Re,r of Re,r, defined as

�0(a) = �0(a) + hui = �0(a)

for all a = a + hui 2 Re,r. Let Aut(Re,r) denote the automorphism group of Re,r.

Let Aut1(Re,r) denote the set consisting of all automorphisms �0 of Re,r such that

the corresponding automorphism �0 of Re,r is the identity automorphism, and let

Aut2(Re,r) denote the set consisting of all automorphisms �0 of Re,r such that the

corresponding automorphism �0 of Re,r has order 2. Note that Aut1(Re,r) is a sub-

group of Aut(Re,r). Moreover, when s � 2, we see that e = (s � 1) + t > .

Further, by Theorem 2.1.4(d), we can write u
 = p�h in Re,r, where � 2 Te,r \ {0}

and h = 1+ h1u+ h2u
2 + · · ·+ he�1u

e�1
2 1 + hui with h1, h2, . . . , he�1 2 Te,r. Now

the following theorem provides the automorphism group Aut(Re,r) of Re,r.

Theorem 2.1.5. Let Re,r be a finite commutative chain ring with invariants p, s, r,

and t, where e = (s � 1) + t is the nilpotency index of the unique maximal ideal

hui of Re,r. For 0  b  r � 1, ↵ 2 Te,r and ! 2 1 + hui, let us define a map

�
(b)
↵,! : Re,r ! Re,r as

�
(b)
↵,!

(a) =
�1X

i=0

� r�1X

j=0

aij⇠
jp

b�
↵
i
!
i
u
i for all a =

�1X

i=0

� r�1X

j=0

aij⇠
j
�
u
i
2 Re,r,

where aij 2 Zps for 0  i   � 1 and 0  j  r � 1, while 0  aij < p
s�1 when
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t  i  � 1.

(a) [2, Prop. 1] When s = 1, the automorphism group Aut(Re,r) of Re,r is given

by

Aut(Re,r) = {�
(b)
↵,!

: 0  b  r � 1,↵ 2 Te,r \ {0} and ! 2 1 + hui}.

(b) [1, Prop. 5] When s � 2, we can write u
 = p�h in Re,r, where � 2 Te,r \ {0}

and h = 1+ h1u+ h2u
2 + · · ·+ he�1u

e�1
2 1 + hui with h1, h2, . . . , he�1 2 Te,r.

For 0  b  r � 1, let Jb denote the set of all pairs (↵,!) with ↵ 2 Te,r \ {0}

and ! 2 1 + hui satisfying ↵
 = �

p
b�1 and p!

 = p(1 + h
p
b

1 ↵!u+ h
p
b

2 ↵
2
!
2
u
2 +

· · ·+ h
p
b

e�1↵
e�1

!
e�1

u
e�1)h�1

. Then the automorphism group Aut(Re,r) of Re,r

is given by

Aut(Re,r) = {�
(b)
↵,!

: 0  b  r � 1 and (↵,!) 2 Jb}.

By the above theorem, we see that for each automorphism �0 of Re,r, the cor-

responding automorphism �0 of Re,r is given by �0(⇠) = ⇠
p
b

if �0(⇠) = ⇠
p
b

for some

integer b satisfying 0  b  r� 1. In the following corollary, we explicitly determine

the subgroup Aut1(Re,r) of the automorphism group Aut(Re,r).

Corollary 2.1.1. Let Re,r be a finite commutative chain ring with invariants p, s, r,

and t, where e = (s� 1) + t.

(a) When s = 1, we have

Aut1(Re,r) = {�
(0)
↵,!

: ↵ 2 Te,r \ {0} and ! 2 1 + hui}.

(b) When s � 2, we have

Aut1(Re,r) = {�
(0)
↵,w

: (↵,!) 2 J0},

where J0 is the set of all pairs (↵,!) with ↵ 2 Te,r \ {0} and ! 2 1+ hui satis-

fying ↵ = 1 and p!
 = p(1+h1↵!u+h2↵

2
!
2
u
2+ · · ·+he�1↵

e�1
!
e�1

u
e�1)h�1

.
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In the following corollary, we explicitly determine the subset Aut2(Re,r) of the

automorphism group Aut(Re,r).

Corollary 2.1.2. Let Re,r be a finite commutative chain ring with invariants p, s, r,

and t, where e = (s� 1) + t. When r is odd, we have Aut2(Re,r) = ;.

(a) When r is even and s = 1, we have

Aut2(Re,r) = {�
(r/2)
↵,!

: ↵ 2 Te,r \ {0} and ! 2 1 + hui}.

(b) When r is even and s � 2, we have

Aut2(Re,r) = {�
(r/2)
↵,w

: (↵,!) 2 Jr/2},

where Jr/2 is the set of all pairs (↵,!) with ↵ 2 Te,r \ {0} and ! 2 1 +

hui satisfying ↵
 = �

p
r/2�1 and p!

 = p(1 + h
p
r/2

1 ↵!u + h
p
r/2

2 ↵
2
!
2
u
2 + · · · +

h
p
r/2

e�1↵
e�1

!
e�1

u
e�1)h�1

.

The following lemma is quite useful in counting all self-orthogonal and self-dual

codes over finite commutative chain rings.

Lemma 2.1.1. [12] Let A 2 Mk⇥n(Re,r) be a matrix of rank k. Let us define a map

�A : Mk⇥n(Re,r) ! Mk⇥k(Re,r) as

�A(N) = AN
t +NA

t for all N 2 Mk⇥n(Re,r).

The map �A is an Re,r-linear transformation with image

�A(Mk⇥n(Re,r)) =

8
<

:
Altk(Re,r) if p = 2;

Symk(Re,r) if p is odd.

Proof. It follows from Lemma 3.1 of Betty et al. [12].

Now in the following section, we will discuss algebraic structures of linear codes

over the chain ring Re,r and their dual codes.
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2.2 Linear codes over finite commutative chain

rings

Let n be a positive integer, and let Rn

e,r
be the set of all n-tuples over Re,r. The

set Rn

e,r
can be viewed as an Re,r-module under the component-wise addition and

the component-wise scalar multiplication. A linear code C of length n over Re,r is

defined as an Re,r-submodule of Rn

e,r
. The code C is called a free code if it is a free

Re,r-submodule of Rn

e,r
. Elements of the code C are called codewords. The number

of codewords in the code C is called the size of the code C.

Now let us define a map dH : Rn

e,r
⇥R

n

e,r
! N [ {0} as

dH(a, b) = |{i : 1  i  n, ai 6= bi}|

for all a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) 2 R
n

e,r
. For all a, b 2 R

n

e,r
, it is easy

to see that dH(a, b) � 0, and that dH(a, b) = 0 if and only if a = b. Further,

dH(a, b) = dH(b, a) and dH(a, b)  dH(a, c) + dH(c, b) for all a, b, c 2 R
n

e,r
. Thus the

map dH is a metric on R
n

e,r
and is called the Hamming distance on R

n

e,r
.

Next, let C be a linear code of length n over Re,r. The Hamming distance of

the code C, denoted by dH(C), is defined as the smallest of the Hamming distances

between pairs of its distinct codewords. The following theorem states the well-known

Singleton bound for linear codes over Re,r.

Theorem 2.2.1. (Singleton bound) If C is a linear code of length n over Re,r, then

we have

|C|  |Re,r|
n�dH(C)+1

.

A linear code C of length n over Re,r is said to be maximum distance separable

(MDS) if it satisfies |C| = |Re,r|
n�dH(C)+1

.

A generator matrix for a linear code C is defined as a matrix over Re,r whose

rows form a minimal generating set of the code C. Further, two linear codes of length

n over Re,r are said to be permutation equivalent if one code can be obtained from

the other by permuting the coordinate positions only. Now the following theorem

states Proposition 3.2 of Norton and Sǎlǎgean [80].



2.2 Linear codes over finite commutative chain rings 21

Theorem 2.2.2. [80, Prop. 3.2] Every linear code C of length n over Re,r is per-

mutation equivalent to a code with a generator matrix in the standard form

G =

2

66666664

Ik1 A1,1 · · · A1,e�2 A1,e�1 A1,e

0 uIk2 · · · uA2,e�2 uA2,e�1 uA2,e

...
...

...
...

...
...

0 0 · · · u
e�2

Ike�1 u
e�2

Ae�1,e�1 u
e�2

Ae�1,e

0 0 · · · 0 u
e�1

Ike u
e�1

Ae,e

3

77777775

=

2

66666664

T1

uT2

...

u
e�2

Te�1

u
e�1

Te

3

77777775

, (2.2.1)

where the columns are grouped into blocks of sizes k1, k2, . . ., ke�1, ke, ke+1 =

n� (k1 + k2 + · · ·+ ke), the matrix Iki is the ki ⇥ ki identity matrix over Re,r and

the matrix Ai,j 2 Mki⇥kj+1(Re,r) is considered modulo u
j�i+1 for 1  i  j  e, i.e.,

the matrix Ai,j 2 Mki⇥kj+1(Re,r) is of the form Ai,j = A
(0)
i,j

+A
(1)
i,j
u+ · · ·+A

(j�i)
i,j

u
j�i

with the matrices A
(0)
i,j
, A

(1)
i,j
, . . . , A

(j�i)
i,j

2 Mki⇥kj+1(Te,r) for 1  i  j  e.

A linear code C of length n over Re,r is said to be of the type {k1, k2, k3, . . . , ke}

if it is permutation equivalent to a code whose generator matrix in standard form

is of the type (2.2.1). By Theorem 3.5 of Norton and Sǎlǎgean [80], we observe

that the code C of the type {k1, k2, k3, . . . , ke} contains (pr)

eP
i=1

(e�i+1)ki
codewords.

Throughout this thesis, we will denote a linear code C of the type {k1, k2, . . . , ke}

and length n over Re,r with a generator matrix G by C = R
k1+k2+···+ke
e,r

G for our

convenience. The integer k = k1 + k2 + · · · + ke is called the rank of the code C.

Samei and Mahmoudi [88] derived an upper bound on the Hamming distance of a

linear code over Re,r in terms of its rank, which we state in the following theorem.

Theorem 2.2.3. [88, Th. 3.7] If C is a linear code of length n and rank k over

Re,r, then we have

dH(C)  n� k + 1.

A linear code C of length n and rank k over Re,r is said to be maximum distance

with respect to rank (MDR) if it satisfies dH(C) = n� k + 1.

Now two linear codes C and D of length n over Re,r are said to be monomially

equivalent if one code can be obtained from the other by a combination of operations

of the following two types:

A. Permutation of the n coordinate positions of the code.
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B. Multiplication of the code symbols appearing in a given coordinate position

by the units in the ring Re,r.

Otherwise, the codes C and D are said to be monomially inequivalent. One can

easily see that all monomially equivalent linear codes over Re,r have the same size,

rank and Hamming distance.

For a = (a1, a2, . . . , an) 2 R
n

e,r
, let us define ā 2 R

n

e,r
as ā = (ā1, ā2, . . . , ān). Now

given a linear code C of length n over Re,r, the i-th Torsion code of C is defined as

Tori(C) = {ā 2 R
n

e,r
: ui�1

a
0
2 C for some a

0
2 R

n

e,r
satisfying a0 = a}

for 1  i  e. It is easy to see that the i-th Torsion code Tori(C) is a linear code of

length n over Re,r for each i. By Lemma 3.4 of Norton and Sǎlǎgean [80], we note

that if the code C has a generator matrix G in the standard form (2.2.1), then the

i-th Torsion code Tori(C) of the code C has dimension k1 + k2 + · · · + ki over Re,r

and has a generator matrix

2

666664

Ik1 A1,1 A1,2 · · · A1,i�1 · · · A1,e�1 A1,e

0 Ik2 A2,2 · · · A2,i�1 · · · A2,e�1 A2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iki · · · Ai,e�1 Ai,e

3

777775
, (2.2.2)

(throughout this thesis, if A is a g ⇥ h matrix over Re,r with the (i, j)-th entry as

ai,j, then A is a g⇥ h matrix over Re,r whose (i, j)-th entry is ai,j for each i and j).

It is easy to see that

Tori(C) ✓ Tori+1(C)

for 1  i  e� 1 and that

|C| =
eY

i=1

|Tori(C)|.

Next, the Euclidean bilinear form on R
n

e,r
is a mapping · : Rn

e,r
⇥R

n

e,r
! Re,r,

defined as

a · b = a1b1 + a2b2 + · · ·+ anbn

for all a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in R
n

e,r
. It is easy to observe
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that the map · is a non-degenerate and symmetric bilinear form on R
n

e,r
. Now the

(Euclidean) dual code C
? of a linear code C of length n over Re,r is defined as

C
? = {y 2 R

n

e,r
: z · y = 0 for all z 2 C}.

Note that the dual code C
? is also a linear code of length n over Re,r. By The-

orem 3.10 of Norton and Sǎlǎgean [80], we see that if the code C is of the type

{k1, k2, . . . , ke�1, ke}, then its dual code C
? is of the type {n � (k1 + k2 + · · · +

ke), ke, ke�1, . . . , k2}. Further, the code C is said to be (i) self-orthogonal if it satisfies

C ✓ C
?
, (ii) self-dual if it satisfies C = C

? and (iii) linear code with complementary

dual (or an LCD code) if it satisfies C \ C
? = {0}.

Next, one can easily observe that the Euclidean bilinear form · on R
n

e,r
induces

the map · : R
n

e,r
⇥R

n

e,r
! Re,r, defined as

↵ · � = ↵1�1 + ↵2�2 + · · ·+ ↵n�n

for all ↵ = (↵1,↵2, . . . ,↵n) and � = (�1, �2, . . . , �n) in R
n

e,r
. Note that the map · is a

non-degenerate and symmetric bilinear form on R
n

e,r
. Further, if D is a linear code

of length n over Re,r, then its dual code D
? is defined as

D
? = {� 2 R

n

e,r
: ↵ · � = 0 for all ↵ 2 D}.

Note that D? is also a linear code of length n over Re,r. Now the following theorem

provides a necessary and su�cient condition under which a linear code of length n

over Re,r is self-orthogonal or self-dual.

Theorem 2.2.4. Let n � 1, e � 2 be integers, and let k1, k2, . . . , ke+1 be non-

negative integers satisfying n = k1 + k2 + · · · + ke+1. Let C be a linear code of the

type {k1, k2, . . . , ke} and length n over Re,r with a generator matrix G as defined by

(2.2.1). The following hold.

(a) The code C is self-orthogonal if and only if

TiT
t

j
⌘ 0 (mod u

e�i�j+2) for 1  i  j  e and i+ j  e+ 1. (2.2.3)
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(b) A self-orthogonal code C is self-dual if and only if kj = ke�j+2 for 1  j  e.

Proof. Its proof is a straightforward exercise.

Now the following lemma relates the Torsion codes of a self-orthogonal code over

Re,r.

Lemma 2.2.1. [38] Let C be a self-orthogonal code of length n over Re,r. The

following hold.

(a) Tori(C) ✓ Tori(C)? for 1  i  b
e+1
2 c.

(b) Tori(C) ✓ Tore�i+1(C)? for b
e+1
2 c+ 1  i  e.

In particular, if C is a self-dual code of length n over Re,r, then

Tori(C) = Tore�i+1(C)
?

for d
e+1
2 e  i  e.

Proof. (a) Part (a) follows from Lemma 5.1 of Dougherty et al. [38].

(b) Next, let b e+1
2 c+ 1  i  e be fixed, and let c0 2 Tori(C) and y

0
2 Tore�i+1(C).

Then there exist c, y 2 R
n

e,r
such that c̄ = c

0
, ȳ = y

0 and u
i�1

c, u
e�i

y 2 C. Since

C ✓ C
?, we have ue�i

y ·u
i�1

c = 0 for all y 2 R
n

e,r
satisfying ȳ = y

0
2 Tore�i+1(C).

This implies that ȳ · c̄ = 0 for all ȳ 2 Tore�i+1(C), which further implies that

c
0 = c̄ 2 Tore�i+1(C)?. This shows that Tori(C) ✓ Tore�i+1(C)?.

In particular, if C is a self-dual code of length n over Re,r, then one can easily

observe that |Tori(C)| = |Tore�i+1(C)?| for d
e+1
2 e  i  e. From this and by part

(b), we get Tori(C) = Tore�i+1(C)? for d e+1
2 e  i  e.

From the above discussion, we deduce the following:

Remark 2.2.1. If C is a self-orthogonal code of the type {k1, k2, . . . , ke�1, ke} and

length n over Re,r, then we have 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  n

for d
e+1
2 e  i  e. From this, it follows that n � 2(k1 + k2 + · · ·+ k e

2
) + k e

2+1 if e is

even, while n � 2(k1 + k2 + · · ·+ k e+1
2
) if e is odd.
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In particular, if C is a self-dual code of the type {k1, k2, . . . , ke�1, ke} and length

n over Re,r, then we have ki = ke�i+2 for 1  i  e. From this, it follows that

n = 2(k1 + k2 + · · ·+ k e

2
) + k e

2+1 if e is even, while n = 2(k1 + k2 + · · ·+ k e+1
2
) if e

is odd.

In the following section, we will present some basic definitions and results from

groups and geometry, which are needed to count all self-orthogonal, self-dual, and

LCD codes over Re,r.

2.3 Some basic results from groups and geometry

Let V be a finite-dimensional vector space over the finite field Fq, and let ⇡ be

an automorphism of Fq. A map B : V ⇥ V ! Fq is called a ⇡-sesquilinear form on

V if it satisfies the following four properties:

(i) B(a+ b, c) = B(a, c) + B(b, c) for all a, b, c 2 V.

(ii) B(↵a, b) = ↵B(a, b) for all ↵ 2 Fq and a, b 2 V.

(iii) B(a, b+ c) = B(a, b) + B(a, c) for all a, b, c 2 V.

(iv) B(a,↵b) = ⇡(↵)B(a, b) for all ↵ 2 Fq and a, b 2 V.

In particular, when ⇡ is the identity automorphism of Fq, the ⇡-sesquilinear form B

is called a bilinear form on V. The ⇡-sesquilinear form B on V is said to be

• left non-degenerate if there exists a 2 V such that B(a, b) = 0 for all b 2 V,

then a = 0.

• right non-degenerate if there exists b 2 V such that B(a, b) = 0 for all a 2 V,

then b = 0.

• reflexive if there exist a, b 2 V such that B(a, b) = 0, then B(b, a) = 0.

• alternating if ⇡ is the identity automorphism of Fq and B(a, a) = 0 for all

a 2 V.
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• Hermitian if ⇡ is the automorphism of Fq of order 2 and B(a, b) = ⇡(B(b, a))

for all a, b 2 V.

• symmetric if ⇡ is the identity automorphism of Fq and B(a, b) = B(b, a) for all

a, b 2 V.

Note that a symmetric or a Hermitian ⇡-sesquilinear form on V is also reflexive. If B

is a reflexive ⇡-sesquilinear form on V, then B is left non-degenerate on V if and only

if B is right non-degenerate on V, which we will simply refer to as a non-degenerate

⇡-sesquilinear form on V.

Now a formed space over Fq is defined as a pair (V,B), where V is a finite-

dimensional vector space over Fq and B is a ⇡-sesquilinear form on V. The formed

space (V,B) is said to be left (resp. right) non-degenerate if B is a left (resp. right)

non-degenerate ⇡-sesquilinear form on V. The formed space (V,B) is said to be

reflexive if B is a reflexive ⇡-sesquilinear form on V. The dimension of the formed

space (V,B) is defined as the dimension of V as a vector space over Fq, which

is denoted by dimFq
(V ). Further, the Gram matrix of an n-dimensional formed

space (V,B) with respect to the ordered basis {↵1,↵2, . . . ,↵n} of V, denoted by

G(↵1,↵2, . . . ,↵n), is defined as an n⇥ n matrix over Fq, whose (i, j)-th entry is the

element B(↵i,↵j) for 1  i, j  n. By Theorem 24 of [40, Ch. 11], we see that the

determinant of the Gram matrix G(↵1,↵2, . . . ,↵n) can be expressed as

det(G(↵1,↵2, . . . ,↵n)) =
X

⇡02Sn

sgn(⇡0)B(↵1,↵⇡0(1))B(↵2,↵⇡0(2)) · · · B(↵n,↵⇡0(n)),

where Sn is the symmetric group of {1, 2, . . . , n} and the function sgn : Sn !

{1,�1} is called the signum function and is defined as

sgn(⇡0) =

8
<

:
1 if ⇡

0 is an even permutation in Sn;

�1 if ⇡
0 is an odd permutation in Sn.

Now the following theorem provides a characterization of a non-degenerate formed

space in terms of its Gram matrix.

Theorem 2.3.1. [95, Th. 5.1.1] Let (V,B) be an n-dimensional formed space over

Fq with an ordered basis {↵1,↵2, . . . ,↵n}. The formed space (V,B) is left (resp.
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right) non-degenerate if and only if the Gram matrix G(↵1,↵2, . . . ,↵n) of (V,B) is

non-singular.

Next, the formed space (V,B) is called

• a symplectic space if ⇡ is the identity automorphism of Fq and B is an alter-

nating, reflexive and non-degenerate bilinear form on V.

• a unitary space if ⇡ is the automorphism of Fq of order 2 and B is a Hermitian

(and hence reflexive) and non-degenerate ⇡-sesquilinear form on V.

• an orthogonal space (or a finite geometry) if ⇡ is the identity automorphism

of Fq and B is a symmetric (and hence reflexive) and non-degenerate bilinear

form on V.

A formed space (U,BU) is said to be a subspace of the formed space (V,B) if U is

a subspace of V and BU = B �U⇥U . A subspace (U,BU) of the formed space (V,B)

is said to be non-degenerate if the ⇡-sesquilinear form BU is non-degenerate, (or

equivalently, if the ⇡-sesquilinear form B is non-degenerate on U). A direct sum

V = U1 � U2 of two subspaces U1 and U2 of (V,B) is said to be an orthogonal

direct sum of U1 and U2, written as V = U1 ? U2, if B(v1, v2) = 0 for all v1 2 U1

and v2 2 U2. If U is a subspace of the formed space (V,B), then its orthogonal

complement

U
? = {a 2 V : B(a, b) = 0 for all b 2 U}

is also a subspace of the formed space (V,B). In fact, the following hold.

Theorem 2.3.2. [49, Prop. 2.4] Let (V,B) be a finite-dimensional reflexive and

non-degenerate formed space over Fq. If U is a subspace of the formed space (V,B),

then its orthogonal complement

U
? = {v2 2 V : B(v2, v1) = 0 for all v1 2 U}

is also a subspace of the formed space (V,B) and

dimFq
(U?) = dimFq

(V )� dimFq
(U).
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Furthermore, if the formed space (U,B �U⇥U) is non-degenerate, then we have

V = U ? U
?
.

Let (V,B) be a reflexive and non-degenerate formed space over Fq. A non-zero

vector v 2 V is said to be isotropic if it satisfies B(v, v) = 0, while a vector v 2 V is

said to be anisotropic if it satisfies B(v, v) 6= 0. A subspace W of (V,B) is said to be

totally isotropic if it satisfiesW ✓ W
?
. By Theorem 2.3.2, we see that the dimension

of a totally isotropic subspace of (V,B) is at most 1
2 dimFq

(V ). Further, by Theorem

7.4 of [99], we note that all maximal totally isotropic subspaces of (V,B) have the

same dimension. The dimension ⌫ of a maximal totally isotropic subspace of V is

called the Witt index of V . A subspace U of V is said to be anisotropic if it has no

isotropic vector. A pair (w1, w2) of isotropic vectors in the formed space (V,B) is

called a hyperbolic pair if it satisfies B(w1, w2) = 1. If (w1, w2) is a hyperbolic pair

in the formed space (V,B), then the vectors w1 and w2 are linearly independent over

Fq and the subspace hw1, w2i of (V,B) with the basis set {w1, w2} over Fq is called

a hyperbolic line.

The following theorem states some basic properties of finite-dimensional sym-

plectic spaces over finite fields.

Theorem 2.3.3. [99, pp. 69-70] Let (V,B) be an n-dimensional symplectic space

over Fq. Then the dimension n of V is even and the following hold.

(a) The Witt index of the space (V,B) is n

2 .

(b) The space (V,B) admits a Witt decomposition of the form

V = ha1, b1i ? ha2, b2i ? · · · ? han

2
, bn

2
i,

where (a1, b1), (a2, b2), . . . , (an

2
, bn

2
) are hyperbolic pairs in V.

(c) The number In

2 ,0
of isotropic vectors in V is given by In

2 ,0
= q

n
� 1.

(d) The number Hn

2 ,0
of hyperbolic pairs in V is given by Hn

2 ,0
= q

n�1(qn � 1).
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(e) For 0  k 
n

2 , the number of distinct k-dimensional totally isotropic subspaces

of V is given by
k�1Y

i=0

✓
q
n�2i

� 1

qi+1 � 1

◆
.

The following theorem states some basic properties of finite-dimensional unitary

spaces over finite fields.

Theorem 2.3.4. [99, pp. 116-117] Let (V,B) be an n-dimensional unitary space

over Fq2 . Let ⌫ be the Witt index of (V,B). Then the following hold.

(a) The Witt index ⌫ of the space (V,B) is given by

⌫ =

8
<

:

n

2 if n is even;

n�1
2 if n is odd.

(b) The space (V,B) admits a Witt decomposition of the form

V = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? W,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are hyperbolic pairs in V andW is an anisotropic

subspace of V having dimension n� 2⌫  1.

(c) When n � 2, the unitary space (V,B) contains an isotropic vector, and the

total number I⌫,n�2⌫ of isotropic vectors in V is given by

I⌫,n�2⌫ = (qn�1
� (�1)n�1)(qn � (�1)n).

(d) When n � 2, the number H⌫,n�2⌫ of hyperbolic pairs in V is given by

H⌫,n�2⌫ = q
2n�3(qn�1

� (�1)n�1)(qn � (�1)n).

We next proceed to recall some basic results on the geometry of quadratic spaces

over finite fields. A quadratic form on V is defined as a mapping Q : V ! Fq

satisfying the following two properties:



30 Some preliminaries

(i) Q(↵v) = ↵
2Q(v) for all ↵ 2 Fq and v 2 V.

(ii) The map BQ : V ⇥ V ! Fq, defined as

BQ(v1, v2) = Q(v1 + v2)�Q(v1)�Q(v2) for all v1, v2 2 V,

is a symmetric bilinear form on V.

The pair (V,Q) is called a quadratic space over Fq with the associated symmetric

bilinear form BQ. The quadratic space (V,Q) over Fq is said to be non-degenerate

if it satisfies Q�1(0) \ V
?BQ = {0}, where Q

�1(0) = {v 2 V : Q(v) = 0} and

V
?BQ = {w 2 V : BQ(v, w) = 0 for all v 2 V }. Further, a non-zero vector v in the

quadratic space (V,Q) is said to be singular if it satisfies Q(v) = 0. A subspace of

(V,Q) is defined as a pair (W,QW ), where W is a subspace of V and QW = Q �W .

Next, two quadratic spaces (V1,Q1) and (V2,Q2) are said to be isometric if there

exists a vector space isomorphism ⌧ : V1 ! V2 satisfying Q2(⌧(v)) = Q1(v) for all

v 2 V1. We next state the Witt’s Cancellation Theorem for quadratic spaces over

finite fields of odd characteristic.

Theorem 2.3.5. [49, Th. 5.1](Witt’s Cancellation Theorem). Let q be an odd prime

power. If U and W are two non-degenerate isometric subspaces of a quadratic space

(V,Q) over Fq, then the subspaces U
?BQ and W

?BQ are also isometric.

A subspaceW of (V,Q) is said to be totally singular if Q(w) = 0 for all w 2 W. By

Corollaries 5.3 and 12.11 of [49], we note that all maximal totally singular subspaces

of (V,Q) have the same dimension. The dimension of a maximal totally singular

subspace of V is called the Witt index of (V,Q). Further, a subspace U of (V,Q)

is said to be non-singular if it has no singular vector. A hyperbolic pair in (V,Q)

is defined as a pair (v1, v2) of singular vectors v1, v2 2 V satisfying BQ(v1, v2) = 1.

One can easily see that if (v1, v2) is a hyperbolic pair in (V,Q), then the vectors v1

and v2 are linearly independent over Fq and the subspace hv1, v2i of (V,Q) with the

basis set {v1, v2} is called a hyperbolic line in (V,Q). Further, we have the following:

Proposition 2.3.1. [49, Prop. 12.1] If there exists a singular vector in a non-

degenerate quadratic space (V,Q) of dimension at least 2, then there exists a hyper-

bolic pair in (V,Q).
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Now let q be an odd prime power. Here with every symmetric bilinear form

B : V ⇥ V ! Fq, one can associate the quadratic map QB : V ! Fq, defined as

QB(v) =
1

2
B(v, v) for all v 2 V.

It is easy to see that the quadratic space (V,QB) is non-degenerate if and only if the

bilinear form B is non-degenerate. Therefore when q is an odd prime power, one can

associate a non-degenerate quadratic space over Fq with every orthogonal space over

Fq, and vice versa. Now the following theorem states some basic properties of finite-

dimensional non-degenerate quadratic spaces over a finite field of odd characteristic.

Theorem 2.3.6. [99, pp. 138-141] Let q be an odd prime power, and let (V,Q) be

an n-dimensional non-degenerate quadratic space over Fq. Let ⌫ be the Witt index

of (V,Q). Then the following hold.

(a) The Witt index ⌫ of the quadratic space (V,Q) is given by

⌫ =

8
>>>>><

>>>>>:

n�1
2 if n is odd;

n�2
2 if n ⌘ 2 (mod 4) and q ⌘ 3 (mod 4);

n

2 if either n is even and q ⌘ 1 (mod 4) or

n ⌘ 0 (mod 4) and q ⌘ 3 (mod 4).

(b) The space (V,Q) admits a Witt decomposition of the form

V = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? W,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are hyperbolic pairs in V andW is an anisotropic

subspace of V having dimension n�2⌫  2. (The corresponding basis {a1, b1, a2, b2,

. . . , a⌫ , b⌫} [ AW with AW as a basis of W is called a quadratic basis of V.)

(c) When n � 3, the quadratic space (V,Q) contains a singular vector and the

total number I⌫,n�2⌫ of singular vectors in V is given by

I⌫,n�2⌫ = (q⌫ � 1)(qn�⌫�1 + 1).
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(d) The number H⌫,n�2⌫ of hyperbolic pairs in V is given by

H⌫,n�2⌫ = q
n�2(q⌫ � 1)(qn�⌫�1 + 1).

Next, let q be an even prime power. Here if Q is a quadratic form on V, then

the associated symmetric bilinear form BQ on V satisfies BQ(v, v) = 0 for all v 2 V,

i.e., BQ is an alternating form on V. Here the quadratic form Q can not be uniquely

determined in terms of BQ. Further, the quadratic space (V,Q) over Fq is said to

be non-defective if it satisfies V \ V
?BQ = {0}. Otherwise, the quadratic space

(V,Q) over Fq is said to be defective. Now the following theorem states some basic

properties of finite-dimensional non-degenerate quadratic spaces over a finite field

of even characteristic.

Theorem 2.3.7. [49, Prop. 14.47] Let q be an even prime power, and let (V,Q) be

an n-dimensional non-degenerate quadratic space over Fq. Let ⌫ be the Witt index

of (V,Q). Then the following hold.

(a) The Witt index ⌫ of the quadratic space (V,Q) is given by

• ⌫ = n�1
2 if n is odd.

• either ⌫ = n

2 or ⌫ = n�2
2 if n is even.

(b) The space (V,Q) admits a Witt decomposition of the form

V = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? W,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are hyperbolic pairs in V and W is a non-

singular subspace of V having dimension n� 2⌫  2.

(c) The number I⌫,n�2⌫ of singular vectors in V is given by

I⌫,n�2⌫ =

8
>><

>>:

q
n�1

� 1 if ⌫ = n�1
2 ;

(q
n

2�1 + 1)(q
n

2 � 1) if ⌫ = n

2 ;

(q
n

2�1
� 1)(q

n

2 + 1) if ⌫ = n�2
2 .
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(d) The number H⌫,n�2⌫ of hyperbolic pairs in V is given by

H⌫,n�2⌫ =

8
>><

>>:

q
n�2(qn�1

� 1) if ⌫ = n�1
2 ;

q
n�2(q

n

2 � 1)(q
n

2�1 + 1) if ⌫ = n

2 ;

q
n�2(q

n

2 + 1)(q
n

2�1
� 1) if ⌫ = n�2

2 .

We next state the Witt’s Cancellation Theorem for quadratic spaces over finite

fields of even characteristic.

Theorem 2.3.8. [49, Cor. 12.12](Witt’s Cancellation Theorem). Let q be an even

prime power. Let (V,Q) be a non-defective quadratic space over Fq, and let U and

W be two isometric subspaces of V. Then U
?BQ and W

?BQ are also isometric.

For more details, one may refer to [49, 99]. We next recall the following well-

known result:

Theorem 2.3.9. For an integer k satisfying 1  k  n and a prime power q, the

number of distinct k-dimensional subspaces of an n-dimensional vector space over

the finite field Fq of order q is given by the Gaussian binomial coe�cient


n

k

�

q

=
(qn � 1)(qn � q) · · · (qn � q

k�1)

(qk � 1)(qk � q) · · · (qk � qk�1)
.

(Recall that the Gaussian binomial coe�cient
⇥
n

0

⇤
q
is assigned the value 1.)

We also need the following well-known result to discuss the solvability of poly-

nomial equations of the form x
q
� x� ↵ = 0 over Fqm .

Theorem 2.3.10. [62, Th. 2.25] For ↵ 2 Fqm we have Trq,m(↵) = 0 if and only if

↵ = �
q
� � for some � 2 Fqm , where Trq,m : Fqm ! Fq denotes the trace map.

By applying Theorems 2.3.3 and 2.3.6, Pless [83] obtained enumeration formulae

for all self-orthogonal and self-dual codes over finite fields, which we present in the

following section.
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Enumeration formulae for self-orthogonal and self-dual codes

over finite fields

Let Fn

q
denote the n-dimensional vector space consisting of all n-tuples over Fq.

A linear code D of length n and dimension k over Fq is defined as a k-dimensional

subspace of Fn

q
. Further, the mapping · : Fn

q
⇥ Fn

q
! Fq, defined as

↵ · � = ↵1�1 + ↵2�2 + · · ·+ ↵n�n

for all ↵ = (↵1,↵2, . . . ,↵n) and � = (�1, �2, . . . , �n) in Fn

q
, is a non-degenerate and

symmetric bilinear form on Fn

q
and is called the Euclidean bilinear form on Fn

q
. Thus

the pair (Fn

q
, ·) is an n-dimensional orthogonal space over Fq.

Next, if D is a linear code of length n over Fq, then its dual code D? is defined

as

D? = {z 2 Fn

q
: v · z = 0 for all v 2 D},

i.e., the dual code D? is defined as the orthogonal complement of D with respect

to the Euclidean bilinear form ·. It is easy to see that the dual code D? is also a

linear code of length n over Fq. Further, the code D is said to be (i) self-orthogonal

if it satisfies D ✓ D?
, (ii) self-dual if it satisfies D = D?

, and (iii) a linear code

with complementary dual (or an LCD code) if it satisfies D \D? = {0}. Next, by

Theorem 2.3.2, we see that dimFq
(D) + dimFq

(D?) = n. From this, it follows that if

the code D is self-orthogonal, then dimFq
(D)  n

2 . Further, if the code D is self-dual,

then n must be an even integer and dimFq
(D) = n

2 .

Since (Fn

q
, ·) is an orthogonal space, each self-orthogonal code of length n and

dimension k over Fq can be viewed as a k-dimensional totally isotropic Fq-linear

subspace of the orthogonal space (Fn

q
, ·). When n is even, each self-dual code of

length n over Fq (if it exists) can be viewed as an n

2 -dimensional totally isotropic

Fq-linear subspace of the orthogonal space (Fn

q
, ·). Therefore when n is even, there

exists a self-dual code of length n over Fq if and only if the Witt index of the

orthogonal space (Fn

q
, ·) is n

2 . Further, we observe that each LCD code of length n

and dimension k over Fq can be viewed as a k-dimensional non-degenerate Fq-linear

subspace of the orthogonal space (Fn

q
, ·).

In particular, when q is an odd prime power, we observe that the orthogonal
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space (Fn

q
, ·) can also be viewed as a non-degenerate quadratic space with respect to

the quadratic map Q : Fn

q
! Fq, defined as

Q(v) =
1

2
v · v for all v 2 Fn

q
.

By making these observations and by applying Theorems 2.3.3 and 2.3.6, Pless [83]

obtained explicit enumeration formulae for all self-orthogonal and self-dual codes

over finite fields. To state these enumeration formulae, let �q(n, k) denote the num-

ber of distinct self-orthogonal codes of length n and dimension k over Fq, where k, n

are integers satisfying 0  k  n. It is clear that �q(n, 0) = 1 and �q(n, k) = 0 for all

integers k >
n

2 . Now the following theorem provides the explicit value of the number

�q(n, k) for 1  k  b
n

2 c.

Theorem 2.3.11. [83, Th. 2] For an integer k satisfying 1  k  b
n

2 c and a prime

power q, we have

�q(n, k) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

k�1Q
i=0

(qn�1�2i
� 1)

kQ
j=1

(qj � 1)

if n is odd;

(qn�k
� q

n

2�k + q
n

2 � 1)
k�1Q
i=1

(qn�2i
� 1)

kQ
j=1

(qj � 1)

if n is even, q is odd and

(�1)
n

2 is a square in Fq;

(qn�k + q
n

2�k
� q

n

2 � 1)
k�1Q
i=1

(qn�2i
� 1)

kQ
j=1

(qj � 1)

if n is even, q is odd and

(�1)
n

2 is not a square in Fq;

(qn�k
� 1)

k�1Q
i=1

(qn�2i
� 1)

kQ
j=1

(qj � 1)

if both n and q are even.

On considering the case when n is even and on taking k = n

2 in the above

theorem, Pless [83] obtained the enumeration formula �q(n,
n

2 ) for all self-dual codes
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of length n over Fq, which we present in the following theorem.

Theorem 2.3.12. If there exists a self-dual code of length n over Fq, then the

integer n must be even. Further, for an even integer n, the number of self-dual codes

of length n over Fq is given by

�q

⇣
n,

n

2

⌘
=

8
>>>>>><

>>>>>>:

n

2�1Q
i=1

(qi + 1) if q is even;

2

n

2�1Q
i=1

(qi + 1) if q is odd and (�1)
n

2 is a square in Fq;

0 otherwise.

As a consequence, there exists a self-dual code of length n over Fq if and only if

either q is even or q is odd and (�1)
n

2 is a square in Fq.

In Chapters 3 and 4, we will apply Theorems 2.3.11 and 2.3.12 to count all self-

orthogonal and self-dual codes of length n over Re,r. From now on, throughout this

thesis, we will follow the same notations as in Chapter 2.
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Enumeration formulae for

self-orthogonal and self-dual codes

over finite commutative chain

rings of odd characteristic

3.1 Introduction

In this chapter, we obtain explicit enumeration formulae for all self-orthogonal

and self-dual codes of an arbitrary length over finite commutative chain rings of odd

characteristic. With the help of these enumeration formulae, we classify all self-

orthogonal and self-dual codes of lengths 2, 3, 4 and 5 over the chain ring F5[u]/hu2
i

and of lengths 2, 3 and 4 over the chain ring F7[u]/hu2
i. For this, we recall, from

Chapter 2, that Re,r is a finite commutative chain ring with the maximal ideal hui of

37
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commutative chain rings of odd characteristic

nilpotency index e � 2 and the residue field Re,r of order pr, where p is a prime and

r is a positive integer. The set Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} is the Teichmüller set of

the chain ring Re,r. We assume, throughout this chapter, that the characteristic of

the chain ring Re,r is odd, which, by Theorem 2.1.4, holds if and only if p is an odd

prime.

This chapter is organized as follows: In Section 3.2, we consider the case e = 2

and count all self-orthogonal and self-dual codes of an arbitrary length n over the

chain ring R2,r (Theorems 3.2.3 and 3.2.5). In Section 3.3, we consider the case

e = 3 and obtain enumeration formulae for all self-orthogonal and self-dual codes

of an arbitrary length n over the chain ring R3,r (Theorems 3.3.3 and 3.3.5). In

Section 3.4, we first derive a recurrence relation between the enumeration formula

for self-orthogonal (resp. self-dual) codes of the type {k1, k2, . . . , ke} and length n

over Re,r and the enumeration formula for self-orthogonal (resp. self-dual) codes of

the type {k1 + k2, k3, . . . , ke�1} and of the same length n over Re�2,r by providing

a recursive method to construct a self-orthogonal (resp. self-dual) code of the type

{k1, k2, . . . , ke} and length n overRe,r from a self-orthogonal (resp. self-dual) code of

the type {k1+ k2, k3, . . . , ke�1} and of the same length n over Re�2,r and vice versa,

where e � 4 is an integer and k1, k2, . . . , ke are non-negative integers satisfying

2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for d e+1
2 e  i  e (Theorems

3.4.1 and 3.4.3). By repeatedly applying this recurrence relation and enumeration

formulae for self-orthogonal and self-dual codes over R2,r and R3,r (as obtained in

Theorems 3.2.3, 3.2.5, 3.3.3 and 3.3.5), we obtain an enumeration formulae for all

self-orthogonal and self-dual codes of an arbitrary length n over the chain ring Re,r

for all integers e � 4 (Theorems 3.4.5 and 3.4.6). In Section 3.5, we classify all self-

orthogonal and self-dual codes of lengths 2, 3, 4 and 5 over the chain ring F5[u]/hu2
i

and of lengths 2, 3 and 4 over the chain ring F7[u]/hu2
i by applying the classification

algorithm and using the enumeration formulae obtained in Section 3.2.

Throughout this chapter, letNe(n; k1, k2, . . . , ke) andMe(n; k1, k2, . . . , ke) be the

number of distinct self-orthogonal and self-dual codes of the type {k1, k2, . . . , ke}

and length n over Re,r, respectively. Let Ne(n) and Me(n) denote the number of

distinct self-orthogonal and self-dual codes of length n over Re,r, respectively. In

the following section, we will consider the case e = 2 and count all self-orthogonal
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and self-dual codes of length n over R2,r.

3.2 Enumeration of self-orthogonal and self-dual

codes over the chain ring R2,r

We assume, throughout this section, that e = 2. Here we see, by Theorem 2.2.2,

that every linear code C of length n over R2,r is permutation equivalent to a code

with a generator matrix in the standard form

"
Ik1 A1,1 A1,2 + uB1,2

0 uIk2 uA2,2

#
,

where the columns are grouped into blocks of sizes k1, k2, k3 = n � k1 � k2, and

B1,2 2 Mk1⇥k3(T2,r), Ai,j 2 Mki⇥kj+1(T2,r) for 1  i  j  2. Further, if C is a self-

orthogonal code of the type {k1, k2} and length n over R2,r, then by Remark 2.2.1

and Lemma 2.2.1, we have k1  k3, n � 2k1+k2 and Tor1(C) ✓ Tor2(C) ✓ Tor1(C)
?
.

In particular, if C is a self-dual code, then by Remark 2.2.1 and Lemma 2.2.1 again,

we have k1 = k3, n = 2k1 + k2 and Tor1(C) ✓ Tor2(C) = Tor1(C)
?
.

First of all, we will count all self-orthogonal codes of the type {k1, k2} and length

n over R2,r with prescribed Torsion codes. To do this, we assume, throughout this

section, that C1 is a k1-dimensional linear code of length n over R2,r with a generator

matrix h
Ik1 A

0
1,1 A

0
1,2

i

and that C2 is a (k1 + k2)-dimensional linear code of length n over R2,r with a

generator matrix "
Ik1 A

0
1,1 A

0
1,2

0 Ik2 A
0
2,2

#
,

where A
0
1,1 2 Mk1⇥k2(R2,r), A0

1,2 2 Mk1⇥k3(R2,r) and A
0
2,2 2 Mk2⇥k3(R2,r). It is

clear that C1 ✓ C2. Further, since the map ��T2,r : T2,r ! R2,r is a bijection,

there exist unique matrices A1,1 2 Mk1⇥k2(T2,r), A1,2 2 Mk1⇥k3(T2,r) and A2,2 2

Mk2⇥k3(T2,r) such that A1,1 = A
0
1,1, A1,2 = A

0
1,2 and A2,2 = A

0
2,2. Then we have the

following:
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Lemma 3.2.1. If C is a linear code of length n over R2,r with Tor1(C) = C1 and

Tor2(C) = C2, then there exists a matrix B1,2 2 Mk1⇥k3(T2,r) such that the matrix

"
Ik1 A1,1 A1,2 + uB1,2

0 uIk2 uA2,2

#
(3.2.1)

is a generator matrix of the code C.

Proof. As Tor1(C) = C1 and Tor2(C) = C2, there exist matricesM1,0 2 Mk1⇥k1(T2,r),

M1,1 2 Mk1⇥k2(T2,r) and M1,2 2 Mk1⇥k3(T2,r) such that

R
k1+k2
2,r

"
Ik1 + uM1,0 A1,1 + uM1,1 A1,2 + uM1,2

0 uIk2 uA2,2

#
✓ C.

Now by applying elementary row operations, we obtain

R
k1+k2
2,r

"
Ik1 � uM1,0 0

0 Ik2

#"
Ik1 + uM1,0 A1,1 + uM1,1 A1,2 + uM1,2

0 uIk2 uA2,2

#

= R
k1+k2
2,r

"
Ik1 A1,1 + u(M1,1 �M1,0A1,1) A1,2 + u(M1,2 �M1,0A1,2)

0 uIk2 uA2,2

#
✓ C.

We further apply elementary row operations and note that

R
k1+k2
2,r

"
Ik1 �(M1,1 �M1,0A1,1)

0 Ik2

#

⇥

"
Ik1 A1,1 + u(M1,1 �M1,0A1,1) A1,2 + u(M1,2 �M1,0A1,2)

0 uIk2 uA2,2

#

= R
k1+k2
2,r

"
Ik1 A1,1 A1,2 + u(M1,2 �M1,0A1,2 �M1,1A2,2 +M1,0A1,1A2,2)

0 uIk2 uA2,2

#
✓ C.

We further observe that there exists a unique matrix B1,2 2 Mk1⇥k3(T2,r) satisfying

B1,2 ⌘ M1,2 �M1,0A1,2 �M1,1A2,2 +M1,0A1,1A2,2 (mod u).
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This gives

R
k1+k2
2,r

"
Ik1 A1,1 A1,2 + uB1,2

0 uIk2 uA2,2

#
✓ C.

Furthermore, we have

|C| = |Tor1(C)||Tor2(C)| = (pr)2k1+k2 =

����R
k1+k2
2,r

"
Ik1 A1,1 A1,2 + uB1,2

0 uIk2 uA2,2

#����  |C|.

From this, it follows that the code C has a generator matrix of the form (3.2.1).

For the remainder of this section, we assume that C1 ✓ C
?
1 and C2 ✓ C

?
1 . This

implies that 2k1 + k2  n and that

Ik1 + A
0
1,1A

0t
1,1 + A

0
1,2A

0t
1,2 = 0, (3.2.2)

A
0
1,1 + A

0
1,2A

0t
2,2 = 0. (3.2.3)

By equations (3.2.2) and (3.2.3), we get A
0
1,2

�
� A

0t
2,2A

0
2,2A

0t
1,2 � A

0t
1,2

�
= Ik1 , from

which it follows that the matrix A
0
1,2 is of full row-rank.

In the following theorem, we enumerate all self-orthogonal codes C of length n

over R2,r with Tor1(C) = C1 and Tor2(C) = C2.

Theorem 3.2.1. There are precisely

(pr)
k1(2n�3k1�2k2�1)

2

distinct self-orthogonal codes C of length n (� 2k1+k2) over R2,r with Tor1(C) = C1

and Tor2(C) = C2.

Proof. Let C be a self-orthogonal code of length n over R2,r with Tor1(C) = C1 and

Tor2(C) = C2. Here we see, by Lemma 3.2.1, that the code C has a generator matrix

of the form (3.2.1). We further observe that the code C is self-orthogonal code if

and only if

Ik1 + A1,1A
t

1,1 + A1,2A
t

1,2 + u(A1,2B
t

1,2 +B1,2A
t

1,2) ⌘ 0 (mod u
2), (3.2.4)
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A1,1 + A1,2A
t

2,2 ⌘ 0 (mod u). (3.2.5)

We further note that (3.2.5) is equivalent to (3.2.3). In view of this, we need to

count the choices of the matrix B1,2 over T2,r satisfying (3.2.4). By (3.2.2), we have

Ik1 + A1,1A
t

1,1 + A1,2A
t

1,2 ⌘ uP (mod u
2),

where P is a symmetric matrix over T2,r. On substituting this in equation (3.2.4),

we get

A1,2B
t

1,2 +B1,2A
t

1,2 + P ⌘ 0 (mod u). (3.2.6)

Since the map � �T2,r : T2,r ! R2,r is a bijection, the number of choices for the matrix

B1,2 over T2,r satisfying (3.2.6) is equal to the number of choices for the matrix B1,2

over R2,r satisfying

A1,2B
t

1,2 +B1,2A
t

1,2 = �P . (3.2.7)

Since the matrix A1,2 is of full row-rank, we see, by Lemma 2.1.1, that the number of

choices for the matrixB1,2 satisfying (3.2.7) is equal to |Ker �
A1,2

| = (pr)
k1(2n�3k1�2k2�1)

2 .

From this, it follows that the number of distinct self-orthogonal codes C of length n

over R2,r with Tor1(C) = C1 and Tor2(C) = C2 is given by (pr)
k1(2n�3k1�2k2�1)

2 .

In the following theorem, we count all self-orthogonal codes of the type {k1, k2}

and length n over R2,r.

Theorem 3.2.2. The number N2(n; k1, k2) of distinct self-orthogonal codes of the

type {k1, k2} and length n over R2,r is given by

N2(n; k1, k2) =

8
><

>:

�pr(n, k1)


n� 2k1

k2

�

pr

(pr)
k1(2n�3k1�2k2�1)

2 if n � 2k1 + k2;

0 otherwise,

where �pr(n, k1) is as determined in Theorem 2.3.11.

Proof. Let D be a self-orthogonal code of the type {k1, k2} and length n over

R2,r with Tor1(D) = D1 and Tor2(D) = D2. Here we have dimR2,r
(D1) = k1,

dimR2,r
(D2) = k1 + k2 and D1 ✓ D2. By Lemma 2.2.1, we see that the Torsion

codes D1 and D2 satisfy D1 ✓ D
?
1 and D2 ✓ D

?
1 . Further, by Remark 2.2.1, we
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must have n � 2k1 + k2. We next note, by Theorem 2.3.11, that there are precisely

�pr(n, k1) distinct self-orthogonal codes D1 of dimension k1 and length n over R2,r.

Further, for a given k1-dimensional self-orthogonal code D1 of length n over R2,r,

we observe that the number of choices for the (k1 + k2)-dimensional code D2 of

length n over R2,r satisfying D1 ✓ D2 ✓ D
?
1 is equal to the number of distinct

k2-dimensional subspaces D2/D1 of the quotient space D?
1 /D1, which has dimension

n � 2k1 over R2,r. From this and by applying Theorem 2.3.9, we see that the code

D2 has precisely
⇥
n�2k1

k2

⇤
pr

distinct choices for a given choice of the self-orthogonal

code D1. Furthermore, for given codes D1 and D2, we see, by Theorem 3.2.1, that

there are precisely (pr)
k1(2n�3k1�2k2�1)

2 distinct self-orthogonal codes D of length n

over R2,r with Tor1(D) = D1 and Tor2(D) = D2. From this, the desired result

follows immediately.

Now in the following theorem, we obtain an enumeration formula for all self-

orthogonal codes of length n over R2,r.

Theorem 3.2.3. The number N2(n) of distinct self-orthogonal codes of length n

over R2,r is given by

N2(n) =

bn

2 cX

k1=0

�pr(n, k1)
n�2k1X

k2=0


n� 2k1

k2

�

pr

(pr)
k1(2n�3k1�2k2�1)

2 ,

where �pr(n, k1), 0  k1  b
n

2 c, is as determined in Theorem 2.3.11.

Proof. It follows immediately from Theorem 3.2.2.

In the following theorem, we first derive a necessary and su�cient condition for

a linear code of the type {k1, k2} and length n over R2,r to be a self-dual code. We

also count all self-dual codes of the type {k1, k2} and length n over R2,r.

Theorem 3.2.4. (a) Let C be a linear code of the type {k1, k2} and length n over

R2,r whose generator matrix G is given by (3.2.1). The code C is self-dual

if and only if n = 2k1 + k2 and the code C is self-orthogonal (i.e., the block

matrices A1,1, A1,2, A2,2 and B1,2 in the generator matrix G satisfy the matrix

equations (3.2.4) and (3.2.5)).
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(b) The number M2(n; k1, k2) of distinct self-dual codes of the type {k1, k2} and

length n over R2,r is given by

M2(n; k1, k2) =

8
<

:
�pr(n, k1)(p

r)
k1(k1�1)

2 if n = 2k1 + k2;

0 otherwise.

Proof. (a) It follows immediately by Remark 2.2.1 and Theorem 2.2.4.

(b) By part (a), we note that M2(n; k1, k2) = 0 if n 6= 2k1+k2. When n = 2k1+k2,

we see, by part (a) and Theorem 3.2.2, that M2(n; k1, k2) = N2(n; k1, n �

2k1) = �pr(n, k1)(pr)
k1(k1�1)

2 .

In the following theorem, we obtain an enumeration formula for all self-dual

codes of length n over R2,r.

Theorem 3.2.5. The number M2(n) of distinct self-dual codes of length n over

R2,r is given by

M2(n) =

bn

2 cX

k1=0

�pr(n, k1)(p
r)

k1(k1�1)
2 .

Proof. It follows immediately from Theorem 3.2.4.

Remark 3.2.1. Theorem 2 and Corollary 1 of Galvez et al. [47] follow, as spe-

cial cases, from Theorems 3.2.2 and 3.2.5, respectively. Corollary 1 of Betty and

Munemasa [12] follows from Theorem 3.2.2 as a special case.

In the next section, we will consider the case e = 3 and count all self-orthogonal

and self-dual codes of length n over the chain ring R3,r.

3.3 Enumeration of self-orthogonal and self-dual

codes over the chain ring R3,r

Throughout this section, we assume that e = 3. Here we see, by Theorem 2.2.2,

that every linear code C of length n over R3,r is permutation equivalent to a code
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with a generator matrix in the standard form

2

664

Ik1 A1,1 A1,2 + uB1,2 A1,3 + uB1,3 + u
2
C1,3

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 , (3.3.1)

where the columns are grouped into blocks of sizes k1, k2, k3, k4 = n�k1�k2�k3, and

Ai,j 2 Mki⇥kj+1(T3,r) for 1  i  j  3, B1,2 2 Mk1⇥k3(T3,r), B1,3 2 Mk1⇥k4(T3,r),

C1,3 2 Mk1⇥k4(T3,r), B2,3 2 Mk2⇥k4(T3,r). Now if C is a self-orthogonal code of the

type {k1, k2, k3} and length n over R3,r, then by Remark 2.2.1 and Lemma 2.2.1,

we must have k1  k4, k1 + k2  k3 + k4, T or1(C) ✓ Tor1(C)?, Tor2(C) ✓ Tor2(C)?

and Tor3(C) ✓ Tor1(C)
?
. In particular, if the code C is self-dual, then by Remark

2.2.1 and Lemma 2.2.1 again, we must have k1 = k4, k2 = k3, n = 2k1 + 2k2,

T or1(C) ✓ Tor2(C) = Tor2(C)
?
✓ Tor1(C)? and Tor3(C) = Tor1(C)

?
. Furthermore,

when Tor2(C) = Tor2(C)
?
, we see, by Theorem 2.3.2, that 2 dimR3,r

(Tor2(C)) = n,

which implies that the length n must be an even integer and that the Torsion code

Tor2(C) is a self-dual code of length n and dimension n

2 over R3,r. On the other

hand, when n is even, we see, by Theorem 2.3.12, that there exists a self-dual code

of length n and dimension n

2 over R3,r if and only if (�1)
n

2 is a square in R3,r ' Fpr .

In view of this, we see that if there exists a self-dual code of length n over R3,r, then

the length n must be an even integer and the element (�1)
n

2 must be a square in

R3,r.

To begin with, we will first count all self-orthogonal codes of length n over R3,r

with prescribed Torsion codes. To do this, we assume, throughout this section, that

C1 is a k1-dimensional linear code of length n over R3,r with a generator matrix

h
Ik1 A

0
1,1 A

0
1,2 A

0
1,3

i
,

C2 is a (k1+k2)-dimensional linear code of length n overR3,r with a generator matrix

"
Ik1 A

0
1,1 A

0
1,2 A

0
1,3

0 Ik2 A
0
2,2 A

0
2,3

#
,

and that C3 is a (k1 + k2 + k3)-dimensional linear code of length n over R3,r with a
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generator matrix

2

664

Ik1 A
0
1,1 A

0
1,2 A

0
1,3

0 Ik2 A
0
2,2 A

0
2,3

0 0 Ik3 A
0
3,3

3

775 ,

where A
0
i,j

2 Mki⇥kj+1(R3,r) for 1  i  j  3. Since the map ��T3,r : T3,r ! R3,r is

a bijection, there exist unique matrices Ai,j 2 Mki⇥kj+1(T3,r) satisfying Ai,j = A
0
i,j

for 1  i  j  3. Further, it is clear that C1 ✓ C2 ✓ C3. Then we have the following:

Lemma 3.3.1. If C is a linear code of length n over R3,r with Tor1(C) = C1,

Tor2(C) = C2 and Tor3(C) = C3, then there exist matrices B1,2 2 Mk1⇥k3(T3,r),

B1,3 2 Mk1⇥k4(T3,r), B2,3 2 Mk2⇥k4(T3,r) and C1,3 2 Mk1⇥k4(T3,r) such that the

matrix 2

664

Ik1 A1,1 A1,2 + uB1,2 A1,3 + uB1,3 + u
2
C1,3

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 (3.3.2)

is a generator matrix of the code C.

Proof. As Tor1(C) = C1, Tor2(C) = C2 and Tor3(C) = C3, there exist matrices M1,j,

N1,j 2 Mk1⇥kj+1(T3,r) for 0  j  3, and M2,` 2 Mk2⇥k`+1
(T3,r) for 1  `  3 such

that

R
k1+k2+k3
3,r H ✓ C,

where the matrix H equals

2

664

Ik1 + uM1,0 + u
2
N1,0 A1,1 + uM1,1 + u

2
N1,1 A1,2 + uM1,2 + u

2
N1,2 A1,3 + uM1,3 + u

2
N1,3

0 u(Ik2 + uM2,1) u(A2,2 + uM2,2) u(A2,3 + uM2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 .

By applying elementary row operations, we obtain

R
k1+k2+k3
3,r

2

664

Ik1 � uM1,0 � u
2
N1,0 + u

2
M

2
1,0 Q1 + uQ2 Q3

0 Ik2 � uM2,1 Q4

0 0 Ik3

3

775H ✓ C,
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where

Q1 = �M1,1 +M1,0A1,1,

Q2 = �N1,1 +M1,0M1,1 +N1,0A1,1 �M
2
1,0A1,1 +M1,1M2,1 �M1,0A1,1M2,1,

Q3 = �N1,2 +M1,0M1,2 +N1,0A1,2 � (M1,0)
2
A1,2 �Q1M2,2 �Q2A2,2,

Q4 = �M2,2 +M2,1A2,2.

From this, we get

R
k1+k2+k3
3,r

2

664

Ik1 A1,1 A1,2 + uM
00
1,2 A1,3 + uM

00
1,3 + u

2
N

00
1,3

0 uIk2 uA2,2 u(A2,3 + uM
00
2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 ✓ C,

where

M
00
1,2 = M1,2 �M1,0A1,2 +Q1A2,2,

M
00
1,3 = M1,3 �M1,0A1,3 +Q1A2,3,

N
00
1,3 = N1,3 �M1,0M1,3 �N1,0A1,3 +M

2
1,0A1,3 +Q1M2,3 +Q2A2,3 +Q3A3,3,

M
00
2,3 = M2,3 �M2,1A2,3 +Q4A3,3.

We further observe that there exist unique matrices B1,2, C1,2 and B2,3 over T3,r sat-

isfying M
00
1,2 ⌘ B1,2+uC1,2 (mod u

2) and M
00
2,3 ⌘ B2,3 (mod u). On further applying

the elementary row operations, we see that

R
k1+k2+k3
3,r

2

664

Ik1 0 �C1,2

0 Ik2 0

0 0 Ik3

3

775

2

664

Ik1 A1,1 A1,2 + uB1,2 + u
2
C1,2 A1,3 + uM

00
1,3 + u

2
N

00
1,3

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775

= R
k1+k2+k3
3,r

2

664

Ik1 A1,1 A1,2 + uB1,2 A1,3 + uM
00
1,3 + u

2(N 00
1,3 � C1,2A3,3)

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 ✓ C.

Next, we observe that there exist unique matrices B1,3 and C1,3 over T3,r satisfying
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M
00
1,3 + u(N 00

1,3 � C1,2A3,3) ⌘ B1,3 + uC1,3 (mod u
2). This gives

R
k1+k2+k3
3,r

2

664

Ik1 A1,1 A1,2 + uB1,2 A1,3 + uB1,3 + u
2
C1,3

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775 ✓ C.

Furthermore, we note that

|C| =
3Y

i=1

|Tori(C)| = (pr)3k1+2k2+k3

=

�����R
k1+k2+k3
3,r

2

664

Ik1 A1,1 A1,2 + uB1,2 A1,3 + uB1,3 + u
2
C1,3

0 uIk2 uA2,2 u(A2,3 + uB2,3)

0 0 u
2
Ik3 u

2
A3,3

3

775

�����  |C|.

From this, it follows that the code C has a generator matrix of the form (3.3.2).

For the remainder of this section, we assume that the codes C1, C2, C3 satisfy

C1 ✓ C
?
1 , C2 ✓ C

?
2 and C3 ✓ C

?
1 . This implies that

Ik1 + A
0
1,1A

0t
1,1 + A

0
1,2A

0t
1,2 + A

0
1,3A

0t
1,3 = 0, (3.3.3)

A
0
1,1 + A

0
1,2A

0t
2,2 + A

0
1,3A

0t
2,3 = 0, (3.3.4)

A
0
1,2 + A

0
1,3A

0t
3,3 = 0, (3.3.5)

Ik2 + A
0
2,2A

0t
2,2 + A

0
2,3A

0t
2,3 = 0. (3.3.6)

By (3.3.3)-(3.3.5), we see that the matrix A
0
1,3 is of full row-rank. In the follow-

ing theorem, we enumerate all self-orthogonal codes C of length n over R3,r with

Tor1(C) = C1, Tor2(C) = C2 and Tor3(C) = C3.

Theorem 3.3.1. The number of distinct self-orthogonal codes C of length n (�

2k1 + 2k2) over R3,r with Tor1(C) = C1, Tor2(C) = C2 and Tor3(C) = C3 is given by

(pr)k1(2n�3k1�k3�1)+k2(n�4k1�k2�k3).

Proof. Let C be a self-orthogonal code of length n over R3,r with Tor1(C) = C1,

Tor2(C) = C2 and Tor3(C) = C3. Here by Lemma 3.3.1, we see that the code C
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has a generator matrix of the form (3.3.2). We further observe that the code C is

self-orthogonal if and only if

Ik1 + A1,1A
t

1,1 + A1,2A
t

1,2 + A1,3A
t

1,3

+u
�
A1,2B

t

1,2 +B1,2A
t

1,2 + A1,3B
t

1,3 +B1,3A
t

1,3

�

+u
2
�
B1,2B

t

1,2 +B1,3B
t

1,3 + A1,3C
t

1,3 + C1,3A
t

1,3

�
⌘ 0 (mod u

3), (3.3.7)

A1,1 + A1,2A
t

2,2 + A1,3A
t

2,3

+u
�
B1,2A

t

2,2 +B1,3A
t

2,3 + A1,3B
t

2,3

�
⌘ 0 (mod u

2), (3.3.8)

A1,2 + A1,3A
t

3,3 ⌘ 0 (mod u), (3.3.9)

Ik2 + A2,2A
t

2,2 + A2,3A
t

2,3 ⌘ 0 (mod u). (3.3.10)

It is easy to observe that (3.3.9) is equivalent to (3.3.5) and that (3.3.10) is

equivalent to (3.3.6). In view of this, we need to determine the number of possible

choices for the matrices B1,2, B1,3, C1,3 and B2,3 over T3,r satisfying (3.3.7) and

(3.3.8). For this, we note that (3.3.3) implies that

Ik1 + A1,1A
t

1,1 + A1,2A
t

1,2 + A1,3A
t

1,3 ⌘ uP1 + u
2
P2 (mod u

3),

where P1, P2 2 Symk1(T3,r). On substituting this in (3.3.7), we get

P1 + A1,2B
t

1,2 +B1,2A
t

1,2 + A1,3B
t

1,3 +B1,3A
t

1,3 + u
�
B1,2B

t

1,2

+B1,3B
t

1,3 + A1,3C
t

1,3 + C1,3A
t

1,3 + P2

�
⌘ 0 (mod u

2). (3.3.11)

As B1,2 2 Mk1⇥k3(T3,r) can be chosen arbitrarily, there are precisely (pr)k1k3 distinct

choices for the matrix B1,2. Now for a given choice of the matrix B1,2, we will

determine the number of possible choices for the matrix B1,3 satisfying

A1,3B
t

1,3 +B1,3A
t

1,3 = �
�
P 1 + A1,2B

t

1,2 +B1,2A
t

1,2

�
. (3.3.12)

Since P 1 2 Symk1(R3,r), the matrix A1,3 is of full row-rank and the map � �T3,r :
T3,r ! R3,r is a bijection, by Lemma 2.1.1, we see that the number of relevant choices

for the matrix B1,3 satisfying (3.3.12) is equal to |Ker �
A1,3

| = (pr)
k1(2n�3k1�2k2�2k3�1)

2 .



50
Enumeration formulae for self-orthogonal and self-dual codes over finite

commutative chain rings of odd characteristic

Further, for given matrices B1,2 and B1,3 satisfying (3.3.12), we get

P1 + A1,2B
t

1,2 +B1,2A
t

1,2 + A1,3B
t

1,3 +B1,3A
t

1,3 ⌘ uP3 (mod u
2), (3.3.13)

where P3 2 Symk1(T3,r). Now on substituting this in (3.3.11), we obtain

A1,3C
t

1,3 + C1,3A
t

1,3 ⌘ �
�
P2 + P3 +B1,2B

t

1,2 +B1,3B
t

1,3

�
(mod u). (3.3.14)

Further, we note that the number of choices for the matrix C1,3 over T3,r satisfying

(3.3.14) is equal to the number of choices for the matrix C1,3 over R3,r satisfying

A1,3C
t

1,3 + C1,3A
t

1,3 = �(P 2 + P 3 +B1,2B
t

1,2 +B1,3B
t

1,3). (3.3.15)

Since P 2, P 3 2 Symk1(R3,r), by applying Lemma 2.1.1 again, we see that the matrix

C1,3 satisfying (3.3.15) has precisely |Ker �
A1,3

| = (pr)
k1(2n�3k1�2k2�2k3�1)

2 distinct

choices. Next we will count all possible choices for the matrix B2,3 over T3,r satisfying

(3.3.8). To do this, we see, by (3.3.4), that

A1,1 + A1,2A
t

2,2 + A1,3A
t

2,3 ⌘ uP4 (mod u
2)

for some P4 2 Mk1⇥k2(T3,r). On substituting this in (3.3.8), we get

P4 +B1,2A
t

2,2 +B1,3A
t

2,3 + A1,3B
t

2,3 ⌘ 0 (mod u). (3.3.16)

Now the number of choices for the matrix B2,3 over T3,r satisfying (3.3.16) is equal

to the number of choices for the matrix B2,3 over R3,r satisfying

A1,3B
t

2,3 = �
�
P 4 +B1,2A

t

2,2 +B1,3A
t

2,3

�
. (3.3.17)

To count the choices for the matrix B2,3, let A1,3 = (ai) and B2,3 = (xj), where ai’s

and xj’s are the rows of the matrices A1,3 and B2,3, respectively. Moreover, let us

suppose that �
�
P 4 + B1,2A

t

2,2 + B1,3A
t

2,3

�
= (mij), where mij denotes the (i, j)-th

entry of the matrix �
�
P 4 + B1,2A

t

2,2 + B1,3A
t

2,3

�
for 1  i  k1 and 1  j  k2. In

view of this, the matrix equation (3.3.17) is equivalent to the following system of
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equations over R3,r:

ai · xj = mij for 1  i  k1 and 1  j  k2,

which can be represented by the following matrix equation:

A

2

66666664

x
t

1

x
t

2

x
t

3
...

x
t

k2

3

77777775

=

2

66666664

m11

m12

m13

...

mk1k2

3

77777775

, where A =

2

66666666666664

a1

. . .

a1

...
...

...

ak1

. . .

ak1

3

77777777777775

.

Note that the matrix A is of order k1k2 ⇥ k2(n � k1 � k2 � k3). Since the matrix

A1,3 = (ai) is of full row-rank, the rows of the matrix A are linearly independent

over R3,r. Thus the number of choices for the matrix B2,3 satisfying (3.3.17) is given

by (pr)k2(n�2k1�k2�k3).

Now from the above discussion, it follows that the number of distinct self-

orthogonal codes C of length n over R3,r with Tor1(C) = C1, Tor2(C) = C2 and

Tor3(C) = C3 is given by (pr)k1(2n�3k1�k3�1)+k2(n�4k1�k2�k3).

In the following theorem, we count all self-orthogonal codes of the type {k1, k2, k3}

and length n over R3,r.

Theorem 3.3.2. (a) Let C be a linear code of the type {k1, k2, k3} and length n

over R3,r whose generator matrix G is given by (3.3.1). Then the code C is

self-orthogonal if and only if k1  k4 = n�k1�k2�k3, 2(k1+k2)  n, and the

block matrices Ai,j for 1  i  j  3, B1,2, B1,3, C1,3 and B2,3 of the generator

matrix G satisfy the matrix equations (3.3.7)-(3.3.10).

(b) The number N3(n; k1, k2, k3) of distinct self-orthogonal codes of the type {k1, k2,
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k3} and length n over R3,r is given by

N3(n; k1, k2, k3) =

8
>>>>>>>><

>>>>>>>>:

�pr(n, k1 + k2)


k1 + k2

k1

�

pr


n� 2k1 � k2

k3

�

pr

⇥(pr)k1(2n�3k1�k3�1)+k2(n�4k1�k2�k3)

if 2k1 + k2 + k3  n and 2(k1 + k2)  n;

0 otherwise,

where the number �pr(n, k1 + k2) is as determined in Theorem 2.3.11.

Proof. (a) It follows immediately by Remark 2.2.1 and Theorem 2.2.4.

(b) Here we first note, by part (a), that N3(n; k1, k2, k3) = 0 when either 2k1 +

k2 + k3 > n or 2k1 + 2k2 > n.

Next, let k1, k2, k3 be non-negative integers satisfying 2k1 + k2 + k3  n and

2k1 +2k2  n, and let D be a self-orthogonal code of the type {k1, k2, k3} and

length n overR3,r with Tor1(D) = D1, Tor2(D) = D2 and Tor3(D) = D3. Here

we have dimR3,r
(D1) = k1, dimR3,r

(D2) = k1+k2 and dimR3,r
(D3) = k1+k2+k3.

Further, by Lemma 2.2.1, we see that the Torsion codes D1, D2 and D3 satisfy

D1 ✓ D2 ✓ D3 ✓ D
?
1 and D2 ✓ D

?
2 . Now by Theorem 2.3.11, we note that

there are precisely �pr(n, k1+ k2) distinct self-orthogonal codes D2 of length n

and dimension k1+k2 over R3,r. Further, for a given (k1+k2)-dimensional self-

orthogonal code D2 of length n over R3,r, we see, by Theorem 2.3.9, that there

are precisely
⇥
k1+k2

k1

⇤
pr

distinct k1-dimensional linear subcodes D1 of the code

D2. Furthermore, for a given (k1 + k2)-dimensional self-orthogonal code D2 of

length n over R3,r and a given k1-dimensional linear subcode D1 of the code

D2, we observe that there is a one-to-one correspondence between (k1+k2+k3)-

dimensional linear codes D3 of length n over R3,r satisfying D2 ✓ D3 ✓ D
?
1

and k3-dimensional subspaces D3/D2 of the quotient space D?
1 /D2, which has

dimension n � 2k1 � k2 over R3,r. Now by applying Theorem 2.3.9 again, we

see that the code D3 has precisely
⇥
n�2k1�k2

k3

⇤
pr

distinct choices for given codes

D1 and D2. Finally, for given codes D1, D2 and D3, we note, by Theorem

3.3.1, that there are precisely (pr)k1(2n�3k1�k3�1)+k2(n�4k1�k2�k3) distinct self-

orthogonal codes D of the type {k1, k2, k3} and length n over R3,r satisfying
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Tor1(D) = D1, Tor2(D) = D2 and Tor3(D) = D3. From this, part (b) follows

immediately.

In the following theorem, we provide an enumeration formula for all self-orthogonal

codes of length n over R3,r.

Theorem 3.3.3. The number N3(n) of distinct self-orthogonal codes of length n

over R3,r is given by

N3(n) =

bn

2 cX

k1=0

bn

2 c�k1X

k2=0

n�2k1�k2X

k3=0

�pr(n, k1 + k2)(p
r)k1(2n�3k1�k3�1)+k2(n�4k1�k2�k3)

⇥


k1 + k2

k1

�

pr


n� 2k1 � k2

k3

�

pr

.

Proof. It follows immediately from Theorem 3.3.2.

In the following theorem, we derive a necessary and su�cient condition under

which a linear code of the type {k1, k2, k3} and length n over R3,r is a self-dual code.

Using this, we also count all self-dual codes of the type {k1, k2, k3} and length n over

R3,r.

Theorem 3.3.4. (a) Let C be a linear code of the type {k1, k2, k3} and length n

over R3,r whose generator matrix G is given by (3.3.1). Then the code C is

self-dual if and only if k2 = k3, n = 2(k1+k2), (�1)
n

2 is a square in R3,r ' Fpr ,

and the block matrices Ai,j for 1  i  j  3, B1,2, B1,3, C1,3 and B2,3 in the

generator matrix G satisfy the matrix equations (3.3.7)-(3.3.10).

(b) The number M3(n; k1, k2, k3) of distinct self-dual codes of the type {k1, k2, k3}

and length n over R3,r is given by

M3(n; k1, k2, k3) =

8
>>>>><

>>>>>:

2

n

2�1Y

i=1

(pri + 1)


n

2

k1

�

pr

p
rk1(n�2)

2 if n is even, (�1)
n

2 is a

square in R3,r, k2 = k3 and n = 2k1 + 2k2;

0 otherwise.



54
Enumeration formulae for self-orthogonal and self-dual codes over finite

commutative chain rings of odd characteristic

Proof. (a) It follows immediately by Remark 2.2.1, Lemma 2.2.1 and Theorem

2.3.12.

(b) Here we first suppose that n is even, (�1)
n

2 is a square in R3,r, k2 = k3 and

n = 2k1 + 2k2. In this case, we see, by Theorems 2.3.12 and 3.3.2, that

M3(n; k1, k2, k3) = N3

✓
n; k1,

n� 2k1
2

,
n� 2k1

2

◆

= �pr

⇣
n,

n

2

⌘ n

2

k1

�

pr

p
rk1(n�2)

2 = 2

n

2�1Y

i=1

(pri + 1)


n

2

k1

�

pr

p
rk1(n�2)

2 .

Otherwise, by part (a), we have M3(n; k1, k2, k3) = 0.

From the above theorem, we see that if there exists a self-dual code of length n

over R3,r, then the length n must be an even integer and (�1)
n

2 must be a square in

R3,r ' Fpr . Now in the following theorem, we provide an enumeration formula for

all self-dual codes of length n over R3,r.

Theorem 3.3.5. The number M3(n) of distinct self-dual codes of length n over

R3,r is given by

M3(n) =

8
>>>><

>>>>:

2

n

2�1Y

i=1

(pri + 1)
�

n

2X

k1=0


n

2

k1

�

pr

p
rk1(n�2)

2
�

if n is even and (�1)
n

2 is a

square in R3,r;

0 otherwise.

Proof. It follows immediately from Theorem 3.3.4.

Remark 3.3.1. Theorem 1 of Betty et al. [13] and Theorem 4.1 of Nagata et al.

[76] follow from Theorem 3.3.5 as special cases.

In the following section, we will consider the case e � 4 and count all self-

orthogonal and self-dual codes of length n over Re,r. Towards this, we will first pro-

vide a recursive method to construct a self-orthogonal (resp. self-dual) code of the

type {k1, k2, . . . , ke} and length n over Re,r from a self-orthogonal (resp. self-dual)

code of the type {k1+k2, k3, . . . , ke�1} and of the same length n over Re�2,r, and vice
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versa. With the help of this recursive method, we will derive a recurrence relation be-

tween the number Ne(n; k1, k2, . . . , ke) (resp. Me(n; k1, k2, . . . , ke)) and the number

Ne�2(n; k1 + k2, k3, . . . , ke�1) (resp. Me�2(n; k1 + k2, k3, . . . , ke�1)). By repeatedly

applying this recurrence relation, we will express the number Ne(n; k1, k2, . . . , ke)

(resp. Me(n; k1, k2, . . . , ke)) in terms of the number N2(n; k1 + k2 + · · ·+ k e

2
, k e

2+1)

(resp. M2(n; k1 + k2 + · · ·+ k e

2
, k e

2+1)) when e is even and in terms of the number

N3(n; k1 + k2 + · · ·+ k e�1
2
, k e+1

2
, k e+3

2
) (resp. M3(n; k1 + k2 + · · ·+ k e�1

2
, k e+1

2
, k e+3

2
))

when e is odd. We will further apply Theorems 3.2.2 and 3.3.2(b) to explicitly

determine the numbers Ne(n) and Me(n).

3.4 Enumeration of self-orthogonal and self-dual

codes over the chain ring Re,r, where e � 4

Throughout this section, we assume that e � 4. Here we first observe that the

quotient ring Re,r/hu
e�2

i is a finite commutative chain ring with the unique max-

imal ideal hu + hu
e�2

ii, whose nilpotency index is e � 2. From this point on, we

will denote the quotient ring Re,r/hu
e�2

i by Re�2,r for our convenience. Further, for

each element a 2 Re,r, we will denote the corresponding element a+ hu
e�2

i 2 Re�2,r

by a itself for the sake of simplicity, and we will perform addition and multiplica-

tion in Re�2,r modulo u
e�2

. In view of this, we can assume, without any loss of

generality, that the chain ring Re�2,r has maximal ideal hui, where the element u

has nilpotency index e� 2 in Re�2,r. In particular, we can view the Teichmüller set

Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} of Re,r as the Teichmüller set of Re�2,r. From this and

by Theorem 2.1.4(d), we can assume that each element a 2 Re�2,r can be uniquely

expressed as a = a0 + a1u + a2u
2 + · · · + ae�3u

e�3
, where a0, a1, a2, . . . , ae�3 2 Te,r.

Under this assumption, it is easy to see that Re,r = Re�2,r = {0, 1, ⇠, ⇠
2
, . . . , ⇠

p
r�2

}.

Next, we make the following observation:

Remark 3.4.1. Assume that C is a self-orthogonal code of length n over Re,r with

a generator matrix G in the standard form (2.2.1). Here by Lemma 2.2.1(b), we

note that Tore(C) ✓ Tor1(C)?. Further, by (2.2.2), we obtain the following system
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of matrix equations over Re,r :

Ik1 +
eX

i=1

A1,iA
t

1,i = 0 and A1,` +
eX

j=`+1

A1,jA
t

`+1,j = 0 for 1  `  e� 1.

Now using the above matrix equations, one can easily observe that there exists a

matrix Ce 2 Mke+1⇥k1(Re,r) satisfying A1,eCe = Ik1 , which implies that the matrix

A1,e is of full-row rank.

By Theorem 2.2.2, we see that every linear code C of the type {k1, k2, . . . , ke�1, ke}

and length n over Re,r is permutation equivalent to a code with a generator matrix

in the standard form (2.2.1). On combining the last two blocks of the columns of

the matrix (2.2.1), we may assume that the code C is permutation equivalent to a

code whose generator matrix is in the following standard form

G =

2

66666666664

T1

uT2

u
2
T3

...

u
e�2

Te�1

u
e�1

Te

3

77777777775

=

2

66666666664

Ik1 A1,1 A1,2 · · · A1,e�2 A
0
1,e

0 uIk2 uA2,2 · · · uA2,e�2 uA
0
2,e

0 0 u
2
Ik3 · · · u

2
A3,e�2 u

2
A

0
3,e

...
...

...
...

...
...

0 0 0 · · · u
e�2

Ike�1 u
e�2

A
0
e�1,e

0 0 0 · · · 0 u
e�1

A
0
e,e

3

77777777775

, (3.4.1)

where the columns of the matrix G are grouped into blocks of sizes k1, k2, . . .,

ke�1, ke + ke+1, the matrix Iki is the ki ⇥ ki identity matrix over Re,r, the matrix

Ai,j 2 Mki⇥kj+1(Re,r) is considered modulo u
j�i+1 for 1  i  j  e � 2, A0

`,e
2

Mk`⇥(ke+ke+1)(Re,r) for 1  `  e and the matrix A
0
e,e

2 Mke⇥(ke+ke+1)(Re,r) is of

full row-rank.

In the following theorem, we derive a recurrence relation between the numbers

Ne(n; k1, k2, . . . , ke�1, ke) andNe�2(n; k1+k2, k3, . . . , ke�1). The proof of this theorem

also provides a recursive method to construct a self-orthogonal code of the type

{k1, k2, . . . , ke} and length n over Re,r from a self-orthogonal code of the type {k1+

k2, k3, . . . , ke�1} and of the same length n over Re�2,r, and vice versa.

Theorem 3.4.1. Let n be a positive integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying n = k1 + k2 + · · ·+ ke+1 and 2k1 + 2k2 + · · ·+ 2ke�i+1 + ke�i+2 +
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ke�i+3 + · · ·+ ki  n for d
e+1
2 e  i  e. The following hold.

(a) There exists a self-orthogonal code of the type {k1, k2, . . . , ke�1, ke} and length

n over Re,r if and only if there exists a self-orthogonal code of the type {k1 +

k2, k3, . . . , ke�1} and length n over Re�2,r.

(b) Moreover, each self-orthogonal code of the type {k1 + k2, k3, k4, . . . , ke�1} and

length n over Re�2,r gives rise to precisely


k1 + k2

k1

�

pr


ke + ke+1 � k1

ke

�

pr

(pr)
k1(n�k1�k2�1)+

e�1P
i=1

ki(ke+1�k1)

distinct self-orthogonal codes of the type {k1, k2, k3, . . . , ke�1, ke} and length n

over Re,r.

(c) We have

Ne(n; k1, k2, . . . , ke) = Ne�2(n; k1 + k2, k3, . . . , ke�1)(p
r)

k1(n�k1�k2�1)+
e�1P
i=1

ki(ke+1�k1)

⇥


k1 + k2

k1

�

pr


ke + ke+1 � k1

ke

�

pr

.

Proof. To prove the result, let C be a self-orthogonal code of the type {k1, k2, k3, . . . ,

ke} and length n over Re,r. Without any loss of generality, suppose that the matrix

G, as defined by (3.4.1), is a generator matrix of the code C. Now consider a linear

code bC of length n over Re�2,r with a generator matrix

2

66666664

L1

L2

uL3

...

u
e�3

Le�1

3

77777775

=

2

66666664

Ik1 A1,1 A1,2 A1,3 · · · A1,e�2 A
0
1,e

0 Ik2 A2,2 A2,3 · · · A2,e�2 A
0
2,e

0 0 uIk3 uA3,3 · · · uA3,e�2 uA
00
3,e

...
...

...
...

...
...

...

0 0 0 0 · · · u
e�3

Ike�1 u
e�3

A
00
e�1,e

3

77777775

,

where Iki is the ki ⇥ ki identity matrix over Re�2,r and A
00
j,e

⌘ A
0
j,e

(mod u
e�j) for

3  j  e� 1. Since C is a self-orthogonal code over Re,r, we see, by Theorem 2.2.4,

that TiT
t

j
⌘ 0 (mod u

e�i�j+2) for all integers i and j satisfying 1  i  j  e and

i + j  e + 1. This implies that L1L
t

1 ⌘ 0 (mod u
e�2), L1L

t

`
⌘ 0 (mod u

e�`) for
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2  `  e� 1 and LiL
t

j
⌘ 0 (mod u

e�i�j+2) for 2  i  j  e� 1 and i+ j  e+ 1.

Now by applying Theorem 2.2.4 again and noting that the dimension of the Torsion

code Tor1(bC) over Re�2,r is k1 + k2, we see that the code bC is a self-orthogonal code

of the type {k1 + k2, k3, k4, . . . , ke�1} and length n over Re�2,r.

On the other hand, let bD be a self-orthogonal code of the type {k1+k2, k3, . . . , ke�1}

and length n over Re�2,r. We first note that Tor1( bD) has dimension k1 + k2 over

Re�2,r, and we choose a k1-dimensional subspaceD1 of Tor1( bD), which can be chosen

in precisely 
k1 + k2

k1

�

pr

distinct ways, by Theorem 2.3.9. Now we will construct a self-orthogonal code D

of the type {k1, k2, k3, . . . , ke} and length n over Re,r such that Tor1(D) = D1 and

Tori+1(D) = Tori( bD) for 1  i  e� 2.

For this, we suppose, without any loss of generality, that the code bD has a

generator matrix of the form

H1 =

2

66666664

S
00
1

S2

uS3

...

u
e�3

Se�1

3

77777775

=

2

66666664

Ik1 Y1,1 Y
00
1,2 Y

00
1,3 · · · Y

00
1,e�2 Y

00
1,e

0 Ik2 Y2,2 Y2,3 · · · Y2,e�2 Y2,e

0 0 uIk3 uY3,3 · · · uY3,e�2 uY3,e

...
...

...
...

...
...

...

0 0 0 0 · · · u
e�3

Ike�1 u
e�3

Ye�1,e

3

77777775

,

where the columns of the matrix H1 are grouped into blocks of sizes k1, k2, . . .,

ke�1, ke + ke+1 = n � (k1 + k2 + · · · + ke�1), the matrix Iki is the ki ⇥ ki identity

matrix over Re�2,r, the matrix Y1,1 2 Mk1⇥k2(Re�2,r) is considered modulo u, the

matrix Y
00
1,` 2 Mk1⇥k`+1

(Re�2,r) is considered modulo u
`�1 for 2  `  e � 2, the

matrix Y
00
1,e 2 Mk1⇥(ke+ke+1)(Re�2,r) is considered modulo u

e�2, the matrix Ya,e 2

Mka⇥(ke+ke+1)(Re�2,r) is considered modulo u
e�a for 2  a  e � 1 and the matrix

Yi,j 2 Mki⇥kj+1(Re�2,r) is considered modulo u
j�i+1 for 2  i  j  e� 2.

Next, we choose the matrices B1,j 2 Mk1⇥kj+1(Te,r) for 2  j  e�2, arbitrarily.

Now for given choices of matrices B1,2, B1,3, . . . , B1,e�2, we apply elementary row

operations and observe that the code bD can also be generated by the matrix of the



3.4 Enumeration of self-orthogonal and self-dual codes over the

chain ring Re,r, where e � 4 59

form

H2 =

2

66666664

S
0
1

S2

uS3

...

u
e�3

Se�1

3

77777775

=

2

66666664

Ik1 Y1,1 Y1,2 Y
0
1,3 · · · Y

0
1,e�2 Y

0
1,e

0 Ik2 Y2,2 Y2,3 · · · Y2,e�2 Y2,e

0 0 uIk3 uY3,3 · · · uY3,e�2 �Y3,e

...
...

...
...

...
...

...

0 0 0 0 · · · u
e�3

Ike�1 u
e�3

Ye�1,e

3

77777775

,

where Y1,2 = Y
00
1,2 + uB1,2, the matrix Y

0
1,` = Y

00
1,` +

`�1P
k=2

u
k�1

B1,kYk+1,` + u
`�1

B1,` for

3  `  e� 2 and Y
0
1,e = Y

00
1,e +

e�2P
k=2

u
k�1

B1,kYk+1,e. We further apply elementary row

operations and observe that the code bD can also be generated by the matrix

H =

2

66666664

S1

S2

uS3

...

u
e�3

Se�1

3

77777775

=

2

66666664

Ik1 Y1,1 Y1,2 Y1,3 · · · Y1,e�2 Y1,e

0 Ik2 Y2,2 Y2,3 · · · Y2,e�2 Y2,e

0 0 uIk3 uY3,3 · · · uY3,e�2 uY3,e

...
...

...
...

...
...

...

0 0 0 0 · · · u
e�3

Ike�1 u
e�3

Ye�1,e

3

77777775

,

where the matrix Y1,j 2 Mk1⇥kj+1(Re�2,r) is considered modulo u
j for 3  j  e�2.

We next view the matrix H over Re,r, and we will now construct a generator matrix

for a self-orthogonal code over Re,r from the matrix H. For this, let us define

T1 ⌘ S1 + u
e�2[0 0 · · · 0 C1,e] + u

e�1[0 0 · · · 0 B1,e] (mod u
e),

Tj ⌘ Sj + u
e�j[0 0 · · · 0 Bj,e] (mod u

e�j+1) for 2  j  e� 1,

Te ⌘ [0 0 · · · 0 Ye,e] (mod u),

where the matrices C1,e 2 Mk1⇥(ke+ke+1)(Te,r), Ye,e 2 Mke⇥(ke+ke+1)(Te,r) and Bj,e 2

Mkj⇥(ke+ke+1)(Te,r) for 1  j  e � 1 are to be chosen suitably. Now let D be a
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linear code of length n over Re,r generated by the following matrix over Re,r:

G
0 =

2

66666664

T1

uT2

...

u
e�2

Te�1

u
e�1

Te

3

77777775

=

2

66666664

Ik1 Y1,1 Y1,2 · · · Y1,e�2 Y1,e + u
e�2

C1,e + u
e�1

B1,e

0 uIk2 uY2,2 · · · uY2,e�2 u(Y2,e + u
e�2

B2,e)
...

...
...

...
...

...

0 0 0 · · · u
e�2

Ike�1 u
e�2(Ye�1,e + uBe�1,e)

0 0 0 · · · 0 u
e�1

Ye,e

3

77777775

.

We will show that there exist matrices C1,e 2 Mk1⇥(ke+ke+1)(Te,r), Bj,e 2 Mkj⇥(ke+ke+1)

(Te,r) for 1  j  e� 1 and Ye,e 2 Mke⇥(ke+ke+1)(Te,r) such that the code D is a self-

orthogonal code of length n over Re,r, and we will also count the choices for these

matrices that give rise to distinct self-orthogonal codes of the type {k1, k2, . . . , ke}

and length n over Re,r. By Theorem 2.2.4, we observe that the matrix G
0 gen-

erates a self-orthogonal code over Re,r if and only if there exist matrices C1,e 2

Mk1⇥(ke+ke+1)(Te,r), Bj,e 2 Mkj⇥(ke+ke+1)(Te,r) for 1  j  e� 1 and Ye,e 2

Mke⇥(ke+ke+1)(Te,r) such that Y e,e is a full-row rank matrix over Re,r and satisfying

TiT
t

j
⌘ 0 (mod u

e�i�j+2)

for all integers i and j satisfying 1  i  j  e and i+ j  e+ 1.

As bD is a self-orthogonal code of length n over Re�2,r, by Theorem 2.2.4, we see

that

S1S
t

1 ⌘ 0 (mod u
e�2),

S1S
t

j
⌘ 0 (mod u

e�j) for 2  j  e� 1,

SiS
t

j
⌘ 0 (mod u

e�i�j+2) for 2  i  j  e� 1 and i+ j  e+ 1, (3.4.2)

which implies that

S1S
t

1 ⌘ u
e�2

J1 + u
e�1

J2 (mod u
e), (3.4.3)

S1S
t

2 ⌘ u
e�2

J4 (mod u
e�1), (3.4.4)

S1S
t

j
⌘ u

e�j
Pj (mod u

e�j+1) for 3  j  e� 1, (3.4.5)

SiS
t

j
⌘ 0 (mod u

e�i�j+2) for 2  i  j  e� 1 and i+ j  e+ 1, (3.4.6)
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where J1, J2 2 Symk1(Te,r), J4 2 Mk1⇥k2(Te,r) and Pj 2 Mk1⇥kj
(Te,r) for 3  j 

e� 1.

For all integers i and j satisfying 2  i  j  e� 1 and i+ j  e+1, by (3.4.2),

we have SiS
t

j
⌘ 0 (mod u

e�i�j+2), which implies that TiT
t

j
⌘ 0 (mod u

e�i�j+2).

Now it remains to show that there exist matrices C1,e 2 Mk1⇥(ke+ke+1)(Te,r), Bj,e 2

Mkj⇥(ke+ke+1)(Te,r) for 1  j  e� 1 and Ye,e 2 Mke⇥(ke+ke+1)(Te,r) such that Y e,e is

a full-row rank matrix over Re,r and

T1T
t

1 ⌘ 0 (mod u
e),

T1T
t

j
⌘ 0 (mod u

e�j+1) for 2  j  e� 1,

T1T
t

e
⌘ 0 (mod u),

which is equivalent to saying that

S1S
t

1 + u
e�2(Y1,eC

t

1,e + C1,eY
t

1,e)

+u
e�1(Y1,eB

t

1,e +B1,eY
t

1,e) ⌘ 0 (mod u
e), (3.4.7)

S1S
t

2 + u
e�2(C1,eY

t

2,e + Y1,eB
t

2,e) ⌘ 0 (mod u
e�1), (3.4.8)

S1S
t

j
+ Y1,eB

t

j,e
⌘ 0 (mod u

e�j+1) for 3  j  e� 1, (3.4.9)

Y1,eY
t

e,e
⌘ 0 (mod u). (3.4.10)

To prove the existence of the matrix Ye,e over Te,r, we first observe that as the map
��Te,r : Te,r ! Re,r is a bijection, choosing a matrix Ye,e over Te,r such that Y e,e is

a full-row rank matrix over Re,r and Y1,eY
t

e,e
⌘ 0 (mod u) is equivalent to choosing

a full row-rank matrix Y e,e over Re,r satisfying Y 1,eY
t

e,e
= 0. Further, since bD is

a self-orthogonal code over Re�2,r, the Torsion codes Tori( bD), 1  i  e � 2, of

the code bD satisfy Lemma 2.2.1, which implies that the Torsion codes Tori(D),

1  i  e � 1, of the code D also satisfy Lemma 2.2.1. So we need to choose

the matrix Y e,e in such a way that the Torsion code Tore(D) satisfies the relation

Tore�1(D) ✓ Tore(D) ✓ Tor1(D)?. Further, for a given choice of Tore�1(D), by

Theorem 2.3.9, there are precisely
⇥
ke+ke+1�k1

ke

⇤
pr

choices for the code Tore(D), and

hence the matrix Ye,e has precisely
⇥
ke+ke+1�k1

ke

⇤
pr

relevant choices.

Next by Remark 3.4.1, we see that the matrix Y 1,e is of full row-rank over Re,r.
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Now for a given choice of the matrix Ye,e such that Y e,e is of full row-rank and

satisfying Y1,eY
t

e,e
⌘ 0 (mod u), we shall count the number of choices of the matrices

C1,e and B1,e over Te,r satisfying (3.4.7). By (3.4.3), we have

J1 + Y1,eC
t

1,e + C1,eY
t

1,e + u(J2 + Y1,eB
t

1,e +B1,eY
t

1,e) ⌘ 0 (mod u
2). (3.4.11)

For this, we first determine the number of possible choices of the matrix C1,e over

Re,r satisfying

Y 1,eC
t

1,e + C1,eY
t

1,e = �J1. (3.4.12)

Since J1 2 Symk1(Re,r), the matrix Y 1,e is of full row-rank and ��Te,r : Te,r ! Re,r

is a bijection, by Lemma 2.1.1, we see that the matrix C1,e satisfying (3.4.12) has

precisely

|Ker �
Y 1,e

| = (pr)
k1(2ke+2ke+1�k1�1)

2

distinct choices. So for a given choice of the matrix C1,e satisfying (3.4.12), we have

J1 + Y1,eC
t

1,e + C1,eY
t

1,e ⌘ uJ3 (mod u
2)

for some J3 2 Symk1(Te,r). Now on substituting this in (3.4.11), we obtain

J2 + J3 + Y1,eB
t

1,e +B1,eY
t

1,e ⌘ 0 (mod u). (3.4.13)

Further, we note that the number of choices of the matrix B1,e over Te,r satisfying

(3.4.13) is equal to the number of choices of the matrix B1,e over Re,r satisfying

Y 1,eB
t

1,e +B1,eY
t

1,e = �(J2 + J3). (3.4.14)

Since J2, J3 2 Symk1(Re,r) and the matrix Y 1,e is of full row-rank, by applying

Lemma 2.1.1 again, the matrix B1,e satisfying (3.4.14) has

|Ker �
Y 1,e

| = (pr)
k1(2ke+2ke+1�k1�1)

2

relevant choices. Next we count the number of possible choices of the matrix B2,e
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over Te,r satisfying (3.4.8). By (3.4.4), we have

J4 + C1,eY
t

2,e + Y1,eB
t

2,e ⌘ 0 (mod u). (3.4.15)

Now the number of choices of the matrix B2,e over Te,r satisfying (3.4.15) is equal

to the number of choices of the matrix B2,e over Re,r satisfying

Y 1,eB
t

2,e = �(J4 + C1,eY
t

2,e). (3.4.16)

To count the number of choices of the matrix B2,e, let Y 1,e = (ai) and B2,e = (xj),

where ai’s and xj’s are the rows of the matrices Y 1,e and B2,e, respectively. Moreover,

let us suppose that �(J4 + C1,eY
t

2,e) = (mij), where mij denotes the (i, j)-th entry

of the matrix �(J4 + C1,eY
t

2,e) for 1  i  k1 and 1  j  k2. In view of this, the

matrix equation (3.4.16) is equivalent to the following system of equations over Re,r:

ai · xj = mij for 1  i  k1 and 1  j  k2.

Since the matrix Y 1,e is of full-row rank, the number of possible choices of B2,e

satisfying (3.4.16) is given by (pr)k2(ke+ke+1�k1).

Further, for 3  j  e�1, we count the number of possible choices of the matrix

Bj,e over Te,r satisfying (3.4.9). By (3.4.5), we obtain

Pj + Y1,eB
t

j,e
⌘ 0 (mod u). (3.4.17)

Now the number of choices of the matrix Bj,e over Te,r satisfying (3.4.17) is equal to

the number of choices of the matrix Bj,e over Re,r satisfying

Y 1,eB
t

j,e
= �P j. (3.4.18)

Since the matrix Y 1,e is of full-row rank, the number of possible choices of Bj,e

satisfying (3.4.18) is equal to

(pr)kj(ke+ke+1�k1)
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for 3  j  e � 1. Hence for given choices of the matrices C1,e and B1,e satisfying

(3.4.11), B2,e satisfying (3.4.15) and Bj,e satisfying (3.4.17) for 3  j  e � 1, we

get a self-orthogonal code D over Re,r.

Further, let us define

G
00 =

2

66666664

Ik1 Y1,1 Y1,2 Y1,3 · · · Y1,e�2 Y1,e + u
e�2

C
0
1,e + u

e�1
B

0
1,e

0 uIk2 uY2,2 uY2,3 · · · uY2,e�2 u(Y2,e + u
e�2

B
0
2,e)

...
...

...
...

...
...

...

0 0 0 0 · · · u
e�2

Ike�1 u
e�2(Ye�1,e + uB

0
e�1,e)

0 0 0 0 · · · 0 u
e�1

Ye,e

3

77777775

,

where C
0
1,e, B

0
1,e 2 Mk1⇥(ke+ke+1)(Te,r), B0

j,e
2 Mkj⇥(ke+ke+1)(Te,r) for 2  j  e � 1.

One can easily observe that the matrices G
0 and G

00 generate the same code D

over Re,r if and only if C1,e = C
0
1,e and B

0
j,e

⌘ Bj,e + KjYe,e (mod u), where Kj 2

Mkj⇥ke
(Te,r) for 1  j  e� 1.

In view of the above, one can easily observe that each self-orthogonal code of the

type {k1 + k2, k3, . . . , ke�1} and length n over Re�2,r gives rise to precisely


k1 + k2

k1

�

pr


ke + ke+1 � k1

ke

�

pr

(pr)

e�1P
i=3

k1ki+k1(2ke+2ke+1�k1�1)+
e�1P
j=2

kj(ke+ke+1�k1)�
e�1P
`=1

k`ke

=


k1 + k2

k1

�

pr


ke + ke+1 � k1

ke

�

pr

(pr)
k1(n�k1�k2�1)+

e�1P
i=1

ki(ke+1�k1)

distinct self-orthogonal codes of the type {k1, k2, . . . , ke�1, ke} and length n over

Re,r.

From this, the desired result follows immediately.

From now on, let us define

s =
j
e

2

k
.

Next, let n be a positive integer, and let k1, k2, . . . , ke+1 be non-negative integers

satisfying n = k1+k2+ · · ·+ke+1. We further define n0 = 0 and ni = k1+k2+ · · ·+ki

for 1  i  e + 1. Here we note, by Remark 2.2.1, that if there exists a self-

orthogonal code of the type {k1, k2, . . . , ke} and length n over Re,r, then we must

have ne�i+1 + ni  n for s + 1  i  e. In the following theorem, we count all
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self-orthogonal codes of the type {k1, k2, . . . , ke�1, ke} and length n over Re,r, where

e � 4 is an integer.

Theorem 3.4.2. Let e � 4 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying n = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�pr (n, ns)
sY

i=1


ni

ki

�

pr

eY

j=s+1


kj + n� nj � ne�j+1

kj

�

pr

⇥(pr)

s�1P
`=1

n`(n�n`+1�1)+ns+`(n�ns+1+`�ns�`)+ns(n�ns+1)�ns(ns+1)
2

if ne�i+1 + ni  n for s+ 1  i  e;

0 otherwise.

(b) When e is odd, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�pr

�
n, ns+1

� s+1Y

i=1


ni

ki

�

pr

eY

j=s+2


kj + n� nj � ne�j+1

kj

�

pr

⇥(pr)

sP
`=1

n`(n�n`+1�1)+ns+`(n�ns+1+`�ns+1�`)

if ne�i+1 + ni  n for s+ 1  i  e;

0 otherwise.

Proof. By Remark 2.2.1, we note that Ne(n; k1, k2, . . . , ke) = 0 if ne�i+1+ni > n for

some integer i satisfying s+ 1  i  e.

On the other hand, when ne�i+1 + ni  n for s + 1  i  e, we see, by repeatedly

applying Theorem 3.4.1(c), that

Ne(n; k1, k2, . . . , ke) = Ne�2(n; k1 + k2, k3, . . . , ke�1)(p
r)

k1(n�k1�k2�1)+
e�1P
i=1

ki(ke+1�k1)

⇥


k1 + k2

k1

�

pr


ke + ke+1 � k1

ke

�

pr
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=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

N2

�
n;ns, ks+1

�
(pr)

s�1P
`=1

n`(n�n`+1�1)+ns+`(n�ns+1+`�ns�`)

⇥

sY

i=1


ni

ki

�

pr

eY

j=s+2


kj + n� nj � ne�j+1

kj

�

pr

if e is even;

N3

�
n;ns, ks+1, ks+2

�
(pr)

s�1P
`=1

n`(n�n`+1�1)+
e�1P

a=s+2
na(n�na+1�ne�a)

⇥

sY

i=1


ni

ki

�

pr

eY

j=s+3


kj + n� nj � ne�j+1

kj

�

pr

if e is odd.

From this and by applying Theorems 3.2.2 and 3.3.2(b), the desired result follows

immediately.

In the following theorem, we derive a recurrence relation between the numbers

Me(n; k1, k2, . . . , ke�1, ke) and Me�2(n; k1 + k2, k3, . . . , ke�1), where e � 4 is an in-

teger. The proof of this theorem also provides a recursive method to construct a

self-dual code of the type {k1, k2, . . . , ke} and length n over Re,r from a self-dual

code of the type {k1 + k2, k3, . . . , ke�1} and of the same length n over Re�2,r, and

vice versa.

Theorem 3.4.3. For an integer e � 4, let n be a positive integer, and let k1, k2, . . . , ke+1

be non-negative integers satisfying n = k1 + k2 + · · · + ke+1 and kj = ke�j+2 for

1  j  e+ 1. The following hold.

(a) There exists a self-dual code of the type {k1, k2, . . . , ke�1, ke} and length n over

Re,r if and only if there exists a self-dual code of the type {k1+k2, k3, k4, . . . , ke�1}

and length n over Re�2,r. In fact, each self-dual code of the type {k1+k2, k3, k4, . . . ,

ke�1} and length n over Re�2,r gives rise to precisely


k1 + k2

k1

�

pr

(pr)k1(n�k1�k2�1)

distinct self-dual codes of the type {k1, k2, k3, . . . , ke} and length n over Re,r.

(b) We have

Me(n; k1, k2, . . . , ke) = Me�2(n; k1+k2, k3, . . . , ke�1)


k1 + k2

k1

�

pr

(pr)k1(n�k1�k2�1)
.
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Proof. Part (a) follows immediately from Theorems 2.2.4 and 3.4.1, while part (b)

follows from part (a).

In the following theorem, we count all self-dual codes of the type {k1, k2, . . . , ke}

and length n over Re,r.

Theorem 3.4.4. Let e � 4 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying n = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�pr (n, ns)
sY

i=1


ni

ki

�

pr

(pr)

sP
`=1

n`(n�n`+1�1)�ns(ns�1)
2

if kj = ke�j+2 for 1  j  e+ 1;

0 otherwise.

(b) When e is odd, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

2

n

2�1Y

b=1

(prb + 1)
s+1Y

i=1


ni

ki

�

pr

(pr)

sP
`=1

n`(n�n`+1�1)

if n is even, (�1)
n

2 is a square in Re,r and

kj = ke�j+2 for 1  j  e+ 1;

0 otherwise.

Proof. (a) By Theorem 2.2.4(b), we note that Me(n; k1, k2, . . . , ke) = 0 if kj 6=

ke�j+2 for some integer j satisfying 1  j  e+ 1.

On the other hand, when kj = ke�j+2 for 1  j  e+ 1, we see, by repeatedly

applying Theorem 3.4.3(b), that

Me(n; k1, k2, . . . , ke) = Me�2(n; k1+k2, k3, . . . , ke�1)


k1 + k2

k1

�

pr

(pr)k1(n�k1�k2�1)

= M2

�
n;ns, ks+1

� sY

i=1


ni

ki

�

pr

(pr)

s�1P
`=1

n`(n�n`+1�1)
.

Now by applying Theorem 3.2.4(b), the desired result follows immediately.
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(b) By Theorem 2.2.4(b) again, we note that Me(n; k1, k2, . . . , ke) = 0 if either

kj 6= ke�j+2 for some integer j satisfying 1  j  e+ 1 or n is odd.

When kj = ke�j+2 for 1  j  e + 1 and n is even, we see, by repeatedly

applying Theorem 3.4.3(b), that

Me(n; k1, k2, . . . , ke) = Me�2(n; k1+k2, k3, . . . , ke�1)


k1 + k2

k1

�

pr

(pr)k1(n�k1�k2�1)

= M3

�
n;ns, ks+1, ks+1

� sY

i=1


ni

ki

�

pr

(pr)

s�1P
`=1

n`(n�n`+1�1)
.

Now by applying Theorem 3.3.4(b), the desired result follows immediately. By

Theorem 3.3.4(b), we note that Me(n; k1, k2, . . . , ke�1, ke) = 0 when n is even

and (�1)
n

2 is not a square in Re,r.

Remark 3.4.2. Theorem 1 of Nagata et al. [77] follows from Theorem 3.4.4 as a

special case.

Now for an integer d satisfying 2  d  e and for non-negative integers k1, k2, . . . , kd,

let us define

h`(k1, k2, . . . , kd) = (k1 + k2 + · · ·+ k`)
�
n� (k1 + k2 + · · ·+ k`+1)� 1

�
for 1  `  d� 1,

(3.4.19)

and let us define

mj(k1, k2, . . . , kd) = hj(k1, k2, . . . , kd) + (k1 + k2 + · · ·+ kb d

2 c+j
)
�
n� (k1 + k2 + · · ·

+kd d+1
2 e+j

)� (k1 + k2 + · · ·+ kb d+1
2 c�j

)
�

(3.4.20)

for 1  j  b
d

2c � �, where � = 1 if e is even, while � = 0 if e is odd.

In the following theorem, we provide the enumeration formula for all self-orthogonal

codes of length n over Re,r.

Theorem 3.4.5. (a) When e is even, we have

Ne(n) =
X

�pr (n, k1 + k2 + · · ·+ ks) (p
r)

s�1P
`=1

m`(k1,k2,...,ke)+⇥e(k1,k2,...,ke)

⇥

eY

j=s+1


kj + n� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke�j+1)

kj

�

pr
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⇥

sY

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

,

where ⇥e(k1, k2, . . . , ke) = (k1+k2+· · ·+ks)
⇣

2n�2(k1+k2+···+ks+1)�(k1+k2+···+ks)�1
2

⌘

and the summation
P

runs over all non-negative integers k1, k2, . . . , ke satis-

fying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for s+1  i  e.

(b) When e is odd, we have

Ne(n) =
X

�pr

�
n, k1 + k2 + · · ·+ ks+1

�
(pr)

sP
`=1

m`(k1,k2,...,ke)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

⇥

eY

j=s+2


kj + n� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke�j+1)

kj

�

pr

,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for s+1  i  e.

Proof. It follows immediately from Theorem 3.4.2.

In the following theorem, we provide the enumeration formula for all self-dual

codes of length n over Re,r.

Theorem 3.4.6. (a) When e is even, we have

Me(n) =
X

�pr(n, k1 + k2 + · · ·+ ks)
sY

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

⇥(pr)

s�1P
`=1

h`(k1,k2,...,ks)+�e(k1,k2,...,ks)
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks) + ks+1 = n and the number �e(k1, k2, . . . , ks) is

given by

�e(k1, k2, . . . , ks) = (k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks � 1

2

◆
.
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(b) When e is odd, we have

Me(n) =

8
>>>>>><

>>>>>>:

X
2

n

2�1Y

b=1

(prb + 1)(pr)

sP
`=1

h`(k1,k2,...,ks)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

if n is even and (�1)
n

2 is a square in Re,r;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks+1) = n.

Proof. It follows immediately from Theorem 3.4.4.

The enumeration formulae for Ne(n) and Me(n) are useful in the classification of

self-orthogonal and self-dual codes of length n over Re,r, respectively. We illustrate

the same in the following section by classifying all self-orthogonal and self-dual codes

of lengths 2, 3, 4 and 5 over F5[u]/hu2
i and of lengths 2, 3 and 4 over F7[u]/hu2

i.

3.5 Classification of self-orthogonal and self-dual

codes

Two self-orthogonal (resp. self-dual) codes of length n over Re,r are said to be

equivalent if one code can be obtained from the other by a combination of operations

of the following two types:

(A) Permutation of the n coordinate positions of the code.

(B) Multiplication of the code symbols appearing in a given coordinate position

by the element �1 2 Te,r.

Otherwise, the codes are said to be inequivalent.

Next, let En be the group generated by transformations of the types (A) and (B)

as defined above. If C is a self-orthogonal (resp. self-dual) code of length n over

Re,r, then by Theorem 7.4 of [46], we note that the number of distinct self-orthogonal

(resp. self-dual) codes of length n over Re,r that are equivalent to the code C is given

by |En|
|Aut(C)| , where Aut(C)(✓ En) is the automorphism group of the code C. In view of
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this, we see that the total number Ne(n) of distinct self-orthogonal codes of length

n over Re,r can be expressed as

Ne(n) =
X

C

|En|

|Aut(C)|
, (3.5.1)

where the summation
P
C

runs over all the inequivalent self-orthogonal codes C of

length n over Re,r. Analogously, the total number Me(n) of distinct self-dual codes

of length n over Re,r can be expressed as

Me(n) =
X

C

|En|

|Aut(C)|
, (3.5.2)

where the summation
P
C

runs over all the inequivalent self-dual codes C of length

n over Re,r. The mass formulae (3.5.1) and (3.5.2) are useful in the determination

of complete lists of inequivalent self-orthogonal and self-dual codes of length n over

Re,r, respectively (cf. [13], [53, Sec. 9.6 and 9.7]). To illustrate this, we will classify

all self-orthogonal and self-dual codes of lengths 2, 3, 4 and 5 over F5[u]/hu2
i and of

lengths 2, 3 and 4 over F7[u]/hu2
i up to equivalence, by carrying out computations

in the Magma Computational Algebra System and by applying the classification

algorithm that has been used in most of the earlier classification attempts ([53, Sec.

9.6 and 9.7]). We also explicitly determine a generator matrix of the code represen-

tative for each equivalence class of self-orthogonal and self-dual codes.

I. There are precisely 5 inequivalent non-zero self-orthogonal codes of length 2 over

F5[u]/hu2
i with generator matrices uI2,

h
1 2

i
,

h
u 0

i
,

h
u u

i
and

h
u 2u

i
.

II. There are precisely 14 inequivalent non-zero self-orthogonal codes of length 3

over F5[u]/hu2
i with generator matrices uI3,

h
1 0 2

i
,

h
1 u 2

i
,

h
u 0 0

i
,

h
u u u

i
,

h
u 2u u

i
,

h
u u 0

i
,

h
u 0 3u

i
,

"
1 0 2

0 u 0

#
,

"
u 0 0

0 u 0

#
,

"
u 0 u

0 u 0

#
,

"
u 0 2u

0 u 0

#
,

"
u 0 4u

0 u 2u

#
and

"
u 0 4u

0 u u

#
.

III. There are precisely 63 inequivalent non-zero self-orthogonal codes of length 4

over F5[u]/hu2
i, whose generator matrices are as listed below:
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•
h
1 xu yu 2

i
with (x, y) 2

�
(0, 0), (1, 1), (1, 2), (0, 2)

 
;

•
h
1 xu+ 1 yu+ 2 zu+ 2

i
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (1, 0, 2), (1, 3, 4),

(0, 3, 2), (2, 4, 0)
 
;

•

"
1 0 xu 2

0 u yu 0

#
with (x, y) 2

�
(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)

 
;

•

"
1 1 xu+ 2 yu+ 2

0 u zu wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 2), (1, 4, 0, 2), (2, 3, 0, 2),

(0, 0, 1, 1), (1, 4, 1, 1), (3, 2, 1, 1), (0, 0, 3, 4), (1, 4, 3, 4)
 
;

• uI4,

"
1 0 0 2

0 1 2 0

#
,

"
1 0 u 2

0 1 2 4u

#
,

2

664

1 0 0 2

0 u 0 0

0 0 u 0

3

775 ,

2

664

1 1 2 2

0 u 0 2u

0 0 u 4u

3

775 ;

•
h
u xu yu zu

i
with (x, y, z) 2

�
(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 3, 4),

(1, 2, 4), (2, 1, 0), (2, 0, 0)
 
;

•

"
u 0 xu yu

0 u zu wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (3, 0, 2, 0),

(0, 3, 1, 2), (1, 0, 0, 1), (4, 0, 2, 1), (3, 4, 2, 1), (1, 0, 0, 2), (0, 0, 0, 2), (0, 0, 1, 2),

(4, 2, 1, 2), (4, 2, 2, 2), (4, 2, 2, 1), (4, 4, 4, 0), (4, 2, 4, 1), (2, 0, 0, 2), (1, 0, 1, 0)
 
;

•

2

664

u 0 0 xu

0 u 0 yu

0 0 u zu

3

775 with (x, y, z) 2
�
(0, 0, 0), (1, 0, 0), (4, 1, 0), (2, 0, 0), (3, 1, 0),

(1, 4, 1), (4, 4, 3), (2, 4, 3)
 
.

IV. There are precisely 321 inequivalent non-zero self-orthogonal codes of length 5

over F5[u]/hu2
i, whose generator matrices are as listed below:

•
h
1 xu yu zu 2

i
with (x, y, z) 2

�
(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2), (1, 1, 1),

(1, 1, 2)
 
;

•
h
1 xu yu+ 1 zu+ 2 wu+ 2

i
with (x, y, z, w) 2

�
(0, 0, 0, 0), (0, 0, 1, 4),
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(0, 0, 2, 3), (0, 1, 0, 2), (0, 1, 3, 4), (0, 2, 0, 4), (3, 0, 2, 3), (1, 0, 0, 0), (1, 0, 1, 4),

(1, 0, 2, 3), (1, 1, 0, 2), (1, 1, 1, 1), (1, 1, 3, 4), (1, 2, 0, 4), (1, 2, 1, 3)
 
;

•
h
1 xu+ 1 yu+ 1 zu+ 1 wu+ 1

i
with (x, y, z, w)2

�
(0, 0, 0, 0), (0, 0, 1, 4),

(0, 0, 2, 3), (0, 1, 1, 3), (0, 1, 2, 2), (1, 2, 3, 4)
 
;

•

"
1 0 xu yu 2

0 u zu wu 0

#
with (x, y, z, w)2

�
(0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (1, 2, 0, 0),

(4, 2, 0, 1), (0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1), (4, 2, 1, 1), (0, 0, 1, 1),

(0, 1, 1, 1), (0, 0, 0, 2), (0, 0, 1, 2), (0, 1, 0, 2), (0, 1, 1, 2), (0, 1, 2, 0), (0, 1, 2, 1),

(1, 1, 4, 3), (1, 1, 0, 2), (1, 1, 1, 3)
 
;

•

"
1 0 1 2 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2), (1, 3, 4),

(2, 1, 3)
 
;

•

"
1 0 1 u+ 2 4u+ 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2),

(1, 1, 1), (1, 3, 4), (2, 0, 4), (2, 1, 3), (3, 3, 3)
 
;

•

"
1 0 1 2u+ 2 3u+ 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2),

(1, 1, 1), (1, 3, 4), (2, 0, 4), (2, 1, 3), (2, 2, 2)
 
;

•

"
1 0 u+ 1 2 2u+ 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2),

(1, 2, 0), (1, 3, 4), (2, 1, 3)
 
;

•

"
1 0 u+ 1 3u+ 2 4u+ 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2),

(1, 1, 1), (1, 2, 0), (1, 4, 3), (1, 3, 4), (2, 0, 4), (2, 1, 3), (2, 2, 2), (2, 3, 1), (2, 4, 0)
 
;

•

"
1 0 2u+ 1 2 4u+ 2

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 2, 3), (1, 0, 2),

(1, 2, 0), (1, 3, 4), (2, 1, 3)
 
;
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•

"
1 1 1 1 1

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 4), (0, 1, 3), (2, 3, 4)

 
;

•

"
1 1 1 u+ 1 4u+ 1

0 u xu yu zu

#
with (x, y, z) 2

�
(0, 0, 4), (0, 1, 3), (0, 2, 2), (0, 4, 0),

(2, 0, 2), (2, 1, 1), (2, 3, 4)
 
;

•

"
1 1 xu+ 1 yu+ 1 3u+ 1

0 u zu wu au

#
with (x, y, z, w, a) 2

�
(0, 2, 0, 0, 4), (0, 2, 0, 4, 0),

(0, 2, 2, 0, 2), (0, 2, 2, 1, 1), (1, 1, 0, 2, 2), (1, 1, 2, 4, 3)
 
;

•

"
1 3 1 3 xu

0 u yu zu wu

#
with (x, y, z, w) 2

�
(1, 0, 4, 0), (1, 1, 2, 0), (1, 2, 0, 0), (1, 4, 1, 0),

(0, 0, 4, 0), (0, 1, 2, 0), (0, 2, 0, 0)
 
;

•

"
1 3 u+ 1 3u+ 3 xu

0 u yu zu wu

#
with (x, y, z, w) 2

�
(0, 0, 4, 0), (0, 1, 2, 0), (0, 2, 0, 0),

(1, 0, 4, 0), (1, 1, 2, 0), (1, 3, 3, 0), (1, 4, 1, 0), (1, 2, 0, 0)
 
;

•

"
1 3 3u+ 1 4u+ 3 xu

0 u yu zu wu

#
with (x, y, z, w) 2

�
(0, 2, 0, 0), (1, 2, 0, 0), (1, 0, 4, 0)

 
;

• uI5,

"
1 1 1 1 1

0 1 u+ 2 3u+ 3 u+ 4

#
,

"
1 3 2u+ 1 u+ 3 xu

0 u 4u u 0

#
with x 2

�
0, 1
 
;

•

"
1 1 u+ 1 2u+ 1 2u+ 1

0 u 3u 2u 4u

#
,

2

66664

1 0 0 0 2

0 u 0 0 0

0 0 u 0 0

0 0 0 u 0

3

77775
,

2

66664

1 0 1 2 2

0 u 0 0 0

0 0 u 0 2u

0 0 0 u 4u

3

77775
,

2

66664

1 1 1 1 1

0 u 0 0 4u

0 0 u u 3u

0 0 0 u 4u

3

77775
;

•

2

664

1 0 0 xu 2

0 u 0 yu 0

0 0 u zu 0

3

775 with (x, y, z) 2
�
(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2),

(3, 1, 1), (4, 1, 2), (0, 1, 3), (0, 1, 1)
 
;



3.5 Classification of self-orthogonal and self-dual codes 75

•

2

664

1 0 1 xu+ 2 yu+ 2

0 u 0 zu wu

0 0 u vu au

3

775 with (x, y, z, w, v, a) 2
�
(0, 0, 0, 0, 0, 2), (0, 0, 0, 0, 1, 1),

(0, 0, 0, 0, 3, 4), (0, 0, 1, 4, 3, 4), (0, 0, 1, 4, 0, 2), (0, 0, 1, 4, 1, 1), (1, 4, 1, 4, 0, 2),

(0, 0, 2, 3, 1, 1), (0, 0, 2, 3, 3, 4), (1, 4, 0, 0, 2, 0), (1, 4, 0, 0, 1, 1), (1, 4, 0, 0, 3, 4),

(1, 4, 1, 4, 4, 3), (1, 4, 1, 4, 1, 1), (1, 4, 2, 3, 3, 4), (1, 4, 2, 3, 1, 1), (2, 3, 0, 0, 2, 0),

(2, 3, 0, 0, 1, 1), (2, 3, 1, 4, 1, 1), (2, 3, 1, 4, 0, 2), (2, 3, 2, 3, 1, 1)
 
;

•

2

664

1 1 1 xu+ 1 yu+ 1

0 u 0 zu wu

0 0 u vu au

3

775 with (x, y, z, w, v, a) 2
�
(0, 0, 0, 4, 1, 3), (0, 0, 0, 4, 2, 2),

(1, 4, 0, 4, 4, 0), (1, 4, 0, 4, 0, 4), (0, 0, 1, 3, 3, 1), (2, 3, 0, 4, 1, 3), (2, 3, 0, 4, 2, 2),

(1, 4, 1, 3, 3, 1)
 
;

•

2

664

1 3 1 3 xu

0 u 0 4u 0

0 0 u 3u 0

3

775 with x 2
�
0, 1
 
;

•
h
u xu yu zu wu

i
with (x, y, z, w) 2

�
(0, 0, 0, 2), (0, 1, 2, 2), (1, 1, 1, 1),

(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (2, 1, 1, 0), (2, 3, 1, 1), (2, 3, 3, 3),

(2, 1, 0, 0)
 
;

•

"
u 0 xu yu zu

0 u wu vu au

#
with (x, y, z, w, v, a) 2

�
(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 2), (0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 2), (0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 2),

(0, 0, 0, 1, 3, 3), (0, 0, 1, 4, 3, 1), (0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 0, 2), (0, 0, 1, 0, 1, 4),

(0, 0, 1, 0, 1, 0), (0, 0, 1, 0, 1, 2), (0, 0, 1, 0, 2, 0), (0, 0, 1, 0, 2, 1), (0, 0, 1, 1, 1, 1),

(0, 0, 1, 1, 1, 2), (0, 0, 1, 1, 2, 0), (0, 0, 1, 1, 2, 2), (0, 0, 1, 1, 4, 0), (0, 1, 1, 3, 4, 0),

(0, 1, 1, 3, 4, 1), (0, 1, 1, 4, 2, 1), (0, 1, 1, 1, 1, 3), (0, 1, 1, 1, 2, 0), (0, 1, 1, 1, 4, 0),

(0, 1, 1, 2, 0, 0), (0, 1, 1, 0, 4, 3), (0, 1, 1, 0, 4, 2), (0, 1, 1, 0, 3, 3), (0, 1, 2, 2, 4, 3),

(0, 1, 2, 0, 2, 0), (0, 1, 2, 0, 2, 1), (0, 1, 2, 1, 0, 2), (0, 1, 2, 1, 1, 1), (0, 1, 2, 1, 1, 3),

(0, 1, 2, 1, 2, 0), (0, 1, 2, 1, 2, 1), (0, 1, 2, 1, 2, 2), (0, 1, 2, 2, 0, 0), (0, 1, 2, 2, 1, 1),
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(0, 1, 2, 2, 1, 3), (2, 3, 2, 0, 0, 2), (1, 2, 3, 1, 1, 1), (1, 2, 2, 1, 3, 4), (1, 2, 2, 2, 1, 3),

(1, 1, 1, 0, 0, 2), (0, 0, 2, 3, 0, 0)
 
;

•

2

664

u 0 0 xu yu

0 u 0 zu wz

0 0 u vu au

3

775 with (x, y, z, w, v, a) 2
�
(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 2), (0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 2), (0, 0, 0, 1, 4, 4), (0, 0, 0, 1, 0, 1),

(0, 0, 0, 1, 0, 2), (0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 2), (0, 0, 0, 1, 2, 0), (0, 0, 0, 2, 1, 4),

(0, 0, 0, 1, 2, 1), (0, 0, 0, 2, 2, 3), (0, 0, 0, 2, 2, 0), (0, 0, 1, 1, 1, 2), (0, 0, 1, 1, 1, 3),

(0, 0, 2, 3, 4, 3), (0, 1, 2, 0, 4, 4), (0, 1, 3, 2, 0, 1), (0, 1, 3, 3, 0, 2), (0, 1, 3, 0, 0, 4),

(0, 1, 4, 0, 1, 4), (0, 1, 4, 2, 1, 1), (0, 1, 4, 3, 1, 2), (0, 1, 1, 4, 3, 3), (0, 1, 1, 3, 3, 2),

(0, 1, 1, 2, 3, 1), (0, 1, 0, 1, 4, 4), (0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 2), (0, 1, 0, 1, 1, 3),

(0, 1, 0, 1, 1, 0), (0, 1, 0, 2, 4, 3), (0, 1, 0, 2, 0, 2), (0, 1, 0, 2, 1, 4), (0, 1, 0, 2, 1, 0),

(0, 1, 0, 2, 2, 0), (0, 1, 1, 4, 4, 4), (0, 1, 1, 4, 2, 4), (0, 1, 1, 0, 2, 2), (1, 1, 4, 3, 4, 1),

(1, 1, 4, 3, 0, 2), (1, 1, 4, 3, 2, 4), (2, 2, 3, 0, 4, 4), (2, 2, 1, 4, 0, 2), (2, 2, 4, 2, 1, 3),

(1, 2, 2, 1, 1, 4), (1, 2, 2, 1, 2, 3)
 
;

•

2

66664

u 0 0 0 xu

0 u 0 0 yu

0 0 u 0 zu

0 0 0 u wu

3

77775
with (x, y, z, w) 2

�
(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 4),

(0, 0, 1, 2), (0, 1, 1, 2), (0, 1, 2, 3), (0, 1, 1, 4), (1, 1, 1, 2), (1, 4, 2, 3), (1, 4, 1, 1)
 
;

•

"
1 0 xu yu 2

0 1 zu 2 wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 4), (0, 1, 1, 4),

(1, 0, 1, 0), (1, 1, 1, 4), (1, 1, 2, 4)
 
;

•

"
1 0 1 xu+ 2 yu+ 2

0 1 zu+ 2 wu+ 1 au+ 3

#
with (x, y, z, w, a) 2

�
(0, 0, 0, 0, 0), (0, 0, 1, 4, 3),

(0, 0, 2, 3, 1), (1, 4, 0, 4, 2), (1, 4, 1, 3, 0), (1, 4, 2, 2, 3), (2, 3, 0, 3, 4), (2, 3, 2, 1, 0)
 
;

•

2

664

1 0 0 xu 2

0 1 0 2 yu

0 0 u 0 0

3

775 with (x, y) 2
�
(0, 0), (1, 4)

 
;
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•

2

664

1 0 1 xu+ 2 yu+ 2

0 1 2 zu+ 1 wu+ 3

0 0 u 4u 3u

3

775 with (x, y, z, w) 2
�
(0, 0, 0, 0), (1, 4, 4, 2)

 
.

V. There are precisely 4 inequivalent non-zero self-orthogonal codes of length 2 over

F7[u]/hu2
i with generator matrices uI2,

h
u 0

i
,

h
u u

i
and

h
u 2u

i
.

VI. There are precisely 19 inequivalent non-zero self-orthogonal codes of length 3

over F7[u]/hu2
i with generator matrices uI3,

h
1 2 3

i
,

h
1 u+ 2 4u+ 3

i
,

h
1 3u+ 2 5u+ 3

i
,

h
u 0 0

i
,

h
u u 0

i
,

h
u 0 2u

i
,

h
u u u

i
,

h
u u 2u

i
,

h
u u 3u

i
,

h
u 2u 3u

i
,

"
1 2 3

0 u 4u

#
,

"
u 0 0

0 u 0

#
,

"
u 0 0

0 u u

#
,

"
u 0 0

0 u 2u

#
,

"
u 0 u

0 u u

#
,

"
u 0 2u

0 u 3u

#
,

"
u 0 u

0 u 2u

#
and

"
u 0 u

0 u 4u

#
.

VII. There are precisely 118 inequivalent non-zero self-orthogonal codes of length 4

over F7[u]/hu2
i, whose generator matrices are as listed below:

•
h
1 xu yu+ 2 zu+ 3

i
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 4), (0, 3, 5), (1, 0, 0),

(1, 1, 4), (1, 2, 1), (1, 3, 5), (1, 5, 6), (1, 6, 3), (3, 2, 1)
 
;

•
h
1 xu+ 1 yu+ 1 zu+ 2

i
with (x, y, z) 2

�
(0, 0, 0), (0, 1, 3), (0, 2, 6), (0, 3, 2),

(0, 4, 5), (0, 5, 1), (0, 6, 4), (1, 2, 2), (1, 3, 5), (1, 4, 1), (1, 5, 4), (2, 4, 4)
 
;

•

"
1 0 xu+ 2 yu+ 3

0 u zu wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 0), (1, 4, 0, 0), (3, 5, 0, 0),

(0, 0, 1, 4), (1, 4, 1, 4), (3, 5, 1, 4), (0, 0, 2, 1), (1, 4, 2, 1), (3, 5, 2, 1), (0, 0, 3, 5),

(1, 4, 3, 5), (3, 5, 3, 5)
 
;

•

"
1 1 xu+ 1 yu+ 2

0 u zu wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 3), (1, 3, 0, 3), (2, 6, 0, 3),

(3, 2, 0, 3), (0, 0, 2, 2), (1, 3, 2, 2), (2, 6, 2, 2), (3, 2, 2, 2), (4, 5, 2, 2), (5, 1, 2, 2),

(6, 4, 2, 2), (0, 0, 3, 5), (1, 3, 3, 5), (3, 2, 3, 5)
 
;
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• uI4,

"
1 5 4 0

0 u 4u 0

#
,

"
1 5 4 u

0 u 4u 0

#
,

2

664

1 0 2 3

0 u 0 0

0 0 u 4u

3

775 ,

2

664

1 1 1 2

0 u 0 3u

0 0 u 3u

3

775 ;

•
h
u xu yu zu

i
with (x, y, z) 2

�
(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1),

(2, 2, 1), (2, 2, 2), (2, 3, 1), (0, 2, 1), (0, 2, 0), (0, 3, 5), (0, 3, 6)
 
;

•

"
u 0 xu yu

0 u zu wu

#
with (x, y, z, w) 2

�
(0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (2, 0, 0, 0),

(2, 1, 0, 0), (2, 2, 0, 0), (2, 3, 0, 0), (6, 1, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0), (2, 1, 1, 0),

(2, 0, 1, 0), (3, 0, 1, 0), (3, 1, 1, 0), (0, 2, 1, 0), (2, 0, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1),

(3, 0, 1, 1), (3, 4, 1, 1), (3, 5, 1, 1), (0, 1, 2, 1), (2, 3, 2, 1), (2, 4, 2, 1), (3, 3, 2, 1),

(3, 2, 2, 1), (3, 0, 2, 1), (4, 2, 2, 1), (5, 2, 2, 1), (5, 0, 2, 2), (5, 2, 2, 2), (0, 1, 2, 2),

(3, 0, 2, 2), (3, 1, 2, 2), (2, 3, 2, 3), (3, 5, 2, 3), (0, 2, 0, 4), (2, 0, 0, 4)
 
;

•

2

664

u 0 0 xu

0 u 0 yu

0 0 u zu

3

775 with (x, y, z) 2
�
(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 1, 0), (1, 1, 0),

(3, 1, 0), (3, 6, 1), (1, 6, 1), (2, 6, 1), (2, 4, 2), (1, 4, 3), (2, 4, 0)
 
;

•

"
1 0 xu+ 2 yu+ 3

0 1 zu+ 3 wu+ 5

#
with (x, y, z, w) 2

�
(0, 0, 0, 0), (1, 4, 4, 6), (5, 6, 6, 2)

 
.

VIII. Next, by applying Theorem 3.2.4(a), we see that a self-orthogonal code of the

type {k1, k2} and length n over Fq[u]/hu2
i is self-dual if and only if 2k1 + k2 = n. In

view of this, we see that there are precisely 2 inequivalent self-dual codes of length 2,

2 inequivalent self-dual codes of length 3, 5 inequivalent self-dual codes of length 4

and 8 inequivalent self-dual codes of length 5 over F5[u]/hu2
i.Moreover, we note that

there is only one inequivalent self-dual code of length 2 over F7[u]/hu2
i, while there

are precisely 2 inequivalent self-dual codes of length 3 and 6 inequivalent self-dual

codes of length 4 over F7[u]/hu2
i.

As special cases, one can deduce enumeration formulae for all self-orthogonal and

self-dual codes over quasi-Galois rings and Galois rings of odd characteristic from

Theorems 3.2.3,3.2.5, 3.3.3, 3.3.5, 3.4.5 and 3.4.6. When Re,r is a quasi-Galois ring
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or a Galois ring of even characteristic, we will observe, in Chapters 4 and 5, that each

self-orthogonal (resp. self-dual) code overRe�2,r can not be lifted to a self-orthogonal

(resp. self-dual) code over Re,r by employing the construction method given in

the proof of Theorem 3.4.1 (see Examples 4.2.1 and 5.2.1). Thus, the enumeration

technique employed here cannot be extended as it is to count self-orthogonal and self-

dual codes over finite commutative chain rings of even characteristic. In Chapters

4 and 5, we shall obtain explicit enumeration formulae for self-orthogonal and self-

dual codes of an arbitrary length over quasi-Galois rings and Galois rings of even

characteristic, respectively.
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4
Enumeration formulae for

self-orthogonal and self-dual codes

over quasi-Galois rings of even

characteristic

4.1 Introduction

Recall that a quasi-Galois ring is a quotient ring of the form Fq[u]/hue
i. It is easy

to see that Fq[u]/hue
i is a finite commutative chain ring with the maximal ideal hui

of nilpotency index e and the residue field Fq. One can easily see that the quasi-

Galois ring Fq[u]/hue
i is of even characteristic if and only if q is an even prime power.

In this chapter, we obtain explicit enumeration formulae for all self-orthogonal and

self-dual codes of an arbitrary length over the quasi-Galois ring F2r [u]/hue
i for each

81
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integer e � 2.

This chapter is organized as follows: In Section 4.2, we first outline the recursive

construction method employed in Chapter 3 (see the proofs of Theorems 3.4.1 and

3.4.3) in the particular case of codes over the quasi-Galois ring Fq[u]/hu`
i, and we

further note that when q is an even prime power, say q = 2r, each self-orthogonal

(resp. self-dual) code over F2r [u]/hu`�2
i can not be lifted to a self-orthogonal

(resp. self-dual) code over F2r [u]/hu`
i by applying this construction method. We

also derive a necessary and su�cient condition under which a self-orthogonal code

over F2r [u]/hu`�2
i can be lifted to a self-orthogonal code over F2r [u]/hu`

i using

this construction method, where ` � 4 is an integer (Theorem 4.2.1). In Sec-

tion 4.3, for a positive integer n and non-negative integers k1, k2, . . . , ke satisfying

2k1 + 2k2 + · · · + 2ke�i+1 + ke�i+2 + ke�i+3 + · · · + ki  n for d
e+1
2 e  i  e, we

provide a modified recursive method to construct self-orthogonal and self-dual codes

of the type {k1, k2, . . . , ke} and length n over F2r [u]/hue
i from a self-orthogonal code

of the same length n and dimension k1 + k2 + · · · + kd e

2 e over F2r , and vice versa.

In Section 4.4, we provide explicit enumeration formulae for all self-orthogonal and

self-dual codes of an arbitrary length over F2r [u]/hue
i for each integer e � 2 by

applying the modified recursive method (Theorems 4.4.3 and 4.4.4). In Section 4.5,

with the help of the enumeration formulae obtained in Section 4.4 and by applying

the classification algorithm, we obtain complete lists of inequivalent self-orthogonal

and self-dual codes of lengths 2, 3, 4 and 5 over the ring F2[u]/hu3
i and of lengths

2, 3 and 4 over the ring F4[u]/hu2
i.

Throughout this chapter, let p be a prime number and r be a positive integer.

Let Re denote the quasi-Galois ring Fpr [u]/hue
i, where e � 2 is an integer. Here

we recall, from Chapter 2, that the quasi-Galois ring Re is a finite commutative

chain ring, all of whose ideals are given by {0}, Re, hui, hu2
i,. . ., hue�1

i and that

|hu
j
i| = (pr)e�j for 0  j  e. From this, it follows that the ideal hui is the

unique maximal ideal of Re whose nilpotency index is e and that the quotient ring

Re/hui ' Fpr is the finite field of order pr. Further, we note, by Theorem 2.1.4(d),

that each element a 2 Re can be uniquely expressed as a = a0+ua1+ · · ·+u
e�1

ae�1,

where a0, a1, . . . , ae�1 2 Fpr . Note that the element a 2 Re is a unit in Re if and only

if a0 6= 0. It is easy to observe that each matrix A 2 Mm⇥k(Re) can be uniquely
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expressed as A = A0 + uA1 + · · ·+ u
e�1

Ae�1, where A0, A1, . . . , Ae�1 2 Mm⇥k(Fpr).

From this point on, let [B]
↵
denote the column block matrix whose ith block is the

matrix Bi 2 Mki⇥n(Fpr) for 1  i  ↵.

In the following section, we will outline the recursive construction method em-

ployed in Chapter 3 in the particular case of codes over the quasi-Galois ring Re

and illustrate that not every self-orthogonal code over R`�2 can be lifted to a self-

orthogonal code over R` using this method in the case when p = 2, where ` � 4 is

an integer. We will also characterize all self-orthogonal (resp. self-dual) codes over

R`�2 that can be lifted to self-orthogonal (resp. self-dual) codes over R`.

4.2 Outline of the recursive construction method

Throughout this section, let ` � 4 be an integer, and let 1,2, . . . ,`+1 be

non-negative integers satisfying n = 1 + 2 + · · · + ` + `+1 and 21 + 22 +

· · · + 2`�i+1 + `�i+2 + `�i+3 + · · · + i  n for d
`+1
2 e  i  `. Here we observe

that the map b : R` ! R`�2, defined as ba = a0 + ua1 + · · · + u
`�3

a`�3 for all

a = a0+ua+ · · ·+u
`�1

a`�1 2 R`, is a canonical epimorphism from R` onto R`�2. In

fact, for each element a = a0 + ua1 + · · ·+ u
`�1

a`�1 2 R` with a0, a1, . . . , a`�1 2 Fpr ,

there corresponds a unique element ba = a0 + ua1 + · · ·+ u
`�3

a`�3 2 R`�2.

Now let C`�2 be a linear code of the type {1 + 2,3, . . . ,`�1} and length n

over R`�2 with a generator matrix

G`�2 =

2

66666664

T
0
1

T
0
2

uT
0
3

...

u
`�3

T
0
`�1

3

77777775

, (4.2.1)

where "
T

0
1

T
0
2

#
=

"
Ik1 A

(0)
1,1 A

(0)
1,2 · · · A

(0)
1,`�2 A

(0)
1,`

0 Ik2 A
(0)
2,2 · · · A

(0)
2,`�2 A

(0)
2,`

#
+

`�3X

j=1

u
j

"
U

(j)
1

U
(j)
2

#

with Ii
as the i ⇥ i identity matrix over Fpr , A

(0)
i,j

2 Mi⇥j+1(Fpr) for 1  i  2

and i  j  ` � 2, A(0)
1,` 2 M1⇥(`+`+1)(Fpr), A

(0)
2,` 2 M2⇥(`+`+1)(Fpr), [U (j)

]2 2
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M(1+2)⇥n(Fpr) for 1  j  `� 3, and the matrix T
0
y
2 My⇥n(R`�2) is of the form

T
0
y
= Z

(0)
y + uZ

(1)
y + · · ·+ u

`�y�1
Z

(`�y�1)
y with Z

(0)
y , Z

(1)
y , . . . , Z

(`�y�1)
y 2 My⇥n(Fpr)

for 3  y  `� 1.

Next, let C` be a linear code of the type {1,2, . . . ,`�1,`} and length n over

R` with a generator matrix

G` =

2

66666666664

T1

uT2

u
2
T3

...

u
`�2

T`�1

u
`�1

T`

3

77777777775

, (4.2.2)

where

T1 = T
0
1 + u

`�2
h
0 · · · 0 0 U

(`�2)
1,`

i
+ u

`�1
h
0 · · · 0 0 U

(`�1)
1,`

i

with U
(`�2)
1,` 2 M1⇥(`+`+1)(Fpr), U

(`�1)
1,` 2 M1⇥(`+`+1)(Fpr), the matrix Ty is of

the form

Ty = T
0
y
+ u

`�y

h
0 0 · · · 0 A

(`�y)
y,`

i
with A

(`�y)
y,`

2 My⇥(`+`+1)(Fpr)

for 2  y  `� 1, and the matrix T` is of the form

T` =
h
0 0 · · · 0 A

(0)
`,`

i
with A

(0)
`,`

2 M`⇥(`+`+1)(Fpr).

Now if the code C` is self-orthogonal (resp. self-dual), then by Theorem 2.2.4(a),

we see that the code C`�2 is also self-orthogonal (resp. self-dual). Conversely, if

the code C`�2 is self-orthogonal (resp. self-dual), then the code C` is self-orthogonal

(resp. self-dual) if and only if there exist matrices U
(`�2)
1,` 2 M1⇥(`+`+1)(Fpr),

U
(`�1)
1,` 2 M1⇥(`+`+1)(Fpr), A

(`�y)
y,`

2 My⇥(`+`+1)(Fpr) for 2  y  `, satisfying
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the following system of matrix equations over Fpr :

A
(0)
1,`U

(`�2)t
1,` + U

(`�2)
1,` A

(0)t
1,` = �

`�3P
i=1

U
(j)
1 U

(`�2�j)t
1 ,

A
(0)
1,`U

(`�1)t
1,` + U

(1)
1

h
0 · · · 0 U

(`�2)
1,`

i
t

+U
(`�1)
1,` A

(0)t
1,` +

h
0 · · · 0 U

(`�2)
1,`

i
U

(1)t
1 = �

`�3P
i=2

U
(j)
1 U

(`�1�j)t
1 ,

A
(0)
1,`A

(`�2)t
2,` = �

`�3P
j=1

U
(j)
1 U

(`�2�j)t
2 + U

(`�2)
1,` A

(0)t
2,` ,

A
(0)
1,`A

(`�y)t
y,`

= �

`�yP
i=1

U
(i)
1 Z

(`�y�i)t
y for 3  y  `� 1,

A
(0)
1,`A

(0)t
`,`

= 0.

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

(4.2.3)

When p is an odd prime, working as in Theorem 3.4.1, we see that the system (4.2.3)

of matrix equations has a solution, which implies that the code C` is self-orthogonal

(resp. self-dual), from which it follows that each self-orthogonal (resp. self-dual)

code of the type {1 + 2,3, . . . ,`�1} and length n over R`�2 can be lifted to a

self-orthogonal (resp. self-dual) code of the type {1,2, . . . ,`} and length n over

R`. On the other hand, when p = 2 (i.e., R` = F2r [u]/hu`
i), the system (4.2.3) of

matrix equations need not have a solution, and hence every self-orthogonal (resp.

self-dual) code of the type {1 + 2,3, . . . ,`�1} and length n over R`�2 can not

be lifted to a self-orthogonal (resp. self-dual) code of the type {1,2, . . . ,`} and

length n over R`, which we illustrate in the following example.

Example 4.2.1. Let p = 2, r = 1, ` = 4, n = 3, 1 = 1 and 2 = 3 = 4 = 0.

Here we have R4 = F2[u]/hu4
i and R2 = F2[u]/hu2

i. Let D2 be a linear code of the

type {1, 0} and length 3 over R2 with a generator matrix G2 = [1 1 0] + u[0 1 0].

By Theorem 2.2.4(a), we see that the code D2 is a self-orthogonal code over R2.

Now consider the linear code D4 of the type {1, 0, 0, 0} and length 3 over R4 with a

generator matrix

[1 1 0] + u[0 1 0] + u
2[0 a c] + u

3[0 b d], where a, b, c, d 2 F2.

Note that corresponding to the codes D2 and D4, we have A
(0)
1,4 = [1 0], U (1)

1 =

[0 1 0], U (2)
1,4 = [a c] and U

(3)
1,4 = [b d], and one can observe that the resulting
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system (4.2.3) of matrix equations has no solution. From this, it follows that the self-

orthogonal code D2 can not be lifted to a self-orthogonal code of the type {1, 0, 0, 0}

and length 3 over R4.

However, there are self-orthogonal codes of the type {1 + 2,3, . . . ,`�1}

and length n over R`�2 that can be lifted to self-orthogonal codes of the type

{1,2, . . . ,`} and of the same length n over R`. The following example illustrates

this.

Example 4.2.2. Let p = 2, r = 1, n = 3, ` = 4, 1 = 1 and 2 = 3 = 4 = 0. Here

we have R4 = F2[u]/hu4
i and R2 = F2[u]/hu2

i. Let B2 be a linear code of the type

{1, 0} and length 3 over R2 with a generator matrix [1 1 0]+u[0 1 1]. By Theorem

2.2.4(a), we see that the code B2 is a self-orthogonal code over R2. Now consider the

linear code B4 of the type {1, 0, 0, 0} and length 3 over R4 with a generator matrix

[1 1 0] + u[0 1 1] + u
2[0 a c] + u

3[0 b d], where a, b, c, d 2 F2.

Corresponding to the codes B2 and B4, we have A
(0)
1,4 = [1 0], U (1)

1 = [0 1 1], U (2)
1,4 =

[a c] and U
(3)
1,4 = [b d], and the resulting system (4.2.3) of matrix equations has a

solution. In fact, one of the solutions of the system (4.2.3) is given by U
(2)
1,4 = [1 1]

and U
(3)
1,4 = [1 1], which gives rise to a self-orthogonal code B4 of the type {1, 0, 0, 0}

and length 3 over R4 with a generator matrix

[1 1 0] + u[0 1 1] + u
2[0 1 1] + u

3[0 1 1].

This shows that the self-orthogonal code B2 of the type {1, 0} and length 3 over R2

can be lifted to a self-orthogonal code of the type {1, 0, 0, 0} and length 3 over R4.

This suggests that when p = 2 and ` � 4, only those self-orthogonal codes of the

type {1 + 2,3, . . . ,`�1} and length n over R`�2 can be lifted to self-orthogonal

codes of the type {1,2,3, . . . ,`} and of the same length n over R` for which the

corresponding system (4.2.3) of matrix equations has a solution.

A symmetric matrix A is said to be alternating if it satisfies Diag(A) = 0. In

the following theorem, we characterize all self-orthogonal (resp. self-dual) codes of
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the type {1 + 2,3, . . . ,`�1} and length n over R`�2 that can be lifted to self-

orthogonal (resp. self-dual) codes of the type {1,2, . . . ,`�1,`} and length n over

R` with the help of the construction method outlined above.

Theorem 4.2.1. Let p = 2, and let ` � 4 be a fixed integer. Let C`�2 be a self-

orthogonal (resp. self-dual) code of the type {1+2,3, . . . ,`�1} and length n over

R`�2 with a generator matrix G`�2 (as defined by (4.2.1)). Then the code C`�2 can

be lifted to a self-orthogonal (resp. self-dual) code C` of the type {1,2, . . . ,`�1,`}

and length n over R` with a generator matrix G` (as defined by (4.2.2)) if and only

if the matrix U
(b `�1

2 c)
1 2 M1⇥n(F2r) satisfies

Diag
�
U

(b `�1
2 c)

1 U
(b `�1

2 c)t
1

�
= 0,

i.e., the matrix U
(b `�1

2 c)
1 U

(b `�1
2 c)t

1 is alternating.

Proof. By Remark 3.4.1, we see that A
(0)
1,` is a full-row rank matrix over F2r . Here

one can easily see that the code C`�2 can be lifted to a self-orthogonal (resp. self-

dual) code C` of the type {1,2, . . . ,`�1,`} and length n over R` with a generator

matrix G` if and only if the system (4.2.3) of matrix equations in unknowns U (`�2)
1,` 2

M1⇥(`+`+1)(Fpr), U
(`�1)
1,` 2 M1⇥(`+`+1)(Fpr), A

(`�y)
y,`

2 My⇥(`+`+1)(Fpr) for

2  y  `, admits a solution. Now by applying Lemma 2.1.1, the desired result

follows.

In the next section, we will present a modified recursive method to construct

self-orthogonal and self-dual codes over Re from self-orthogonal codes over F2r , and

vice versa.

4.3 A modified recursive method to construct self-

orthogonal and self-dual codes over the ring

Re from self-orthogonal codes over F2r

From now on, throughout this chapter, we assume that p = 2 and e � 2. Let us

define

s =
j
e

2

k
.
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This gives d
e

2e = s + ✓, where ✓ = 0 if e is even, while ✓ = 1 if e is odd. Let

n be a positive integer, and let k1, k2, . . . , ke+1 be non-negative integers satisfying

n = k1+k2+ · · ·+ke+1 and 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for

s+1  i  e. Further, we define n0 = 0 and ni = k1+k2+ · · ·+ki for 1  i  e+1.

For positive integers ↵ and �  e, let (B)↵,� denote the block matrix whose (i, j)th

block is the matrix Bi,j 2 Mki⇥kj+1(F2r) for 1  i  ↵ and �  j  e. Now we

define linear codes satisfying the property (⇤) as follows:

Linear codes satisfying the property (⇤): For an integer e � 3, let ` be a fixed

integer satisfying 2  `  e, and let `1 = b
`

2c. Let C` be a linear code of the type

{ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and length n over R` with a generator matrix

G` =

2

66666666666664

T1

T2

...

Ts�`1+1

uTs�`1+2

...

u
`�1

Ts+✓+`1

3

77777777777775

, (4.3.1)

where for 1  h  s� `1 + 1,

Th = T
(0)
h

+
`�1X

j=1

u
j
U

(j)
h

with T
(0)
h

2 Mkh⇥n(F2r), U
(j)
h

2 Mkh⇥n(F2r) for 1  j  ` � 1, and the matrix

Ts�`1+i 2 Mks�`1+i⇥n(R`) to be considered modulo u
`�i+1 for 2  i  `. We say

that the code C` satisfies the property (⇤) if the matrices U
(y)
h

U
(y)t
h

are alternating

for all integers h and y satisfying 1  h  min{s � `1 + 1, s + ✓ � y} and 1  y 

min{`� 1, s+ ✓} with y 6= s+ ✓.

Example 4.3.1. Let e = 5, r = 1, n = 6, k1 = k2 = k3 = k4 = k5 = 1 and ` = 3.

Here we have R5 = F2[u]/hu5
i and R3 = F2[u]/hu3

i. Let C3 be a linear code of the

type {2, 1, 1} and length 6 over R3 with a generator matrix
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2

66664

1 0 1 u+ u
2 1 + u

2 1 + u

0 1 0 1 + u u 0

0 0 u u+ u
2

u
2 0

0 0 0 u
2

u
2 0

3

77775
.

Note that
"
U

(1)
1

U
(1)
2

#
=

"
0 0 0 1 0 1

0 0 0 1 1 0

#
and

h
U

(2)
1

i
=
h
0 0 0 1 1 0

i
.

It is easy to observe that the matrices U (1)
1 U

(1)t
1 , U

(1)
2 U

(1)t
2 and U

(2)
1 U

(2)t
1 are alternat-

ing, which implies that the code C3 satisfies the property (⇤).

One can easily observe that any self-orthogonal code of the type {k1, k2, . . . , ke}

and length n over Re satisfies the property (⇤). In this section, we will start with

a self-orthogonal code C0 of length n and dimension ns+✓ over F2r , and we will

construct a self-orthogonal code of the type {ns, ks+1} and length n over R2 satisfying

the property (⇤) and with the 1-th Torsion code as C0 if e is even (see the proof

of Proposition 4.3.1), while we will construct a self-orthogonal code of the type

{ns, ks+1, ks+2} and length n over R3 satisfying the property (⇤) and with the 2-th

Torsion code as C0 if e is odd (see the proof of Proposition 4.3.2). We will also count

such codes over R2 and R3 (see Propositions 4.3.1 and 4.3.2). Further, for 4  `  e,

given a self-orthogonal code C`�2 of the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1} and

length n over R`�2 satisfying the property (⇤), we will construct a self-orthogonal

code of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and length n over R` satisfying the

property (⇤) and with the (i + 1)-th Torsion code as Tori(C`�2) for 1  i  ` � 2,

and we will count such codes for 4  `  e, where `1 = b
`

2c (see Propositions 4.3.3

and 4.3.4). These results give rise to a modified recursive method to construct self-

orthogonal and self-dual codes of the type {k1, k2, . . . , ke} and length n over Re from

a self-orthogonal code of the same length n and dimension ns+✓ over F2r . We will

employed this modified recursive construction method to count all self-orthogonal

and self-dual codes of length n over Re in Section 4.4.

Now if Ce is a self-orthogonal code of the type {k1, k2, . . . , ke} and length n

over Re, then we see, by Lemma 2.2.1, that its Torsion code Tors+✓(Ce) is a self-

orthogonal code of length n and dimension ns+✓ over F2r .We next make the following
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observation.

Remark 4.3.1. Let us consider a self-orthogonal code of length n and dimension

ns+✓ over F2r with a generator matrix

G0 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s+✓

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s+✓�1 · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s+✓�1 · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks+✓
· · · A

(0)
s+✓,e�1 A

(0)
s+✓,e

3

777775
, (4.3.2)

where columns of the matrix G0 are grouped into blocks of sizes k1, k2, . . . , ke, ke+1,

Iki is the ki⇥ki identity matrix over F2r and A
(0)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s+ ✓

and i  j  e. Since the matrix G0 generates a self-orthogonal code of length n

and dimension ns+✓ over F2r , we have G0G
t

0 = 0, which implies that the matrix

(A(0))s+✓,s+✓ is a full row-rank matrix over F2r . Further, by permuting the columns

of the matrix G0, we can assume, without any loss of generality, that the matrices

(A(0))s,s+✓+1, (A(0))s�1,s+✓+2, . . . , (A(0))2,e�1, A
(0)
1,e are of full row-rank.

We also need the following key lemma to count self-orthogonal and self-dual

codes over Re.

Lemma 4.3.1. Let � and ⌧ be fixed integers satisfying 1  �  s and 1  ⌧ 

s+ ✓ � 1. Let A, X 2 Mn�⇥n(F2r) be two matrices of the form

A =

2

666664

Ik1 A1,1 A1,2 · · · A1,��1 · · · A1,e�1 A1,e

0 Ik2 A2,2 · · · A2,��1 · · · A2,e�1 A2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Ik� · · · A�,e�1 A�,e

3

777775

and

X =

2

666664

X1

X2

...

X�

3

777775
=

2

666664

0 · · · 0 X1,⌧+1 X1,⌧+2 · · · X1,⌧+� · · · X1,e

0 · · · 0 0 X2,⌧+2 · · · X2,⌧+� · · · X2,e

... · · ·
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · X�,⌧+� · · · X�,e

3

777775
,
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where columns of the matrices A and X are grouped into blocks of sizes k1, k2, . . . , ke,

ke+1, Iki is the ki ⇥ ki identity matrix over F2r , Ai,j 2 Mki⇥kj+1(F2r) for 1  i  �

and i  j  e and Xi1,j1 2 Mki1⇥kj1+1(F2r) for 1  i1  � and i1 + ⌧  j1 

e. Suppose that the matrix (A)�,⌧+� 2 Mn�⇥(n�n⌧+�)(F2r) is of full row-rank. Let

B 2 Mn�⇥n�
(F2r) be such that Diag(B) = 0. Then for 1  !  �, the number of

solutions of the system

AX
t +XA

t = B

and Diag
�
XhX

t

h

�
= 0 for 1  h  !

)
(4.3.3)

of matrix equations in the unknown matrix X 2 Mn�⇥n(F2r) is given by

(2r)

⌧+�P
i=⌧+2

kini�⌧�1+n�(ne+1�n⌧+�)�n!�n�(n��1)
2

.

Proof. To prove the result, let ! be a fixed integer satisfying 1  !  �. Let us

write A = (ai) and X = (xj), where ai’s and xj’s are the rows of the matrices A and

X, respectively. Let di,j denote the (i, j)-th entry of the matrix B for 1  i, j  n�.

We note that di,i = 0 for 1  i  n�. We next observe that the system (4.3.3)

of matrix equations is equivalent to the following system of equations in unknowns

x1,x2, . . . ,xn�
over F2r :

ai · xj + aj · xi = di,j for 1  i < j  n�, (4.3.4)

xi · xi = 0 for 1  i  n!. (4.3.5)

We further observe that for each integer j satisfying 1  j  n�, there exists a

unique integer bj satisfying 1  bj  � and nbj�1 + 1  j  nbj
and that the

corresponding unknown xj is of the form xj = (0 x
n�nbj+⌧

j
), where 0 denotes the

zero vector of length nbj+⌧ and x
n�nbj+⌧

j
denotes the vector of length n � nbj+⌧

obtained from xj after deleting the first nbj+⌧ coordinates. This implies that the

first nbj+⌧ coordinates of xj are zero for nbj�1 + 1  j  nbj
, which further implies

that the number of variables in xj are n � nbj+⌧ for nbj�1 + 1  j  nbj
. For

1  j  n�, let exj = x
n�nbj+⌧

j
(resp. eaj = a

n�nbj+⌧

j
) denote the vector of length

n � nbj+⌧ obtained from xj (resp. aj) after deleting the first nbj+⌧ coordinates. In

view of this, equations (4.3.4) and (4.3.5) are equivalent to the following system of
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equations in unknowns ex1, ex2, . . . , exn�
over F2r :

eai · exj + eaj · exi = di,j for 1  i < j  n�,

exi · exi = 0 for 1  i  n!.

This is equivalent to the following system of equations

eai · exj + eaj · exi = di,j for 1  i < j  n�,

e1 · exi = 0 for 1  i  n!,

(here e1 denotes the all-one vector having the same length as that of exi), which can

be represented in the matrix form as follows:

A

2

66666666666666664

ext

1

ext

2
...

ext

n!

ext

n!+1
...

ext

n��1

ext

n�

3

77777777777777775

=

2

666666666666666664

0
...

0

d1,2

...

d1,n�

...

dn��1,n�

3

777777777777777775

, where A =

2

666666666666666664

e1
. . .

e1
ea2 ea1
...

...
. . .

ean�
ea1

...
...

...

ean�
ean��1

3

777777777777777775

.

Since (A)�,�+⌧ is a full row-rank matrix over F2r , we observe that the vectors

a
n�nc+⌧

1 , a
n�nc+⌧

2 , . . . , a
n�nc+⌧

n�
(obtained by deleting the first nc+⌧ coordinates from

a1, a2, . . . , an�
, respectively) are linearly independent over F2r for 1  c  �. In par-

ticular, the vectors ea1,ea2, . . . ,ean�
are linearly independent over F2r . We further note

that the matrix A has order
⇣
n! + n�(n��1)

2

⌘
⇥

✓
⌧+�P

i=⌧+2
kini�⌧�1 + n�(ne+1 � n⌧+�)

◆
.

Now we assert that the rows of the matrix A are linearly independent over F2r .

To prove this assertion, we suppose, on the contrary, that the rows of the ma-

trix A are linearly dependent over F2r , which implies that there exists a non-zero

symmetric matrix (�i,j) 2 Mn�⇥n�
(F2r) such that

�i,i
e1+

n�X

j=1
j 6=i

�i,jeaj = 0 for 1  i  n!, (4.3.6)
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n�X

j=1
j 6=i1

�i1,jeaj = 0 for n! + 1  i1  n� (4.3.7)

and �i,i = 0 for n! + 1  i  n�. Since the vectors ea1,ea2, . . . ,ean�
are linearly

independent over F2r , the system (4.3.7) of equations implies that �i,j = 0 for

n!+1  i  n� and 1  j( 6= i)  n�. This gives �i,j = 0 for n!+1  i  n� and 1 

j  n�. As the vectors ea1,ea2, . . . ,ean�
are linearly independent over F2r , by (4.3.6), we

must have �z,z 6= 0 for some integer z satisfying 1  z  n!. Further, by (4.3.6), we

get 1n�n`+⌧ =
n!P
j=1
j 6=z

�
�1
z,z

�z,ja
n�n`+⌧

j
for some integer ` satisfying 1  `  �, from which

it follows that �z,g 6= 0 for some integer g satisfying 1  g( 6= z)  n!. By (4.3.6)

again, we get �g,g
e1 =

n!P
j=1
j 6=g

�g,jeaj, which implies that �g,g1
n�ny+⌧ =

n!P
j=1
j 6=g

�g,ja
n�ny+⌧

j
for

some integer y satisfying 1  y  �. From this, it follows that

1
n�n`+⌧ =

n!X

j=1
j 6=z

�
�1
z,z

�z,ja
n�n`+⌧

j
and (4.3.8)

�g,g1
n�ny+⌧ =

n!X

j1=1
j1 6=g

�g,j1a
n�ny+⌧

j1
. (4.3.9)

Now the following two cases arise: (i) ` = y and (ii) ` 6= y.

(i) Let ` = y. In this case, equation (4.3.9) is equivalent to

�g,g1
n�n`+⌧ =

n!X

j1=1
j1 6=g

�g,j1a
n�n`+⌧

j1
.

From this and by equation (4.3.8), we get

n!X

j=1
j 6=z

�g,g�
�1
z,z

�z,ja
n�n`+⌧

j
=

n!X

j1=1
j1 6=g

�g,j1a
n�n`+⌧

j1
.

Since the vectors a
n�n`+⌧

1 , a
n�n`+⌧

2 , . . . , a
n�n`+⌧

n!
are linearly independent over

F2r , we get �g,z = 0, which is a contradiction.
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(ii) Let ` 6= y. In this case, let us suppose, without any loss of generality, that

` < y, which implies that n � n`+⌧ � n � ny+⌧ . Now by equation (4.3.8), we

get 1n�ny+⌧ =
n!P
j=1
j 6=z

�
�1
z,z

�z,ja
n�ny+⌧

j
. From this and by equation (4.3.9), we get

n!X

j=1
j 6=z

�g,g�
�1
z,z

�z,ja
n�ny+⌧

j
=

n!X

j1=1
j1 6=g

�g,j1a
n�ny+⌧

j1
.

Since the vectors a
n�ny+⌧

1 , a
n�ny+⌧

2 , . . . , a
n�ny+⌧

n!
are linearly independent over

F2r , we get �g,z = 0, which is a contradiction.

This implies that the rows of the matrix A are linearly independent over F2r . From

this, the desired result follows immediately.

In the following proposition, we show that given a self-orthogonal code C0 of

length n and dimension ns over F2r , there exists a self-orthogonal code C2 of the

type {ns, ks+1} and length n over R2 satisfying the property (⇤) and Tor1(C2) = C0.

We also count all distinct self-orthogonal codes of the type {ns, ks+1} and length n

over R2 satisfying the property (⇤) and with the 1-th Torsion code as C0. The proof

of the following proposition also provides a method to construct a self-orthogonal

code of the type {ns, ks+1} and length n over R2 satisfying the property (⇤) from a

given self-orthogonal code of length n and dimension ns over F2r .

Proposition 4.3.1. Let C0 be a self-orthogonal code of length n and dimension ns

over F2r .

(a) There exists a self-orthogonal code C2 of the type {ns, ks+1} and length n over

R2 satisfying the property (⇤) and Tor1(C2) = C0.

(b) Moreover, each self-orthogonal code C0 of length n and dimension ns over F2r

gives rise to precisely

(2r)

s+2P
i=3

kini�2+ns(n�ns+2)�ns�1�ns(ns�1)
2


ks+1 + n� ns+1 � ns

ks+1

�

2r

distinct self-orthogonal codes of the type {ns, ks+1} and length n over R2 sat-

isfying the property (⇤) and with the 1-th Torsion code as C0.
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Proof. To prove the result, we assume, without any loss of generality, that the code

C0 has a generator matrix

G0 = [T (0)]s =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s�1 · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s�1 · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks · · · A
(0)
s,e�1 A

(0)
s,e

3

777775
,

where columns of the matrix G0 are grouped into blocks of sizes k1, k2, . . . , ke, ke+1,

Iki is the ki ⇥ ki identity matrix over F2r and A
(0)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s

and i  j  e. By Remark 4.3.1, we assume, without any loss of generality, that the

matrices (A(0))s,s+1, (A(0))s�1,s+2, . . . , (A(0))2,e�1, A
(0)
1,e are of full row-rank. Since the

code C0 is self-orthogonal, we have G0G
t

0 = [T (0)]s[T (0)]t
s
= 0.

Now to show that there exists a self-orthogonal code of the type {ns, ks+1} and

length n over R2 satisfying the property (⇤) and with the 1-th Torsion code as C0,

let us define a matrix G2 over R2 as

G2 =

2

66666664

T
(2)
1

T
(2)
2
...

T
(2)
s

uT
(2)
s+1

3

77777775

=

2

66666664

T
(0)
1 + uU

(1)
1

T
(0)
2 + uU

(1)
2

...

T
(0)
s + uU

(1)
s

uT
(2)
s+1

3

77777775

with the matrix [U (1)]s of the form

[U (1)]s =

2

666664

U
(1)
1

U
(1)
2
...

U
(1)
s

3

777775
=

2

666664

0 0 A
(1)
1,2 A

(1)
1,3 · · · A

(1)
1,s+1 · · · A

(1)
1,e

0 0 0 A
(1)
2,3 · · · A

(1)
2,s+1 · · · A

(1)
2,e

...
...

...
...

...
...

...
...

0 0 0 0 · · · A
(1)
s,s+1 · · · A

(1)
s,e

3

777775
,

where A
(1)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s and i < j  e and the matrix T
(2)
s+1 is of

the form

T
(2)
s+1 =

h
0 · · · 0 Iks+1 A

(0)
s+1,s+1 · · · A

(0)
s+1,e

i
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with A
(0)
s+1,j 2 Mks+1⇥kj+1(F2r) for s+ 1  j  e.

Let C2 be a linear code of length n over R2 with a generator matrix G2. It

is easy to see that the code C2 is of the type {ns, ks+1} and Tor1(C2) = C0. By

Theorem 2.2.4(a), we see that the code C2 is a self-orthogonal code over R2 satisfying

the property (⇤) if and only if there exist matrices [U (1)]s and T
(2)
s+1 satisfying the

following system of matrix equations over F2r :

[T (0)]s[U
(1)]t

s
+ [U (1)]s[T

(0)]t
s

= 0, (4.3.10)

Diag
�
U

(1)
h

U
(1)t
h

�
= 0 for 1  h  s� 1, (4.3.11)

[T (0)]sT
(2)t
s+1 = 0. (4.3.12)

Since the matrix (A(0))s,s+1 is of full row-rank, we see, by Lemma 4.3.1, that

there exists a matrix [U (1)]s satisfying (4.3.10) and (4.3.11) and that such a matrix

[U (1)]s has precisely

(2r)

s+2P
i=3

kini�2+ns(n�ns+2)�ns�1�ns(ns�1)
2

distinct choices. Further, by Lemma 2.2.1 and by equation (2.2.2), we observe that

there exists a matrix T
(2)
s+1 satisfying (4.3.12) if and only if the Torsion code Tor2(C2)

satisfies C0 ✓ Tor2(C2) ✓ C
?
0 . From this, we observe that the number of choices for

the matrix T
(2)
s+1 satisfying (4.3.12) is equal to the number of choices for a linear code

C
0 of length n and dimension ns+1 over F2r satisfying C0 ✓ C

0
✓ C

?
0 for a given choice

of C0. Further, for a given choice of C0, we see, by Theorem 2.3.9, that there are

precisely
⇥
ks+1+n�ns+1�ns

ks+1

⇤
2r

distinct choices for the code C
0 satisfying C0 ✓ C

0
✓ C

?
0 ,

and hence the matrix T
(2)
s+1 has precisely

⇥
ks+1+n�ns+1�ns

ks+1

⇤
2r

distinct choices. Further,

one can easily observe that each of the distinct choices of the matrices [U (1)]s and

T
(2)
s+1 satisfying (4.3.10)-(4.3.12) gives rise to a distinct self-orthogonal code C2 of the

type {ns, ks+1} and length n over R2 satisfying the property (⇤) and Tor1(C2) = C0.

From this, the desired result follows immediately.

In the following proposition, we show that given a self-orthogonal code C0 of

length n and dimension ns+1 over F2r , there exists a self-orthogonal code C3 of the

type {ns, ks+1, ks+2} and length n over R3 satisfying the property (⇤) and Tor2(C3) =
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C0. We also count all distinct self-orthogonal codes of the type {ns, ks+1, ks+2} and

length n over R3 satisfying the property (⇤) and with the 2-th Torsion code as C0.

The proof of the following proposition also provides a method to construct a self-

orthogonal code C3 of the type {ns, ks+1, ks+2} and length n over R3 satisfying the

property (⇤) from a given self-orthogonal code C0 of length n and dimension ns+1

over F2r .

Proposition 4.3.2. Let C0 be a self-orthogonal code of length n and dimension ns+1

over F2r .

(a) There exists a self-orthogonal code C3 of the type {ns, ks+1, ks+2} and length n

over R3 satisfying the property (⇤) and Tor2(C3) = C0.

(b) Moreover, each self-orthogonal code C0 of length n and dimension ns+1 over

F2r gives rise to precisely

(2r)

s+2P
i=3

kini�2+
s+2P
j=4

kjnj�3+(ns+1+ns)(n�ns+2�ns)+n
2
s�ns�1


ns+1

ns

�

2r


ks+2 + n� ns+2 � ns

ks+2

�

2r

distinct self-orthogonal codes of the type {ns, ks+1, ks+2} and length n over R3

satisfying the property (⇤) and with the 2-th Torsion code as C0.

Proof. To prove the result, we first choose an ns-dimensional linear subcode B1 of

the code C0. By Theorem 2.3.9, we see that the subcode B1 has precisely
⇥
ns+1

ns

⇤
2r

distinct choices. Further, without any loss of generality, we assume that the code C0

has a generator matrix

G0 = [T (0)]s+1 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s+1

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks+1 · · · A
(0)
s+1,e�1 A

(0)
s+1,e

3

777775

and its subcode B1 has a generator matrix

[T (0)]s =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks · · · A
(0)
s,e�1 A

(0)
s,e

3

777775
,
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where columns of the matrices G0 and [T (0)]s are grouped into blocks of sizes

k1, k2, . . . , ke, ke+1, Iki is the ki⇥ki identity matrix over F2r and A
(0)
i,j

2 Mki⇥kj+1(F2r)

for 1  i  s + 1 and i  j  e. Further, by Remark 4.3.1, we assume, with-

out any loss of generality, that the matrices (A(0))s,s+2, (A(0))s�1,s+3, . . . , (A(0))2,e�1,

A
(0)
1,e are of full row-rank. Since the code C0 is self-orthogonal, we have G0G

t

0 =

[T (0))]s+1[T (0)]t
s+1 = 0.

Now to show that there exists a self-orthogonal code of the type {ns, ks+1, ks+2}

and length n over R3 satisfying the property (⇤) and with the 2-th Torsion code as

C0, let us define a matrix G3 over R3 as

G3 =

2

66666666664

T
(3)
1

T
(3)
2
...

T
(3)
s

uT
(3)
s+1

u
2
T

(3)
s+2

3

77777777775

=

2

66666666664

T
(0)
1 + uU

(1)
1 + u

2
U

(2)
1

T
(0)
2 + uU

(1)
2 + u

2
U

(2)
2

...

T
(0)
s + uU

(1)
s + u

2
U

(2)
s

uT
(3)
s+1

u
2
T

(3)
s+2

3

77777777775

with the matrices [U (↵)]s for ↵ 2 {1, 2}, T (3)
s+1 and T

(3)
s+2 of the forms

[U (↵)]s =

2

666664

U
(↵)
1

U
(↵)
2
...

U
(↵)
s

3

777775
=

2

666664

0 · · · 0 A
(↵)
1,↵+1 A

(↵)
1,↵+2 · · · A

(↵)
1,↵+s

· · · A
(↵)
1,e

0 · · · 0 0 A
(↵)
2,↵+2 · · · A

(↵)
2,↵+s

· · · A
(↵)
2,e

... · · ·
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · A
(↵)
s,↵+s · · · A

(↵)
s,e

3

777775
,

T
(3)
s+1 = T

(0)
s+1 + u

h
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

i
and

T
(3)
s+2 =

h
0 · · · 0 Iks+2 A

(0)
s+2,s+2 · · · A

(0)
s+2,e

i
,

whereA(↵)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s and i+↵  j  e, A
(1)
s+1,v 2 Mks+1⇥kv+1(F2r)

for s+ 2  v  e and A
(0)
s+2,b 2 Mks+2⇥kb+1

(F2r) for s+ 2  b  e.

Next, let C3 be a linear code of length n over R3 with a generator matrix G3.

It is easy to see that the code C3 is of the type {ns, ks+1, ks+2}, T or1(C3) = B1 and

Tor2(C3) = C0. By Theorem 2.2.4(a), we see that the code C3 is a self-orthogonal

code over R3 satisfying the property (⇤) if and only if there exist matrices [U (1)]s,
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[U (2)]s,
⇥
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
and T

(3)
s+2 satisfying the following system of

matrix equations over F2r :

[T (0)]s[U
(1)]t

s
+ [U (1)]s[T

(0)]t
s

= 0, (4.3.13)

Diag
�
U

(1)
h

U
(1)t
h

�
= 0 for 1  h  s, (4.3.14)

[T (0)]s[U
(2)]t

s
+ [U (2)]s[T

(0)]t
s

= [U (1)]s[U
(1)]t

s
, (4.3.15)

Diag
�
U

(2)
`

U
(2)t
`

�
= 0 for 1  `  s� 1, (4.3.16)

[T (0)]s
h
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

it
= [U (1)]sT

(0)t
s+1 , (4.3.17)

[T (0)]s
h
0 · · · 0 Iks+2 A

(0)
s+2,s+2 · · · A

(0)
s+2,e

it
= 0. (4.3.18)

As the matrix (A(0))s,s+2 is of full row-rank, we see, by Lemma 4.3.1, that there exist

matrices [U (1)]s and [U (2)]s satisfying (4.3.13)-(4.3.16), and that there are precisely

(2r)

s+2P
i=3

kini�2+
s+2P
j=4

kjnj�3+2ns(n�ns+2)�n
2
s�ns�1

distinct choices for such a pair of matrices [U (1)]s and [U (2)]s. Further, for given

choices of the matrices [U (1)]s and [U (2)]s satisfying (4.3.13)-(4.3.16), we observe

that the matrix equation (4.3.17) is equivalent to the following matrix equation

(A(0))s,s+2

h
A

(1)
s+1,s+2 · · · A

(1)
s+1,e

it
= [U (1)]sT

(0)t
s+1 (4.3.19)

over F2r . As the matrix (A(0))s,s+2 is of full row-rank, the total number of choices for

the matrix
⇥
A

(1)
s+1,s+2 · · ·A

(1)
s+1,e

⇤
satisfying (4.3.19) (and hence the matrix

⇥
0 · · · 0

A
(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
satisfying (4.3.17)) has precisely (2r)ks+1(n�ns+2�ns) distinct

choices. Further, by applying Theorem 2.3.9 and Lemma 2.2.1 and working as in

Proposition 4.3.1, we can show that there exists a matrix T
(3)
s+2 satisfying (4.3.18) and

that the matrix T
(3)
s+2 has precisely

⇥
ks+2+n�ns+2�ns

ks+2

⇤
2r

distinct choices. This shows

that there exist matrices [U (1)]s, [U (2)]s,
⇥
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
and T

(3)
s+2

satisfying (4.3.13)-(4.3.18), which implies that there exists a self-orthogonal code

C3 of the type {ns, ks+1, ks+2} and length n over R3 satisfying the property (⇤),

T or1(C3) = B1 and Tor2(C3) = C0. Further, one can easily observe that each of the

distinct choices of the matrices [U (1)]s, [U (2)]s,
⇥
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
and
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T
(3)
s+2 satisfying (4.3.13)-(4.3.18) give rise to distinct self-orthogonal codes C3 of the

type {ns, ks+1, ks+2} and length n over R3 satisfying the property (⇤), T or1(C3) = B1

and Tor2(C3) = C0. From this, the desired result follows.

Now let ✓1 = 0 if s is even, while ✓1 = 1 if s is odd. Let ` be a positive integer

satisfying 4  `  s+ ✓+ ✓1, and let `1 = b
`

2c. In the following proposition, we show

that given a self-orthogonal code C`�2 of the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1}

and length n over R`�2 satisfying the property (⇤), there exists a self-orthogonal

code C` of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and length n over R` satisfying

the property (⇤) and Tori+1(C`) = Tori(C`�2) for 1  i  ` � 2. We also count

all such distinct self-orthogonal codes of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and

length n over R`.

Proposition 4.3.3. Let ✓1 = 0 if s is even, while ✓1 = 1 if s is odd. Let ` be a fixed

integer satisfying 4  `  s+ ✓ + ✓1, and let `1 = b
`

2c. Let C`�2 be a self-orthogonal

code of the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1} and length n over R`�2 satisfying

the property (⇤). Then the following hold.

(a) There exists a self-orthogonal code C` of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1}

and length n over R` satisfying the property (⇤) and Tori+1(C`) = Tori(C`�2)

for 1  i  `� 2.

(b) Moreover, each self-orthogonal code C`�2 of the type {ns�`1+2, ks�`1+3, ks�`1+4,

. . . , ks+✓+`1�1} and length n over R`�2 satisfying the property (⇤) gives rise to

precisely

(2r)

s+✓+`1P
i=`

kini�`+1+
s+✓+`1P
j=`+1

kjnj�`+⇤

ns�`1+2

ns�`1+1

�

2r


ks+✓+`1 + n� ns+✓+`1 � ns�`1+1

ks+✓+`1

�

2r

distinct self-orthogonal codes of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and

length n over R` satisfying the property (⇤) and with the (i + 1)-th Torsion

code as Tori(C`�2) for 1  i  ` � 2, where ⇤ = (ns+✓+`1�1 + ns�`1+1)(n �

ns+`1+✓ � ns�`1+1) + ns�`1+1 + n
2
s�`1+1 � ns�`+2 � ns�`+1.
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Proof. To prove the result, we first note that the Torsion code Tor1(C`�2) is an

ns�`1+2-dimensional code over F2r . So we first choose an ns�`1+1-dimensional linear

subcode B1 of the code Tor1(C`�2). By Theorem 2.3.9, we see that the subcode B1

has precisely
⇥
ns�`1+2

ns�`1+1

⇤
2r

distinct choices. Further, without any loss of generality, we

assume that the code Tor1(C`�2) has a generator matrix

H = [T (0)]s�`1+2 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s�`1+2

3

777775
=

2

666664

Ik1 A
(0)
1,1 · · · A

(0)
1,s�`1+1 · · · A

(0)
1,e

0 Ik2 · · · A
(0)
2,s�`1+1 · · · A

(0)
2,e

...
...

...
...

...
...

0 0 · · · Iks�`1+2
· · · A

(0)
s�`1+2,e

3

777775

and its subcode B1 has a generator matrix

[T (0)]s�`1+1 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s�`1+1

3

777775
=

2

666664

Ik1 A
(0)
1,1 · · · A

(0)
1,s�`1

· · · A
(0)
1,e�1 A

(0)
1,e

0 Ik2 · · · A
(0)
2,s�`1

· · · A
(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...

0 0 · · · Iks�`1+1
· · · A

(0)
s�`1+1,e�1 A

(0)
s�`1+1,e

3

777775
,

where columns of the matrices H and [T (0)]s�`1+1 are grouped into blocks of sizes

k1, k2, . . . , ke, ke+1, Iki is the ki⇥ki identity matrix over F2r and A
(0)
i,j

2 Mki⇥kj+1(F2r)

for 1  i  s � `1 + 2 and i  j  e. Furthermore, by Remark 4.3.1, we assume,

without any loss of generality, that the matrix (A(0))s�`1+1,s+✓+`1 is of full row-rank.

We next assume, without any loss of generality, that the code C`�2 has a generator

matrix

G`�2 =

2

66666666666664

T
(`�2)
1

T
(`�2)
2
...

T
(`�2)
s�`1+2

uT
(`�2)
s�`1+3
...

u
`�3

T
(`�2)
s+✓+`1�1

3

77777777777775

=

2

66666666666664

T
(0)
1 + uU

(1)
1 + u

2
U

(2)
1 + · · ·+ u

`�3
U

(`�3)
1

T
(0)
2 + uU

(1)
2 + u

2
U

(2)
2 + · · ·+ u

`�3
U

(`�3)
2

...

T
(0)
s�`1+2 + uU

(1)
s�`1+2 + u

2
U

(2)
s�`1+2 + · · ·+ u

`�3
U

(`�3)
s�`1+2

uT
(`�2)
s�`1+3

...

u
`�3

T
(`�2)
s+✓+`1�1

3

77777777777775

,
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where [T (0)]s�`1+2 2 Mns�`1+2⇥n(F2r), [U (j)]s�`1+2 2 Mns�`1+2⇥n(F2r) for 1  j 

`� 3, and the matrix T
(`�2)
s�`1+i

2 Mks�`1+i⇥n(R`�2) is of the form T
(`�2)
s�`1+i

= Z
(0)
s�`1+i

+

uZ
(1)
s�`1+i

+ · · ·+ u
`�i�1

Z
(`�i�1)
s�`1+i

with Z
(0)
s�`1+i

, Z
(1)
s�`1+i

, . . . , Z
(`�i�1)
s�`1+i

2 Mks�`1+i⇥n(F2r)

for 3  i  `� 1.

Since C`�2 is a self-orthogonal code over R`�2 satisfying the property (⇤), by

applying Theorem 2.2.4(a), we get

[T (`�2)]s�`1+1[T
(`�2)]t

s�`1+1 ⌘ 0 (mod u
`�2),

[T (`�2)]s�`1+1T
(`�2)t
s�`1+2+�

⌘ 0 (mod u
`�2��) for 0  �  `� 3,

T
(`�2)
s�`1+i

T
(`�2)t
s�`1+j

⌘ 0 (mod u
`+2�i�j) for 2  i, j  `� 1 and i+ j  `+ 1,

Diag
�
U

(⌫)
h

U
(⌫)t
h

�
= 0 for 1  h  min{s� `1 + 2, s+ ✓ � ⌫} and 1  ⌫  `� 3.

Now to show that there exists a self-orthogonal code of the type {ns�`1+1, ks�`1+2, . . . ,

ks+✓+`1} and length n over R` satisfying the property (⇤) and with the 1-th Torsion

code as B1 and the (i + 1)-th Torsion code as Tori(C`�2) for 1  i  ` � 2, let us

define a matrix G` over R` as

G` =

2

66666666666664

T
(`)
1

T
(`)
2
...

T
(`)
s�`1+1

uT
(`)
s�`1+2

...

u
`�1

T
(`)
s+✓+`1

3

77777777777775

=

2

66666666666664

T
(`�2)
1 + u

`�2
U

(`�2)
1 + u

`�1
U

(`�1)
1

T
(`�2)
2 + u

`�2
U

(`�2)
2 + u

`�1
U

(`�1)
2

...

T
(`�2)
s�`1+1 + u

`�2
U

(`�2)
s�`1+1 + u

`�1
U

(`�1)
s�`1+1

uT
(`)
s�`1+2

...

u
`�1

T
(`)
s+✓+`1

3

77777777777775

(4.3.20)

with the matrices [U (↵)]s�`1+1 for ↵ 2 {` � 2, ` � 1}, T (`)
s�`1+y

for 2  y  ` � 1 and

T
(`)
s+✓+`1

of the forms

2

666664

U
(↵)
1

U
(↵)
2
...

U
(↵)
s�`1+1

3

777775
=

2

666664

0 · · · 0 A
(↵)
1,↵+1 · · · A

(↵)
1,s�`1+1+↵

· · · A
(↵)
1,e

0 · · · 0 0 · · · A
(↵)
2,s�`1+1+↵

· · · A
(↵)
2,e

... · · ·
...

...
...

...
...

...

0 · · · 0 0 · · · A
(↵)
s�`1+1,s�`1+1+↵

· · · A
(↵)
s�`1+1,e

3

777775
,
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T
(`)
s�`1+y

= T
(`�2)
s�`1+y

+ u
`�y

h
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

i
and

T
(`)
s+✓+`1

=
h
0 · · · 0 Iks+✓+`1

A
(0)
s+✓+`1,s+✓+`1

· · · A
(0)
s+✓+`1,e

i
,

where A
(↵)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s � `1 + 1 and i + ↵  j  e, A
(`�y)
s�`1+y,v

2

Mks�`1+y⇥kv+1(F2r) for s+ ✓+ `1  v  e and A
(0)
s+✓+`1,b

2 Mks+✓+`1
⇥kb+1

(F2r) for s+

✓ + `1  b  e.

Next, let C` be a linear code of length n over R` with a generator matrix G`. It is

easy to see that the code C` is of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1}, T or1(C`) =

B1 and Tori+1(C`) = Tori(C`�2) for 1  i  `� 2. By Theorem 2.2.4(a), we see that

the code C` is a self-orthogonal code over R` satisfying the property (⇤) if and only

if there exist matrices [U (`�2)]s�`1+1, [U (`�1)]s�`1+1,
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · ·

A
(`�y)
s�`1+y,e

⇤
for 2  y  ` � 1 and T

(`)
s+✓+`1

satisfying the following system of matrix

equations (4.3.21)-(4.3.27) over F2r :

[T (0)]s�`1+1[U
(`�2)]t

s�`1+1 + [U (`�2)]s�`1+1[T
(0)]t

s�`1+1 =
`�3X

j=1

[U (j)]s�`1+1[U
(`�2�j)]t

s�`1+1,

(4.3.21)

[T (0)]s�`1+1[U
(`�1)]t

s�`1+1 + [U (`�1)]s�`1+1[T
(0)]t

s�`1+1 =
`�2X

j=1

[U (j)]s�`1+1[U
(`�1�j)]t

s�`1+1,

(4.3.22)

[T (0)]s�`1+1

h
0 · · · 0 A

(`�2)
s�`1+2,s+✓+`1

· · · A
(`�2)
s�`1+2,e

i
t

=
`�3X

j=1

[U (j)]s�`1+1U
(`�2�j)t
s�`1+2

+[U (`�2)]s�`1+1T
(0)t
s�`1+2, (4.3.23)

[T (0)]s�`1+1

h
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

i
t

=
`�yX

i=1

[U (i)]s�`1+1Z
(`�y�i)t
s�`1+y

for 3  y  `� 1, (4.3.24)

[T (0)]s�`1+1

h
0 · · · 0 Iks+✓+`1

A
(0)
s+✓+`1,s+✓+`1

· · ·A
(0)
s+✓+`1,e

i
t

= 0, (4.3.25)

Diag
�
U

(`�2)
h

U
(`�2)t
h

�
= 0, (4.3.26)

Diag
�
U

(`�1)
⌫ U

(`�1)t
⌫

�
= 0, (4.3.27)

where 1  h  s� `+ 2 and 1  ⌫  s� `+ 1.

Since the code C`�2 is a self-orthogonal code satisfying the property (⇤), so we
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have

Diag

 
`�3X

j=1

[U (j)]s�`1+1[U
(`�2�j)]t

s�`1+1

!
= 0.

We also note that (A(0))s�`1+1,s+✓+`1 is a full row-rank matrix over F2r . Now by ap-

plying Lemma 4.3.1, we see that there exist matrices [U (`�2)]s�`1+1 and [U (`�1)]s�`1+1

satisfying (4.3.21),(4.3.22), (4.3.26) and (4.3.27) and that there are precisely

(2r)

s+✓+`1P
i=`

kini�`+1+
s+✓+`1P
j=`+1

kjnj�`+2ns�`1+1(n�ns+`1+✓)�ns�`+2�ns�`+1+ns�`1+1�n
2
s�`1+1

distinct choices for such a pair of matrices. Further, for a given choice of the pair

of matrices [U (`�2)]s�`1+1 and [U (`�1)]s�`1+1 satisfying (4.3.21),(4.3.22), (4.3.26) and

(4.3.27), one can easily observe, for 2  y  ` � 1, that there exists a matrix
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

⇤
satisfying (4.3.23) and (4.3.24) and that

such a matrix has precisely (2r)ks�`1+y(n�ns+✓+`1
�ns�`1+1) distinct choices. Further-

more, by applying Lemma 2.2.1 and Theorem 2.3.9 and working as in Proposition

4.3.1, we see that there exists a matrix T
(`)
s+✓+`1

satisfying (4.3.25) and that such a

matrix has precisely


ks+✓+`1 + n� ns+✓+`1 � ns�`1+1

ks+✓+`1

�

2r

distinct choices. Next, one can easily observe that each of the distinct choices of

the matrices [U (`�2)]s�`1+1, [U (`�1)]s�`1+1,
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

⇤
for

2  y  ` � 1 and T
(`)
s+✓+`1

satisfying (4.3.21)-(4.3.27) gives rise to a distinct and

desired self-orthogonal code of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and length n

over R`. From this, we get the desired result.

Finally, let ` be a fixed positive integer satisfying s+✓+✓1+1  `  e, and let `1 =

b
`

2c. In the following proposition, we show that given a self-orthogonal code C`�2 of

the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1} and length n over R`�2 satisfying the prop-

erty (⇤), there exists a self-orthogonal code C` of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1}

and length n over R` satisfying the property (⇤) and Tori+1(C`) = Tori(C`�2) for

1  i  ` � 2. We also count all such distinct self-orthogonal codes of the type

{ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and length n over R`.
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Proposition 4.3.4. Let ` be a fixed integer satisfying s+ ✓+ ✓1+1  `  e, and let

`1 = b
`

2c. Let C`�2 be a self-orthogonal code of the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1}

and length n over R`�2 satisfying the property (⇤). Then the following hold.

(a) There exists a self-orthogonal code C` of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1}

and length n over R` satisfying the property (⇤) and Tori+1(C`) = Tori(C`�2)

for 1  i  `� 2.

(b) Moreover, each self-orthogonal code C`�2 of the type {ns�`1+2, ks�`1+3, ks�`1+4,

. . . , ks+✓+`1�1} and length n over R`�2 satisfying the property (⇤) gives rise to

precisely

(2r)

s+✓+`1P
i=`

kini�`+1+
s+✓+`1P
j=`+1

kjnj�`+(ns+✓+`1�1+ns�`1+1)(n�ns+`1+✓�ns�`1+1)+ns�`1+1+n
2
s�`1+1

⇥


ns�`1+2

ns�`1+1

�

2r


ks+✓+`1 + n� ns+✓+`1 � ns�`1+1

ks+✓+`1

�

2r

distinct self-orthogonal codes of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1} and

length n over R` satisfying the property (⇤) and with the (i + 1)-th Torsion

code as Tori(C`�2) for 1  i  `� 2.

Proof. To prove the result, we first note that the code Tor1(C`�2) is an ns�`1+2-

dimensional code over F2r . So we first choose an ns�`1+1-dimensional linear subcode

(i.e., subspace) B1 of the code Tor1(C`�2). By Theorem 2.3.9, we see that the subcode

B1 has precisely
⇥
ns�`1+2

ns�`1+1

⇤
2r

distinct choices. Further, without any loss of generality,

we assume that the code Tor1(C`�2) has a generator matrix

H = [T (0)]s�`1+2 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s�`1+2

3

777775
=

2

666664

Ik1 A
(0)
1,1 · · · A

(0)
1,s�`1+1 · · · A

(0)
1,e

0 Ik2 · · · A
(0)
2,s�`1+1 · · · A

(0)
2,e

...
...

...
...

...
...

0 0 · · · Iks�`1+2
· · · A

(0)
s�`1+2,e

3

777775

and its subcode B1 has a generator matrix
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[T (0)]s�`1+1 =

2

666664

T
(0)
1

T
(0)
2
...

T
(0)
s�`1+1

3

777775
=

2

666664

Ik1 A
(0)
1,1 · · · A

(0)
1,s�`1

· · · A
(0)
1,e�1 A

(0)
1,e

0 Ik2 · · · A
(0)
2,s�`1

· · · A
(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...

0 0 · · · Iks�`1+1
· · · A

(0)
s�`1+1,e�1 A

(0)
s�`1+1,e

3

777775
,

where columns of the matrices H and [T (0)]s�`1+1 are grouped into blocks of sizes

k1, k2, . . . , ke, ke+1, Iki is the ki⇥ki identity matrix over F2r and A
(0)
i,j

2 Mki⇥kj+1(F2r)

for 1  i  s � `1 + 2 and i  j  e. Furthermore, by Remark 4.3.1, we assume,

without any loss of generality, that the matrix (A(0))s�`1+1,s+✓+`1 is of full row-rank.

We next assume, without any loss of generality, that the code C`�2 has a generator

matrix

G`�2 =

2

66666666666666664

T
(`�2)
1

T
(`�2)
2
...

T
(`�2)
s�`1+2

uT
(`�2)
s�`1+3

u
2
T

(`�2)
s�`1+4

...

u
`�3

T
(`�2)
s+✓+`1�1

3

77777777777777775

=

2

66666666666666664

T
(0)
1 + uU

(1)
1 + u

2
U

(2)
1 + · · ·+ u

`�3
U

(`�3)
1

T
(0)
2 + uU

(1)
2 + u

2
U

(2)
2 + · · ·+ u

`�3
U

(`�3)
2

...

T
(0)
s�`1+2 + uU

(1)
s�`1+2 + u

2
U

(2)
s�`1+2 + · · ·+ u

`�3
U

(`�3)
s�`1+2

uT
(`�2)
s�`1+3

u
2
T

(`�2)
s�`1+4

...

u
`�3

T
(`�2)
s+✓+`1�1

3

77777777777777775

,

where [T (0)]s�`1+2 2 Mns�`1+2⇥n(F2r), [U (j)]s�`1+2 2 Mns�`1+2⇥n(F2r) for 1  j 

`� 3, and the matrix T
(`�2)
s�`1+i

2 Mks�`1+i⇥n(R`�2) is of the form T
(`�2)
s�`1+i

= Z
(0)
s�`1+i

+

uZ
(1)
s�`1+i

+ · · ·+ u
`�i�1

Z
(`�i�1)
s�`1+i

with Z
(0)
s�`1+i

, Z
(1)
s�`1+i

, . . . , Z
(`�i�1)
s�`1+i

2 Mks�`1+i⇥n(F2r)

for 3  i  `� 1.

Since C`�2 is a self-orthogonal code of the type {ns�`1+2, ks�`1+3, . . . , ks+✓+`1�1}

and length n over R`�2 satisfying the property (⇤), by applying Theorem 2.2.4(a),

we get

[T (`�2)]s�`1+1[T
(`�2)]t

s�`1+1 ⌘ 0 (mod u
`�2),

[T (`�2)]s�`1+1T
(`�2)t
s�`1+2+�

⌘ 0 (mod u
`�2��) for 0  �  `� 3,

T
(`�2)
s�`1+i

T
(`�2)t
s�`1+j

⌘ 0 (mod u
`+2�i�j) for 2  i, j  `� 1 and i+ j  `+ 1,

Diag
�
U

(⌫)
h

U
(⌫)
h

t�
= 0 for 1  h  min{s� `1 + 2, s+ ✓ � ⌫} and

1  ⌫  s� 1 + ✓.
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Now to show that there exists a self-orthogonal code of the type {ns�`1+1, ks�`1+2, . . . ,

ks+✓+`1} and length n over R` satisfying the property (⇤) and with the 1-th Torsion

code as B1 and the (i + 1)-th Torsion code as Tori(C`�2) for 1  i  ` � 2, let us

define a matrix G` over R` as

G` =

2

66666666666664

T
(`)
1

T
(`)
2
...

T
(`)
s�`1+1

uT
(`)
s�`1+2

...

u
`�1

T
(`)
s+✓+`1

3

77777777777775

=

2

66666666666664

T
(`�2)
1 + u

`�2
U

(`�2)
1 + u

`�1
U

(`�1)
1

T
(`�2)
2 + u

`�2
U

(`�2)
2 + u

`�1
U

(`�1)
2

...

T
(`�2)
s�`1+1 + u

`�2
U

(`�2)
s�`1+1 + u

`�1
U

(`�1)
s�`1+1

uT
(`)
s�`1+2

...

u
`�1

T
(`)
s+✓+`1

3

77777777777775

(4.3.28)

with the matrices [U (↵)]s�`1+1 for ↵ 2 {` � 2, ` � 1}, T (`)
s�`1+y

for 2  y  ` � 1 and

T
(`)
s+✓+`1

of the forms

2

666664

U
(↵)
1

U
(↵)
2
...

U
(↵)
s�`1+1

3

777775
=

2

666664

0 · · · 0 A
(↵)
1,↵+1 A

(↵)
1,↵+2 · · · A

(↵)
1,s�`1+1+↵

· · · A
(↵)
1,e

0 · · · 0 0 A
(↵)
2,↵+2 · · · A

(↵)
2,s�`1+1+↵

· · · A
(↵)
2,e

... · · ·
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · A
(↵)
s�`1+1,s�`1+1+↵

· · · A
(↵)
s�`1+1,e

3

777775
,

T
(`)
s�`1+y

= T
(`�2)
s�`1+y

+ u
`�y

h
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

i
and

T
(`)
s+✓+`1

=
h
0 · · · 0 Iks+✓+`1

A
(0)
s+✓+`1,s+✓+`1

· · · A
(0)
s+✓+`1,e

i
,

where A
(↵)
i,j

2 Mki⇥kj+1(F2r) for 1  i  s � `1 + 1 and i + ↵  j  e, A
(`�y)
s�`1+y,v

2

Mks�`1+y⇥kv+1(F2r) for s+ ✓+ `1  v  e and A
(0)
s+✓+`1,b

2 Mks+✓+`1
⇥kb+1

(F2r) for s+

✓ + `1  b  e.

Now let C` be a linear code of length n over R` with a generator matrix G`. It is

easy to see that the code C` is of the type {ns�`1+1, ks�`1+2, . . . , ks+✓+`1}, T or1(C`) =

B1 and Tori+1(C`) = Tori(C`�2) for 1  i  `� 2. By Theorem 2.2.4(a), we see that

the code C` is a self-orthogonal code over R` satisfying the property (⇤) if and only

if there exist matrices [U (`�2)]s�`1+1, [U (`�1)]s�`1+1,
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · ·

A
(`�y)
s�`1+y,e

⇤
for 2  y  ` � 1 and T

(`)
s+✓+`1

satisfying the following system of matrix
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equations over F2r :

[T (0)]s�`1+1[U
(`�2)]t

s�`1+1 + [U (`�2)]s�`1+1[T
(0)]t

s�`1+1 =
`�3X

j=1

[U (j)]s�`1+1[U
(`�2�j)]t

s�`1+1,

(4.3.29)

[T (0)]s�`1+1[U
(`�1)]t

s�`1+1 + [U (`�1)]s�`1+1[T
(0)]t

s�`1+1 =
`�2X

j=1

[U (j)]s�`1+1[U
(`�1�j)]t

s�`1+1,

(4.3.30)

[T (0)]s�`1+1

h
0 · · · 0 A

(`�2)
s�`1+2,s+✓+`1

· · · A
(`�2)
s�`1+2,e

i
t

=
`�3X

j=1

[U (j)]s�`1+1U
(`�2�j)t
s�`1+2

+[U (`�2)]s�`1+1T
(0)t
s�`1+2, (4.3.31)

[T (0)]s�`1+1

h
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

i
t

=
`�yX

i=1

[U (i)]s�`1+1Z
(`�y�i)t
s�`1+y

for 3  y  `� 1, (4.3.32)

[T (0)]s�`1+1

h
0 · · · 0 Iks+✓+`1

A
(0)
s+✓+`1,s+✓+`1

· · ·A
(0)
s+✓+`1,e

i
t

= 0. (4.3.33)

Now to show that there exists a self-orthogonal code C` of the type {ns�`1+1, ks�`1+2,

. . . , ks+✓+`1} and length n over R` satisfying the property (⇤), T or1(C`) = B1 and

Tori+1(C`) = Tori(C`�2) for 1  i  `� 2, it is enough to show that the above sys-

tem (4.3.29)-(4.3.33) of matrix equations in unknowns [U (`�2)]s�`1+1, [U (`�1)]s�`1+1,

T
(`)
s+✓+`1

and
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

⇤
for 2  y  `� 1 has a solution.

Towards this, we first see that the code C`�2 is a self-orthogonal code satisfying

the property (⇤), so we have

Diag

 
`�3X

j=1

[U (j)]s�`1+1[U
(`�2�j)]t

s�`1+1

!
= 0.

Since (A(0))s�`1+1,s+✓+`1 is a full row-rank matrix over F2r , it is easy to observe that

there exists a matrix [U (`�2)]s�`1+1 satisfying (4.3.29) and that the number of choices

for the matrix [U (`�2)]s�`1+1 satisfying (4.3.29) is given by

(2r)

s+✓+`1P
i=`

kini�`+1+ns�`1+1(n�ns+`1+✓)�
n
s�`1+1(ns�`1+1�1)

2
.

Now for a given choice of the matrix [U (`�2)]s�`1+1 satisfying (4.3.29), it is easy
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to observe that there exists a matrix [U (`�1)]s�`1+1 satisfying (4.3.30) and that the

number of choices for the matrix [U (`�1)]s�`1+1 satisfying (4.3.30) is given by

(2r)

s+✓+`1P
j=`+1

kjnj�`+ns�`1+1(n�ns+`1+✓)�
n
s�`1+1(ns�`1+1�1)

2
.

Further, working in a similar manner as in Proposition 4.3.3, we see that for

given choices of the matrices [U (`�2)]s�`1+1 and [U (`�1)]s�`1+1 satisfying (4.3.29) and

(4.3.30), there exist matrices
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

⇤
for 2  y 

`� 1 and T
(`)
s+✓+`1

satisfying (4.3.31)-(4.3.33) and that the number of choices for the

matrices
⇥
0 · · · 0 A

(`�y)
s�`1+y,s+✓+`1

· · · A
(`�y)
s�`1+y,e

⇤
for 2  y  ` � 1 and T

(`)
s+✓+`1

satisfying (4.3.31)-(4.3.33) is given by

(2r)(ns+✓+`1�1�ns�`1+1)(n�ns+✓+`1
�ns�`1+1)


ks+✓+`1 + n� ns+✓+`1 � ns�`1+1

ks+✓+`1

�

2r
.

From this, the desired result follows immediately.

In the following theorem, we show that if there exists a self-orthogonal code C0

of length n and dimension ns+✓ over F2r , then there exists a self-orthogonal code Ce

of the type {k1, k2, . . . , ke} and length n over Re satisfying Tors+✓(Ce) = C0, and vice

versa. We also count all distinct self-orthogonal codes of the type {k1, k2, . . . , ke}

and length n over Re with the (s+✓)-th Torsion code as a given self-orthogonal code

of length n and dimension ns+✓ over F2r . The proof of the following theorem also

provides a method to construct a self-orthogonal code of the type {k1, k2, . . . , ke}

and length n over Re with the (s + ✓)-th Torsion code as a given self-orthogonal

code of length n and dimension ns+✓ over F2r .

Theorem 4.3.1. (a) There exists a self-orthogonal code C0 of length n and di-

mension ns+✓ over F2r if and only if there exists a self-orthogonal code Ce of

the type {k1, k2, . . . , ke�1, ke} and length n over Re satisfying Tors+✓(Ce) = C0.

(b) Moreover, each self-orthogonal code C0 of length n and dimension ns+✓ over

F2r gives rise to precisely

(2r)

sP
`=1

n`(n�n`+1)+
s+✓�1P
v=1

ns+v(n�ns+j+1�ns+✓�j)�(1�✓)ns(ns�1)
2
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⇥

s+✓Y

i=1


ni

ki

�

2r

eY

j=s+1+✓


kj + n� nj � ne+1�j

kj

�

2r

distinct self-orthogonal codes of the type {k1, k2, . . . , ke} and length n over Re

with the (s+ ✓)-th Torsion code as C0.

Proof. To prove the result, let Ce be a self-orthogonal code of the type {k1, k2, . . . , ke}

and length n over Re. By Lemma 2.2.1, we see that the (s + ✓)-th Torsion code

Tors+✓(Ce) of Ce is a self-orthogonal code of length n and dimension ns+✓ over F2r .

On the other hand, let C0 be a self-orthogonal code of length n and dimen-

sion ns+✓ over F2r . Here we first observe that any self-orthogonal code of the type

{k1, k2, . . . , ke} and length n over Re must satisfy the property (⇤). We will now

recursively construct a self-orthogonal code of the type {k1, k2, . . . , ke} and length n

over Re satisfying the property (⇤) and with the (s + ✓)-th Torsion code as C0. For

this, we will distinguish the following two cases: (i) e is even and (ii) e is odd.

(i) First let e be even. In this case, we have ✓ = 0. Here we will show that there

exists a self-orthogonal code of the type {k1, k2, . . . , ke} and length n over Re

satisfying the property (⇤) and with the s-th Torsion code as C0, and we will

also enumerate such codes. To do this, we see, by applying Proposition 4.3.1,

that there exists a self-orthogonal code C2 of the type {ns, ks+1} and length n

over R2 satisfying the property (⇤) and Tor1(C2) = C0, and that the code C2

has precisely

(2r)

s+2P
i=3

kini�2+ns(n�ns+2)�ns�1�ns(ns�1)
2


ks+1 + n� ns+1 � ns

ks+1

�

2r

distinct choices for a given choice of C0. Further, for an even integer ` satisfying

4  `  s + ✓1, we see, by applying Proposition 4.3.3, that if there exists a

self-orthogonal code C`�2 of the type {ns�`1+2, ks�`1+3, . . . , ks+`1�1} and length

n over R`�2 satisfying the property (⇤), then there exists a self-orthogonal code

C` of the type {ns�`1+1, ks�`1+2, . . . , ks+`1} and length n over R` satisfying the

property (⇤) and Tori+1(C`) = Tori(C`�2) for 1  i  `� 2, and that the code

C` has precisely
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(2r)

s+`1P
i=`

kini�`+1+
s+`1P
j=`+1

kjnj�`+⇤

ns�`1+2

ns�`1+1

�

2r


ks+`1 + n� ns+`1 � ns�`1+1

ks+`1

�

2r

distinct choices for a given choice of the code C`�2, where `1 = b
`

2c and

⇤ = (ns+`1�1 + ns�`1+1)(n � ns+`1 � ns�`1+1) + ns�`1+1 + n
2
s�`1+1 � ns�`+2 �

ns�`+1. Further, for an even integer ` satisfying s + ✓1 + 1  `  e, we

note, by applying Proposition 4.3.4, that if there exists a self-orthogonal code

C`�2 of the type {ns�`1+2, ks�`1+3, . . . , ks+`1�1} and length n over R`�2 satis-

fying the property (⇤), then there exists a self-orthogonal code C` of the type

{ns�`1+1, ks�`1+2, . . . , ks+`1} and length n over R` satisfying the property (⇤)

and Tori+1(C`) = Tori(C`�2) for 1  i  ` � 2, and that the code C` has

precisely

(2r)

s+`1P
i=`

kini�`+1+
s+`1P
j=`+1

kjnj�`+(ns+`1�1+ns�`1+1)(n�ns+`1
�ns�`1+1)+ns�`1+1+n

2
s�`1+1

⇥


ns�`1+2

ns�`1+1

�

2r


ks+`1 + n� ns+`1 � ns�`1+1

ks+`1

�

2r

distinct choices for a given choice of the code C`�2, where `1 = b
`

2c. From this,

it follows that there exists a self-orthogonal code Ce of the type {k1, k2, . . . , ke}

and length n over Re satisfying the property (⇤) and Tors(Ce) = C0, and that

the code Ce has precisely

(2r)

sP
`=1

n`(n�n`+1)+
s�1P
v=1

ns+v(n�ns+j+1�ns�j)�ns(ns�1)
2

sY

i=1


ni

ki

�

2r

⇥

eY

j=s+1


kj + n� nj � ne+1�j

kj

�

2r

distinct choices for a given choice of the code C0.

(ii) Let e be odd. In this case, we have ✓ = 1. Here working in a similar manner as

in case (i) and by applying Propositions 4.3.2-4.3.4, the desired result follows

immediately.

In the following theorem, we consider the case k1 = ke+1 = n�(k1+k2+ · · ·+ke)

and ki = ke�i+2 for 2  i  e, and we show that there exists a self-orthogonal code
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C0 of length n and dimension ns+✓ over F2r if and only if there exists a self-dual

code Ce of the type {k1, k2, . . . , ke} and length n over Re satisfying Tors+✓(Ce) = C0.

We also count all distinct self-dual codes of the type {k1, k2, . . . , ke} and length n

over Re with the (s + ✓)-th Torsion code as a given self-orthogonal code of length

n and dimension ns+✓ over F2r . The proof of the following theorem also provides a

method to construct a self-dual code of the type {k1, k2, . . . , ke} and length n over

Re with the (s+ ✓)-th Torsion code as a given self-orthogonal code of length n and

dimension ns+✓ over F2r .

Theorem 4.3.2. Let k1 = ke+1 = n � (k1 + k2 + · · · + ke) and ki = ke�i+2 for

2  i  e.

(a) There exists a self-orthogonal code C0 of length n and dimension ns+✓ over F2r

if and only if there exists a self-dual code Ce of the type {k1, k2, . . . , ke�1, ke}

and length n over Re satisfying Tors+✓(Ce) = C0. (When e is odd, we see that

ns+✓ =
n

2 and that a self-orthogonal code of length n and dimension ns+✓ over

F2r is a self-dual code. This may not hold in the case when e is even.)

(b) Moreover, each self-orthogonal code C0 of length n and dimension ns+✓ over

F2r gives rise to precisely

(2r)

sP
`=1

n`(n�n`+1)�(1�✓)ns(ns�1)
2

s+✓Y

i=1


ni

ki

�

2r

distinct self-dual codes of the type {k1, k2, . . . , ke} and length n over Re with

C0 as the (s+ ✓)-th Torsion code.

Proof. By Theorem 2.2.4(b), we see that a self-orthogonal code of the type {k1, k2, . . . ,

ke} and length n over Re is self-dual if and only if ki = ke�i+2 for 1  i  e. So on

taking ki = ke�i+2 for 1  i  e in Theorem 4.3.1, the desired result follows.

4.4 Enumeration formulae for self-orthogonal and

self-dual codes of length n over Re

From now on, throughout this chapter, let Se(n; k1, k2, . . . , ke) and De(n; k1, k2,

. . . , ke) denote the number of distinct self-orthogonal and self-dual codes of the type
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{k1, k2, . . . , ke} and length n over Re, respectively. Further, let Se(n) and De(n)

denote the number of distinct self-orthogonal and self-dual codes of length n over Re,

respectively. In this section, we will obtain enumeration formulae for the numbers

Se(n; k1, k2, . . . , ke), De(n; k1, k2, . . . , ke), Se(n) and De(n). Towards this, we recall,

from Chapter 2, that �2r(n, k) equals the number of distinct self-orthogonal codes

of length n and dimension k over F2r , where 0  k  n. Note that �2r(n, 0) = 1

and �2r(n, k) = 0 for all integers k > d
n

2 e. For 1  k  b
n

2 c, let �2r(n, k) be as

determined in Theorem 2.3.11.

In the following theorem, we obtain the explicit enumeration formula for the

number Se(n; k1, k2, . . . , ke).

Theorem 4.4.1. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying n = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Se(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�2r (n, ns)
sY

i=1


ni

ki

�

2r

eY

j=s+1


kj + n� nj � ne+1�j

kj

�

2r

⇥(2r)

s�1P
`=1

n`(n�n`+1)+ns+`(n�ns+`+1�ns�`)+ns(n�ns+1)�ns(ns�1)
2

if ne�v+1 + nv  n for s+ 1  v  e;

0 otherwise.

(b) When e is odd, we have

Se(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�2r (n, ns+1)
s+1Y

i=1


ni

ki

�

2r

eY

j=s+2


kj + n� nj � ne+1�j

kj

�

2r

⇥(2r)

sP
`=1

n`(n�n`+1)+ns+`(n�ns+1+`�ns+1�`)

if ne�v+1 + nv  n for s+ 1  v  e;

0 otherwise.

Proof. To prove the result, we see, by Remark 2.2.1, that Se(n; k1, k2, . . . , ke) = 0 if

ne�v+1 + nv > n for some integer v satisfying s + 1  v  e. On the other hand,
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when ne�v+1 + nv  n for s + 1  v  e, by applying Theorems 2.3.11 and 4.3.1,

the desired result follows immediately.

In the following theorem, we obtain the explicit enumeration formula for the

number De(n; k1, k2, . . . , ke).

Theorem 4.4.2. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying n = k1 + k2 + · · ·+ ke+1. Then we have the following:

(a) When e is even, we have

De(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�2r (n, ns)
sY

i=1


ni

ki

�

2r
(2r)

s�1P
`=1

n`(n�n`+1)+
ns(ns+1)

2

if kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

(b) When e is odd, we have

De(n; k1, k2, . . . , ke) =

8
>>>>>><

>>>>>>:

n

2�1Y

j=1

((2r)
n

2�j + 1)
s+1Y

i=1


ni

ki

�

2r
(2r)

sP
`=1

n`(n�n`+1)

if n is even and kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

Proof. To prove the result, we see, by Theorem 2.2.4(b), that De(n; k1, k2, . . . , ke) =

0 if kv 6= ke�v+2 for some integer v satisfying 1  v  e + 1. On the other hand,

when kv = ke�v+2 for 1  v  e+1, the desired result follows on taking kv = ke�v+2

for 1  v  e+ 1 in Theorem 4.4.1 and by applying Theorem 2.3.11.

We will next determine the numbers Se(n) and De(n). To do this, for an integer

d satisfying 1  d  e and for non-negative integers k1, k2, . . . , kd, let the num-

bers hj(k1, k2, . . . , kd) and m`(k1, k2, . . . , kd) be as defined by (3.4.19) and (3.4.20),

respectively, for 1  j  d� 1 and 1  ` 
⌃
d

2

⌥
� 1.

In the following theorem, we obtain the explicit enumeration formula for the

number Se(n).
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Theorem 4.4.3. For an integer e � 2, we have the following:

(a) When e is even, we have

Se(n) =
X

�2r
�
n, k1 + k2 + · · ·+ ks

� sY

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥

eY

j=s+1


kj + n� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke+1�j)

kj

�

2r

⇥(2r)

s�1P
`=1

m`(k1,k2,...,ke)+
sP

a=1
(k1+k2+···+ka)+hs(k1,k2,...,ke)��

0
e(k1,k2,...,ke)

,

where �0
e
(k1, k2, . . . , ke) = (k1+k2+· · ·+ks)

�
k1+k2+···+ks�1

2

�
and the summation

P
runs over all non-negative integers k1, k2, . . . , ke satisfying 2k1+2k2+ · · ·+

2ke�i+1 + ke�i+2 + ke�i+3 + · · ·+ ki  n for s+ 1  i  e.

(b) When e is odd, we have

Se(n) =
X

�2r
�
n, k1 + k2 + · · ·+ ks+1

� s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥

eY

j=s+2


kj + n� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke+1�j)

kj

�

2r

⇥(2r)

sP
`=1

m`(k1,k2,...,ke)+(k1+k2+···+k`)
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for s+1  i  e.

Proof. It follows immediately from Theorem 4.4.1.

In the following theorem, we obtain the explicit enumeration formula for the

number De(n).

Theorem 4.4.4. (a) When e is even, we have

De(n) =
X

�2r(n, k1 + k2 + · · ·+ ks)
sY

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥(2r)

s�1P
`=1

h`(k1,k2,...,ks)+(k1+k2+···+k`)+�
00
e (k1,k2,...,ks)

,
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where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 · · · + ks) + ks+1 = n and the number �
00
e
(k1, k2, . . . , ks) is

given by

�
00

e
(k1, k2, . . . , ks) = (k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks + 1

2

◆
.

(b) When e is odd, we have

De(n) =

8
>>>>>>><

>>>>>>>:

X
n

2�1Y

j=1

((2r)
n

2�j + 1)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥(2r)

sP
`=1

h`(k1,k2,...,ks)+(k1+k2+···+k`)
if n is even;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 · · ·+ ks+1) = n.

Proof. It follows immediately from Theorem 4.4.2.

Remark 4.4.1. Theorem 2 and Corollary 1 of Galvez et al. [47] follow, as special

cases, on taking e = 2 in Theorems 4.4.1 and 4.4.4, respectively, while Theorem 1

of Betty et al. [13] follows on taking e = 3 in Theorem 4.4.4.

The following example illustrates Theorems 4.4.3 and 4.4.4.

Example 4.4.1. When r = 1, we see, by carrying out computations in the Magma

Computational Algebra System, that S4(2) = 25, S4(3) = 459, S4(4) = 18321,

S4(5) = 1616679, S5(2) = 32, S5(3) = 1014, S5(4) = 83991, S5(5) = 18404093,

D4(2) = 7, D4(3) = 31, D4(4) = 823, D4(5) = 11191, D5(2) = 7, D5(3) = 0,

D5(4) = 1719 and D5(5) = 0, which agree with Theorems 4.4.3 and 4.4.4.

The enumeration formulae for Se(n) and De(n), obtained in Theorems 4.4.3 and

4.4.4, are useful in the classification of self-orthogonal and self-dual codes of length

n over Re, which we illustrate in the following section in certain specific cases.



4.5 Classification of self-orthogonal and self-dual codes 117

4.5 Classification of self-orthogonal and self-dual

codes

The enumeration formulae for self-orthogonal and self-dual codes of length n

over Re, obtained in Theorems 4.4.3 and 4.4.4, are useful in the determination of

complete lists of inequivalent self-orthogonal and self-dual codes of length n over

Re (cf. [13], [53, Sec. 9.6 and 9.7]). We will illustrate this in certain specific

cases by applying the classification algorithm ([53, Sec. 9.7]) and by carrying out

computations in the Magma Computational Algebra System. More precisely, we will

classify all self-orthogonal and self-dual codes of lengths 2, 3, 4 and 5 over F2[u]/hu3
i

and of lengths 2, 3 and 4 over F4[u]/hu2
i up to monomial equivalence. We will also

explicitly determine a generator matrix of the code representative of each equivalence

class of these codes.

I. There are precisely 6 inequivalent non-zero self-orthogonal codes of length 2 over

F2[u]/hu3
i. Among these codes, there are

• 3 self-orthogonal codes of Hamming distance 1, whose generator matrices are

u
2
I2,

h
u
2 0

i
and

"
u u

0 u
2

#
; and

• 3 self-orthogonal codes of Hamming distance 2, whose generator matrices are
h
u u

i
,

h
1 1

i
and

h
u
2

u
2
i
.

II. There are precisely 19 inequivalent non-zero self-orthogonal codes of length 3

over F2[u]/hu3
i. Among these codes, there are

• 10 self-orthogonal codes of Hamming distance 1, whose generator matrices are

u
2
I3,

h
u
2 0 0

i
,

"
u u 0

0 u
2 0

#
,

"
u u u

2

0 u
2 0

#
,

"
u 0 u+ u

2

0 u
2 0

#
,

"
u
2 0 0

0 u
2
u
2

#
,

"
u
2 0 0

0 u
2 0

#
,

"
1 u 1 + u

0 u
2 0

#
,

"
1 0 1 + u

2

0 u
2 0

#
and

2

664

u 0 u

0 u
2 0

0 0 u
2

3

775 ;

• 8 self-orthogonal codes of Hamming distance 2, whose generator matrices are
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h
1 1 0

i
,

h
1 u

2 1
i
,

h
1 u 1 + u

i
,

h
u u 0

i
,

h
u u

2
u+ u

2
i
,

h
u
2 0 u

2
i
,

"
u u u

2

0 u
2

u
2

#
and

"
u
2 0 u

2

0 u
2
u
2

#
; and

• 1 self-orthogonal code of Hamming distance 3 and with a generator matrix
h
u
2
u
2
u
2
i
.

III. There are precisely 83 inequivalent non-zero self-orthogonal codes of length 4

over F2[u]/hu3
i. Among these codes, there are

• 37 self-orthogonal codes of Hamming distance 1, whose generator matrices are

u
2
I4,

h
u
2 0 0 0

i
,

"
u u+ u

2
u
2 0

0 u
2 0 0

#
,

"
u u 0 0

0 u
2 0 0

#
,

"
u u

2 0 u

0 u
2 0 0

#
,

"
u 0 u u

2

0 u
2 0 0

#
,

"
u u u u

0 u
2
u
2
u
2

#
,

"
u u u

2
u
2

0 u
2 0 0

#
,

"
u
2 0 0 0

0 u
2
u
2
u
2

#
,

"
u
2 0 0 0

0 u
2
u
2 0

#
,

"
1 u 0 1 + u

0 u
2 0 0

#
,

"
u
2 0 0 0

0 u
2 0 0

#
,

"
1 0 0 1

0 u
2 0 0

#
,

"
1 0 1 u

2

0 u
2 0 0

#
,

"
1 0 u 1 + u

0 u
2 0 0

#
,

"
1 u u+ u

2 1

0 u
2 0 0

#
,

"
1 u u

2 1 + u+ u
2

0 u
2 0 0

#
,

2

664

u u u u

0 u
2 0 0

0 0 u
2
u
2

3

775 ,

2

664

u 0 0 u

0 u
2 0 0

0 0 u
2
u
2

3

775 ,

2

664

u 0 0 u+ u
2

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

u 0 u 0

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

u 0 u 0

0 u
2 0 u

2

0 0 u
2 0

3

775 ,

2

664

u 0 u u
2

0 u
2 0 u

2

0 0 u
2 0

3

775 ,

2

664

u u 0 u
2

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

u 0 0 u

0 u u 0

0 0 u
2 0

3

775 ,

2

664

u 0 u u
2

0 u 0 u

0 0 u
2 0

3

775 ,

2

664

1 0 0 1

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

u
2 0 0 u

2

0 u
2 0 0

0 0 u
2
u
2

3

775 ,

2

664

u
2 0 0 0

0 u
2 0 u

2

0 0 u
2 0

3

775 ,

2

664

u
2 0 0 0

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

1 u u 1 + u
2

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

1 0 u 1 + u

0 u
2 0 0

0 0 u
2 0

3

775 ,

2

664

1 u+ u
2

u 1

0 u u 0

0 0 u
2 0

3

775 ,

2

664

1 0 u+ u
2 1 + u

0 u u+ u
2

u
2

0 0 u
2 0

3

775 ,
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2

66664

u 0 u u
2

0 u 0 u

0 0 u
2 0

0 0 0 u
2

3

77775
,

2

66664

u 0 u 0

0 u
2 0 0

0 0 u
2 0

0 0 0 u
2

3

77775
and

2

66664

u u u u

0 u
2 0 0

0 0 u
2 0

0 0 0 u
2

3

77775
;

• 42 self-orthogonal codes of Hamming distance 2, whose generator matrices are
h
u u u

2 0
i
,

h
u 0 u 0

i
,

h
u u u

2
u
2
i
,

h
1 u

2
u
2 1

i
,

h
1 u

2 1 0
i
,

h
1 u 0 1 + u

i
,

h
1 1 + u u u

2
i
,

h
1 0 0 1

i
,

h
1 1 u u

i
,

h
u
2 0 0 u

2
i
,

"
u 0 u 0

0 u
2 0 u

2

#
,

"
u u

2 0 u

0 u
2
u
2 0

#
,

"
u u

2 0 u

0 u
2 0 u

2

#
,

"
u u u

2
u
2

0 u
2
u
2
u
2

#
,

"
u u u

2 0

0 u
2
u
2
u
2

#
,

"
u u u

2
u
2

0 u
2
u
2 0

#
,

"
1 0 1 0

0 1 0 1 + u
2

#
,

"
1 0 1 u

2

0 1 u
2 1 + u

2

#
,

"
u u+ u

2
u u+ u

2

0 u
2

u
2 0

#
,

"
u
2 0 0 u

2

0 u
2
u
2
u
2

#
,

"
u
2 0 0 u

2

0 u
2
u
2 0

#
,

"
u
2 0 u

2 0

0 u
2
u
2 0

#
,

"
1 0 u 1 + u+ u

2

0 1 1 + u+ u
2

u

#
,

"
1 1 1 1

0 u u
2
u+ u

2

#
,

"
1 0 0 1 + u

2

0 u u 0

#
,

"
1 0 u 1 + u+ u

2

0 u u u
2

#
,

"
1 0 1 + u

2
u
2

0 u 0 u

#
,

"
1 1 1 1

0 u 0 u

#
,

"
u 0 0 u+ u

2

0 u u u
2

#
,

"
u 0 u

2
u+ u

2

0 u u u
2

#
,

"
u 0 u+ u

2 0

0 u 0 u+ u
2

#
,

"
1 u 1 + u

2
u+ u

2

0 u
2 0 u

2

#
,

"
1 u 0 1 + u+ u

2

0 u
2
u
2 0

#
,

"
1 0 0 1

0 u
2
u
2 0

#
,

"
1 0 u

2 1

0 u
2
u
2 0

#
,

"
1 1 1 1 + u

2

0 u
2
u
2 0

#
,

2

664

1 1 1 + u
2 1

0 u u
2

u+ u
2

0 0 u
2

u
2

3

775 ,

2

664

u 0 u 0

0 u
2 0 u

2

0 0 u
2
u
2

3

775 ,

2

664

u u u u

0 u
2 0 u

2

0 0 u
2
u
2

3

775 ,

2

664

u 0 0 u+ u
2

0 u u 0

0 0 u
2

u
2

3

775 ,

2

664

u
2 0 0 u

2

0 u
2 0 u

2

0 0 u
2
u
2

3

775 and

2

664

1 1 + u 1 1 + u+ u
2

0 u
2 0 u

2

0 0 u
2

u
2

3

775 ;

• 1 self-orthogonal code of Hamming distance 3 and with a generator matrix
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h
u
2
u
2 0 u

2
i
; and

• 3 self-orthogonal codes of Hamming distance 4, whose generator matrices are
h
1 1 1 1

i
,

h
u u+ u

2
u u

i
and

h
u
2
u
2
u
2
u
2
i
.

IV. There are precisely 334 inequivalent non-zero self-orthogonal codes of length 5

over F2[u]/hu3
i. Among these codes, there are

• 157 self-orthogonal codes of Hamming distance 1, whose generator matrices are

u
2
I5,

h
u
2 0 0 0 0

i
,

"
u u u u 0

0 u
2
u
2
u
2 0

#
,

"
u u 0 0 u

2

0 u
2 0 0 0

#
,

"
u u u

2
u
2
u
2

0 u
2 0 0 0

#
,

"
u u 0 u

2
u
2

0 u
2 0 0 0

#
,

"
u u 0 0 0

0 u
2 0 0 0

#
,

"
u 0 0 u 0

0 u
2 0 0 0

#
,

"
u 0 u+ u

2
u+ u

2
u

0 u
2 0 0 0

#
,

"
u u u u u

2

0 u
2
u
2
u
2 0

#
,

"
1 0 1 0 0

0 u
2 0 0 0

#
,

"
u 0 u

2
u 0

0 u
2 0 0 0

#
,

"
u 0 u

2
u
2
u+ u

2

0 u
2 0 0 0

#
,

"
1 u 0 0 1 + u

0 u
2 0 0 0

#
,

"
1 0 1 0 u

2

0 u
2 0 0 0

#
,

"
u
2 0 0 0 0

0 u
2 0 u

2
u
2

#
,

"
1 u u

2 0 1 + u

0 u
2 0 0 0

#
,

"
1 0 u

2 1 + u
2
u
2

0 u
2 0 0 0

#
,

"
u
2 0 0 0 0

0 u
2 0 0 0

#
,

"
u
2 0 0 0 u

2

0 u
2 0 0 0

#
,

"
u
2 0 u

2
u
2
u
2

0 u
2 0 0 0

#
,

"
1 u 1 u

2
u+ u

2

0 u
2 0 0 0

#
,

"
1 u u 0 1

0 u
2 0 0 0

#
,

"
1 0 u+ u

2
u 1

0 u
2 0 0 0

#
,

"
1 0 u

2
u 1 + u

0 u
2 0 0 0

#
,

"
1 u 1 + u 1 + u

2 1

0 u
2 0 0 0

#
,

"
1 0 1 1 + u+ u

2 1 + u

0 u
2 0 0 0

#
,

"
1 0 1 + u+ u

2
u 0

0 u
2 0 0 0

#
,

"
1 u 1 + u u u+ u

2

0 u
2 0 0 0

#
,

"
1 u u

2 1 + u u
2

0 u
2 0 0 0

#
,

2

664

1 0 u+ u
2 1 + u+ u

2
u
2

0 u u u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u
2

u
2 1

0 u 0 u+ u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u+ u
2 1 + u

2
u

0 u u u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 u
2
u+ u

2 0 1 + u

0 u 0 u+ u
2 0

0 0 u
2 0 0

3

775 ,
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2

664

1 0 u
2 1 0

0 u u+ u
2 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 1 + u+ u
2

u 1 1

0 u u
2
u
2
u

0 0 u
2 0 0

3

775 ,

2

664

1 1 u+ u
2 1 + u+ u

2 1

0 u u
2

u+ u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u u
2 1 + u

0 u u u
2

u
2

0 0 u
2 0 0

3

775 ,

2

664

1 0 u
2 1 u

2

0 u u+ u
2 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 1 + u u
2 1 + u

2 1 + u

0 u u
2

u u
2

0 0 u
2 0 0

3

775 ,

2

664

1 0 u
2 0 1

0 u u u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u
2

u 1 + u

0 u u+ u
2 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u+ u
2 0 1 + u

0 u u
2

u+ u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 u u
2

u 1

0 u u u
2
u
2

0 0 u
2 0 0

3

775 ,

2

664

1 0 u+ u
2 0 1 + u+ u

2

0 u u+ u
2 0 u

2

0 0 u
2 0 0

3

775 ,

2

664

1 u+ u
2
u+ u

2 0 1

0 u 0 u u
2

0 0 u
2 0 0

3

775 ,

2

664

1 u 0 u 1

0 u 0 u 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u
2
u+ u

2 1 + u+ u
2

0 u u u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 u
2
u
2 1 + u+ u

2
u

0 u 0 u
2

u

0 0 u
2 0 0

3

775 ,

2

664

1 u
2

u
2

u
2 1

0 u u+ u
2
u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 1 + u
2 0 1 + u 1 + u

0 u 0 u+ u
2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u u+ u
2 1 + u

2

0 1 u 1 + u
2

u

0 0 u
2 0 0

3

775 ,

2

664

1 0 u u
2 1 + u

0 1 0 1 u
2

0 0 u
2 0 0

3

775 ,

2

664

1 0 u 1 + u+ u
2

u
2

0 1 u 0 1 + u

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 u
2 1 + u

2

0 1 0 1 + u
2

u
2

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 + u
2 0

0 1 0 0 1

0 0 u
2 0 0

3

775 ,

2

664

1 0 u 1 + u
2

u

0 1 0 u+ u
2 1 + u+ u

2

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 + u
2 0

0 1 u 0 1 + u

0 0 u
2 0 0

3

775 ,

2

664

u
2 0 0 0 0

0 u
2 0 u

2
u
2

0 0 u
2 0 u

2

3

775 ,

2

664

u
2 0 0 0 0

0 u
2 0 0 u

2

0 0 u
2
u
2 0

3

775 ,

2

664

1 0 0 1 + u+ u
2

u+ u
2

0 1 0 u+ u
2 1 + u+ u

2

0 0 u
2 0 0

3

775 ,



122
Enumeration formulae for self-orthogonal and self-dual codes over

quasi-Galois rings of even characteristic

2

664

u 0 0 u+ u
2 0

0 u u u
2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u 0 u+ u
2
u
2

0 0 u
2 0 0

3

775 ,

2

664

1 u u 1 + u+ u
2
u+ u

2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u+ u
2 0

0 u u 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u 0

0 u 0 0 u+ u
2

0 0 u
2 0 0

3

775 ,

2

664

1 u 0 0 1 + u+ u
2

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

1 u 0 1 + u
2
u

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 + u
2 0

0 u
2 0 0 u

2

0 0 u
2 0 0

3

775 ,

2

664

1 u 1 1 + u+ u
2 1

0 u
2 0 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

u 0 0 u
2
u+ u

2

0 u u 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 0 1 + u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 u u u 1 + u+ u
2

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

1 u 0 u
2 1 + u

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

1 u 0 u
2 1 + u

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 u 0 1 + u+ u
2

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 + u u

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 u u 0 1

0 u
2 0 0 0

0 0 u
2

u
2 0

3

775 ,

2

664

1 0 u 0 1 + u+ u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 u
2

0 u
2 0 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

1 u u 1 u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 u u 0 1

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

1 0 0 1 u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 0 u

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u u u u u
2

0 u
2 0 u

2
u
2

0 0 u
2 0 0

3

775 ,

2

664

u u 0 0 u
2

0 u
2 0 u

2
u
2

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u 0

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u u u u u
2

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u
2

u

0 u
2 0 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

u u u u 0

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,
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2

664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2
u
2

0 u 0 u 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u
2

u

0 u 0 u u
2

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u
2

u

0 u u u
2
u
2

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u 0 0 u

0 0 u
2 0 0

3

775 ,

2

664

1 1 0 1 1

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u 0 u
2
u+ u

2

0 0 u
2 0 0

3

775 ,

2

664

1 u 0 u 1

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 u 0 0

0 u
2 0 u

2
u
2

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u
2 0 u

2
u
2

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 0 u

0 u
2 0 0 0

0 0 u
2
u
2
u
2

3

775 ,

2

664

u u 0 u
2
u
2

0 u
2 0 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u
2 0 0 u

2 0

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2
u
2
u
2

3

775 ,

2

664

u 0 0 u u
2

0 u 0 0 u

0 0 u
2 0 0

3

775 ,

2

664

u u 0 0 0

0 u
2 0 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

u 0 u 0 u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u u 0 u
2
u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 u u
2 0

0 u
2 0 0 u

2

0 0 u
2 0 0

3

775 ,

2

664

u 0 u 0 0

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u
2

u+ u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 0 u+ u
2

0 u
2 0 0 0

0 0 u
2 0 0

3

775 ,

2

664

u u 0 u+ u
2
u

0 u
2 0 u

2 0

0 0 u
2 0 0

3

775 ,

2

664

u 0 0 u
2
u+ u

2

0 u
2 0 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u u 0 u+ u
2

u

0 u
2 0 u

2
u
2

0 0 u
2 0 0

3

775 ,

2

66664

u 0 0 0 u

0 u u 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 0 0 u

0 u 0 u u
2

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 0 u u
2

0 u u 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 u 0 0

0 u 0 u u
2

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,

2

66664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2 0 u

2

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 0 u 0

0 u u 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 u 0 u
2

0 u 0 u u
2

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,
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2

66664

u 0 0 0 u

0 u 0 u 0

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,

2

66664

u
2 0 0 0 u

2

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,

2

66664

u
2 0 0 0 0

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u u 0 0 u
2

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u u 0 0 0

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 u u u

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,

2

66664

u u u u 0

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 0 u 0

0 u
2 0 0 0

0 0 u
2 0 u

2

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 u u u

0 u
2 0 0 0

0 0 u
2 0 u

2

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 u 0 0

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 u 0 0

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 0 u u
2

0 u
2 0 0 0

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,

2

66664

u 0 u 0 u
2

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,

2

66664

u 0 0 u u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 0 0 u

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u u u u u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

u 0 u u u+ u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2

u
2

3

77775
,

2

66664

1 1 u 1 1 + u+ u
2

0 u 0 0 u+ u
2

0 0 u
2 0 0

0 0 0 u
2

u
2

3

77775
,

2

66664

1 0 0 u 1 + u+ u
2

0 u 0 u u
2

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 0 u 0 1 + u

0 u 0 u 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 0 u 0 1 + u+ u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 1 1 + u 0 1 + u

0 u 0 0 u+ u
2

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,

2

66664

1 0 0 0 1 + u
2

0 u 0 u 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 1 + u 1 0 1 + u

0 u
2 0 0 u

2

0 0 u
2 0 u

2

0 0 0 u
2 0

3

77775
,

2

66664

1 1 + u u 1 1

0 u
2 0 0 u

2

0 0 u
2 0 0

0 0 0 u
2
u
2

3

77775
,
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2

66664

1 u 0 u 1 + u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 0 0 0 1 + u
2

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 u u u 1 + u

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66664

1 0 u u 1

0 u u 0 u
2

0 0 u
2 0 0

0 0 0 u
2 0

3

77775
,

2

66666664

u 0 0 0 u

0 u 0 u 0

0 0 u
2 0 0

0 0 0 u
2 0

0 0 0 0 u
2

3

77777775

,

2

66666664

u u u u 0

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

0 0 0 0 u
2

3

77777775

and

2

66666664

u 0 0 0 u

0 u
2 0 0 0

0 0 u
2 0 0

0 0 0 u
2 0

0 0 0 0 u
2

3

77777775

;

• 165 self-orthogonal codes of Hamming distance 2, whose generator matrices are
h
u u+ u

2
u
2 0 u

2
i
,

h
u u

2 0 0 u

i
,

h
u 0 u 0 0

i
,

h
u u

2
u+ u

2
u
2
u
2
i
,

h
1 0 0 1 0

i
,

h
1 u

2 1 + u
2
u u

i
,

h
1 0 u u

2 1 + u+ u
2
i
,

h
1 u

2 0 1 u
2
i
,

h
1 u

2
u
2 1 u

2
i
,

h
u
2 0 u

2 0 0
i
,

h
1 1 + u+ u

2
u
2
u
2
u

i
,

h
1 0 1 0 u

2
i
,

h
1 u 1 + u u u

i
,

h
1 u 0 u 1

i
,

h
1 1 + u 0 u 0

i
,

"
u 0 u

2
u+ u

2 0

0 u
2
u
2 0 0

#
,

"
u u u

2
u
2
u
2

0 u
2
u
2 0 0

#
,

"
u 0 u 0 0

0 u
2
u
2 0 u

2

#
,

"
u 0 u

2
u 0

0 u 0 u
2
u

#
,

"
u 0 u u

2
u
2

0 u u
2
u+ u

2
u
2

#
,

"
u u u

2 0 0

0 u
2
u
2 0 u

2

#
,

"
u 0 0 u 0

0 u u 0 u
2

#
,

"
u 0 0 u u

2

0 u 0 0 u+ u
2

#
,

"
u u u

2
u
2
u
2

0 u
2
u
2
u
2 0

#
,

"
u 0 u

2
u+ u

2 0

0 u u
2 0 u

#
,

"
u u 0 0 u

2

0 u
2 0 0 u

2

#
,

"
u 0 0 u 0

0 u
2
u
2 0 u

2

#
,

"
u 0 u 0 0

0 u
2 0 0 u

2

#
,
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"
u 0 u 0 0

0 u 0 u+ u
2 0

#
,

"
u 0 0 u u

2

0 u
2 0 u

2 0

#
,

"
1 0 u

2 0 1

0 u
2
u
2
u
2 0

#
,

"
1 0 0 1 0

0 u
2
u
2 0 0

#
,

"
1 0 0 u

2 1

0 1 1 u
2 0

#
,

"
1 0 0 0 1

0 1 1 0 0

#
,

"
1 0 u

2
u
2 1

0 u
2 0 u

2 0

#
,

"
1 u u 1 + u u+ u

2

0 u
2
u
2 0 u

2

#
,

"
1 0 0 1 u

2

0 u
2 0 0 u

2

#
,

"
u
2 0 0 u

2 0

0 u
2
u
2 0 u

2

#
,

"
u
2 0 u

2 0 0

0 u
2
u
2 0 0

#
,

"
u
2 0 0 u

2
u
2

0 u
2 0 u

2 0

#
,

"
1 0 u+ u

2 1 + u 0

0 1 1 + u
2

u u

#
,

"
1 0 u 1 + u u

2

0 1 u 0 1 + u

#
,

"
1 0 1 + u u+ u

2 0

0 1 u+ u
2 1 + u 0

#
,

"
u 0 u+ u

2 0 u
2

0 u u
2 0 u

#
,

"
u 0 u

2
u+ u

2
u
2

0 u u+ u
2 0 u

2

#
,

"
u 0 u 0 0

0 u u
2
u
2
u+ u

2

#
,

"
u 0 0 u

2
u+ u

2

0 u
2

u
2

u
2

u
2

#
,

"
u u 0 u+ u

2
u

0 u
2 0 u

2 0

#
,

"
u 0 u+ u

2 0 u
2

0 u
2 0 u

2 0

#
,

"
u u u u+ u

2 0

0 u
2 0 0 u

2

#
,

"
u 0 0 0 u+ u

2

0 u
2
u
2
u
2

u
2

#
,

"
u 0 u+ u

2
u
2
u
2

0 u
2 0 0 u

2

#
,

"
u 0 u

2
u
2
u+ u

2

0 u
2 0 u

2
u
2

#
,

"
u 0 u

2
u
2
u+ u

2

0 u u 0 u
2

#
,

"
u 0 0 u+ u

2
u
2

0 u
2
u
2 0 u

2

#
,

"
u u u

2
u u+ u

2

0 u
2 0 0 u

2

#
,

"
1 0 0 u

2 1

0 1 u 1 + u u
2

#
,

"
1 0 1 + u u 0

0 1 u 1 + u u
2

#
,

"
1 0 1 + u

2
u
2

u
2

0 1 u
2 1 u

2

#
,

"
1 0 1 + u

2
u u

0 1 u+ u
2 1 u

#
,

"
1 0 1 + u u u

2

0 1 u
2

u
2 1 + u

2

#
,

"
1 0 u

2 0 1

0 1 1 + u
2

u
2

u
2

#
,

"
1 0 0 1 u

2

0 1 1 + u 0 u

#
,

"
1 0 1 + u u

2
u

0 1 u u
2 1 + u

#
,

"
1 0 1 + u 0 u

0 1 0 1 0

#
,

"
1 0 1 u

2 0

0 1 u
2 1 + u

2 0

#
,

"
1 1 1 + u

2
u
2 1 + u

2

0 u u
2 0 u+ u

2

#
,

"
1 1 1 + u

2 1 u
2

0 u 0 u 0

#
,

"
1 0 u+ u

2
u
2 1 + u

0 u u
2

u+ u
2 0

#
,

"
1 0 u

2 1 + u
2
u
2

0 u u 0 0

#
,
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"
1 0 0 u

2 1 + u
2

0 u u
2

u 0

#
,

"
1 0 u+ u

2
u+ u

2 1

0 u u+ u
2 0 u

2

#
,

"
1 0 u 0 1 + u+ u

2

0 u u u
2

u
2

#
,

"
1 0 u

2 1 u
2

0 u u
2 0 u+ u

2

#
,

"
1 0 1 + u

2 0 0

0 u 0 u+ u
2 0

#
,

"
1 1 1 + u 1 + u+ u

2 0

0 u u u
2

u
2

#
,

"
1 1 1 1 0

0 u u
2
u+ u

2 0

#
,

"
1 0 u+ u

2 1 + u 0

0 u u+ u
2

u
2 0

#
,

"
1 0 1 + u+ u

2
u
2
u+ u

2

0 u u
2 0 u

#
,

"
1 0 u+ u

2 1 + u 0

0 u u
2 0 u

#
,

"
1 0 0 u

2 1

0 u u u
2 0

#
,

"
1 0 0 1 + u+ u

2
u+ u

2

0 u u+ u
2 0 0

#
,

"
1 0 0 u

2 1

0 u u+ u
2 0 0

#
,

"
1 0 1 + u

2
u+ u

2
u

0 u u
2

u
2

u

#
,

"
1 1 u+ u

2 1 + u+ u
2 1

0 u 0 0 u

#
,

"
1 0 0 0 1 + u

2

0 1 1 u
2 0

#
,

"
1 0 u

2 1 + u
2 0

0 u u+ u
2 0 0

#
,

"
1 1 1 + u 1 + u+ u

2 0

0 u u+ u
2 0 u

2

#
,

"
1 0 0 0 1

0 u u+ u
2
u
2 0

#
,

"
1 0 1 + u+ u

2
u
2
u

0 u 0 u 0

#
,

"
1 1 u+ u

2 1 1 + u+ u
2

0 u u
2

u
2

u

#
,

"
u
2 0 0 u

2 0

0 u
2
u
2
u
2
u
2

#
,

"
1 u 0 1 + u u

2

0 u
2 0 0 u

2

#
,

"
1 1 1 + u+ u

2 0 1 + u+ u
2

0 u u+ u
2 0 0

#
,

"
u
2 0 0 0 u

2

0 u
2
u
2 0 0

#
,

"
1 u 1 + u+ u

2
u u

0 u
2 0 u

2 0

#
,

"
1 0 0 1 + u+ u

2
u+ u

2

0 u
2
u
2 0 u

2

#
,

"
1 u u 0 1

0 u
2
u
2 0 0

#
,

"
1 1 1 + u+ u

2
u+ u

2 1

0 u
2

u
2 0 0

#
,

"
1 0 u+ u

2 1 + u+ u
2 0

0 u
2 0 0 u

2

#
,

"
1 0 u u 1

0 u
2
u
2
u
2 0

#
,

"
1 0 u+ u

2
u+ u

2 1

0 u
2

u
2 0 0

#
,

"
1 0 u

2 1 + u+ u
2
u+ u

2

0 u
2
u
2 0 u

2

#
,

"
1 u 1 u u

2

0 u
2 0 u

2 0

#
,

"
1 1 + u 1 + u+ u

2 1 0

0 u
2 0 u

2 0

#
,

"
1 1 1 + u 1 + u+ u

2
u
2

0 u
2

u
2 0 0

#
,

"
1 0 u u

2 1 + u+ u
2

0 u
2 0 u

2 0

#
,

"
1 0 1 + u

2 0 u
2

0 u
2 0 u

2 0

#
,

"
1 u 1 + u 0 u

2

0 u
2 0 u

2 0

#
,
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"
1 0 1 0 0

0 u
2 0 u

2
u
2

#
,

2

664

1 0 u+ u
2
u+ u

2 1 + u
2

0 u 0 u u
2

0 0 u
2

u
2 0

3

775 ,

2

664

1 1 + u u
2 1 + u 1

0 u u
2
u+ u

2
u
2

0 0 u
2

u
2

u
2

3

775 ,

2

664

1 u+ u
2
u
2 1 u

0 u 0 0 u+ u
2

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 1 + u
2 1 + u

2
u
2

0 u u 0 0

0 0 u
2

u
2 0

3

775 ,

2

664

1 0 u
2 1 u

2

0 u u+ u
2 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

1 u 0 u
2 1 + u

0 u 0 u u
2

0 0 u
2
u
2 0

3

775 ,

2

664

1 u u 1 + u u

0 u u+ u
2 0 0

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 + u
2 1 + u u 1 + u

2

0 u 0 u
2

u

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 1 1 0

0 u u 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

1 1 1 1 + u
2 0

0 u u+ u
2

u
2

u
2

0 0 u
2

u
2 0

3

775 ,

2

664

1 1 + u
2 1 + u

2
u+ u

2 1 + u

0 u 0 u
2

u+ u
2

0 0 u
2

u
2

u
2

3

775 ,

2

664

u
2 0 0 u

2 0

0 u
2 0 0 u

2

0 0 u
2
u
2 0

3

775 ,

2

664

u
2 0 0 u

2
u
2

0 u
2 0 u

2 0

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 + u u
2 1 + u+ u

2 1 + u
2

0 u 0 u+ u
2

u
2

0 0 u
2

u
2

u
2

3

775 ,

2

664

u 0 0 u+ u
2 0

0 u u u
2 0

0 0 u
2

u
2 0

3

775 ,

2

664

u 0 u 0 u
2

0 u 0 u
2
u+ u

2

0 0 u
2
u
2

u
2

3

775 ,

2

664

1 1 + u 1 + u 0 1 + u
2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

u 0 0 u 0

0 u 0 u
2
u+ u

2

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 u 0 u
2

0 u 0 u+ u
2
u
2

0 0 u
2

u
2 0

3

775 ,

2

664

1 1 + u 0 1 + u 1

0 u
2 0 0 u

2

0 0 u
2

u
2

u
2

3

775 ,

2

664

u 0 0 0 u

0 u u u
2 0

0 0 u
2
u
2
u
2

3

775 ,

2

664

1 1 1 u+ u
2 1 + u

0 u
2 0 u

2
u
2

0 0 u
2

u
2

u
2

3

775 ,

2

664

1 u 0 u
2 1 + u+ u

2

0 u
2 0 u

2 0

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 0 0 u

0 u u u
2 0

0 0 u
2 0 u

2

3

775 ,

2

664

1 u 0 u+ u
2 1 + u

2

0 u
2 0 u

2 0

0 0 u
2

u
2 0

3

775 ,

2

664

1 u u u 1 + u

0 u
2 0 u

2 0

0 0 u
2
u
2 0

3

775 ,
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2

664

1 0 0 1 u
2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 1 u 1 + u+ u
2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

1 0 0 1 + u
2 0

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

u
2 0 0 u

2 0

0 u
2 0 u

2 0

0 0 u
2
u
2 0

3

775 ,

2

664

u u u u
2

u

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

1 1 1 + u u
2 1 + u+ u

2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

664

u
2 0 0 u

2
u
2

0 u
2 0 u

2
u
2

0 0 u
2
u
2
u
2

3

775 ,

2

664

u 0 u 0 u
2

0 u 0 u
2

u+ u
2

0 0 u
2

u
2 0

3

775 ,

2

664

u 0 0 0 u+ u
2

0 u u 0 0

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 0 u+ u
2
u
2

0 u
2 0 0 u

2

0 0 u
2

u
2 0

3

775 ,

2

664

u 0 u u
2

u
2

0 u 0 0 u+ u
2

0 0 u
2
u
2

u
2

3

775 ,

2

664

u 0 u u
2
u
2

0 u 0 0 u

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 u 0 0

0 u
2 0 0 u

2

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 0 0 u+ u
2

0 u
2 0 u

2 0

0 0 u
2
u
2 0

3

775 ,

2

664

u u u u+ u
2 0

0 u
2 0 u

2
u
2

0 0 u
2

u
2

u
2

3

775 ,

2

664

u 0 u u u

0 u
2 0 0 u

2

0 0 u
2
u
2 0

3

775 ,

2

664

u 0 0 u
2
u+ u

2

0 u
2 0 0 u

2

0 0 u
2
u
2

u
2

3

775 ,

2

664

u 0 0 u+ u
2
u
2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,

2

66664

u 0 0 0 u

0 u 0 u u
2

0 0 u
2 0 0

0 0 0 u
2

u
2

3

77775
,

2

66664

u 0 u 0 0

0 u 0 0 u+ u
2

0 0 u
2 0 u

2

0 0 0 u
2

u
2

3

77775
,

2

66664

u u u 0 u+ u
2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

0 0 0 u
2

u
2

3

77775
,

2

664

u 0 0 u 0

0 u
2 0 u

2 0

0 0 u
2

u
2

u
2

3

775 ,

2

664

u u 0 u
2 0

0 u
2 0 u

2 0

0 0 u
2

u
2 0

3

775 ,

2

664

u u u u+ u
2 0

0 u
2 0 u

2 0

0 0 u
2

u
2 0

3

775 ,

2

664

u 0 u u
2

u
2

0 u
2 0 u

2 0

0 0 u
2

u
2

u
2

3

775 ,

2

664

u 0 u u
2 0

0 u
2 0 u

2 0

0 0 u
2

u
2

u
2

3

775 ,

2

664

u 0 0 u
2

u

0 u
2 0 0 u

2

0 0 u
2 0 u

2

3

775 ,
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2

66664

u
2 0 0 0 u

2

0 u
2 0 0 u

2

0 0 u
2 0 u

2

0 0 0 u
2

u
2

3

77775
and

2

66664

u 0 u 0 0

0 u
2 0 0 u

2

0 0 u
2 0 u

2

0 0 0 u
2

u
2

3

77775
;

• 5 self-orthogonal codes of Hamming distance 3, whose generator matrices are

h
u
2 0 0 u

2
u
2
i
,

"
u
2 0 0 u

2
u
2

0 u
2

u
2

u
2

u
2

#
,

"
u 0 u u+ u

2
u

0 u
2

u
2

u
2 0

#
,

"
1 1 u

2 1 + u+ u
2 1 + u+ u

2

0 u
2
u
2

u
2 0

#
and

"
1 u 1 + u 1 + u+ u

2 1 + u

0 u
2

u
2

u
2 0

#
;

• 6 self-orthogonal codes of Hamming distance 4, whose generator matrices are
h
1 1 1 1 u

2
i
,

h
1 0 1 + u 1 + u

2 1 + u

i
,

h
u
2
u
2
u
2 0 u

2
i
,

h
u u u u

2
u

i
,

h
1 1 + u 1 u 1

i
and

h
u 0 u+ u

2
u u

i
; and

• 1 self-orthogonal code of Hamming distance 5, whose generator matrix is
h
u
2
u
2
u
2
u
2
u
2
i
.

V. By Theorem 2.2.4(b), we see that a self-orthogonal code of the type {k1, k2, k3}

and length n over Fq[u]/hu3
i is self-dual if and only if n is even, k2 = k3 and

2(k1 + k2) = n. From this and by parts I-IV, we deduce the following:

• There is only one inequivalent self-dual code of length 2 and Hamming distance

1, and one inequivalent self-dual code of length 2 and Hamming distance 2 over

F3[u]/hu3
i.

• There are precisely 3 inequivalent self-dual codes of length 4 and Hamming dis-

tance 1, and 4 inequivalent self-dual codes of length 4 and Hamming distance

2 over F3[u]/hu3
i.

Now to classify self-orthogonal and self-dual codes of lengths 2, 3 and 4 over

F4[u]/hu2
i, we assume, from this point on, that ⇣ is a primitive element of F4.

VI. There are precisely 4 inequivalent non-zero self-orthogonal codes of length 2

over F4[u]/hu2
i. Among these codes, there are
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• 2 self-orthogonal codes of Hamming distance 1, whose generator matrices are

h
u 0

i
and

"
u 0

0 u

#
; and

• 2 self-orthogonal codes of Hamming distance 2, whose generator matrices are
h
u u

i
and

h
1 1 + u

i
.

VII. There are precisely 12 inequivalent non-zero self-orthogonal codes of length 3

over F4[u]/hu2
i. Among these codes, there are

• 5 self-orthogonal codes of Hamming distance 1, whose generator matrices are

h
u 0 0

i
,

"
u 0 0

0 u 0

#
,

"
u 0 ⇣u

0 u 0

#
,

"
1 ⇣

2
u 1 + ⇣u

0 u 0

#
and

2

664

u 0 0

0 u 0

0 0 u

3

775 ;

• 5 self-orthogonal codes of Hamming distance 2, whose generator matrices are
h
u ⇣

2
u 0

i
,

h
1 u 1

i
,

h
1 0 1

i
,

"
u 0 u

0 u u

#
and

"
1 ⇣

2
⇣ + ⇣

2
u

0 u ⇣u

#
; and

• 2 self-orthogonal codes of Hamming distance 3, whose generator matrices areh
u u u

i
and

h
1 ⇣ ⇣

2
i
.

VIII. There are precisely 42 inequivalent non-zero self-orthogonal codes of length 4

over F4[u]/hu2
i. Among these codes, there are

• 14 self-orthogonal codes of Hamming distance 1, whose generator matrices are

h
u 0 0 0

i
,

"
u 0 u u

0 u 0 0

#
,

"
u 0 0 0

0 u 0 ⇣
2
u

#
,

"
u 0 0 0

0 u 0 0

#
,

"
1 ⇣u 1 ⇣u

0 u 0 0

#
,

"
1 ⇣u ⇣

2
⇣ + ⇣u

0 u 0 0

#
,

"
1 0 1 + ⇣

2
u 0

0 u 0 0

#
,

2

664

u 0 0 0

0 u 0 u

0 0 u u

3

775 ,

2

664

u 0 0 0

0 u 0 ⇣
2
u

0 0 u 0

3

775 ,

2

664

u 0 0 0

0 u 0 0

0 0 u 0

3

775 ,

2

664

1 u 0 1

0 u 0 0

0 0 u 0

3

775 ,

2

664

1 1 + ⇣u 1 1 + ⇣u

0 u 0 u

0 0 u u

3

775 ,

2

664

1 ⇣
2
u ⇣

2 + ⇣u ⇣

0 u 0 0

0 0 u ⇣u

3

775
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and

2

66664

u 0 0 0

0 u 0 0

0 0 u 0

0 0 0 u

3

77775
;

• 19 self-orthogonal codes of Hamming distance 2, whose generator matrices are

h
1 0 0 1

i
,

h
u u 0 0

i
,

h
1 u u 1

i
,

h
1 u 1 0

i
,

"
u 0 u 0

0 u ⇣u u

#
,

"
u 0 0 ⇣

2
u

0 u 0 ⇣u

#
,

"
u 0 u 0

0 u 0 u

#
,

"
1 0 1 ⇣u

0 u 0 u

#
,

"
1 0 0 1

0 1 1 0

#
,

"
1 0 ⇣u 1

0 1 1 ⇣u

#
,

"
1 0 ⇣

2
u 1

0 1 1 + u ⇣
2
u

#
,

"
1 ⇣ + ⇣

2
u ⇣ 1

0 u u 0

#
,

"
1 0 u 1 + ⇣u

0 1 1 u

#
,

"
1 ⇣

2
u 1 ⇣u

0 u 0 ⇣
2
u

#
,

"
1 ⇣ + ⇣u ⇣

2
⇣
2
u

0 u ⇣
2
u 0

#
,

"
1 ⇣

2 + u 1 + u ⇣
2 + u

0 u ⇣
2
u 0

#
,

"
1 ⇣

2 + ⇣
2
u 0 ⇣ + ⇣

2
u

0 u 0 ⇣u

#
,

2

664

u 0 0 u

0 u 0 ⇣u

0 0 u ⇣
2
u

3

775 and

2

664

1 1 + ⇣
2
u ⇣

2
⇣
2 + u

0 u 0 ⇣u

0 0 u u

3

775 ;

• 7 self-orthogonal codes of Hamming distance 3, whose generator matrices are

h
1 0 ⇣

2
⇣

i
,

h
1 ⇣

2
u ⇣ + ⇣

2
u ⇣

2
i
,

h
u u u 0

i
,

"
u 0 ⇣

2
u u

0 u ⇣
2
u ⇣

2
u

#
,

"
1 1 + u 1 + ⇣u 1 + u

0 u ⇣
2
u ⇣u

#
,

"
1 ⇣

2 + ⇣u u ⇣ + ⇣u

0 u ⇣u ⇣u

#
and

"
1 0 ⇣ + u ⇣

2 + u

0 1 ⇣
2 + u ⇣ + u

#
;

and

• 2 self-orthogonal codes of Hamming distance 4, whose generator matrices are
h
1 1 1 1

i
and

h
u u u u

i
.

IX. By applying Lemma 2.2.4(b), we observe that a self-orthogonal code of the type

{k1, k2} and length n over Fq[u]/hu2
i is self-dual if and only if 2k1 + k2 = n. From

this and by parts VI-VIII, we deduce the following:
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• There is only one inequivalent self-dual code of length 2 and Hamming distance

1, and one inequivalent self-dual code of length 2 and Hamming distance 2 over

F4[u]/hu2
i.

• There are precisely 2 inequivalent self-dual codes of length 3 and Hamming dis-

tance 1, and one inequivalent self-dual code of length 3 and Hamming distance

2 over F4[u]/hu2
i.

• There are precisely 4 inequivalent self-dual codes of length 4 and Hamming

distance 1, 5 inequivalent self-dual codes of length 4 and Hamming distance

2, and 1 inequivalent self-dual code of length 4 and Hamming distance 3 over

F4[u]/hu2
i.

Note that Theorems 4.4.3 and 4.4.4 together with Theorems 3.2.3,3.2.5, 3.3.3,

3.3.5, 3.4.5 and 3.4.6 provide enumeration formulae for all self-orthogonal and self-

dual codes over quasi-Galois rings. Thus the problem of determination of enumera-

tion formulae for self-orthogonal and self-dual codes over quasi-Galois rings is now

completely solved. Apart from this, as a consequence of Theorems 3.2.3,3.2.5, 3.3.3,

3.3.5, 3.4.5 and 3.4.6, the enumeration formulae for self-orthogonal and self-dual

codes over Galois rings of odd characteristic are also known. In the next chap-

ter, we will count all self-orthogonal and self-dual codes of an arbitrary length over

Galois rings of even characteristic.
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5
Enumeration formulae for

self-orthogonal and self-dual codes

over Galois rings of even

characteristic

5.1 Introduction

In this chapter, we will count all self-orthogonal and self-dual codes of an arbi-

trary length over Galois rings of even characteristic. For this, we assume, through-

out this chapter, that e � 2 and r are fixed positive integers. Here we recall, from

Chapter 2, that GR(pe, r) denotes the Galois ring of characteristic p
e and cardinal-

ity p
er
, where p is a prime number. We also recall that the Galois ring GR(pe, r)

135
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is a finite commutative chain ring with the maximal ideal hpi of nilpotency in-

dex e and the residue field GR(pe, r) = GR(pe, r)/hpi of order p
r
. Further, there

exists an element ⇠ 2 GR(pe, r) whose multiplicative order is p
r
� 1 and the set

Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} is the Teichmüller set of the Galois ring GR(pe, r).

Next, for an integer µ satisfying 1  µ < e, we observe that the quotient ring

GR(pe, r)/hpµi is the Galois ring GR(pµ, r) of characteristic p
µ and cardinality p

rµ

and has a unique maximal ideal hp + hp
µ
ii. We further observe that the element

⇠µ := ⇠ + hp
µ
i 2 GR(pµ, r) has multiplicative order pr � 1 and that the set Tµ,r =

{0, 1, ⇠µ, ⇠2µ, . . . , ⇠
p
r�2

µ
} is the Teichmüller set ofGR(pµ, r). One can define a canonical

epimorphism from GR(pe, r) onto GR(pµ, r) as a 7! a + hp
µ
i for all a 2 GR(pe, r).

In view of this, we shall identify each element a+ hp
µ
i 2 GR(pµ, r) with the element

a 2 GR(pe, r), and we shall perform addition and multiplication inGR(pµ, r) modulo

p
µ
. In particular, we shall identify the element ⇠µ 2 Tµ,r with the element ⇠ 2 Te,r.

So we assume, throughout this chapter, that

T1,r = T2,r = · · · = Te�1,r = Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} = Tr (say).

Further, for 1  µ  e, we see, by Theorem 14.8 of [101], that each element a 2

GR(pµ, r) can be uniquely expressed as a = a0 + a1p+ a2p
2 + · · ·+ aµ�1p

µ�1
, where

a0, a1, a2, . . . , aµ�1 2 Tr. Define a map �0 : GR(pµ, r) ! Tr as �0(a) = a0 for all

a = a0 + a1p + a2p
2 + · · · + aµ�1p

µ�1
2 GR(pµ, r) with a0, a1, a2, . . . , aµ�1 2 Tr.

Furthermore, for a, b 2 Tr, let us define a � b 2 Tr as a � b = �0(a + b). Note that

� is a binary operation on Tr. One can easily observe that the Teichmüller set Tr

of the Galois ring GR(pe, r) can be viewed as the finite field of order pr under the

addition operation � and the usual multiplication operation of GR(pe, r). In view

of this, we assume, without any loss of generality, that

GR(p, r) = GR(p, r) = GR(p2, r) = · · · = GR(pe, r) = Tr

from this point on. Throughout this chapter, we shall denote the Galois ring

GR(2µ, r) by Rµ,r for 1  µ  e. The main goal of this chapter is to count all

self-orthogonal and self-dual codes of an arbitrary length over Re,r = GR(2e, r).

When p = 2, a linear code C of length n over Tr is said to be k-doubly even if
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it has a k-dimensional linear subcode C0 satisfying c · c ⌘ 0 (mod 4) for all c 2 C0,

where each c 2 C0 is viewed as an element of Rn

e,r
and · denotes the Euclidean

bilinear form on Rn

e,r
. A k-doubly even code of length n and dimension k over Tr is

simply called a doubly even code. In this chapter, we will consider the case p = 2,

and we will first count all doubly even codes over Tr and their two special classes, viz.

the codes containing the all-one vector and the codes that do not contain the all-one

vector by studying the geometry of a certain special quadratic space over Tr. We will

further provide a recursive method to construct self-orthogonal and self-dual codes

of the type {k1, k2, . . . , ke} and length n over Re,r from a (k1+k2+ · · ·+kb e

2 c)-doubly

even self-orthogonal code of the same length n and dimension k1+k2+· · ·+kd e

2 e over

Tr, where n is a positive integer and k1, k2, . . . , ke are non-negative integers satisfying

2k1+2k2+ · · ·+2ke�i+1+ ke�i+2+ ke�i+3+ · · ·+ ki  n for d e+1
2 e  i  e. With the

help of this recursive construction method and the enumeration formulae for doubly

even codes over Tr and their two special classes, we will obtain explicit enumeration

formulae for all self-orthogonal and self-dual codes of an arbitrary length over Re,r.

This chapter is organized as follows: In Section 5.2, we first outline the recursive

construction method employed in Chapter 3 (see the proofs of Theorems 3.4.1 and

3.4.3) in the particular case of codes over the Galois ring GR(p`, r), where ` � 4

is an integer. Here we note that when p = 2, each self-orthogonal (resp. self-

dual) code over R`�2,r can not be lifted to a self-orthogonal (resp. self-dual) code

over R`,r by applying this construction method. We further derive a necessary and

su�cient condition under which a self-orthogonal code over R`�2,r can be lifted to a

self-orthogonal code over R`,r using this construction method (Theorem 5.2.1). In

Section 5.3, we consider the case p = 2 and count all doubly even codes over Tr and

their two special classes consisting of the codes containing the all-one vector and

the codes that do not contain the all-one vector (Theorems 5.3.1-5.3.3). In Section

5.4, we extend the recursive construction method provided by Nagata et al. [75] to

construct self-orthogonal and self-dual codes of the type {k1, k2, . . . , ke} and length

n over Re,r from a (k1+k2+ · · ·+kb e

2 c)-doubly even self-orthogonal code of the same

length n and dimension k1 + k2 + · · · + kd e

2 e over Tr, where k1, k2, . . . , ke are non-

negative integers satisfying 2k1 +2k2 + · · ·+2ke�i+1 + ke�i+2 + ke�i+3 + · · ·+ ki  n

for d
e+1
2 e  i  e. In Section 5.5, we obtain explicit enumeration formulae for all
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self-orthogonal and self-dual codes of an arbitrary length over Re,r by applying the

recursive construction method provided in Section 5.4 and the results derived in

Section 5.3. In Section 5.6, we classify all self-orthogonal and self-dual codes of

lengths 2, 3 and 4 over R2,2 = GR(4, 2).

In the following section, we assume that ` � 4 is an integer, and we outline the

recursive construction method employed in Chapter 3 in the particular case of codes

over the Galois ring GR(p`, r). Here when p = 2 (i.e., when GR(p`, r) = GR(2`, r) =

R`,r), we illustrate that not every self-orthogonal code over R`�2,r can be lifted to

a self-orthogonal code over R`,r using this method. We also characterize all self-

orthogonal (resp. self-dual) codes over R`�2,r that can be lifted to self-orthogonal

(resp. self-dual) codes over R`,r.

5.2 Outline of the recursive construction method

Throughout this section, let ` � 4 be an integer, and let k1, k2, . . . , k`+1 be non-

negative integers satisfying n = k1+k2+ · · ·+k`+k`+1 and 2k1+2k2+ · · ·+2k`�i+1+

k`�i+2 + k`�i+3 + · · ·+ ki  n for d `+1
2 e  i  `.

Now let D`�2 be a self-orthogonal (resp. self-dual) code of the type {k1 +

k2, k3, . . . , k`�1} and length n over GR(p`�2
, r) with a generator matrix

G`�2 =

2

66666666664

Z
0
1

Z
0
2

pZ
0
3

...

p
`�4

Z
0
`�2

p
`�3

Z
0
`�1

3

77777777775

(5.2.1)

with "
Z

0
1

Z
0
2

#
=

"
Ik1 A1,1 A1,2 · · · A1,`�2 A1,`

0 Ik2 A2,2 · · · A2,`�2 A2,`

#
+

`�3X

j=1

p
j

"
V

(j)
1

V
(j)
2

#
,

where the matrix Iki is the ki ⇥ ki identity matrix over Tr, Ai,j 2 Mki⇥kj+1(Tr) for

1  i  2 and i  j  ` � 2, A1,` 2 Mk1⇥(k`+k`+1)(Tr), A2,` 2 Mk2⇥(k`+k`+1)(Tr),

V
(y)
b

2 Mkb⇥n(Tr) for 1  b  2 and 1  y  ` � 3, and the matrix Z
0
µ

2
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Mkµ⇥n(GR(p`�2
, r)) is to be considered modulo p

`�µ for 3  µ  ` � 1, (i.e.,

the matrix Z
0
µ
2 Mkµ⇥n(GR(p`�2

, r)) is of the form Z
0
µ
= Z

0
µ,0 + pZ

0
µ,1 + p

2
Z

0
µ,2 +

· · ·+ p
`�µ�1

Z
0
µ,`�µ�1, where Z

0
µ,0, Z

0
µ,1, . . . , Z

0
µ,`�µ�1 2 Mkµ⇥n(Tr) for 3  µ  `� 1).

Further, let D` be a linear code of the type {k1, k2, . . . , k`�1, k`} and length n

over GR(p`, r) with a generator matrix

G` =

2

66666666664

Z1

pZ2

p
2
Z3

...

p
`�2

Z`�1

p
`�1

Z`

3

77777777775

, (5.2.2)

where

Z1 = Z
0
1 + p

`�2
h
0 · · · 0 0 V1,`

i
+ p

`�1
h
0 · · · 0 0 U1,`

i

with V1,` 2 Mk1⇥(k`+k`+1)(Tr), U1,` 2 Mk1⇥(k`+k`+1)(Tr), the matrix Zµ is of the form

Zµ = Z
0
µ
+ p

`�µ

h
0 0 · · · 0 Aµ,`

i
with Aµ,` 2 Mkµ⇥(k`+k`+1)(Tr)

for 2  µ  `� 1, and the matrix Z` is of the form

Z` =
h
0 0 · · · 0 A`,`

i
with A`,` 2 Mk`⇥(k`+k`+1)(Tr).

SinceD`�2 is a self-orthogonal (resp. self-dual) code of the type {k1+k2, k3, . . . , k`�1}

and length n over GR(p`�2
, r) with a generator matrix G`�2 (as defined by (5.2.1)),

we see, by Theorem 2.2.4, that

Z
0
1Z

0t
1 ⌘ p

`�2
B1 + p

`�1
B2 (mod p

`),

Z
0
1Z

0t
2 ⌘ p

`�2
J2 (mod p

`�1),

Z
0
1Z

0t
µ

⌘ p
`�µ

Jµ (mod p
`�µ+1) for 3  µ  `� 1,

Z
0
i
Z

0t
j

⌘ 0 (mod p
`�i�j+2) for 2  i  j  `� 1 and i+ j  `+ 1,

where B1 2 Symk1(Tr), B2 2 Symk1(Tr) and Jµ 2 Mk1⇥kµ(Tr) for 2  µ  ` � 1.
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Now by applying Theorem 2.2.4, we observe that the code D`�2 can be lifted to a

self-orthogonal (resp. self-dual) code D` of the type {k1, k2, . . . , k`} and length n over

GR(p`, r) with a generator matrix G` (as defined by (5.2.2)) if and only if there exist

matrices V1,` 2 Mk1⇥(k`+k`+1)(Tr), U1,` 2 Mk1⇥(k`+k`+1)(Tr), Aµ,` 2 Mkµ⇥(k`+k`+1)(Tr)

for 2  µ  `, satisfying the following system of matrix equations:

B1 + A1,`V
t

1,` + V1,`A
t

1,`

+p(B2 + A1,`U
t

1,` + U1,`A
t

1,`) ⌘ 0 (mod p
2),

A1,`A
t

2,` + V1,`B
t

2,` + J2 ⌘ 0 (mod p),

A1,`A
t

i,`
+ Ji ⌘ 0 (mod p) for 3  i  `� 1,

A1,`A
t

`,`
⌘ 0 (mod p).

9
>>>>>>>>>=

>>>>>>>>>;

(5.2.3)

Working in a similar manner as in Remark 3.4.1, we note that the matrix A1,` is a

full-row rank matrix over Tr. When p is an odd prime, by applying Lemma 2.1.1, one

can show that there exist matrices V1,`, U1,`, Ai,` for 2  i  `, such that the code D`

is a self-orthogonal (resp. self-dual) code over GR(p`, r) (see the proof of Theorem

3.4.1 for more details). However when p = 2, we recall that GR(p`, r) = R`,r and

GR(p`�2
, r) = R`�2,r, and we observe that for each self-orthogonal code D`�2 of the

type {k1 + k2, k3, . . . , k`�1} and length n over R`�2,r, the system (5.2.3) of matrix

equations need not have a solution. The following example illustrates this.

Example 5.2.1. Let p = 2, r = 2, ` = 4, and let R4,2 = GR(24, 2) = Z16[⇠], where ⇠

is a root of the monic basic irreducible polynomial x2+x+1 2 Z16[x]. Here we have

R2,2 = GR(22, 2) = Z16[⇠]/h22i ' Z4[⇠]. Let n = 4, k1 = 2 and k2 = k3 = k4 = 0.

Let C be a linear code of the type {2, 0} and length 4 over R2,2 with a generator

matrix "
1 0 ⇠

2
⇠

0 1 ⇠ ⇠
2

#
+ 2

"
0 0 0 ⇠

2

0 0 0 ⇠

#
.

Note that the code C is a self-orthogonal code over R2,2. Next, consider the linear

code D of the type {2, 0, 0, 0} and length 4 over R4,2 with a generator matrix

"
1 0 ⇠

2
⇠

0 1 ⇠ ⇠
2

#
+ 2

"
0 0 0 ⇠

2

0 0 0 ⇠

#
+ 22

"
0 0 a0 a1

0 0 a2 a3

#
+ 23

"
0 0 b0 b1

0 0 b2 b3

#
,
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where a0, a1, a2, a3, b0, b1, b2, b3 2 T2 = {0, 1, ⇠, ⇠2}. Here we have

A1,4 =

"
⇠
2

⇠

⇠ ⇠
2

#
, V1,4 =

"
a0 a1

a2 a3

#
, U1,4 =

"
b0 b1

b2 b3

#
, B1 =

"
⇠
2 1

1 ⇠

#
and B2 =

"
⇠
2 0

0 ⇠

#

corresponding to the codes C and D . Further, it is easy to see that the resulting

system (5.2.3) of matrix equations in unknown matrices V1,4 and U1,4 has no si-

multaneous solution. This shows that the self-orthogonal code C can not be lifted

to a self-orthogonal code of the type {2, 0, 0, 0} and length 4 over R4,2 using the

construction method outlined above.

Now in the following example, we illustrate that there are self-orthogonal codes

of the type {k1 + k2, k3, . . . , k`�1} and length n over R`�2,r that can be lifted to

self-orthogonal codes of the type {k1, k2, . . . , k`} and length n over R`,r.

Example 5.2.2. Let p = 2, r = 2, ` = 4, and let R4,2 = GR(24, 2) = Z16[⇠], where ⇠

is a root of the monic basic irreducible polynomial x2+x+1 2 Z16[x]. Here we have

R2,2 = GR(22, 2) = Z16[⇠]/h22i ' Z4[⇠]. Let n = 4, k1 = 2 and k2 = k3 = k4 = 0.

Let C be a linear code of the type {2, 0} and length 4 over R2,2 with a generator

matrix "
1 0 ⇠

2
⇠

0 1 ⇠ ⇠
2

#
+ 2

"
0 0 ⇠

2 0

0 0 0 0

#
.

Note that the code C is a self-orthogonal code over R2,2. Next, consider the linear

code D of the type {2, 0, 0, 0} and length 4 over R4,2 with a generator matrix

"
1 0 ⇠

2
⇠

0 1 ⇠ ⇠
2

#
+ 2

"
0 0 ⇠

2 0

0 0 0 0

#
+ 22

"
0 0 a0 a1

0 0 a2 a3

#
+ 23

"
0 0 b0 b1

0 0 b2 b3

#
,

where a0, a1, a2, a3, b0, b1, b2, b3 2 T2 = {0, 1, ⇠, ⇠2}. Here we have

A1,4 =

"
⇠
2

⇠

⇠ ⇠
2

#
, V1,4 =

"
a0 a1

a2 a3

#
, U1,4 =

"
b0 b1

b2 b3

#
, B1 =

"
0 1

1 0

#
and B2 =

"
⇠ 0

0 0

#

corresponding to the codes C and D . By applying Theorem 2.2.4, we see that the

resulting system (5.2.3) of matrix equations in unknown matrices V1,4 and U1,4 has

a simultaneous solution. In particular, one of the solutions of the system (5.2.3) is
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given by

V1,4 =

"
0 1

1 ⇠
2

#
and U1,4 =

"
⇠
2

⇠

⇠
2

⇠

#
.

From this, it follows that the self-orthogonal code C can be lifted to a self-orthogonal

code of the type {2, 0, 0, 0} and length 4 over R4,2 using the above construction

method.

From the above discussion, we see that it is not always possible to lift a self-

orthogonal (resp. self-dual) code of the type {k1 + k2, k3, . . . , k`�1} and length n

over R`�2,r to a self-orthogonal (resp. self-dual) code of the type {k1, k2, . . . , k`}

and length n over R`,r via the construction method outlined above.

From now on, we assume, throughout this chapter, that p = 2. In the next

section, we will first characterize all self-orthogonal (resp. self-dual) codes over

R`�2,r that can be lifted to self-orthogonal (resp. self-dual) codes over R`,r.

5.2.1 A characterization of self-orthogonal (resp. self-dual)

codes over R`�2,r that can be lifted to self-orthogonal

(resp. self-dual) codes over R`,r

To characterize all self-orthogonal (resp. self-dual) codes over R`�2,r that can

be lifted to self-orthogonal (resp. self-dual) codes over R`,r, we will first define a

special class of linear codes over Rµ,r, which are called doubly even codes, where

1  µ < e.

Definition 5.2.1. Let p = 2, and let µ be an integer satisfying 1  µ < e. A free

linear code C of length n over Rµ,r is said to be doubly even if it satisfies z · z ⌘ 0

(mod 2µ+1) for all z 2 C , where each z 2 C is viewed as an element of Rn

e,r
. Further,

a linear code C of length n over Rµ,r is said to be k-doubly even if it has a free linear

doubly even subcode of rank k.

In particular, when p = 2 and µ = 1, we recall that R1,r = Tr is the finite field

of order 2r. So in this particular case, we say that a linear code C of length n over

Tr is doubly even if it satisfies z · z ⌘ 0 (mod 4) for all z 2 C , where each z 2 C

is viewed as an element of Rn

e,r
. Further, a linear code C of length n over Tr is said

to be k-doubly even if it has a k-dimensional doubly even subcode.
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When µ = r = 1 (i.e., when Rµ,r = Tr ' F2), the above definition of doubly even

codes over Tr coincides with that of binary doubly even codes, which are studied

and enumerated by Gaborit [45]. We refer the reader to Section 1.4 of [53] for more

details on the properties of binary doubly even codes. Note that the enumeration

formula for doubly even codes over Tr is known only when r = 1, i.e., when Tr ' F2

(see Theorem 7 of Gaborit [45]). However, when r � 2, the enumeration formula

for doubly even codes over Tr is not known, which we will obtain in Section 5.3.

In general, the enumeration of k-doubly even codes over the Galois ring Rµ,r is an

open problem when either r = 1 and 2  µ < e or r � 2 and 1  µ < e.

Example 5.2.3. Let R2,2 = GR(22, 2) = Z4[⇠], where ⇠ is a root of the monic basic

irreducible polynomial x2 + x+ 1 2 Z4[x]. Here we see that R1,2 = T2 = {0, 1, ⇠, ⇠2}

is the finite field of order 4 under the addition operation � and the multiplication

operation in R1,2. Let C be a linear code of length 6 and rank 2 over R1,2 with a

generator matrix "
1 0 ⇠ ⇠

2 0 0

0 1 0 0 ⇠ ⇠
2

#
.

It is easy to see that z · z ⌘ 0 (mod 4) for all z 2 C, (here z 2 C is viewed as an

element of R6
2,2). This implies that the code C is a doubly even code over R1,2.

In the following theorem, we consider the case p = 2 and characterize all self-

orthogonal (resp. self-dual) codes of the type {k1 + k2, k3, . . . , k`�1} and length n

over R`�2,r that can be lifted to self-orthogonal (resp. self-dual) codes of the type

{k1, k2, . . . , k`�1, k`} and length n over R`,r with the help of the construction method

outlined above.

Theorem 5.2.1. Let p = 2, and let ` � 4 be a fixed integer. Let D`�2 be a self-

orthogonal (resp. self-dual) code of the type {k1+k2, k3, . . . , k`�1} and length n over

R`�2,r with a generator matrix G`�2 (as defined by (5.2.1)). Then the code D`�2 can

be lifted to a self-orthogonal (resp. self-dual) code D` of the type {k1, k2, . . . , k`�1, k`}

and length n over R`,r with a generator matrix G` (as defined by (5.2.2)) if and only

if the free linear code D
0
`�2 generated by the rows of the matrix Z

0
1 is a k1-doubly

even code over R`�2,r, i.e, v · v ⌘ 0 (mod 2`�1) for all v 2 D
0
`�2.

Proof. To prove the result, one can easily observe that the codeD` is a self-orthogonal
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code over R`,r if and only if the system (5.2.3) of matrix equations in unknown ma-

trices V1,` 2 Mk1⇥(k`+k`+1)(Tr), U1,` 2 Mk1⇥(k`+k`+1)(Tr), Aµ,` 2 Mkµ⇥(k`+k`+1)(Tr) for

2  µ  ` admits a solution. Working in a similar manner as in Remark 3.4.1, we

see that the matrix A1,` is a full-row rank matrix over Tr. Now by applying Lemma

2.1.1, the desired result follows immediately.

In the following section, we will count all doubly even codes of given length and

dimension over Tr, and their two special subclasses, viz. the codes containing the

all-one vector and the codes that do not contain the all-one vector.

5.3 Enumeration of doubly even codes over Tr

To count all doubly even codes over Tr, we first observe that the set Vr = T
n

r

of all n-tuples over Tr can be viewed as an n-dimensional vector space over Tr

under the component-wise addition induced by � and the component-wise scalar

multiplication induced by the usual multiplication operation in Re,r. Next, let us

define a map Br : Vr ⇥ Vr ! Tr as

Br(a, b) = �0(a · b) for all a, b 2 Vr,

where both a, b 2 Vr are viewed as elements of Rn

e,r
to compute a · b. Note that the

map Br is a non-degenerate and symmetric bilinear form on Vr. Now a linear code

C of length n over Tr is defined as a Tr-linear subspace of Vr. The dual code of the

linear code C is defined as

C ?Br = {a 2 Vr : Br(c, a) = 0 for all c 2 C }.

Note that the dual code C ?Br is also a linear code of length n over Tr. Further,

a linear code C of length n over Tr is said to be (i) self-orthogonal if it satisfies

C ✓ C ?Br and (ii) self-dual if it satisfies C = C ?Br . It is easy to see that a doubly

even code of length n over Tr is self-orthogonal. We next observe that

I(Vr) = {v 2 Vr : Br(v, v) = �0(v · v) = 0}



5.3 Enumeration of doubly even codes over Tr 145

is an (n � 1)-dimensional Tr-linear subspace of Vr, where each v 2 I(Vr) is viewed

as an element of Rn

e,r
to compute v · v. Note that

I(Vr)
?Br = h1i,

where 1 denotes the all-one vector (1, 1, . . . , 1) 2 Vr from now on. We further define

a map Qr : I(Vr) ! Tr as

Qr(�) = �0(
1

2
� · �) 2 Tr for all � 2 I(Vr),

(recall that each � 2 I(Vr) satisfies � · � ⌘ 0 (mod 2)). One can easily observe

that (I(Vr),Qr) is a quadratic space over Tr with the associated symmetric bilinear

form Br�I(Vr)⇥I(Vr) on I(Vr). Note that any self-orthogonal code of length n over Tr

is contained in I(Vr). Further, one can easily observe that a doubly even code of

length n and dimension k over Tr is a k-dimensional totally singular subspace of the

quadratic space (I(Vr),Qr), and vice versa.

Next, we observe that (T = {0, 1},�, ·) is the subfield of (Tr,�, ·) of order 2

and that V = T
n is an n-dimensional vector space over T . Further, since the vector

space V can be viewed as a subset of Vr, the map B = Br�V⇥V is a non-degenerate

and symmetric bilinear form on V . We next see that the set

I(V) = {v 2 V : B(v, v) = 0}

is an (n� 1)-dimensional T -linear subspace of V , I(V) ✓ I(Vr) and that I(V)?B =

h1i. Furthermore, the mapping Q = Qr�I(V) is a quadratic form on I(V) with

the associated symmetric bilinear form B�I(V)⇥I(V) on I(V). We next observe that

1 = (1, 1, . . . , 1) 2 I(V) if and only if n is even. From this, it is easy to see that the

quadratic space (I(V),Q) is non-defective if and only if n is odd.

When n is even, we choose an (n� 2)-dimensional T -linear subspace V0 of I(V)

such that 1 /2 V0. Note that I(V) = V0 ? h1i. It is easy to observe that (V0,Q�V0)

is non-defective.

Now by the discussion in Section 5 of Wood [102, pp. 452-458] and by Theorem
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2.3.7(a), we see that the Witt index ⌫ of the quadratic space (I(V),Q) is given by

⌫ =

8
>>>>>><

>>>>>>:

n�1
2 if n ⌘ 1, 7 (mod 8);

n�3
2 if n ⌘ 3, 5 (mod 8);

n

2 if n ⌘ 0 (mod 8);

n�2
2 if n ⌘ 2, 4, 6 (mod 8)

(5.3.1)

and that the quadratic space (I(V),Q) admits an orthogonal direct sum decompo-

sition of the form

I(V) =

8
>>>>>>>><

>>>>>>>>:

ha1, b1i ? ha2, b2i ? · · · ? han�1
2
, bn�1

2
i if n ⌘ 1, 7 (mod 8);

ha1, b1i ? ha2, b2i ? · · · ? han�3
2
, bn�3

2
i ? W if n ⌘ 3, 5 (mod 8);

ha1, b1i ? ha2, b2i ? · · · ? han�2
2
, bn�2

2
i ? h1i if n ⌘ 0, 2, 6 (mod 8);

ha1, b1i ? ha2, b2i ? · · · ? han�4
2
, bn�4

2
i ? W ? h1i if n ⌘ 4 (mod 8),

(5.3.2)

where (ai, bi)'s are hyperbolic pairs in I(V) and W is a 2-dimensional non-singular

subspace of I(V).

Now in the following lemma, we study the geometry of the quadratic space

(I(Vr),Qr) and obtain its Witt index ⌫r.

Lemma 5.3.1. (a) The Witt index ⌫r of the quadratic space (I(Vr),Qr) is given

by

⌫r =

8
>>>>>>>><

>>>>>>>>:

n�1
2 if either n ⌘ 1, 7 (mod 8) or n ⌘ 3, 5 (mod 8) and r is even;

n�3
2 if n ⌘ 3, 5 (mod 8) and r is odd;

n

2 if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;

n�2
2 if either n ⌘ 2, 6 (mod 8) or n ⌘ 4 (mod 8) and r is odd.

(b) The quadratic space (I(Vr),Qr) admits an orthogonal direct sum decomposition

of the form:
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I(Vr) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ha1, b1i?ha2, b2i?· · ·?han�1
2
, bn�1

2
i if either n ⌘ 1, 7 (mod 8) or

n ⌘ 3, 5 (mod 8) and r is even;

ha1, b1i?ha2, b2i?· · ·?han�3
2
, bn�3

2
i? Wr if n ⌘ 3, 5 (mod 8) and r is odd;

ha1, b1i?ha2, b2i?· · · ?han�2
2
, bn�2

2
i?h1i if either n ⌘ 0, 2, 6 (mod 8) or

n ⌘ 4 (mod 8) and r is even;

ha1, b1i?ha2, b2i?· · ·?han�4
2
, bn�4

2
i?Wr ?h1i if n ⌘ 4 (mod 8) and r is odd,

where (ai, bi)'s are hyperbolic pairs in I(Vr) and Wr is a 2-dimensional non-

singular subspace of I(Vr).

Proof. Recall that 1 2 I(Vr) if and only if n is even. Accordingly, we will distinguish

the following two cases: (i) n is odd and (ii) n is even.

(i) Let n be odd. Here by (5.3.1), the Witt index ⌫ of the quadratic space

(I(V),Q) is given by ⌫ = n�1
2 if n ⌘ 1, 7 (mod 8), while the Witt index ⌫

of (I(V),Q) is given by ⌫ = n�3
2 if n ⌘ 3, 5 (mod 8). Further, by (5.3.2), we

see that the space (I(V),Q) admits an orthogonal direct sum decomposition

of the form:

I(V) = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? W,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are hyperbolic pairs in I(V) andW is a non-

singular subspace of I(V) having dimension n�1�2⌫. Note that dimT (W ) = 0

if n ⌘ 1, 7 (mod 8), while dimT (W ) = 2 if n ⌘ 3, 5 (mod 8). As I(V) ✓

I(Vr), we see that (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are also hyperbolic pairs in

I(Vr). This implies that ⌫  ⌫r 
n�1
2 . So when n ⌘ 1, 7 (mod 8), we see

that ⌫r = ⌫ = n�1
2 and that the quadratic space (I(Vr),Qr) admits an orthog-

onal direct sum decomposition of the form:

I(Vr) = ha1, b1i ? ha2, b2i ? · · · ? han�1
2
, bn�1

2
i.

Further, let n ⌘ 3, 5 (mod 8). Here we have dimT (W ) = 2. By Proposition

12.7 of [49], we note that W = h�1, �2i, where �1, �2 2 I(V) satisfy Q(�1) =

Q(�2) = 1 and B(�1, �2) = 1. Let Wr be a Tr-span of {�1, �2}, i.e., Wr is a
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Tr-linear subspace of I(Vr). By applying Theorem 2.3.10, we observe that the

quadratic space (Wr,Qr �Wr
) has a singular vector if and only if r is even.

In view of this, we see that when n ⌘ 3, 5 (mod 8) and r is odd, the space

(I(Vr),Qr) admits an orthogonal direct sum decomposition of the form:

I(Vr) = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? Wr,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫) are hyperbolic pairs in I(Vr) and Wr is a

2-dimensional non-singular subspace of I(Vr). This implies that ⌫r = ⌫ when

n ⌘ 3, 5 (mod 8) and r is odd.

On the other hand, when n ⌘ 3, 5 (mod 8) and r is even, by applying Propo-

sition 2.3.1, we see that Wr = hw1, w2i, where (w1, w2) is a hyperbolic pair in

I(Vr). Hence the space (I(Vr),Qr) admits an orthogonal direct sum decom-

position of the form

I(Vr) = ha1, b1i ? ha2, b2i ? · · · ? ha⌫ , b⌫i ? hw1, w2i,

where (a1, b1), (a2, b2), . . . , (a⌫ , b⌫), (w1, w2) are hyperbolic pairs in I(Vr). This

implies that ⌫r = ⌫ + 1 when n ⌘ 3, 5 (mod 8) and r is even.

From this and by (5.3.1), parts (a) and (b) follow immediately in the case

when n is odd.

(ii) Next, let n be even. Here 1 belongs to both I(V) and I(Vr). Further, by

(5.3.1), we see that the Witt index ⌫ of the quadratic space (I(V),Q) is given

by ⌫ = n

2 if n ⌘ 0 (mod 8), while ⌫ = n�2
2 if n ⌘ 2, 4, 6 (mod 8). We further

observe that ⌫  ⌫r 
n

2 . We note that Qr(1) = 1 when n ⌘ 2, 6 (mod 8),

which implies that the all-one vector 1 does not belong to any totally singular

subspace of I(Vr). We also note that Qr(1) = 0 when n ⌘ 0, 4 (mod 8). Now

working in a similar manner as in case (i), parts (a) and (b) follow immediately

in the case when n is even.

From now on, let ⌫r denote the Witt index of the quadratic space (I(Vr),Qr).

Now for 0  k  n, let Dr(n; k) denote the number of distinct doubly even codes
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of length n and dimension k over Tr, or equivalently, the number of distinct k-

dimensional totally singular subspaces of the quadratic space (I(Vr),Qr). Note that

Dr(n; 0) = 1 and Dr(n; k) = 0 for ⌫r < k  n. In the following theorem, we obtain

the explicit value of the number Dr(n; k) for 1  k  ⌫r.

Theorem 5.3.1. For 1  k  ⌫r, the following hold.

(a) When n is odd, we have

Dr(n; k) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

k�1Y

i=0

 
2r(n�2i�2) + 2r(

n�1
2 �i)

� 2r(
n�1
2 �i�1)

� 1

2r(i+1) � 1

!

if either n ⌘ 1, 7 (mod 8) or n ⌘ 3, 5 (mod 8) and r is even;

k�1Y

i=0

 
2r(n�2i�2)

� 2r(
n�1
2 �i) + 2r(

n�1
2 �i�1)

� 1

2r(i+1) � 1

!

if n ⌘ 3, 5 (mod 8) and r is odd.

(b) When n is even, we have

Dr(n; k) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

 
2r(n�k�1) + 2r(

n

2 ) � 2r(
n

2�1)
� 1

2rk � 1

!
k�2Y

i=0

 
(2r(

n�4
2 �i) + 1)(2r(

n�2
2 �i)

� 1)

2r(i+1) � 1

!

if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;
 
2r(n�k�1)

� 2r(
n

2 ) + 2r(
n

2�1)
� 1

2rk � 1

!
k�2Y

i=0

 
(2r(

n�4
2 �i)

� 1)(2r(
n�2
2 �i) + 1)

2r(i+1) � 1

!

if n ⌘ 4 (mod 8) and r is odd;

k�1Y

i=0

 
2r(n�2�2i)

� 1

2r(i+1) � 1

!
if n ⌘ 2, 6 (mod 8).

Proof. To prove the result, let k be a fixed integer satisfying 1  k  ⌫r. We first

note that 1 2 I(Vr) if and only if n is even. Accordingly, we will distinguish the

following two cases: (I) n is odd and (II) n is even.

(I) First let n be odd. Here by Lemma 5.3.1, we see that the quadratic space

(I(Vr),Qr) admits an orthogonal direct sum decomposition of the form

I(Vr) = h↵1, �1i ? h↵2, �2i ? · · · ? h↵⌫r
, �⌫r

i ? Wr,
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where ⌫r is the Witt index of the quadratic space (I(Vr),Qr), the pairs

(↵1, �1), (↵2, �2), . . . , (↵⌫r
, �⌫r

) are hyperbolic pairs in I(Vr) and Wr is a non-

singular subspace of I(Vr) having dimension n� 1� 2⌫r. By Lemma 5.3.1(a),

we note that ⌫r = n�1
2 if either n ⌘ 1, 7 (mod 8) or n ⌘ 3, 5 (mod 8) and r

is even, while ⌫r = n�3
2 if n ⌘ 3, 5 (mod 8) and r is odd. We next observe

that any k-dimensional totally singular subspace U of the quadratic space

(I(Vr),Qr) is of the form U = h�1, �2, . . . , �ki, where �1, �2, . . . , �k are mutu-

ally orthogonal singular vectors in I(Vr) that are linearly independent over

Tr. Now by applying Theorems 2.3.2, 2.3.7 and 2.3.8, we see that

Dr(n; k) =

8
>>>><

>>>>:

k�1Y

i=0

✓
2r(2⌫r�2i�1) + 2r(⌫r�i)

� 2r(⌫r�i�1)
� 1

2r(i+1) � 1

◆
if ⌫r =

n�1
2 ;

k�1Y

i=0

✓
2r(2⌫r�2i+1)

� 2r(⌫r+1�i) + 2r(⌫r�i)
� 1

2r(i+1) � 1

◆
if ⌫r =

n�3
2 .

From this and by Lemma 5.3.1(a), the desired result follows.

(II) Next, let n be even. Here we see that 1 2 I(Vr). Let V
0
r
be an (n � 2)-

dimensional Tr-linear subspace of I(Vr) satisfying 1 /2 V
0
r
. Then we have

I(Vr) = V
0
r
? h1i. By Lemma 5.3.1, we see that the quadratic space (I(Vr),Qr)

admits an orthogonal direct sum decomposition of the form

I(Vr) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

h↵1, �1i ? h↵2, �2i ? · · · ? h↵⌫r
, �⌫r

i ? h1i

if n ⌘ 2, 6 (mod 8);

h↵1, �1i ? h↵2, �2i ? · · · ? h↵⌫r�1, �⌫r�1i ? h1i

if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;

h↵1, �1i ? h↵2, �2i ? · · · ? h↵⌫r�1, �⌫r�1i ? Wr ? h1i

if n ⌘ 4 (mod 8) and r is odd,

where ⌫r is the Witt index of the quadratic space (I(Vr),Qr), the pairs

(↵1, �1), (↵2, �2), . . . , (↵⌫r
, �⌫r

) are hyperbolic pairs in I(Vr) and Wr is a 2-

dimensional non-singular subspace of I(Vr). By Lemma 5.3.1(a), we note
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that ⌫r = n

2 if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even, while

⌫r = n�2
2 if either n ⌘ 2, 6 (mod 8) or n ⌘ 4 (mod 8) and r is odd. One

can observe that any totally singular Tr-linear subspace of I(Vr) is either (i)

contained in V
0
r
, or (ii) contained in I(Vr) but not in V

0
r
.

(i) Now we will first count all distinct totally singular Tr-linear subspaces of

I(Vr) that are contained in V
0
r
. To do this, we see that any k-dimensional

totally singular subspace U of the quadratic space (I(Vr),Qr) contained

in V
0
r
is of the form U = h�1, �2, . . . , �ki, where �1, �2, . . . , �k are mutually

orthogonal singular vectors in V
0
r
that are linearly independent over Tr.

By Theorems 2.3.2, 2.3.7 and 2.3.8, we see that the total number D0 of

distinct k-dimensional totally singular Tr-linear subspaces of I(Vr) that

are contained in V
0
r
is given by

D0 =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

(2r(
n

2�1)
� 1)(2r(

n

2�k�1) + 1)

2r � 1

k�1Y

i=1

✓
2r(n�2�2i)

� 1

2r(i+1) � 1

◆

if n ⌘ 2, 6 (mod 8);
k�1Y

i=0

✓
2r(n�2i�3) + 2r(

n

2�1�i)
� 2r(

n

2�i�2)
� 1

2r(i+1) � 1

◆

if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;
k�1Y

i=0

✓
2r(n�2i�3)

� 2r(
n

2�1�i) + 2r(
n

2�i�2)
� 1

2r(i+1) � 1

◆

if n ⌘ 4 (mod 8) and r is odd.
(5.3.3)

(ii) Next, we will count all distinct k-dimensional totally singular Tr-linear

subspaces of I(Vr) that are not contained in V
0
r
. Towards this, we first

observe that any k-dimensional Tr-linear subspace U of I(Vr) that is not

contained in V
0
r
is of the form

U = h�1, �2, . . . , �k�1,1+ �ki,

where �1, �2, . . . , �k 2 V
0
r
are such that the vectors �1, �2, . . . , �k�1,1 +

�k are linearly independent over Tr. We further observe that such a
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subspace U is totally singular if and only if h�1, �2, . . . , �k�1i is a (k�1)-

dimensional totally singular Tr-linear subspace of V 0
r
and the vector �k

is either 0 or a singular vector in h�1, �2, . . . , �k�1i
?Br \ h�1, �2, . . . , �k�1i

when n ⌘ 0, 4 (mod 8), while the vector �k is a non-singular vector

in h�1, �2, . . . , �k�1i
?Br \ h�1, �2, . . . , �k�1i satisfying Qr(�k) = 1 when

n ⌘ 2, 6 (mod 8). Now by applying Theorems 2.3.2, 2.3.7 and 2.3.8

again, we see that the total number D1 of distinct k-dimensional totally

singular Tr-linear subspaces of I(Vr) that are not contained in V
0
r
is given

by

D1 =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

�
2r(n�2k�1)

� 2r(
n

2�k�1)
� k�2Q

i=0

⇣
2r(n�2i�3)+2r(

n

2 �1�i)�2r(
n

2 �2�i)�1
2r(i+1)�1

⌘

if n ⌘ 2, 6 (mod 8);

�
2r(n�2k�1) + 2r(

n

2�k)
� 2r(

n

2�k�1)
� k�2Q

i=0

⇣
2r(n�2i�3)+2r(

n

2 �1�i)�2r(
n

2 �i�2)�1
2r(i+1)�1

⌘

if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;

�
2r(n�2k�1)

� 2r(
n

2�k) + 2r(
n

2�k�1)
� k�2Q

i=0

⇣
2r(n�2i�3)+2r(

n

2 �i�1)�2r(
n

2 �i�2)�1
2r(i+1)�1

⌘

if n ⌘ 4 (mod 8) and r is odd.
(5.3.4)

The desired result follows by noting thatDr(n; k) = D0+D1 and on substitut-

ing the values of D0 and D1 from equations (5.3.3) and (5.3.4), respectively.

Remark 5.3.1. Theorem 7 of Gaborit [45] follows, as a special case, on taking r = 1

in the above theorem.

Next, for 1  k  n, let b�r(n; k) denote the number of distinct doubly even

codes of length n and dimension k over Tr containing the all-one vector 1 2 Vr,

or equivalently, the number of distinct k-dimensional totally singular subspaces of

the quadratic space (I(Vr),Qr) containing the all-one vector 1 2 Vr. Note that

b�r(n; k) = 0 for ⌫r < k  n. In the following theorem, we determine the explicit

value of the number b�r(n; k) for 1  k  ⌫r.
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Theorem 5.3.2. For 1  k  ⌫r, we have

b�r(n; k) =

8
>>>>>>>>>><

>>>>>>>>>>:

k�2Y

i=0

 
2r(n�2i�3) + 2r(

n

2�i�1)
� 2r(

n

2�i�2)
� 1

2r(i+1) � 1

!
if either n ⌘ 4 (mod 8) and

r is even or n ⌘ 0 (mod 8);

k�2Y

i=0

 
2r(n�2i�3)

� 2r(
n

2�i�1) + 2r(
n

2�i�2)
� 1

2r(i+1) � 1

!
if n ⌘ 4 (mod 8) and r is odd;

0 otherwise.

Proof. To prove the result, let k be a fixed integer satisfying 1  k  ⌫r. We recall

that the number b�r(n; k) equals the number of distinct k-dimensional totally singular

subspaces of the quadratic space (I(Vr),Qr) containing the all-one vector 1 2 Vr.

We further note that 1 2 I(Vr) if and only if n is even. This implies b�r(n; k) = 0

when n is odd. Further, it is easy to observe that Qr(1) = 1 when n ⌘ 2, 6 ( mod 8).

This implies that when n ⌘ 2, 6 ( mod 8), the vector 1 does not belong to any totally

singular subspace of I(Vr), which further implies that b�r(n; k) = 0 in this case.

When n ⌘ 0, 4 (mod 8), we recall that I(Vr) = V
0
r
? h1i, where V 0

r
is an (n�2)-

dimensional Tr-linear subspace of I(Vr) satisfying 1 /2 V
0
r
. It is easy to see that any

k-dimensional totally singular subspace U of the quadratic space (I(Vr),Qr) con-

taining 1 is of the form U = h�1, �2, . . . , �k�1,1i, where �1, �2, . . . , �k�1 are mutually

orthogonal and linearly independent singular vectors in V
0
r
. By Lemma 5.3.1, one

can easily observe that the Witt index ⌫
0
r
of the quadratic space (V 0

r
,Qr �V 0

r⇥V 0
r
) is

given by

⌫
0
r
= ⌫r � 1 =

8
<

:

n�2
2 if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;

n�4
2 if n ⌘ 4 (mod 8) and r is odd.

Now working as in Theorem 5.3.1 and applying Theorems 2.3.2, 2.3.7 and 2.3.8, the

desired result follows.

Next, let e�r(n; k) denote the number of distinct doubly even codes of length n

and dimension k over Tr that do not contain the all-one vector 1 2 Vr for 0  k  n.

Note that e�r(n; 0) = 1 and e�r(n; k) = 0 for ⌫r < k  n. In the following theorem,

we determine the explicit value of the number e�r(n; k) for 1  k  ⌫r.
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Theorem 5.3.3. For 1  k  ⌫r, we have

e�r(n; k) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

k�1Y

i=0

 
2r(n�2i�2) + 2r(

n�1
2 �i)

� 2r(
n�1
2 �i�1)

� 1

2r(i+1) � 1

!

if either n ⌘ 3, 5 (mod 8) and r is even or n ⌘ 1, 7 (mod 8);
k�1Y

i=0

 
2r(n�2i�2)

� 2r(
n�1
2 �i) + 2r(

n�1
2 �i�1)

� 1

2r(i+1) � 1

!

if n ⌘ 3, 5 (mod 8) and r is odd;
k�1Y

i=0

✓
2r(n�2i�2) + 2r(

n

2�i)
� 2r(

n

2�i�1)
� 2r

2r(i+1) � 1

◆

if either n ⌘ 4 (mod 8) and r is even or n ⌘ 0 (mod 8);
k�1Y

i=0

✓
2r(n�2i�2)

� 2r(
n

2�i) + 2r(
n

2�i�1)
� 2r

2r(i+1) � 1

◆

if n ⌘ 4 (mod 8) and r is odd;
k�1Y

i=0

✓
2r(n�2�2i)

� 1

2r(i+1) � 1

◆
if n ⌘ 2, 6 (mod 8).

Proof. It follows immediately from Theorems 5.3.1 and 5.3.2 by noting thatDr(n; k) =

b�r(n; k) + e�r(n; k) for 0  k  n.

The numbersDr(n; k), b�r(n; k) and e�r(n; k) are needed to count all self-orthogonal

and self-dual codes of length n over Re,r. In the following section, we will extend the

recursive method employed by Nagata et al. [75] to construct self-orthogonal and

self-dual codes over the Galois ring Re,r.

5.4 A modified recursive method to construct and

enumerate self-orthogonal and self-dual codes

over Re,r

Throughout this section, let us assume that

s =
j
e

2

k
.
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One can easily see that d
e

2e = s + ✓, where ✓ = 0 if e is even, while ✓ = 1 if e is

odd. Next, let n be a positive integer, and let k1, k2, . . . , ke, ke+1 be non-negative

integers satisfying n = k1 + k2 + · · · + ke + ke+1 and 2k1 + 2k2 + · · · + 2ke�i+1 +

ke�i+2 + ke�i+3 + · · · + ki  n for s + 1  i  e. Further, let us define n0 = 0 and

ni = k1 + k2 + · · ·+ ki for 1  i  e+ 1.

In this section, we will extend the recursive construction method employed by

Nagata et al. [75] to construct and count self-orthogonal and self-dual codes of the

type {k1, k2, . . . , ke} and length n over Re,r from an ns-doubly even self-orthogonal

code of the same length n and dimension ns+✓ over Tr (see the proofs of Theorems

5.4.1-5.4.4). Towards this, for positive integers ↵ and � satisfying �  e, let (D)↵,�

denote the block matrix whose (i, j)th block is the matrix Di,j 2 Mki⇥kj+1(Tr) for

1  i  ↵ and �  j  e. Moreover, for a positive integer !, let [H]! denote the

column block matrix whose ith block is the matrix H` 2 Mk`⇥n(Tr) for 1  `  !.

We need the following lemma to count self-orthogonal and self-dual codes over

Re,r.

Lemma 5.4.1. Let e � 3. Let A 2 Mns+✓⇥n(Tr) and Y 2 Mns⇥n(Tr) be two

matrices of the form

A =

2

666664

A1

A2

...

As+✓

3

777775
=

2

666664

Ik1 A1,1 A1,2 · · · A1,s+✓�1 · · · A1,e�1 A1,e

0 Ik2 A2,2 · · · A2,s+✓�1 · · · A2,e�1 A2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks+✓
· · · As+✓,e�1 As+✓,e

3

777775

and

Y =

2

666664

Y1

Y2

...

Ys

3

777775
=

2

666664

0 0 Y1,2 Y1,3 · · · Y1,s+1 · · · Y1,e�1 Y1,e

0 0 0 Y2,3 · · · Y2,s+1 · · · Y2,e�1 Y2,e

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · Ys,s+1 · · · Ys,e�1 Ys,e

3

777775
,

where columns of the matrices A and Y are partitioned into blocks of sizes k1, k2, . . . ,

ke, ke+1, the matrix Iki is the ki⇥ki identity matrix over Tr, Ai,j 2 Mki⇥kj+1(Tr) for

1  i  s+ ✓ and i  j  e, and Ya,b 2 Mka⇥kb+1
(Tr) for 1  a  s and a < b  e.

Suppose that the matrix A satisfies the condition AA
t
⌘ 0 (mod 2) and that the
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matrix (A)s,s+1+✓ 2 Mns⇥(n�ns+1+✓)(Tr) is of full row-rank. Let us write

[A]s[A]t
s
⌘ 2F + 4H (mod 8),

where F 2 Altns
(Tr) and H 2 Symns

(Tr), (here the matrix [A]s is viewed over

Re,r). Next, let ! be a fixed integer satisfying 1  !  s� 1 + ✓, and let H! be the

matrix over Tr whose rows are the first n! rows of the matrix H. Then consider the

following system

[A]sY t + Y [A]t
s

⌘ F (mod 2)

and Diag
�
H! + [A]![Y ]t

!
+ [Y ]![Y ]t

!

�
⌘ 0 (mod 2)

)
(5.4.1)

of matrix equations in the unknown matrix Y 2 Mns⇥n(Tr). Then the following hold.

(a) If 1 does not belong to the Tr-span of the rows of the matrix [A]!, then the

system (5.4.1) always has a solution.

(b) If 1 belongs to the Tr-span of the rows of the matrix [A]!, then the system

(5.4.1) has a solution if and only if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8)

and r is even.

Moreover, if the system (5.4.1) has a solution, then the number of its solutions is

given by

2✏(2r)

s+1P
i=3

kini�2+ns(n�ns+1)�n!�ns(ns�1)
2

,

where ✏ = 0 if 1 does not belong to the Tr-span of the rows of the matrix [A]!, while

✏ = 1 if 1 belongs to the Tr-span of the rows of the matrix [A]! with either n ⌘ 0

(mod 8) or n ⌘ 4 (mod 8) and r is even.

Proof. To prove the result, let us suppose that A = (ai) and Y = (y
j
), where ai’s

and y
j
’s are the rows of the matrices A and Y, respectively. Let F = (fi,j), where

fi,j 2 Tr denotes the (i, j)-th entry of the matrix F for 1  i, j  ns. Here we note

that fi,i = 0 for 1  i  ns. Further, let H = (hi,j), where hi,j 2 Tr denotes the

(i, j)-th entry of the matrix H for 1  i, j  ns. We next observe that the system

(5.4.1) of matrix equations is equivalent to the following system of equations in
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unknowns y1,y2, . . . ,yns
over Tr:

ai · yj
+ aj · yi

⌘ fi,j (mod 2) for 1  i < j  ns and

ai · yi
+ y

i
· y

i
⌘ hi,i (mod 2) for 1  i  n!.

)
(5.4.2)

When r = 1, we see that the equation ai · yi
+ y

i
· y

i
= hi,i can be rewritten as

ai · yi
+ 1 · y

i
= hi,i for 1  i  n!, and hence the system (5.4.2) is indeed a system

of linear equations. However, when r � 2, the system (5.4.2) consists of both linear

and non-linear equations. Further, we observe that counting solutions of the system

(5.4.2) of equations in unknowns y1,y2, . . . ,yns
over Tr is equivalent to counting

solutions of the following systems of equations in unknowns y1,y2, . . . ,yns
over Tr:

ai · yj
+ aj · yi

⌘ fi,j (mod 2) for 1  i < j  ns,

ai · yi
⌘ ⇥i + hi,i (mod 2) for 1  i  n! and

y
i
· y

i
⌘ ⇥i (mod 2) for 1  i  n!,

9
>>=

>>;
(5.4.3)

where (⇥1,⇥2, . . . ,⇥n!
) runs over (Tr)n! .

To count solutions of the system (5.4.3), let (⇥1,⇥2, . . . ,⇥n!
) 2 (Tr)n! be fixed

arbitrarily. For this particular choice of (⇥1,⇥2, . . . ,⇥n!
) 2 (Tr)n! , we observe that

the system (5.4.3) of equations is equivalent to the following system of equations in

unknowns y1,y2, . . . ,yns
over Tr:

ai · yj
+ aj · yi

⌘ fi,j (mod 2) for 1  i < j  ns,

ai · yi
⌘ ⇥i + hi,i (mod 2) for 1  i  n! and

1 · y
i
⌘ ⇥2r�1

i
(mod 2) for 1  i  n!.

9
>>=

>>;
(5.4.4)

We further note that for each integer ` satisfying 1  `  ns, there exists a unique

integer c` satisfying 1  c`  s and nc`�1 + 1  `  nc`
and that the corresponding

unknown vector y
`
is of the form y

`
= (0 y

n�nc
`
+1

`
), where 0 denotes the zero vector of

length nc`+1 and y
n�nc

`
+1

`
denotes the vector of length n�nc`+1 obtained from y

`
after

deleting the first nc`+1 coordinates. From this, we see that for nc`�1 + 1  `  nc`
,

the first nc`+1 coordinates of y
`
are zero, which implies that there are n � nc`+1

variables in y
`
. Now for 1  `  ns, let ey`

= y
n�nc

`
+1

`
(resp. ea` = a

n�nc
`
+1

`
) denote

the vector of length n � nc`+1 obtained from y
`
(resp. a`) after deleting the first
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nc`+1 coordinates. In view of this, we observe that the system (5.4.4) of equations

is equivalent to the following system of equations in unknowns ey1, ey2, . . . , eyns
over

Tr:

eai · eyj
+ eaj · eyi

⌘ fi,j (mod 2) for 1  i < j  ns,

eai · eyi
⌘ ⇥i + hi,i (mod 2) for 1  i  n! and

e1 · ey
i

⌘ ⇥2r�1

i
(mod 2) for 1  i  n!,

where e1 denotes the all-one vector having the same length as that of ey
i
for each i.

Note that the above system of equations can be represented by the following matrix

equation:

M

2

6666666666666666664

eyt

1

eyt

2

eyt

3
...

eyt

n!�1

eyt

n!

eyt

n!+1
...

eyt

ns

3

7777777777777777775

⌘

2

6666666666666666664

⇥2r�1

1
...

⇥2r�1

n!

⇥1 + h1,1
...

⇥n!
+ h!,!

f1,2

...

fns�1,ns

3

7777777777777777775

(mod 2), (5.4.5)

where

M =

2

6666666666666666666666664

e1
. . .

e1
ea1

. . .

ean!

ea2 ea1

...
...

...

eans
ea1

...
...

...

eans
eans�1

3

7777777777777777777777775

.
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It is easy to see that the matrix M is of order
�
2n!+

ns(ns�1)
2

�
⇥
� s+1P

i=3
kini�2+ns(n�

ns+1)
�
.

We next assert that the rows of the matrix M are linearly dependent over Tr

if and only if 1 belongs to the Tr-span of the rows of the matrix [A]!. To prove

this assertion, we first note that the matrix (A)s,s+1+✓ is a full row-rank matrix

over Tr, which implies that the vectors a
n�nc+1
1 , a

n�nc+1
2 , . . . , a

n�nc+1
ns

, obtained by

deleting the first nc+1 coordinates from the vectors a1, a2, . . . , ans
respectively, are

linearly independent over Tr for 1  c  s. From this, it follows that the vectors

ea1,ea2, . . . ,eans
are linearly independent over Tr. Next, it is easy to see that if the rows

of the matrix M over Tr are linearly dependent, then there exist integers i1, i2, . . . , i`

satisfying 1  i1 < i2 < · · · < i`  n! and

�i1eai1 + �i2eai2 + · · ·+ �i`
eai`

⌘ e1 (mod 2) for some �i1 , �i2 , . . . , �i`
2 Tr \ {0}.

This implies that �i1a
n�nc+1

i1
+ �i2a

n�nc+1

i2
+ · · · + �i`

a
n�nc+1

i`
⌘ 1

n�nc+1 (mod 2) for

some integer c satisfying 1  c  s, which further implies that �i1ai1 +�i2ai2 + · · ·+

�i`
ai`

⌘ (0 a a
0
1
n�nc+1) (mod 2), where a and a

0 are vectors of lengths kc and kc+1

over Tr, respectively.

Here we claim that �i1ai1 + �i2ai2 + · · · + �i`
ai`

⌘ (0 1
n�nc�1) (mod 2), i.e.,

a ⌘ 1
kc (mod 2) and a

0
⌘ 1

kc+1 (mod 2).

To prove this, we see that if both kc and kc+1 are zero, then we are through. Now

if kc+1 > 0, we note that for an integer j1 satisfying nc + 1  j1  nc+1, the vector

aj1 is of the form (0 ej1 a
n�nc+1

j1
), where ej1 is a vector of length kc+1 having 1 at the

(j1�nc)-th position and 0s elsewhere. Since the matrixA satisfiesAA
t
⌘ 0 (mod 2),

we have aj1 ·aj1 ⌘ 0 (mod 2) and aj1 ·(�i1ai1+�i2ai2+· · ·+�i`
ai`

) ⌘ 0 (mod 2). From

this, we obtain a
0
⌘ 1

kc+1 (mod 2), which implies that �i1ai1 +�i2ai2 + · · ·+�i`
ai`

⌘

(0 a 1
n�nc) (mod 2). Now if kc = 0, then we have �i1ai1 + �i2ai2 + · · · + �i`

ai`
⌘

(0 1
n�nc�1) (mod 2). On the other hand, if kc > 0, then for an integer j satisfying

nc�1 + 1  j  nc, we note that the vector aj is of the form (0 ej a
n�nc

j
), where

ej is a vector of length kc having 1 at the (j � nc�1)-th position and 0s elsewhere.

Using again the fact that the matrixA satisfiesAA
t
⌘ 0 (mod 2), one can show that

a ⌘ 1
kc (mod 2), which further implies that �i1ai1+�i2ai2+· · ·+�i`

ai`
⌘ (0 1

n�nc�1)
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(mod 2). From this, we obtain �i1ai1 + �i2ai2 + · · · + �i`
ai`

⌘ (0 1
n�nc�1) (mod 2)

in all the cases, which proves our claim.

Now if kj = 0 for 1  j  c� 1, then we have �i1ai1 + �i2ai2 + · · ·+ �i`
ai`

⌘ 1
n

(mod 2), which implies that 1 = (1, 1, . . . , 1) belongs to the Tr-span of the rows of

the matrix [A]!.

Next, suppose that there exists a positive integer ↵ satisfying 1  ↵  c � 1,

k↵ > 0 and k↵+1 = k↵+2 = · · · = kc�1 = 0. This implies that �i1ai1 + �i2ai2 + · · · +

�i`
ai`

⌘ (0 1
n�n↵) (mod 2). Now for an integer g satisfying n↵�1 + 1  g  n↵, the

vector ag is of the form (0 eg a
n�n↵

g
), where eg is a vector of length k↵ having 1 at

the (g � n↵�1)-th position and 0s elsewhere. Since the matrix A satisfies AA
t
⌘ 0

(mod 2), we have ag · ag ⌘ 0 (mod 2) and ag · (�i1ai1 + �i2ai2 + · · · + �i`
ai`

) ⌘ 0

(mod 2). This implies that 1 + 1
n�n↵ · a

n�n↵

g
⌘ 0 (mod 2) and 1

n�n↵ · a
n�n↵

g
⌘ 0

(mod 2), which is a contradiction.

This proves that c = 1. From this, it follows that �i1ai1 + �i2ai2 + · · ·+ �i`
ai`

⌘

(b b
0
1
n�n2) (mod 2), where b and b

0 are vectors of lengths k1 and k2 over Tr,

respectively. Here working as above, one can show that b ⌘ 1
k1 (mod 2) and

b
0
⌘ 1

k2 (mod 2). This implies that �i1ai1 +�i2ai2 + · · ·+�i`
ai`

⌘ 1 (mod 2), which

further implies that the all-one vector 1 belongs to the Tr-span of the rows of the

matrix [A]!. This shows that if rows of the matrix M are linearly dependent over

Tr, then 1 belongs to the Tr-span of the rows of the matrix [A]!. Further, since

the vectors a1, a2, . . . , an!
are linearly independent over Tr, we see that there exist

unique scalars �i1 , �i2 , . . . , �i`
2 Tr such that �i1ai1+�i2ai2+· · ·+�i`

ai`
⌘ 1 (mod 2).

Conversely, if 1 belongs to the Tr-span of the rows of the matrix [A]!, then the

rows of the matrix M are linearly dependent over Tr. This proves the assertion.

(a) First of all, suppose that 1 belongs to the Tr-span of the rows of the matrix

[A]!. Here we see that 1 can be uniquely expressed as a linear combination of

the rows of the matrix [A]! over Tr. We further see that all the rows of the

matrix M except the last row are linearly independent over Tr, which implies

that the row-rank of the matrix M is 2n! +
ns(ns�1)

2 �1. We next observe that

the matrix equation (5.4.5) has a solution if and only if (⇥1,⇥2, . . . ,⇥n!
) 2
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(Tr)n! satisfies

� `X

b=1

�ib
⇥2r�1

ib

�2
+

`X

v=1

�iv
⇥2r�1

iv
⌘

n

4
(mod 2)

and the number of its solutions is independent of such a choice of (⇥1,⇥2, . . . ,

⇥n!
) 2 (Tr)n! . From this and by applying Theorems 2.3.10 and 5.3.2, we

observe that there exists a matrix Y 2 Mns⇥n(Tr) satisfying the system (5.4.1)

of matrix equations if and only if either n ⌘ 0 (mod 8) or n ⌘ 0 (mod 4) and

r is even and that such a matrix Y has precisely

2⇥ (2r)n!�1
⇥ (2r)

s+1P
i=3

kini�2+ns(n�ns+1)�2n!�ns(ns�1)
2 +1

= 2(2r)

s+1P
i=3

kini�2+ns(n�ns+1)�n!�ns(ns�1)
2

distinct choices.

(b) Suppose that 1 does not belong to the Tr-span of the rows of the matrix [A]!.

This, by the above assertion, implies that the rows of the matrixM are linearly

independent over Tr. This further implies that the row-rank of the matrix M

is 2n! + ns(ns�1)
2 and that the matrix equation (5.4.5) always has a solution.

Further, the number of solutions of the system (5.4.3) in the unknown matrix

Y 2 Mns⇥n(Tr) is independent of the choice of (⇥1,⇥2, . . . ,⇥n!
) 2 (Tr)n! and

is given by

(2r)

s+1P
i=3

kini�2+ns(n�ns+1)�2n!�ns(ns�1)
2

.

From this, we observe that there exists a matrix Y 2 Mns⇥n(Tr) satisfying

the system (5.4.1) of matrix equations and that such a matrix Y has precisely

(2r)n! ⇥ (2r)

s+1P
i=3

kini�2+ns(n�ns+1)�2n!�ns(ns�1)
2

= (2r)

s+1P
i=3

kini�2+ns(n�ns+1)�n!�ns(ns�1)
2

distinct choices.

This proves the lemma.
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Now we shall distinguish the following two cases: (i) e = 2 and (ii) e � 3.

5.4.1 The case e = 2

Throughout this section, let us assume that e = 2. Here k1, k2, k3 are non-negative

integers satisfying n = k1 + k2 + k3 and k1  k3. In the following theorem, we show

that if there exists a doubly even code B0 of length n and dimension k1 over Tr, then

there exists a self-orthogonal code B2 of the type {k1, k2} and length n over R2,r

satisfying Tor1(B2) = B0, and vice versa. We also count all distinct self-orthogonal

codes B2 of the type {k1, k2} and length n over R2,r satisfying Tor1(B2) = B0 for

a given choice of B0.

Theorem 5.4.1. (a) There exists a doubly even code B0 of length n and dimen-

sion k1 over Tr if and only if there exists a self-orthogonal code B2 of the type

{k1, k2} and length n over R2,r satisfying Tor1(B2) = B0.

(b) Furthermore, each doubly even code B0 of length n and dimension k1 over Tr

gives rise to precisely

2
rk1(2n�3k1�2k2+1)

2


k2 + k3 � k1

k2

�

2r

distinct self-orthogonal codes B2 of the type {k1, k2} and length n over R2,r

satisfying Tor1(B2) = B0.

Proof. To prove the result, let B2 be a self-orthogonal code of the type {k1, k2}

and length n over R2,r. We see, using Lemma 2.2.1, that B0 = Tor1(B2) is a

k1-dimensional doubly even code over Tr.

From now on, let B0 be a doubly even code of length n over Tr. Here by Remark

4.3.1, we assume, without any loss of generality, that the code B0 has a generator

matrix

G0 =
h
Ik1 A

(0)
1,1 A

(0)
1,2

i
,

where columns of the matrix G0 are partitioned into blocks of sizes k1, k2, k3, the

matrix Ik1 is the k1 ⇥ k1 identity matrix over Tr, A
(0)
1,1 2 Mk1⇥k2(Tr) and A

(0)
1,2 2

Mk1⇥k3(Tr), and the matrix A
(0)
1,2 is of full row-rank over Tr. Since the matrix G0
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generates a doubly even code over Tr, we have

G0G
t

0 = Ik1 +A
(0)
1,1A

(0)t
1,1 +A

(0)
1,2A

(0)t
1,2 ⌘ 2F (mod 4), where F 2 Altk1(Tr),

(note that the matrix G0G
t

0 is viewed over R2,r). Now let us define a matrix G2

over R2,r as

G2 =

"
Ik1 A

(0)
1,1 A

(0)
1,2 + 2A(1)

1,2

0 2Ik2 2A(0)
2,2

#
,

where A
(1)
1,2 2 Mk1⇥k3(Tr) and A

(0)
2,2 2 Mk2⇥k3(Tr). Let B2 be the linear code of

length n over R2,r with a generator matrix G2. It is easy to see that Tor1(B2) =

B0 and that the code B2 is of the type {k1, k2}. Further, by Theorem 2.2.4, we

observe that the code B2 is a self-orthogonal code over R2,r if and only if there

exist matrices A
(1)
1,2 2 Mk1⇥k3(Tr) and A

(0)
2,2 2 Mk2⇥k3(Tr) satisfying the following

two matrix equations:

A
(0)
1,2A

(1)t
1,2 +A

(1)
1,2A

(0)t
1,2 ⌘ F (mod 2), (5.4.6)

A
(0)
1,1 +A

(0)
1,2A

(0)t
2,2 ⌘ 0 (mod 2). (5.4.7)

To show that there exists a matrix A
(1)
1,2 satisfying (5.4.6), we note that Diag(F ) = 0

and that the matrix A
(0)
1,2 is a full row-rank matrix over Tr. By applying Lemma 2.1.1,

we see that there exists a matrix A
(1)
1,2 satisfying (5.4.6) and that such a matrix A

(1)
1,2

has precisely

2
rk1(2n�3k1�2k2+1)

2

distinct choices. Further, to show that there exists a matrix A
(0)
2,2 satisfying (5.4.7),

we observe, by Lemma 2.2.1 and by (2.2.2), that there exists a matrix A
(0)
2,2 satisfying

(5.4.7) if and only if the Torsion code Tor2(B2) satisfies B0 ✓ Tor2(B2) ✓ B?
0 .

Furthermore, for a given choice of the code B0, we see that the number of choices

for the matrix A
(0)
2,2 satisfying (5.4.7) is equal to the number of choices for a linear

code B of length n and dimension k1 + k2 over Tr satisfying B0 ✓ B ✓ B?
0 ,

which, by Theorem 2.3.9, has precisely
⇥
k2+k3�k1

k2

⇤
2r

distinct choices. Moreover, one

can easily see that each of the distinct choices for the pair of matrices A
(1)
1,2 and

A
(0)
2,2 satisfying (5.4.6) and (5.4.7) gives rise to a distinct self-orthogonal code B2 of

the type {k1, k2} and length n over R2,r satisfying Tor1(B2) = B0. From this, the
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desired result follows immediately.

By Theorem 2.2.4(b), we see that a self-orthogonal code of the type {k1, k2} and

length n over R2,r is self-dual if and only if 2k1 + k2 = n. In the following theorem,

we show that if there exists a doubly even code B0 of length n and dimension k1

over Tr, then there exists a self-dual code B2 of the type {k1, k2} and length n over

R2,r satisfying Tor1(B2) = B0 and vice versa, where k2 = n�2k1. We also count all

such distinct self-dual codes B2 of the type {k1, k2} and length n over R2,r satisfying

Tor1(B2) = B0 for a given choice of B0.

Theorem 5.4.2. Let k1, k2 be non-negative integers satisfying n = 2k1 + k2. The

following hold.

(a) There exists a doubly even code B0 of length n and dimension k1 over Tr if

and only if there exists a self-dual code B2 of the type {k1, k2} and length n

over R2,r satisfying Tor1(B2) = B0.

(b) Furthermore, each doubly even code B0 of length n and dimension k1 over Tr

gives rise to precisely 2
rk1(k1+1)

2 distinct self-dual codes B2 of the type {k1, k2}

and length n over R2,r satisfying Tor1(B2) = B0.

Proof. On substituting k3 = k1 = n� (k1 + k2) in Theorem 5.4.1, the desired result

follows immediately.

5.4.2 The case e � 3

Throughout this section, let us suppose that e � 3. Here k1, k2, . . . , ke+1 are non-

negative integers satisfying n = k1 + k2 + · · ·+ ke+1 and 2k1 + 2k2 + · · ·+ 2ke�i+1 +

ke�i+2 + ke�i+3 + · · · + ki  n for s + 1  i  e. In the following proposition, we

consider a doubly even code C0 of length n and dimension ns over Tr and an ns�1-

dimensional linear subcode D0 of the code C0 satisfying the additional property that

1 /2 D0 when n ⌘ 4 (mod 8) and r is odd, and we provide a method to construct

an ns�1-doubly even self-orthogonal code C2 of the type {ns, ks+1} and length n

over R2,r with a free linear doubly even subcode D2 satisfying Tor1(C2) = C0 and

Tor1(D2) = D0. We also count all such distinct ns�1-doubly even self-orthogonal

codes C2 of the type {ns, ks+1} and length n over R2,r.
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Proposition 5.4.1. Let C0 be a doubly even code of length n and dimension ns over

Tr, and let D0 be an ns�1-dimensional linear subcode of C0 satisfying the additional

property that 1 /2 D0 when n ⌘ 4 (mod 8) and r is odd.

(a) There exists an ns�1-doubly even self-orthogonal code C2 of the type {ns, ks+1}

and length n over R2,r with a free linear doubly even subcode D2 satisfying

Tor1(C2) = C0 and Tor1(D2) = D0.

(b) Furthermore, the pair (C0,D0) of codes over Tr gives rise to precisely

2✏(2r)

s+1P
i=3

kini�2+ns(n�ns+1)�ns�1�ns(ns�1)
2


ks+1 + n� ns+1 � ns

ks+1

�

2r

distinct ns�1-doubly even self-orthogonal codes C2 of the type {ns, ks+1} and

length n over R2,r with a free linear doubly even subcode D2 satisfying Tor1(C2) =

C0 and Tor1(D2) = D0, where ✏ = 1 if 1 2 D0 with either n ⌘ 0 (mod 8) or

n ⌘ 4 (mod 8) and r even, while ✏ = 0 otherwise.

Proof. By Remark 4.3.1, we assume, without any loss of generality, that the code

C0 has a generator matrix

G0 = [Z(0)]s =

2

666664

Z
(0)
1

Z
(0)
2
...

Z
(0)
s

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s�1 · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s�1 · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks · · · A
(0)
s,e�1 A

(0)
s,e

3

777775

and its subcode D0 has a generator matrix

[Z(0)]s�1 =

2

666664

Z
(0)
1

Z
(0)
2
...

Z
(0)
s�1

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s�2 · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s�2 · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks�1 · · · A
(0)
s�1,e�1 A

(0)
s�1,e

3

777775
,

where columns of the matrices G0 and [Z(0)]s�1 are partitioned into blocks of sizes

k1, k2, . . . , ke, ke+1, the matrix Iki is the ki ⇥ ki identity matrix over Tr, A
(0)
i,j

2

Mki⇥kj+1(Tr) for 1  i  s and i  j  e, and each of the matrices (A(0))s,s+1,
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(A(0))s�1,s+2, . . . , (A(0))2,e�1, A
(0)
1,e are of full row-rank over Tr. Since the matrix G0

generates a doubly even code over Tr, we have

G0G
t

0 = [Z(0)]s[Z
(0)]t

s
⌘ 2F + 4H (mod 8),

where F 2 Altns
(Tr) and H 2 Symns

(Tr), (note that the matrix G0G
t

0 is viewed over

Re,r). Now to prove the result, let us define a matrix G2 over R2,r as

G2 =

2

66666664

Z
(2)
1

Z
(2)
2
...

Z
(2)
s

2Z(2)
s+1

3

77777775

=

2

66666664

Z
(0)
1 + 2V (1)

1

Z
(0)
2 + 2V (1)

2
...

Z
(0)
s + 2V (1)

s

2Z(2)
s+1

3

77777775

,

where the matrix [V (1)]s 2 Mns⇥n(Tr) is of the form

[V (1)]s =

2

666664

V
(1)
1

V
(1)
2
...

V
(1)
s

3

777775
=

2

666664

0 0 A
(1)
1,2 A

(1)
1,3 · · · A

(1)
1,s+1 · · · A

(1)
1,e

0 0 0 A
(1)
2,3 · · · A

(1)
2,s+1 · · · A

(1)
2,e

...
...

...
...

...
...

...
...

0 0 0 0 · · · A
(1)
s,s+1 · · · A

(1)
s,e

3

777775

with A
(1)
i,j

2 Mki⇥kj+1(Tr) for 1  i  s and i < j  e, and the matrix Z
(2)
s+1 2

Mks+1⇥n(Tr) is of the form

Z
(2)
s+1 =

h
0 · · · 0 Iks+1 A

(0)
s+1,s+1 · · · A

(0)
s+1,e

i

with A
(0)
s+1,j 2 Mks+1⇥kj+1(Tr) for s+ 1  j  e.

Further, let C2 and D2 be linear codes of length n over R2,r with generator

matrices G2 and [Z(2)]s�1, respectively. We also note that the code D2 is a free linear

subcode of C2 of rank ns�1. It is easy to see that Tor1(D2) = D0 and Tor1(C2) = C0

and that the code C2 is of the type {ns, ks+1}. Now by Theorem 2.2.4, we observe

that the code C2 is an ns�1-doubly even self-orthogonal code over R2,r with a free

doubly even linear subcode as D2 if and only if there exist matrices [V (1)]s and Z
(2)
s+1
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satisfying the following system of matrix equations:

[Z(0)]s[V
(1)]t

s
+ [V (1)]s[Z

(0)]t
s

⌘ F (mod 2), (5.4.8)

Diag

⇣
H

0 + [Z(0)]s�1[V
(1)]t

s�1 + [V (1)]s�1[V
(1)]t

s�1

⌘
⌘ 0 (mod 2), (5.4.9)

[Z(0)]sZ
(2)t
s+1 ⌘ 0 (mod 2), (5.4.10)

where H
0 is an ns�1 ⇥ ns�1 matrix over Tr whose rows are the first ns�1 rows of

the matrix H. Now by applying Lemma 5.4.1, we observe that there exists a matrix

[V
(1)
]
s
satisfying (5.4.8) and (5.4.9) and that such a matrix [V (1)]s has precisely

2✏(2r)

s+1P
i=3

kini�2+ns(n�ns+1)�ns�1�ns(ns�1)
2

distinct choices, where ✏ = 1 if 1 2 D0 with either n ⌘ 0 (mod 8) or n ⌘ 4

(mod 8) and r even, while ✏ = 0 otherwise. Further, by applying Lemma 2.2.1 and

Theorem 2.3.9 and working as in Theorem 5.4.1, we see that there exists a matrix

Z
(2)
s+1 satisfying (5.4.10) and that such a matrix Z

(2)
s+1 has precisely

⇥
ks+1+n�ns+1�ns

ks+1

⇤
2r

relevant choices. Further, it is easy to see that each of the distinct choices for the

pair of matrices [V (1)]s and Z
(2)
s+1 satisfying the system (5.4.8)-(5.4.10) of matrix

equations gives rise to a distinct ns�1-doubly even self-orthogonal code C2 of the

type {ns, ks+1} and length n over R2,r with a free linear doubly even subcode D2

satisfying Tor1(C2) = C0 and Tor1(D2) = D0. From this, the desired result follows

immediately.

In the following proposition, we consider an ns-doubly even self-orthogonal code

C0 of length n and dimension ns+1 over Tr, an ns-dimensional doubly even linear

subcode as D0 satisfying the additional property that 1 /2 D0 when n ⌘ 4 (mod 8)

and r is odd, and an ns�1-dimensional linear subcode D1 of the code D0, and we

provide a method to construct an ns�1-doubly even self-orthogonal code C3 of the

type {ns, ks+1, ks+2} and length n over R3,r with a free linear doubly even subcode

D3 satisfying Tor1(C3) = D0, T or2(C3) = C0 and Tor1(D3) = D1. We also count all

such distinct ns�1-doubly even self-orthogonal codes C3 of the type {ns, ks+1, ks+2}

and length n over R3,r.
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Proposition 5.4.2. Let C0 be an ns-doubly even self-orthogonal code of length n

and dimension ns+1 over Tr, and let D0 be an ns-dimensional doubly even linear

subcode of the code C0 satisfying the additional property that 1 /2 D0 when n ⌘ 4

(mod 8) and r is odd. Let D1 be an ns�1-dimensional linear subcode of D0. The

following hold.

(a) There exists an ns�1-doubly even self-orthogonal code C3 of the type {ns, ks+1, ks+2}

and length n over R3,r with a free linear doubly even subcode D3 satisfying

Tor1(C3) = D0, T or2(C3) = C0 and Tor1(D3) = D1.

(b) Furthermore, the triplet (C0,D0,D1) of codes over Tr gives rise to precisely

2✏(2r)

s+2P
i=3

kini�2+
s+2P
j=4

kjnj�3+n
2
s�ns�1+(ns+ns+1)(n�ns+2�ns)


ks+2 + n� ns+2 � ns

ks+2

�

2r

distinct ns�1-doubly even self-orthogonal codes C3 of the type {ns, ks+1, ks+2}

and length n over R3,r with a free linear doubly even subcode D3 satisfying

Tor1(C3) = D0, T or2(C3) = C0 and Tor1(D3) = D1, where ✏ = 1 if 1 2 D0 with

either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r even, while ✏ = 0 otherwise.

Proof. Here by Remark 4.3.1, we assume, without any loss of generality, that the

code C0 has a generator matrix

G0 = [Z
(0)
]
s+1 =

2

666664

Z
(0)
1

Z
(0)
2
...

Z
(0)
s+1

3

777775
=

2

666664

Ik1 A
(0)
1,1 A

(0)
1,2 · · · A

(0)
1,s · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 A
(0)
2,2 · · · A

(0)
2,s · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...
...

0 0 0 · · · Iks+1 · · · A
(0)
s+1,e�1 A

(0)
s+1,e

3

777775
,

the subcode D0 of C0 has a generator matrix [Z(0)]s and the subcode D1 of D0 has

a generator matrix [Z(0)]s�1, where columns of the matrices G0, [Z(0)]s and [Z(0)]s�1

are partitioned into blocks of sizes k1, k2, . . . , ke, ke+1, the matrix Iki is the ki ⇥ ki

identity matrix over Tr, A
(0)
i,j

2 Mki⇥kj+1(Tr) for 1  i  s + 1 and i  j  e,

and each of the matrices (A(0))s,s+2, (A(0))s�1,s+3, . . . , (A(0))2,e�1, A
(0)
1,e are of full

row-rank over Tr.

Since C0 is an ns-doubly even self-orthogonal code of length n and dimension
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ns+1 over Tr with an ns-dimensional doubly even linear subcode as D0, we have

[Z(0)]s[Z
(0)]t

s
⌘ 2F + 4H (mod 8),

[Z(0)]sZ
(0)t
s+1 ⌘ 2P (mod 4),

where F 2 Altns
(Tr), H 2 Symns

(Tr) and P 2 Mns⇥ks+1(Tr), (note that the matri-

ces [Z(0)]s[Z(0)]t
s
and [Z(0)]sZ

(0)t
s+1 are viewed over Re,r). Now to prove the result, let

us define a matrix G3 over R3,r as

G3 =

2

66666666664

Z
(3)
1

Z
(3)
2
...

Z
(3)
s

2Z(3)
s+1

4Z(3)
s+2

3

77777777775

=

2

66666666664

Z
(0)
1 + 2V (1)

1 + 4V (2)
1

Z
(0)
2 + 2V (1)

2 + 4V (2)
2

...

Z
(0)
s + 2V (1)

s + 4V (2)
s

2Z(3)
s+1

4Z(3)
s+2

3

77777777775

,

where for ` 2 {1, 2}, the matrix [V (`)]s 2 Mns⇥n(Tr) is of the form

[V (`)]s =

2

666664

V
(`)
1

V
(`)
2
...

V
(`)
s

3

777775
=

2

666664

0 · · · 0 A
(`)
1,`+1 A

(`)
1,`+2 · · · A

(`)
1,`+s

· · · A
(`)
1,e

0 · · · 0 0 A
(`)
2,`+2 · · · A

(`)
2,`+s

· · · A
(`)
2,e

...
...

...
...

...
...

...
...

...

0 · · · 0 0 0 · · · A
(`)
s,`+s

· · · A
(`)
s,e

3

777775

with A
(`)
i,j

2 Mki⇥kj+1(Tr) for 1  i  s and i + `  j  e, the matrix Z
(3)
s+1 2

Mks+1⇥n(R3,r) is of the form

Z
(3)
s+1 = Z

(0)
s+1 + 2

h
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

i

with A
(1)
s+1,j 2 Mks+1⇥kj+1(Tr) for s+2  j  e, and the matrix Z

(3)
s+2 2 Mks+2⇥n(Tr)

is of the form

Z
(3)
s+2 =

h
0 · · · 0 Iks+2 A

(0)
s+2,s+2 · · · A

(0)
s+2,e

i

with A
(0)
s+2,j 2 Mks+2⇥kj+1(Tr) for s+ 2  j  e.
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Now let C3 and D3 be linear codes of length n over R3,r with generator matrices

G3 and [Z(3)]s�1, respectively. We also note that the code D3 is a free linear subcode

of C3 of rank ns�1. We also observe that Tor1(D3) = D1, T or1(C3) = D0 and

Tor2(C3) = C0 and that the code C3 is of the type {ns, ks+1, ks+2}. Further, by

Theorem 2.2.4, we observe that the code C3 is an ns�1-doubly even self-orthogonal

code over R3,r with a free linear doubly even subcode as D3 if and only if there

exist matrices [V (1)]s, [V (2)]s, [0 · · · 0 A
(1)
s+1,s+2 · · · A

(1)
s+1,e] and Z

(3)
s+2 satisfying the

following system of matrix equations:

F + [Z(0)]s[V
(1)]t

s
+ [V (1)]s[Z

(0)]t
s
+ 2
⇣
[Z(0)]s[V

(2)]t
s

+[V (2)]s[Z
(0)]t

s
+ [V (1)]s[V

(1)]t
s
+H

⌘
⌘ 0 (mod 4), (5.4.11)

Diag

⇣
H

0 + [Z(0)]s�1[V
(1)]t

s�1 + [V (1)]s�1[V
(1)]t

s�1

+2[Z(0)]s�1[V
(2)]t

s�1

⌘
⌘ 0 (mod 4), (5.4.12)

P + [Z(0)]s
h
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

it
⌘ 0 (mod 2), (5.4.13)

[Z(0)]sZ
(3)t
s+2 ⌘ 0 (mod 2), (5.4.14)

where H 0 is an ns�1 ⇥ ns�1 matrix over Tr whose rows are the first ns�1 rows of the

matrix H.

First of all, we see, by Lemma 5.4.1, that there exists a matrix [V (1)]s 2 Mns⇥n(Tr)

satisfying the following two matrix equations simultaneously:

[Z(0)]s[V
(1)]t

s
+ [V (1)]s[Z

(0)]t
s

⌘ F (mod 2), (5.4.15)

Diag

⇣
H + [Z(0)]s[V

(1)]t
s
+ [V (1)]s[V

(1)]t
s

⌘
⌘ 0 (mod 2), (5.4.16)

and that such a matrix [V (1)]s has precisely

2✏(2r)

s+2P
i=3

kini�2+ns(n�ns+2)�ns(ns+1)
2

distinct choices, where ✏ = 1 if 1 2 D0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8)

and r is even, while ✏ = 0 otherwise. Next, for a given choice of the matrix [V (1)]s
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satisfying (5.4.15) and (5.4.16), we obtain

[Z(0)]s[V
(1)]t

s
+ [V (1)]s[Z

(0)]t
s
+ F ⌘ 2J1 (mod 4), (5.4.17)

Diag

⇣
H + [Z(0)]s[V

(1)]t
s
+ [V (1)]s[V

(1)]t
s

⌘
⌘ 2J2 (mod 4) (5.4.18)

for some J1 2 Symns
(Tr) and an ns ⇥ ns diagonal matrix J2 over Tr. From this and

by equations (5.4.11) and (5.4.12), we get

[Z(0)]s[V
(2)]t

s
+ [V (2)]s[Z

(0)]t
s

⌘ J1 +H + [V (1)]s[V
(1)]t

s
(mod 2), (5.4.19)

Diag

⇣
[Z(0)]s�1[V

(2)]t
s�1

⌘
⌘ J

0
2 (mod 2), (5.4.20)

where J
0
2 is an ns�1 ⇥ ns�1 diagonal matrix over Tr whose rows are the first ns�1

rows of the matrix J2. Here we note that

Diag(J1 +H + [V (1)]s[V
(1)]t

s
) = 0 (mod 2).

Now using the fact that the matrix (A(0))s,s+2 is a full row-rank matrix over Tr, we

see that there exists a matrix [V (2)]s satisfying equations (5.4.19) and (5.4.20) and

that such a matrix [V (2)]s has precisely

(2r)

s+2P
i=4

kini�3+ns(n�ns+2)�ns(ns�1)
2 �ns�1

distinct choices. Further, using the fact that the matrix (A(0))s,s+2 is of full row-rank

over Tr, we see that there exists a matrix
⇥
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
satisfying

(5.4.13) and that such a matrix has precisely (2r)ks+1(n�ns+2�ns) distinct choices.

Further, by applying Lemma 2.2.1 and Theorem 2.3.9 and working as in Theorem

5.4.1, we see that there exists a matrix Z
(3)
s+2 satisfying (5.4.14) and that such a

matrix Z
(3)
s+2 has precisely


ks+2 + n� ns+2 � ns

ks+2

�

2r

relevant choices. Further, it is easy to see that each of the distinct choices of the
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matrices [V (1)]s, [V (2)]s,
⇥
0 · · · 0 A

(1)
s+1,s+2 · · · A

(1)
s+1,e

⇤
and Z

(3)
s+2 satisfying (5.4.11)-

(5.4.14) gives rise to a distinct ns�1-doubly self-orthogonal code C3 of the type

{ns, ks+1, ks+2} and length n over R3,r with a free linear doubly even subcode D3

satisfying Tor1(C3) = D0, T or2(C3) = C0 and Tor1(D3) = D1. From this, the desired

result follows immediately.

Next, let µ be a fixed integer satisfying 4  µ  e, and let us define µ1 = b
µ

2 c.

In the following proposition, we consider an ns�µ1+1-doubly even self-orthogonal

code Cµ�2 of the type {ns�µ1+2, ks�µ1+3, . . . , ks+✓+µ1�1} and length n over Rµ�2,r

and a free linear doubly even subcode Dµ�2 of the code Cµ�2 of rank ns�µ1+1,

and we provide a method to construct an ns�µ1-doubly even self-orthogonal code

Cµ of the type {ns�µ1+1, ks�µ1+2, . . . , ks+✓+µ1} and length n over Rµ,r satisfying

Tor1(Cµ) = Tor1(Dµ�2) and Tori+1(Cµ) = Tori(Cµ�2) for 1  i  µ � 2. We

also count all such distinct ns�µ1-doubly even self-orthogonal codes Cµ of the type

{ns�µ1+1, ks�µ1+2, . . . , ks+✓+µ1} and length n over Rµ,r.

Proposition 5.4.3. Let µ be a fixed integer satisfying 4  µ  e, and let us de-

fine µ1 = b
µ

2 c. Let Cµ�2 be an ns�µ1+1-doubly even self-orthogonal code of the type

{ns�µ1+2, ks�µ1+3, . . . , ks+✓+µ1�1} and length n over Rµ�2,r, and let Dµ�2 be a free

linear doubly even subcode of the code Cµ�2 of rank ns�µ1+1. The following hold.

(a) There exists an ns�µ1-doubly even self-orthogonal code Cµ of the type {ns�µ1+1,

ks�µ1+2, . . . , ks+✓+µ1} and length n over Rµ,r satisfying Tor1(Cµ) = Tor1(Dµ�2)

and Tori+1(Cµ) = Tori(Cµ�2) for 1  i  µ� 2.

(b) Furthermore, the pair (Cµ�2,Dµ�2) of codes over Rµ�2,r gives rise to precisely

(2r)

s+✓+µ1P
i=µ

kini�µ+1+
s+✓+µ1P
j=µ+1

kjnj�µ+(ns+✓+µ1�1+ns�µ1+1)(n�ns+✓+µ1
�ns�µ1+1)�ns�µ1+n

2
s�µ1+1

⇥


ns�µ1+1

ns�µ1

�

2r


ks+✓+µ1 + n� ns+✓+µ1 � ns�µ1+1

ks+✓+µ1

�

2r

distinct ns�µ1-doubly even self-orthogonal codes Cµ of the type {ns�µ1+1, ks�µ1+2,

. . . , ks+✓+µ1} and length n over Rµ,r satisfying Tor1(Cµ) = Tor1(Dµ�2) and

Tori+1(Cµ) = Tori(Cµ�2) for 1  i  µ� 2.
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Proof. To prove the result, we assume, without any loss of generality, that the code

Cµ�2 has a generator matrix

Gµ�2 =

2

66666666666664

Z
(µ�2)
1

Z
(µ�2)
2
...

Z
(µ�2)
s�µ1+2

2Z(µ�2)
s�µ1+3

...

2µ�3
Z

(µ�2)
s+µ1+✓�1

3

77777777777775

=

2

66666666666664

Z
(0)
1 + 2V (1)

1 + 4V (2)
1 + · · ·+ 2µ�3

V
(µ�3)
1

Z
(0)
2 + 2V (1)

2 + 4V (2)
2 + · · ·+ 2µ�3

V
(µ�3)
2

...

Z
(0)
s�µ1+2 + 2V (1)

s�µ1+2 + 4V (2)
s�µ1+2 + · · ·+ 2µ�3

V
(µ�3)
s�µ1+2

2Z(µ�2)
s�µ1+3

...

2µ�3
Z

(µ�2)
s+µ1+✓�1

3

77777777777775

and that the free linear doubly even subcode Dµ�2 of the code Cµ�2 of rank ns�µ1+1

has a generator matrix [Z(µ�2)]s�µ1+1, where the matrix [Z(0)]s�µ1+2 2 Mns�µ1+2⇥n(Tr)

is of the form

[Z(0)]s�µ1+2 =

2

666664

Z
(0)
1

Z
(0)
2
...

Z
(0)
s�µ1+2

3

777775
=

2

666664

Ik1 A
(0)
1,1 · · · A

(0)
1,s�µ1+1 · · · A

(0)
1,e�1 A

(0)
1,e

0 Ik2 · · · A
(0)
2,s�µ1+1 · · · A

(0)
2,e�1 A

(0)
2,e

...
...

...
...

...
...

...

0 0 · · · Iks�µ1+2 · · · A
(0)
s�µ1+2,e�1 A

(0)
s�µ1+2,e

3

777775

with Iki as the ki ⇥ ki identity matrix over Tr and A
(0)
i,j

2 Mki⇥kj+1(Tr) for 1  i 

s�µ1+2 and i  j  e, the matrix [V (`)]s�µ1+2 2 Mns�µ1+2⇥n(Tr) for 1  `  µ�3,

and the matrix Z(µ�2)
s�µ1+i

2 Mks�µ1+i⇥n(Rµ�2,r) is to be considered modulo 2µ�i for 3 

i  µ� 1. We next see that the Torsion code Tor1(Cµ�2) is an ns�µ1+2-dimensional

code over Tr and has a generator matrix [Z(0)]s�µ1+2 and that the Torsion code

Tor1(Dµ�2) has a generator matrix [Z(0)]s�µ1+1. Now we choose an ns�µ1-dimensional

subcode D of the code Tor1(Dµ�2). By Theorem 2.3.9, we see that the code D has

precisely
⇥
ns�µ1+1

ns�µ1

⇤
2r

distinct choices. We assume, without any loss of generality,

that the code D has a generator matrix [Z(0)]s�µ1 . Furthermore, by Remark 4.3.1,

we assume, without any loss of generality, that the matrix (A(0))s�µ1+1,s+✓+µ1 is of

full row-rank.

Since Cµ�2 is an ns�µ1+1-doubly even code over Rµ�2,r with a free linear doubly

even subcode as Dµ�2, we have
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[Z(µ�2)]s�µ1+1[Z
(µ�2)]t

s�µ1+1 ⌘ 0 (mod 2µ�2),

Diag

⇣
[Z(µ�2)]s�µ1+1[Z

(µ�2)]t
s�µ1+1

⌘
⌘ 0 (mod 2µ�1),

[Z(µ�2)]s�µ1+1Z
(µ�2)t
s�µ1+↵ ⌘ 0 (mod 2µ�↵) for 2  ↵  µ� 1,

Z
(µ�2)
s�µ1+i

Z
(µ�2)t
s�µ1+j

⌘ 0 (mod 2µ+2�i�j) for 2  i, j  µ� 1

and i+ j  µ+ 1,

which implies that

[Z(µ�2)]s�µ1+1[Z
(µ�2)]t

s�µ1+1 ⌘ 2µ�2
F + 2µ�1

H (mod 2µ),

[Z(µ�2)]s�µ1+1Z
(µ�2)t
s�µ1+↵ ⌘ 2µ�↵

J↵ (mod 2µ�↵+1) for 2  ↵  µ� 1,

Z
(µ�2)
s�µ1+i

Z
(µ�2)t
s�µ1+j

⌘ 0 (mod 2µ+2�i�j) for 2  i, j  µ� 1

and i+ j  µ+ 1

for some F 2 Altns�µ1+1(Tr), H 2 Symns�µ1+1(Tr) and J↵ 2 Mns�µ1+1⇥ks�µ1+↵
(Tr)

for 2  ↵  µ� 1. Now to prove the result, let us define a matrix Gµ over Rµ,r as

Gµ =

2

66666666666664

Z
(µ)
1

Z
(µ)
2
...

Z
(µ)
s�µ1+1

2Z(µ)
s�µ1+2

...

2µ�1
Z

(µ)
s+✓+µ1

3

77777777777775

=

2

66666666666664

Z
(µ�2)
1 + 2µ�2

V
(µ�2)
1 + 2µ�1

V
(µ�1)
1

Z
(µ�2)
2 + 2µ�2

V
(µ�2)
2 + 2µ�1

V
(µ�1)
2

...

Z
(µ�2)
s�µ1+1 + 2µ�2

V
(µ�2)
s�µ1+1 + 2µ�1

V
(µ�1)
s�µ1+1

2Z(µ)
s�µ1+2

...

2µ�1
Z

(µ)
s+✓+µ1

3

77777777777775

, (5.4.21)

where the matrices [V (⌧)]s�µ1+1 2 Mns�µ1+1⇥n(Tr) for ⌧ 2 {µ� 2, µ� 1}, Z(µ)
s�µ1+↵ 2

Mks�µ1+↵⇥n(Rµ,r) for 2  ↵  µ� 1 and Z
(µ)
s+✓+µ1

2 Mks+✓+µ1
⇥n(Tr) are of the forms

2

666664

V
(⌧)
1

V
(⌧)
2
...

V
(⌧)
s�µ1+1

3

777775
=

2

666664

0 · · · 0 A
(⌧)
1,⌧+1 A

(⌧)
1,⌧+2 · · · A

(⌧)
1,s�µ1+1+⌧

· · · A
(⌧)
1,e

0 · · · 0 0 A
(⌧)
2,⌧+2 · · · A

(⌧)
2,s�µ1+1+⌧

· · · A
(⌧)
2,e

... · · ·
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · A
(⌧)
s�µ1+1,s�µ1+1+⌧

· · · A
(⌧)
s�µ1+1,e

3

777775
,
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Z
(µ)
s�µ1+↵ = Z

(µ�2)
s�µ1+↵ + 2µ�↵

h
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

i
and

Z
(µ)
s+✓+µ1

=
h
0 · · · 0 Iks+✓+µ1

A
(0)
s+✓+µ1,s+✓+µ1

· · · A
(0)
s+✓+µ1,e

i

with A
(⌧)
i,j

2 Mki⇥kj+1(Tr) for 1  i  s � µ1 + 1 and i + ⌧  j  e, A
(µ�↵)
s�µ1+↵,v 2

Mks�µ1+↵⇥kv+1(Tr) for s + ✓ + µ1  v  e and A
(0)
s+✓+µ1,y

2 Mks+✓+µ1
⇥ky+1(Tr) for

s+ ✓ + µ1  y  e.

Next, let Cµ and Dµ be linear codes of length n over Rµ,r with generator matrices

Gµ and [Z(µ)]s�µ1 , respectively. We also note that the code Dµ is a free linear subcode

of Cµ of rank ns�µ1 and that Tor1(Dµ) = D . We also observe that the code Cµ is

of the type {ns�µ1+1, ks�µ1+2, . . . , ks+✓+µ1} satisfying Tor1(Cµ) = Tor1(Dµ�2) and

Tori+1(Cµ) = Tori(Cµ�2) for 1  i  µ� 2. Further, by Theorem 2.2.4, we observe

that the code Cµ is an ns�µ1-doubly even self-orthogonal code over Rµ,r with a free

linear doubly even subcode as Dµ if and only if there exist matrices [V (µ�2)]s�µ1+1,

[V (µ�1)]s�µ1+1,

h
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

i
for 2  ↵  µ�1 and Z

(µ)
s+✓+µ1

satisfying the following system of matrix equations:

F + [Z(0)]s�µ1+1[V
(µ�2)]ts�µ1+1 + [V (µ�2)]s�µ1+1[Z

(0)]ts�µ1+1

+2
⇣
H + [Z(0)]s�µ1+1[V

(µ�1)]ts�µ1+1 + [V (µ�1)]s�µ1+1[Z
(0)]ts�µ1+1

+[V (1)]s�µ1+1[V
(µ�2)]ts�µ1+1 + [V (µ�2)]s�µ1+1[V

(1)]ts�µ1+1

⌘
⌘ 0 (mod 4),

(5.4.22)

Diag

⇣
H

0 + [Z(0)]s�µ1 [V
(µ�2)]ts�µ1

+ 2
⇣
[V (1)]s�µ1 [V

(µ�2)]ts�µ1

+[Z(0)]s�µ1 [V
(µ�1)]ts�µ1

⌘
⌘ 0 (mod 4),

(5.4.23)

J↵ + [Z(0)]s�µ1+1

h
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

i
t

⌘ 0 (mod 2),

(5.4.24)

[Z(0)]s�µ1+1Z
(µ)t
s+µ1+✓

⌘ 0 (mod 2), (5.4.25)

whereH 0 is the ns�µ1⇥ns�µ1 matrix over Tr whose rows are the first ns�µ1 rows of the

matrix H. Now we will show that there exist matrices [V (µ�2)]s�µ1+1, [V (µ�1)]s�µ1+1,⇥
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

⇤
for 2  ↵  µ � 1 and Z

(µ)
s+✓+µ1

satisfying
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the system (5.4.22)-(5.4.25) of matrix equations. Towards this, we first note that

Diag(F ) = 0 and that the matrix (A(0))s�µ1+1,s+µ1+✓ is of full row-rank over Tr.

Now working similarly as in Proposition 5.4.2, we see that there exist matrices

[V (µ�2)]s�µ1+1 and [V (µ�1)]s�µ1+1 satisfying (5.4.22) and (5.4.23) and that such a

pair of matrices has precisely

(2r)

s+✓+µ1P
i=µ

kini�µ+1+
s+✓+µ1P
j=µ+1

kjnj�µ+2ns�µ1+1(n�ns+µ1+✓)�ns�µ1�n
2
s�µ1+1

distinct choices. Using again the fact that the matrix (A(0))s�µ1+1,s+µ1+✓ is of full

row-rank matrix over Rµ,r, one can easily observe that for 2  ↵  µ � 1, there

exists a matrix
h
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

i
satisfying (5.4.24) and that

such a matrix has precisely

(2r)ks�µ1+↵(n�ns+✓+µ1
�ns�µ1+1)

distinct choices. Further, by Lemma 2.2.1 and Theorem 2.3.9 and working as in

Theorem 5.4.1, one can show that there exists a matrix Z
(µ)
s+✓+µ1

satisfying (5.4.25)

and that such a matrix Z
(µ)
s+✓+µ1

has precisely


ks+✓+µ1 + n� ns+✓+µ1 � ns�µ1+1

ks+✓+µ1

�

2r

distinct choices. Further, it is easy to see that each of the distinct choices of the

matrices [V (µ�2)]s�µ1+1, [V (µ�1)]s�µ1+1,
⇥
0 · · · 0 A

(µ�↵)
s�µ1+↵,s+✓+µ1

· · · A
(µ�↵)
s�µ1+↵,e

⇤
for

2  ↵  µ � 1 and Z
(µ)
s+✓+µ1

satisfying (5.4.22)-(5.4.25) gives rise to a distinct

ns�µ1-doubly even self-orthogonal code Cµ of the type {ns�µ1+1, ks�µ1+2, . . . , ks+✓+µ1}

and length n over Rµ,r with a free linear doubly even subcode as Dµ satisfying

Tor1(Cµ) = Tor1(Dµ�2) and Tori+1(Cµ) = Tori(Cµ�2) for 1  i  µ� 2. From this,

the desired result follows immediately.

In the following theorem, we show that there exists a self-orthogonal code of the

type {k1, k2, . . . , ke} and length n over Re,r if and only if there exists an ns-doubly

even self-orthogonal code of length n and dimension ns+✓ over Tr, where ✓ = 0

when e is even, while ✓ = 1 when e is odd. The following theorem and the proofs



5.4 A modified recursive method to construct and enumerate

self-orthogonal and self-dual codes over Re,r 177

of Propositions 5.4.1-5.4.3 also provide a method to construct such self-orthogonal

codes over Re,r from a given ns-doubly even self-orthogonal code of length n and

dimension ns+✓ over Tr.

Theorem 5.4.3. For an integer e � 3, let n be a positive integer, and let k1, k2, . . . ,

ke+1 be non-negative integers satisfying n = k1 + k2 + · · · + ke+1 and 2k1 + 2k2 +

· · ·+ 2ke�i+1 + ke�i+2 + ke�i+3 + · · ·+ ki  n for s+ 1  i  e.

(a) Let e be even. There exists a doubly even code C0 of length n and dimension ns

over Tr with an ns�1-dimensional linear subcode as D0 satisfying the additional

property that 1 /2 D0 when n ⌘ 4 (mod 8) and r is odd if and only if there

exists a self-orthogonal code Ce of the type {k1, k2, . . . , ke} and length n over

Re,r satisfying Tors�1(Ce) = D0 and Tors(Ce) = C0. Furthermore, each such

pair (C0,D0) of codes over Tr gives rise to precisely

2✏(2r)

s�1P
i=1

ni(n�ni+1�1)+
s�1P
j=1

ns+j(n�ns+j+1�ns�j)+ns(n�ns+1)�ns(ns�1)
2

⇥

s�1Y

v=1


nv

kv

�

2r

eY

`=s+1


k` + n� n` � ne+1�`

k`

�

2r

distinct self-orthogonal codes Ce of the type {k1, k2, . . . , ke} and length n over

Re,r satisfying Tors�1(Ce) = D0 and Tors(Ce) = C0, where ✏ = 1 if 1 2

D0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r even, while ✏ = 0

otherwise.

(b) Let e be odd. There exists an ns-doubly even self-orthogonal code C0 of length n

and dimension ns+1 over Tr with an ns-dimensional doubly even linear subcode

as D0 satisfying the additional property that 1 /2 D0 when n ⌘ 4 (mod 8) and r

is odd, and an ns�1-dimensional linear subcode of the code D0 as D1 if and only

if there exists a self-orthogonal code Ce of the type {k1, k2, . . . , ke} and length

n over Re,r satisfying Tors�1(Ce) = D1, T ors(Ce) = D0 and Tors+1(Ce) =

C0. Furthermore, each such triplet (C0,D0,D1) of codes over Tr gives rise to

precisely

2✏(2r)

sP
i=1

ni(n�ni+1�1)+
sP

j=1
ns+j(n�ns+j+1�ns+1�j)+ns

s�1Y

v=1


nv

kv

�

2r
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⇥

eY

`=s+2


k` + n� n` � ne+1�`

k`

�

2r

distinct self-orthogonal codes Ce of the type {k1, k2, . . . , ke} and length n over

Re,r satisfying Tors�1(Ce) = D1, T ors(Ce) = D0 and Tors+1(Ce) = C0, where

✏ = 1 if 1 2 D0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r even,

while ✏ = 0 otherwise.

Proof. By applying Propositions 5.4.1-5.4.3, we get the desired result.

Next, by Theorem 2.2.4(b), we see that a self-orthogonal code of the type

{k1, k2, . . . , ke} and length n over Re,r is self-dual if and only if k1 = ke+1 =

n � (k1 + k2 + · · · + ke) and ki = ke�i+2 for 2  i  e. On taking ki = ke�i+2

for 1  i  e in the above theorem, we see that there exists a self-dual code of the

type {k1, k2, . . . , ke} and length n over Re,r if and only if there exists an ns-doubly

even self-orthogonal code of length n and dimension ns+✓ over Tr. Note that when

e is odd, we have ✓ = 1 and ns+✓ = n

2 . This implies that an ns-doubly even self-

orthogonal code of length n and dimension ns+✓ over Tr is self-dual if e is odd. The

following theorem and the proofs of Propositions 5.4.1-5.4.3 provide a method to

construct such self-dual codes over Re,r from a given ns-doubly even self-orthogonal

code of length n and dimension ns+✓ over Tr.

Theorem 5.4.4. For an integer e � 3, let n be a positive integer, and let k1, k2, . . . ,

ke+1 be non-negative integers satisfying n = k1 + k2 + · · ·+ ke+1 and ki = ke�i+2 for

1  i  e+ 1.

(a) Let e be even. There exists a doubly even code C0 of length n and dimension ns

over Tr with an ns�1-dimensional linear subcode as D0 satisfying the additional

property that 1 /2 D0 when n ⌘ 4 (mod 8) and r is odd if and only if there

exists a self-dual code Ce of the type {k1, k2, . . . , ke} and length n over Re,r

satisfying Tors�1(Ce) = D0 and Tors(Ce) = C0. Furthermore, each such pair

(C0,D0) of codes over Tr gives rise to precisely

2✏(2r)

s�1P
i=1

ni(n�ni+1�1)+ns(ns+1)
2

s�1Y

v=1


nv

kv

�

2r
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distinct self-dual codes Ce of the type {k1, k2, . . . , ke} and length n over Re,r

satisfying Tors�1(Ce) = D0 and Tors(Ce) = C0, where ✏ = 1 if 1 2 D0 with

either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even, while ✏ = 0 otherwise.

(b) Let e be odd. There exists an ns-doubly even self-dual code C0 of length n and

dimension ns+1 over Tr with an ns-dimensional doubly even linear subcode as

D0 satisfying the additional property that 1 /2 D0 when n ⌘ 4 (mod 8) and

r is odd, and an ns�1-dimensional linear subcode of the code D0 as D1 if and

only if there exists a self-dual code Ce of the type {k1, k2, . . . , ke} and length

n over Re,r satisfying Tors�1(Ce) = D1, T ors(Ce) = D0 and Tors+1(Ce) =

C0. Furthermore, each such triplet (C0,D0,D1) of codes over Tr gives rise to

precisely

2✏(2r)

sP
i=1

ni(n�ni+1�1)+ns

s�1Y

v=1


nv

kv

�

2r

distinct self-dual codes Ce of the type {k1, k2, . . . , ke} and length n over Re,r

with Tors�1(Ce) = D1, T ors(Ce) = D0 and Tors+1(Ce) = C0, where ✏ = 1 if

1 2 D0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even, while

✏ = 0 otherwise.

Proof. On substituting ki = ke�i+2 for 1  i  e + 1 in Theorem 5.4.3, the desired

result follows immediately.

5.5 Enumeration formulae for self-orthogonal and

self-dual codes over Re,r

Throughout this section, for an integer e � 2 and non-negative integers k1, k2, . . . ,

ke+1 satisfying n = k1 + k2 + · · · + ke+1, let us define ni = k1 + k2 + · · · + ki for

1  i  e+1, and let Be(n; k1, k2, . . . , ke) and We(n; k1, k2, . . . , ke) denote the num-

ber of distinct self-orthogonal and self-dual codes of the type {k1, k2, . . . , ke} and

length n over Re,r, respectively. Further, let Be(n) and We(n) denote the number

of distinct self-orthogonal and self-dual codes of length n over Re,r, respectively. In

this section, we will obtain explicit values of these numbers by applying the results



180
Enumeration formulae for self-orthogonal and self-dual codes over

Galois rings of even characteristic

derived in Sections 5.3 and 5.4. For this, we will distinguish the following two cases:

(i) e = 2 and (ii) e � 3.

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers B2(n; k1, k2) and B2(n).

Theorem 5.5.1. We have

B2(n; k1, k2) =

8
><

>:

Dr(n; k1)2
rk1(2n�3k1�2k2+1)

2


n� 2k1

k2

�

2r
if 2k1 + k2  n;

0 otherwise

and

B2(n) =

bn

2 cX

k1=0

Dr(n; k1)
n�2k1X

k2=0

2
rk1(2n�3k1�2k2+1)

2


n� 2k1

k2

�

2r
,

where the number Dr(n; k1) is as obtained in Theorem 5.3.1.

Proof. It follows immediately from Theorems 5.3.1 and 5.4.1.

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers W2(n; k1, k2) and W2(n).

Theorem 5.5.2. We have

W2(n; k1, k2) =

(
Dr(n; k1)2

rk1(k1+1)
2 if 2k1 + k2 = n;

0 otherwise

and

W2(n) =

bn

2 cX

k1=0

Dr(n; k1)2
rk1(k1+1)

2 ,

where the number Dr(n; k1) is as obtained in Theorem 5.3.1.

Proof. To prove the result, we first note, by Theorem 2.2.4(b), thatW2(n; k1, k2) = 0

if 2k1 + k2 6= n. Further, by Theorem 2.2.4(b) again, we see that a self-orthogonal

code of the type {k1, k2} and length n over R2,r is self-dual if and only if 2k1+k2 = n.

Now the desired result follows on substituting 2k1 + k2 = n in Theorem 5.5.1.

Remark 5.5.1. Corollaries 1 and 2 of Betty and Munemasa [12] follow, as special

cases, on taking r = 1 in Theorems 5.5.1 and 5.5.2, respectively.
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Example 5.5.1. By carrying out computations in the Magma Computational Alge-

bra System, we see that there are precisely 6 non-zero self-orthogonal codes of length

2, 83 non-zero self-orthogonal codes of length 3 and 1988 non-zero self-orthogonal

codes of length 4 over R2,2, which agree with Theorem 5.5.1. Besides this, we see

that there is exactly one self-dual code of length 2, 9 self-dual codes of length 3 and

165 self-dual codes of length 4 over R2,2, which agree with Theorem 5.5.2.

In the following theorem, we consider the case e � 3 and obtain an enumeration

formula for the number Be(n; k1, k2, . . . , ke).

Theorem 5.5.3. For an integer e � 3, we have the following:

(a) When e is even, we have

Be(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

�0(n; k1, k2, . . . , ks)
s�1Y

v=1


nv

kv

�

2r

eY

`=s+1


k` + n� n` � ne+1�`

k`

�

2r

⇥(2r)

s�1P
i=1

ni(n�ni+1�1)+
s�1P
j=1

ns+j(n�ns+j+1�ns�j)+ns(n�ns+1)�ns(ns�1)
2

if ne�i+1 + ni  n for s+ 1  i  e;

0 otherwise,

where �0(n; k1, k2, . . . , ks) equals

• e�r

�
n;ns

�ns

ks

�

2r
if either n ⌘ 1, 2, 3, 5, 6, 7 (mod 8) or ns�1 6= 0 with

n ⌘ 4 (mod 8) and r is odd;

• 2b�r

�
n;ns

�ns � 1

ks

�

2r
+ e�r

�
n;ns

�ns

ks

�

2r
if ns�1 6= 0 with either

n ⌘ 4 (mod 8) and r is even or n ⌘ 0 (mod 8);

• Dr(n;ns) if ns�1 = 0 with n ⌘ 0, 4 (mod 8).
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(b) When e is odd, we have

Be(n; k1, k2, . . . , ke) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

�1(n; k1, k2, . . . , ks+1)
eY

`=s+2


k` + n� n` � ne+1�`

k`

�

2r

⇥

s�1Y

v=1


nv

kv

�

2r
(2r)

sP
i=1

ni(n�ni+1�1)+
sP

j=1
ns+j(n�ns+j+1�ns+1�j)+ns

if ne�i+1 + ni  n for s+ 1  i  e;

0 otherwise,

where �1(n; k1, k2, . . . , ks+1) equals

• e�r

�
n;ns

�ns

ks

�

2r

ns+1�1Y

i=ns

✓
2r(n�2i�1)

� 1

2r(i+1�ns) � 1

◆
if ks+1 6= 0 and n ⌘ 1, 3, 5, 7 (mod 8);

• e�r

�
n;ns

�ns

ks

�

2r

✓
2r(n�2ns�ks+1) � 1

2rks+1 � 1

◆ns+1�2Y

i=ns

✓
2r(n�2i�2)

� 1

2r(i+1�ns) � 1

◆
if ks+1 6= 0

with either n ⌘ 4 (mod 8) and r is odd or n ⌘ 2, 6 (mod 8);

• e�r

�
n;ns

�ns

ks

�

2r

✓
2r(n�2ns�ks+1) � 1

2rks+1 � 1

◆ ns+1�2Y

i=ns

✓
2r(n�2i�2)

� 1

2r(i+1�ns) � 1

◆

+2b�r

�
n;ns

�ns

ks

�

2r

ns+1�1Y

i=ns

✓
2r(n�2i)

� 1

2r(i+1�ns) � 1

◆

if ks+1 6= 0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even;

• e�r

�
n;ns

�ns

ks

�

2r
if ks+1 = 0 with either n ⌘ 1, 2, 3, 5, 6, 7 (mod 8) or

n ⌘ 4 (mod 8) and r is odd;

• 2b�r

�
n;ns

�ns

ks

�

2r
+e�r

�
n;ns

�ns

ks

�

2r
if ks+1 = 0 with either n ⌘ 0 ( mod 8)

or n ⌘ 4 (mod 8) and r is even.

(Here the numbers b�r (n;ns) and e�r (n;ns) are as obtained in Theorems 5.3.2 and

5.3.3, respectively.)

Proof. To prove the result, we first note, by Remark 2.2.1, thatBe(n; k1, k2, . . . , ke) =

0 if ne�i+1 + ni > n for some integer i satisfying s + 1  i  e. So from now on,
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throughout the proof, we assume that ne�i+1 + ni  n for s + 1  i  e. Here, we

shall distinguish the following two cases: (a) e is even, and (b) e is odd.

(a) First let e be even. Here we see, by Theorem 5.4.3(a), that each pair (C0,D0)

of an ns-doubly even code C0 of length n and dimension ns over Tr and an

ns�1-dimensional linear subcode D0 of C0 satisfying the additional property

that 1 /2 D0 when n ⌘ 4 (mod 8) and r is odd, gives rise to precisely

2✏(2r)

s�1P
i=1

ni(n�ni+1�1)+
s�1P
j=1

ns+j(n�ns+j+1�ns�j)+ns(n�ns+1)�ns(ns�1)
2

⇥

s�1Y

v=1


nv

kv

�

2r

eY

`=s+1


k` + n� n` � ne+1�`

k`

�

2r

distinct self-orthogonal codes Ce of the type {k1, k2, . . . , ke} and length n over

Re,r satisfying Tors�1(Ce) = D0 and Tors(Ce) = C0, where ✏ = 1 if 1 2 D0

with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r even, while ✏ = 0 otherwise.

Now we will count the number of choices for the pair (C0,D0), where C0 is an

ns-doubly even code of length n and dimension ns over Tr and D0 is an ns�1-

dimensional linear subcode of the code C0 satisfying the additional property

that 1 /2 D0 when n ⌘ 4 (mod 8) and r is odd.

When ns�1 = 0, we see that the desired result follows by applying Theorems

5.3.1 and 5.3.3. So from this point on, we assume, throughout the proof, that

ns�1 6= 0. Here, by Theorem 5.3.2, we see that a doubly even code of length n

over Tr contains 1 if and only if n ⌘ 0, 4 (mod 8).

When n ⌘ 1, 2, 3, 5, 6, 7 (mod 8), we see, by Theorems 2.3.9 and 5.3.3, that

the pair (C0,D0) has precisely

e�r(n;ns)


ns

ns�1

�

2r

distinct choices.

When n ⌘ 0, 4 (mod 8), working as in Proposition 5.4.1 and Lemma 5.4.1, we

observe that if 1 2 C0, then 1 2 D0, which, by Theorem 2.3.10, holds if and

only if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even.
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Now when n ⌘ 4 (mod 8) and r is odd, we see, by Theorems 2.3.9 and 5.3.3,

that the pair (C0,D0) has precisely

e�r(n;ns)


ns

ns�1

�

2r

distinct choices.

Finally, let us suppose that either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is

even. Here the following two cases arise: (i) 1 /2 C0 and (ii) 1 2 C0.

(i) When 1 /2 C0, we note, by Theorems 2.3.9 and 5.3.3, that the pair (C0,D0)

has precisely

e�r(n;ns)


ns

ns�1

�

2r

distinct choices.

(ii) When 1 2 C0, working as in Proposition 5.4.1 and Lemma 5.4.1, we

observe that 1 2 D0. This, by Theorems 2.3.9 and 5.3.2, implies that the

pair (C0,D0) has precisely

b�r(n;ns)


ns � 1

ns�1 � 1

�

2r

distinct choices.

From this, we get the desired result.

(b) Next, let e be odd. Here we see, by Theorem 5.4.3(b), that each triplet

(C0,D0,D1) of an ns-doubly even self-orthogonal code C0 of length n and

dimension ns+1 over Tr with an ns-dimensional doubly even linear subcode as

D0 satisfying the additional property that 1 /2 D0 when n ⌘ 4 (mod 8) and

r is odd, and an ns�1-dimensional linear subcode of the code D0 as D1 gives

rise to precisely

2✏(2r)

sP
i=1

ni(n�ni+1�1)+
sP

j=1
ns+j(n�ns+j+1�ns+1�j)+ns

s�1Y

v=1


nv

kv

�

2r
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⇥

eY

`=s+2


k` + n� n` � ne+1�`

k`

�

2r

distinct self-orthogonal codes Ce of the type {k1, k2, . . . , ke} and length n over

Re,r satisfying Tors�1(Ce) = D1, T ors(Ce) = D0 and Tors+1(Ce) = C0, where

✏ = 1 if 1 2 D0 with either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even,

while ✏ = 0 otherwise. We will now count the number of choices for the triplet

(C0,D0,D1), where C0 is an ns-doubly even self-orthogonal code of length

n and dimension ns+1 over Tr, D0 is an ns-dimensional doubly even linear

subcode of the code C0 satisfying the additional property that 1 /2 D0 when

n ⌘ 4 (mod 8) and r is odd, and D1 is an ns�1-dimensional linear subcode of

the code D0.

For this, we see, by Theorem 5.3.2 and by applying Theorem 2.3.10, that

1 2 D0 if and only if either n ⌘ 0 (mod 8) or n ⌘ 4 (mod 8) and r is even.

When ks+1 = 0, we see, by Theorems 2.3.9, 5.3.2 and 5.3.3, that the desired

result follows immediately. So from this point on, we assume, throughout the

proof, that ks+1 6= 0. Here we recall that any self-orthogonal code over Tr is

contained in I(Vr) = {v 2 Vr : Br(v, v) = 0}. We next note that 1 2 I(Vr) if

and only if n is even. Accordingly, we will distinguish two cases: (i) n is odd,

and (ii) n is even.

(i) First of all, let n be odd. In this case, we see that the pair (D0,D1) has

precisely

e�r(n;ns)


ns

ks

�

2r

distinct choices. Further, for a given choice of (D0,D1), we see that

the number of choices for C0 is equal to the number of choices for a

ks+1-dimensional self-orthogonal Tr-linear subspace U of I(Vr) satisfying

U ✓ (D0)?Br \ D0. Further, since (I(Vr),Br�I(Vr)⇥I(Vr)) is an (n � 1)-

dimensional symplectic space over Tr, we see, by Theorem 2.3.3(e), that

such a subspace U of I(Vr) has precisely

ns+1�1Y

i=ns

✓
2r(n�2i�1)

� 1

2r(i+1�ns) � 1

◆
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distinct choices.

(ii) Next, let n be even. In this case, we see that 1 2 I(Vr). Here we choose

an (n � 2)-dimensional Tr-linear subspace V
0
r
of I(Vr) such that 1 /2 V

0
r
.

This gives I(Vr) = V
0
r
? h1i. It is easy to observe that (V 0

r
,Br�V 0

r⇥V 0
r
)

is an (n � 2)-dimensional symplectic space over Tr. When either n ⌘

2, 6 ( mod 8) or n ⌘ 4 ( mod 8) and r is odd, we see that the pair (D0,D1)

has precisely

e�r(n;ns)


ns

ks

�

2r

distinct choices. Now for a given choice of (D0,D1), we see that the

number of choices for C0 is equal to the number of choices for a ks+1-

dimensional self-orthogonal Tr-linear subspace U of I(Vr) satisfying U ✓

(D0)?Br \D0. We further observe that any such ks+1-dimensional Tr-linear

subspace of I(Vr) is either of the form U = hu1, u2, . . . , uks+1i or of the

form U = hu1, u2, . . . , uks+1�1,1i, where u1, u2, . . . , uks+1 are mutually or-

thogonal and linearly independent vectors in V
0
r
. Now by Theorem 2.3.3

(e), we see that such a subspace U of I(Vr) has precisely

ns+1�2Y

i=ns

✓
2r(n�2i�2)

� 1

2r(i+1�ns) � 1

◆✓
2r(n�2ns�ks+1) � 1

2rks+1 � 1

◆

distinct choices. On the other hand, when either n ⌘ 0 (mod 8) or

n ⌘ 4 (mod 8) and r is even, working similarly as above, we get the

desired result.

In the following theorem, we consider the case e � 3 and obtain the explicit

enumeration formula for the number We(n; k1, k2, . . . , ke).

Theorem 5.5.4. For an integer e � 3, we have the following:
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(a) When e is even, we have

We(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�0(n; k1, k2, . . . , ks)(2
r)

s�1P
i=1

ni(n�ni+1�1)+ns(ns+1)
2

s�1Y

j=1


nj

kj

�

2r

if kv = ke�v+2 for 1  v  e+ 1;

0 otherwise,

where the number �0(n; k1, k2, . . . , ks) is as obtained in Theorem 5.5.3(a).

(b) When e is odd, we have

We(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�1(n; k1, k2, . . . , ks+1)(2
r)

sP
i=1

ni(n�ni+1�1)+ns

s�1Y

j=1


nj

kj

�

2r

if n is even and kv = ke�v+2 for 1  v  e+ 1;

0 otherwise,

where the number �1(n; k1, k2, . . . , ks+1) is as obtained in Theorem 5.5.3(b).

Proof. To prove the result, we first note, by Theorem 2.2.4(b), thatWe(n; k1, k2, . . . ,

ke) = 0 if kv 6= ke�v+2 for some integer v satisfying 1  v  e + 1. Further, by

Theorem 2.2.4(b) again, we see that a self-orthogonal code of the type {k1, k2, . . . , ke}

and length n over Re,r is self-dual if and only if ki = ke�i+2 for 1  i  e + 1. Now

the desired result follows on substituting ki = ke�i+2 for 1  i  e + 1 in Theorem

5.5.3.

Remark 5.5.2. Theorems 4.1 and 4.2 of Nagata et al. [75] follow, as special cases,

on taking r = 1 and e � 4 in the above theorem.

We now proceed to determine enumeration formulae for the numbers Be(n) and

We(n) for each integer e � 3. To do this, for an integer d satisfying 1  d  e and for

non-negative integers k1, k2, . . . , kd, let hj(k1, k2, . . . , kd) and m`(k1, k2, . . . , kd) be as

defined by (3.4.19) and (3.4.20), respectively, for 1  j  d�1 and 1  ` 
⌃
d

2

⌥
�1.

In the following theorem, we obtain an enumeration formula for the number

Be(n) when e � 3.

Theorem 5.5.5. For an integer e � 3, the following hold.
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(a) When e is even, we have

Be(n) =
X

�0(n; k1, k2, . . . , ks)(2
r)⇤(k1,k2,...,ke)

s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥

eY

`=s+1


k` + n� (k1 + k2 + · · ·+ k`)� (k1 + k2 + · · ·+ ke+1�`)

k`

�

2r
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for s+1  i  e

and the number ⇤(k1, k2, . . . , ke) is given by

⇤(k1, k2, . . . , ke) =
sX

i=1

mi(k1, k2, . . . , ke) + k1 + k2 + · · ·+ ks

�(k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks � 1

2

◆
.

(b) When e is odd, we have

Be(n) =
X

�1(n; k1, k2, . . . , ks+1)(2
r)⇤

0(k1,k2,...,ke)
s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥

eY

`=s+2


k` + n� (k1 + k2 + · · ·+ k`)� (k1 + k2 + · · ·+ ke+1�`)

k`

�

2r
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+ · · ·+2ke�i+1+ke�i+2+ke�i+3+ · · ·+ki  n for s+1  i  e

and the number ⇤0(k1, k2, . . . , ke) is given by

⇤0(k1, k2, . . . , ke) =
sX

i=1

mi(k1, k2, . . . , ke) + (k1 + k2 + · · ·+ ks).

(Here the numbers �0(n; k1, k2, . . . , ks) and �1(n; k1, k2, . . . , ks+1) are as obtained in

Theorem 5.5.3.)

Proof. It follows immediately from Theorem 5.5.3.

In the following theorem, we obtain explicit enumeration formula for the number
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We(n) when e � 3.

Theorem 5.5.6. For an integer e � 3, the following hold.

(a) When e is even, we have

We(n) =
X

�0(n; k1, k2, . . . , ks)
s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥(2r)

s�1P
i=1

hi(k1,k2,...,ks+1)+(k1+k2+···+ks)( k1+k2+···+ks+1
2 )

,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks) + ks+1 = n.

(b) When e is odd, we have

We(n) =

8
>>>>>><

>>>>>>:

X
�1(n; k1, k2, . . . , ks+1)

s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥(2r)

sP
i=1

hi(k1,k2,...,ks+1)+k1+k2+···+ks

if n is even;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks+1) = n.

(Here the numbers �0(n; k1, k2, . . . , ks) and �1(n; k1, k2, . . . , ks+1) are as obtained in

Theorem 5.5.3.)

Proof. It follows immediately from Theorem 5.5.4.

Remark 5.5.3. Theorem 4.1 of Nagata et al. [76] follow, as a special case, on

taking r = 1 and e = 3 in the above theorem.

Example 5.5.2. Let e = 3 and r = 2. By carrying out computations in the Magma

Computational Algebra System, we see that there are precisely 11 non-zero self-

orthogonal codes of length 2, 388 non-zero self-orthogonal codes of length 3 and 41998

non-zero self-orthogonal codes of length 4 over R3,2, which agree with Theorem 5.5.5.

We also see that there is exactly one self-dual code of length 2 and 1317 self-dual
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codes of length 4 over R3,2 and that there does not exist any self-dual code of length

3 over R3,2, which agree with Theorem 5.5.6(b).

The above enumeration formulae for self-orthogonal and self-dual codes over Re,r

are useful in classifying these two classes of codes up to monomial equivalence. We

illustrate this by classifying self-orthogonal and self-dual codes of lengths 2, 3 and 4

over the Galois ring R2,2 = GR(22, 2) in the following section.

5.6 Classification of self-orthogonal and self-dual

codes

With the help of the enumeration formulae for self-orthogonal and self-dual codes

of length n over Re,r (obtained in Section 5.5) and by applying the classification algo-

rithm [53, Sec. 9.6 and 9.7], one can obtain complete lists of monomially inequivalent

self-orthogonal and self-dual codes of length n over Re,r. We will now illustrate this

in certain specific cases by carrying out computations in the Magma Computational

Algebra System. For this, we first note, by Example 5.5.1, that there are precisely

6 non-zero self-orthogonal codes of length 2, 83 non-zero self-orthogonal codes of

length 3 and 1988 non-zero self-orthogonal codes of length 4 over R2,2 and that

there is only 1 self-dual code of length 2 over R2,2, while there are precisely 9 self-

dual codes of length 3 and 165 self-dual codes of length 4 over R2,2. In this section,

we will obtain all inequivalent codes belonging to these classes of codes. To do this,

we see that there exists ⇣ 2 R2,2 satisfying ⇣
2 + ⇣ + 1 = 0. Now the following hold.

I. There are precisely 3 inequivalent non-zero self-orthogonal codes of length 2

over R2,2. Among these codes, there are

• 2 self-orthogonal codes of Hamming distance 1 and with generator ma-

trices
h
2 0

i
and 2I2; and

• 1 self-orthogonal code of Hamming distance 2 and with a generator matrixh
2 2 + 2⇣

i
.

II. There are precisely 9 inequivalent non-zero self-orthogonal codes of length 3

over R2,2. Among these codes, there are
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• 4 self-orthogonal codes of Hamming distance 1 and with generator ma-

trices 2I3,
h
2 0 0

i
,

"
2 0 0

0 2 2

#
and

"
2 0 0

0 2 0

#
;

• 3 self-orthogonal codes of Hamming distance 2 and with generator ma-

trices
h
2 0 2

i
,

"
1 ⇣ 1 + 3⇣

0 2 2 + 2⇣

#
and

"
2 0 2

0 2 2 + 2⇣

#
; and

• 2 self-orthogonal codes of Hamming distance 3 and with generator ma-

trices
h
1 3 + ⇣ 2 + 3⇣

i
and

h
2 2 + 2⇣ 2 + 2⇣

i
.

III. There are precisely 28 inequivalent non-zero self-orthogonal codes of length 4

over R2,2. Among these codes, there are

• 10 self-orthogonal codes of Hamming distance 1 and with generator matri-

ces 2I4,
h
2 0 0 0

i
,

"
2 0 0 0

0 2 0 0

#
,

"
2 0 2 2 + 2⇣

0 2 0 0

#
,

"
1 2 1 + ⇣ ⇣

0 2 0 0

#
,

"
2 0 2 + 2⇣ 0

0 2 0 0

#
,

2

664

2 0 0 2

0 2 0 0

0 0 2 2

3

775 ,

2

664

2 0 0 0

0 2 0 0

0 0 2 0

3

775 ,

2

664

2 0 0 0

0 2 0 2 + 2⇣

0 0 2 0

3

775 and

2

664

1 2 + 3⇣ 2⇣ 1 + 3⇣

0 2 0 2 + 2⇣

0 0 2 0

3

775 ;

• 9 self-orthogonal codes of Hamming distance 2 and with generator matri-

ces
h
2 2⇣ 0 0

i
,

"
2 0 2 0

0 2 2 2 + 2⇣

#
,

"
2 0 0 2

0 2 0 2

#
,

"
2 0 0 2⇣

0 2 2⇣ 0

#
,

"
1 ⇣ 3 + ⇣ 2

0 2 2 + 2⇣ 0

#
,

"
1 3 + 2⇣ 3 1 + 2⇣

0 2 2 0

#
,

"
1 1 + 3⇣ 0 2 + ⇣

0 2 0 2⇣

#
,

2

664

2 0 0 2⇣

0 2 0 2 + 2⇣

0 0 2 2⇣

3

775 and

2

664

1 1 1 + 2⇣ 3

0 2 0 2

0 0 2 2

3

775 ;

• 7 self-orthogonal codes of Hamming distance 3 and with generator ma-

trices
h
1 1 + ⇣ 0 2 + ⇣

i
,

h
2 2⇣ 0 2⇣

i
,

h
1 2⇣ 3 + ⇣ 2 + 3⇣

i
,

"
1 0 ⇣ 1 + 3⇣

0 1 3 + 3⇣ 2 + ⇣

#
,

"
1 1 1 + 2⇣ 1

0 2 2⇣ 2 + 2⇣

#
,

"
2 0 2⇣ 2⇣

0 2 2 2 + 2⇣

#
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and

"
1 0 3 + 3⇣ 2 + 3⇣

0 2 2 2⇣

#
; and

• 2 self-orthogonal codes of Hamming distance 4 and with generator ma-

trices
h
1 1 3 + 2⇣ 1 + 2⇣

i
and

h
2 2 + 2⇣ 2 + 2⇣ 2 + 2⇣

i
.

IV. By Theorem 2.2.4(b), we see that a self-orthogonal code of the type {k1, k2}

and length n over R2,r is self-dual if and only if 2k1 + k2 = n. From this, it

follows that

• there is exactly one inequivalent self-dual code of length 2 and Hamming

distance 1 over R2,2.

• there is exactly one inequivalent self-dual code of length 3 and Hamming

distance 1 and one inequivalent self-dual code of length 3 and Hamming

distance 2 over R2,2.

• there are 2 inequivalent self-dual codes of length 4 and Hamming distance

1, one inequivalent self-dual code of length 4 and Hamming distance 2

and one inequivalent self-dual code of length 4 and Hamming distance 3

over R2,2.

Note that Theorems 5.5.1, 5.5.2, 5.5.5 and 5.5.6 together with Theorems 3.2.3,3.2.5,

3.3.3, 3.3.5, 3.4.5 and 3.4.6 provide enumeration formulae for all self-orthogonal and

self-dual codes over Galois rings. Thus the problem of determination of enumeration

formulae for self-orthogonal and self-dual codes over Galois rings is now completely

solved. In the next chapter, we will study and enumerate LCD codes over finite

commutative chain rings.



6
On �-LCD codes over finite

commutative chain rings

6.1 Introduction

Recall that Re,r is a finite commutative chain ring with the maximal ideal hui

of nilpotency index e � 2 and the residue field Re,r = Re,r/hui of order pr, where

p is a prime and r is a positive integer. The set Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} is the

Teichmüller set of the chain ring Re,r.

Now let F be a mapping from R
n

e,r
into itself satisfying the following three

conditions:

(1) F (a+ b) = F (a) + F (b) for all a, b 2 R
n

e,r
.

(2) dH(F (a), F (b)) = dH(a, b) for all a, b 2 R
n

e,r
.

(3) If C is a linear code of length n over Re,r, then F (C) is also a linear code of

193
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the same length n over Re,r.

For a mapping F : Rn

e,r
! R

n

e,r
satisfying conditions (1)-(3), the F -inner product

on R
n

e,r
is defined as

[a, b]F = a · F (b) =
nX

i=1

aici for all a, b 2 R
n

e,r
,

where a = (a1, a2, . . . , an) and F (b) = (c1, c2, . . . , cn). The F -dual code of a linear

code C of length n over Re,r is defined as

C
?F = {a 2 R

n

e,r
: [a, b]F = 0 for all b 2 C}.

The code C is said to be F -LCD if it satisfies C \ C
?F = {0}. The F -LCD codes

of length n over Re,r are recently introduced and studied by Liu and Liu [66]. One

can easily observe that each automorphism �0 of Re,r can be naturally extended to

an automorphism � of Rn

e,r
, defined as

�(a) = (�0(a1), �0(a2), . . . , �0(an)) for all a = (a1, a2, . . . , an) 2 R
n

e,r
. (6.1.1)

Note that the map � satisfies conditions (1)-(3).

From now on, throughout this chapter, let �0 be an automorphism of Re,r, and

let �0 be the corresponding automorphism of the residue field Re,r = Re,r/hui of

Re,r, defined as

�0(a) = �0(a) + hui = �0(a)

for all a = a + hui 2 Re,r. Corresponding to the automorphism �0 of Re,r, let � be

the automorphism of Rn

e,r
as defined by (6.1.1). Now the �-inner product on R

n

e,r
is

a map [·, ·]� : Rn

e,r
⇥R

n

e,r
! Re,r, defined as

[a, b]� = a · �(b) = a1�0(b1) + a2�0(b2) + · · ·+ an�0(bn)

for all a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) 2 R
n

e,r
. Note that the �-inner product

[·, ·]� is a non-degenerate �-sesquilinear form on R
n

e,r
. Further, if C is a linear code
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of length n over Re,r, then the �-dual code of C is defined as

C
?� = {v 2 R

n

e,r
: [v, c]� = 0 for all c 2 C}.

Note that the �-dual code C
?� of the code C coincides with the (Euclidean) dual

code C? of the code C when �0 is the identity automorphism of Re,r. The code C is

said to be a linear code with complementary �-dual (or a �-LCD code) if it satisfies

C \C
?� = {0}. In particular, when �0 is the identity automorphism of Re,r, �-LCD

codes are called Euclidean LCD codes (or simply called LCD codes). When Re,r is

a finite field, the �-inner product on R
n

e,r
is called the Galois inner product, which

was introduced and studied by Fan and Zhang [42] as a generalization of Euclidean

and Hermitian forms over finite fields. When Re,r is the finite field of order q2 and

�0 is the automorphism of Re,r(' Fq2) of order 2, the �-inner product matches with

the Hermitian form, and hence �-LCD codes are called Hermitian LCD codes.

The main goal of this chapter is to obtain the explicit enumeration formula for

all �-LCD codes of an arbitrary length n over the chain ring Re,r when �
2
0 is the

identity automorphism of Re,r. Note that Corollaries 2.1.1 and 2.1.2 characterize

all automorphisms �0 of Re,r (and hence all the corresponding automorphisms � of

R
n

e,r
) for which �

2
0 is the identity automorphism of Re,r. Besides this, we will show

that the class of �-LCD codes over Re,r is asymptotically good and that every free

linear [n, k, d]-code over Re,r is equivalent to a �-LCD [n, k, d]-code over Re,r when

|Re,r| > 4. We will also explicitly determine all inequivalent �-LCD [n, 1, d]-codes

and [n, n� 1, d]-codes over Re,r for 1  d  n.

This chapter is organized as follows: In Section 6.2, we state some basic re-

sults needed to derive our main results. In Section 6.3, we first enumerate all k-

dimensional Euclidean and Hermitian LCD codes of length n over Fq by applying

the Witt decomposition theory, where q is a prime power (see Theorems 6.3.2, 6.3.3

and 6.3.6). It is worth mentioning that Carlet et al. [27, Sec. IV and V] also recently

enumerated all k-dimensional Euclidean LCD codes of length n over Fq when either

q = 2 or q is an odd prime power, and Liu and Wang [69] later counted all Euclidean

and Hermitian LCD codes over Fq by using cogredience theories of matrices. How-

ever, our proof technique to enumerate all k-dimensional Euclidean and Hermitian

LCD codes over Fq is quite di↵erent from the ones employed by Carlet et al. [27, Sec.
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IV and V] and Liu and Wang [69]. Further, with the help of the enumeration formu-

lae for Euclidean and Hermitian LCD codes over Fq, we obtain explicit enumeration

formulae for all �-LCD codes of an arbitrary length over Re,r when �
2
0 is the identity

automorphism of Re,r (Theorems 6.3.5 and 6.3.8). In Section 6.4, we show that the

class of �-LCD codes over Re,r is asymptotically good (Theorem 6.4.1). In Section

6.5, we show that every free linear [n, k, d]-code over Re,r is equivalent to a �-LCD

[n, k, d]-code over Re,r when |Re,r| > 4 (Theorem 6.5.1). Besides this, we explicitly

determine all inequivalent �-LCD [n, 1, d]-codes and [n, n� 1, d]-codes over Re,r for

1  d  n (Theorems 6.5.2 and 6.5.3). With the help of the enumeration formulae

obtained in Section 6.3 and by applying the classification algorithm, we classify all

Euclidean LCD codes of lengths 2, 3, 4 and 5 over the chain ring F2[u]/hu2
i and of

lengths 2, 3 and 4 over the chain ring F3[u]/hu2
i, and all �-LCD codes of lengths

2, 3 and 4 over the chain ring F4[u]/hu2
i, where �0 is an automorphism of F4[u]/hu2

i

such that the corresponding automorphism �0 of the residue field F4 has order 2

(see Section 6.5.2).

6.2 Some preliminaries

In this section, we will state some basic results needed to derive our main re-

sults. Towards this, we first note, by Theorem 2 of Bhowmick et al. [14], that any

Euclidean LCD code over a finite commutative chain ring is a free code. In the

following theorem, we extend this result to �-LCD codes over Re,r.

Theorem 6.2.1. Every �-LCD code over Re,r is a free code.

Proof. To prove the result, let C be a �-LCD code of length n over Re,r. Now let

us define

�(C) =
�
(�0(c1), �0(c2), . . . , �0(cn)) : (c1, c2, . . . , cn) 2 C

 
.

One can easily see that �(C) is also a linear code of length n over Re,r and that

C
?� = �(C)?, where �(C)? denotes the (Euclidean) dual code of the code �(C).

Since Re,r is a finite commutative chain ring, the code C satisfies

|C|⇥ |C
?� | = |C|⇥ |�(C)?| = |�(C)|⇥ |�(C)?| = |R

n

e,r
|,



6.2 Some preliminaries 197

which implies that C � C
?� = R

n

e,r
. This shows that the code C is a projective

Re,r-module. Now by applying Theorem 2 of Kaplansky [59], we see that the code

C is a free code.

For any m⇥n matrix B over Re,r with the (i, j)-th entry as bi,j, let �0(B) denote

an m ⇥ n matrix over Re,r whose (i, j)-th entry is �0(bi,j) for each i and j. Recall

that a square matrix A over Re,r is said to be non-singular if the determinant of

the matrix A is a unit in Re,r. Now the following theorem provides a necessary and

su�cient condition under which a linear code over Re,r is a �-LCD code in terms of

its generator matrix.

Theorem 6.2.2. [66, Th. 3.7] A linear code C of length n over Re,r with a generator

matrix G is a �-LCD code if and only if the matrix G�0(G)t is non-singular.

Next, corresponding to the automorphism � of Rn

e,r
as defined by (6.1.1), one

can define an automorphism � of R
n

e,r
as

�(a) = (�0(a1), �0(a2), . . . , �0(an)) for all a = (a1, a2, . . . , an) 2 R
n

e,r
.

Now the �-inner product on R
n

e,r
is a map [·, ·]� : R

n

e,r
⇥R

n

e,r
! Re,r, defined as

[c, d]� = c · �(d) = c1�0(d1) + c2�0(d2) + · · ·+ cn�0(dn)

for all c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) in R
n

e,r
. If D is a linear code of

length n over Re,r, then its �-dual code D
?� is defined as

D
?� = {b 2 R

n

e,r
: [b, a]� = 0 for all a 2 D}.

Note that D
?� is also a linear code of length n over Re,r. The code D is said

to be a linear code with complementary �-dual (or a �-LCD code) if it satisfies

D \D
?� = {0}.

Now by Theorem 2.2.2, we see that every free linear code C of length n over Re,r

is permutation equivalent to a code with a generator matrix in the standard form

G =
h
Ik | A

i
,
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where Ik is the k ⇥ k identity matrix over Re,r and A is a k ⇥ (n� k) matrix over

Re,r. Recall that the integer k is the rank of the code C. One can easily observe

that |C| = |Re,r|
ke = p

rke
. Moreover, for 1  i  e, by (2.2.2), we see that the

i-th Torsion code Tori(C) of the code C is permutation equivalent to a code with a

generator matrix in the standard form

G =
h
Ik | A

i
.

From this, we see that Tor1(C) = Tor2(C) = Tor3(C) = · · · = Tore(C). In a recent

work, Liu and Wang [68, Cor. 17] provided a necessary and su�cient condition

under which a linear code over Re,r is a Euclidean LCD code in terms of its Torsion

codes. The following theorem extends this result to �-LCD codes over the finite

commutative chain ring Re,r for each automorphism �0 of Re,r.

Theorem 6.2.3. Let C be a linear code of length n over Re,r with a generator

matrix G. Then the following three statements are equivalent:

(a) The code C is a �-LCD code.

(b) For 1  i  e, the Torsion code Tori(C) is a �-LCD code over Re,r with a

generator matrix G.

(c) The code C is a free code and the matrix G�0(G)t is non-singular.

Proof. To prove the result, we see, by Theorem 6.2.2, that the code C is �-LCD if

and only if the matrix G�0(G)t is non-singular, i.e., the determinant of the matrix

G�0(G)t is a unit in Re,r. Further, we observe that det(G�0(G)t) = det(G�0(G)t),

which implies that the determinant of the matrix G�0(G)t is a unit in Re,r if and

only if the determinant of the matrix G�0(G)t is non-zero. Thus by Theorem 6.2.2,

it follows that the code C is �-LCD if and only if its Torsion code Tor1(C) is a

�-LCD over Re,r. From this, the desired result follows immediately.

In view of Corollaries 2.1.1 and 2.1.2, we note that the class of �-LCD codes over

Re,r is a much broader class as compared to that of Euclidean LCD codes over Re,r

even if we assume that �0 2 Aut1(Re,r) [ Aut2(Re,r).
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From now on, we shall follow the same notations as in Section 6.2. In the

following section, we will count all �-LCD codes of length n over Re,r when �0 2

Aut1(Re,r) [ Aut2(Re,r).

6.3 Enumeration of �-LCD codes over Re,r when

�0 2 Aut1(Re,r) [ Aut2(Re,r)

Throughout this section, we assume that �0 2 Aut1(Re,r) [ Aut2(Re,r). We

recall, by Theorem 6.2.3, that a linear code C of length n over Re,r is a �-LCD code

if and only if Tor1(C) = Tor2(C) = · · · = Tore(C) and the Torsion code Tor1(C) is

a �-LCD code of length n over Re,r. We next recall that the residue field Re,r of the

chain ring Re,r has order pr, where p is a prime number and r is a positive integer.

Now to count all �-LCD codes of an arbitrary length n over Re,r, we will first count

all �-LCD codes of length n and rank k over Re,r with a prescribed 1-th Torsion

code. To do this, we assume, throughout this section, that C1 is a k-dimensional

linear code of length n over Re,r with a generator matrix

h
Ik | L

i
,

where L is a k⇥ (n�k) matrix over Re,r. Further, since the map ��Te,r : Te,r ! Re,r

is a bijection, there exists a unique k⇥(n�k) matrix A0 over Te,r satisfying A0 = L.

Now we make the following observation.

Lemma 6.3.1. If C is a free linear code of length n over Re,r with Tor1(C) = C1,

then there exist k⇥ (n� k) matrices A1, A2, . . . , Ae�1 over Te,r such that the matrix

h
Ik | A0 + uA1 + · · ·+ u

e�1
Ae�1

i
(6.3.1)

is a generator matrix of the code C.

Proof. As Tor1(C) = C1, there exist k⇥k matrices M1,M2, . . . ,Me�1 and k⇥(n�k)

matrices P1, P2, . . . , Pe�1 over Te,r such that

R
k

e,r

h
Ik + uM1 + · · ·+ u

e�1
Me�1 | A0 + uP1 + · · ·+ u

e�1
Pe�1

i
✓ C.
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Now by applying the elementary row operations, we obtain

R
k

e,r

h
Ik + uB1 + · · ·+ u

e�1
Be�1

i

⇥

h
Ik + uM1 + · · ·+ u

e�1
Me�1 | A0 + uP1 + · · ·+ u

e�1
Pe�1

i
✓ C,

where B1, B2, . . . , Be�1 are k ⇥ k matrices over Re,r, given by

B1 = �M1

and

Bj = �Mj �

j�1X

i=1

BiMj�i

for 2  j  e� 1. From this, it follows that

R
k

e,r

h
Ik | A0 + uA

0
1 + u

2
A

0
2 + · · ·+ u

e�1
A

0
e�1

i
✓ C,

where A
0
1, A

0
2, . . . , A

0
e�1 are k ⇥ (n� k) matrices over Re,r, given by

A
0
1 = P1 +B1A0

and

A
0
j
= Pj +BjA0 +

j�1X

i=1

BiPj�i

for 2  j  e� 1. It is easy to observe that there exist unique k ⇥ (n� k) matrices

A1, A2, . . ., Ae�1 over Te,r satisfying

A
0
1 + uA

0
2 + · · ·+ u

e�2
A

0
e�1 ⌘ A1 + uA2 + · · ·+ u

e�2
Ae�1 (mod u

e�1).

This implies that

R
k

e,r

h
Ik | A0 + uA1 + u

2
A2 + · · ·+ u

e�1
Ae�1

i
✓ C.
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Furthermore, we see that

|C| = |Tor1(C)|e = (pr)ke =
���Rk

e,r

h
Ik | A0 + uA1 + u

2
A2 + · · ·+ u

e�1
Ae�1

i���  |C|,

from which it follows that the code C has a generator matrix of the form (6.3.1).

In the following theorem, we enumerate all �-LCD codes C of length n over Re,r

with Tor1(C) = C1.

Theorem 6.3.1. If the code C1 is a k-dimensional �-LCD code of length n over

Re,r, then there are precisely

p
rk(n�k)(e�1)

distinct �-LCD codes C of length n over Re,r with Tor1(C) = C1.

Proof. To prove the result, let C be a free linear code of length n over Re,r with

Tor1(C) = C1. Here by Lemma 6.3.1, we see that there exist k ⇥ (n � k) matrices

A1, A2, . . . , Ae�1 over Te,r such that the matrix

G =
h
Ik | A0 + uA1 + · · ·+ u

e�1
Ae�1

i

is a generator matrix of the code C. By applying Theorem 6.2.3, we see that the

code C is �-LCD if and only if the matrix

G�0(G)t = Ik + A0�0(A0)
t = Ik + L�0(L)

t

is non-singular. This implies that the code C is �-LCD for arbitrary choices of the

k⇥ (n� k) matrices A1, A2, . . . , Ae�1 over Te,r. Furthermore, one can easily observe

that the distinct choices of the k ⇥ (n� k) matrices A1, A2, . . . , Ae�1 over Te,r give

rise to distinct �-LCD codes of length n over Re,r with Tor1(C) = C1. From this

and by using the fact that the matrices A1, A2, . . . , Ae�1 have precisely p
rk(n�k)(e�1)

distinct choices, the desired result follows immediately.

Now we shall distinguish the following two cases: (i) �0 2 Aut1(Re,r) and (ii)

�0 2 Aut2(Re,r).
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6.3.1 The case �0 2 Aut1(Re,r)

Throughout this section, we assume that �0 2 Aut1(Re,r), i.e., �0 is an au-

tomorphism of Re,r such that �0 is the identity automorphism of Re,r. Now to

enumerate all �-LCD codes of length n and rank k over Re,r, we shall first count all

k-dimensional Euclidean LCD codes of length n over the finite field Fq of order q

by distinguishing the following two cases: (i) q is an even prime power and (ii) q is

an odd prime power. It is worth mentioning that Carlet et al. [27, Cor. 17 and 32]

also enumerated all k-dimensional Euclidean LCD codes of length n over Fq when

either q = 2 or q is an odd prime power. Recently, Liu and Wang [69] also counted

all Euclidean and Hermitian LCD codes over Fq by using cogredience theories of

matrices. However, our proof technique is quite di↵erent from the ones employed

by Carlet et al. [27, Sec. IV and V] and Liu and Wang [69].

Now to count all Euclidean LCD codes of length n and dimension k over Fq when

q is an even prime power, we need to study derangements of the set {1, 2, . . . , n}.

A derangement of a non-empty set {1, 2, . . . , n} is defined as a permutation ⇡ of

{1, 2, . . . , n} satisfying ⇡(i) 6= i for all i 2 {1, 2, . . . , n}. Next, let Xn be the set

consisting of all the derangements of the set {1, 2, . . . , n}. By Exercise 21 of [19, Ch.

6], we have the following lemma.

Lemma 6.3.2. |Xn| is even if and only if n is an odd integer.

We also need the following lemma by Sharma and Kaur [91].

Lemma 6.3.3. [91, Lem. 3.7] Let (V,B) be an m-dimensional symplectic space

over Fq. Then the integer m is even. Further, for 0  k  m, the number Mk of

distinct k-dimensional non-degenerate Fq-linear subspaces of V is given by

Mk =

8
><

>:

q
k(m�k)

2


m/2

k/2

�

q2

if k is even;

0 otherwise.

From now on, let Lq(n; k) denote the number of distinct k-dimensional Euclidean

LCD codes of length n over Fq for 0  k  n. It is easy to see that Lq(n; 0) =

Lq(n;n) = 1. So we assume, throughout this section, that 1  k  n� 1.
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Determination of the number Lq(n; k) when q is an even prime

power

Throughout this section, we assume that q is an even prime power. In the follow-

ing theorem, we explicitly determine the number Lq(n; k) of distinct k-dimensional

Euclidean LCD codes of length n over Fq for 1  k  n� 1.

Theorem 6.3.2. Let q be an even prime power. For 1  k  n� 1, we have

Lq(n; k) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

q
(n�k)(k+1)

2


(n� 1)/2

(k � 1)/2

�

q2

if both k and n are odd;

q
nk�k

2+n�1
2


(n� 2)/2

(k � 1)/2

�

q2

if k is odd and n is even;

q
k(n�k+1)

2


(n� 1)/2

k/2

�

q2

if k is even and n is odd;

q
nk�k

2�2
2

⇣
(qk + q � 1)


(n� 2)/2

k/2

�

q2

+(qn�k+1
� q

n�k + 1)


(n� 2)/2

(k � 2)/2

�

q2

⌘
if both k and n are even.

To prove the above theorem, let · denote the Euclidean bilinear form on Fn

q
. It

is easy to see that the Euclidean bilinear form · is a non-degenerate and symmetric

bilinear form on Fn

q
, i.e., the formed space

�
Fn

q
, ·
�
is an n-dimensional orthogonal

space over Fq. We further observe that each Euclidean LCD code of length n and

dimension k over Fq can also be viewed as a k-dimensional non-degenerate Fq-

linear subspace of the orthogonal space (Fn

q
, ·). In view of this, the number Lq(n; k)

equals the number of distinct k-dimensional non-degenerate Fq-linear subspaces of

the orthogonal space (Fn

q
, ·). Now we define

W0 =
�
(w1, w2, . . . , wn) 2 Fn

q
:

nX

i=1

wi = 0
 
.

It is easy to observe that the set W0 is an (n� 1)-dimensional Fq-linear subspace of

the orthogonal space Fn

q
. Further, we see that (W0, · �W0⇥W0) is a symplectic space

over Fq. We also note that the all-one vector 1 = (1, 1, . . . , 1) 2 W0 if and only if n

is an even integer. Accordingly, we will distinguish the following two cases: A. n is
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odd and B. n is even.

In the following proposition, we determine the number Lq(n; k) when q is even

and n is odd, where 1  k  n� 1.

Proposition 6.3.1. Let q be an even prime power, and let n be an odd integer. For

1  k  n� 1, we have

Lq(n; k) =

8
>>><

>>>:

q
(n�k)(k+1)

2


(n� 1)/2

(k � 1)/2

�

q2

if k is odd;

q
k(n�k+1)

2


(n� 1)/2

k/2

�

q2

if k is even.

Proof. To prove the result, we first note that the all-one vector 1 = (1, 1, . . . , 1) 62 W0

and that w0 · 1 = 0 for all w0 2 W0. This implies that Fn

q
= W0 ? h1i. We further

observe that any k-dimensional Fq-linear subspace of Fn

q
is either contained in W0

or not contained in W0.

First of all, we will count all k-dimensional non-degenerate Fq-linear subspaces

of Fn

q
that are contained in W0. For this, we see, by Lemma 6.3.3, that there does

not exist any k-dimensional non-degenerate Fq-linear subspace of Fn

q
contained in

W0 when k is odd, while the number of such k-dimensional non-degenerate Fq-linear

subspaces of W0 is given by

C(e1)
k

= q
k(n�k�1)

2


(n� 1)/2

k/2

�

q2

when k is even.

Next, we observe that any k-dimensional Fq-linear subspace of Fn

q
not contained

in W0 is of the type hv1, v2, . . . , vk�1,1+ vki, where vi 2 W0 \ {0} for 1  i  k � 1

and vk 2 W0. Here we will distinguish the following two cases: (i) k is odd and (ii)

k is even.

(i) Let k be odd. When vk = 0, we see, by applying Theorem 2.3.1 and Lemma

6.3.2, that the k-dimensional Fq-linear subspace hv1, v2, . . . , vk�1,1i of Fn

q
is

non-degenerate if and only if hv1, v2, . . . , vk�1i is a (k � 1)-dimensional non-

degenerate Fq-linear subspace of W0. Now by applying Lemma 6.3.3, we see
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that there are precisely

q
(k�1)(n�k)

2


(n� 1)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�1,1i, where vi 2 W0 \ {0} for 1  i  k � 1.

Next, let vk 6= 0. Here by applying Theorem 2.3.1 and Lemma 6.3.2 again, we

see that hv1, v2, . . . , vk�1,1 + vki is a k-dimensional non-degenerate Fq-linear

subspace of Fn

q
if and only if hv1, v2, . . . , vk�1i is a (k � 1)-dimensional non-

degenerate Fq-linear subspace of W0. Further, we observe that each (k � 1)-

dimensional non-degenerate Fq-linear subspace hv1, v2, . . . , vk�1i of W0 gives

rise to precisely (qn�k
� 1) distinct k-dimensional non-degenerate Fq-linear

subspaces of Fn

q
of the type hv1, v2, . . . , vk�1,1 + vki, where vk( 6= 0) 2 W0.

From this and by applying Lemma 6.3.3 again, we see that there are precisely

q
(k�1)(n�k)

2 (qn�k
� 1)


(n� 1)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the form

hv1, v2, . . . , vk�1,1+ vki, where vi 2 W0 \ {0} for 1  i  k.

On combining both the cases, we see that the number of distinct k-dimensional

non-degenerate Fq-linear subspaces of Fn

q
of the form hv1, v2, . . . , vk�1,1 + vki

with vi 2 W0 \ {0} for 1  i  k � 1 and vk 2 W0, is given by

C(o)
k

= q
(k�1)(n�k)

2


(n� 1)/2

(k � 1)/2

�

q2

+ q
(k�1)(n�k)

2 (qn�k
� 1)


(n� 1)/2

(k � 1)/2

�

q2

= q
(n�k)(k+1)

2


(n� 1)/2

(k � 1)/2

�

q2

.

(ii) Let k be even. When vk = 0, we see, by applying Theorem 2.3.1 and Lemma

6.3.2, that hv1, v2, . . . , vk�1,1i is a degenerate Fq-linear subspace of Fn

q
.

Next, let vk 6= 0. Here by applying Theorem 2.3.1 and Lemma 6.3.2, we see that

hv1, v2, . . . , vk�1,1 + vki is a k-dimensional non-degenerate Fq-linear subspace

of Fn

q
if and only if hv1, v2, . . . , vki is a k-dimensional non-degenerate Fq-linear
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subspace of W0. Further, we observe that each k-dimensional non-degenerate

Fq-linear subspace hv1, v2, . . . , vki of W0 gives rise to precisely (qk�1) distinct

k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . ,

vk�1,1+ vki. From this and by applying Lemma 6.3.3 again, we see that there

are precisely

C(e2)
k

= q
k(n�k�1)

2 (qk � 1)


(n� 1)/2

k/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the form

hv1, v2, . . . , vk�1,1+ vki, where vi 2 W0 \ {0} for 1  i  k.

On combining the above cases, we get

Lq(n; k) = C(o)
k

= q
(n�k)(k+1)

2


(n� 1)/2

(k � 1)/2

�

q2

when k is odd,

and

Lq(n; k) = C(e1)
k

+ C(e2)
k

= q
k(n�k+1)

2


(n� 1)/2

k/2

�

q2

when k is even.

Next, let n be an even integer. In this case, we first note that 1 = (1, 1, . . . , 1) 2

W0. Now to enumerate all k-dimensional non-degenerate Fq-linear subspaces of Fn

q
,

letW1 be an (n�2)-dimensional Fq-linear subspace ofW0 such that 1 62 W1. One can

easily observe that there exists an element z 2 W
?
1 \W0. In view of this, we can write

Fn

q
= W1 � h1i � hzi. We further see that (W1, · �W1⇥W1) is an (n� 2)-dimensional

symplectic space over Fq.We next observe that any k-dimensional Fq-linear subspace

of Fn

q
is either contained in W1, or contained in W1�h1i but not in W1, or contained

in W1 � hzi but not in W1, or contained in Fn

q
= W1 � h1i � hzi but not in any of

the subspaces W1, W1 � h1i and W1 � hzi. Accordingly, we proceed as follows:

In the following lemma, we count all k-dimensional non-degenerate Fq-linear

subspaces of Fn

q
that are contained in W1.

Lemma 6.3.4. Let q be an even prime power, n be an even integer, and let k be

an integer satisfying 1  k  n � 1. The number D(1)
k

of distinct k-dimensional
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non-degenerate Fq-linear subspaces of Fn

q
, that are contained in W1 is given by

D(1)
k

=

8
><

>:

q
k(n�k�2)

2


(n� 2)/2

k/2

�

q2

if k is even;

0 otherwise.

Proof. The desired result follows by applying Lemma 6.3.3.

In the following lemma, we count all k-dimensional non-degenerate Fq-linear

subspaces of Fn

q
that are contained in W1 � h1i but not in W1.

Lemma 6.3.5. Let q be an even prime power, n be an even integer, and let k be

an integer satisfying 1  k  n � 1. The number D(2)
k

of distinct k-dimensional

non-degenerate Fq-linear subspaces of Fn

q
that are contained in W1 � h1i but not in

W1, is given by

D(2)
k

=

8
><

>:

q
k(n�k�2)

2 (qk � 1)


(n� 2)/2

k/2

�

q2

if k is even;

0 otherwise.

Proof. Working as in Proposition 6.3.1, the desired result follows.

In the following lemma, we count all k-dimensional non-degenerate Fq-linear

subspaces of Fn

q
that are contained in W1 � hzi but not in W1.

Lemma 6.3.6. Let q be an even prime power, n be an even integer, and let k be

an integer satisfying 1  k  n � 1. The number D(3)
k

of distinct k-dimensional

non-degenerate Fq-linear subspaces of Fn

q
that are contained in W1 � hzi but not in

W1, is given by

D(3)
k

=

8
>>><

>>>:

q
(k+1)(n�k�1)

2


(n� 2)/2

(k � 1)/2

�

q2

if k is odd;

q
k(n�k�2)

2 (qk � 1)


(n� 2)/2

k/2

�

q2

if k is even.

Proof. Working as in Proposition 6.3.1, the desired result follows.
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Finally, we proceed to enumerate all distinct k-dimensional non-degenerate Fq-

linear subspaces of Fn

q
that are contained in Fn

q
= W1 � h1i � hzi but not in any

of the subspaces W1, W1 � h1i and W1 � hzi. For this, we first observe that any

such k-dimensional non-degenerate Fq-linear subspace U of Fn

q
is exactly one of the

following two types:

(a) U = hv1, v2, . . . , vk�1,1 + vk + �zi, where �( 6= 0) 2 Fq, vi 2 W1 \ {0} for

1  i  k � 1 and vk 2 W1.

(b) U = hv1, v2, . . . , vk�2,1+vk�1, z+vki, where k � 2, vi 2 W1\{0} for 1  i  k�2

and vk�1, vk 2 W1.

Now in the following lemma, we first count all k-dimensional non-degenerate Fq-

linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�1,1+ vk + �zi, where �( 6= 0) 2 Fq,

vi 2 W1 \ {0} for 1  i  k � 1 and vk 2 W1.

Lemma 6.3.7. Let q be an even prime power, n be an even integer, and let k be

an integer satisfying 1  k  n � 1. The number D(4)
k

of distinct k-dimensional

non-degenerate Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�1,1 + vk + �zi,

where �( 6= 0) 2 Fq, vi 2 W1 \ {0} for 1  i  k � 1 and vk 2 W1, is given by

D(4)
k

=

8
>>><

>>>:

q
k(n�k�2)

2 (qk � 1)(q � 1)


(n� 2)/2

k/2

�

q2

if k is even;

q
(k+1)(n�k�1)

2 (q � 1)


(n� 2)/2

(k � 1)/2

�

q2

if k is odd.

Proof. To prove the result, we will consider the following two cases separately: k is

even and k is odd.

(i) Let k be even. When vk = 0, we see, by applying Theorem 2.3.1 and Lemma

6.3.2, that hv1, v2, . . . , vk�1,1 + �zi is a degenerate Fq-linear subspace of Fn

q
.

On the other hand, when vk 6= 0, we see, by applying Theorem 2.3.1 and

Lemma 6.3.2 again, that hv1, v2, . . . , vk�1,1 + �z + vki is a k-dimensional

non-degenerate Fq-linear subspace of Fn

q
if and only if hv1, v2, . . . , vki is a k-

dimensional non-degenerate Fq-linear subspace of W1. We further observe that

each k-dimensional non-degenerate Fq-linear subspace hv1, v2, . . . , vki of W1

gives rise to precisely (qk � 1)(q � 1) distinct k-dimensional non-degenerate
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Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�1,1 + �z + vki, where

�( 6= 0) 2 Fq. From this and by applying Lemma 6.3.3, we see that there are

precisely

q
k(n�k�2)

2 (qk � 1)(q � 1)


(n� 2)/2

k/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�1,1+�z+vki, where �( 6= 0) 2 Fq, vi 2 W1\{0} for 1  i  k�1

and vk 2 W1.

(ii) Next, let k be odd. Here by applying Theorem 2.3.1 and Lemma 6.3.2, we see

that hv1, v2, . . . , vk�1,1+ �z + vki is a k-dimensional non-degenerate Fq-linear

subspace of Fn

q
if and only if hv1, v2, . . . , vk�1i is a (k � 1)-dimensional non-

degenerate Fq-linear subspace of W1. We further observe that each element

�( 6= 0) 2 Fq and each element vk 2 hv1, v2, . . . , vk�1i
? give rise to a distinct

k-dimensional non-degenerate Fq-linear subspace of Fn

q
of the type hv1, v2, . . . ,

vk�1,1+ �z + vki. This implies that each (k � 1)-dimensional non-degenerate

Fq-linear subspace hv1, v2, . . . , vk�1i of W1 gives rise to precisely q
n�k�1(q� 1)

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�1,1+ �z + vki, where �( 6= 0) 2 Fq and vk 2 W1. From this and

by applying Lemma 6.3.3 again, we see that there are precisely

q
(k+1)(n�k�1)

2 (q � 1)


(n� 2)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�1,1+�z+vki, where �( 6= 0) 2 Fq, vi 2 W1\{0} for 1  i  k�1

and vk 2 W1.

In the following lemma, we proceed to count all k-dimensional non-degenerate

Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�2,1 + vk�1, z + vki, where 2 

k  n� 1, vi 2 W1 \ {0} for 1  i  k � 2 and vk�1, vk 2 W1.
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Lemma 6.3.8. Let q be an even prime power, n be an even integer, and let k be an

integer satisfying 2  k  n � 1. The number D(5)
k

of distinct k-dimensional non-

degenerate Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�2,1 + vk�1, z + vki

with vi 2 W1 \ {0} for 1  i  k � 2 and vk�1, vk 2 W1, is given by

D(5)
k

=

8
>>>>>>>><

>>>>>>>>:

q
k(n�k)+(n�2k+1)

2 (qk�1
� 1)


(n� 2)/2

(k � 1)/2

�

q2

if k is odd;

q
nk�k

2�2
2 (qn�k+1

� q
n�k + 1)


(n� 2)/2

(k � 2)/2

�

q2

+q
k(n�k�2)

2 (qk+1
� q)(qk�2

� 1)


(n� 2)/2

k/2

�

q2

if k is even.

Proof. To prove the result, we will distinguish the following two cases: k is odd and

k is even.

(i) Let k be odd. Here when vk�1 = 0, by applying Theorem 2.3.1 and Lemma

6.3.2, we see that the k-dimensional Fq-linear subspace hv1, v2, . . . , vk�2,1, z+

vki of Fn

q
is degenerate.

When vk�1 6= 0 and vk = 0, by applying Theorem 2.3.1 and Lemma 6.3.2 again,

we see that hv1, v2, . . . , vk�2,1 + vk�1, zi is a k-dimensional non-degenerate

Fq-linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2, vk�1i is a (k � 1)-

dimensional non-degenerate Fq-linear subspace of W1. We further observe that

each (k � 1)-dimensional non-degenerate Fq-linear subspace hv1, v2, . . . , vk�1i

of W1 gives rise to precisely (qk�1
� 1) distinct k-dimensional non-degenerate

Fq-linear subspaces hv1, v2, . . . , vk�2,1 + vk�1, zi of Fn

q
. Further, by applying

Lemma 6.3.3, we see that there are precisely

q
(k�1)(n�k�1)

2 (qk�1
� 1)


(n� 2)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1+ vk�1, zi, where vi 2 W1 \ {0} for 1  i  k � 1.

Now let vk�1, vk 2 W1 both be non-zero. Here we will consider the following

two cases separately: vk�1, vk are linearly dependent over Fq and vk�1, vk are

linearly independent over Fq.
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First let vk�1, vk 2 W1 be linearly dependent over Fq. Here we have vk = avk�1

for some a( 6= 0) 2 Fq. Further, it is easy to observe that

hv1, v2, . . . , vk�2,1+ vk�1, z + vki = hv1, v2, . . . , vk�2,1+ vk�1,1+ �zi

for some �( 6= 0) 2 Fq. Next by applying Theorem 2.3.1 and Lemma 6.3.2, we

see that hv1, v2, . . . , vk�2,1 + vk�1,1 + �zi is a k-dimensional non-degenerate

Fq-linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2, vk�1i is a (k � 1)-

dimensional non-degenerate Fq-linear subspace of W1. Now working as in

Proposition 6.3.1(ii) and by applying Lemma 6.3.3 again, we see that there

are precisely

q
(k�1)(n�k�1)

2 (q � 1)(qk�1
� 1)


(n� 2)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1 + vk�1,1 + �zi, where �( 6= 0) 2 Fq, vi( 6= 0) 2 W1 for

1  i  k, such that vk�1 and vk are linearly dependent over Fq.

Next, let vk�1, vk 2 W1 be linearly independent over Fq. By applying Theo-

rem 2.3.1 and Lemma 6.3.2 again, we see that hv1, v2, . . . , vk�2,1+vk�1, z+vki

is a k-dimensional non-degenerate Fq-linear subspace of Fn

q
if and only if

hv1, v2, . . . , vk�2, vk�1i is a (k � 1)-dimensional non-degenerate Fq-linear sub-

space of W1. Further, working as in Proposition 6.3.1(ii), we observe that

each (k � 1)-dimensional non-degenerate Fq-linear subspace hv1, v2, . . . , vk�1i

of W1 gives rise to precisely (qk�1
� 1) distinct (k � 1)-dimensional non-

degenerate Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�2,1 + vk�1i,

where vi 2 W1 \ {0} for 1  i  k � 1. Furthermore, by applying Theorem

2.3.2, we can write vk =
k�1P
j=1

ajvj + ew, where aj 2 Fq for 1  j  k � 1 and

ew 2 hv1, v2, . . . , vk�1i
?
\{0}.We next observe that hv1, v2, . . . , vk�2,1+vk�1, z+

vki = hv1, v2, . . . , vk�2,1 + vk�1, z + ak�1vk�1 + ewi. It is easy to observe that

ak�1vk�1 + ew 6= 0. Further, each element ak�1 2 Fq and each non-zero element

ew 2 hv1, v2, . . . , vk�1i
? gives rise to a distinct k-dimensional non-degenerate

Fq-linear subspace of Fn

q
of the type hv1, v2, . . . , vk�2,1 + vk�1, z + vki. From
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this and by applying Lemma 6.3.3 again, we see that there are precisely

q
(k�1)(n�k�1)

2 (qk�1
� 1)(qn�k

� q)


(n� 2)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1+ vk�1, z+ vki, where vi( 6= 0) 2 W1 for 1  i  k, such that

vk�1 and vk are linearly independent over Fq.

On combining the above cases, we see that when k is odd, there are precisely

q
k(n�k)+(n�2k+1)

2 (qk�1
� 1)


(n� 2)/2

(k � 1)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1 + vk�1, z + vki, where vi 2 W1 \ {0} for 1  i  k � 2 and

vk�1, vk 2 W1.

(ii) Next, let k be even. Here when vk�1 = vk = 0, by applying Theorem 2.3.1

and Lemma 6.3.2, we see that hv1, v2, . . . , vk�2,1, zi is a k-dimensional non-

degenerate Fq-linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2i is a (k �

2)-dimensional non-degenerate Fq-linear subspace of W1. Now by applying

Lemma 6.3.3, we see that there are precisely

q
(k�2)(n�k)

2


(n� 2)/2

(k � 2)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1, zi, where vi 2 W1 \ {0} for 1  i  k � 2.

When vk�1 6= 0 and vk = 0, by applying Theorem 2.3.1 and Lemma 6.3.2 again,

we see that hv1, v2, . . . , vk�2,1+ vk�1, zi is a k-dimensional non-degenerate Fq-

linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2i is a (k � 2)-dimensional

non-degenerate Fq-linear subspace of W1. Further, working as in Proposition

6.3.1(i) and by applying Lemma 6.3.3, we see that there are precisely

q
(k�2)(n�k)

2 (qn�k
� 1)


(n� 2)/2

(k � 2)/2

�

q2
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distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1+ vk�1, zi, where vi 2 W1 \ {0} for 1  i  k � 1.

When vk�1 = 0 and vk 6= 0, by applying Theorem 2.3.1 and Lemma 6.3.2 again,

we see that hv1, v2, . . . , vk�2,1, z + vki is a k-dimensional non-degenerate Fq-

linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2i is a (k � 2)-dimensional

non-degenerate Fq-linear subspace of W1. We next observe that each ele-

ment vk 2 hv1, v2, . . . , vk�2i
?
\ {0} gives rise to a distinct k-dimensional non-

degenerate Fq-linear subspace hv1, v2, . . . , vk�2,1, z+vki of Fn

q
. Now by applying

Lemma 6.3.3, we see that the number of distinct k-dimensional non-degenerate

Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�2,1, z + vki is given by

q
(k�2)(n�k)

2 (qn�k
� 1)


(n� 2)/2

(k � 2)/2

�

q2

.

Now let vk�1, vk 2 W1 both be non-zero. Here we will consider the following

two cases separately: vk�1 and vk are linearly dependent over Fq, and vk�1 and

vk are linearly independent over Fq.

First let vk�1 and vk be linearly dependent over Fq. Here we observe that

hv1, v2, . . . , vk�2,1+ vk�1, z+ vki = hv1, v2, . . . , vk�2,1+ vk�1,1+ �zi for some

�( 6= 0) 2 Fq. Further, for each �( 6= 0) 2 Fq, we see, by applying Theorem 2.3.1

and Lemma 6.3.2, that hv1, v2, . . . , vk�2,1 + vk�1,1 + �zi is a k-dimensional

non-degenerate Fq-linear subspace of Fn

q
if and only if hv1, v2, . . . , vk�2i is a

(k�2)-dimensional non-degenerate Fq-linear subspace of W1. We next observe

that each element �( 6= 0) 2 Fq and each element vk�1 2 hv1, v2, . . . , vk�2i
?
\{0}

give rise to a distinct k-dimensional non-degenerate Fq-linear subspace of Fn

q

of the type hv1, v2, . . . , vk�2,1 + vk�1,1 + �zi. Now by applying Lemma 6.3.3

again, we see that there are precisely

q
(k�2)(n�k)

2 (qn�k
� 1)(q � 1)


(n� 2)/2

(k � 2)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q
of the type

hv1, v2, . . . , vk�2,1 + vk�1,1 + �zi, where �( 6= 0) 2 Fq and vi 2 W1 \ {0} for
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1  i  k � 1.

Finally, let vk�1 and vk be linearly independent over Fq. Let G(v1, v2, . . . , vk),

G(v1, v2, . . . , vk�2) and G(v1, v2, . . . , vk�2,1 + vk�1, z + vk) denote the Gram

matrices of Fq-linear subspaces of Fn

q
with respect to the bases {v1, v2, . . . , vk},

{v1, v2, . . . , vk�2} and {v1, v2, . . . , vk�2,1+ vk�1, z+ vk}, respectively. Then by

applying Theorem 2.3.1 and Lemma 6.3.2, we observe that

det(G(v1, v2, . . . , vk�2,1+ vk�1, z + vk)) = det(G(v1, v2, . . . , vk�2))

+ det(G(v1, v2, . . . , vk)).

This implies that the k-dimensional Fq-linear subspace hv1, v2, . . . , vk�2,1 +

vk�1, z + vki of Fn

q
is non-degenerate if and only if either

(?) the k-dimensional Fq-linear subspace hv1, v2, . . . , vki of W1 is degenerate

but the (k� 2)-dimensional Fq-linear subspace hv1, v2, . . . , vk�2i of W1 is

non-degenerate, or

(⇧) the k-dimensional Fq-linear subspace hv1, v2, . . . , vki ofW1 is non-degenerate

but the (k� 2)-dimensional Fq-linear subspace hv1, v2, . . . , vk�2i of W1 is

degenerate, or

(†) both Fq-linear subspaces hv1, v2, . . . , vk�2i and hv1, v2, . . . , vki of W1 are

non-degenerate, and det(G(v1, v2, . . . , vk�2)) 6= det(G(v1, v2, . . . , vk)).

We will first enumerate all k-dimensional non-degenerate Fq-linear subspaces

of Fn

q
of the type hv1, v2, . . . , vk�2,1+ vk�1, z + vki satisfying (?). For this, we

see, by Lemma 6.3.3, that the number of distinct (k � 2)-dimensional non-

degenerate Fq-linear subspaces of W1 of the type hv1, v2, . . . , vk�2i is given

by

q
(k�2)(n�k)

2


(n� 2)/2

(k � 2)/2

�

q2

.

Further, by applying Theorem 2.3.2, we can write W1 = hv1, v2, . . . , vk�2i ?

hv1, v2, . . . , vk�2i
?, where hv1, v2, . . . , vk�2i

? is an (n � k)-dimensional non-

degenerate Fq-linear subspace of W1. We next observe that each pair (vk�1, vk)
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of linearly independent vectors in hv1, v2, . . . , vk�2i
? gives rise to a distinct k-

dimensional non-degenerate Fq-linear subspace of Fn

q
of the type hv1, v2, . . . ,

vk�2,1+vk�1, z+vki. It is easy to observe that hv1, v2, . . . , vki = hv1, v2, . . . , vk�2i

? hvk�1, vki, which implies that

det(G(v1, v2, . . . , vk)) = det(G(v1, v2, . . . , vk�2)) det(G(vk�1, vk)).

From this, we note that the Fq-linear subspace hv1, v2, . . . , vki of W1 is degen-

erate if and only if det(G(vk�1, vk)) = 0 if and only if vk 2 hv1, v2, . . . , vk�1i
?
.

This implies that there are precisely (qn�k
� 1)(qn�k�1

� q) relevant choices

for the pair (vk�1, vk). Now by applying Lemma 6.3.3, we see that there are

precisely

q
(k�2)(n�k)

2 (qn�k
� 1)(qn�k�1

� q)


(n� 2)/2

(k � 2)/2

�

q2

distinct k-dimensional non-degenerate Fq-linear subspaces hv1, v2, . . . , vk�2,1+

vk�1, z + vki of Fn

q
satisfying (?).

Next we will enumerate all k-dimensional Fq-linear subspaces hv1, v2, . . . , vk�2,1+

vk�1, z + vki of Fn

q
satisfying (⇧). For this, we see, by Lemma 6.3.3, that the

number of distinct k-dimensional non-degenerate Fq-linear subspaces hv1, v2, . . . ,

vki of W1 is given by

q
k(n�k�2)

2


(n� 2)/2

k/2

�

q2

.

Further, we observe that every k-dimensional non-degenerate Fq-linear sub-

space hv1, v2, . . . , vki of W1 has precisely

q
k�2


k/2

(k � 2)/2

�

q2

distinct (k � 2)-dimensional non-degenerate Fq-linear subspaces. From this

and by Theorem 2.3.9, we see that there are precisely

⇣
k

k � 2

�

q

� q
k�2


k/2

(k � 2)/2

�

q2

⌘

distinct (k � 2)-dimensional degenerate Fq-linear subspaces hv1, v2, . . . , vk�2i
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of the k-dimensional non-degenerate Fq-linear subspace hv1, v2, . . . , vki of W1.

Next let hy1, y2, . . . , yk�2i be a fixed (k � 2)-dimensional degenerate Fq-linear

subspace of hv1, v2, . . . , vki. Now we will choose two linearly independent vec-

tors yk�1, yk belonging to the Fq-linear subspace hv1, v2, . . . , vki of W1 such

that hy1, y2, . . . , yki = hv1, v2, . . . , vki. Note that the pair (yk�1, yk) has (q2 �

1)(q2 � q) distinct choices. From this and by applying Lemma 6.3.3, we see

that the number of distinct k-dimensional non-degenerate Fq-linear subspaces

of Fn

q
of the type hv1, v2, . . . , vk�2,1+ vk�1, z + vki satisfying (⇧) is given by

q
k(n�k�2)

2 (q2 � 1)(q2 � q)


(n� 2)/2

k/2

�

q2

⇣
k

k � 2

�

q

� q
k�2


k/2

(k � 2)/2

�

q2

⌘
.

Finally, we will enumerate all k-dimensional Fq-linear subspaces hv1, v2, . . . ,

vk�2,1+vk�1, z+vki of Fn

q
satisfying (†). For this, we see, by Lemma 6.3.3, that

the number of distinct (k�2)-dimensional non-degenerate Fq-linear subspaces

hv1, v2, . . . , vk�2i of W1 is given by

q
(k�2)(n�k)

2


(n� 2)/2

(k � 2)/2

�

q2

.

By Theorem 2.3.2, we can write W1 = hv1, v2, . . . , vk�2i ? hv1, v2, . . . , vk�2i
?,

where hv1, v2, . . . , vk�2i
? is an (n � k)-dimensional non-degenerate Fq-linear

subspace of W1. It is easy to observe that hv1, v2, . . . , vki = hv1, v2, . . . , vk�2i ?

hvk�1, vki, which implies that

det(G(v1, v2, . . . , vk)) = det(G(v1, v2, . . . , vk�2)) det(G(vk�1, vk)).

This further implies that the Fq-linear subspace hv1, v2, . . . , vki of W1 is non-

degenerate if and only if det(G(vk�1, vk)) 6= 0 if and only if vk 62 hvk�1i
? and

(vk�1, vk) is not a hyperbolic pair in hv1, v2, . . . , vk�2i
?. Thus there are pre-

cisely q
n�k�1(q � 1)(qn�k

� 1) distinct choices for the pair (vk�1, vk) such that

the Fq-linear subspaces hv1, v2, . . . , vk�2i and hv1, v2, . . . , vki of W1 are non-

degenerate. Next by Theorem 2.3.3, we see that the Witt index of hv1, v2, . . . ,

vk�2i
? is (n�k)/2 and that the number of hyperbolic pairs in hv1, v2, . . . , vk�2i

?
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is Hn�k

2 ,0 = q
n�k�1(qn�k

� 1). This implies that there are precisely (qn�k
�

1)(q � 2)qn�k�1 relevant choices of the pair (vk�1, vk). From this, we see that

the number of distinct k-dimensional non-degenerate Fq-linear subspaces of Fn

q

of the type hv1, v2, . . . , vk�2,1+ vk�1, z + vki satisfying (†) is given by

q
k(n�k)�2

2 (q � 2)(qn�k
� 1)


(n� 2)/2

(k � 2)/2

�

q2

.

From the above discussion, we see that the number of distinct k-dimensional

non-degenerate Fq-linear subspaces of Fn

q
of the type hv1, v2, . . . , vk�2,1 +

vk�1, z+vki with vi 2 W1\{0} for 1  i  k�2 and vk�1, vk 2 W1, is given by

q
nk�k

2�2
2 (qn�k+1

� q
n�k + 1)


(n� 2)/2

(k � 2)/2

�

q2

+q
k(n�k�2)

2 (qk+1
� q)(qk�2

� 1)


(n� 2)/2

k/2

�

q2

.

Now in the following proposition, we determine the number Lq(n; k) when both

q and n are even, where 1  k  n� 1.

Proposition 6.3.2. Let q be an even prime power, and let n be an even integer.

For 1  k  n� 1, we have

Lq(n; k) =

8
>>>>>>>><

>>>>>>>>:

q
(k+1)n�(k2+1)

2


(n� 2)/2

(k � 1)/2

�

q2

if k is odd;

q
nk�k

2�2
2

✓
(qk + q � 1)


(n� 2)/2

k/2

�

q2

+(qn�k+1
� q

n�k + 1)


(n� 2)/2

(k � 2)/2

�

q2

◆
if k is even.

Proof. The desired result follows from Lemmas 6.3.4-6.3.8 by noting that

Lq(n; k) = D(1)
k

+D(2)
k

+D(3)
k

+D(4)
k

+D(5)
k
.
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Proof of Theorem 6.3.2. It follows immediately from Propositions 6.3.1 and

6.3.2.

Determination of the number Lq(n; k) when q is an odd prime

power

Throughout this section, let us suppose that q is an odd prime power. In the

following theorem, we determine the number Lq(n; k) for 1  k  n� 1.

Theorem 6.3.3. Let q be an odd prime power. For 1  k  n� 1, we have

Lq(n; k) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

q
(n�k)(k+1)

2


(n� 1)/2

(k � 1)/2

�

q2

if both k and n are odd;

q
nk�k

2�1
2 (q

n

2 � 1)


(n� 2)/2

(k � 1)/2

�

q2

if k is odd and n is even with either

q ⌘ 1 (mod 4) or n ⌘ 0 (mod 4)

and q ⌘ 3 (mod 4);

q
nk�k

2�1
2 (q

n

2 + 1)


(n� 2)/2

(k � 1)/2

�

q2

if k is odd, q ⌘ 3 (mod 4) and

n ⌘ 2 (mod 4);

q
k(n�k+1)

2


(n� 1)/2

k/2

�

q2

if k is even and n is odd;

q
k(n�k)

2


n/2

k/2

�

q2

if both k and n are even.

Proof. To prove the result, let · denote the Euclidean bilinear form on Fn

q
. It is easy

to see that the Euclidean bilinear form · is a non-degenerate and symmetric bilinear

form on Fn

q
, i.e., the formed space

�
Fn

q
, ·
�
is an n-dimensional orthogonal space over

Fq. Since q is an odd prime power, one can easily observe that the orthogonal space
�
Fn

q
, ·
�
can also be viewed as a non-degenerate quadratic space with respect to the

quadratic map Q : Fn

q
! Fq, defined as

Q(v) =
1

2
v · v for each v 2 Fn

q
.

We further observe that each Euclidean LCD code of length n and dimension k over

Fq can also be viewed as a k-dimensional non-degenerate Fq-linear subspace of the

n-dimensional quadratic space (Fn

q
,Q). In view of this, the number Lq(n; k) equals
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the number of distinct k-dimensional non-degenerate quadratic Fq-linear subspaces

of the quadratic space (Fn

q
,Q) for 0  k  n. Further, it is easy to see that Lq(n; 0) =

Lq(n;n) = 1. So from this point on, we assume that 1  k  n� 1.

By Theorem 2.3.6(b), we see that a k-dimensional non-degenerate quadratic

Fq-linear subspace U of Fn

q
has a Witt decomposition of the form U = ha1, b1i ?

ha2, b2i ? · · · ? ha⌫k , b⌫ki ? Uk, where ⌫k is the Witt index of U , (ai, bi) is a

hyperbolic pair in Fn

q
for 1  i  ⌫k, and Uk is an anisotropic Fq-linear subspace of

Fn

q
satisfying dimFq

(Uk) = k � 2⌫k  2. Now we shall distinguish the following two

cases: (a) k is odd and (b) k is even.

(a) First let k be odd. Here by Theorem 2.3.6(a), we see that ⌫k = (k � 1)/2,

which implies that dimFq
(Uk) = 1. This implies that the k-dimensional Fq-linear

subspace U of Fn

q
has a Witt decomposition of the form

U = ha1, b1i ? ha2, b2i ? · · · ? ha k�1
2
, b k�1

2
i ? hwi,

where (ai, bi) is a hyperbolic pair in Fn

q
for 1  i 

k�1
2 and w is a non-singular

vector of the quadratic space (Fn

q
,Q). The set {a1, b1, a2, b2, . . . , a k�1

2
, b k�1

2
, w} is

called a Witt basis of U over Fq. Further, we observe that

Lq(n; k) = D k�1
2 ,⌫

/D k�1
2
,

whereD k�1
2 ,⌫

is the number of Witt bases of the form {a1, b1, a2, b2, . . . , a k�1
2
, b k�1

2
,

w} in Fn

q
andD k�1

2
is the number of Witt bases of a k-dimensional non-degenerate

quadratic Fq-linear subspace of Fn

q
. Now by applying Theorems 2.3.2, 2.3.5 and

2.3.6, we see that

D k�1
2 ,⌫

= H⌫,n�2⌫H⌫�1,n�2⌫ · · ·H⌫� (k�3)
2 ,n�2⌫

�
q
n�k+1

� 1� I
⌫� (k�1)

2 ,n�2⌫

�

=

8
>>>>>>><

>>>>>>>:

q
2n(k+1)�k(k+4)+1

4 (q � 1)
(k�3)/2Q
v=0

(qn�2v�1
� 1) if ⌫ = n�1

2 ;

q
2nk�(k+1)2

4 (q
n

2 � 1)(q � 1)
(k�1)/2Q
v=1

(qn�2v
� 1) if ⌫ = n

2 ;

q
2nk�(k+1)2

4 (q
n

2 + 1)(q � 1)
(k�1)/2Q
v=1

(qn�2v
� 1) if ⌫ = n�2

2
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and that

D k�1
2

= H k�1
2 ,1H k�3

2 ,1 · · ·H1,1(q � 1) = q
(k�1)2

4 (q � 1)
(k�3)/2Y

v=0

(qk�2v�1
� 1).

From this and by Theorem 2.3.6(a), the desired result follows immediately in

the case when k is odd.

(b) Next let k be even. Here by Theorem 2.3.6(a), we see that either ⌫k = k�2
2

or ⌫k = k

2 . Now let eSq(n; k) and bSq(n; k) denote the number of distinct k-

dimensional non-degenerate quadratic Fq-linear subspaces of Fn

q
having the Witt

indices k�2
2 and k

2 , respectively. We note that

Lq(n; k) = eSq(n; k) + bSq(n; k).

First of all, we will enumerate all distinct k-dimensional non-degenerate quadratic

Fq-linear subspaces of Fn

q
having the Witt index k�2

2 . In this case, we have

dimFq
(Uk) = 2. Here working in a similar manner as in Lemmas 3.2 and 3.3 of

Sharma and Kaur [91], we see that each 2-dimensional anisotropic Fq-linear sub-

space of U has an orthogonal basis and that the number of distinct orthogonal

bases of a 2-dimensional anisotropic Fq-linear subspace of U is given by

Ak,⌫ =

8
>>>>>>><

>>>>>>>:

q
n�k(q � 1)2(qn�k+1

� 1)

2
if ⌫ = n�1

2 ;

q
n�k(q � 1)2(q

n�k

2 � 1)(q
n�k+2

2 � 1)

2
if ⌫ = n

2 ;

q
n�k(q � 1)2(q

n�k

2 + 1)(q
n�k+2

2 + 1)

2
if ⌫ = n�2

2 .

From this, it follows that the k-dimensional non-degenerate quadratic Fq-linear

subspace U of Fn

q
having the Witt index k�2

2 has a Witt decomposition of the

form

U = ha1, b1i ? ha2, b2i ? · · · ? ha k�2
2
, b k�2

2
i ? hw1, w2i,

where (ai, bi) is a hyperbolic pair in Fn

q
for 1  i 

k�2
2 and {w1, w2} is an

orthogonal basis of the 2-dimensional anisotropic Fq-linear subspace Uk of U.
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The set {a1, b1, a2, b2, . . . , a k�2
2
, b k�2

2
, w1, w2} is called a Witt basis of U over Fq.

We next observe that
eSq(n; k) = D k�2

2 ,⌫
/D k�2

2
,

where D k�2
2 ,⌫

is the number of distinct Witt bases of the form {a1, b1, a2, b2, . . . ,

a k�2
2
, b k�2

2
, w1, w2} in Fn

q
and D k�2

2
is the number of distinct Witt bases of a k-

dimensional non-degenerate quadratic Fq-linear subspace of Fn

q
having the Witt

index k�2
2 . Now by applying Theorems 2.3.2, 2.3.5 and 2.3.6(d), we see that

D k�2
2 ,⌫

= H⌫,n�2⌫H⌫�1,n�2⌫ · · ·H⌫� (k�4)
2 ,n�2⌫

Ak,⌫

and that

D k�2
2

= H k�2
2 ,2H k�4

2 ,2 · · ·H1,2(q
2
� 1)(q � 1).

Further, by Theorem 2.3.6, we obtain

eSq(n; k) =

8
>>>>>>>>><

>>>>>>>>>:

q
k(n�k)

2 (q
k

2 � 1)

2


(n� 1)/2

k/2

�

q2

if ⌫ = n�1
2 ;

q
k(n�k)

2 (q
k

2 � 1)(q
n�k

2 � 1)

2(q
n

2 + 1)


n/2

k/2

�

q2

if ⌫ = n

2 ;

q
k(n�k)

2 (q
k

2 � 1)(q
n�k

2 + 1)

2(q
n

2 � 1)


n/2

k/2

�

q2

if ⌫ = n�2
2 .

We will next count all distinct k-dimensional non-degenerate quadratic Fq-

linear subspaces of Fn

q
having the Witt index k

2 . In this case, we note that

dimFq
(Uk) = 0. This implies that the k-dimensional non-degenerate quadratic

Fq-linear subspace U of Fn

q
having the Witt index k

2 has a Witt decomposition

of the form

U = ha1, b1i ? ha2, b2i ? · · · ? ha k

2
, b k

2
i,

where (ai, bi) is a hyperbolic pair in Fn

q
for 1  i 

k

2 . The set {a1, b1, a2, b2, . . . , a k

2
,

b k

2
} is called a Witt basis of U over Fq. This implies that

bSq(n; k) = D k

2 ,⌫
/D k

2
,
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where D k

2 ,⌫
is the number of Witt bases of the type {a1, b1, a2, b2, . . . , a k

2
, b k

2
}

in Fn

q
and D k

2
is the number of Witt bases of a k-dimensional non-degenerate

quadratic Fq-linear subspace of Fn

q
having theWitt index k

2 . Further, by applying

Theorems 2.3.2, 2.3.5 and 2.3.6(d), we see that

D k

2 ,⌫
= H⌫,n�2⌫H⌫�1,n�2⌫ · · ·H⌫� (k�2)

2 ,n�2⌫

and

D k

2
= H k

2 ,0
H k�2

2 ,0 · · ·H1,0.

Now by Theorem 2.3.6, we get

bSq(n; k) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

q
k(n�k)

2 (q
k

2 + 1)

2


(n� 1)/2

k/2

�

q2

if ⌫ = n�1
2 ;

q
k(n�k)

2 (q
k

2 + 1)(q
n�k

2 + 1)

2(q
n

2 + 1)


n/2

k/2

�

q2

if ⌫ = n

2 ;

q
k(n�k)

2 (q
k

2 + 1)(q
n�k

2 � 1)

2(q
n

2 � 1)


n/2

k/2

�

q2

if ⌫ = n�2
2 .

From this and by Theorem 2.3.6(a), the desired result follows immediately in

the case when k is even.

In the following theorem, we provide the explicit enumeration formulae for all

distinct �-LCD codes of length n and rank k over Re,r when �0 2 Aut1(Re,r).

Theorem 6.3.4. Let �0 2 Aut1(Re,r) be fixed. For 0  k  n, let Qpr(n; k) denote

the number of distinct �-LCD codes of length n and rank k over Re,r. Here we have

Qpr(n; 0) = Qpr(n;n) = 1. Further, for 1  k  n� 1, we have the following:

(a) When p = 2, we have



6.3 Enumeration of �-LCD codes over Re,r when

�0 2 Aut1(Re,r) [ Aut2(Re,r) 223

Q2r(n; k) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

2
r(n�k)(2ke�k+1)

2


(n� 1)/2

(k � 1)/2

�

22r
if both k and n are odd;

2
r(k(n�k)(2e�1)+n�1)

2


(n� 2)/2

(k � 1)/2

�

22r
if k is odd and n is even;

2
rk((n�k)(2e�1)+1)

2


(n� 1)/2

k/2

�

22r
if k is even and n is odd;

2
r(k(n�k)(2e�1)�2)

2

⇣
(2rk + 2r � 1)


(n� 2)/2

k/2

�

22r

+(2r(n�k+1)
� 2r(n�k) + 1)


(n� 2)/2

(k � 2)/2

�

22r

⌘
if both k and n are even.

(b) When p is an odd prime, we have

Qpr(n; k)=

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

p
r(n�k)(2ke�k+1)

2


(n� 1)/2

(k � 1)/2

�

p2r

if both k and n are odd;

p
r(k(n�k)(2e�1)�1)

2 (p
rn

2 � 1)


(n� 2)/2

(k � 1)/2

�

p2r

if k is odd and n is even with

either p
r
⌘ 3 (mod 4) and

n ⌘ 0 (mod 4) or p
r
⌘ 1 (mod 4);

p
r(k(n�k)(2e�1)�1)

2 (p
rn

2 + 1)


(n� 2)/2

(k � 1)/2

�

p2r

if k is odd, pr ⌘ 3 (mod 4)

and n ⌘ 2 (mod 4);

p
rk((n�k)(2e�1)+1)

2


(n� 1)/2

k/2

�

p2r

if k is even and n is odd;

p
rk(n�k)(2e�1)

2


n/2

k/2

�

p2r

if both k and n are even.

Proof. To prove the result, we see, by Theorem 6.2.3, that a linear code D of length

n and rank k over Re,r is a �-LCD code if and only if D is a free code and its

Torsion code Tor1(D) is a k-dimensional �-LCD code of length n over Re,r. Further,

we see, by Theorem 6.3.1, that there are precisely p
rk(n�k)(e�1) distinct �-LCD codes

of length n over Re,r with a prescribed Torsion code. Therefore if Lpr(n; k) denotes

the number of distinct Euclidean LCD (or �-LCD) codes of length n and dimension

k over Re,r(' Fpr), then the total number of distinct �-LCD codes of length n and

rank k over Re,r is given by

Qpr(n; k) = Lpr(n; k)p
rk(n�k)(e�1)

.
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Now on substituting the values of the number Lpr(n; k) from Theorems 6.3.2 and

6.3.3 in the respective cases, we get the desired result.

In the following theorem, we provide the explicit enumeration formulae for all

�-LCD codes of length n over Re,r when �0 2 Aut1(Re,r).

Theorem 6.3.5. Let �0 2 Aut1(Re,r) be fixed. Let Qpr(n) denote the number of

distinct �-LCD codes of length n over Re,r.

(a) When p is an odd prime, we have

Qpr(n)=

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

2 +
n�1P
k=1

k⌘1 (mod 2)

p
r(n�k)(2ke�k+1)

2
⇥(n�1)/2
(k�1)/2

⇤
p2r

+
n�1P
k=1

k⌘0 (mod 2)

p
rk((n�k)(2e�1)+1)

2
⇥(n�1)/2

k/2

⇤
p2r

if n is odd;

2 +
n�1P
k=1

k⌘1 (mod 2)

p
r(k(n�k)(2e�1)�1)

2 (p
rn

2 � 1)
⇥(n�2)/2
(k�1)/2

⇤
p2r

+
n�1P
k=1

k⌘0 (mod 2)

p
rk(n�k)(2e�1)

2
⇥
n/2
k/2

⇤
p2r

if n is even with either p
r
⌘ 1 (mod 4) or n ⌘ 0 (mod 4) and p

r
⌘ 3 (mod 4);

2 +
n�1P
k=1

k⌘1 (mod 2)

p
r(k(n�k)(2e�1)�1)

2 (p
rn

2 + 1)
⇥(n�2)/2
(k�1)/2

⇤
p2r

+
n�1P
k=1

k⌘0 (mod 2)

p
rk(n�k)(2e�1)

2
⇥
n/2
k/2

⇤
p2r

if pr ⌘ 3 (mod 4) and n ⌘ 2 (mod 4).

(b) When p = 2, we have

Q2r(n) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

2 +
n�1P
k=1

k⌘0 (mod 2)

2
rk((n�k)(2e�1)+1)

2
⇥(n�1)/2

k/2

⇤
22r

+
n�1P
k=1

k⌘1 (mod 2)

2
r(n�k)(2ke�k+1)

2
⇥(n�1)/2
(k�1)/2

⇤
22r

if n is odd;

2 +
n�1P
k=1

k⌘0 (mod 2)

2
r(k(n�k)(2e�1)�2)

2

⇣
(2r(n�k+1)

� 2r(n�k) + 1)
⇥(n�2)/2
(k�2)/2

⇤
22r

+(2rk + 2r � 1)
⇥(n�2)/2

k/2

⇤
22r

⌘
+

n�1P
k=1

k⌘1 (mod 2)

2
r(k(n�k)(2e�1)+n�1)

2
⇥(n�2)/2
(k�1)/2

⇤
22r

if n is even.

Proof. It follows immediately from Theorem 6.3.4.
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6.3.2 The case �0 2 Aut2(Re,r)

Here we recall, by Corollary 2.1.2, that Aut2(Re,r) = ; when r is odd. So we

assume, throughout this section, that r � 2 is an even integer and �0 2 Aut2(Re,r),

i.e., �0 is an automorphism of Re,r such that �0 is the automorphism of Re,r(' Fpr)

of order 2. Now to count all �-LCD codes of length n over Re,r, we first enumerate

all distinct k-dimensional Hermitian LCD codes of length n over the finite field Fq2

of order q2 in the following theorem.

Theorem 6.3.6. For 0  k  n, let bLq2(n; k) denote the number of distinct k-

dimensional Hermitian LCD codes of length n over Fq2 . Then we have bLq2(n; 0) =
bLq2(n;n) = 1. Further, for 1  k  n� 1, we have

bLq2(n; k) = q
k(n�k)

k�1Y

�=0

✓
q
n��

� (�1)n��

qk�� � (�1)k��

◆
.

Proof. To prove the result, let [·, ·]� denote the Hermitian �-sesquilinear form on

Fn

q2
, where � is the automorphism of Fq2 of order 2. One can easily observe that

the formed space (Fn

q2
, [·, ·]�) is an n-dimensional unitary space over Fq2 . Further, by

Theorem 2.3.4(a), we see that the Witt index ⌫ of the unitary space (Fn

q2
, [·, ·]�) is

given by

⌫ =

8
<

:

n

2 if n is even;

n�1
2 if n is odd.

We next observe that each Hermitian LCD code of length n and dimension k over

Fq2 can be viewed as a k-dimensional unitary Fq2-linear subspace of Fn

q2
. In view

of this, the number bLq2(n; k) equals the number of distinct k-dimensional unitary

Fq2-linear subspaces of the n-dimensional unitary space (Fn

q2
, [·, ·]�).

First of all, we observe that bLq2(n; 0) = bLq2(n;n) = 1. So from this point on,

we assume that 1  k  n� 1. Now to determine the number bLq2(n; k), we see, by

Theorem 2.3.4(b), that a k-dimensional unitary Fq2-linear subspace U of Fn

q2
has a

Witt decomposition of the form

U = ha1, b1i ? ha2, b2i ? · · · ? ha⌫k , b⌫ki ? Uk,

where ⌫k is the Witt index of U , (ai, bi) is a hyperbolic pair in Fn

q2
for 1  i  ⌫k, and
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Uk is an anisotropic Fq2-linear subspace of Fn

q2
satisfying dimF

q2
(Uk) = k � 2⌫k  1.

Now we shall distinguish the following two cases: (i) k is odd and (ii) k is even.

(i) First let k be odd. Here we see that the k-dimensional unitary Fq2-linear

subspace U of Fn

q2
has a Witt decomposition of the form U = ha1, b1i ?

ha2, b2i ? · · · ? ha k�1
2
, b k�1

2
i ? hwi, where (ai, bi) is a hyperbolic pair in

Fn

q2
for 1  i 

k�1
2 and w is an anisotropic vector in Fn

q2
. The basis set

{a1, b1, a2, b2, . . . , a k�1
2
, b k�1

2
, w} is called a Witt basis of U . Now one can easily

observe that the number of distinct Witt bases of the type {a1, b1, a2, b2, . . . ,

a k�1
2
, b k�1

2
, w} in Fn

q2
is given by

Dn,k = H'1,n�2'1H'2,n�2�2'2H'3,n�4�2'3 · · ·H' k�1
2

,n�k+3�2' k�1
2

⇥

⇣
q
2(n�k+1)

� 1� I' k+1
2

,n�k+1�2' k+1
2

⌘
,

where 'i denotes theWitt index of the unitary space ha1, b1, a2, b2, . . . , ai�1, bi�1i
?�

and H'i,n�2i+2�2'i
denotes the number of hyperbolic pairs in the unitary space

ha1, b1, a2, b2, . . . , ai�1, bi�1i
?� for 1  i 

k+1
2 , and I' k+1

2
,n�k+1�2' k+1

2

denotes

the number of isotropic vectors in the unitary space ha1, b1, a2, b2, . . . , a k�1
2
, b k�1

2
i
?� .

Now by Theorem 2.3.4, we get

Dn,k = q
k(2n�k�1)

2 (q � 1)
k�1Y

i=0

�
q
n�i

� (�1)n�i
�
.

Further, working in a similar manner as above and by applying Theorem 2.3.4,

we see that the number of distinct Witt bases of a k-dimensional unitary Fq2-

linear subspace of Fn

q2
is given by

Dk,k = H k�1
2 ,1H k�3

2 ,1 · · ·H1,1(q
2
� 1) = q

k(k�1)
2 (q � 1)

k�1Y

i=0

(qk�i
� (�1)k�i).

From this, we obtain

bLq2(n; k) =
Dn,k

Dk,k

= q
k(n�k)

k�1Y

�=0

✓
q
n��

� (�1)n��

qk�� � (�1)k��

◆
.
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(ii) When k is even, we see that the k-dimensional unitary Fq2-linear subspace U

of Fn

q2
has a Witt decomposition of the form

U = ha1, b1i ? ha2, b2i ? · · · ? ha k

2
, b k

2
i,

where (ai, bi) is a hyperbolic pair in Fn

q2
for 1  i 

k

2 . Now working in a

similar manner as in case (i) and by applying Theorem 2.3.4, the desired result

follows.

In the following theorem, we provide the explicit enumeration formula for all

�-LCD codes of length n and rank k over Re,r when �0 2 Aut2(Re,r).

Theorem 6.3.7. Let the residue field Re,r of the chain ring Re,r be of order p
r
,

where p is a prime number and r � 2 is an even integer. Let �0 2 Aut2(Re,r) be

fixed. For 0  k  n, let bQpr(n; k) denote the number of distinct �-LCD codes of

length n and rank k over Re,r. Then we have bQpr(n; 0) = bQpr(n;n) = 1. Further,

for 1  k  n� 1, we have

bQpr(n; k) = p
rk(n�k)(2e�1)

2

k�1Y

�=0

 
p

r(n��)
2 � (�1)n��

p
r(k��)

2 � (�1)k��

!
.

Proof. Working in a similar manner as in Theorem 6.3.4 and by applying Theorem

6.3.6, the desired result follows.

In the following theorem, we provide the explicit enumeration formula for all

�-LCD codes of length n over Re,r when �0 2 Aut2(Re,r).

Theorem 6.3.8. Let the residue field Re,r of the chain ring Re,r be of order p
r
,

where p is a prime number and r � 2 is an even integer. Let �0 2 Aut2(Re,r) be

fixed. The number bQpr(n) of distinct �-LCD codes of length n over Re,r is given by

bQpr(n) = 2 +
n�1X

k=1

p
rk(n�k)(2e�1)

2

k�1Y

�=0

 
p

r(n��)
2 � (�1)n��

p
r(k��)

2 � (�1)k��

!
.

Proof. It follows immediately from Theorem 6.3.7.
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6.4 The class of �-LCD codes over Re,r is asymp-

totically good

In this section, we will show that the class of �-LCD codes over Re,r is asymp-

totically good. To do this, we recall that the Hamming distance of a linear code C of

length n over Re,r is the smallest of the Hamming weights of its non-zero codewords.

From now on, we shall refer to a linear code C of length n, rank k and Hamming

distance d over Re,r as a linear [n, k, d]-code over Re,r.

Now let F = {C1, C2, . . . . . .} be a sequence of codes, where the code Ci is a free

linear [ni, ki, di]-code over Re,r such that lim
i!1

ni = 1. The rate R of the sequence

F is defined as

R = lim sup
i!1

ki

ni

and the relative distance � of the sequence F is defined as

� = lim inf
i!1

di

ni

.

The family F of linear codes over Re,r is said to be asymptotically good if it satisfies

R� > 0.

In the following proposition, we provide a method to construct a �-LCD code

over Re,r from a linear code over the residue field Re,r of the chain ring Re,r.

Proposition 6.4.1. Let C 0 be a linear [n, k, d0]-code over Re,r. Then there exists a

�-LCD [N, k, d]-code over the chain ring Re,r, where d � d
0 and

N =

(
2n� k if p = 2;

4n� 3k if p is an odd prime.

Proof. To prove the result, without any loss of generality, let us suppose that C 0 is

a linear code whose generator matrix G
0 is in the standard form

G
0 =
h
Ik | A0

i
,

where Ik denotes the k⇥ k identity matrix and A0 is a k⇥ (n� k) matrix over Re,r.

As the mapping : Te,r ! Re,r is a bijection, there exists a unique k ⇥ (n � k)
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matrix A over Te,r such that A = A0. Now we shall distinguish the following two

cases: (i) p = 2 and (ii) p is an odd prime.

(i) Let p = 2. Let us consider the linear code C over Re,r with a generator matrix

G =
h
Ik | A+ uA | A+ uA

i
.

Now by applying Theorem 6.2.3, we observe that the code C is a �-LCD

[2n� k, k, d]-code over Re,r. Further, one can easily observe that d � d
0
.

(ii) Let p be an odd prime. Here by Lagrange’s Four-Square Theorem, we see

that there exist non-negative integers a0, b0, c0 and d0 (not all zero) such that

p = a
2
0+ b

2
0+ c

2
0+d

2
0. This implies that a20+ b

2
0+ c

2
0+d

2
0 = 0 in Re,r. We further

see that the elements a0, b0, c0, d0 in Re,r are not all zero. Since the mapping

: Te,r ! Re,r is a bijection, there exist unique elements a, b, c, d 2 Te,r such

that a = a0, b = b0, c = c0 and d = d0. Now let us consider the linear code C

over Re,r with a generator matrix

G =
h
Ik | aA+ uA | bA+ uA | cA+ uA | dA+ uA

i
.

We next observe that

G =
h
Ik | a0A0 | b0A0 | c0A0 | d0A0

i
,

�0(a0) = a0, �0(b0) = b0, �0(c0) = c0 and �0(d0) = d0. From this and by

applying Theorem 6.2.3 again, we observe that the code C is a �-LCD [4n �

3k, k, d]-code over Re,r. Further, one can easily observe that d � d
0
.

This completes the proof of the theorem.

In the following theorem, we show that the class of �-LCD codes over Re,r is

asymptotically good.

Theorem 6.4.1. The class of �-LCD codes over Re,r is asymptotically good.

Proof. To prove the result, we see, by Theorem 3 of Sendrier [89], that the class of

linear codes over Re,r is asymptotically good. Further, by Proposition 6.4.1, we see
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that corresponding to a linear [n, k, d0]-code over Re,r, we can construct a �-LCD

[N, k, d]-code over Re,r, where d � d
0
, and N = 2n� k if p = 2, while N = 4n� 3k

if p is an odd prime. From this, it follows that the class of �-LCD codes over Re,r

is also asymptotically good.

In the following theorem, we show that a linear code C over Re,r is a �-LCD

MDS code if and only if its �-dual code C
?� is a �

�1-LCD MDS code.

Theorem 6.4.2. A linear code C of length n over Re,r is a �-LCD MDS code if

and only if its �-dual code C
?� is a �

�1-LCD MDS code.

Proof. To prove the result, we see, by applying Theorem 5.3 of Norton and Sǎlǎgean

[81] and by Theorem 6.2.3, that the �-LCD code C is an MDS [n, k, d]-code over

Re,r if and only if the code C is a free code and its Torsion code Tor1(C) is a �-

LCD MDS [n, k, d]-code over Re,r. We next observe that the Torsion code Tor1(C)

is a �-LCD code if and only if its �-dual code Tor1(C)?� is a �
�1-LCD code over

Re,r. Now by applying Proposition 2.10 of Liu et al. [64] and using the fact that

�
�
Tor1(C)

�
= Tor1

�
�(C)

�
, we see that the Torsion code Tor1(C) is a �-LCD MDS

[n, k, d]-code over Re,r if and only if the code Tor1(C)?� = Tor1

�
�(C)

�?
is a �

�1-

LCD MDS [n, n�k, k+1]-code over Re,r, where Tor1
�
�(C)

�?
denotes the Euclidean

dual code of the code Tor1

�
�(C)

�
. Next, by applying Theorem 3.10(ii) of Norton

and Sǎlǎgean [80], we see that

Tor1

�
�(C)

�?
= Tor1

�
�(C)?

�
= Tor1(C

?�).

From this, it follows that the code C is a �-LCD MDS [n, k, d]-code over Re,r if

and only if the code C
?� is a free code and the code Tor1(C?�) is a �

�1-LCD

MDS [n, n � k, k + 1]-code over Re,r, which, by applying Theorem 5.3 of Norton

and Sǎlǎgean [81] and Theorem 6.2.3 again, holds if and only if the code C
?� is

a �
�1-LCD MDS [n, n � k, k + 1]-code over Re,r. From this, the desired result

follows.
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6.5 Classification of �-LCD codes over Re,r

We first recall that two linear codes of length n over Re,r are monomially equiv-

alent if a generator matrix of one code can be obtained from the generator matrix

of the other code by post multiplying it with an n⇥n monomial matrix. Otherwise,

these two codes are said to be inequivalent.

In a recent work, Carlet et al. [29] showed that every linear code over the finite

field Fq is equivalent to a Euclidean LCD code over Fq when q > 3, and that every

linear code over Fq2 is equivalent to a Hermitian LCD code over Fq2 when q > 2. In

the following theorem, we extend this result to �-LCD codes over Re,r.

Theorem 6.5.1. Let the residue field Re,r of the chain ring Re,r be of order pr > 4,

where p is a prime number and r is a positive integer. Let C be a free linear [n, k, d]-

code over Re,r. Then there exists a word � = (�1, �2, . . . , �n) of length n over the

unit group R
⇤
e,r

of the chain ring Re,r such that the linear code C�, defined as

C� = {(�1c1, �2c2, . . . , �ncn) 2 R
n

e,r
: (c1, c2, . . . , cn) 2 C},

is a �-LCD [n, k, d]-code over Re,r.

Proof. To prove the result, without any loss of generality, let C be a free linear

[n, k, d]-code overRe,r with a generator matrix G =
h
Ik | A

i
, where A is a k⇥(n�k)

matrix over Re,r. It is easy to see that its Torsion code D = Tor1(C) is a linear

[n, k, d]-code over Re,r with a generator matrix G =
h
Ik | A

i
. Working in a similar

manner as in Theorem 16 and Corollary 18 of Carlet et al. [29], we see that there

exists a word ↵ = (↵1,↵2, . . . ,↵n) of length n over Re,r \ {0} such that the code

D↵ = {(↵1d1,↵2d2, . . . ,↵ndn) 2 R
n

e,r
: (d1, d2, . . . , dn) 2 D}

is a �-LCD [n, k, d]-code overRe,r.Now corresponding to the word ↵ = (↵1,↵2, . . . ,↵n),

we observe that there exists a word � = (�1, �2, . . . , �n) of length n over R⇤
e,r

such

that �
i
= ↵i for 1  i  n. Further, let us consider the code C� of length n over

Re,r, defined as

C� = {(�1c1, �2c2, . . . , �ncn) 2 R
n

e,r
: (c1, c2, . . . , cn) 2 C}.
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It is easy to see that Tor1(C�) = D↵. From this and by applying Theorem 6.2.3, we

see that the code C� is a �-LCD [n, k, d]-code over Re,r.

6.5.1 Classification of �-LCD [n, 1, d]-codes and [n, n � 1, d]-

codes over Re,r

Let B(n, k) denote the set consisting of all inequivalent �-LCD [n, k]-codes over

the chain ring Re,r, and let B(n, k, d) denote the set of all inequivalent �-LCD

[n, k, d]-codes over the chain ring Re,r, where 1  k, d  n and �0 2 Aut(Re,r). Note

that

B(n, k) =
n[

d=1

B(n, k, d) (a disjoint union) for 1  k  n. (6.5.1)

In this section, we shall explicitly determine the sets B(n, k) and B(n, k, d) for 1 

d  n when k 2 {1, n � 1}. To do this, for a = (a1, a2, . . . , an) 2 R
n

e,r
, let Cn(a)

denote the linear [n, 1]-code over Re,r with a generator matrix [a1 a2 · · · an]. Next

for an integer j � 1, let Yj denote the set of all j-tuples (i1, i2, . . . , ij) of integers

i1, i2, . . . , ij satisfying 1  i1  i2  · · ·  ij  e. In the following lemma, we

determine the cardinality of the set Yj.

Lemma 6.5.1. For an integer j � 1, we have

|Yj| =
e(e+ 1) · · · (e+ j � 1)

j!
=

✓
e+ j � 1

j

◆
.

Proof. Its proof is a straightforward exercise.

We recall that the residue field Re,r of the chain ring Re,r is of order pr, where

p is a prime number and r is a positive integer. Next, we see, by Theorem 2.21 of

[62], that Aut(Re,r) = Aut1(Re,r) when p
r = |Re,r| is either 2 or 3 (or equivalently,

when r = 1 and p 2 {2, 3}), while Aut(Re,r) = Aut1(Re,r) [ Aut2(Re,r) when

p
r = |Re,r| = 4 (or equivalently, when p = r = 2).

In the following theorem, we explicitly determine the sets B(n, 1, d), B(n, n�1, d)

for 1  d  n, B(n, 1) and B(n, n � 1) when either p
r = |Re,r| 2 {2, 3} and

�0 2 Aut(Re,r) = Aut1(Re,r) or pr = |Re,r| = 4 and �0 2 Aut2(Re,r).
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Theorem 6.5.2. Suppose that either p
r = |Re,r| 2 {2, 3} and �0 2 Aut(Re,r) or

p
r = |Re,r| = 4 and �0 2 Aut2(Re,r).

(a) For 1  d  n, we have

B(n, 1, d) =

8
>>><

>>>:

�
Cn(1, 1, . . . , 1, ui1 , u

i2 , . . . , u
in�d) : (i1, i2, . . . , in�d) 2 Yn�d

 

if d 6⌘ 0 (mod p);

; otherwise.

As a consequence, we have

|B(n, 1, d)| =

8
<

:

�
e+n�d�1

n�d

�
if d 6⌘ 0 (mod p);

0 otherwise

for 1  d  n, and

|B(n, 1)| = |B(n, n� 1)| =
nX

d=1
d 6⌘0 (mod p)

✓
e+ n� d� 1

n� d

◆
.

(b) For n � 2 and 1  d  n, we have

B(n, n�1, d) =

8
>>>>>><

>>>>>>:

�
Cn(1, 1, . . . , 1, ui1 , ui2 , . . . , uin�j )?��1 : (i1, i2, . . . , in�j) 2 Yn�j ,

1  j  n� 1 and j 6⌘ 0 (mod p)
 

if d = 1;
�
Cn(1, 1, . . . , 1)?��1

 
if d = 2 and n 6⌘ 0 (mod p);

; otherwise.

As a consequence, for n � 2 and 1  d  n, we have

|B(n, n� 1, d)| =

8
>>>>>><

>>>>>>:

n�1P
j=1

j 6⌘0 (mod p)

�
e+n�j�1

n�j

�
if d = 1;

1 if d = 2 and n 6⌘ 0 (mod p);

0 otherwise.

Proof. (a) When p
r = |Re,r| is either 2 or 3 and �0 2 Aut(Re,r), by Theorem 2.21 of



234 On �-LCD codes over finite commutative chain rings

[62], we see that Aut(Re,r) = Aut1(Re,r), i.e., �0 is the identity automorphism

of Re,r for every automorphism �0 of Re,r. Further, by Propositions 4 and 5

of Araya and Harada [3], we note that there does not exist any �-LCD (or

equivalently, Euclidean LCD) [n, 1, d]-code over Re,r when d ⌘ 0 (mod p),

while up to equivalence, there exists a unique �-LCD [n, 1, d]-code over Re,r

with a generator matrix

⇥
1 1 · · · 1| {z }

d

0 0 · · · 0
⇤

when d 6⌘ 0 (mod p).

On the other hand, when p
r = |Re,r| = 4 and �0 2 Aut2(Re,r), working

as in Propositions 4 and 5 of Araya and Harada [3], we see that every �-

LCD [n, 1, d]-code over Re,r is equivalent to the �-LCD code over Re,r with a

generator matrix

⇥
1 1 · · · 1| {z }

d

0 0 · · · 0
⇤

when d 6⌘ 0 (mod p),

while there does not exist any �-LCD [n, 1, d]-code overRe,r when d ⌘ 0 (mod p).

Now by applying Theorem 4.2(ii) of Norton and Sǎlǎgean [81] and Theorem

6.2.3, we see that the set B(n, 1, d) is empty when d ⌘ 0 (mod p). Next, to

determine the set B(n, 1, d) when d 6⌘ 0 (mod p), we first observe that if C1

and C2 are two �-LCD [n, 1, d]-codes over Re,r such that their Torsion codes

Tor1(C1) and Tor1(C2) over Re,r are inequivalent, then the codes C1 and C2

over Re,r are inequivalent. Further, up to equivalence, we can assume that a

�-LCD [n, 1, d]-code over Re,r has a generator matrix of the form

[1 1 · · · 1 u
i1 u

i2 · · · u
in�d ],

where (i1, i2, . . . , in�d) 2 Yn�d. We next observe that if (i1, i2, . . . , in�d) and

(j1, j2, . . . , jn�d) are distinct elements of Yn�d, then the codes Cn(1, 1, . . . , 1, ui1 ,

u
i2 , . . . , u

in�d) and Cn(1, 1, . . . , 1, uj1 , u
j2 , . . . , u

jn�d) over Re,r are inequivalent.
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From this, we obtain

B(n, 1, d) =
�
Cn(1, 1, . . . , 1, u

i1 , u
i2 , . . . , u

in�d) : (i1, i2, . . . , in�d) 2 Yn�d

 

when d 6⌘ 0 (mod p). Further, by Lemma 6.5.1, we get

|B(n, 1, d)| = |Yn�d| =
e(e+ 1) · · · (e+ n� d� 1)

(n� d)!
=

✓
e+ n� d� 1

n� d

◆

when d 6⌘ 0 (mod p). Finally, we observe that two �-LCD codes C1 and C2 of

length n over Re,r are equivalent if and only if their �-dual codes C?�

1 and C
?�

2

over Re,r are equivalent, which implies that |B(n, n � 1)| = |B(n, 1)|. From

this and by (6.5.1), part (a) follows immediately.

(b) We will next determine the set B(n, n� 1, d) for n � 2 and 1  d  n. For this,

we see that the code Cn(a1, a2, . . . , an) with (a1, a2, . . . , an) 2 R
n

e,r
is a ��1-LCD

[n, 1]-code overRe,r if and only if its ��1-dual code Cn(a1, a2, . . . , an)?��1 is a �-

LCD [n, n�1]-code overRe,r with a parity-check matrix [a1 a2 · · · an]. Further,

by applying Theorem 4.2(ii) of Norton and Sǎlǎgean [81] and Corollary 1.4.14

of [53], we observe that the ��1-dual code Cn(a1, a2, . . . , an)?��1 has Hamming

distance at most 2. From this, it follows that

B(n, n� 1, d) = ; when d � 3.

Moreover, the code Cn(a1, a2, . . . , an)?��1 has Hamming distance 1 if and only

if aj = 0 for some j but not all ai’s are zero, which, by Theorem 4.2(ii) of

Norton and Sǎlǎgean [81], holds if and only if the code Cn(a1, a2, . . . , an) has

Hamming distance strictly less than n.

From this and by part (a), we get

B(n, n� 1, 1) =
�
Cn(1, 1, . . . , 1, u

i1 , u
i2 , . . . , u

in�j)?��1 : (i1, i2, . . . , in�j) 2 Yn�j,

1  j  n� 1 and j 6⌘ 0 (mod p)
 
.

Now to determine the set B(n, n�1, 2), we see that the code Cn(a1, a2, . . . , an)?��1

has Hamming distance 2 if and only if all ai’s are non-zero, which, by Theorem
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4.2(ii) of Norton and Sǎlǎgean [81], holds if and only if the code Cn(a1, a2, . . . , an)

has Hamming distance n. We next see that there exists a �
�1-LCD [n, 1, n]-

code over Re,r if and only if n 6⌘ 0 (mod p). Further, when n 6⌘ 0 (mod p),

there exists a unique �
�1-LCD [n, 1, n]-code Cn(1, 1, . . . , 1) over Re,r up to

equivalence. From this, we get B(n, n � 1, 2) = ; if n ⌘ 0 (mod p), while

B(n, n� 1, 2) = {Cn(1, 1, . . . , 1)?��1} when n 6⌘ 0 (mod p). This proves (b).

In the following theorem, we explicitly determine the sets B(n, 1, d), B(n, n�1, d)

for 1  d  n, B(n, 1) and B(n, n � 1) when either p
r = |Re,r| = 4 and �0 2

Aut1(Re,r) or p
r = |Re,r| > 4 and �0 2 Aut(Re,r).

Theorem 6.5.3. Suppose that either p
r = |Re,r| = 4 and �0 2 Aut1(Re,r) or

p
r = |Re,r| > 4 and �0 2 Aut(Re,r). Let ⇠ be a unit in Re,r having order p

r
� 1 (so

that the Teichmüller set Te,r of Re,r is given by Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

}; such

an element ⇠ exists in Re,r by Theorem 2.1.4(c)).

(a) For 1  d  n, we have

B(n, 1, d) =

8
>>>>><

>>>>>:

�
Cn(1, 1, . . . , 1, ui1 , u

i2 , . . . , u
in�d) : (i1, i2, . . . , in�d) 2 Yn�d

 

if d 6⌘ 0 (mod p);
�
Cn(1, 1, . . . , 1, ⇠, ui1 , u

i2 , . . . , u
in�d) : (i1, i2, . . . , in�d) 2 Yn�d

 

if d ⌘ 0 (mod p).

As a consequence, we have

|B(n, 1, d)| =

✓
e+ n� d� 1

n� d

◆
for 1  d  n,

and

|B(n, 1)| = |B(n, n� 1)| =

✓
e+ n� 1

n� 1

◆
.
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(b) For n � 2 and 1  d  n, we have

B(n, n�1, d) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

�
Cn(1, 1, . . . , 1, ui1 , ui2 , . . . , uin�j )?��1 : (i1, i2, . . . , in�j) 2 Yn�j ,

1  j  n� 1 and j 6⌘ 0 (mod p)
 
[
�
Cn(1, 1, . . . , 1, ⇠, ui1 , ui2 , . . . ,

u
in�j )?��1 : (i1, i2, . . . , in�j) 2 Yn�j , 1  j  n� 1 and j ⌘ 0 (mod p)

 

if d = 1;
�
Cn(1, 1, . . . , 1)?��1

 
if d = 2 and n 6⌘ 0 (mod p);

�
Cn(1, 1, . . . , 1, ⇠)?��1

 
if d = 2 and n ⌘ 0 (mod p);

; otherwise.

As a consequence, for n � 2 and 1  d  n, we have

|B(n, n� 1, d)| =

8
>><

>>:

�
e+n�1
n�1

�
� 1 if d = 1;

1 if d = 2;

0 otherwise.

Proof. (a) To determine the set B(n, 1, d), we will first determine the set B(n, 1, d)

consisting of all inequivalent �-LCD [n, 1, d]-codes over Re,r. For this, let

Dn(y1, y2, . . . , yn) denote the linear [n, 1]-code over Re,r with a generator ma-

trix [y1 y2 · · · yn]. We next observe that if a = (a1, a2, . . . , an), b = (b1, b2, . . . ,

bn) 2 R
n

e,r
are such that their Hamming weights are not equal, then the linear

codes Dn(a1, a2, . . . , an) and Dn(b1, b2, . . . , bn) over Re,r are inequivalent. We

further observe that each �-LCD [n, 1, d]-code over Re,r is equivalent to the

�-LCD code

Dn(1, 1, . . . , 1| {z }
d

, 0, 0, . . . , 0)

when d 6⌘ 0 (mod p), while each �-LCD [n, 1, d]-code over Re,r is equivalent

to the �-LCD code

Dn(1, 1, . . . , 1| {z }
d�1

, ⇠, 0, 0, . . . , 0)

when d ⌘ 0 (mod p). From this, it follows that there exists a unique �-LCD

[n, 1, d]-code over Re,r up to equivalence for 1  d  n. Further, working as in
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Theorem 6.5.2(a) and by applying Lemma 6.5.1, part (a) follows.

(b) Working in a similar manner as in Theorem 6.5.2(b) and by using part (a), the

desired result follows.

6.5.2 Classification of Euclidean LCD codes over the chain

rings F2[u]/hu2i and F3[u]/hu2i, and �-LCD codes over

the chain ring F4[u]/hu2i when �0 2 Aut2(F4[u]/hu2i)

The enumeration formulae obtained in Theorems 6.3.5 and 6.3.8 are useful in

the determination of complete lists of inequivalent �-LCD codes of length n over

Re,r when �0 2 Aut1(Re,r)[Aut2(Re,r). To illustrate the same, we will now classify

all Euclidean LCD codes of lengths 2, 3, 4 and 5 over F2[u]/hu2
i and of lengths 2, 3

and 4 over F3[u]/hu2
i, and all �-LCD codes of lengths 2, 3 and 4 over the chain ring

F4[u]/hu2
i when �0 2 Aut2(F4[u]/hu2

i) (or equivalently, when �0 is the automor-

phism of F4 of order 2) up to monomial equivalence, by carrying out computations

in the Magma Computational Algebra System and by applying the classification al-

gorithm [53, Sec. 9.7] that has been used in most of the earlier classification attempts

[3]. We will also explicitly determine a generator matrix of the code representative

of each equivalence class of these codes.

I. There are precisely 3 inequivalent non-zero Euclidean LCD codes of length 2

over F2[u]/hu2
i. Among these codes, there are

• 2 Euclidean LCD [2, 1, 1]-codes over F2[u]/hu2
i with generator matrices

h
1 0

i
and

h
1 u

i
; and

• 1 Euclidean LCD [2, 2, 1]-code over F2[u]/hu2
i with a generator matrix

I2.

II. There are precisely 9 inequivalent non-zero Euclidean LCD codes of length 3

over F2[u]/hu2
i. Among these codes, there are

• 3 Euclidean LCD [3, 1, 1]-codes over F2[u]/hu2
i with generator matrices
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h
1 0 0

i
,

h
1 0 u

i
and

h
1 u u

i
;

• 3 Euclidean LCD [3, 2, 1]-codes over F2[u]/hu2
i with generator matrices

"
1 0 0

0 1 0

#
,

"
1 0 u

0 1 0

#
and

"
1 0 u

0 1 u

#
;

• 1 Euclidean LCD [3, 1, 3]-code over F2[u]/hu2
i with a generator matrix

h
1 1 1

i
;

• 1 Euclidean LCD [3, 3, 1]-code over F2[u]/hu2
i with a generator matrix

I3; and

• 1 Euclidean LCD [3, 2, 2]-code over F2[u]/hu2
i with a generator matrix

"
1 0 1 + u

0 1 1 + u

#
.

III. There are precisely 26 inequivalent non-zero Euclidean LCD codes of length 4

over F2[u]/hu2
i. Among these codes, there are

• 4 inequivalent Euclidean LCD [4, 1, 1]-codes over F2[u]/hu2
i with genera-

tor matrices
h
1 0 u u

i
,

h
1 0 0 u

i
,

h
1 u u u

i
and

h
1 0 0 0

i
;

• 2 inequivalent Euclidean LCD [4, 1, 3]-codes over F2[u]/hu2
i with genera-

tor matrices
h
1 1 1 0

i
and

h
1 u 1 + u 1

i
;

• 9 inequivalent Euclidean LCD [4, 2, 1]-codes over F2[u]/hu2
i with genera-

tor matrices

"
1 0 0 u

0 1 0 0

#
,

"
1 0 1 1

0 1 u u

#
,

"
1 0 u u

0 1 0 0

#
,

"
1 0 u 0

0 1 u u

#
,

"
1 0 1 + u 1 + u

0 1 0 0

#
,

"
1 0 u u

0 1 u u

#
,

"
1 0 0 u

0 1 0 u

#
,

"
1 0 0 u

0 1 u 0

#
and

"
1 0 0 0

0 1 0 0

#
;

• 4 inequivalent Euclidean LCD [4, 2, 2]-codes over F2[u]/hu2
i with genera-

tor matrices

"
1 0 1 1

0 1 1 u

#
,

"
1 0 0 1 + u

0 1 u 1 + u

#
,

"
1 0 1 1 + u

0 1 1 0

#
and
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"
1 0 1 + u 0

0 1 1 + u 0

#
;

• 6 inequivalent Euclidean LCD [4, 3, 1]-codes over F2[u]/hu2
i with genera-

tor matrices

2

664

1 0 0 0

0 1 0 1

0 0 1 1

3

775 ,

2

664

1 0 0 1

0 1 0 u

0 0 1 1

3

775 ,

2

664

1 0 0 u

0 1 0 0

0 0 1 0

3

775 ,

2

664

1 0 0 u

0 1 0 u

0 0 1 u

3

775 ,

2

664

1 0 0 u

0 1 0 0

0 0 1 u

3

775 and

2

664

1 0 0 0

0 1 0 0

0 0 1 0

3

775; and

• 1 Euclidean LCD [4, 4, 1]-code over F2[u]/hu2
i with a generator matrix

I4.

IV. There are precisely 85 inequivalent non-zero Euclidean LCD codes of length 5

over F2[u]/hu2
i. Among these codes, there are

• 5 Euclidean LCD [5, 1, 1]-codes over F2[u]/hu2
i with generator matrices

h
1 0 0 0 0

i
,

h
1 u 0 0 0

i
,

h
1 u u 0 0

i
,

h
1 u u u 0

i
and

h
1 u u u u

i
;

• 3 Euclidean LCD [5, 1, 3]-codes over F2[u]/hu2
i with generator matrices

h
1 1 1 0 0

i
,

h
1 1 1 u 0

i
and

h
1 1 1 u u

i
;

• 1 Euclidean LCD [5, 1, 5]-code over F2[u]/hu2
i with a generator matrix

h
1 1 1 1 1

i
;

• 21 Euclidean LCD [5, 2, 1]-codes over F2[u]/hu2
i with generator matrices

"
1 0 1 1 u

0 1 u u 0

#
,

"
1 0 u u u

0 1 1 1 0

#
,

"
1 0 0 0 0

0 1 1 1 u

#
,

"
1 0 0 0 u

0 1 1 1 0

#
,

"
1 0 0 0 0

0 1 1 1 0

#
,

"
1 0 1 1 0

0 1 u u 0

#
,

"
1 0 1 1 u

0 1 u 0 u

#
,

"
1 0 1 1 u

0 1 0 0 u

#
,

"
1 0 0 u 0

0 1 0 u u

#
,

"
1 0 u 0 0

0 1 0 u u

#
,

"
1 0 0 0 0

0 1 0 u 0

#
,

"
1 0 u u u

0 1 0 u 0

#
,

"
1 0 0 0 0

0 1 0 0 0

#
,

"
1 0 u u u

0 1 0 0 0

#
,

"
1 0 u u 0

0 1 u u u

#
,
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"
1 0 u u 0

0 1 u 0 u

#
,

"
1 0 u u 0

0 1 u u 0

#
,

"
1 0 u u 0

0 1 0 0 0

#
,

"
1 0 0 0 u

0 1 0 0 u

#
,

"
1 0 u u u

0 1 u u u

#

and

"
1 0 0 0 u

0 1 0 u 0

#
;

• 12 Euclidean LCD [5, 2, 2]-codes over F2[u]/hu2
i with generator matrices

"
1 0 1 + u u 1

0 1 1 0 1 + u

#
,

"
1 0 1 u u

0 1 1 1 1

#
,

"
1 0 1 + u 1 u

0 1 1 u 0

#
,

"
1 0 1 1 u

0 1 1 0 0

#
,

"
1 0 1 + u 1 + u 0

0 1 1 0 0

#
,

"
1 0 1 u u

0 1 1 0 1

#
,

"
1 0 u 1 + u u

0 1 u 1 + u u

#
,

"
1 0 1 1 1

0 1 1 1 1

#
,

"
1 0 1 + u 1 + u 0

0 1 1 u 0

#
,

"
1 0 u 1 + u 0

0 1 0 1 u

#
,

"
1 0 0 1 + u 0

0 1 0 1 0

#
and

"
1 0 0 1 + u u

0 1 0 1 0

#
;

• 31 Euclidean LCD [5, 3, 1]-codes over F2[u]/hu2
i with generator matrices

2

664

1 0 0 1 1

0 1 0 u 1 + u

0 0 1 u 0

3

775 ,

2

664

1 0 0 0 u

0 1 0 1 1

0 0 1 0 1

3

775 ,

2

664

1 0 0 0 u

0 1 0 1 + u 0

0 0 1 1 + u 0

3

775 ,

2

664

1 0 0 0 u

0 1 0 u u

0 0 1 0 u

3

775 ,

2

664

1 0 0 1 + u u

0 1 0 1 + u 0

0 0 1 0 0

3

775 ,

2

664

1 0 0 1 1

0 1 0 0 u

0 0 1 u u

3

775 ,

2

664

1 0 0 1 u

0 1 0 1 + u u

0 0 1 0 u

3

775 ,

2

664

1 0 0 u u

0 1 0 0 0

0 0 1 u u

3

775 ,

2

664

1 0 0 u 1

0 1 0 1 1 + u

0 0 1 0 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 1 0

0 0 1 1 0

3

775 ,

2

664

1 0 0 1 0

0 1 0 u u

0 0 1 1 + u 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

3

775 ,

2

664

1 0 0 0 0

0 1 0 u 0

0 0 1 1 + u 1

3

775 ,

2

664

1 0 0 u 0

0 1 0 u u

0 0 1 0 u

3

775 ,

2

664

1 0 0 1 + u 0

0 1 0 u 0

0 0 1 1 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 0 0

0 0 1 u 0

3

775 ,
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2

664

1 0 0 0 u

0 1 0 1 + u 1

0 0 1 1 1 + u

3

775 ,

2

664

1 0 0 u 0

0 1 0 1 1

0 0 1 u 0

3

775 ,

2

664

1 0 0 1 u

0 1 0 u u

0 0 1 1 0

3

775 ,

2

664

1 0 0 u u

0 1 0 0 u

0 0 1 u u

3

775 ,

2

664

1 0 0 1 u

0 1 0 u 0

0 0 1 1 + u u

3

775 ,

2

664

1 0 0 0 u

0 1 0 0 u

0 0 1 0 0

3

775 ,

2

664

1 0 0 u 0

0 1 0 u u

0 0 1 0 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 u u

0 0 1 0 0

3

775 ,

2

664

1 0 0 1 + u 1 + u

0 1 0 1 + u 1

0 0 1 u u

3

775 ,

2

664

1 0 0 u u

0 1 0 u u

0 0 1 u u

3

775 ,

2

664

1 0 0 u 0

0 1 0 u 0

0 0 1 0 u

3

775 ,

2

664

1 0 0 u 0

0 1 0 u 0

0 0 1 u 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

3

775 ,

2

664

1 0 0 0 0

0 1 0 0 u

0 0 1 u 0

3

775 and

2

664

1 0 0 1 + u 1 + u

0 1 0 0 1 + u

0 0 1 0 0

3

775 ;

• 2 Euclidean LCD [5, 3, 2]-codes over F2[u]/hu2
i with generator matrices

2

664

1 0 0 u 1

0 1 0 1 + u 1 + u

0 0 1 u 1 + u

3

775 and

2

664

1 0 0 0 1 + u

0 1 0 1 + u 1

0 0 1 0 1

3

775;

• 8 Euclidean LCD [5, 4, 1]-codes over F2[u]/hu2
i with generator matrices

2

66664

1 0 0 0 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 0

3

77775
,

2

66664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 u

0 0 0 1 0

3

77775
,

2

66664

1 0 0 0 0

0 1 0 0 u

0 0 1 0 u

0 0 0 1 u

3

77775
,

2

66664

1 0 0 0 1 + u

0 1 0 0 1

0 0 1 0 u

0 0 0 1 u

3

77775
,

2

66664

1 0 0 0 u

0 1 0 0 u

0 0 1 0 u

0 0 0 1 u

3

77775
,

2

66664

1 0 0 0 0

0 1 0 0 u

0 0 1 0 u

0 0 0 1 0

3

77775
,

2

66664

1 0 0 0 u

0 1 0 0 0

0 0 1 0 1

0 0 0 1 1

3

77775
and

2

66664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

3

77775
;

• 1 Euclidean LCD [5, 4, 2]-code over F2[u]/hu2
i with a generator matrix
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2

66664

1 0 0 0 1

0 1 0 0 1 + u

0 0 1 0 1 + u

0 0 0 1 1

3

77775
; and

• 1 Euclidean LCD [5, 5, 1]-code over F2[u]/hu2
i with a generator matrix

I5.

V. There are precisely 4 inequivalent non-zero Euclidean LCD codes of length 2

over F3[u]/hu2
i. Among these codes, there are

• 2 inequivalent Euclidean LCD [2, 1, 1]-codes over F3[u]/hu2
i with genera-

tor matrices
h
1 0

i
and

h
1 u

i
;

• 1 Euclidean LCD [2, 1, 2]-code over F3[u]/hu2
i with a generator matrix

h
1 1

i
; and

• 1 Euclidean LCD [2, 2, 1]-code over F3[u]/hu2
i with a generator matrix

I2.

VI. There are precisely 11 inequivalent non-zero Euclidean LCD codes of length 3

over F3[u]/hu2
i. Among these codes, there are

• 3 Euclidean LCD [3, 1, 1]-codes over F3[u]/hu2
i with generator matrices

h
1 0 0

i
,

h
1 0 u

i
and

h
1 u u

i
;

• 2 Euclidean LCD [3, 1, 2]-codes over F3[u]/hu2
i with generator matrices

h
1 1 u

i
and

h
1 1 0

i
;

• 5 Euclidean LCD [3, 2, 1]-codes over F3[u]/hu2
i with generator matrices

"
1 0 0

0 1 1

#
,

"
1 0 0

0 1 u

#
,

"
1 0 0

0 1 0

#
,

"
1 0 2

0 1 u

#
and

"
1 0 2u

0 1 u

#
; and

• 1 Euclidean LCD [3, 3, 1]-code over F3[u]/hu2
i with a generator matrix

I3.

VII. There are precisely 38 inequivalent non-zero Euclidean LCD codes of length 4

over F3[u]/hu2
i. Among these codes, there are
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• 4 Euclidean LCD [4, 1, 1]-codes over F3[u]/hu2
i with generator matrices

h
1 0 0 0

i
,

h
1 u 0 0

i
,

h
1 0 u u

i
and

h
1 u u u

i
;

• 3 Euclidean LCD [4, 1, 2]-codes over F3[u]/hu2
i with generator matrices

h
1 1 0 0

i
,

h
1 1 0 u

i
and

h
1 1 u u

i
;

• 1 Euclidean LCD [4, 1, 4]-code over F3[u]/hu2
i with a generator matrix

h
1 1 1 1

i
;

• 16 Euclidean LCD [4, 2, 1]-codes over F3[u]/hu2
i with generator matrices

"
1 0 1 0

0 1 0 0

#
,

"
1 0 1 u

0 1 2u 0

#
,

"
1 0 1 u

0 1 0 u

#
,

"
1 0 1 0

0 1 2u 2u

#
,

"
1 0 1 + u 0

0 1 2u 0

#
,

"
1 0 1 u

0 1 2u 2u

#
,

"
1 0 1 0

0 1 0 u

#
,

"
1 0 2u 2u

0 1 0 0

#
,

"
1 0 0 0

0 1 0 0

#
,

"
1 0 u 2u

0 1 u u

#
,

"
1 0 u 2u

0 1 u 2u

#
,

"
1 0 2u 2u

0 1 2u 0

#
,

"
1 0 u 0

0 1 2u 0

#
,

"
1 0 2u 0

0 1 0 2u

#
,

"
1 0 0 2u

0 1 0 0

#

and

"
1 0 1 + 2u u

0 1 0 0

#
;

• 5 Euclidean LCD [4, 2, 2]-codes over F3[u]/hu2
i with generator matrices

"
1 0 2 1 + u

0 1 1 2u

#
,

"
1 0 1 2 + u

0 1 1 2 + u

#
,

"
1 0 1 + u u

0 1 u 1

#
,

"
1 0 1 + u u

0 1 0 1

#
and

"
1 0 1 + u 0

0 1 0 1

#
;

• 7 Euclidean LCD [4, 3, 1]-codes over F3[u]/hu2
i with generator matrices

2

664

1 0 0 u

0 1 0 u

0 0 1 u

3

775 ,

2

664

1 0 0 2u

0 1 0 1

0 0 1 2u

3

775 ,

2

664

1 0 0 0

0 1 0 1

0 0 1 0

3

775 ,

2

664

1 0 0 u

0 1 0 u

0 0 1 0

3

775 ,

2

664

1 0 0 2u

0 1 0 0

0 0 1 0

3

775 ,

2

664

1 0 0 2u

0 1 0 2 + 2u

0 0 1 0

3

775 and

2

664

1 0 0 0

0 1 0 0

0 0 1 0

3

775;

• 1 Euclidean LCD [4, 3, 2]-code over F3[u]/hu2
i with a generator matrix
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2

664

1 0 0 2 + u

0 1 0 2 + 2u

0 0 1 1

3

775 ; and

• 1 Euclidean LCD [4, 4, 1]-code over F3[u]/hu2
i with a generator matrix

I4.

VIII. Let �0 2 Aut2(F4[u]/hu2
i), and let ⇣ be a primitive element of F4. There are

precisely 3 inequivalent non-zero �-LCD codes of length 2 over F4[u]/hu2
i.

Among these codes, there are

• 2 �-LCD [2, 1, 1]-codes over F4[u]/hu2
i with generator matrices

h
1 0

i

and
h
1 ⇣

2
u

i
; and

• 1 �-LCD [2, 2, 1]-code over F4[u]/hu2
i with a generator matrix I2.

IX. Let �0 2 Aut2(F4[u]/hu2
i), and let ⇣ be a primitive element of F4. There are

precisely 9 inequivalent non-zero �-LCD codes of length 3 over F4[u]/hu2
i.

Among these codes, there are

• 3 �-LCD [3, 1, 1]-codes over F4[u]/hu2
i with generator matrices

h
1 0 0

i
,

h
1 0 u

i
and

h
1 u u

i
;

• 1 �-LCD [3, 1, 3]-codes over F4[u]/hu2
i with a generator matrix

h
1 1 1

i
;

• 4 �-LCD [3, 2, 1]-codes over F4[u]/hu2
i with generator matrices

"
1 0 0

0 1 0

#
,

"
1 0 ⇣u

0 1 u

#
,

"
1 0 ⇣u

0 1 0

#
and

"
1 0 1 + ⇣

2
u

0 1 ⇣
2 + ⇣

2
u

#
; and

• 1 �-LCD [3, 3, 1]-code over F4[u]/hu2
i with a generator matrix I3.

X. Let �0 2 Aut2(F4[u]/hu2
i), and let ⇣ be a primitive element of F4. There are

precisely 31 inequivalent non-zero �-LCD codes of length 4 over F4[u]/hu2
i.

Among these codes, there are
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• 4 inequivalent �-LCD [4, 1, 1]-codes over F4[u]/hu2
i with generator ma-

trices
h
1 0 u u

i
,

h
1 0 0 u

i
,

h
1 u u u

i
and

h
1 0 0 0

i
;

• 2 inequivalent �-LCD [4, 1, 3]-codes over F4[u]/hu2
i with generator ma-

trices
h
1 1 1 0

i
and

h
1 u 1 1

i
;

• 11 inequivalent �-LCD [4, 2, 1]-codes over F4[u]/hu2
i with generator ma-

trices

"
1 0 ⇣u ⇣u

0 1 ⇣
2
u ⇣

2
u

#
,

"
1 0 ⇣u u

0 1 ⇣ + ⇣
2
u 1 + u

#
,

"
1 0 ⇣

2
u ⇣

2
u

0 1 ⇣ + ⇣
2
u 1

#
,

"
1 0 ⇣u ⇣

2
u

0 1 ⇣u 0

#
,

"
1 0 0 0

0 1 0 0

#
,

"
1 0 ⇣u ⇣u

0 1 ⇣
2
u u

#
,

"
1 0 ⇣ + u 1 + ⇣

2
u

0 1 0 0

#
,

"
1 0 0 u

0 1 0 u

#
,

"
1 0 ⇣

2
u u

0 1 0 0

#
,

"
1 0 0 u

0 1 0 0

#
and

"
1 0 0 ⇣u

0 1 ⇣
2
u 0

#
;

• 7 inequivalent �-LCD [4, 2, 2]-codes over F4[u]/hu2
i with generator ma-

trices

"
1 0 0 ⇣

2 + ⇣u

0 1 0 ⇣

#
,

"
1 0 ⇣

2
u ⇣

2 + ⇣
2
u

0 1 ⇣u ⇣

#
,

"
1 0 ⇣u ⇣

2 + u

0 1 1 + ⇣
2
u 1

#
,

"
1 0 ⇣

2
u ⇣

2 + ⇣
2
u

0 1 u ⇣

#
,

"
1 0 ⇣

2
u ⇣

2 + ⇣u

0 1 1 + ⇣u 1 + u

#
,

"
1 0 0 ⇣

2 + ⇣u

0 1 1 + u 1 + u

#

and

"
1 0 u ⇣

2 + u

0 1 1 + u 1 + u

#
;

• 6 inequivalent �-LCD [4, 3, 1]-codes over F4[u]/hu2
i with generator ma-

trices

2

664

1 0 0 0

0 1 0 0

0 0 1 0

3

775 ,

2

664

1 0 0 0

0 1 0 ⇣
2
u

0 0 1 0

3

775 ,

2

664

1 0 0 ⇣
2

0 1 0 ⇣ + u

0 0 1 0

3

775 ,

2

664

1 0 0 ⇣u

0 1 0 u

0 0 1 ⇣
2
u

3

775 ,

2

664

1 0 0 u

0 1 0 ⇣
2 + ⇣

2
u

0 0 1 ⇣
2 + ⇣

2
u

3

775 and

2

664

1 0 0 u

0 1 0 ⇣u

0 0 1 0

3

775; and

• 1 �-LCD [4, 4, 1]-code over F4[u]/hu2
i with a generator matrix I4.

In the next chapter, we will study S-additive codes over R and their dual codes

with respect to the ordinary trace bilinear form, where R and S are two finite
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commutative chain rings such that R is the Galois extension of S of degree m � 2,

(recall that an S-additive code of length n over R is defined as an S-submodule of

R
n). We will also study their three special classes such as S-additive self-orthogonal

codes, S-additive self-dual codes and S-additive codes with complementary duals

(ACD codes) and further apply the results derived in Chapters 3-6 to enumerate

these three classes of codes.
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7
Additive self-orthogonal, additive

self-dual and ACD codes over

finite commutative chain rings

7.1 Introduction

Additive codes over finite commutative chain rings are natural extensions of lin-

ear codes. These codes have rich algebraic structures [23, 71, 93] and are useful

in constructing quantum error-correcting codes [22, 93]. This motivated several

researchers to study these codes and provide methods to construct these codes.

Mahmoudi and Samei [71] studied algebraic structures of additive codes over Ga-

lois rings by establishing a one-to-one correspondence between linear codes over the

ring Zpe of integers modulo p
e and additive codes over the Galois ring GR(pe, r),

249
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where p is a prime number and e, r are positive integers. They also studied permu-

tation equivalent additive codes and decomposable additive codes over Galois rings.

Besides this, they proved the MacWilliams identity and Delsarte’s Theorem for ad-

ditive codes over Galois rings. Cao et al. [23] studied cyclic additive codes over

Galois rings and provided a canonical form decomposition for these codes. With the

help of this decomposition, they further enumerated all cyclic additive codes of an

arbitrary length over Galois rings. Moro et al. [74] studied cyclic additive codes over

finite commutative chain rings with respect to two di↵erent notions of additivity, viz.

Galois-additivity and Eisenstein-additivity. Recently, Sidana and Kashyap [93] con-

structed entanglement-assisted quantum error-correcting codes (EAQECCs) from

additive codes over finite commutative local Frobenius rings. They also provided a

formula for the minimum number of entanglement qudits required to construct an

EAQECC from an additive code over a Galois ring.

Throughout this chapter, let r � 1, m � 2 and e � 2 be integers. Let

Re,r =
GR(ps, r)[x]

hg(x), ps�1xti

and

Re,rm =
GR(ps, rm)[x]

hg(x), ps�1xti

be two finite commutative chain rings, where g(x) = x
 + p(a�1x

�1 + · · ·+ a1x+

a0) 2 GR(ps, r)[x] is an Eisenstein polynomial with a0 as a unit in GR(ps, r), e =

(s� 1) + t, and 1  t   when s � 2, while t =  when s = 1. Note that Re,r is a

subring of Re,rm. By Theorem 4.3.1 of [16], we see that Re,rm is the Galois extension

of Re,r of degree m. If u := x + hg(x), ps�1
x
t
i, then one can easily see that e is the

least positive integer satisfying u
e = 0 in Re,r (and in Re,rm) and hui is the unique

maximal ideal of both Re,r and Re,rm. Note that the residue field Re,r = Re,r/hui of

Re,r is of order pr and the residue field Re,rm = Re,rm/hui of Re,rm is of order prm.

One can easily see that the set R
n

e,rm
of all n-tuples over Re,rm can be viewed as

an Re,r-module under the component-wise addition and the component-wise scalar

multiplication. Now an additive code C of length n over Re,rm is defined as an

Re,r-submodule of Rn

e,rm
.

The main goal of this chapter is to study additive codes over Re,rm and their
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dual codes with respect to the ordinary trace bilinear form. We will also study their

three special classes, viz. additive self-orthogonal codes, additive self-dual codes

and additive codes with complementary duals (ACD codes) with respect to the

ordinary trace bilinear form. We will also derive necessary and su�cient conditions

under which an additive code over Re,rm is (i) self-orthogonal, (ii) self-dual, and

(iii) ACD. We will derive necessary and su�cient conditions for the existence of an

additive self-dual code over Re,rm. As an application of these results, we will obtain

explicit enumeration formulae for all additive self-orthogonal and self-dual codes of

an arbitrary length over Re,rm in the following three cases: (i) both p and m are

odd (ii) p = 2 and s = 1, and (iii) p = 2,  = 1 and m is odd. We will also count

all ACD codes of an arbitrary length over Re,rm, where e � 2, r � 1 and m � 2 are

arbitrary integers.

This chapter is organized as follows: In Section 7.2, we state some preliminaries

and study algebraic structures of additive codes over Re,rm by establishing a one-to-

one correspondence between additive codes over Re,rm and linear codes over Re,r. In

Section 7.3, we derive necessary and su�cient conditions under which an additive

code over Re,rm is self-orthogonal or self-dual (Theorem 7.3.1). We further obtain

explicit enumeration formulae for all additive self-orthogonal and self-dual codes of

an arbitrary length over Re,rm in the following three cases: (i) both p and m are odd

(ii) p = 2 and s = 1, and (iii) p = 2,  = 1 and m is odd (Theorems 7.3.4,7.3.5, 7.3.8-

7.3.11, 7.3.14 and 7.3.15). In Section 7.4, we first show that any ACD code of length

n over Re,rm is a free code, i.e., it is a free Re,r-submodule of Rn

e,rm
(Theorem 7.4.1).

We further derive necessary and su�cient conditions under which an additive code

over Re,rm is ACD (Theorem 7.4.2). We also obtain explicit enumeration formula

for all ACD codes of an arbitrary length over Re,rm, where e � 2, r � 1 and m � 2

are integers (Theorems 7.4.10 and 7.4.11).

7.2 Additive codes over finite commutative chain

rings

In this section, we will state some basic definitions and results needed to prove

our main results. We will also study algebraic structures of additive codes over
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Re,rm and their dual codes with respect to the ordinary trace bilinear form. Since

GR(ps, rm) is the Galois extension of GR(ps, r) of degree m, we see, by Theorem

14.23 of [101], that there exists an element ⇣ 2 GR(ps, rm) of multiplicative order

p
rm

� 1, such that

GR(ps, rm) = GR(ps, r)[⇣]

= {v0 + v1⇣ + · · ·+ vm�1⇣
m�1 : vi 2 GR(ps, r) for 0  i  m� 1}.

Further, by Theorem 2.4 of Moro et al. [74], we see that

Re,rm = Re,r[⇣] = {a0 + a1⇣ + · · ·+ am�1⇣
m�1 : ai 2 Re,r for 0  i  m� 1}.

Thus Re,rm is a free module over Re,r with a basis set {1, ⇣, ⇣2, . . . , ⇣m�1
}. Note

that the set Te,rm = {0, 1, ⇣, ⇣2, . . . , ⇣p
rm�2

} is the Teichmüller set of the chain ring

Re,rm and the set Te,r = {0, 1, ⇠, ⇠2, . . . , ⇠p
r�2

} is the Teichmüller set of the chain

ring Re,r, where ⇠ = ⇣
p
rm�1
pr�1 . Further, if u := x + hg(x), ps�1

x
t
i, then the ideal

hui is the unique maximal ideal of both the chain rings Re,r and Re,rm and has

nilpotency index e = (s � 1) + t. Further, all the ideals of Re,r are given by

{0} ⇢ hu
e�1

i ⇢ hu
e�2

i ⇢ · · · ⇢ hui ⇢ h1i = Re,r and all the ideals of Re,rm are given

by {0} ⇢ hu
e�1

i ⇢ hu
e�2

i ⇢ · · · ⇢ hui ⇢ h1i = Re,rm. Moreover, if Re,r = Re,r/hui

and Re,rm = Re,rm/hui, then Re,r is the residue field of Re,r of order pr and Re,rm is

the residue field of Re,rm of order prm. Let us define a = a+ hui for all a 2 Re,rm. It

is easy to see that Re,rm = Re,r[⇣] = {z0+ z1⇣ + · · ·+ zm�1⇣
m�1

: zi 2 Re,r for 0 

i  m� 1}, i.e., Re,rm is the Galois extension of Re,r of degree m.

Next, let n be a positive integer, and let R
n

e,rm
be the set of all n-tuples over

Re,rm. The set R
n

e,rm
can be viewed as an Re,r-module under the component-wise

addition and the component-wise scalar multiplication. An additive code C of length

n over Re,rm is defined as an Re,r-submodule of Rn

e,rm
. Elements of the code C are

called codewords. Further, a matrix over Re,rm is called a generator matrix of the

code C if its rows form a minimal generating set of the code C . The rank of the

code C is defined as the cardinality of a minimal generating set of the code C . The

Hamming distance of the code C , denoted by dH(C ), is given by

dH(C ) = min{wH(c) : c( 6= 0) 2 C }.
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Further, the additive code C is said to be free if it is a free Re,r-submodule of Rn

e,rm
.

The rank of the free additive code C equals the rank of C as a free Re,r-submodule

of Rn

e,rm
.

Further, for 1  i  e, the i-th Torsion code of the additive code C is defined as

Tori(C ) = {z 2 R
n

e,rm
: u

i�1
z
0
2 C for some z

0
2 R

n

e,rm
satisfying z0 = z}.

One can easily observe that the i-th Torsion code Tori(C ) of C is an Re,r-linear

subspace of R
n

e,rm
, i.e., Tori(C ) is an additive code of length n over Re,rm. Further,

the additive code C of length n over Re,rm is said to be of the type {k1, k2, . . . , ke}

if k1 = dimRe,r
(Tor1(C )) and ki = dimRe,r

(Tori(C )) � dimRe,r
(Tori�1(C )) for 2 

i  e.

The mapping ' : Re,rm ! Re,rm, defined as

'(a) = a0 + a1⇣
p
r

+ · · ·+ am�1⇣
p
r(m�1)

for all a = a0 + a1⇣ + · · · + am�1⇣
m�1

2 Re,rm with a0, a1, . . . , am�1 2 Re,r, is an

automorphism of Re,rm which fixes each element of Re,r. By Corollary 5.1.5 and

Theorem 5.1.6 of [16], we see that the automorphism group AutRe,r
(Re,rm) of Re,rm

over Re,r is the cyclic group {'
i : 0  i  m� 1} generated by the element '. We

next observe that the mapping Trpr,m : Re,rm ! Re,r, defined as

Trpr,m(a) = a+ '(a) + '
2(a) + · · ·+ '

m�1(a) for all a 2 Re,rm,

is a surjective Re,r-module homomorphism and is called the generalized trace map.

Now define a map h·, ·i : Rn

e,rm
⇥R

n

e,rm
! Re,r as

ha, bi =
nX

i=1

Trpr,m(aibi)

for all a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) 2 R
n

e,rm
. One can easily see that h·, ·i

is a non-degenerate and symmetric bilinear form on R
n

e,rm
and is called the ordinary

trace bilinear form. Further, if C is an additive code of length n over Re,rm, then
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its dual code C ? is defined as

C ? =
�
z 2 R

n

e,rm
: hz, ci = 0 for all c 2 C

 
.

Note that the dual code C ? is also an Re,r-submodule of Rn

e,rm
, and hence it is

an additive code of length n over Re,rm. A generator matrix of the dual code C ?

is called a parity-check matrix of the code C . Further, the additive code C is said

to be (i) self-orthogonal if it satisfies C ✓ C ?
, (ii) self-dual if it satisfies C = C ?

and (iii) an additive code with complementary dual (an ACD code) if it satisfies

C \ C ? = {0}.

Further, corresponding to the automorphism ', we observe that the mapping

' : Re,rm ! Re,rm, defined as '(z) = z0 + z1⇣
p
r

+ · · · + zm�1⇣
p
r(m�1)

for all z =

z0 + z1⇣ + · · ·+ zm�1⇣
m�1

2 Re,rm with z0, z1, . . . , zm�1 2 Re,r, is an automorphism

of Re,rm that fixes each element of Re,r and is called the Frobenius automorphism

of Re,rm over Re,r. Next, we observe that the mapping Trpr,m : Re,rm ! Re,r,

defined as Trpr,m(a) = a + '(a) + '
2(a) + · · · + '

m�1(a) for all a 2 Re,rm, is a

surjective Re,r-module homomorphism, which coincides with the usual trace map

from Re,rm onto Re,r. Now the ordinary trace bilinear form on R
n

e,rm
is a map

h·, ·i : R
n

e,rm
⇥R

n

e,rm
! Re,r, defined as

hv, wi =
nX

i=1

Trpr,m(viwi)

for all v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) 2 R
n

e,rm
. By Lemma 1 of Hu↵man

[52], we see that h·, ·i is a non-degenerate and symmetric bilinear form on R
n

e,rm
.

An additive code D of length n over Re,rm is defined as an Re,r-submodule of

R
n

e,rm
. The dual code D? of the code D is defined as

D? =
�
a 2 R

n

e,rm
: ha, di = 0 for all d 2 D

 
.

It is easy to observe that the dual code D? is also an additive code of length n

over Re,rm. By Theorem 2.3.2, we see that dimRe,r
(D) + dimRe,r

(D?) = nm. From

now on, throughout this thesis, for each k⇥ ` matrix B over Re,rm with the (i, j)-th

entry as bi,j, let Trpr,m(B) denote the k⇥ ` matrix over Re,r whose (i, j)-th entry is
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Trpr,m(bi,j) and Trpr,m(B) denote the k⇥ ` matrix over Re,r whose (i, j)-th entry is

Trpr,m(bi,j), where 1  i  k and 1  j  `. Note that Trpr,m(B) and Trpr,m(B) are

not equal to the usual traces of the matrices B and B, respectively.

Let ↵ = {↵1,↵2, . . . ,↵m} be a basis of Re,rm over Re,r. Now let us define a map

⇧↵ : Rn

e,rm
! R

nm

e,r
as

⇧↵(v1, v2, . . . , vn) = (v1,1, v1,2, . . . , v1,m, v2,1, v2,2, . . . , v2,m, . . . , vn,1, vn,2, . . . , vn,m)

for all vi = vi,1↵1 + vi,2↵2 + · · ·+ vi,m↵m 2 Re,rm, where vi,1, vi,2, . . . , vi,m 2 Re,r for

1  i  n. It is easy to see that the map ⇧↵ is an Re,r-module isomorphism. From

this, it follows that a non-empty subset C of Rn

e,rm
is an additive code of length n

over Re,rm if and only if its image ⇧↵(C ) is a linear code of length nm over Re,r.

That is, the isomorphism ⇧↵ induces a one-to-one correspondence between additive

codes of length n over Re,rm and linear codes of length nm over Re,r. Further, we

observe that (v1, v2, . . . , vn) 2 R
n

e,rm
with vi 2 hu

`
i for 1  i  n if and only

if ⇧↵(v1, v2, . . . , vn) = (v1,1, v1,2, . . . , v1,m, v2,1, v2,2, . . . , v2,m, . . . , vn,1, vn,2, . . . , vn,m) 2

R
nm

e,r
with vi,j 2 hu

`
i for 1  i  n and 1  j  m, where 0  `  e.

Next, we note that if ↵ = {↵1,↵2, . . . ,↵m} is a basis of Re,rm over Re,r, then

↵ = {↵1,↵2, . . . ,↵m} is a basis of Re,rm over Re,r. Further, corresponding to the

mapping ⇧↵, we define a mapping ⇧↵ : R
n

e,rm
! R

nm

e,r
as

⇧↵(z1, z2, . . . , zn) = (z1,1, z1,2, . . . , z1,m, z2,1, z2,2, . . . , z2,m, . . . , zn,1, zn,2, . . . , zn,m)

for all zi = zi,1↵1 + zi,2↵2 + · · · + zi,m↵m 2 Re,rm, where zi,1, zi,2, . . . , zi,m 2 Re,r

for 1  i  n. It is easy to observe that the map ⇧↵ is an Re,r-linear vector space

isomorphism. From this, it follows that the isomorphism ⇧↵ induces a one-to-one

correspondence between additive codes of length n over Re,rm and linear codes of

length nm over Re,r, i.e., D is an additive code of length n over Re,rm if and only

if ⇧↵(D) is a linear code of length nm over Re,r.

In the following lemma, we relate the Torsion codes of an additive code C of

length n over Re,rm with the Torsion codes of the linear code ⇧↵(C ) of length nm

over Re,r.
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Lemma 7.2.1. Let C be an additive code of length n over Re,rm. We have

Tori(⇧↵(C )) = ⇧↵(Tori(C )) for 1  i  e.

Proof. To prove the result, let c 2 Tori(⇧↵(C )). So there exists c0 2 R
nm

e,r
such that

u
i�1

c
0
2 ⇧↵(C ) and c

0 = c. Since the map ⇧↵ is an Re,r-module isomorphism, there

exists d 2 R
n

e,rm
such that u

i�1
d 2 C and ⇧↵(ui�1

d) = u
i�1

c
0
. This implies that

d 2 Tori(C ), which further implies that c = c
0 = ⇧↵(d) 2 ⇧↵(Tori(C )). This shows

that

Tori(⇧↵(C )) ✓ ⇧↵(Tori(C )).

Conversely, let v 2 ⇧↵(Tori(C )). So there exists v0 2 Tori(C ) such that ⇧↵(v0) =

v. This implies that there exists z 2 R
n

e,rm
such that ui�1

z 2 C and z = v
0
. Further,

u
i�1

z 2 C implies that ui�1⇧↵(z) 2 ⇧↵(C ). From this, we get v = ⇧↵(v0) = ⇧↵(z) 2

Tori(⇧↵(C )). This implies that

⇧↵(Tori(C )) ✓ Tori(⇧↵(C )).

From this, it follows that Tori(⇧↵(C )) = ⇧↵(Tori(C )).

Remark 7.2.1. By Lemma 7.2.1, we see that an additive code C is of the type

{k1, k2, . . . , ke} and length n over Re,rm if and only if the linear code ⇧↵(C ) is of

the type {k1, k2, . . . , ke} and length nm over Re,r. From this, it follows that

|C | =
eY

i=1

|Tori(C )| = (pr)

eP
i=1

(e�i+1)ki
.

Given an ordered basis ↵ = {↵1,↵2, . . . ,↵m} of Re,rm over Re,r, its trace dual

basis is defined as an ordered basis � = {�1, �2, . . . , �m} of Re,rm over Re,r satisfying

Trpr,m(↵i�j) = �i,j for 1  i, j  m, where �i,j denotes the Kronecker delta function.

Further, if ↵ = �, then ↵ is said to be a self-dual basis of Re,rm over Re,r. That is,

an ordered basis ↵ = {↵1,↵2, . . . ,↵m} of Re,rm over Re,r is said to be a self-dual

basis if it satisfies Trpr,m(↵i↵j) = �i,j for 1  i, j  m.

In the following lemma, we note that every ordered basis of Re,rm over Re,r has

a unique trace dual basis.
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Theorem 7.2.1. Every ordered basis of Re,rm over Re,r has a unique trace dual

basis.

Proof. We note that Re,rm is a free module over Re,r of rank m, and hence there

exists a basis of Re,rm over Re,r. Now working as in Lemma 13 of Irwansyah et al.

[54], the desired result follows.

Proposition 7.2.1. Let ↵ = {↵1,↵2, . . . ,↵m} be an ordered basis of Re,rm over Re,r

with the trace dual basis � = {�1, �2, . . . , �m}. For an additive code C of length n

over Re,rm, we have

⇧�(C
?) = (⇧↵(C ))?.

In particular, if ↵ = {↵1,↵2, . . . ,↵m} is a self-dual basis of Re,rm over Re,r, then we

have ⇧↵(C ?) = (⇧↵(C ))?.

Proof. To prove the result, let y0 2 ⇧�(C ?). So there exists y = (y1, y2, . . . , yn) 2 C ?

such that y0 = ⇧�(y) = (y1,1, y1,2, . . . , y1,m, y2,1, y2,2, . . . , y2,m, . . . , yn,1, yn,2, . . . , yn,m),

where yi = yi,1�1 + yi,2�2 + · · ·+ yi,m�m for 1  i  n. This holds if and only if

hy, ci =
nX

i=1

Trpr,m(yici) = 0 for all c = (c1, c2, . . . , cn) 2 C ,

where ci = ci,1↵1+ ci,2↵2+ · · ·+ ci,m↵m for 1  i  n. This further holds if and only

if

nX

i=1

mX

j=1

mX

`=1

yi,jci,`Trpr,m(�j↵`) =
nX

i=1

mX

j=1

yi,jci,j = ⇧�(y) · ⇧↵(c) = 0 for all c 2 C ,

(here · denotes the Euclidean bilinear form on R
nm

e,r
). This implies that hy, ci = 0

for all c 2 C if and only if y0 · ⇧↵(c) = ⇧�(y) · ⇧↵(c) = 0 for all c 2 C , which holds

if and only if y0 2 (⇧↵(C ))?. From this, the desired result follows immediately.

In the following theorem, we determine the type of the dual code of an additive

code over Re,rm.

Theorem 7.2.2. Let C be an additive code of the type {k1, k2, . . . , ke} and length

n over Re,rm. The dual code C ? of C is an additive code of the type {nm � (k1 +

k2 + · · ·+ ke), ke, ke�1, . . . , k2} over Re,rm.
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Proof. Let ↵ = {↵1,↵2, . . . ,↵m} be an ordered basis ofRe,rm overRe,r with the trace

dual basis � = {�1, �2, . . . , �m}, (such a basis � always exists uniquely by Theorem

7.2.1). By Remark 7.2.1, we note that the code C is of the type {k1, k2, . . . , ke}

and length n over Re,rm if and only if ⇧↵(C ) is of the type {k1, k2, . . . , ke} and

length nm over Re,r. Now by applying Theorem 3.10 of Norton and Sǎlǎgean [80]

and Proposition 7.2.1, the desired result follows.

In the following lemma, we derive some su�cient conditions under which there

exists a self-dual basis of Re,rm over Re,r.

Lemma 7.2.2. (a) When m is odd, there exists a self-dual basis of Re,rm over

Re,r.

(b) When Re,rm = F2rm [u]/hue
i and Re,r = F2r [u]/hue

i, there exists a self-dual

basis of Re,rm over Re,r.

Proof. (a) It follows from Corollary 3.3 of Bágio et al. [6].

(b) By Theorem 1 of [58], we see that there exists a self-dual basis ↵ = {↵1,↵2, . . . ,

↵m} of F2rm over F2r . Now one can easily see that ↵ is also a self-dual basis of

F2rm [u]/hue
i over F2r [u]/hue

i.

7.3 Additive self-orthogonal and self-dual codes

over Re,rm

In this section, we will study additive self-orthogonal and self-dual codes over

Re,rm. Towards this, we first observe that if C is an additive code over Re,rm with a

generator matrix G and a parity-check matrix H, then we must have Trpr,m(GHt) =

0.

The following theorem provides necessary and su�cient conditions under which

an additive code over Re,rm is self-orthogonal or self-dual.

Theorem 7.3.1. Let C be an additive code of the type {k1, k2, . . . , ke} and length

n over Re,rm with a generator matrix G. Then the code C is self-orthogonal if and
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only if the matrix

Trpr,m(GG
t) = 0.

Furthermore, the code C is self-dual if and only if the code C is self-orthogonal,

k1 = nm� (k1 + k2 + · · ·+ ke) and ki = ke�i+2 for 2  i  e.

Proof. Its proof is a straightforward exercise.

Now the following lemma relates Torsion codes of an additive self-orthogonal

code over Re,rm.

Lemma 7.3.1. Let C be an additive self-orthogonal code of length n over Re,rm.

The following hold.

(a) Tori(C ) ✓ Tori(C )? for 1  i  b
e+1
2 c.

(b) Tori(C ) ✓ Tore�i+1(C )? for b
e+1
2 c+ 1  i  e.

In particular, if C is an additive self-dual code of length n over Re,rm, then we have

Tori(C ) = Tore�i+1(C )? for
l
e+ 1

2

m
 i  e.

Proof. Working in a similar manner as in Lemma 2.2.1, the desired result follows.

As a consequence of Lemma 7.3.1, we deduce the following:

Remark 7.3.1. If C is an additive self-orthogonal code of the type {k1, k2, . . . , ke}

and length n over Re,rm, then we have

2k1 + 2k2 + · · ·+ 2ke�i+1 + ke�i+2 + ke�i+3 + · · ·+ ki  nm

for d
e+1
2 e  i  e. From this, it follows that nm � 2(k1 + k2 + · · ·+ k e

2
) + k e

2+1 if e

is even, while nm � 2(k1 + k2 + · · ·+ k e+1
2
) if e is odd.

In particular, if C is an additive self-dual code of the type {k1, k2, . . . , ke} and

length n over Re,rm, then we have

ki = ke�i+2 for 1  i  e.
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From this, it follows that nm = 2(k1 + k2 + · · · + k e

2
) + k e

2+1 if e is even, while

nm = 2(k1 + k2 + · · ·+ k e+1
2
) if e is odd.

In Chapter 3, we obtained enumeration formulae for all linear self-orthogonal

and self-dual codes of an arbitrary length over finite commutative chain rings of

odd characteristic. In Chapters 4 and 5, we counted all linear self-orthogonal and

self-dual codes of an arbitrary length over quasi-Galois rings and Galois rings of even

characteristic, respectively. By Lemma 7.2.2, we see that when either m is odd or

Re,rm = F2rm [u]/hue
i and Re,r = F2r [u]/hue

i, there exists a self-dual basis of Re,rm

over Re,r. Further, by Proposition 7.2.1, we observe that if ↵ = {↵1,↵2, . . . ,↵m}

is a self-dual basis of Re,rm over Re,r, then ⇧↵ is a duality preserving Re,r-module

homomorphism, i.e., ⇧↵(C ?) = (⇧↵(C ))?. This implies that ⇧↵ induces a one-to-

one correspondence between additive self-orthogonal (resp. additive self-dual) codes

of the type {k1, k2, . . . , ke} and length n over Re,rm and linear self-orthogonal (resp.

linear self-dual) codes of the type {k1, k2, . . . , ke} and length nm over Re,r. Thus one

can obtain enumeration formulae for all additive self-orthogonal and self-dual codes

of an arbitrary length over Re,rm by applying the results obtained in Chapters 3-5

in the following three cases:

(i) both p and m are odd

(ii) p = 2 and s = 1, and

(iii) p = 2,  = 1 and m is odd.

Throughout this section, let n be a positive integer, and let k1, k2, . . . , ke+1 be non-

negative integers satisfying nm = k1 + k2 + · · ·+ ke+1. Further, let us define n0 = 0

and ni = k1 + k2 + · · · + ki for 1  i  e + 1. Further, let Ne(n; k1, k2, . . . , ke) and

Me(n; k1, k2, . . . , ke) denote the number of distinct additive self-orthogonal and self-

dual codes of the type {k1, k2, . . . , ke} and length n overRe,rm, respectively. Further,

let Ne(n) and Me(n) denote the number of distinct additive self-orthogonal and self-

dual codes of length n over Re,rm, respectively. We also recall that

s =
j
e

2

k
.
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7.3.1 The case when both p and m are odd

Throughout this section, we assume that p is an odd prime and m is an odd

integer.

In the following theorem, we count all additive self-orthogonal codes of the type

{k1, k2, . . . , ke} and length n over Re,rm.

Theorem 7.3.2. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

�pr (nm, ns)
sY

i=1


ni

ki

�

pr

eY

j=s+1


kj + nm� nj � ne�j+1

kj

�

pr

⇥(pr)

s�1P
`=1

n`(nm�n`+1�1)+ns+`(nm�ns+1+`�ns�`)+ns(nm�ns+1)�ns(ns+1)
2

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise.

(b) When e is odd, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�pr

�
nm, ns+1

� s+1Y

i=1


ni

ki

�

pr

eY

j=s+2


kj + nm� nj � ne�j+1

kj

�

pr

⇥(pr)

sP
`=1

n`(nm�n`+1�1)+ns+`(nm�ns+1+`�ns+1�`)

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise.

Proof. Since m is odd, we see, by Lemma 7.2.2(a), that there exists a self-dual basis

of Re,rm over Re,r. By Proposition 7.2.1, we note that there exists a one-to-one

correspondence between additive self-orthogonal codes of the type {k1, k2, . . . , ke}

and length n over Re,rm and linear self-orthogonal codes of the type {k1, k2, . . . , ke}

and length nm over Re,r. Now the desired result follows by applying Theorems 3.2.2,

3.3.2 and 3.4.2.
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In the following theorem, we count all additive self-dual codes of the type

{k1, k2, . . . , ke} and length n over Re,rm.

Theorem 7.3.3. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�pr (nm, ns)
sY

i=1


ni

ki

�

pr

(pr)

sP
`=1

n`(nm�n`+1�1)�ns(ns�1)
2

if kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

(b) When e is odd, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

2

nm

2 �1Y

b=1

(prb + 1)
s+1Y

i=1


ni

ki

�

pr

(pr)

sP
`=1

n`(nm�n`+1�1)

if n is an even integer, (�1)
nm

2 is a square in Re,r

and kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

Proof. Working as in Theorem 7.3.2 and by applying Theorems 3.2.4, 3.3.4 and

3.4.4, we get the desired result.

Now for an integer d satisfying 2  d  e and for non-negative integers k1, k2, . . . , kd,

let us define

z`(k1, k2, . . . , kd) = (k1 + k2 + · · ·+ k`)
�
nm� (k1 + k2 + · · ·+ k`+1)� 1

�
(7.3.1)

for 1  `  d� 1, and let us define

�j(k1, k2, . . . , kd) = zj(k1, k2, . . . , kd) + (k1 + k2 + · · ·+ kb d

2 c+j
)
�
nm� (k1

+k2 + · · ·+ kd d+1
2 e+j

)� (k1 + k2 + · · ·+ kb d+1
2 c�j

)
�

(7.3.2)
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for 1  j  d
d

2e � 1.

The following theorem provides the enumeration formula for all additive self-

orthogonal codes of length n over Re,rm.

Theorem 7.3.4. For an integer e � 2, the following hold.

(a) When e is even, we have

Ne(n) =
X

�pr (nm, k1 + k2 + · · ·+ ks) (p
r)

s�1P
`=1

�`(k1,k2,...,ke)+e⇥e(k1,k2,...,ke)

⇥

eY

j=s+1


kj + nm� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke�j+1)

kj

�

pr

⇥

sY

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

,

where e⇥e(k1, k2, . . . , ke) = (k1+k2+· · ·+ks)
⇣

2nm�2(k1+k2+···+ks+1)�(k1+k2+···+ks)�1
2

⌘

and the summation
P

runs over all non-negative integers k1, k2, . . . , ke satis-

fying 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  nm for s+1  i  e.

(b) When e is odd, we have

Ne(n) =
X

�pr

�
nm, k1 + k2 + · · ·+ ks+1

�
(pr)

sP
`=1

�`(k1,k2,...,ke)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

⇥

eY

j=s+2


kj + nm� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke�j+1)

kj

�

pr

,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  nm for s+1  i  e.

Proof. It follows immediately from Theorem 7.3.2.

The following theorem provides the enumeration formula for all additive self-dual

codes of length n over Re,rm.

Theorem 7.3.5. For an integer e � 2, the following hold.
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(a) When e is even, we have

Me(n) =
X

�pr(nm, k1 + k2 + · · ·+ ks)
sY

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

⇥(pr)

s�1P
`=1

z`(k1,k2,...,ks)+e�e(k1,k2,...,ks)
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks) + ks+1 = nm and the number e�e(k1, k2, . . . , ks)

is given by

e�e(k1, k2, . . . , ks) = (k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks � 1

2

◆
.

(b) When e is odd, we have

Me(n) =

8
>>>>>><

>>>>>>:

X
2

nm

2 �1Y

b=1

(prb + 1)(pr)

sP
`=1

z`(k1,k2,...,ks)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

pr

if n is an even integer and (�1)
nm

2 is a square in Re,r;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks+1) = nm.

Proof. It follows immediately from Theorem 7.3.3.

7.3.2 The case p = 2 and s = 1

Throughout this section, we assume that p = 2 and s = 1, i.e., Re,rm =

F2rm [u]/hue
i and Re,r = F2r [u]/hue

i.

In the following theorem, we count all additive self-orthogonal codes of the type

{k1, k2, . . . , ke} and length n over Re,rm.

Theorem 7.3.6. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.
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(a) When e is even, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

�2r (nm, ns)
sY

i=1


ni

ki

�

2r

eY

j=s+1


kj + nm� nj � ne+1�j

kj

�

2r

⇥(2r)

s�1P
`=1

n`(nm�n`+1)+ns+`(nm�ns+`+1�ns�`)+ns(nm�ns+1)�ns(ns�1)
2

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise.

(b) When e is odd, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>><

>>>>>>>>>:

�2r (nm, ns+1)
s+1Y

i=1


ni

ki

�

2r

eY

j=s+2


kj + nm� nj � ne+1�j

kj

�

2r

⇥(2r)

sP
`=1

n`(nm�n`+1)+ns+`(nm�ns+1+`�ns+1�`)

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise.

Proof. Working in a similar manner as in Theorem 7.3.2 and by applying Lemma

7.2.2(b) and Theorem 4.4.1, the desired result follows immediately.

In the following theorem, we count all additive self-dual codes of the type

{k1, k2, . . . , ke} and length n over Re,rm.

Theorem 7.3.7. Let e � 2 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�2r (nm, ns)
sY

i=1


ni

ki

�

2r
(2r)

s�1P
`=1

n`(nm�n`+1)+
ns(ns+1)

2

if kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

(b) When e is odd, we have
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Me(n; k1, k2, . . . , ke) =

8
>>>>>><

>>>>>>:

nm

2 �1Y

j=1

((2r)
nm

2 �j + 1)
s+1Y

i=1


ni

ki

�

2r
(2r)

sP
`=1

n`(nm�n`+1)

if nm is an even integer and kv = ke�v+2 for 1  v  e+ 1;

0 otherwise.

Proof. Working as in Theorem 7.3.2 and by applying Lemma 7.2.2(b) and Theorem

4.4.2, we get the desired result.

Now for an integer d satisfying 1  d  e and for non-negative integers k1, k2, . . . , kd,

let zj(k1, k2, . . . , kd) and �`(k1, k2, . . . , kd) be as defined by (7.3.1) and (7.3.2), re-

spectively, where 1  j  d� 1 and 1  ` 
⌃
d

2

⌥
� 1.

In the following theorem, we count all additive self-orthogonal codes of length n

over Re,rm.

Theorem 7.3.8. For an integer e � 2, the following hold.

(a) When e is even, we have

Ne(n) =
X

�2r
�
nm, k1 + k2 + · · ·+ ks

� sY

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥

eY

j=s+1


kj + nm� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke+1�j)

kj

�

2r

⇥(2r)

s�1P
`=1

�`(k1,k2,...,ke)+
sP

a=1
(k1+k2+···+ka)+zs(k1,k2,...,ke)��

0
e(k1,k2,...,ke)

,

where �0
e
(k1, k2, . . . , ke) = (k1+k2+· · ·+ks)

�
k1+k2+···+ks�1

2

�
and the summation

P
runs over all non-negative integers k1, k2, . . . , ke satisfying 2k1+2k2+ · · ·+

2ke�i+1 + ke�i+2 + ke�i+3 + · · ·+ ki  nm for s+ 1  i  e.

(b) When e is odd, we have

Ne(n) =
X

�2r
�
nm, k1 + k2 + · · ·+ ks+1

� s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥

eY

j=s+2


kj + nm� (k1 + k2 + · · ·+ kj)� (k1 + k2 + · · ·+ ke+1�j)

kj

�

2r
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⇥(2r)

sP
`=1

�`(k1,k2,...,ke)+k1+k2+···+k`
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  nm for s+1  i  e.

Proof. It follows immediately from Theorem 7.3.6.

In the following theorem, we count all additive self-dual codes of length n over

Re,rm.

Theorem 7.3.9. For an integer e � 2, the following hold.

(a) When e is even, we have

Me(n) =
X

�2r(nm, k1 + k2 + · · ·+ ks)
sY

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥(2r)

s�1P
`=1

z`(k1,k2,...,ks)+k1+k2+···+k`+�
00
e (k1,k2,...,ks)

,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks) + ks+1 = nm and the number �
00
e
(k1, k2, . . . , ks)

is given by

�
00

e
(k1, k2, . . . , ks) = (k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks + 1

2

◆
.

(b) When e is odd, we have

Me(n) =

8
>>>>>>><

>>>>>>>:

X
nm

2 �1Y

j=1

((2r)
nm

2 �j + 1)
s+1Y

i=1


k1 + k2 + · · ·+ ki

ki

�

2r

⇥(2r)

sP
`=1

z`(k1,k2,...,ks)+k1+k2+···+k`
if nm is an even integer;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks+1) = nm.

Proof. It follows immediately from Theorem 7.3.7.
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7.3.3 The case when p = 2,  = 1 and m is odd

Throughout this section, we assume that p = 2,  = 1 andm is odd, i.e., Re,rm =

GR(2e, rm) and Re,r = GR(2e, r), where m is an odd integer. Here to obtain

the enumeration formulae for the numbersNe(n; k1, k2, . . . , ke),Me(n; k1, k2, . . . , ke),

Ne(n) andMe(n), we will distinguish the following two cases: (i) e = 2 and (ii) e � 3.

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers N2(n; k1, k2) and N2(n).

Theorem 7.3.10. We have

N2(n; k1, k2) =

8
><

>:

Dr(nm; k1)2
rk1(2nm�3k1�2k2+1)

2


nm� 2k1

k2

�

2r
if 2k1 + k2  nm;

0 otherwise

and

N2(n) =

bnm

2 cX

k1=0

Dr(nm; k1)
nm�2k1X

k2=0

2
rk1(2nm�3k1�2k2+1)

2


nm� 2k1

k2

�

2r
,

where the number Dr(nm; k1) is as obtained in Theorem 5.3.1.

Proof. Working as in Theorem 7.3.2 and by applying Lemma 7.2.2(a) and Theorem

5.5.1, the desired result follows.

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers M2(n; k1, k2) and M2(n).

Theorem 7.3.11. We have

M2(n; k1, k2) =

8
<

:
Dr(nm; k1)2

rk1(k1+1)
2 if 2k1 + k2 = nm;

0 otherwise

and

M2(n) =

bnm

2 cX

k1=0

Dr(nm; k1)2
rk1(k1+1)

2 ,

where the number Dr(nm; k1) is as determined in Theorem 5.3.1.

Proof. It follows immediately by applying Theorems 7.3.1 and 7.3.10.
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In the following theorem, we consider the case e � 3 and obtain an enumeration

formula for the number Ne(n; k1, k2, . . . , ke).

Theorem 7.3.12. Let e � 3 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.

(a) When e is even, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>>><

>>>>>>>>>>:

�0(nm; k1, k2, . . . , ks)
s�1Y

v=1


nv

kv

�

2r

eY

`=s+1


k` + nm� n` � ne+1�`

k`

�

2r

⇥(2r)

s�1P
i=1

ni(nm�ni+1�1)+
s�1P
j=1

ns+j(nm�ns+j+1�ns�j)+ns(nm�ns+1)�ns(ns�1)
2

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise,

where the number �0(nm; k1, k2, . . . , ks) is as determined in Theorem 5.5.3(a).

(b) When e is odd, we have

Ne(n; k1, k2, . . . , ke) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

�1(nm; k1, k2, . . . , ks+1)
eY

`=s+2


k` + nm� n` � ne+1�`

k`

�

2r

⇥

s�1Y

v=1


nv

kv

�

2r
(2r)

sP
i=1

ni(nm�ni+1�1)+
sP

j=1
ns+j(nm�ns+j+1�ns+1�j)+ns

if ne�i+1 + ni  nm for s+ 1  i  e;

0 otherwise,

where the number �1(nm; k1, k2, . . . , ks+1) is as determined in Theorem 5.5.3(b).

Proof. Working as in Theorem 7.3.2 and by applying Lemma 7.2.2(a) and Theorem

5.5.3, the desired result follows.

In the following theorem, we consider the case e � 3 and obtain an enumeration

formula for the number Me(n; k1, k2, . . . , ke).

Theorem 7.3.13. Let e � 3 be an integer, and let k1, k2, . . . , ke+1 be non-negative

integers satisfying nm = k1 + k2 + · · ·+ ke+1.
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(a) When e is even, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�0(nm; k1, k2, . . . , ks)(2
r)

s�1P
i=1

ni(nm�ni+1�1)+ns(ns+1)
2

s�1Y

j=1


nj

kj

�

2r

if kv = ke�v+2 for 1  v  e+ 1;

0 otherwise,

where the number �0(nm; k1, k2, . . . , ks) is as obtained in Theorem 5.5.3(a).

(b) When e is odd, we have

Me(n; k1, k2, . . . , ke) =

8
>>>>><

>>>>>:

�1(nm; k1, k2, . . . , ks+1)(2
r)

sP
i=1

ni(nm�ni+1�1)+ns

s�1Y

j=1


nj

kj

�

2r

if n is even and kv = ke�v+2 for 1  v  e+ 1;

0 otherwise,

where the number �1(nm; k1, k2, . . . , ks+1) is as obtained in Theorem 5.5.3(b).

Proof. It follows immediately by applying Theorems 7.3.1 and 7.3.12.

In the following theorem, we consider the case e � 3 and obtain an enumeration

formula for the number Ne(n).

Theorem 7.3.14. For an integer e � 3, the following hold.

(a) When e is even, we have

Ne(n) =
X

�0(nm; k1, k2, . . . , ks)(2
r)⇤

⇤(k1,k2,...,ke)
s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥

eY

`=s+1


k` + nm� (k1 + k2 + · · ·+ k`)� (k1 + k2 + · · ·+ ke+1�`)

k`

�

2r
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  nm for s+1  i  e
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and the number ⇤⇤(k1, k2, . . . , ke) is given by

⇤⇤(k1, k2, . . . , ke) =
sX

i=1

�i(k1, k2, . . . , ke) + k1 + k2 + · · ·+ ks

�(k1 + k2 + · · ·+ ks)

✓
k1 + k2 + · · ·+ ks � 1

2

◆
.

(b) When e is odd, we have

Ne(n) =
X

�1(nm; k1, k2, . . . , ks+1)(2
r)⇤

00(k1,k2,...,ke)
s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥

eY

`=s+2


k` + nm� (k1 + k2 + · · ·+ k`)� (k1 + k2 + · · ·+ ke+1�`)

k`

�

2r
,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ke sat-

isfying 2k1+2k2+· · ·+2ke�i+1+ke�i+2+ke�i+3+· · ·+ki  nm for s+1  i  e

and the number ⇤00(k1, k2, . . . , ke) is given by

⇤00(k1, k2, . . . , ke) =
sX

i=1

�i(k1, k2, . . . , ke) + (k1 + k2 + · · ·+ ks).

(Here the numbers �0(nm; k1, k2, . . . , ks) and �1(nm; k1, k2, . . . , ks+1) are as obtained

in Theorem 5.5.3.)

Proof. It follows immediately from Theorem 7.3.12.

In the following theorem, we consider the case e � 3 and obtain an enumeration

formula for the number Me(n).

Theorem 7.3.15. For an integer e � 3, the following hold.

(a) When e is even, we have

Me(n) =
X

�0(nm; k1, k2, . . . , ks)
s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r

⇥(2r)

s�1P
i=1

zi(k1,k2,...,ks+1)+(k1+k2+···+ks)( k1+k2+···+ks+1
2 )

,
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where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1

satisfying 2(k1 + k2 + · · ·+ ks) + ks+1 = nm.

(b) When e is odd, we have

Me(n) =

8
>>>>>><

>>>>>>:

X
�1(nm; k1, k2, . . . , ks+1)(2

r)

sP
i=1

zi(k1,k2,...,ks+1)+k1+k2+···+ks

⇥

s�1Y

j=1


k1 + k2 + · · ·+ kj

kj

�

2r
if n is an even integer;

0 otherwise,

where the summation
P

runs over all non-negative integers k1, k2, . . . , ks+1 satisfy-

ing 2(k1 + k2 + · · ·+ ks+1) = nm.

(Here the numbers �0(nm; k1, k2, . . . , ks) and �1(nm; k1, k2, . . . , ks+1) are as obtained

in Theorem 5.5.3.)

Proof. It follows immediately from Theorem 7.3.13.

7.4 ACD codes over Re,rm

In this section, we count all ACD codes of an arbitrary length over Re,rm. First

of all, we show, in the following theorem, that any ACD code over Re,rm is a free

code, i.e., it is a free Re,r-submodule of Rn

e,rm
.

Theorem 7.4.1. Every ACD code over Re,rm is a free code.

Proof. Working as in Theorem 6.2.1 and applying Theorem 2 of Kaplansky [59], the

desired result follows.

Remark 7.4.1. Working as in Proposition 3.13 of Norton and Sǎlǎgean [80], we

see that an additive code C of length n over Re,rm is a free code if and only if

Tor1(C ) = Tor2(C ) = · · · = Tore(C ). So we will call Tor1(C ) as the Torsion code

of the free additive code C over Re,rm.

From now on, we shall refer to an additive code C of length n, rank k and

Hamming distance d over Re,rm as an additive [n, k, d]-code over Re,rm.
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The following theorem provides a necessary and su�cient condition under which

a free additive code of length n over Re,rm is ACD.

Theorem 7.4.2. Let C be a free additive code of length n over Re,rm with a generator

matrix G. The code C is ACD if and only if the matrix Trpr,m(GGt) is non-singular,

i.e., det(Trpr,m(GGt)) is a unit in Re,r.

Proof. To prove the result, suppose that C is an ACD code. Here we assert that the

matrix Trpr,m(GGt) is non-singular.

To prove this assertion, we suppose, on the contrary, that the matrix Trpr,m(GGt)

is singular. Thus there exists a non-zero vector z 2 R
k

e,r
satisfying Trpr,m(zGGt) =

zTrpr,m(GGt) = 0. From this, it follows that the vector zG 2 C \ C
? = {0}, which

gives zG = 0. As the code C is ACD, we see, by Theorem 7.4.1, that the code C

is a free code over Re,rm, which implies that the rows of the matrix G are linearly

independent over Re,r. From this, we obtain z = 0, which is a contradiction.

Conversely, let us assume that the matrix Trpr,m(GGt) is non-singular. Here,

we assert that the code C is ACD, i.e., C \ C
? = {0}. To prove this assertion,

let � 2 C \ C
?
. One can write � = �

0
G for some �

0
2 R

k

e,r
. This implies that

�
0
Trpr,m(GGt) = Trpr,m(�0

GG
t) = 0. Since Trpr,m(GGt) is non-singular, we get �0 = 0,

which implies that � = 0. This proves the assertion.

In the following theorem, we show that if C and D are ACD codes over Re,rm,

then their direct sum C �D is also an ACD code over Re,rm.

Theorem 7.4.3. Let C be an ACD [n1, k1, d1]-code over Re,rm, and let D be an ACD

[n2, k2, d2]-code over Re,rm. The code C�D = {(c, d) : c 2 C and d 2 D} is an ACD

[n1 + n2, k1 + k2,min{d1, d2}]-code over Re,rm.

Proof. Let G1 2 Mk1⇥n1(Re,rm) and G2 2 Mk2⇥n2(Re,rm) be generator matrices of

the codes C and D, respectively. It is easy to observe that their direct sum C � D

is an additive code of length n1 + n2 and rank k1 + k2 over Re,rm with a generator

matrix

G =

"
G1 0

0 G2

#
.
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Since C andD are ACD codes overRe,rm, we see, by Theorem 7.4.2, that det(Trpr,m(G1G
t

1))

and det(Trpr,m(G2G
t

2)) are units in Re,r. We next note that

det(Trpr,m(GG
t)) = det(Trpr,m(G1G

t

1)) det(Trpr,m(G2G
t

2)),

which implies that det(Trpr,m(GG
t)) is also a unit in Re,r. This, by Theorem 7.4.2,

further implies that C�D is an ACD code over Re,rm. Further, it is easy to observe

that the Hamming distance of the code C �D is min{d1, d2}.

An additive code C of length n over Re,rm is defined as an Re,r-linear subspace of

R
n

e,rm
. Further, the code C is called an additive code with complementary dual (i.e.,

an ACD code) if it satisfies C \C
? = {0}. We next make the following observation.

Lemma 7.4.1. Let C be an additive code of length n over Re,rm with a generator

matrix G. The following three statements are equivalent:

(a) The code C is an ACD code.

(b) The code C is a free code and the matrix Trpr,m(GG
t

) is non-singular.

(c) We have Tor1(C ) = Tor2(C ) = · · · = Tore(C ) and the Torsion code Tor1(C )

is an ACD code over Re,rm with a generator matrix G.

Proof. Working as in Theorem 6.2.3, the desired result follows.

By the above lemma, we see that an additive code of length n over Re,rm is an

ACD code if and only if it is a free code whose Torsion code is an ACD code of

length n over Re,rm(' Fprm). In the following theorem, we provide a method to

construct ACD codes over F2rm .

Theorem 7.4.4. Let n, k be positive integers satisfying 1  k  n. Let C be an F2r-

additive code of length n and dimension k over F2rm (i.e., k-dimensional F2r-linear

subspace of Fn

2rm) with a generator matrix

G =

2

666664

a 0 · · · 0 1 1 · · · 1 b

0 a · · · 0 1 1 · · · 1 b

...
... · · ·

...
...

... · · ·
...

...

0 0 · · · a 1 1 · · · 1 b

3

777775
,
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where a 2 F2rm satisfies Tr2r,m(a2) 6= 0 and b = 0 if n � k is odd, while b = 1 if

n� k is even. Then the code C is an ACD code over F2rm .

Proof. It is easy to see that det(Tr2r,m(GG
t)) = (Tr2r,m(a2))k 6= 0. Now the desired

result follows by applying Theorem 7.4.2.

Now, we proceed to count all ACD codes of an arbitrary length n over Re,rm.

For this, we see, by Lemma 7.4.1, that an additive code C of length n over Re,rm is

an ACD code if and only if Tor1(C ) = Tor2(C ) = · · · = Tore(C ) and its Torsion

code Tor1(C ) is an ACD code of length n over Re,rm. First of all, we will enumerate

all ACD codes of length n and rank k over Re,rm with a prescribed Torsion code.

To do this, throughout this section, we assume that D is an additive code of length

n and dimension k over Re,rm with a generator matrix L. Further, since the map
��Te,rm : Te,rm ! Re,rm is a bijection, there exists a unique k ⇥ n matrix G0 over

Te,rm satisfying G0 = L. We next make the following observation.

Lemma 7.4.2. Let C be a free additive code of length n over Re,rm with Tor1(C ) =

D . There exist k ⇥ n matrices G1, G2, . . . , Ge�1 over Te,rm such that the matrix

G0 + uG1 + u
2
G2 + · · ·+ u

e�1
Ge�1

is a generator matrix of the code C .

In the following theorem, we count all ACD codes C of length n over Re,rm with

Tor1(C ) = D .

Theorem 7.4.5. Let D be an ACD code of length n and dimension k over Re,rm.

There are precisely p
rk(nm�k)(e�1) distinct ACD codes C of length n and rank k over

Re,rm with Tor1(C ) = D .

Proof. Working as in Theorem 6.3.1 and by applying Lemmas 7.4.1 and 7.4.2, the

desired result follows.

Here we recall that the residue field Re,rm of the chain ring Re,rm is of order prm

and the residue field Re,r of the chain ring Re,r is of order p
r
, where p is a prime

number and r,m are positive integers. Now to count all ACD codes of length n

and rank k over Re,rm, we will first count all k-dimensional Fpr -linear subspaces D
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of Fn

prm
satisfying D \ D

? = {0}, i.e., all ACD codes of length n and dimension k

over Fprm for 0  k  nm. Let Lr,m(n; k) denote the number of distinct ACD codes

of length n and dimension k over Fprm for 0  k  nm. One can easily see that

Lr,m(n; 0) = Lr,m(n;nm) = 1. Here, we will distinguish the following two cases: (i)

p = 2 and (ii) p is an odd prime.

In the following theorem, we consider the case p = 2 and obtain the explicit

enumeration formula for the number Lr,m(n; k) for 1  k  nm� 1.

Theorem 7.4.6. Let p = 2. For 1  k  nm� 1, we have

Lr,m(n; k) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

(2r)
(nm�k)(k+1)

2


(nm� 1)/2

(k � 1)/2

�

22r
if both k and nm are odd;

(2r)
nmk�k

2+nm�1
2


(nm� 2)/2

(k � 1)/2

�

22r
if k is odd and nm is even;

(2r)
k(nm�k+1)

2


(nm� 1)/2

k/2

�

22r
if k is even and nm is odd;

(2r)
nmk�k

2�2
2

⇣
(2rk + 2r � 1)


(nm� 2)/2

k/2

�

22r

+(2r(nm�k+1)
� 2r(nm�k) + 1)


(nm� 2)/2

(k � 2)/2

�

22r

⌘
if both k and nm are even.

Proof. Since p = 2, we see, by Theorem 1 of [58], that there exists a self-dual

basis of F2rm over F2r . By Proposition 7.2.1, we note that there exists a one-to-one

correspondence between ACD codes of length n and dimension k over F2rm and

LCD codes of length nm and dimension k over F2r . Now the desired result follows

by applying Theorem 6.3.2.

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number Lr,m(n; k) for 1  k  nm� 1.

Theorem 7.4.7. Let p be an odd prime. For 1  k  nm� 1, the following hold.

(a) Let k be odd.

• When nm is odd, we have

Lr,m(n; k) = (pr)
(nm�k)(k+1)

2


(nm� 1)/2

(k � 1)/2

�

p2r

.
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• Suppose that either p
r
⌘ 1 (mod 4) and n is even or m ⌘ 2 (mod 4)

and p
r
⌘ 3 (mod 4) or m is odd, pr ⌘ 3 (mod 4) and n ⌘ 0 (mod 4) or

m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4) and n is even. Here we have

Lr,m(n; k) = (pr)
nmk�k

2�1
2 ((pr)

nm

2 � 1)


(nm� 2)/2

(k � 1)/2

�

p2r

.

• Suppose that either m is odd, pr ⌘ 3 (mod 4) and n ⌘ 2 (mod 4) or m

is even, n is odd and p
r
⌘ 1 (mod 4) or m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4)

and n is odd. Here we have

Lr,m(n; k) = (pr)
nmk�k

2�1
2 ((pr)

nm

2 + 1)


(nm� 2)/2

(k � 1)/2

�

p2r

.

(b) Let k be even.

• When nm is odd, we have

Lr,m(n; k) = (pr)
k(nm�k+1)

2


(nm� 1)/2

k/2

�

p2r

.

• When nm is even, we have

Lr,m(n; k) = (pr)
k(nm�k)

2


nm/2

k/2

�

p2r

.

Proof. To prove the result, we see, by Lemma 1 of Hu↵man [52], that the ordinary

trace bilinear form h·, ·i on Fn

prm
is a non-degenerate and symmetric bilinear form

on Fn

prm
, i.e., the formed space

�
Fn

prm
, h·, ·i

�
is an nm-dimensional orthogonal space

over Fpr . Since p is an odd prime, it is easy to observe that the orthogonal space�
Fn

prm
, h·, ·i

�
can also be viewed as a non-degenerate quadratic space with respect to

the quadratic map Q : Fn

prm
! Fpr , defined as Q(a) = 1

2ha, ai for each a 2 Fn

prm
.

We next observe that each ACD code of length n and dimension k over Fprm can

also be viewed as a k-dimensional non-degenerate Fpr -linear subspace of the nm-

dimensional quadratic space (Fn

prm
,Q). In view of this, the number Lr,m(n; k) equals

the number of distinct k-dimensional non-degenerate quadratic Fpr -linear subspaces

of the quadratic space (Fn

prm
,Q) for 1  k  nm � 1. Further, by Theorem 7 of
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Hu↵man [52], we note that the Witt index ⌫ of the quadratic space (Fn

prm
,Q) is

given by

⌫ =

8
>>>>>>>>>>><

>>>>>>>>>>>:

nm�1
2 if nm is odd;

nm�2
2 if either m is odd, pr ⌘ 3 (mod 4) and n ⌘ 2 (mod 4) or m is even, n is

odd and p
r
⌘ 1 (mod 4) or m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4) and n is odd;

nm

2 if either pr ⌘ 1 (mod 4) and n is even or m is odd, pr ⌘ 3 (mod 4) and

n ⌘ 0 (mod 4) or m ⌘ 2 (mod 4) and p
r
⌘ 3 (mod 4) or m ⌘ 0 (mod 4),

p
r
⌘ 3 (mod 4) and n is even.

(7.4.1)

By Lemma 5 of of Hu↵man [52], we observe that a k-dimensional non-degenerate

quadratic Fpr -linear subspace W of Fn

prm
has a Witt decomposition of the form

W = ha1, b1i ? ha2, b2i ? · · · ? ha⌫k , b⌫ki ? Wk,

where ⌫k is the Witt index of W , (ai, bi) is a hyperbolic pair in Fn

prm
for 1  i  ⌫k,

and Wk is an anisotropic Fpr -linear subspace of Fn

prm
satisfying dimFpr

(Wk) = k �

2⌫k  2. Now we shall distinguish the following two cases: (a) k is odd, and (b) k is

even.

(a) First, let k be odd. Here working as in Theorem 6.3.3 and by applying Theorems

2.3.2, 2.3.5 and 2.3.6, we get

Lr,m(n; k) =

8
>>>>>>>><

>>>>>>>>:

(pr)
(nm�k)(k+1)

2


(nm� 1)/2

(k � 1)/2

�

p2r

if ⌫ = nm�1
2 ;

(pr)
nmk�k

2�1
2 ((pr)

nm

2 � 1)


(nm� 2)/2

(k � 1)/2

�

p2r

if ⌫ = nm

2 ;

(pr)
nmk�k

2�1
2 ((pr)

nm

2 + 1)


(nm� 2)/2

(k � 1)/2

�

p2r

if ⌫ = nm�2
2 .

(b) Next, let k be even. Here we see, by Theorem 7 of Hu↵man [52], that either

⌫k = k�2
2 or ⌫k = k

2 , which implies that Lr,m(n; k) = Sr,m(n; k) + bSr,m(n; k),

where Sr,m(n; k) and bSr,m(n; k) denote the number of distinct k-dimensional

non-degenerate quadratic Fpr -linear subspaces of Fn

prm
having the Witt indices

k�2
2 and k

2 , respectively. Further, working as in Theorem 6.3.3 and by applying

Theorems 2.3.2, 2.3.5 and 2.3.6, we get
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Sr,m(n; k) =

8
>>>>>>>>>><

>>>>>>>>>>:

p
rk(nm�k)

2 (p
rk

2 � 1)

2


(nm� 1)/2

k/2

�

p2r

if ⌫ = nm�1
2 ;

p
rk(nm�k)

2 (p
rk

2 � 1)(p
r(nm�k)

2 � 1)

2(p
rnm

2 + 1)


nm/2

k/2

�

p2r

if ⌫ = nm

2 ;

p
rk(nm�k)

2 (p
rk

2 � 1)(p
r(nm�k)

2 + 1)

2(p
rnm

2 � 1)


nm/2

k/2

�

p2r

if ⌫ = nm�2
2

and

bSr,m(n; k) =

8
>>>>>>>>>><

>>>>>>>>>>:

p
rk(nm�k)

2 (p
rk

2 + 1)

2


(nm� 1)/2

k/2

�

p2r

if ⌫ = nm�1
2 ;

p
rk(nm�k)

2 (p
rk

2 + 1)(p
r(nm�k)

2 + 1)

2(p
rnm

2 + 1)


nm/2

k/2

�

p2r

if ⌫ = nm

2 ;

p
rk(nm�k)

2 (p
rk

2 + 1)(p
r(nm�k)

2 � 1)

2(p
rnm

2 � 1)


nm/2

k/2

�

p2r

if ⌫ = nm�2
2 .

From this and by (7.4.1), the desired result follows when k is even.

Next, let Hr,m(n; k) denote the number of distinct ACD codes of length n and

rank k over Re,rm for 0  k  nm. It is easy to see that Hr,m(n; 0) = Hr,m(n;nm) =

1. In the following theorem, we consider p = 2 and obtain the enumeration formula

for the number Hr,m(n; k) for 1  k  nm� 1.

Theorem 7.4.8. Let p = 2. For 1  k  nm� 1, the following hold.

(a) Let k be odd.

• When nm is odd, we have

Hr,m(n; k) = 2
r(nm�k)(2ke�k+1)

2


(nm� 1)/2

(k � 1)/2

�

22r
.

• When nm is even, we have

Hr,m(n; k) = 2
r(k(nm�k)(2e�1)+nm�1)

2


(nm� 2)/2

(k � 1)/2

�

22r
.
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(b) Let k be even.

• When nm is odd, we have

Hr,m(n; k) = 2
rk((nm�k)(2e�1)+1)

2


(nm� 1)/2

k/2

�

22r
.

• When nm is even, we have

Hr,m(n; k) = 2
r(k(nm�k)(2e�1)�2)

2

⇣
(2rk + 2r � 1)


(nm� 2)/2

k/2

�

22r

+(2r(nm�k+1)
� 2r(nm�k) + 1)


(nm� 2)/2

(k � 2)/2

�

22r

⌘
.

Proof. Working as in Theorem 6.3.4 and by applying Theorem 7.4.5, we see that

Hr,m(n; k) = p
rk(nm�k)(e�1)Lr,m(n; k). Now on substituting the values of the number

Lr,m(n; k) from Theorem 7.4.6, the desired result follows.

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number Hr,m(n; k) for 1  k  nm� 1.

Theorem 7.4.9. Let p be an odd prime. For 1  k  nm� 1, the following hold.

(a) Let k be odd.

• When nm is odd, we have

Hr,m(n; k) = p
r(nm�k)(2ke�k+1)

2


(nm� 1)/2

(k � 1)/2

�

p2r

.

• Suppose that either p
r
⌘ 1 (mod 4) and n is even or m ⌘ 2 (mod 4)

and p
r
⌘ 3 (mod 4) or m is odd, pr ⌘ 3 (mod 4) and n ⌘ 0 (mod 4) or

m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4) and n is even. Here we have

Hr,m(n; k) = p
r(k(nm�k)(2e�1)�1)

2 (p
rnm

2 � 1)


(nm� 2)/2

(k � 1)/2

�

p2r

.

• Suppose that either m is odd, pr ⌘ 3 (mod 4) and n ⌘ 2 (mod 4) or m

is even, n is odd and p
r
⌘ 1 (mod 4) or m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4)
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and n is odd. Here we have

Hr,m(n; k) = p
r(k(nm�k)(2e�1)�1)

2 (p
rnm

2 + 1)


(nm� 2)/2

(k � 1)/2

�

p2r

.

(b) Let k be even.

• When nm is odd, we have

Hr,m(n; k) = p
rk((nm�k)(2e�1)+1)

2


(nm� 1)/2

k/2

�

p2r

.

• When nm is even, we have

Hr,m(n; k) = p
rk(nm�k)(2e�1)

2


nm/2

k/2

�

p2r

.

Proof. Working as in Theorem 6.3.4 and by applying Theorem 7.4.5, we see that

Hr,m(n; k) = p
rk(nm�k)(e�1)Lr,m(n; k). Now on substituting the values of the number

Lr,m(n; k) from Theorem 7.4.7, the desired result follows.

Further, let Hr,m(n) denote the number of distinct ACD codes of length n over

Re,rm. Here, we will distinguish the following two cases: (i) p = 2 and (ii) p is an

odd prime. In the following theorem, we consider the case p = 2 and obtain the

explicit enumeration formula for the number Hr,m(n).

Theorem 7.4.10. Let p = 2. Then the following hold.

• When nm is odd, we have

Hr,m(n) = 2 +
nm�1X

k=1
k⌘0 (mod 2)

2
rk((nm�k)(2e�1)+1)

2


(nm� 1)/2

k/2

�

22r

+
nm�1X

k=1
k⌘1 (mod 2)

2
r(nm�k)(2ke�k+1)

2


(nm� 1)/2

(k � 1)/2

�

22r
.
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• When nm is even, we have

Hr,m(n) = 2 +
nm�1X

k=1
k⌘0 (mod 2)

2
r(k(nm�k)(2e�1)�2)

2

⇣
(2r(nm�k+1)

� 2r(nm�k) + 1)


(nm� 2)/2

(k � 2)/2

�

22r

+(2rk + 2r � 1)


(nm� 2)/2

k/2

�

22r

⌘
+

nm�1X

k=1
k⌘1 (mod 2)

2
r(k(nm�k)(2e�1)+nm�1)

2


(nm� 2)/2

(k � 1)/2

�

22r

Proof. It follows immediately from Theorem 7.4.8.

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number Hr,m(n).

Theorem 7.4.11. Let p be an odd prime. Then the following hold.

• When nm is odd, we have

Hr,m(n) = 2 +
nm�1X

k=1
k⌘1 (mod 2)

p
r(nm�k)(2ke�k+1)

2


(nm� 1)/2

(k � 1)/2

�

p2r

+
nm�1X

k=1
k⌘0 (mod 2)

p
rk((nm�k)(2e�1)+1)

2


(nm� 1)/2

k/2

�

p2r

.

• Suppose that either pr ⌘ 1 (mod 4) and n is even or pr ⌘ 3 (mod 4) and m ⌘

2 (mod 4) or pr ⌘ 3 (mod 4), m is odd and n ⌘ 0 (mod 4) or m ⌘ 0 (mod 4),

n is even and p
r
⌘ 3 (mod 4). Here we have

Hr,m(n) = 2 +
nm�1X

k=1
k⌘1 (mod 2)

p
r(k(nm�k)(2e�1)�1)

2 (p
rnm

2 � 1)


(nm� 2)/2

(k � 1)/2

�

p2r

+
nm�1X

k=1
k⌘0 (mod 2)

p
rk(nm�k)(2e�1)

2


nm/2

k/2

�

p2r

• Suppose that either m is odd, pr ⌘ 3 (mod 4) and n ⌘ 2 (mod 4) or m is

even, n is odd and p
r
⌘ 1 (mod 4) or m ⌘ 0 (mod 4), pr ⌘ 3 (mod 4) and n
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is odd. Here we have

Hr,m(n) = 2 +
nm�1X

k=1
k⌘1 (mod 2)

p
r(k(nm�k)(2e�1)�1)

2 (p
rnm

2 + 1)


(nm� 2)/2

(k � 1)/2

�

p2r

+
nm�1X

k=1
k⌘0 (mod 2)

p
rk(nm�k)(2e�1)

2


nm/2

k/2

�

p2r

.

Proof. It follows immediately from Theorem 7.4.9.

The following theorem states the well-known Singleton bound for additive codes

over Re,rm.

Theorem 7.4.12. [94] (Singleton bound for additive codes over Re,rm): For an

additive code C of length n over Re,rm, we have

|C|  |Re,rm|
n�dH(C)+1

.

In particular, if C is a free additive code of length n and rank k over Re,rm, then we

have

dH(C)  n�

l
k

m

m
+ 1.

An additive code C of length n over Re,rm is said to be maximum distance

separable (MDS) if it satisfies |C| = |Re,rm|
n�dH(C)+1

.

Proposition 7.4.1. For an additive code C of length n over Re,rm, we have

dH(C) = dH(Tore(C)).

Proof. Working as in Theorem 4.2(ii) of Norton and Sǎlǎgean [81], we get the desired

result.

Theorem 7.4.13. A free additive code C over Re,rm is MDS if and only if its

Torsion code Tor1(C) is an additive MDS code over Re,rm.

Proof. It follows immediately from Proposition 7.4.1.
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In the following theorem, we provide a method to construct free additive MDS

codes over Re,rm from additive MDS codes over Re,rm. To do this, let C0 be an

additive MDS code of length n and dimension k over Re,rm with a generator matrix

G
0
0. Further, since the map ��Te,rm : Te,rm ! Re,rm is a bijection, there exists a

unique k ⇥ n matrix G0 over Te,rm satisfying G0 = G
0
0.

Theorem 7.4.14. Let C be a free additive code of length n over Re,rm with a gener-

ator matrix G0+uG1+u
2
G2+ · · ·+u

e�1
Ge�1, where G1,G2, . . . ,Ge�1 2 Mk⇥n(Te,rm).

Then the code C is an additive MDS code over Re,rm with Tor1(C) = C0.

Proof. It follows by applying Theorem 7.4.13.

The following theorem provides a necessary and su�cient condition for a free

additive code over Re,rm to be an ACD MDS code.

Theorem 7.4.15. Let C be a free additive code of length n over Re,rm. Then the

code C is an ACD MDS code over Re,rm if and only its Torsion code Tor1(C) is an

ACD MDS code over Re,rm.

Proof. The desired result follows by applying Lemma 7.4.1 and Theorem 7.4.13.

Theorem 7.4.14 provides a method to construct free additive MDS codes over

Re,rm from additive MDS codes over Re,rm(' Fprm). Theorem 7.4.15 provides a

construction of ACD MDS codes over Re,rm from ACD MDS codes over Re,rm('

Fprm). In the next chapter, we will introduce and study two new families of additive

codes over finite fields. We will further identify some new classes of additive MDS

and almost MDS codes within these two families of codes. We will also provide

methods to construct additive MDS self-orthogonal, self-dual, and ACD codes over

finite fields.
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Some new classes of additive MDS

and almost MDS codes over finite

fields

8.1 Introduction

In this chapter, we introduce and study two new classes of additive codes over

finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes and addi-

tive generalized twisted Reed-Solomon (additive GTRS) codes, which are extensions

of linear generalized Reed-Solomon (GRS) codes and twisted Reed-Solomon (GTRS)

codes, respectively. Unlike linear GRS codes, additive GRS codes are not maximum

distance separable (MDS) codes, and the dual of an additive GRS code need not

be an additive GRS code in general. We derive necessary and su�cient conditions

under which an additive GRS code is MDS. We further apply this result to iden-

tify several new classes of additive MDS codes and a class of additive MDS codes

285
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whose dual codes are also MDS within the family of additive GRS codes. We also

identify several new classes of additive codes that are either MDS or almost MDS

within the family of additive GTRS codes. We also obtain several classes of additive

TRS codes that are not monomially equivalent to additive RS codes. Besides this,

we identify classes of monomially inequivalent additive MDS TRS codes and addi-

tive MDS RS codes, whose dual codes are also MDS. We also provide methods to

construct additive MDS self-orthogonal, self-dual, and ACD codes through additive

GRS and GTRS codes. Based on additive MDS codes whose dual codes are also

MDS, we present a perfect threshold secret-sharing scheme that can detect cheating,

identify a certain number of cheaters among the participants, and correctly recover

the secret.

This chapter is organized as follows: In Section 8.2, we state some preliminaries

needed to derive our main results. In Section 8.3, we establish a one-to-one corre-

spondence between linear codes and additive codes over finite fields, which gives rise

to a method to construct additive MDS codes over finite fields as images of linear

MDS codes over finite fields (Theorem 8.3.1 and Corollary 8.3.1). We will also show

that not every additive MDS code can be obtained as an image of a linear MDS code

(Theorem 8.3.2). We next observe that the dual of an additive MDS code is not

an MDS code in general (Example 8.3.1). We further provide an elementary proof

of Theorem 9 of Ball et al. [7], which states that the dual code of a k-dimensional

additive MDS code over Fqm is an MDS code if k is a multiple of m, where m � 2

is an integer (Theorem 8.3.3). In Section 8.4, we introduce and study additive

generalized Reed-Solomon (additive GRS) codes and extended additive generalized

Reed-Solomon (extended additive GRS) codes over finite fields. We also derive a

necessary and su�cient condition under which an additive GRS (resp. extended

additive GRS) code is MDS (Theorems 8.4.1 and 8.4.2). With the help of these

results, we further identify new classes of additive MDS codes within the family of

additive GRS and extended additive GRS codes (Corollaries 8.4.1 and 8.4.2). We

also observe that the dual code of an additive GRS code need not be an additive GRS

code (Example 8.4.5). We further identify a class of additive MDS codes within the

family of additive GRS codes, whose dual codes are also additive MDS GRS codes

(Theorem 8.4.3). We also construct some additive MDS self-orthogonal, self-dual,
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and ACD codes through additive GRS codes (Theorems 8.4.4 and 8.4.5). In Section

8.5, we introduce and study additive generalized twisted Reed-Solomon (additive

GTRS) codes and extended additive generalized twisted Reed-Solomon (extended

additive GTRS) codes over finite fields. We identify several classes of additive GTRS

and extended additive GTRS codes, which are either MDS or almost MDS (Theo-

rems 8.5.1- 8.5.9). We also construct additive self-orthogonal codes through additive

GTRS codes (Theorem 8.5.10). In Section 8.6, we identify several classes of addi-

tive TRS codes that are not monomially equivalent to additive RS codes (Theorems

8.6.1-8.6.3). We also identify monomially inequivalent classes of additive MDS TRS

codes and additive MDS RS codes, whose dual codes are also MDS (see Theorem

8.6.2). In Section 8.7, we provide a perfect threshold secret-sharing scheme that can

detect cheating, identify a certain number of cheaters among the participants and

recover the secret correctly based on additive MDS codes whose dual codes are also

MDS.

8.2 Some preliminaries

In this section, we will state some basic definitions and results needed to derive

our main results. For this, we recall that a linear code C of length n and dimension k

over Fq is defined as a k-dimensional subspace of Fn

q
. We will refer to a linear code of

length n, dimension k and Hamming distance d over Fq as a linear [n, k, d]-code over

Fq. In the following theorem, we recall the well-known Singleton bound for linear

codes.

Theorem 8.2.1. [94] (Singleton bound for linear codes over Fq): For a linear

[n, k, d]-code over Fq, we have d  n� k + 1.

A linear [n, k, d]-code over Fq is said to be maximum distance separable (MDS)

if it satisfies d = n� k+1. An important and well-known class of linear MDS codes

is that of generalized Reed-Solomon (GRS) codes. To recall these codes, let Fq[x]

denote the ring of all polynomials in the indeterminate x with coe�cients from Fq.

For a positive integer k satisfying k  n, let us define

Fq[x]<k = {f(x) 2 Fq[x] : either f(x) = 0 or deg(f(x)) < k},
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which is clearly a k-dimensional subspace of Fq[x] over Fq with a basis set {1, x, x2
, . . . ,

x
k�1

}. Let n  q, and let ↵ = (↵1,↵2, . . . ,↵n), where ↵1,↵2, . . . ,↵n are distinct el-

ements of Fq. Let v = (v1, v2, . . . , vn) 2 (F⇤
q
)n, where F⇤

q
= Fq \ {0}. Then the

evaluation map E↵,v : Fq[x]<k ! Fn

q
, defined as

E↵,v(f(x)) =
�
v1f(↵1), v2f(↵2), . . . , vnf(↵n)

�
for all f(x) 2 Fq[x]<k,

is an injective Fq-linear vector space homomorphism. The code

GRSk(↵, v) = E↵,v(Fq[x]<k)

is a linear code of length n and dimension k over Fq and is called the generalized

Reed-Solomon (GRS) code over Fq with evaluation points ↵1,↵2, . . . ,↵n and column

multipliers v1, v2, . . . , vn. In particular, if v = (1, 1, . . . , 1) is the all-one vector of

length n, then the code GRSk(↵, v) is called the Reed-Solomon (RS) code of length

n over Fq with evaluation points ↵1,↵2, . . . ,↵n. By Theorem 5.3.1 of [53], we see

that the code GRSk(↵, v) has Hamming distance n� k + 1, and hence it is a linear

MDS code over Fq. Further, the extended generalized Reed-Solomon (extended GRS)

code of length n + 1 over Fq with evaluation points ↵1,↵2, . . . ,↵n,1 and column

multipliers v1, v2, . . . , vn, 1 is defined as

GRSk(↵, v,1) = {(v1f(↵1), v2f(↵2), . . . , vnf(↵n), f(1)) : f(x) 2 Fq[x]<k} ,

where f(1) is defined as the coe�cient of xk�1 in f(x) for each f(x) 2 Fq[x]<k.

In particular, if v = (1, 1, . . . , 1) is the all-one vector of length n, then the code

GRSk(↵, v,1) is called the extended Reed-Solomon (extended RS) code of length

n + 1 over Fq with evaluation points ↵1,↵2, . . . ,↵n,1. By Theorem 5.3.4 of [53],

we note that the extended GRS code GRSk(↵, v,1) is a linear MDS code over Fq.

Please refer to [53, Sec. 5.2 and 5.3] for more details.

Linear codes over finite fields are further extended to additive codes, which have

nice algebraic structures and are useful in constructing quantum stabilizer codes

[15, 22]. From now on, throughout this chapter, we assume that m � 2 is an

integer, and Fqm denotes the finite field of order qm. Let n be a positive integer, and

let Fn

qm
denote the set of all n-tuples over Fqm . The set Fn

qm
can be viewed as an
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(nm)-dimensional vector space over Fq under the component-wise addition and the

component-wise scalar multiplication. Now an additive code C of length n over Fqm

is defined as an Fq-linear subspace of Fn

qm
. We will refer to an additive code C of

length n, dimension k and Hamming distance d over Fqm as an additive [n, k, d]-code

C over Fqm . Further, we recall, from Chapter 7, that the ordinary trace bilinear form

on Fn

qm
is a mapping h·, ·i : Fn

qm
⇥ Fn

qm
! Fq, defined as

ha, bi =
nX

i=1

Trq,m(aibi)

for all a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) 2 Fn

qm
, where Trq,m : Fqm ! Fq denotes

the trace map. It is easy to see that h·, ·i is a non-degenerate and symmetric bilinear

form on Fn

qm
. Further, if C is an additive code of length n over Fqm , then its dual

code C
? is defined as

C
? =

�
v 2 Fn

qm
: hv, ci = 0 for all c 2 C

 
.

It is easy to observe that the dual code C? is also an Fq-linear subspace of Fn

qm
, and

hence it is an additive code of length n over Fqm . By Theorem 2.3.2, we note that

dimFq
(C) + dimFq

(C?) = nm.

Now, in the following theorem, we recall the well-known Singleton bound for additive

codes over Fqm .

Theorem 8.2.2. [52] (Singleton bound for additive codes over Fqm): For an additive

[n, k, d]-code C over Fqm , we have

d  n�

l
k

m

m
+ 1.

An additive [n, k, d]-code C over Fqm is said to be maximum distance separable

(MDS) if it satisfies d = n�
⌃

k

m

⌥
+ 1, and the code C is said to be almost MDS if it

satisfies d = n�
⌃

k

m

⌥
.

In the following section, we provide a method to construct additive MDS codes



290
Some new classes of additive MDS and almost MDS codes over finite

fields

of length n over Fqm from linear codes of length nm over Fq.

8.3 A construction of additive MDS codes over

Fqm

Throughout this section, let � = {�1, �2, . . . , �m} be a basis of Fqm over Fq,

and let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, where F⇤

qm
= Fqm \ {0}. Let us define a map

⇡�,v : Fnm

q
! Fn

qm
as

⇡�,v

�
c1,1, c1,2, . . . , c1,m, c2,1, c2,2, . . . , c2,m, . . . , cn,1, cn,2, . . . , cn,m

�

=
�
v1(c1,1�1 + c1,2�2 + · · ·+ c1,m�m), v2(c2,1�1 + c2,2�2 + · · ·+ c2,m�m),

. . . . . . , vn(cn,1�1 + cn,2�2 + · · ·+ cn,m�m)
�

for all
�
c1,1, c1,2, . . . , c1,m, c2,1, c2,2, . . . , c2,m, . . . . . . , cn,1, cn,2, . . . , cn,m

�
2 Fnm

q
. It is

easy to see that the map ⇡�,v is an Fq-linear vector space isomorphism. From

this, it follows that a non-empty subset C of Fnm

q
is a linear code of length nm and

dimension k over Fq if and only if its image ⇡�,v(C) is an additive code of length n

and dimension k over Fqm . That is, the isomorphism ⇡�,v induces a one-to-one corre-

spondence between linear codes of length nm and dimension k over Fq and additive

codes of length n and dimension k over Fqm . In the following theorem, we show that

the isomorphism ⇡�,v maps linear MDS codes of length nm and dimension k over

Fq to additive MDS codes of length n and dimension k over Fqm .

Theorem 8.3.1. Let C be a linear MDS code of length nm and dimension k over

Fq. Then the code ⇡�,v(C) is an additive MDS code of length n and dimension k over

Fqm .

Proof. Working as in Theorems 3.1 and 3.2 of Mahmoudi and Samei [71], the desired

result follows.

From the above theorem, we deduce the following:

Corollary 8.3.1. Let q be a prime power, and let n, k and m � 2 be positive integers

satisfying 1  k  nm  q. Let ↵ = (↵1,1,↵1,2, . . . ,↵1,m,↵2,1,↵2,2, . . . ,↵2,m, . . . ,↵n,1,
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↵n,2, . . . ,↵n,m) 2 Fnm

q
, where ↵i,j’s are distinct elements of Fq. Let � = {�1, �2, . . . , �m}

be a basis of Fqm over Fq, and let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n. Then for 1  k  nm,

the code

Cn,k(↵, v, �) =
� �

v1

�
f(↵1,1)�1 + f(↵1,2)�2 + · · ·+ f(↵1,m)�m

�
, v2

�
f(↵2,1)�1

+f(↵2,2)�2 + · · ·+ f(↵2,m)�m

�
, . . . . . . , vn

�
f(↵n,1)�1 + f(↵n,2)�2

+ · · ·+ f(↵n,m)�m

��
: f(x) 2 Fq[x]<k

 

is an additive MDS code of length n and dimension k over Fqm .

Proof. Here one can easily see that the code Cn,k(↵, v, �) = ⇡�,v (GRSk(↵,1)) , where

1 = (1, 1, . . . , 1) denotes the all-one vector of length nm. By Theorem 5.3.1 of [53], we

see that the RS code GRSk(↵,1) is a linear MDS code of length nm and dimension k

over Fq. Now by applying Theorem 8.3.1, the desired result follows immediately.

In the following theorem, we construct an additive MDS code over Fqm whose

inverse image under the isomorphism ⇡�,v is not an MDS (linear) code over Fq, i.e.,

the converse of Theorem 8.3.1 does not hold in general.

Theorem 8.3.2. Let n  q, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

q
, where ↵1,↵2, . . . ,↵n

are distinct elements of Fq. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let � = {�1, �2, . . . ,

�m} be a basis of Fqm over Fq. Let k be an integer satisfying 1  k < nm, and let

us write k = m� + �, where � = b
k

m
c and 0  �  m � 1. Let Dn,k(↵, v, �) be an

additive code of length n over Fqm with a generator matrix

G↵,v,� =

2

666664

v1�1 v1�2 · · · v1�m v1↵1�1 v1↵1�2 · · · v1↵1�m · · · v1↵
�

1�1 v1↵
�

1�2 · · · v1↵
�

1��

v2�1 v2�2 · · · v2�m v2↵2�1 v2↵2�2 · · · v2↵2�m · · · v2↵
�

2�1 v2↵
�

2�2 · · · v2↵
�

2��

...
... · · ·

...
...

... · · ·
... · · ·

...
... · · ·

...

vn�1 vn�2 · · · vn�m vn↵n�1 vn↵n�2 · · · vn↵n�m · · · vn↵
�
n�1 vn↵

�
n�2 · · · vn↵

�
n��

3

777775

t

.

The additive code Dn,k(↵, v, �) is an MDS code of length n and dimension k over

Fqm . Further, its inverse image ⇡
�1
�,v

(Dn,k(↵, v, �)) is a linear code of length nm and

dimension k over Fq, which is not MDS when k < n(m� 1) + 1, (here ⇡
�1
�,v

denotes

the inverse of the vector space isomorphism ⇡�,v).

Proof. Since ↵1,↵2, . . . ,↵n are distinct elements of Fq and � = {�1, �2, . . . , �m} is a
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basis of Fqm over Fq, one can easily observe that the rows of the matrix G↵,v,� are

linearly independent over Fq. This implies that the code Dn,k(↵, v, �) is an addi-

tive code of length n and dimension k over Fqm . We next assert that the Hamming

distance of the code Dn,k(↵, v, �) is n � d
k

m
e + 1. To prove this assertion, let c =

(c1, c2, . . . , cn) be a non-zero codeword of Dn,k(↵, v, �) with wH(c) = s. This implies

that precisely n�s coordinates, say i1-th, i2-th, . . . , in�s-th coordinates, of the code-

word c are zero. Now since c 2 Dn,k(↵, v, �), we can write c = zG↵,v,� for some non-

zero z = (z0,1, z0,2, . . . , z0,m, z1,1, z1,2, . . . , z1,m, . . . , z��1,1, z��1,2, . . . , z��1,m, z�,1, z�,2,

. . . , z�,�) 2 Fk

q
. This implies, for each j 2 {i1, i2, . . . , in�s}, that

z0,` + z1,`↵j + z2,`↵
2
j
+ · · ·+ z��1,`↵

��1
j

+ z�,`↵
�

j
= 0 for 1  `  �

and z0,` + z1,`↵j + z2,`↵
2
j
+ · · ·+ z��1,`↵

��1
j

= 0 for � < `  m.

That is, each of the elements ↵i1 ,↵i2 , . . . ,↵in�s
is a root of the polynomials z0,` +

z1,`x+ · · ·+ z�,`x
� for 1  `  � and z0,`+ z1,`x+ · · ·+ z��1,`x

��1 for �+1  `  m.

Since z is non-zero, we see that either the polynomial z0,` + z1,`x + · · · + z�,`x
� is

non-zero for some integer ` satisfying 1  `  � or the polynomial z0,`+z1,`x+ · · ·+

z��1,`x
��1 is non-zero for some integer ` satisfying �+1  `  m. This implies that

n � s  � � 1 if � = 0, whereas n � s  � = b
k

m
c if � 6= 0. From this, we obtain

s � n � d
k

m
e + 1. Thus the Hamming distance of the additive code Dn,k(↵, v, �) is

at least n� d
k

m
e+ 1. Now by applying Theorem 8.2.2, we obtain

dH(Dn,k(↵, v, �)) = n�

l
k

m

m
+ 1,

from which it follows that the additive code Dn,k(↵, v, �) is MDS.

We next observe that the code ⇡
�1
�,v

(Dn,k(↵, v, �)) is a linear code of length nm

and dimension k over Fq, whose Hamming distance d satisfies d  n. We further

note that the code ⇡
�1
�,v

(Dn,k(↵, v, �)) is MDS if and only if d = nm � k + 1, which

holds only if k � n(m � 1) + 1, as d  n. In other words, when k < n(m � 1) + 1,

the code ⇡
�1
�,v

(Dn,k(↵, v, �)) is not MDS.

Theorem 8.3.1 provides a method to construct additive MDS codes of length n

and dimension k over Fqm from linear MDS codes of length nm and dimension k over
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Fq, where 1  k  nm. Theorem 8.3.2 provides a construction of an additive MDS

code of length n and dimension k over Fqm whose pre-image under the isomorphism

⇡�,v is not an MDS code over Fq when k < n(m� 1) + 1. This shows that not every

additive MDS code over Fqm can be obtained as an image of a linear MDS code

over Fq under the isomorphism ⇡�,v. In Sections 8.4 and 8.5, we will provide several

methods to construct additive MDS codes over Fqm .

Next, by Theorem 2.4.3 of [53], we note that the dual code of a linear MDS code

over Fq is an MDS code. In a recent work, Ball et al. [7, Th. 9] showed, using

geometric arguments, that when m divides k, the dual code of a k-dimensional

additive MDS code over Fqm is an additive MDS code over Fqm . We provide an

elementary proof of this result in the following theorem.

Theorem 8.3.3. Let k be a positive integer such that 1  k  nm and m divides

k. The dual code of each k-dimensional additive MDS code over Fqm is an additive

MDS code.

Proof. Let C be an additive MDS code of length n and dimension k over Fqm with a

parity check matrix H. Since the code C is MDS, it has Hamming distance n� k

m
+1.

This implies that any n �
k

m
columns of H are linearly independent over Fqm . By

Theorem 2.3.2, we see that the dual code C
? has dimension nm � k. Now to show

that the dual code C? is MDS, it is enough to show that dH(C?) = k

m
+1. To prove

this, we first assert that dH(C?) � k

m
+ 1.

Suppose, on the contrary, that dH(C?)  k

m
. Then there exists a non-zero code-

word z 2 C
? with wH(z) 

k

m
. This implies that at least n �

k

m
coordinates, say

i1-th, i2-th, . . . , in� k

m

-th coordinates, of the codeword z are zero. Further, since

z 2 C
?
, we can write z = vH for some v 2 (Fq)nm�k

. This implies that vH
0 = 0,

where H
0 is the (nm � k) ⇥ (n �

k

m
) matrix over Fqm whose j-th column is the

ij-th column of the matrix H for 1  j  n �
k

m
. Since any n �

k

m
columns of the

matrix H are linearly independent over Fqm , all the columns of the matrix H
0 are

linearly independent over Fqm . This implies that v = 0, and hence z = 0, which is a

contradiction. This shows that every non-zero codeword of C? has Hamming weight

at least k

m
+ 1, which proves the assertion.

Now by applying Theorem 8.2.2, we get dH(C?) = k

m
+ 1. This shows that the

dual code C
? is MDS.
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However, when m does not divide k, the dual code of a k-dimensional additive

MDS code over Fqm need not be an MDS code. The following example illustrates

this.

Example 8.3.1. Let q = 4, m = 2, n = 4 and k = 3. Let ⇠ be a root of the

irreducible polynomial x2 + x+ ⇣ 2 F4[x], where ⇣ is a primitive element of F4. Let

C be the additive code of length 4 over F16 with a generator matrix

2

664

1 ⇠ 1 ⇠

⇠ ⇠
6

⇠
14 0

0 ⇠
12

⇠
9

⇠
6

3

775 .

It is easy to see that the code C is an additive [4, 3, 3]-code over F16, so it is an MDS

code. We further observe that the dual code C ? is an additive [4, 5, 1]-code over F16

with a generator matrix 2

66666664

1 0 ⇠
9

⇠
6

⇠ 0 ⇠
3

⇠
6

0 1 ⇠
10

⇠

0 ⇠ ⇠
14

⇠
6

0 0 0 ⇠
4

3

77777775

.

Since dH(C ?) = 1 < 2 = 4 � d
5
2e + 1, the dual code C ? is not MDS. From this,

it follows that when m does not divide k, the dual code of a k-dimensional additive

MDS code over Fqm need not be an MDS code.

In the next section, we will construct a class of k-dimensional additive MDS

codes over Fqm whose dual codes are also additive MDS codes, where k is not nec-

essarily a multiple of m (see Theorem 8.4.3). Later, in Section 8.7, we will present

a perfect threshold secret-sharing scheme based on additive MDS codes over finite

fields, whose dual codes are also additive MDS codes.
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8.4 Additive generalized Reed-Solomon (GRS) codes

over finite fields

In this section, we will introduce and study a new class of additive codes over

finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes, which is

an extension of linear GRS codes. We will also study extended additive generalized

Reed-Solomon (extended additive GRS) codes in analogy with extended linear GRS

codes [53, 86].

To define additive GRS codes, let n, k and m � 2 be integers satisfying 1  k 

nm. Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
\ Fn

q
and v = (v1, v2, . . . , vn) 2 (F⇤

qm
)n, where

↵1,↵2, . . . ,↵n are distinct and F⇤
qm

= Fqm \ {0}. Here one can easily see that the

evaluation map E↵,v : Fq[x]<k ! Fn

qm
, defined as

E↵,v

�
f(x)

�
=
�
v1f(↵1), v2f(↵2), . . . , vnf(↵n)

�
for all f(x) 2 Fq[x]<k,

is an Fq-linear vector space homomorphism, and hence its image E↵,v(Fq[x]<k) is an

Fq-linear subspace of Fn

qm
. The additive generalized Reed-Solomon (additive GRS)

code of length n over Fqm with evaluation points ↵1,↵2, . . . ,↵n and column multi-

pliers v1, v2, . . . , vn is defined as

ARSn,k(↵, v) = E↵,v(Fq[x]<k) =
��

v1f(↵1), v2f(↵2), . . . , vnf(↵n)
�
: f(x) 2 Fq[x]<k

 
.

In particular, if v = 1 = (1, 1, . . . , 1) is the all-one vector of length n, then the code

ARSn,k(↵, v) is called the additive Reed-Solomon (additive RS) code with evaluation

points ↵1,↵2, . . . ,↵n. Note that the evaluation map E↵,v is not always injective.

When the map E↵,v is injective, one can easily see that the code ARSn,k(↵, v) has

dimension k and has a generator matrix

G =

2

666664

v1 v2 · · · vn

v1↵1 v2↵2 · · · vn↵n

...
... · · ·

...

v1↵
k�1
1 v2↵

k�1
2 · · · vn↵

k�1
n

3

777775
. (8.4.1)



296
Some new classes of additive MDS and almost MDS codes over finite

fields

Further, the extended additive generalized Reed-Solomon (extended additive GRS)

code of length n + 1 over Fqm with evaluation points ↵1,↵2, . . . ,↵n,1 and column

multipliers v1, v2, . . . , vn, 1 is defined as

ARSn,k(↵, v,1) =
��

v1f(↵1), v2f(↵2), . . . , vnf(↵n), f(1)
�
: f(x) 2 Fq[x]<k

 
,

where f(1) is defined as the coe�cient of xk�1 in f(x) for each f(x) 2 Fq[x]<k. In

particular, if v = 1 = (1, 1, . . . , 1) is the all-one vector of length n, then the code

ARSn,k(↵, v,1) is called the extended additive Reed-Solomon (extended additive

RS) code with evaluation points ↵1,↵2, . . . ,↵n,1. When the map E↵,v is injective,

one can easily see that the code ARSn,k(↵, v,1) has dimension k and has a gener-

ator matrix

G1 =

2

66666664

v1 v2 · · · vn 0

v1↵1 v2↵2 · · · vn↵n 0
...

... · · ·
...

...

v1↵
k�2
1 v2↵

k�2
2 · · · vn↵

k�2
n

0

v1↵
k�1
1 v2↵

k�1
2 · · · vn↵

k�1
n

1

3

77777775

. (8.4.2)

By Theorems 5.3.1 and 5.3.4 of [53], we see that linear GRS and extended linear

GRS codes over finite fields are MDS codes. However, additive GRS and extended

additive GRS codes need not be MDS codes in general. The following two examples

illustrate this.

Example 8.4.1. Let q = 5, m = 2, n = 6 and k = 3, and let ⇠ be a primitive

element of F25. Let us take ↵ = (⇠, ⇠2, ⇠3, ⇠4, ⇠5, ⇠6) 2 F6
25 and v = (1, 1, 1, 1, 3, 2). By

carrying out computations in the Magma Computational Algebra System, we see that

the code ARSn,k(↵, v) is an additive [6, 3, 4]-code over F25. As dH(ARSn,k(↵, v)) =

4 < 5 = 6� d
3
2e+ 1 = n� d

k

m
e+ 1, the code ARSn,k(↵, v) is not MDS.

Example 8.4.2. Let q = 3, m = 2, n = 3 and k = 2, and let ⇠ be a primitive

element of F9. Let us take ↵ = (⇠, ⇠3, ⇠2) 2 F3
9 and v = (1, 1, 2). By carrying out

computations in the Magma Computational Algebra System, we see that the code

ARSn,k(↵, v,1) is an additive [4, 2, 3]-code over F9. As dH(ARSn,k(↵, v,1)) =

3 < 4 = 4� d
2
2e+ 1 = (n+ 1)� d

k

m
e+ 1, the code ARSn,k(↵, v,1) is not MDS.

In the following theorem, we derive necessary and su�cient conditions under
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which the code ARSn,k(↵, v) is an additive MDS code of length n and dimension k

over Fqm , where 1  k  nm.

Theorem 8.4.1. Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
\ Fn

q
and v = (v1, v2, . . . , vn) 2

(F⇤
qm
)n, where ↵1,↵2, . . . ,↵n are distinct. For 1  i  n, let mi(x) denote the

minimal polynomial of ↵i over Fq, and let di = deg(mi(x)). For 1  k 

nP
i=1

di, the

following hold.

(a) When k  m, the code ARSn,k(↵, v) is an additive MDS code of length n and

dimension k over Fqm if and only if di � k for 1  i  n.

(b) When k > m, the code ARSn,k(↵, v) is an additive MDS code of length n and

dimension k over Fqm if and only if the polynomials m1(x),m2(x), . . . ,mn(x)

are distinct and
P
i2I

di � k for all subsets I of {1, 2, . . . , n} with |I| = d
k

m
e.

Proof. (a) Let k  m. To prove the result, we first assume that the codeARSn,k(↵, v)

is an additive MDS code of length n and dimension k over Fqm , which im-

plies that the map E↵,v is injective and that the Hamming distance of the code

ARSn,k(↵, v) is equal to n�
⌃

k

m

⌥
+ 1 = n� 1 + 1 = n.

Here we assert that di � k for 1  i  n. To prove this assertion, we sup-

pose, on the contrary, that there exists an integer ` satisfying 1  `  n and

d` < k, which implies that m`(x) 2 Fq[x]<k. As the map E↵,v is injective, we

see that c = E↵,v(m`(x)) =
�
v1m`(↵1), v2m`(↵2), . . . , vnm`(↵n)

�
is a non-zero

codeword of ARSn,k(↵, v). Since m`(↵`) = 0, we have wH(c) < n. This implies

that the Hamming distance of the code ARSn,k(↵, v) is less than n, which is a

contradiction. This shows that di � k for 1  i  n.

Conversely, suppose that di � k for 1  i  n. Here one can easily observe that

the evaluation map E↵,v is injective, which implies that the additive GRS code

ARSn,k(↵, v) has dimension k. We will now show that the code ARSn,k(↵, v)

is MDS. For this, it is enough to show that the Hamming distance of the code

ARSn,k(↵, v) is n. To prove this, we suppose, on the contrary, that the Ham-

ming distance of the code ARSn,k(↵, v) is less than n. This implies that there

exists a non-zero polynomial f(x) 2 Fq[x]<k such that the corresponding code-

word cf = E↵,v(f(x)) =
�
v1f(↵1), v2f(↵2), . . . , vnf(↵n)

�
2 ARSn,k(↵, v) has



298
Some new classes of additive MDS and almost MDS codes over finite

fields

Hamming weight wH(cf ) < n. This implies that f(↵i) = 0 for some integer i

satisfying 1  i  n. This implies that k > deg(f(x)) � deg(mi(x)) = di for

some i, which is a contradiction. From this, it follows that the codeARSn,k(↵, v)

is MDS.

(b) Let k > m. To prove the result, we first assume that the code ARSn,k(↵, v) is

an additive MDS code of length n and dimension k over Fqm , i.e., the Hamming

distance of the code ARSn,k(↵, v) is n� d
k

m
e+ 1.

Here we first assert that the polynomials m1(x),m2(x), . . . ,mn(x) are distinct.

To prove this assertion, we suppose, on the contrary, that mi(x) = mj(x) for

some integer i and j satisfying 1  i < j  n. Now let us define the polynomial

g(x) = mi(x)
Y

`2L

m`(x),

where L ✓ {1, 2, . . . , n}\{i, j} is such that |L| =
⌅

k

m

⇧
�2 if k

m
is an integer, while

|L| =
⌅

k

m

⇧
�1 if k

m
is not an integer. We note that g(x) is a non-zero polynomial

in Fq[x]<k. This implies that cg = E↵,v(g(x)) =
�
v1g(↵1), v2g(↵2), . . . , vng(↵n)

�

is a non-zero codeword ofARSn,k(↵, v) with Hamming weight wH(cg)  n�d
k

m
e,

which is a contradiction. This shows that the polynomialsm1(x),m2(x), . . . ,mn(x)

are distinct.

We next assert that
P
i2I

di � k for all subsets I of {1, 2, . . . , n} with |I| = d
k

m
e.

To prove this assertion, we suppose, on the contrary, that there exists a subset

J of {1, 2, . . . , n} such that |J | = d
k

m
e and

P
i2J

di < k. Here it is easy to see

that the polynomial h(x) =
Q
i2J

mi(x) 2 Fq[x]<k and that ch = E↵,v(h(x)) is a

non-zero codeword of the code ARSn,k(↵, v) with Hamming weight wH(ch) 

n � d
k

m
e, which is a contradiction. This shows that

P
i2I

di � k for all subsets I

of {1, 2, . . . , n} with |I| = d
k

m
e.

To prove the converse part, let us assume that the polynomialsm1(x),m2(x), . . . ,

mn(x) are distinct and that
P
i2I

di � k for all subsets I of {1, 2, . . . , n} with

|I| = d
k

m
e. As k 

nP
i=1

di, we see that the evaluation map E↵,v is injective, which
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implies that the code ARSn,k(↵, v) is an additive code of length n and dimen-

sion k over Fqm . Further, it is easy to observe that the code ARSn,k(↵, v) has

Hamming distance n� d
k

m
e+ 1, and hence it is an MDS code.

This completes the proof of the theorem.

As a consequence of the above theorem, we identify a class of additive MDS

codes within the family of additive GRS codes in the following corollary.

Corollary 8.4.1. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2

Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

each ↵i has exactly m distinct conjugates over Fq. Then for 1  k  nm, the code

ARSn,k(↵, v) is an additive MDS code of length n and dimension k over Fqm .

Proof. It follows immediately from Theorem 8.4.1.

The following example illustrates the above corollary.

Example 8.4.3. Let q = 5, m = 3, n = 40 and k = 5, and let ⇠ be a primitive ele-

ment of F125. Let ↵ = (⇠39, ⇠44, ⇠34, ⇠47, ⇠21, ⇠6, ⇠42, ⇠16, ⇠18, ⇠94, ⇠2, ⇠11, ⇠14, ⇠48, ⇠68, ⇠7,

⇠
99
, ⇠

36
, ⇠

13
, ⇠

73
, ⇠ , ⇠

37
, ⇠

4
, ⇠

41
, ⇠

38
, ⇠

19
, ⇠

17
, ⇠

3
, ⇠

8
, ⇠

69
, ⇠

43
, ⇠

49
, ⇠

74
, ⇠

63
, ⇠

12
, ⇠

22
, ⇠

9
, ⇠

64
, ⇠

24
,

⇠
23) 2 F40

125, and let v = 1 = (1, 1, . . . , 1) be the all-one vector of length 40. By carry-

ing out computations in the Magma Computational Algebra System, we see that the

code ARSn,k(↵,1) is an additive [40, 5, 39]-code over F125, and hence it is an MDS

code. It agrees with Corollary 8.4.1.

In the following theorem, we derive necessary and su�cient conditions under

which the code ARSn,k(↵, v,1) is an additive MDS code of length n + 1 and

dimension k over Fqm .

Theorem 8.4.2. Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
\ Fn

q
and v = (v1, v2, . . . , vn) 2

(F⇤
qm
)n, where ↵1,↵2, . . . ,↵n are distinct. For 1  i  n, let mi(x) denote the

minimal polynomial of ↵i over Fq, and let di = deg(mi(x)). For 1 < k 

nP
i=1

di + 1,

the following hold.

(a) When k  m, the code ARSn,k(↵, v,1) is not an additive MDS code over Fqm .
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(b) When k > m, the code ARSn,k(↵, v,1) is an additive MDS code of length n+1

and dimension k over Fqm if and only if the polynomials m1(x),m2(x), . . . ,mn(x)

are distinct, k ⌘ 1 (mod m) and
P
i2I

di = k � 1 for all subsets I of {1, 2, . . . , n}

with |I| = d
k

m
e � 1.

Proof. Proof of part (a) is trivial. To prove part (b), we first note that if
P
i2I

di � k�1

holds for all subsets I of {1, 2, . . . , n} with |I| = d
k

m
e � 1, then

P
j2J

dj � k for

all subsets J of {1, 2, . . . , n} with |J | = d
k

m
e. Now working in a similar manner

as in Theorem 8.4.1(b), we observe that the code ARSn,k(↵, v,1) is an additive

MDS code of length n + 1 and dimension k over Fqm if and only if the polyno-

mials m1(x),m2(x), . . . ,mn(x) are distinct and
P
i2I

di � k � 1 for all subsets I of

{1, 2, . . . , n} with |I| = d
k

m
e�1. We further observe, for all subsets J of {1, 2, . . . , n}

with |J | = d
k

m
e � 1, that

P
i2J

di  k � 2 when k 6⌘ 1 (mod m), while
P
i2J

di  k � 1

when k ⌘ 1 (mod m). From this, the desired result follows.

As a consequence of the above theorem, we identify a new class of additive MDS

codes within the family of extended additive GRS codes in the following corollary.

Corollary 8.4.2. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2

Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

each ↵i has exactly m distinct conjugates over Fq. Then for 1  k  nm + 1 and

k ⌘ 1 (mod m), the code ARSn,k(↵, v,1) is an additive MDS code of length n+ 1

and dimension k over Fqm .

Proof. It follows immediately from Theorem 8.4.2.

In the following example, we construct an extended additive MDS GRS code to

illustrate the above corollary.

Example 8.4.4. Let q = 5, m = 2, n = 7 and k = 7, and let ⇠ be a primitive

element of F25. Let ↵ = (⇠7, ⇠9, ⇠13, ⇠4, ⇠, ⇠2, ⇠14), and let v = (3, 2, 1, 1, 1, 1, 1). By

carrying out computations in the Magma Computational Algebra System, we see that

the code ARSn,k(↵, v,1) is an additive [8, 7, 5]-code over F25, and hence it is an

MDS code. It agrees with Corollary 8.4.2.
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By Theorem 5.3.3 of [53], we see that the dual code of a linear GRS code is

also a GRS code. However, the dual code of an additive GRS code need not be an

additive GRS code. The following example illustrates this.

Example 8.4.5. Let q = 2, m = 4, n = 3 and k = 10, and let ⇣ be a primitive

element of F16. Let us take ↵ = (⇣, ⇣3, ⇣5) 2 F3
16 and v = 1 = (1, 1, 1). By carrying

out computations in the Magma Computational Algebra System, we see that the code

ARSn,k(↵,1) is an additive [3, 10, 1]-code over F16 and its dual code ARSn,k(↵,1)?

is an additive [3, 2, 1]-code over F16 with a generator matrix

"
0 0 1

0 0 ⇣
5

#
.

It is easy to see that ARSn,k(↵,1)? 6= ARSn,nm�k(�, z) for any choice of the vectors

� = (�1, �2, �3) 2 F3
16 and z = (z1, z2, z3) 2 (F⇤

16)
3
. This shows that the dual code

ARSn,k(↵,1)? is not an additive GRS code.

Further, by Corollary 8.4.1, we see that if ↵1,↵2, . . . ,↵n do not form a conjugate

pair over Fq and each ↵i has exactly m distinct conjugates over Fq, then for any

v 2 (F⇤
qm
)n, the code ARSn,k(↵, v) is MDS. In the following theorem, we make use

of this observation to identify a class of additive MDS GRS codes over Fqm , whose

dual codes are also additive MDS GRS codes.

Theorem 8.4.3. Let n, k and m � 2 be integers satisfying 1  k  nm � 1.

Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two

elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each ↵i has exactly

m distinct conjugates over Fq. Then there exists a vector w = (w1, w2, . . . , wn) 2

(F⇤
qm
)n such that ARSn,k(↵, v)? = ARSn,nm�k(↵, w). As a consequence, the dual

code of the MDS code ARSn,k(↵, v) is an additive MDS GRS code.

Proof. To prove the result, let us consider the matrix

A =

2

666664

1 1 · · · 1

↵1 ↵2 · · · ↵n

...
... · · ·

...

↵
nm�2
1 ↵

nm�2
2 · · · ↵

nm�2
n

3

777775
. (8.4.3)
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Let ai denote the i-th row of the matrix A for 1  i  nm � 1. One can easily see

that the rows a1, a2, . . . , anm�1 of the matrix A are linearly independent over Fq.

Now let C be the Fq-linear subspace of Fn

qm
generated by a1, a2, . . . , anm�1 2 Fn

qm
.

Clearly, C is an additive code of length n and dimension nm � 1 over Fq. Further,

since h·, ·i : Fn

qm
⇥ Fn

qm
! Fq is a non-degenerate and symmetric bilinear form on

Fn

qm
, we see, by Theorem 2.3.2, that dimFq

(C ?) = nm � dimFq
(C ) = 1. So there

exists a non-zero vector z = (z1, z2, . . . , zn) 2 C ?
. That is, we have hz, aii = 0 for

1  i  nm� 1, or equivalently,

Trq,m(Az
t) = 0. (8.4.4)

We next assert that z1, z2, . . . , zn all are non-zero. To prove this assertion, we

suppose, on the contrary, that zi = 0 for some i. Here without any loss of generality,

we can assume that i = n, i.e., zn = 0. In this case, we see that the matrix equation

(8.4.4) reduces to the following matrix equation:

Trq,m

0

BBBBB@
bA

2

666664

z1

z2

...

zn�1

3

777775

1

CCCCCA
=

2

666664

0

0
...

0

3

777775
, where bA =

2

666664

1 1 · · · 1

↵1 ↵2 · · · ↵n�1

...
... · · ·

...

↵
nm�2
1 ↵

nm�2
2 · · · ↵

nm�2
n�1

3

777775
.

This implies that (z1, z2, . . . , zn�1) 2 bC ?
, where bC is the Fq-linear subspace of Fn�1

qm

generated by the rows of the matrix bA. It is easy to see that dimFq
( bC ) = (n� 1)m,

which implies that bC = Fn�1
qm , and hence bC ? = {0}. From this, it follows that z1 =

z2 = · · · = zn = 0, which is a contradiction. This shows that z1, z2, . . . , zn 2 F⇤
qm
.

Next, we see that the additive code ARSn,k(↵, v) has a generator matrix G as

defined by (8.4.1). Further, let us define w = (w1, w2, . . . , wn) = (v�1
1 z1, v

�1
2 z2, . . . ,

v
�1
n
zn). We see that the additive GRS code ARSn,nm�k(↵, w) has a generator matrix

H =

2

666664

w1 w2 · · · wn

w1↵1 w2↵2 · · · wn↵n

...
... · · ·

...

w1↵
nm�k�1
1 w2↵

nm�k�1
2 · · · wn↵

nm�k�1
n

3

777775
.
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It is easy to see that Trq,m(GH
t) = 0, which implies that ARSn,nm�k(↵, w) ✓

ARSn,k(↵, v)?. Further, it is easy to see that

dimFq
(ARSn,nm�k(↵, w)) = dimFq

(ARSn,k(↵, v)
?) = nm� k,

which implies that ARSn,nm�k(↵, w) = ARSn,k(↵, v)?. By Corollary 8.4.1, we see

that the code ARSn,nm�k(↵, w) is MDS. This completes the proof of the theorem.

The following example illustrates the above theorem.

Example 8.4.6. Let q = 7, m = 2, n = 6 and k = 5, and let ⇠ be a primitive element

of F49. Let us take ↵ = (⇠, ⇠5, ⇠11, ⇠13, ⇠17, ⇠19) 2 F6
49, and let v = 1 = (1, 1, . . . , 1) be

the all-one vector of length 6. By carrying out computations in the Magma Computa-

tional Algebra System, we see that the code ARSn,k(↵,1) is an additive [6, 5, 4]-code

over F49 and its dual code ARSn,k(↵,1)? is an additive [6, 7, 3]-code over F49, and

that ARSn,k(↵,1)? = ARSn,nm�k(↵, w), where w = (⇠22, ⇠36, ⇠21, ⇠35, 4, ⇠38). From

this, it follows that both the code ARSn,k(↵,1) and its dual code ARSn,k(↵,1)? =

ARSn,nm�k(↵, w) are MDS, which agree with Theorem 8.4.3.

By closely looking at the proof of Theorem 8.4.3, we observe the following:

Corollary 8.4.3. Let A be the matrix as defined by (8.4.3). Then there exists

z 2 (F⇤
qm
)n satisfying Trq,m(Az

t) = 0.

Jin and Xing [56] constructed some classes of linear MDS self-dual codes through

linear GRS codes. We extend this result and identify some classes of additive MDS

self-orthogonal and self-dual codes within the family of additive GRS codes in the

following theorem.

Theorem 8.4.4. Let n, k and m � 2 be integers satisfying 1  k 
nm

2 . Let

↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a

conjugate pair over Fq and each ↵i has exactly m distinct conjugates over Fq. Let

z = (z1, z2, . . . , zn) 2 (F⇤
qm
)n be such that Trq,m(Az

t) = 0, where the matrix A is as

defined by (8.4.3), (such a vector z exists in (F⇤
qm
)n by Corollary 8.4.3). Let us sup-

pose that zi = w
2
i
, where wi 2 F⇤

qm
for 1  i  n. Let us define w = (w1, w2, . . . , wn).
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Then for 1  k 
nm

2 , the code ARSn,k(↵, w) is an additive MDS self-orthogonal

code of length n and dimension k over Fqm . In particular, if nm is even and k = nm

2 ,

then the code ARSn,k(↵, w) is an additive MDS self-dual code over Fqm .

Proof. The desired result follows by applying Theorem 7.3.1 and Corollary 8.4.1.

As a consequence of the above theorem, we deduce the following:

Corollary 8.4.4. Let q be an even prime power, and let n, k and m � 2 be positive

integers satisfying n 
�(qm�1)

m
and k 

nm

2 (here � is the Euler phi function). Then

there exists an additive MDS self-orthogonal code of length n and dimension k over

Fqm . In particular, when nm is even, there exists an additive MDS self-dual code of

length n over Fqm .

Proof. To prove the result, we see that as n 
�(qm�1)

m
, there exist primitive elements

↵1,↵2, . . . ,↵n of Fqm such that no two elements among ↵i’s form a conjugate pair.

Let us take ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
. Note that each ↵i has exactly m distinct

conjugates over Fq. Now by Corollary 8.4.3, we see that there exists a vector z =

(z1, z2, . . . , zn) 2 (F⇤
qm
)n satisfying Trq,m(Az

t) = 0, where the matrix A is as defined

by (8.4.3). Since q is even, we can write zi = w
2
i
, where wi 2 F⇤

qm
for 1  i  n.

Now the desired result follows immediately by applying Theorem 8.4.4.

In the following examples, we construct additive MDS self-orthogonal and self-

dual codes to illustrate Theorem 8.4.4.

Example 8.4.7. Let q = 3, m = 2 and n = 3, and let ⇠ be a primitive element of F9.

Let ↵ = (⇠, ⇠2, ⇠5) 2 F3
9, i.e., ↵1 = ⇠, ↵2 = ⇠

2 and ↵3 = ⇠
5
. By carrying out computa-

tions in the Magma Computational Algebra System, we see that z = (⇠2, ⇠2, ⇠6) 2 F3
9

satisfies Trq,m(Az
t) = 0, where the matrix A is as defined by (8.4.3). So let us take

w = (⇠, ⇠, ⇠3). Further, by carrying out computations in the Magma Computational

Algebra System, we see that the code ARSn,3(↵, w) is an additive self-dual [3, 3, 2]-

code over F9, while the code ARSn,2(↵, w) is an additive self-orthogonal [3, 2, 3]-code

over F9. It is easy to see that both the codes ARSn,3(↵, w) and ARSn,2(↵, w) are

MDS. It agrees with Theorem 8.4.4.

Example 8.4.8. Let q = 2, m = 5 and n = 5, and let ⇠ be a primitive element

of F32. Let us take ↵ = (⇠5, ⇠, ⇠11, ⇠3, ⇠23) 2 F5
32, i.e., ↵1 = ⇠

5
, ↵2 = ⇠, ↵3 = ⇠

11
,
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↵4 = ⇠
3 and ↵5 = ⇠

23
. By carrying out computations in the Magma Computational

Algebra System, we see that z = (⇠24, ⇠25, ⇠28, ⇠20, ⇠8) 2 F5
32 satisfies Trq,m(Az

t) = 0,

where the matrix A is as defined by (8.4.3). So let us take w = (⇠12, ⇠28, ⇠14, ⇠10, ⇠4).

Further, by carrying out computations in the Magma Computational Algebra System,

we see, for 1  k  12, that the code ARSn,k(↵, w) is an additive MDS self-

orthogonal code over F32, which agrees with Theorem 8.4.4.

In the following theorem, we construct MDS ACD codes over Fqm through addi-

tive GRS codes.

Theorem 8.4.5. Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among

↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each ↵i has exactly m distinct con-

jugates over Fq. Let z = (z1, z2, . . . , zn) 2 (F⇤
qm
)n be such that Trq,m(Az

t) = 0, where

the matrix A is as defined by (8.4.3), (such a vector z exists in (F⇤
qm
)n by Corol-

lary 8.4.3). Next let a(x) and b(x) be two coprime polynomials in Fq[x] satisfying

deg(a(x)) = k, deg(b(x)) = nm� k, and a(↵i)b(↵i)zi = w
2
i
, where wi 2 F⇤

qm
for 1 

i  n. Then for w
(a) =

⇣
w1

a(↵1)
,

w2
a(↵2)

, . . . ,
wn

a(↵n)

⌘
and w

(b) =
⇣

w1
b(↵1)

,
w2

b(↵2)
, . . . ,

wn

b(↵n)

⌘
in

(F⇤
qm
)n, the following hold.

(a) ARSn,k(↵, w(a))? = ARSn,nm�k(↵, w(b)).

(b) ARSn,k(↵, w(a)) \ARSn,nm�k(↵, w(b)) = {0}.

As a consequence, the code ARSn,k(↵, w(a)) is an ACD MDS code of length n and

dimension k over Fqm .

Proof. Working as in Theorem 9 of Jin [55] and by applying Corollary 8.4.1, the

desired result follows.

The following example illustrates the above theorem.

Example 8.4.9. Let q = 2, m = 4, n = 3 and k = 5, and let ⇠ be a primi-

tive element of F16. Let ↵ = (⇠7, ⇠3, ⇠), i.e., ↵1 = ⇠
7
, ↵2 = ⇠

3 and ↵3 = ⇠. Let

a(x) = x
5 + x + 1 and b(x) = x

7 + x + 1 2 F2[x]. Note that a(x) and b(x) are

two coprime polynomials in Fq[x] with deg(a(x)) = 5 and deg(b(x)) = nm� k = 7.

By carrying out computations in the Magma Computational Algebra System, we see

that z = (⇠5, ⇠10, 1) 2 (F16)3 satisfies Trq,m(Az
t) = 0, where the matrix A is as
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defined by (8.4.3). This implies that w
(a) = (⇠14, 1, ⇠5) and w

(b) = (⇠6, ⇠10, ⇠10).

Further, by carrying out computations in the Magma Computational Algebra Sys-

tem, we see that the code ARSn,k(↵, w(a)) is an additive [3, 5, 2]-code over F16 and

that the code ARSn,nm�k(↵, w(b)) is an additive [3, 7, 2]-code over F16, and hence

these are MDS codes. We also see that ARSn,k(↵, w(a))? = ARSn,nm�k(↵, w(b))

and ARSn,k(↵, w(a)) \ARSn,nm�k(↵, w(b)) = {0}. It agrees with Theorem 8.4.5.

8.5 Additive generalized twisted Reed-Solomon

codes over finite fields

Recently, Beelen et al. [9–11] introduced and studied (linear) twisted Reed-

Solomon (TRS) codes over finite fields and showed that these codes are not MDS in

general. They also identified several classes of linear MDS codes within the family

of TRS codes. In this section, we will introduce and study a new class of additive

codes over finite fields, viz. additive generalized twisted Reed-Solomon (additive

GTRS) codes, which is an extension of linear TRS codes over finite fields.

To define these codes, we assume, throughout this section, that n, k and m �

2 are integers satisfying 1  k < nm. Let ` be a positive integer, and let t =

(t1, t2, . . . , t`) 2 {1, 2, . . . , nm � k}
` and h = (h1, h2, . . . , h`) 2 {0, 1, . . . , k � 1}` be

such that the pairs (h1, t1), (h2, t2), . . . , (h`, t`) are distinct. Let ⌘ = (⌘1, ⌘2, . . . , ⌘`) 2

F`

q
. The positive integer ` equals the number of twists, the vector t is called the

twist vector, the vector h is called the hook vector and the vector ⌘ is called the

coe�cient vector. Then the set Pn,k(t,h,⌘) of (n, k, t,h,⌘)-twisted polynomials

over Fq is defined as

Pn,k(t,h,⌘) =

(
k�1X

i=0

aix
i +

`X

j=1

⌘jahj
x
k�1+tj : ai 2 Fq

)
✓ Fq[x].

By Lemma 1 of Beelen et al. [10], we see that the set Pn,k(t,h,⌘) of (n, k, t,h,⌘)-

twisted polynomials over Fq is a k-dimensional subspace of Fq[x] over Fq with a basis
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set {p0(x), p1(x), . . . , pk�1(x)} , where

pi(x) = x
i +

`X

j=1
hj=i

⌘jx
k�1+tj for 0  i  k � 1. (8.5.1)

Now to define additive GTRS codes, let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
\ Fn

q
and v =

(v1, v2, . . . , vn) 2 (F⇤
qm
)n, where ↵1,↵2, . . . ,↵n are distinct. It is easy to see that the

evaluation map E↵,v : Pn,k(t,h,⌘) ! Fn

qm
, defined as

E↵,v(f(x)) =
�
v1f(↵1), v2f(↵2), . . . , vnf(↵n)

�
for all f(x) 2 Pn,k(t,h,⌘),

is an Fq-linear vector space homomorphism, and hence its image E↵,v(Pn,k(t,h,⌘))

is an Fq-linear subspace of Fn

qm
. The additive generalized twisted Reed-Solomon (ad-

ditive GTRS) code of length n over Fqm with ` twists, evaluation points ↵1,↵2, . . . ,↵n

and column multipliers v1, v2, . . . , vn is defined as

Tn,k(↵, v, t,h,⌘) = E↵,v

�
Pn,k(t,h,⌘)

�

=
��

v1f(↵1), v2f(↵2), . . . , vnf(↵n)
�
: f(x) 2 Pn,k(t,h,⌘)

 
.

In particular, if v = 1 = (1, 1, . . . , 1) is the all-one vector of length n, then the addi-

tive GTRS code Tn,k(↵, v, t,h,⌘) is called the additive twisted Reed-Solomon (addi-

tive TRS) code over Fqm with ` twists and evaluation points ↵1,↵2, . . . ,↵n. Further,

the extended additive generalized twisted Reed-Solomon (extended additive GTRS)

code of length n+ 1 over Fqm with ` twists, evaluation points ↵1,↵2, . . . ,↵n,1 and

column multipliers v1, v2, . . . , vn, 1 is defined as

Tn,k(↵, v, t,h,⌘,1)

=
��

v1f(↵1), v2f(↵2), . . . , vnf(↵n), f(1)
�
: f(x) 2 Pn,k(t,h,⌘)

 
,

where f(1) is defined as the coe�cient of xk�1+t✓ in f(x) for each f(x) 2 Pn,k(t,h,⌘)

with t✓ = max
1j`

{tj : ⌘j 6= 0}. In particular, if v = 1 = (1, 1, . . . , 1) is the all-one

vector of length n, then the extended additive GTRS code Tn,k(↵, v, t,h,⌘,1) is

called the extended additive twisted Reed-Solomon (extended additive TRS) code

over Fqm with ` twists and evaluation points ↵1,↵2, . . . ,↵n,1. Note that additive
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GTRS (resp. extended additive GTRS) codes coincide with additive GRS (resp.

extended additive GRS) codes when ⌘ = (0, 0, . . . , 0). So from now on, we assume

that ⌘1, ⌘2, . . . , ⌘` are non-zero elements of Fq. We also assume, throughout this sec-

tion, that no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

that each ↵i has exactly m distinct conjugates over Fq.

Proposition 8.5.1. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2

Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

each ↵i has exactly m distinct conjugates over Fq. Then for 1  k < nm, the code

Tn,k(↵, v, t,h,⌘) is an additive code of length n and dimension k over Fqm with a

generator matrix

G↵,v =

2

666664

v1p0(↵1) v2p0(↵2) · · · vnp0(↵n)

v1p1(↵1) v2p1(↵2) · · · vnp1(↵n)
...

... · · ·
...

v1pk�1(↵1) v2pk�1(↵2) · · · vnpk�1(↵n)

3

777775
,

where the polynomials p0(x), p1(x), . . . , pk�1(x) are as defined by (8.5.1).

Proof. Working in a similar manner as in Proposition 1 of Beelen et al. [10] and by

applying Theorem 3.7.4 of [53], the desired result follows.

We will now identify several classes of additive GTRS and extended additive

GTRS codes over Fqm , which are either MDS or almost MDS. Towards this, we

assume, throughout this section, that ` = 1 (unless specified otherwise), t = t1 = 1,

h = h1 = h 2 {0, 1, 2, . . . , k � 1} and ⌘ = ⌘1 = ⌘ 2 F⇤
q
. In this case, we see that the

set Pn,k(1, h, ⌘) of (n, k, 1, h, ⌘)-twisted polynomials over Fq is given by

Pn,k(1, h, ⌘) =

(
k�1X

i=0

aix
i + ⌘ahx

k : ai 2 Fq

)
.

In the following theorem, we consider the case when m does not divide k, and we

identify a class of additive MDS codes of length n and dimension k over Fqm within

the family of additive GTRS codes with one twist.
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Theorem 8.5.1. Let n, k and m � 2 be integers such that 1  k < nm and m does

not divide k. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

each ↵i has exactly m distinct conjugates over Fq. Let ` = 1, t1 = 1 and h 2

{0, 1, 2, . . . , k � 1}. Then for each ⌘ 2 F⇤
q
, the code Tn,k(↵, v, 1, h, ⌘) is an additive

MDS code of length n and dimension k over Fqm .

Proof. By Proposition 8.5.1, we see that the additive code Tn,k(↵, v, 1, h, ⌘) has

dimension k.We next assert that the Hamming distance of the code Tn,k(↵, v, 1, h, ⌘)

is n� d
k

m
e+ 1.

To prove this assertion, let cf = E↵,v(f(x)) = (v1f(↵1), v2f(↵2), . . . , vnf(↵n)) be

a non-zero codeword of Tn,k(↵, v, 1, h, ⌘) corresponding to the twisted polynomial

f(x) 2 Pn,k(1, h, ⌘) with Hamming weight wH(cf ) = s. This implies that precisely

n � s coordinates, say i1-th, i2-th, . . . , in�s-th, of the codeword cf are zero, which

implies that f(↵j) = 0 for j 2 {i1, i2, . . . , in�s}. Now by applying Theorem 3.7.4

of [53], we see that if f(↵j) = 0, then f(↵q

j
) = f(↵q

2

j
) = · · · = f(↵q

m�1

j
) = 0,

where j 2 {i1, i2, . . . , in�s}. From this, it follows that the polynomial f(x) has at

least m(n � s) distinct roots. Since deg(f(x))  k, we must have m(n � s)  k,

which gives n�d
k

m
e < s. From this and by applying Theorem 8.2.2, we see that the

Hamming distance of the code Tn,k(↵, v, 1, h, ⌘) is n � d
k

m
e + 1, and hence it is an

MDS code.

The following example illustrates the above theorem.

Example 8.5.1. Let q = 11, m = 2, n = 55 and k = 5, and let ⇠ be a primitive el-

ement of F121. Let h = 1 and ⌘ = 2 2 F11. Let ↵ = (⇠52, ⇠18, ⇠9, ⇠30, ⇠5, ⇠20, ⇠76, ⇠73, ⇠4,

⇠
41
, ⇠

61
, ⇠

97
, ⇠

49
, ⇠

74
, ⇠

25
, ⇠

7
, ⇠

3
, ⇠

31
, ⇠

42
, ⇠

14
, ⇠

39
, ⇠

15
, ⇠

98
, ⇠

43
, ⇠

37
, ⇠

87
, ⇠

62
, ⇠

109
, ⇠

53
, ⇠

54
, ⇠

28
,

⇠
38
, ⇠

51
, ⇠

17
, ⇠

65
, ⇠

19
, ⇠

85
, ⇠

40
, ⇠

13
, ⇠

26
, ⇠

86
, ⇠

63
, ⇠

27
, ⇠

32
, ⇠

75
, ⇠

21
, ⇠

64
, ⇠

8
, ⇠

10
, ⇠

29
, ⇠

50
, ⇠ , ⇠

6
, ⇠

2
,

⇠
16) 2 F55

121, and let v = 1 = (1, 1, . . . , 1) be the all-one vector of length 55. By car-

rying out computations in the Magma Computational Algebra System, we see that

the code Tn,k(↵,1, 1, 1, 2) is an additive [55, 5, 53]-code over F121, and hence it is an

MDS code. It agrees with Theorem 8.5.1.

Theorem 8.5.1 shows that no two elements among ↵1,↵2, . . . ,↵n form a conjugate

pair over Fq and each ↵i has exactly m distinct conjugates over Fq are su�cient
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conditions for the code Tn,k(↵, v, 1, h, ⌘) to be an additive MDS code of length n

and dimension k over Fqm . The following example illustrates that these conditions

on the evaluation points ↵i’s are not necessary for the additive code Tn,k(↵, v, 1, h, ⌘)

to be MDS.

Example 8.5.2. Let q = 3, m = 2, n = 4, k = 3, h = 1, and ⌘ = 2 2 F3. Let ⇠ be

a primitive element of F9. Let us take ↵ = (⇠, ⇠2, ⇠5, 2) 2 F4
9 and v = 1 = (1, 1, 1, 1).

Note that the evaluation point 2 has exactly one conjugate over F3. By carrying out

computations in the Magma Computational Algebra System, we see that the code

Tn,k(↵,1, 1, h, ⌘) is an additive [4, 3, 3]-code over F9, and hence it is an MDS code.

In the following theorem, we assume that m does not divide k, and we identify a

class of k-dimensional additive codes over Fqm that are either MDS or almost MDS

within the family of extended additive GTRS codes with one twist.

Theorem 8.5.2. Let n, k and m � 2 be integers such that 1  k < nm and m does

not divide k. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and

each ↵i 2 Fqm has exactly m distinct conjugates over Fq. Let ` = 1, t1 = 1 and

h 2 {0, 1, 2, . . . , k � 1}. Then for any ⌘ 2 F⇤
q
, the code Tn,k(↵, v, 1, h, ⌘,1) is an

additive code of length n+ 1 and dimension k over Fqm with Hamming distance

dH(Tn,k(↵, v, 1, h, ⌘,1)) � n+ 1�
l
k

m

m
.

As a consequence, the code Tn,k(↵, v, 1, h, ⌘,1) is either MDS or almost MDS.

Proof. Working in a similar manner as in Theorem 8.5.1 and by applying Theorem

8.2.2, the desired result follows immediately.

The following two examples illustrate the above theorem.

Example 8.5.3. Let q = 7, m = 2, n = 21, k = 5, h = 2, and ⌘ = 1 2 F7. Let ⇠ be a

primitive element of F49. Let ↵ = (⇠25, ⇠13, ⇠41, ⇠ , ⇠9, ⇠33, ⇠3, ⇠34, ⇠11, ⇠26, ⇠19, ⇠10, ⇠18, ⇠20,

⇠
17
, ⇠

5
, ⇠

4
, ⇠

27
, ⇠

6
, ⇠

2
, ⇠

12), and let v = 1 = (1, 1, . . . , 1) be the all-one vector of length

21. By carrying out computations in the Magma Computational Algebra System, we

see that the code Tn,k(↵,1, 1, 2, 1,1) is an additive [22, 5, 19]-code over F49, and

hence it is an almost MDS code. It agrees with Theorem 8.5.2.
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Example 8.5.4. Let q = 3, m = 2, n = 3, k = 3, h = 0, and ⌘ = 2 2 F3.

Let ⇠ be a primitive element of F9. Let ↵ = (⇠, ⇠2, ⇠5), and let v = 1 = (1, 1, 1).

By carrying out computations in the Magma Computational Algebra System, we see

that the code Tn,k(↵,1, 1, 0, 2,1) is an additive [4, 3, 3]-code over F9, and hence it

is an MDS code. It agrees with Theorem 8.5.2.

In a recent work, Huang et al. [51] derived necessary and su�cient conditions

under which a linear GTRS code with one twist is either MDS or almost MDS. In

the following theorem, we assume that m divides k, and we derive necessary and

su�cient conditions under which the additive GTRS code Tn,k(↵, v, 1, h, ⌘) is either

MDS or almost MDS.

Theorem 8.5.3. Let n, k and m � 2 be positive integers such that 1  k < nm

and m divides k. Let ` = 1, t1 = 1, h 2 {0, 1, 2, . . . , k � 1}, and let ⌘ 2 F⇤
q
.

Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no

two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each ↵i has

exactly m distinct conjugates over Fq. For each subset I of {1, 2, . . . , n}, let us define

RI = {↵
q
j

i
: i 2 I and 0  j  m� 1}. Further, let us define the set

Xk,h =
n
(�1)k�h

X

J✓RI

|J |=k�h

Y

µ2J

µ : I ✓ {1, 2, . . . , n} with |I| =
k

m

o
. (8.5.2)

Then the following hold.

(a) The Hamming distance of the code Tn,k(↵, v, 1, h, ⌘) is at least n�
k

m
.

(b) The code Tn,k(↵, v, 1, h, ⌘) is MDS if and only if ⌘�1
/2 Xk,h.

(c) The code Tn,k(↵, v, 1, h, ⌘) is almost MDS if and only if ⌘�1
2 Xk,h.

Proof. (a) By Proposition 8.5.1, we see that the code Tn,k(↵, v, 1, h, ⌘) has dimen-

sion k. Further, working in a similar manner as in Theorem 8.5.1, we see that

the Hamming distance d of the code Tn,k(↵, v, 1, h, ⌘) satisfies d � n�
k

m
.

(b) To prove (b), let us first assume that the code Tn,k(↵, v, 1, h, ⌘) is MDS, i.e.,

d = n�
k

m
+ 1. Here we assert that ⌘�1

/2 Xk,h.
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To prove this assertion, we suppose, on the contrary, that ⌘�1
2 Xk,h, i.e., there

exists a subset I of {1, 2, . . . , n} such that |I| = k

m
and

⌘
�1 = (�1)k�h

X

J✓RI

|J |=k�h

Y

µ2J

µ.

Now consider the polynomial g(x) = ⌘
Q
i2I

(x � ↵i)(x � ↵
q

i
) · · · (x � ↵

q
m�1

i
). It is

easy to see that the polynomial g(x) 2 Pn,k(1, h, ⌘) and that the codeword

cg = E↵,v(g(x)) = (v1g(↵1), v2g(↵2), . . . , vng(↵n)) 2 Tn,k(↵, v, 1, h, ⌘)

has Hamming weight n�
k

m
. This implies that the code Tn,k(↵, v, 1, h, ⌘) is not

MDS, which is a contradiction.

Conversely, let us assume that ⌘�1
/2 Xk,h.We assert that the code Tn,k(↵, v, 1, h, ⌘)

is MDS. To prove this, we suppose, on the contrary, that the code Tn,k(↵, v, 1, h, ⌘)

is not MDS, which implies that there exists a non-zero codeword

cz = E↵,v(z(x)) = (v1z(↵1), v2z(↵2), . . . , vnz(↵n))

of the code Tn,k(↵, v, 1, h, ⌘) corresponding to the twisted polynomial z(x) 2

Pn,k(1, h, ⌘) with Hamming weight wH(cz)  n �
k

m
. This implies that the

polynomial z(x) =
k�1P
i=0

aix
i + ⌘ahx

k
2 Pn,k(1, h, ⌘) has at least

k

m
roots among

↵1,↵2, . . . ,↵n. Now by applying Theorem 3.7.4 of [53], we see that ah 6= 0, and

that

z(x) = ⌘ah

Y

i2I0

(x� ↵i)(x� ↵
q

i
) · · · (x� ↵

q
m�1

i
)

for some subset I0 of {1, 2, . . . , n} with |I0| =
k

m
. Since z(x) 2 Pn,k(1, h, ⌘), we

note that the coe�cient of xk is equal to ⌘ times the coe�cient of xh in z(x).

This gives

⌘
�1 = (�1)k�h

X

J✓RI0
|J |=k�h

Y

µ2J

µ.

This implies that ⌘�1
2 Xk,h, which is a contradiction.
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(c) It follows immediately from parts (a) and (b).

On taking h = k � 1 in the above theorem, we deduce the following:

Theorem 8.5.4. Let n, k and m � 2 be integers such that 1  k < nm and m

divides k. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each

↵i has exactly m distinct conjugates over Fq. Then the code Tn,k(↵, v, 1, k � 1, ⌘) is

an additive MDS code of length n and dimension k over Fqm if and only if

⌘
�1

6= �

X

i2I

Trq,m(↵i)

for all subsets I of {1, 2, . . . , n} with |I| = k

m
, where Trq,m : Fqm ! Fq is the trace

map.

Proof. It follows immediately on taking h = k � 1 in Theorem 8.5.3.

On taking h = 0 in Theorem 8.5.3, we deduce the following:

Theorem 8.5.5. Let n, k and m � 2 be integers such that 1  k < nm and m

divides k. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where no two elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each

↵i has exactly m distinct conjugates over Fq. Then the code Tn,k(↵, v, 1, 0, ⌘) is an

additive MDS code of length n and dimension k over Fqm if and only if

⌘
�1

6= (�1)k
Y

i2I

Nq,m(↵i)

for all subsets I of {1, 2, . . . , n} with |I| = k

m
, where Nq,m : F⇤

qm
! F⇤

q
is the norm

map.

Proof. On taking h = 0 in Theorem 8.5.3, we get the desired result.

We will now apply Theorems 8.5.4 and 8.5.5 to identify new classes of additive

MDS codes within the family of additive GTRS codes when ` = 1, t1 = 1, h 2

{0, k � 1} and ⌘ 2 F⇤
q
. Towards this, we see, by Theorem 1 of Cohen [33], that if

m � 3 and (q,m) 6= (4, 3), then for every � 2 Fq, there exists a primitive element
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� 2 Fqm such that Trq,m(�) = �. Moreover, if either m = 2 or (q,m) = (4, 3), then

for every non-zero element � 2 Fq, there exists a primitive element � 2 Fqm such

that Trq,m(�) = �. We will apply this result to identify a class of additive MDS

codes of length n and dimension k over Fqm within the family of additive GTRS

codes with one twist when m divides k.

Theorem 8.5.6. Let n, k and m � 2 be integers such that 1  k < nm and m

divides k. Let t1 = 1, h = k � 1, and let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n. Let H be a

proper subgroup of (Fq,+), and let ⌘�1
2 F⇤

q
\ H. Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where ↵1,↵2, . . . ,↵n are distinct primitive elements of Fqm such that no two primitive

elements among ↵i’s are conjugates over Fq and Trq,m(↵i) 2 H. Further, when either

m = 2 or (q,m) = (4, 3), suppose that ↵1,↵2, . . . ,↵n satisfy the additional condition

that Trq,m(↵i) 6= 0 for each i. Then the code Tn,k(↵, v, 1, k�1, ⌘) is an additive MDS

code of length n and dimension k over Fqm .

Proof. It follows immediately by applying Theorem 1 of Cohen [33] and Theorem

8.5.4.

The following example illustrates the above theorem.

Example 8.5.5. Let q = 16, m = 2, n = 36, k = 6 and h = 5. Let ⇣ be a primitive

element of F16, and let ⇠ be a primitive element of F256. Let H = {0, 1, ⇣, ⇣2, 1+⇣, ⇣+

⇣
2
, 1+⇣

2
, 1+⇣+⇣

2
} be a proper subgroup of the additive group of F16, and let ⌘ = ⇣

12
2

F16. Let ↵ = (⇠56, ⇠112, ⇠14, ⇠28, ⇠239, ⇠206, ⇠241, ⇠73, ⇠8, ⇠, ⇠223, ⇠157, ⇠227, ⇠41, ⇠103, ⇠4, ⇠74,

⇠
143

, ⇠
127

, ⇠
2
, ⇠

37
, ⇠

191
, ⇠

124
, ⇠

59
, ⇠

52
, ⇠

19
, ⇠

208
, ⇠

23
, ⇠

92
, ⇠

76
, ⇠

137
, ⇠

104
, ⇠

139
, ⇠

38
, ⇠

226
, ⇠

161)

2 F36
256, and let v = 1 = (1, 1, . . . , 1) be the all-one vector of length 36. By carrying

out computations in the Magma Computational Algebra System, we see that the code

Tn,k(↵,1, 1, 5, ⇣12) is an additive [36, 6, 34]-code over F256, and hence it is an MDS

code. It agrees with Theorem 8.5.6.

As a consequence of Theorem 8.5.6, we deduce the following:

Corollary 8.5.1. Let q = p
r
, where p is a prime number and r is a positive integer.

Let n and m � 2 be integers satisfying 1  n  p
r�1

� ✏, where ✏ = 1 if either m = 2

or (q,m) = (4, 3), while ✏ = 0 otherwise. For any integer k satisfying 1  k < nm

and m divides k, there exists an additive GTRS code of length n and dimension k

over Fqm , which is MDS.
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Proof. Let H be a proper subgroup of the additive group of Fq of order p
r�1

. Let

g1, g2, . . . , gn be distinct elements of H. When either m = 2 or (q,m) = (4, 3), we

also assume that each gi 6= 0. Now for 1  i  n, we see, by applying Theorem 1 of

Cohen [33], that there exists a primitive element ↵i 2 Fqm such that Trq,m(↵i) = gi.

Note that ↵1,↵2, . . . ,↵n are distinct primitive elements of Fqm , which do not form

conjugate pairs over Fq. Since H is a proper subgroup of the additive group of Fq,

there exists an element ⌘ 2 F⇤
q
such that ⌘

�1
2 F⇤

q
\ H. Let v = (v1, v2, . . . , vn) 2

(F⇤
qm
)n be fixed arbitrarily. Now by applying Theorem 8.5.6, one can easily see that

the code Tn,k(↵, v, 1, k� 1, ⌘) is an additive MDS code of length n and dimension k

over Fqm .

From this point on, we assume, throughout this section, that q � 3 (unless

specified otherwise). Let Z⇤
qm�1 denote the unit group of the ring Zqm�1 of integers

modulo q
m
� 1. It is well-known that the group Z⇤

qm�1 is of order �(qm � 1), where

� is the Euler phi function. Further, when q � 3, we observe that for each element

a 2 Z⇤
qm�1, there exists an integer j satisfying 1  j  q � 2, gcd(j, q � 1) = 1 and

a ⌘ j (mod q�1). Now for an integer j satisfying 1  j  q�2 and gcd(j, q�1) = 1,

let us define the set

Sj =
�
a 2 Z⇤

qm�1 : a ⌘ j (mod q � 1)
 
. (8.5.3)

One can easily see that

Z⇤
qm�1 =

q�2[

j=1
gcd(j,q�1)=1

Sj (a disjoint union).

In the following lemma, we show that each of the �(q � 1) sets Sj’s have the same

cardinality.

Lemma 8.5.1. Let q � 3 be a prime power, and let m � 2 be an integer. For any

integer j satisfying 1  j  q � 2 and gcd(j, q � 1) = 1, we have |Sj| =
�(qm�1)
�(q�1) .

Proof. To prove the result, we first note that the set S1 =
�
a 2 Z⇤

qm�1 : a ⌘ 1

(mod q�1)
 
is a subgroup of Z⇤

qm�1. We next assert that for each integer j satisfying

1  j  q � 2 and gcd(j, q � 1) = 1, the set Sj is a coset of S1 in Z⇤
qm�1.
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To prove this assertion, let j be a fixed integer satisfying 1  j  q � 2 and

gcd(j, q � 1) = 1. Now let us consider the arithmetic progression (A.P.):

. . . . . . , j � 2(q � 1), j � (q � 1), j, j + (q � 1), j + 2(q � 1), . . . . . . (8.5.4)

By Dirichlet’s Theorem on primes in A.P., we see that the A.P. (8.5.4) contains

infinitely many primes. We can choose a prime number pj such that gcd(pj, qm�1) =

1 and pj ⌘ j (mod q�1). That is, there exists an element pj 2 Sj. Further, one can

easily observe that Sj = pjS1, which proves the assertion.

From the above assertion, we see that |Sj| = |S1| for all j satisfying 1  j  q�2

and gcd(j, q � 1) = 1. This implies that

�(qm � 1) = |Z⇤
qm�1| = |S1|⇥ �(q � 1),

from which the desired result follows immediately.

Now let ⇠ be a primitive element of Fqm . Note that the set G = {⇠
i : i 2 Z⇤

qm�1}

consists of all the primitive elements of Fqm . We further observe, for a, b 2 Z⇤
qm�1,

that Nq,m(⇠a) = Nq,m(⇠b) if and only if both a, b 2 Sj for some j. Accordingly, the

set G can be partitioned as

G =
q�2[

j=1
gcd(j,q�1)=1

Gj (a disjoint union),

where Gj = {⇠
a : a 2 Sj} for each j. In the following theorem, we assume that m

divides k, and we derive some su�cient conditions under which there exists ⌘ 2 F⇤
q

such that the code Tn,k(↵, v, 1, 0, ⌘) is MDS.

Theorem 8.5.7. Let q � 3 be a prime power, and let n, k and m � 2 be integers such

that 1  n 
�(qm�1)
m�(q�1) , 1  k < nm and m divides k. Let v = (v1, v2, . . . , vn) 2 (F⇤

qm
)n,

and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where ↵1,↵2, . . . ,↵n are distinct elements of the

set Gj for some j, which do not form conjugate pairs over Fq, (such a choice of ↵i’s

is possible, as n 
�(qm�1)
m�(q�1)). For 1  k < nm, there exists ⌘ 2 F⇤

q
such that the code

Tn,k(↵, v, 1, 0, ⌘) is MDS.
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Proof. To prove the result, we first note thatNq,m(↵1) = Nq,m(↵2) = · · · = Nq,m(↵n).

Now by applying Theorem 8.5.5, we see that the code Tn,k(↵, v, 1, 0, ⌘) is MDS if

and only if ⌘�1
6= (�1)k(Nq,m(↵1))

k

m . Such an element ⌘ exists, as q � 3. This proves

the theorem.

The following example illustrates above theorem.

Example 8.5.6. Let q = 3, m = 5, n = 22, k = 20, h = 0, and ⌘ = 2 2 F3. Let ⇠ be a

primitive element of F243. Let ↵ = (⇠13, ⇠53, ⇠67, ⇠ , ⇠131, ⇠17, ⇠79, ⇠95, ⇠71, ⇠35, ⇠15, ⇠23, ⇠125,

⇠
25
, ⇠

47
, ⇠

49
, ⇠

29
, ⇠

161
, ⇠

41
, ⇠

61
, ⇠

31
, ⇠

7) 2 F22
243, and let v = 1 = (1, 1, . . . , 1) be the all-

one vector of length 22. Note that ⇠13, ⇠53, ⇠67, ⇠ , ⇠131, ⇠17, ⇠79, ⇠95, ⇠71, ⇠35, ⇠15, ⇠23, ⇠125,

⇠
25
, ⇠

47
, ⇠

49
, ⇠

29
, ⇠

161
, ⇠

41
, ⇠

61
, ⇠

31
, ⇠

7
2 G1. By carrying out computations in the Magma

Computational Algebra System, we see that the code Tn,k(↵,1, 1, 0, 2) is an additive

[22, 20, 19]-code over F243, which is MDS. It agrees with Theorem 8.5.7.

In the following theorem, we consider the case when m divides k, and we derive

some su�cient conditions under which there exist ⌘ 2 F⇤
q
and ↵ 2 Fn

qm
such that the

code Tn,k(↵, v, 1, 0, ⌘) is MDS.

Theorem 8.5.8. Let q � 3 be a prime power, m � 2 be an integer, ! =
⌅

�(qm�1)
m(�(q�1)

⇧
,

and let a be an integer satisfying 1  a  �(q � 1). Let n, k be integers such that

(a� 1)! < n  a!, 1  k < nm and m divides k. Let v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n.

Further, if

q � 1 > min
n� k

m
+ 1
�a�1

, (! + 1)a�1
o⇣

min
n
k

m
, n� (a� 1)!

o
+ 1
⌘

holds, then there exist ⌘ 2 F⇤
q
and ↵ 2 Fn

qm
such that the additive GTRS code

Tn,k(↵, v, 1, 0, ⌘) is an MDS code of length n and dimension k over Fqm .

Proof. To prove the result, let b1, b2, . . . , ba be integers satisfying 1  bj  q � 2

and gcd(bj, q � 1) = 1 for 1  j  a. Let us choose ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
,

where ↵1,↵2, . . . ,↵n are distinct elements of Fqm that do not form conjugate pairs

over Fq, ↵!(j�1)+i 2 Gbj
for 1  j  a � 1 and 1  i  !, and ↵!(a�1)+s 2 Gba

for

1  s  n� (a� 1)!. Now consider the set

Y =
n
(�1)k

aY

j=1

�
Nq,m(↵!(j�1)+1)

�`j : 0  `j  min
n
k

m
,!

o
for 1  j  a� 1
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and 0  `a  min
n
k

m
, n� (a� 1)!

oo
.

It is easy to see that

|Y |  min
n
(
k

m
+ 1)a�1

, (! + 1)a�1
o⇣

min
n
k

m
, n� (a� 1)!

o
+ 1
⌘
< q � 1.

We next observe that the set

Xk,0 =
n
(�1)k

Y

i2I

Nq,m(↵i) : I ✓ {1, 2, . . . , n} with |I| =
k

m

o
✓ Y,

which implies that |Xk,0|  |Y | < q � 1. Thus there exists an element ⌘ 2 F⇤
q
such

that ⌘�1
/2 Xk,0. Now the desired result follows by applying Theorem 8.5.5.

The following example illustrates the above theorem.

Example 8.5.7. Let q = 25, m = 2, n = 23 and k = 4. Let ⇣ be a primitive

element of F25, and let ⇠ be a primitive element of F625. Let ⌘ = ⇣
21

2 F25. Let ↵ =

(⇠97, ⇠289, ⇠193, ⇠145, ⇠241, ⇠217, ⇠ , ⇠265, ⇠73, ⇠313, ⇠121, ⇠49, ⇠269, ⇠341, ⇠197, ⇠173, ⇠365, ⇠53, ⇠317,

⇠
149

, ⇠
293

, ⇠
245

, ⇠
5) 2 F23

625, and let v = 1 = (1, 1, . . . , 1) be the all-one vector of length

23. We observe that the set Y (as defined in the proof of Theorem 8.5.8) is given by

{1, ⇣11, ⇣, 4, ⇣2, ⇣5, 2, ⇣7, ⇣10}. Further, we note that the elements ⇠97, ⇠289, ⇠193, ⇠145, ⇠241,

⇠
217

, ⇠ , ⇠
265

, ⇠
73
, ⇠

313
, ⇠

121
, ⇠

49
2 G1, while the elements ⇠269, ⇠341, ⇠197, ⇠173, ⇠365, ⇠53, ⇠317,

⇠
149

, ⇠
293

, ⇠
245

, ⇠
5
2 G5. By carrying out computations in the Magma Computational

Algebra System, we see that the code Tn,k(↵,1, 1, 0, ⇣21) is an additive [23, 4, 22]-code

over F625, and hence it is an MDS code. It agrees with Theorem 8.5.8.

In the following theorem, we assume that k is a multiple of m, and we identify a

class of additive almost MDS codes of length n+1 and dimension k over Fqm within

the family of extended additive GTRS codes with one twist.

Theorem 8.5.9. Let n, k and m � 2 be integers such that 1  k < nm and

m divides k. Let ` = 1, t1 = 1, h 2 {0, 1, 2, . . . , k � 1}, and let ⌘ 2 F⇤
q
. Let

v = (v1, v2, . . . , vn) 2 (F⇤
qm
)n, and let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two

elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each ↵i has ex-

actly m distinct conjugates over Fq. Then the additive code Tn,k(↵, v, 1, h, ⌘,1) is

an almost MDS code of length n+ 1 and dimension k over Fqm .



8.5 Additive generalized twisted Reed-Solomon codes over finite

fields 319

Proof. Working in a similar manner as in Theorem 8.5.3(a) and by applying Propo-

sition 8.5.1, we see that the code Tn,k(↵, v, 1, h, ⌘,1) is an additive code of length

n+1 and dimension k over Fqm with Hamming distance dH(Tn,k(↵, v, 1, h, ⌘,1)) �

n �
k

m
+ 1. Now to show that the code Tn,k(↵, v, 1, h, ⌘,1) is almost MDS, it is

enough to show that dH(Tn,k(↵, v, 1, h, ⌘,1))  n�
k

m
+ 1.

To prove this, let mi(x) be the minimal polynomial of ↵i over Fq for 1  i  n.

Now we shall distinguish the following three cases: (i) h = 0, (ii) 1  h  k �m,

and (iii) k �m < h  k � 1.

(i) Let h = 0. Here let us define g(x) = x
Q
`2L

m`(x), where L is a subset of

{1, 2, . . . , n} with |L| = k

m
� 1. It is easy to observe that g(x) 2 Pn,k(1, h, ⌘).

This implies that cg = (v1g(↵1), v2g(↵2), . . . , vng(↵n), g(1)) is a non-zero

codeword of Tn,k(↵, v, 1, 0, ⌘,1) with Hamming weight wH(cg) = n�
k

m
+ 1.

(ii) Next, let 1  h  k � m. Here let I be any arbitrary subset of {1, 2, . . . , n}

with |I| = k

m
� 1, and consider the polynomial fI(x) =

Q
i2I

mi(x).

Now if the coe�cient of xh in the polynomial fI(x) is zero, then we see that

fI(x) 2 Pn,k(1, h, ⌘), which implies that cfI = (v1fI(↵1), v2fI(↵2), . . . , vnfI(↵n),

fI(1)) is a non-zero codeword of Tn,k(↵, v, 1, h, ⌘,1) with Hamming weight

wH(cfI ) = n�
k

m
+ 1.

On the other hand, if the coe�cient of xh in the polynomial fI(x) is non-

zero, then we can choose a non-zero polynomial sI(x) = s0 + s1x + · · · +

sm�1x
m�1

2 Fq[x] such that the polynomial bI(x) = sI(x)fI(x) 2 Pn,k(1, h, ⌘),

which implies that cbI = (v1bI(↵1), v2bI(↵2), . . . , vnbI(↵n), bI(1)) is a non-zero

codeword of Tn,k(↵, v, 1, h, ⌘,1) with Hamming weight wH(cbI ) = n�
k

m
+ 1.

(iii) Finally, when k � m < h  k � 1, let us define the polynomial z(x) =
Q
j2J

mj(x), where J is a subset of {1, 2, . . . , n} with |J | = k

m
� 1. One can

easily see that the polynomial z(x) 2 Pn,k(1, h, ⌘), which implies that cz =

(v1z(↵1), v2z(↵2), . . . , vnz(↵n), z(1)) is a non-zero codeword of Tn,k(↵, v, 1, h,

⌘,1) with Hamming weight wH(cz) = n�
k

m
+ 1.

On combining the above cases, we get dH(Tn,k(↵, v, 1, h, ⌘,1))  n�
k

m
+ 1, which

completes the proof of the theorem.
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In the following theorem, we construct additive self-orthogonal codes over Fqm

through additive GTRS codes with ` twists.

Theorem 8.5.10. Let q � 2 be a prime power, and let n, k and m � 2 be pos-

itive integers satisfying k <
nm

2 . Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two

elements among ↵1,↵2, . . . ,↵n form a conjugate pair over Fq and each ↵i has ex-

actly m distinct conjugates over Fq. Let z = (z1, z2, . . . , zn) 2 (F⇤
qm
)n be such that

Trq,m(Az
t) = 0, where the matrix A is as defined by (8.4.3), (such a vector z exists

in (F⇤
qm
)n by Corollary 8.4.3). Let us suppose that zi = w

2
i
, where wi 2 F⇤

qm
for

1  i  n. Let t = (t1, t2, . . . , t`) 2 {1, 2, . . . , nm�k}
` be such that 2k+ ti+ tj  nm

for 1  i, j  `. Let h = (h1, h2, . . . , h`) 2 {0, 1, . . . , k � 1}`, ⌘ = (⌘1, ⌘2, . . . , ⌘`) 2

(F⇤
q
)`, and let w = (w1, w2, . . . , wn). Then the code Tn,k(↵, w, t,h,⌘) is an additive

self-orthogonal code of length n and dimension k over Fqm .

Proof. The desired result follows immediately by applying Theorem 7.3.1 and Propo-

sition 8.5.1.

In the following corollary, we construct additive self-orthogonal codes over Fqm

that are either MDS or almost MDS through additive GTRS codes with one twist.

Corollary 8.5.2. Let q � 2 be an even prime power, and let n, k and m � 2 be

positive integers satisfying n 
�(qm�1)

m
and k 

nm�2
2 . Then the following hold.

(a) When m does not divide k, there exists an additive MDS self-orthogonal code

of length n and dimension k over Fqm .

(b) When m divides k, there exists an additive self-orthogonal code of length n and

dimension k over Fqm , which is either MDS or almost MDS.

Proof. To prove the result, let us choose ↵ = (↵1,↵2, . . . ,↵n) 2 (F⇤
qm
)n, where

↵1,↵2, . . . ,↵n are primitive elements of Fqm that do not form conjugate pairs over

Fq. By Corollary 8.4.3, we see that there exists a vector z = (z1, z2, . . . , zn) 2 (F⇤
qm
)n

satisfying Trq,m(Az
t) = 0, where the matrix A is as defined by (8.4.3). Since

q is even, we can write zi = w
2
i
, where wi 2 F⇤

qm
for 1  i  n. Let us take

w = (w1, w2, . . . , wn). Further, let ` = 1, t1 = 1 and h 2 {0, 1, . . . , k � 1}.
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Now if m does not divide k, then we see, by applying Theorems 8.5.1 and 8.5.10,

that for every ⌘ 2 F⇤
q
, the code Tn,k(↵, w, 1, h, ⌘) is an additive MDS self-orthogonal

code of length n and dimension k over Fqm .

On the other hand, if m divides k, then by applying Theorem 8.5.10, we see

that the code Tn,k(↵, w, 1, h, ⌘) is an additive self-orthogonal code of length n

and dimension k over Fqm . Further, by Theorem 8.5.3, we observe that the code

Tn,k(↵, w, 1, h, ⌘) is MDS if ⌘�1
/2 Xk,h, while the code Tn,k(↵, w, 1, h, ⌘) is almost

MDS if ⌘�1
2 Xk,h, (here the set Xk,h is as defined by (8.5.2)). From this, the

desired result follows immediately.

8.6 Some classes of additive TRS codes that are

not monomially equivalent to additive RS codes

Two additive codes of length n over Fqm are said to be monomially equivalent if a

generator matrix of one code can be obtained from the generator matrix of the other

code by post multiplying it with an n ⇥ n monomial matrix over Fqm . Otherwise,

these two codes are said to be inequivalent.

The Schur squares of linear codes have recently found several applications in the

area of cryptography, and hence this concept has recently attracted a great deal of

attention [30, 34, 85]. Recently, Beelen et al. [10] and Liu and Liu [65] identified

several classes of linear TRS codes that are not monomially equivalent to linear RS

codes by studying their Schur squares. In this section, we will define and study

Schur squares of additive codes, and identify several classes of additive TRS codes,

which are not monomially equivalent to additive RS codes. Since additive codes over

Fqm coincide with linear codes over Fq when m = 1, we will also identify some new

classes of linear TRS codes that are not equivalent to linear RS codes as a special

case.

Towards this, we recall that the Schur product of two vectors c = (c1, c2, . . . , cn)

and d = (d1, d2, . . . , dn) in Fn

qm
is defined as c ? d = (c1d1, c2d2, . . . , cndn) 2 Fn

qm
.

Now let C be an additive code of length n over Fqm . The Schur square of the code

C, denoted by C
2
, is defined as the Fq-linear subspace of Fn

qm
spanned by the set

{c ? d : c, d 2 C}. Note that the Schur square C2 is an additive code of length n over
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Fqm . We further make the following observation.

Lemma 8.6.1. (a) If C is an additive code of length n and dimension k over Fqm ,

then the dimension of its Schur square C
2 satisfies

dimFq
(C2)  min

n
nm,

k(k + 1)

2

o
.

(b) If C and D are two monomially equivalent additive codes over Fqm , then

dimFq
(C2) = dimFq

(D2).

Proof. Its proof is a straightforward exercise.

Since additive GRS (resp. additive GTRS) and additive RS (resp. additive

TRS) codes are monomially equivalent, we will consider additive RS (resp. additive

TRS) codes instead of additive GRS (resp. additive GTRS) codes in this section.

To begin with, we explicitly determine the dimensions of the Schur squares of the

codes belonging to a special class of additive RS codes in the following theorem.

Theorem 8.6.1. Let n, k and m � 2 be positive integers satisfying 1  k  nm.

Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form

a conjugate pair over Fq and each ↵i has exactly m distinct conjugates over Fq. We

have dimFq
(ARSn,k(↵,1)2) = min

�
nm, 2k � 1

 
.

Proof. To prove the result, we see that the codeARSn,k(↵,1) has a generator matrix

2

666664

1 1 · · · 1

↵1 ↵2 · · · ↵n

...
... · · ·

...

↵
k�1
1 ↵

k�1
2 · · · ↵

k�1
n

3

777775
.

Let us define ↵j = (↵j

1,↵
j

2, . . . ,↵
j

n
) for any integer j � 0. Now one can easily observe

that the Schur square ARSn,k(↵,1)2 is the Fq-linear subspace of Fn

qm
spanned by the

set {↵j : 0  j  2k � 2}. We see that the vectors 1,↵,↵2
, . . . ,↵

nm�1 are linearly

independent over Fq. From this, it follows that dimFq
(ARSn,k(↵,1)2) = 2k � 1 if

k <
nm+1

2 , while dimFq
(ARSn,k(↵,1)2) = nm if k �

nm+1
2 .
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Let n, k and m � 2 be integers satisfying 1  k < nm. Let ` � 1 be any

integer, and let t = (t1, t2, . . . , t`) 2 {1, 2, . . . , nm � k}
` and h = (h1, h2, . . . , h`) 2

{0, 1, 2, . . . , k � 1}` be such that the pairs (h1, t1), (h2, t2), . . . , (h`, t`) are distinct.

Let ⌘ = (⌘1, ⌘2, . . . , ⌘`) 2 (F⇤
q
)`. Recall that {p0(x), p1(x), . . . , pk�1(x)} (as defined

by (8.5.1)) is a basis set of Pn,k(t,h,⌘). Further, let

Dn,k(t,h,⌘) = {deg(pi(x)) : 0  i  k � 1}.

Then by Proposition 5 of Beelen et al. [10], we see that

Dn,k(t,h,⌘) =
⇣
{0, 1, . . . , k � 1} \ {hj : 1  j  `}

⌘
[

n
k � 1 + max

1s`

hs=i

{ts} :

i 2 {ha : 1  a  `}

o
. (8.6.1)

Next let us define

Fn,k(t,h,⌘) =
�
d1 + d2 : d1, d2 2 Dn,k(t,h,⌘) and d1 + d2 < nm

 
.

Further, let Wn,k(t,h,⌘) denote the Fq-linear subspace of Fq[x] spanned by the set

{f(x)g(x) : f(x), g(x) 2 Pn,k(t,h,⌘) and deg(f(x)g(x)) < nm},

and let us define

Vn,k(t,h,⌘) = {deg(h(x)) : h(x) 2 Wn,k(t,h,⌘)}.

In the following proposition, we derive a lower bound on the dimensions of the

Schur squares of the codes belonging to a special class of additive TRS codes with

` twists.

Proposition 8.6.1. Let n, k and m � 2 be positive integers satisfying 1  k < nm.

Let ↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form

a conjugate pair over Fq and each ↵i has exactly m distinct conjugates over Fq. Let

t = (t1, t2, . . . , t`) 2 {1, 2, . . . , nm � k}
` and h = (h1, h2, . . . , h`) 2 {0, 1, 2, . . . , k �

1}` be such that the pairs (h1, t1), (h2, t2), . . . , (h`, t`) are distinct, and let ⌘ =
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(⌘1, ⌘2, . . . , ⌘`) 2 (F⇤
q
)`. Then the Schur square Tn,k(↵,1, t,h,⌘)2 of the additive

TRS code Tn,k(↵,1, t,h,⌘) is the Fq-linear subspace of Fn

qm
spanned by the set

�
E↵,1(f(x)g(x)) = E↵,1(f(x)) ? E↵,1(g(x)) : f(x), g(x) 2 Pn,k(t,h,⌘)

 

and

dimFq
(Tn,k(↵,1, t,h,⌘)

2) �
��Vn,k(t,h,⌘)

�� � |Fn,k(t,h,⌘)|.

Proof. Working in a similar manner as in Lemma 9 and Proposition 5 of Beelen et

al. [10], the desired result follows.

In the following theorem, we consider the case ` = t1 = 1 and 0  h  k � 1,

and we identify a class of additive TRS codes (consisting of either MDS or almost

MDS codes), which are not equivalent to additive MDS RS codes.

Theorem 8.6.2. Let n, k and m � 2 be integers satisfying 3  k <
nm

2 . Let ↵ =

(↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a conjugate

pair over Fq and each ↵i has exactly m distinct conjugates over Fq. Let ` = t1 = 1,

h 2 {0, 1, 2, . . . , k � 1} and ⌘ 2 F⇤
q
. Then we have dimFq

(Tn,k(↵,1, t1, h, ⌘)2) � 2k.

As a consequence, the code Tn,k(↵,1, 1, h, ⌘) is either MDS or almost MDS, but

it is not monomially equivalent to the MDS code ARSn,k(↵,1). In particular, if

m does not divide k, then for any ⌘ 2 F⇤
q
, the MDS codes Tn,k(↵,1, 1, h, ⌘) and

ARSn,k(↵,1) are not monomially equivalent. On the other hand, if m divides k,

then for any ⌘
�1

/2 Xk,h, the MDS codes Tn,k(↵,1, 1, h, ⌘) and ARSn,k(↵,1) are not

monomially equivalent, where Xk,h is as defined by (8.5.2).

Proof. To prove the result, we first note, by Propositions 8.5.1 and 8.6.1, that

dimFq
(Tn,3(↵,1, 1, h, ⌘)2) = 6 for all h 2 {0, 1, 2} in the case when k = 3. So from

now on, we assume, throughout the proof, that k � 4.

First of all, when h 2 {0, k � 1}, working in a similar manner as in Theorems 3

and 4 of Liu and Liu [65], we see that dimFq
(Tn,k(↵,1, 1, h, ⌘)) = 2k.

Next, when h 2 {1, 2, . . . , k�2}, we see, by (8.6.1), that the set Dn,k(1, h, ⌘) can

be partitioned as Dn,k(1, h, ⌘) = A [ B, where A = {0, 1, . . . , k � 1} \ {h} and B =

{k}. Note that both 0, k � 1 2 A and either 1 2 A or k � 2 2 A. We also observe
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that every j 2 {0, 1, . . . , 2k � 2} \ {h, k � 1 + h} can be written as the sum of two

elements of A, which implies that

{0, 1, . . . , 2k � 2} \ {h, k � 1 + h} ✓ Fn,k(1, h, ⌘).

Next, if 1 2 A, then we can write h as the sum h = (h � 1) + 1 of two elements

h� 1, 1 2 A, while if k� 2 2 A, then we can write k� 1+ h as the sum k� 1+ h =

(k � 2) + (h+ 1) of two elements k � 2, h+ 1 2 A. From this, it follows that either

h 2 Fn,k(1, h, ⌘) or k� 1+ h 2 Fn,k(1, h, ⌘). Further, since k� 1 2 A and k 2 B, we

see that both 2k � 1, 2k 2 Fn,k(1, h, ⌘). This implies that |Fn,k(1, h, ⌘)| � 2k. Now

by applying Proposition 8.6.1, we get

dimFq
(Tn,k(↵,1, t1, h, ⌘)

2) � 2k.

This shows that dimFq
(Tn,k(↵,1, t1, h, ⌘)2) � 2k for all k � 3. Further, by apply-

ing Theorem 8.6.1, we see that the dimension of the Schur square ARSn,k(↵,1)2 of

the additive RS code ARSn,k(↵,1) is 2k � 1. Now by Lemma 8.6.1(b), we see that

the additive TRS code Tn,k(↵,1, t1, h, ⌘) and the additive RS code ARSn,k(↵,1) are

not monomially equivalent. Now by applying Corollary 8.4.1 and Theorems 8.5.1

and 8.5.3, the desired result follows immediately.

Remark 8.6.1. Additive codes over Fqm coincide with linear codes over Fq when

m = 1. Further, one can observe, in view of Example 1.6 of Randriambololona [85],

that the above theorem holds in the case when m = 1. When h 2 {0, k � 1}, Liu

and Liu [65] identified a class of linear TRS codes with one twist and hook h, which

are not equivalent to linear RS codes. So the above theorem also gives rise to new

classes of linear TRS codes (that are either MDS or almost MDS) with one twist

and hook h, which are not equivalent to linear RS codes for all h 2 {1, 2, . . . , k� 2}.

The following theorem extends Theorem 6 of Beelen et al. [10] to additive TRS

codes with ` twists and additive RS codes over Fqm .

Theorem 8.6.3. Let n, k and m � 2 be integers satisfying 3  k <
nm

2 . Let

↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a

conjugate pair over Fq and each ↵i has exactly m distinct conjugates over Fq. Let
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⌘ = (⌘1, ⌘2, . . . , ⌘`) 2 (F⇤
q
)`, and let t = (t1, t2, . . . , t`) 2 {1, 2, . . . , nm � k}

` and

h = (h1, h2, . . . , h`) 2 {2, 3, . . . , k � 3}` be such that either hi = hj or hj � hi > 1

for all 1  i < j  `. Then we have

dimFq
(Tn,k(↵,1, t,h,⌘)

2) � 2k.

As a consequence, the code Tn,k(↵,1, t,h,⌘) is not equivalent to the code ARSn,k(↵,1).

Proof. Working in a similar manner as in Theorem 6 of Beelen et al. [10] and by

applying Theorem 8.6.1, the desired result follows.

In the following theorem, we show that the condition hi = hj or hj � hi > 1 for

1  i < j  ` on the hook vector h = (h1, h2, . . . , h`) is not necessary for the codes

Tn,k(↵,1, t,h,⌘) and ARSn,k(↵,1) to be monomially inequivalent. With the help

of this observation, we identify another class of additive TRS codes with ` twists,

which are not equivalent to additive RS codes over Fqm .

Theorem 8.6.4. Let n, k and m � 2 be positive integers satisfying k <
nm

2 . Let

↵ = (↵1,↵2, . . . ,↵n) 2 Fn

qm
, where no two elements among ↵1,↵2, . . . ,↵n form a

conjugate pair over Fq and each ↵i has exactly m distinct conjugates over Fq. Let

t = (t1, t2, . . . , t`) 2 {1, 2, . . . , nm�k}
` be such that 2k+ti+tj < nm for all 1  i, j 

`. Let ⌘ = (⌘1, ⌘2, . . . , ⌘`) 2 (F⇤
q
)`, and let h = (h1, h2, . . . , h`) 2 {1, 2, . . . , k � 2}` be

such that h1 < h2 < · · · < h` with either h1 > 1 or h` < k � 2. Then we have

dimFq
(Tn,k(↵,1, t,h,⌘)

2) � 2k.

As a consequence, the additive codes Tn,k(↵,1, t,h,⌘) and ARSn,k(↵,1) are not

monomially equivalent.

Proof. To prove the result, we will distinguish the following two cases: (i) h1 > 1

and (ii) h` < k � 2.

(i) Let us suppose that h1 > 1. This implies that h = (h1, h2, . . . , h`) 2 {2, 3, . . . ,

k � 2}`, where h1 < h2 < · · · < h`. Here by (8.6.1), we see that the set

Dn,k(t,h,⌘) can be partitioned asDn,k(t,h,⌘) = A[B, whereA = {0, 1, 2, . . . ,

k � 1} \ {hj : 1  j  `} and B = {k � 1 + tj : 1  j  `}. Note that
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{0, 1, k�1} ⇢ A. Since 0 2 A, every j 2 A can be written as the sum j = j+0

of two elements 0, j 2 A, which implies that j 2 Fn,k(t,h,⌘). Next, we observe

that both h1�1, 1 2 A, which implies that h1 = (h1�1)+1 2 Fn,k(t,h,⌘). We

further note that E↵,1(xh1),E↵,1(xh1 + ⌘1x
k�1+t1) 2 Tn,k(↵,1, t,h,⌘)2, which

implies that

E↵,1(x
k�1+t1) = ⌘

�1
1

�
E↵,1(x

h1 + ⌘1x
k�1+t1)� E↵,1(x

h1)
�
2 Tn,k(↵,1, t,h,⌘)

2
.

Now for all j 2 {2, 3, . . . , `} satisfying tj = t1, we see that E↵,1(xhj) 2

Tn,k(↵,1, t,h,⌘)2, which implies that hj 2 Vn,k(t,h,⌘).

Further, let us suppose that t1 = ti1 , ti2 , . . . , tis are distinct integers among

t1, t2, . . . , t`.Now for z 2 {i2, i3, . . . , is}, we observe, for all j( 6= z) 2 {1, 2, . . . , `}

satisfying tj = tz, that both E↵,1(xhj + ⌘jx
k�1+tj), E↵,1(xhz + ⌘zx

k�1+tz) 2

Tn,k(↵,1, t,h,⌘)2, which implies that

E↵,1(⌘jx
hz � ⌘zx

hj) 2 Tn,k(↵,1, t,h,⌘)
2
.

This implies that max{hz, hj} 2 Vn,k(t,h,⌘). From this, it follows that

{hj : 1  j  ` and tj = tz} \ {min
1j`

{hj : tj = tz}} ✓ Vn,k(t,h,⌘)

for each z 2 {i2, i3, . . . , is}. This implies that

�
0, 1, 2, . . . , k � 1

 
\
�
min
1j`

{hj : tj = tz} : z 2 {i2, i3, . . . , is}
 
✓ Vn,k(t,h,⌘).

Next, we observe that both E↵,1(xk�1), E↵,1(xhj+⌘jx
k�1+tj) 2 Tn,k(↵,1, t,h,⌘),

which implies that

E↵,1(x
k�1+hj + ⌘jx

2k�2+tj) 2 Tn,k(↵,1, t,h,⌘)
2 for 1  j  `.

Further, it is easy to see that

�
k, k + 1, . . . , 2k � 2

 
\
�
min
1j`

{k � 1 + hj : tj = tz} : z 2 {i1, i2, . . . , is}
 

✓ Vn,k(t,h,⌘).



328
Some new classes of additive MDS and almost MDS codes over finite

fields

Furthermore, we observe that

{2k�2+tij : 1  j  s}[{2k�2+ max
1✓s

{ti✓}+tij : 1  j  s} ✓ Vn,k(t,h,⌘).

From this, it follows that dimFq
(Tn,k(↵,1, t,h,⌘)2) � |Vn,k(t,h,⌘)| � 2k.

(ii) Next we suppose that h` < k � 2. This implies that h = (h1, h2, . . . , h`) 2

{1, 2, . . . , k � 3}`, where h1 < h2 < · · · < h`. By (8.6.1), we see that the

set Dn,k(t,h,⌘) can be partitioned as Dn,k(t,h,⌘) = C [ D, where C =

{0, 1, 2, . . . , k � 1} \ {hj : 1  j  `} and D = {k � 1 + tj : 1  j  `}. Note

that {0, k� 2, k� 1} ⇢ A. Now working in a similar manner as in the case (i),

we see that dimFq
(Tn,k(↵,1, t,h,⌘)2) � 2k.

From this and by applying Theorem 8.6.1, the desired result follows.

Remark 8.6.2. One can easily observe, in view of Example 1.6 of Randriambololona

[85], that the above theorem also holds when m = 1. So it gives rise to new classes

of linear TRS codes with ` twists, which are not equivalent to linear RS codes.

In the following section, we will present a perfect threshold secret-sharing scheme

based on a class of additive MDS codes whose dual codes are also MDS. We will

show that this scheme can detect cheating, identify a certain number of cheaters

among the participants and recover the secret correctly.

8.7 A perfect threshold secret-sharing scheme based

on additive MDS codes, whose dual codes are

also MDS

A secret-sharing scheme is a method to share a secret among a set of partici-

pants. Let P = {P1, P2, . . . , Pn} be a set of n participants, and let s be a secret

that the dealer wants to share. The dealer assigns each participant Pi some par-

tial information si (called the share) about the secret s, where 1  i  n. The

shares are distributed in a secret manner so that no participant knows any other
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participant’s share. Further, a set of participants B = {Pj1 , Pj2 , . . . , Pj`
} is called

a qualified subset of P if the combiner can determine the secret by combining the

shares sj1 , sj2 , . . . , sj` of the participants in B, where 1  j1 < j2 < · · · < j`  n.

The collection of all qualified subsets of P is called the access structure of the secret-

sharing scheme.

Let ! and n be positive integers satisfying 1  !  n. An (!, n)-threshold secret-

sharing scheme is a scheme to share a secret s among a set of n participants in such

a way that any ! or more than ! participants can determine the secret by polling

their shares, but no group of ! � 1 or fewer participants can do so. Further, an

(!, n)-threshold secret-sharing scheme is said to be perfect if no information about

the secret can be determined by combining shares of !� 1 or fewer participants. A

perfect (!, n)-threshold secret-sharing scheme is said to be an ideal (!, n)-threshold

scheme if |K| = |S1| = · · · = |Sn|, where K is the set of all secrets and Si is the

set of all shares of the i-th participant Pi for 1  i  n. Pieprzyk and Zhang [82]

designed an ideal threshold secret-sharing scheme based on linear MDS codes over

finite fields. Below, we will extend this construction and present a perfect threshold

secret-sharing scheme based on additive MDS codes.

Secret-sharing scheme (A). Let n, k and m � 2 be integers such that 1  k 

nm and m divides k. Let us write k = m� for some 1  �  n. Let C be an

additive MDS code of length n + 1 and dimension k over Fqm with a generator

matrix G
0 =

h
g0 g1 · · · gn

i
, where gi denotes the i-th column of the matrix G

0

for 0  i  n, (here the columns of G 0 are indexed by 0, 1, 2, . . . , n). Let �0, �1, . . . , �n

be permutations of Fqm . Let P = {P1, P2, . . . , Pn} be the set of n participants. The

dealer chooses a non-zero vector v = (v1, v2, . . . , vk) 2 Fk

q
and computes the word

(s0, s1, s2, . . . , sn) 2 Fn+1
qm as

(s0, s1, s2, . . . , sn) = vG
0
.

The dealer further computes the word (es0, es1, es2, . . . , esn) 2 Fn+1
qm using the relation

(es0, es1, es2, . . . , esn) = (�0(s0), �1(s1), �2(s2), . . . , �n(sn)).

Define es0 2 Fqm to be the secret corresponding to the shares es1, es2, . . . , esn. The
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dealer next assigns the share esi to the participant Pi for 1  i  n. Here we as-

sume that the combiner knows the matrix G
0 and the permutations �0, �1, . . . , �n,

but the participants have no information about the matrix G
0 and the permutations

�0, �1, . . . , �n.

In the following theorem, we show that the secret-sharing scheme (A) is a perfect

(�, n)-threshold scheme.

Theorem 8.7.1. The secret-sharing scheme (A) is a perfect (�, n)-threshold scheme.

Proof. To prove the result, we note that m divides k, so by Theorem 8.3.3, the

dual code C
? is also an additive MDS [n + 1, (n + 1)m � k, � + 1]-code over Fqm

with a parity check matrix G
0
. We next observe that any � columns of the matrix

G
0 are linearly independent over Fqm . Now let B = {Pj1 , Pj2 , . . . , Pj`

} be a set of `

participants, who submit their shares esj1 , esj2 , . . . , esj` to the combiner, where 1 

j1 < j2 < · · · < j`  n. Here we assert the following:

(i) When ` � �, the combiner can determine the secret es0 by combining the shares

of the participants in B.

(ii) When ` < �, the combiner can obtain no information about the secret.

(i) Let us first assume that ` � �. Here, we will show that the combiner can

determine the secret es0 uniquely. We recall that the combiner knows the per-

mutations �0, �1, . . . , �n and the matrix G
0
. Thus the combiner first determines

the shares sj1 , sj2 , . . . , sj` using the relation

(esj1 , esj2 , . . . , esj`) = (�j1(sj1), �j2(sj2), . . . , �j`
(sj`)).

Next, without any loss of generality, the combiner considers the following

matrix equation in the unknown y = (y1, y2, . . . , yk) 2 Fk

q
:

(sj1 , sj2 , . . . , sj�) = y

h
gj1 gj2 · · · gj�

i
. (8.7.1)

Let gi,b denote the (i, b)-th entry of the matrix G
0 for 1  i  k and 0  b 

n. Choose a basis {�1, �2 . . . , �m} of Fqm over Fq, and write sja =
mP
i=1

sja,i�i
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and gc,ja =
mP
i=1

g
(i)
c,ja

�i, where sja,1, sja,2, . . . , sja,m, g
(1)
c,ja

, g
(2)
c,ja

, . . . , g
(m)
c,ja

2 Fq for

1  c  k and 1  a  �. It is easy to observe that the matrix equation

(8.7.1) is equivalent to the following matrix equation in the unknown y =

(y1, y2, . . . , yk) 2 Fk

q
:

(sj1,1, sj1,2, . . . , sj1,m, sj2,1, sj2,2, . . . , sj2,m, . . . , sj� ,1, sj� ,2, . . . , sj� ,m) = yU
0
,

(8.7.2)

where

U
0 =

2

6666664

g
(1)
1,j1 g

(2)
1,j1 · · · g

(m)
1,j1 g

(1)
1,j2 g

(2)
1,j2 · · · g

(m)
1,j2 · · · g

(1)
1,j�

g
(2)
1,j�

· · · g
(m)
1,j�

g
(1)
2,j1 g

(2)
2,j1 · · · g

(m)
2,j1 g

(1)
2,j2 g

(2)
2,j2 · · · g

(m)
2,j2 · · · g

(1)
2,j�

g
(2)
2,j�

· · · g
(m)
2,j�

...
... · · ·

...
...

... · · ·
... · · ·

...
... · · ·

...

g
(1)
k,j1

g
(2)
k,j1

· · · g
(m)
k,j1

g
(1)
k,j2

g
(2)
k,j2

· · · g
(m)
k,j2

· · · g
(1)
k,j�

g
(2)
k,j�

· · · g
(m)
k,j�

3

7777775
.

Since the columns of the matrix
h
gj1 gj2 · · · gj�

i
are linearly independent

over Fqm , the rows of the matrix
h
gj1 gj2 · · · gj�

i
are linearly independent

over Fq. This implies that the rows of the matrix U
0 are linearly independent

over Fq, which further implies that the matrix U
0 is invertible. This implies

that there exists a unique y = (y1, y2, . . . , yk) 2 Fk

q
satisfying the equation

(8.7.2), and hence the equation (8.7.1). Further, the combiner computes s0 =

y1g1,0 + y2g2,0 + · · ·+ ykgk,0 and determines the secret es0 = �0(s0).

(ii) Next, let us assume that ` < �. Here, we will show that the combiner can-

not determine any information about the secret. Knowing the permutations

�0, �1, . . . , �n, the combiner determines sj1 , sj2 , . . . , sj` using the relation

(esj1 , esj2 , . . . , esj`) = (�j1(sj1), �j2(sj2), . . . , �j`
(sj`)).

Now working as in case (i), we see that for all z 2 Fqm , there exists u
0 =

(u1, u2, . . . , uk) 2 Fk

q
satisfying matrix equation

(z, sj1 , sj2 , . . . , sj`) = u
0
h
g0 gj1 gj2 · · · gj`

i
. (8.7.3)
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That is, the secret can be any element of Fqm with equal probability. Thus,

the combiner can determine no information about the secret.

This proves our assertion.

The following theorem shows that the secret-sharing scheme (A) can detect cheat-

ing, identify a certain number of cheaters among the participants and recover the

secret correctly.

Theorem 8.7.2. Assume that a secret es0 2 Fqm is shared using the secret-sharing

scheme (A). Let B = {Pj1 , Pj2 , . . . , Pj`
} be a set of ` (� �) participants, where

1  j1 < j2 < · · · < j`  n and the participant Pji
is assigned the share esji .

Suppose that the participant Pji
modifies its share esji to esji + ✏i, where ✏i 2 Fqm for

1  i  `, (here the participant Pji
is honest if ✏i = 0, otherwise he cheats). Let

✏ = (✏1, ✏2, . . . , ✏`). Then the following hold.

(a) If wH(✏)  `��, then the combiner can detect that some cheating has happened.

(b) If wH(✏) 
⌅
`��

2

⇧
, then the combiner can identify the cheaters who submitted

incorrect shares and determine the secret correctly.

Proof. Since the participant Pji
modifies its share esji to esji + ✏i, the combiner will

receive the vector s0 = (esj1 + ✏1, esj2 + ✏2, . . . , esj` + ✏`) instead of the vector s =

(esj1 , esj2 , . . . , esj`). Now let us consider the set

D =
��

�j1(cj1), �j2(cj2), . . . , �j`
(cj`)

�
: (cj1 , cj2 , . . . , cj`) = vG

00 for some v 2 Fk

q

 
,

where G 00 =
h
gj1 gj2 · · · gj`

i
. It is easy to observe that the cardinality of the set

D is q
k and the Hamming distance between any two distinct elements of D is at

least `� � + 1.

(a) When wH(✏)  ` � �, we see that ✏ = (0, 0, . . . , 0) (i.e., no cheating has

happened) if and only if s0 2 D. From this, part (a) follows immediately.

(b) When wH(✏) 
⌅
`��

2

⇧
, working as in Theorem 4 of Pieprzyk and Zhang [82],

we get the desired result.
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We note that the secret-sharing scheme (A) need not be an ideal scheme, as

|K| = |S1| = |S2| = · · · = |Sn| need not hold in general. In the following theorem,

we identify a class of additive MDS codes based on which the secret-sharing scheme

(A) is an ideal (�, n)-threshold scheme.

Theorem 8.7.3. Let ↵ = (↵1,↵2, . . . ,↵n+1) 2 Fn+1
qm , where no two elements among

↵1,↵2, . . . ,↵n+1 form a conjugate pair over Fq and each ↵i has exactly m distinct

conjugates over Fq. Let k = m�, where 1  �  n. Then the secret sharing scheme

(A) based on the additive code ARSn+1,k(↵,1) is an ideal (�, n)-threshold scheme.

Proof. To prove this result, we see, by Corollary 8.4.1 and Theorem 8.4.3, that both

the additive code ARSn+1,k(↵,1) and its dual code ARSn+1,k(↵,1)? are MDS.

This, by Theorems 8.7.1 and 8.7.2, implies that the secret-sharing scheme (A) cor-

responding to the additive code ARSn+1,k(↵,1) is a perfect (�, n)-threshold scheme.

Further, for 1  i  n + 1, we observe that {1,↵i,↵
2
i
, . . . ,↵

m�1
i

} is a basis of Fqm

over Fq. From this, we observe that the set K of all secrets and the set Si of all

shares of the i-th participant Pi for 1  i  n are given by

K = S1 = S2 = · · · = Sn = Fqm ,

which implies that the secret-sharing scheme (A) corresponding to the additive code

ARSn+1,k(↵,1) is an ideal (�, n)-threshold scheme.
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9
Conclusion and future work

In this thesis, all self-orthogonal and self-dual codes of an arbitrary length over

finite commutative chain rings of odd characteristic are counted. As special cases of

this work, all self-orthogonal and self-dual codes over quasi-Galois rings and Galois

rings of odd characteristic are also enumerated. However, it is observed that this

enumeration technique can not be extended to count all self-orthogonal (resp. self-

dual) codes over quasi-Galois rings and Galois rings of even characteristic. This

enumeration technique is further modified to count all self-orthogonal and self-dual

codes of an arbitrary length over quasi-Galois and Galois rings of even characteristic.

Besides this, all �-LCD codes of an arbitrary length over finite commutative chain

rings are enumerated. It is further shown that the class of �-LCD codes over finite

commutative chain rings is asymptotically good and that every free linear code over

a finite commutative chain ring is equivalent to a �-LCD code when the residue field

of the chain ring has order at least 5. All inequivalent �-LCD codes of length n, rank

k and Hamming distance d over a finite commutative chain ring are obtained for

335
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k 2 {1, n� 1} and 1  d  n. Below, we list some interesting open problems in this

direction:

• It would be interesting to count all self-orthogonal and self-dual codes over

arbitrary finite commutative chain rings of even characteristic.

• Another interesting problem would be to classify self-orthogonal and self-dual

codes over an arbitrary finite commutative chain ring up to monomial equiv-

alence.

• It would be interesting to explicitly determine all inequivalent �-LCD codes

of length n, rank k and Hamming distance d over a finite commutative chain

ring when 2  k  n� 2 and 1  d  n.

• It would be interesting to see whether the classes of self-orthogonal and self-

dual codes over finite commutative chain rings are asymptotically good.

Furthermore, additive codes over finite commutative chain rings and their dual

codes with respect to the ordinary trace bilinear form are studied in the Galois

additivity case. Necessary and su�cient conditions are derived under which an

additive code over a finite commutative chain ring is (i) self-orthogonal, (ii) self-dual,

and (iii) an additive code with complementary dual (or an ACD code). All additive

self-orthogonal and self-dual codes of an arbitrary length over finite commutative

chain rings are counted in certain special cases. All ACD codes of an arbitrary

length over finite commutative chain rings are also enumerated. It is shown that

a free additive code over a finite commutative chain ring is a maximum distance

separable code (or an MDS code) if and only if its Torsion code is an additive

MDS code. This motivated us to introduce and study two new classes of additive

codes over finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes

and additive generalized twisted Reed-Solomon (additive GTRS) codes, which are

extensions of linear GRS codes and linear GTRS codes, respectively. Unlike linear

GRS codes, it is noted that additive GRS codes are not MDS codes in general.

Several new classes of additive MDS and almost MDS codes are identified within

the families of additive GRS and GTRS codes. It is also noted that, unlike linear

codes, the dual code of an additive MDS code need not be an additive MDS code.



337

Several classes of additive MDS codes whose dual codes are also MDS are identified

within the families of additive GRS and GTRS codes. Constructions of additive

MDS self-orthogonal, self-dual and ACD codes over finite fields are provided through

additive GRS and GTRS codes. Several classes of additive TRS codes that are not

monomially equivalent to additive RS codes are identified. Based on additive MDS

codes whose dual codes are also MDS, a perfect threshold secret-sharing scheme that

can detect cheating, identify a certain number of cheaters among the participants,

and correctly recover the secret, is also provided. Below we state some interesting

research questions in this direction.

• It would be interesting to identify new classes of MDS codes within the families

of additive GRS and additive GTRS codes.

• Another interesting problem would be to identify new classes of additive MDS

GRS (resp. additive MDS GTRS) codes whose dual codes are also additive

MDS GRS (resp. additive MDS GTRS) codes.

• Ketkar et al. [61, Th. 15] showed that there exists an additive MDS self-

orthogonal code of length n and dimension 2(d�1) over Fq2 with respect to the

Hermitian trace bilinear form if and only if there exists an [[n, n�2(d�1), d]]q

quantum stabilizer MDS code. Thus, another interesting line of research would

be to construct additive MDS self-orthogonal and self-dual codes with respect

to the Hermitian trace bilinear form through additive GRS and GTRS codes.

• Another interesting problem would be to provide new methods to construct

additive MDS self-orthogonal, self-dual, and ACD codes over finite fields.
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P.: A linear construction for certain Kerdock and Preparata codes, Bull. Amer.

Math. Soc. 29(2), pp. 218-222 (1993).

[22] Calderbank, A. R., Rains, E. M., Shor, P. M. and Sloane, N. J. A.: Quantum

error correction via codes over GF (4), IEEE Trans. Inform. Theory 44(4), pp.

1369-1387 (1998).

[23] Cao, Y., Gao, J., Fu, F. W. and Cao, Y.: Enumeration and construction of

additive cyclic codes over Galois rings, Discrete Math. 338(6), pp. 922-937

(2015).

[24] Carlet, C., Daif, A., Danger, J. L., Guilley, S., Najm, Z., Ngo, X. T., Porteboeuf,

T. and Tavernier, C.: Optimized linear complementary codes implementation

for hardware Trojan prevention, Proceedings of the 22nd ECCTD, pp. 1-4

(2015).

[25] Carlet, C. and Guilley, S.: Complementary dual codes for counter-measures to

side-channel attacks, Adv. Math. Commun. 10(1), pp. 131-150 (2016).
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