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Abstract

Self-orthogonal codes, self-dual codes, and linear codes with complementary du-
als (LCD codes) constitute the three most important and well-studied classes of
linear codes. These codes have nice algebraic structures and are of great signifi-
cance both from the practical and theoretical points of view. Self-orthogonal and
self-dual codes have nice connections with the theory of designs and are useful in
constructing secret-sharing schemes with nice access structures. LCD codes are
useful in designing orthogonal direct-sum masking schemes, which protect sensitive
information against side-channel attacks (SCA) and fault injection attacks (FIA).
In the 1990s, it was shown that many binary non-linear codes can be viewed as
Gray images of linear codes over the ring Z, of integers modulo 4. Since then, much
research has been devoted to studying self-orthogonal, self-dual, and LCD codes
over finite commutative chain rings. In fact, the problem of the determination of
enumeration formulae for self-orthogonal, self-dual, and LCD codes has attracted a
great deal of attention, as these enumeration formulae are useful in classifying such

codes up to equivalence.

In this thesis, we obtain enumeration formulae for all self-orthogonal and self-dual
codes of an arbitrary length over finite commutative chain rings of odd characteris-
tic. As special cases, one can obtain enumeration formulae for self-orthogonal and
self-dual codes over quasi-Galois rings and Galois rings of odd characteristic. How-
ever, we observe that this enumeration technique can not be extended to count all
self-orthogonal and self-dual codes over quasi-Galois rings and Galois rings of even
characteristic. We modify this enumeration technique and provide explicit enumer-

ation formulae for all self-orthogonal and self-dual codes of an arbitrary length over

vil



viii Abstract

quasi-Galois and Galois rings of even characteristic. We also obtain explicit enumer-
ation formulae for all o-LCD codes of an arbitrary length over finite commutative
chain rings. Besides this, we show that the class of o-LCD codes over finite com-
mutative chain rings is asymptotically good. We also show that every free linear
code over a finite commutative chain ring is equivalent to a o-LCD code when the
residue field of the chain ring is of order at least 5. We also explicitly determine all
inequivalent o-LCD codes of length n, rank &k and Hamming distance d over a finite

commutative chain ring when k& € {I,n — 1} and 1 <d <n.

We further study additive codes over finite commutative chain rings and their
dual codes with respect to the ordinary trace bilinear form in the Galois additivity
case. We derive necessary and sufficient conditions under which an additive code
over a finite commutative chain ring is (i) self-orthogonal, (ii) self-dual, and (iii)
an additive code with complementary dual (or an ACD code). We further provide
enumeration formulae for all additive self-orthogonal and self-dual codes of an ar-
bitrary length over finite commutative chain rings in certain special cases. We also
count all ACD codes of an arbitrary length over finite commutative chain rings.
We further show that a free additive code over a finite commutative chain ring is a
maximum distance separable code (or an MDS code) if and only if its Torsion code
is an additive MDS code. This motivates us to introduce and study two new classes
of additive codes over finite fields, viz. additive generalized Reed-Solomon (addi-
tive GRS) codes and additive generalized twisted Reed-Solomon (additive GTRS)
codes, which are extensions of linear GRS codes and linear GTRS codes, respec-
tively. Unlike linear GRS codes, we note that additive GRS codes are not MDS
codes in general. We also identify several new classes of additive MDS and almost
MDS codes within the families of additive GRS and GTRS codes. We also note
that, unlike linear codes, the dual code of an additive MDS code need not be an
additive MDS code. We identify several classes of additive MDS codes whose dual
codes are also MDS within the families of additive GRS and GTRS codes. We pro-
vide constructions of additive MDS self-orthogonal, self-dual and ACD codes over
finite fields through additive GRS and GTRS codes. We also obtain several classes
of additive TRS codes that are not monomially equivalent to additive RS codes.

Based on additive MDS codes whose dual codes are also MDS, we provide a perfect
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threshold secret-sharing scheme that can detect cheating, identify a certain number

of cheaters among the participants, and correctly recover the secret.
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Introduction

The object of this thesis is

e to enumerate all self-orthogonal and self-dual codes of an arbitrary length over

finite commutative chain rings of odd characteristic.

e to obtain explicit enumeration formulae for all self-orthogonal and self-dual

codes of an arbitrary length over quasi-Galois rings of even characteristic.

e to count all self-orthogonal and self-dual codes of an arbitrary length over

Galois rings of even characteristic.

e to study and enumerate linear codes with complementary o-duals (i.e., 0-LCD

codes) over finite commutative chain rings.

e to study and enumerate additive self-orthogonal, additive self-dual, and ad-
ditive codes with complementary duals (ACD codes) over finite commutative

chain rings.



2 Introduction

e to introduce and study some new classes of additive MDS and almost MDS

codes over finite fields.

We first proceed to describe the problems that we have explored in this thesis.

1.1 Self-orthogonal and self-dual codes over finite

commutative chain rings

Self-orthogonal and self-dual codes form the two most important and extensively
studied classes of linear codes. These codes have nice connections with the theory
of designs [, [60] and the theory of modular forms and unimodular lattices [8, [37,
44 [84). These codes are also useful in constructing quantum error-correcting codes
[4, 57, 93] and designing secret-sharing schemes with nice access structures [17, [39)].
This motivated several coding theorists to study these codes and provide methods
to construct these codes [42] 45] [57) 183].

In the 1990s, it was shown that many binary non-linear codes (e.g. Kerdock,
Preparata, Goethals and Delsarte-Goethals codes) can be viewed as Gray images
of linear codes over the ring Z, of integers modulo 4 [20, 21]. Since then, there
has been much interest in studying self-orthogonal and self-dual codes over finite
commutative chain rings [13| 37, 38| 45], 147, [75H77, [93]. In particular, the problem
of determination of explicit enumeration formulae for self-orthogonal and self-dual
codes over various finite commutative chain rings has also attracted a lot of attention,
as these enumeration formulae are useful in the classification of these two classes
of codes up to equivalence [12, 13|, 3], 77, [100]. Below, we summarize the results
known in this direction.

Pless [83] obtained explicit enumeration formulae for self-orthogonal and self-
dual codes over finite fields. Gaborit [45] obtained explicit enumeration formulae
for self-dual codes over the ring Z; and the quasi-Galois ring F,[u]/(u?). Betty
et al. [13] provided enumeration formula for self-dual codes over the quasi-Galois
ring F,[u]/(u?). Further, with the help of this enumeration formula, they classified
all self-dual codes of lengths 2 and 4 over F,[u]/(u?), where ¢ € {2,3,4,5,7,8,9}.
Galvez et al. [47] obtained the enumeration formula for self-orthogonal codes over

the quasi-Galois ring F,[u]/(u?). As a special case of this result, they deduced
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the enumeration formula for self-dual codes over F,[u]/(u?), as derived earlier by
Gaborit [45]. In the same work, they also counted all self-orthogonal codes over
the quasi-Galois ring F,[u]/(u®), where ¢ is an odd prime power. With the help
of these enumeration formulae, they also classified all self-orthogonal and self-dual
codes of lengths 2,3,4,5,6 and 7 over the ring Fy[u]/(u?) and all self-orthogonal
and self-dual codes of lengths 2,3,4,5 and 6 over the ring Fs[u]/(u?). Betty and
Munemasa [12] obtained the enumeration formula for all self-orthogonal codes over
the ring Z,» of integers modulo p?, where p is a prime. They also established the
enumeration formula for all even quaternary codes (i.e., self-dual codes over Z,
with the Hamming weight of each codeword divisible by 8). Using this enumeration
formula, they derived the enumeration formula for all Type IT quaternary codes (i.e.,
even quaternary codes containing the all-one vector 1 = (1,1,...,1)) as a special
case. In a related work, Nagata et al. [76] gave a characterization of all self-dual
codes over the ring Z,s of integers modulo p®, where p is a prime. They also provided
the explicit enumeration formula for all self-dual codes over Z,s. In a subsequent
work, Nagata et al. [T7] obtained the enumeration formula for all self-dual codes
over the ring Zy, of integers modulo p®, where p is an odd prime and e > 4 is
an integer. In another related work, Nagata et al. [75] explained the sequential
structure of self-dual codes over the ring Z,e of integers modulo 2¢, where e > 3 is
an integer. They also provided the enumeration formula for all self-dual codes over

the ring Zoe.

In Chapter |2 we first recall some basic properties of finite commutative chain
rings and their special classes such as Galois rings and quasi-Galois rings. We
further discuss algebraic structures and some basic properties of linear codes over
finite commutative chain rings and their special classes such as self-orthogonal, self-
dual and linear codes with complementary duals (LCD codes). We next state some
basic results on the geometry of symplectic, unitary, orthogonal and quadratic spaces
over finite fields. We also present enumeration formulae for all self-orthogonal and
self-dual codes over finite fields obtained by Pless [83]. These results are needed
to count all self-orthogonal, self-dual and LCD codes over finite commutative chain

rings.

Now let e and r be positive integers, and let p be a prime number. Let R.,
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denote a finite commutative chain ring with the maximal ideal (u) of nilpotency
index e. Then the quotient ring R., = R.,/(u) is a finite field and is called the
residue field of R.,. Suppose that the residue field R, is of order p". One can see
that the characteristic of the chain ring R., is a power of p. When e = 1, we note
that R, >~ I, and that the enumeration formulae for self-orthogonal and self-dual
codes over Ry, are obtained by Pless [83]. So we assume, throughout this thesis,
that e > 2.

In Chapter [3| we assume that the characteristic of the chain ring R, is odd, ¢.e.,
p is an odd prime. We first provide a recursive method to construct a self-orthogonal
(resp. self-dual) code of the type {ki, ko, ..., ke} and length n over the chain ring
R, from a self-orthogonal (resp. self-dual) code of the type {ki + ko, ks, ..., ke—1}
and length n over the finite commutative chain ring R. o, = R..,/{(u¢"?2), and vice
versa, where e > 4 is an integer and k1, ko, . . . , k. are non-negative integers satisfying
2ky +2ko+ -+ 2ke_ip1 Hkeirotke—iys+ -+ ki <nfor [<H] <i <e. This recur-
sive method gives rise to a recurrence relation between the number of self-orthogonal
(resp. self-dual) codes of the type {ki,ka,...,k.} and length n over R., and the
number of self-orthogonal (resp. self-dual) codes of the type {k1 + ko, k3, ..., ke_1}
and length n over the chain ring R. o, = R.,/{u*"?). By repeatedly applying this
recurrence relation, we obtain explicit enumeration formulae for all self-orthogonal
and self-dual codes of a given length and a given type over R.,. From this, we
obtain enumeration formulae for all self-orthogonal and self-dual codes of an arbi-
trary length over R.,. As special cases, one can obtain enumeration formulae for
all self-orthogonal and self-dual codes over quasi-Galois and Galois rings of odd
characteristic. With the help of these enumeration formulae and by carrying out
computations in the Magma Computational Algebra System, we classify all self-
orthogonal and self-dual codes of lengths 2,3,4 and 5 over the quasi-Galois ring
F5[u]/(u?) and of lengths 2,3 and 4 over the quasi-Galois ring F7[u]/(u?).

In Chapter 4] we observe that when p = 2 and R., = For[u]/(u®) (a quasi-
Galois ring of characteristic 2), each self-orthogonal (resp. self-dual) code over
Rer/(u™?) =~ TFor[u]/(u?) can not be lifted to a self-orthogonal (resp. self-
dual) code over For[u]/{u®) through the construction method employed in Chapter
Thus the enumeration technique employed in Chapter [3|to count all self-orthogonal
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(resp. self-dual) codes over finite commutative chain rings of odd characteristic
can not be extended as it is to enumerate self-orthogonal (resp. self-dual) codes
over the quasi-Galois ring For[u]/(u€). In fact, the enumeration formula for self-
orthogonal codes over the quasi-Galois ring For[u]/(u€) is known only when e = 2,
while the enumeration formula for self-dual codes over the ring For[u]/(u¢) is known
only when e € {2,3}. In this chapter, we provide a modified recursive method to
construct self-orthogonal and self-dual codes of the type {ki, ks, ..., k.} and length
n over For[u] /(u®) from a self-orthogonal code of the same length n and dimension
ki + ko + -+ + k;[%] over For, and vice versa, where n is a positive integer and
ky, ks, ..., ke are non-negative integers satisfying 2ky +2ko + - - - +2ke ;11 + ke_jro+
ke ivz+ -+ k; <mn for (6;“—1] < i < e. Further, by using this modified recursive
method, we obtain explicit enumeration formulae for all self-orthogonal and self-dual
codes of an arbitrary length over Fo-[u]/(u®) for each integer e > 2. We also obtain
complete lists of inequivalent self-orthogonal and self-dual codes of lengths 2, 3,4
and 5 over the ring Fy[u]/(u®) and of lengths 2,3 and 4 over the ring Fy[u]/(u?).

Next, let Z., denote the Galois ring of characteristic 2¢ and cardinality 2°. The
Teichmiiller set 7, of the Galois ring %, , can be viewed as the finite field of order 2"
under the addition operation @ and the multiplication operation of %, ,, where for
a,b € T, a® b is the unique element in 7, satisfying a &b = (a +b) (mod 2). When
r =1, Nagata et al. [75] counted all self-dual codes over the ring Z. 1 = Zse using the
enumeration formula for doubly even codes over 71 = {0, 1} obtained by Gaborit [45]
Th. 7]. When r > 2, we observe that the enumeration technique employed by Nagata
et al. [75] can not be extended as it is to count self-orthogonal and self-dual codes
over . ,. This is because, when r > 2, one needs to count solutions of the system
(5.4.2) consisting of linear as well as non-linear equations over 7,.. When r = 1, the
system ([5.4.2) reduces to the system of linear equations over 7; and one can write
down its matrix form representation and count its solutions. However, the same
technique can not be employed to count solutions of the system ([5.4.2) over 7, when
r > 2. Besides this, one needs to count certain special linear codes of length n over
7., which we shall call doubly even codes over 7, (see Definition [5.2.1 and Section
. When r = 1, Gaborit [45) Th. 7] provided the explicit enumeration formula for
doubly even codes of length n over T1(~ [Fy) by noting that ¢-¢ = wg/(c) (mod 4) for
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all ¢ € 7" and further applying the well-known MacWilliams identity for Hamming
weight enumerators of binary linear codes. Nagata et al. [75] applied Theorem 7 of
Gaborit [45] to count self-dual codes over #Z. 1 = Zs.. However, when r > 2, we note
that ¢+ ¢ = wy(c) (mod 4) does not hold for all ¢ € 7., and hence the enumeration
technique for counting doubly even codes over T;(~ FFy), employed in [45], can not
be extended to count doubly even codes over 7, when r > 2. In this chapter, we
first count all doubly even codes over 7, and their two special classes, viz. the codes
containing the all-one vector and the codes that do not contain the all-one vector,
by studying the geometry of a certain special quadratic space over 7,.. One can
deduce the enumeration formula for binary doubly even codes obtained in [45, Th.
7] from the enumeration formula for doubly even codes over 7, as a special case,
which gives rise to another proof of Theorem 7 of Gaborit [45]. We further provide
a modified recursive method to construct self-orthogonal and self-dual codes of the
type {k1, k2, ..., k.} and length n over %, , from a (k1 +ko+---+ /ﬂgJ)—doubly even
self-orthogonal code of the same length n and dimension k; + ko + - - -+ k(;} over 7,,
where n is a positive integer and kq, ko, .. ., k. are non-negative integers satisfying
2k1 4+ 2ky+ - -+ 2ke i1+ ke—jiot ke—jus+ -+ ki < nfor [%1 < i < e. With the
help of this recursive construction method and the enumeration formulae for doubly
even codes over 7, and their two special classes, we obtain explicit enumeration
formulae for all self-orthogonal and self-dual codes of an arbitrary length over Z. .
Using these enumeration formulae, we classify all self-orthogonal and self-dual codes

of lengths 2,3 and 4 over %55 up to monomial equivalence.

1.2 o0-LCD codes over finite commutative chain
rings

Linear codes with complementary duals (or LCD codes) are linear codes, which
intersect with their respective dual codes trivially. These codes constitute one of
the most important and well-studied classes of linear codes and play a significant
role in counter-measures to passive and active side-channel analyses on embedded
cryptosystems [18] 25 26, [90]. Besides applications in cryptography, these codes

have several applications in communication systems, consumer electronics, and data
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storage [24][72]. This motivated many researchers to further study these codes and to
provide several methods to construct these codes [28] 29} 55 [64] [66] (68| [89]. Besides
this, the problem of determination of the explicit enumeration formula for LCD codes
has recently attracted a lot of attention [27, 69, [91], as these enumeration formula
are useful in classifying such codes up to equivalence [3]. Below, we summarize some

of the significant results known in this direction.

Massey [72] gave an algebraic characterization of LCD codes over finite fields
and showed that asymptotically good LCD codes over finite fields exist. He also
showed that LCD codes provide an optimum linear coding solution for the two-user
binary adder channel. Later, Sendrier [89] showed that LCD codes over finite fields
meet the asymptotic Gilbert-Varshamov bound using the hull dimension spectra of
linear codes. Carlet et al. [29] showed that any linear code over the finite field F,
of order ¢ is equivalent to a Euclidean LCD code over F, when ¢ > 3 and that any
linear code over the finite field F 2 of order ¢* is equivalent to a Hermitian LCD
code over F,2 when ¢ > 2. Liu et al. [67] characterized and studied LCD codes over
finite commutative chain rings in particular and over finite principal ideal rings in
general. In another work [66], they investigated o-LCD codes of length n over the
finite commutative chain ring R, where ¢ is a mapping from R" into itself satisfying
certain conditions. They also constructed new entanglement-assisted quantum error-
correcting codes with maximal entanglement by using Gray images of o-LCD codes
over the chain ring F,[u]/(u*). In a recent work, Bhowmick et al. [14] showed
that an LCD code over a finite commutative local Frobenius ring is free. They also
derived a necessary and sufficient condition for the existence of an LCD code over
a finite commutative local Frobenius ring. They also identified some new optimal
cyclic LCD codes over the ring Z, of different lengths. In a related work, Araya
and Harada [3] gave a complete classification of LCD codes of lengths up to 13 over
Fy and LCD codes of lengths up to 10 over F3. They also explicitly determined all

inequivalent LCD [n, 1, d]-codes and [n,n — 1, d]-codes over Fy and Fj.

Now let oy be an automorphism of R.,, and let 5, be the corresponding auto-
morphism of the residue field R., of R.,, defined as &y(a + (u)) = oo(a) + (u) for
all @ + (u) € R.,. Let o be an automorphism of R¢, corresponding to the auto-

morphism oy of R, ., defined as o(vy,va, ..., v,) = (00(v1), 00(v2), . .., 00(v,)) for all
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(v1,v2,...,v,) € RE,.

In Chapter [6] we obtain explicit enumeration formulae for all -LCD codes of an
arbitrary length over the chain ring R., when @3 is the identity automorphism of
Re.. With the help of these enumeration formulae and by applying the classification
algorithm, we classify all Euclidean LCD codes of lengths 2, 3, 4 and 5 over the
quasi-Galois ring Fo[u]/(u?) and of lengths 2, 3 and 4 over the quasi-Galois ring
F3[u]/(u?), and all o-LCD codes of lengths 2, 3 and 4 over the quasi-Galois ring
Fu[u] /(u?), where oy is an automorphism of Fy[u]/(u?) such that the corresponding
automorphism @, of the residue field F, has order 2. Besides this, we show that
the class of 0-LCD codes over R., is asymptotically good, and that every free
linear [n, k, d]-code over R, is equivalent to a 0-LCD [n, k, d]-code over R., when
|Rer| > 4. We also explicitly determine all inequivalent o-LCD [n, 1, d]-codes and
[n,n — 1,d]-codes over R, for 1 < d <n.

1.3 Additive codes over finite commutative chain
rings

Linear codes are further extended to additive codes, which have nice algebraic
structures and are useful in constructing quantum stabilizer codes [15], 22], 93].
Calderbank et al. [22] first introduced and studied additive codes over the finite
field F4 and their dual codes with respect to the ordinary trace bilinear form. They
also constructed quantum error-correcting codes from additive self-orthogonal codes
over Fy. Later, Bierbrauer and Edel [15] developed the theory of additive codes
over arbitrary finite fields. In a related work, Huffman [52] studied additive codes
over finite fields and their dual codes with respect to the ordinary and Hermitian
trace bilinear forms. He also derived the MacWilliams identity and a Singleton type
bound for additive codes over finite fields. Mahmoudi and Samei [71] studied ad-
ditive codes over Galois rings. They studied algebraic structures of these codes by
establishing a one-to-one correspondence between linear codes over Z,. and additive
codes over the Galois ring GR(p®,r), where p is a prime and e, r are positive inte-
gers. Cao et al. [23] studied cyclic additive codes over Galois rings and provided a

canonical form decomposition for these codes. With the help of this decomposition,



1.3 ADDITIVE CODES OVER FINITE COMMUTATIVE CHAIN RINGS 9

they further enumerated all cyclic additive codes of an arbitrary length over Galois
rings. Moro et al. [74] studied cyclic additive codes over finite commutative chain
rings with respect to two different notions of additivity, viz. Galois-additivity and
Eisenstein-additivity. Recently, Sidana and Kashyap [93] constructed entanglement-
assisted quantum error-correcting codes (EAQECCSs) from additive codes over finite
commutative local Frobenius rings. They also provided a formula for the minimum
number of entanglement qudits required to construct an EAQECC from an additive

code over a Galois ring.

Now let » > 1, m > 2 and e > 2 be integers. Let

_ GR(p*,r)[7]
Rer = Tty 1)
and ,
Repm GR(p®,rm)[z]

(g(z),p>~1a")

be two finite commutative chain rings, where g(z) = 2" + p(a,_12* '+ - + ayz +
ap) € GR(p®,r)[z] is an Eisenstein polynomial with ap as a unit in GR(p®,r), e =
k(s —1)+t and 1 <t < k when s > 2, while t = k when s = 1. Note that R.,
is a subring of R.,,. By Theorem 4.3.1 of [16], we see that R, is the Galois
extension of R., of degree m. If u := x + (g(x),p*'a'), then one can easily see
that e is the least positive integer satisfying u® = 0 in R., (and in R.,,) and that
(u) is the unique maximal ideal of both R., and R . Note that the residue field
Rer = Rey/{u) of R, is of order p” and the residue field R ,m = Rerm/(u) of

n
e,rm

Rerm is of order p™™. One can easily see that the set R of all n-tuples over
Rerm can be viewed as an R, ,-module under the component-wise addition and the

component-wise scalar multiplication. Now an additive code % of length n over

Rerm is defined as an R, ,-submodule of R}

In Chapter we study additive codes over R.,, and their dual codes with
respect to the ordinary trace bilinear form. We also study their three special classes,
viz. additive self-orthogonal codes, additive self-dual codes and additive codes with
complementary duals (ACD codes) with respect to the ordinary trace bilinear form.
We also derive necessary and sufficient conditions under which an additive code
over Re,m is (i) self-orthogonal, (ii) self-dual, and (iii) ACD. Besides this, we derive



10 Introduction

necessary and sufficient conditions for the existence of an additive self-dual code over
Rerm- As an application of these results, we obtain explicit enumeration formulae
for all additive self-orthogonal and self-dual codes of an arbitrary length over R,
in the following three cases: (i) both p and m are odd (ii) p = 2 and s = 1, and (iii)
p =2,k =1and mis odd. We will also count all ACD codes of an arbitrary length
over Rerm, where e > 2, r > 1 and m > 2 are arbitrary integers. We also note that
a free additive code C over R, is a maximum distance separable (MDS) code if
and only if its Torsion code Tory(C) is an additive MDS code over ﬁwm, where an

additive code of length n over ﬁem is defined as an ﬁevr—subspace of ﬁ:,rm’

MDS codes are optimal codes that attain the well-known Singleton bound. These
codes achieve the highest possible Hamming distance for given code length and
size. As the Hamming distance of a code measures its error-detecting and error-
correcting capabilities, these codes exhibit the maximum error-detecting and error-
correcting capabilities for given code length and size. Singleton [94] first introduced
and studied MDS codes, because of their usefulness in constructing constant-weight
binary codes with large sizes and large Hamming distances. Reed and Solomon [86]
introduced and studied generalized Reed-Solomon (GRS) codes, constituting the
most important and well-studied class of linear MDS codes. These codes are useful
in improving the reliability of compact discs and digital audio tapes due to their
burst error-correction capabilities. These codes are also useful in designing DNA
error-correcting codes [97, O8] and locally recoverable codes for distributive storage
systems [50, 96]. Besides GRS codes, there are other well-known constructions of
linear MDS codes with the help of n-arcs in projective geometry [48][70] and circulant
Cauchy matrices [87]. In general, MDS codes have found applications in network
coding, cryptography, data storage, and quantum mechanics [9, 35 43}, 50]. Besides
this, these codes have nice connections with geometric objects such as n-arcs and
combinatorial objects such as orthogonal arrays [48] [53]. This motivated several
coding theorists to study these codes and provide construction methods for these
codes [10], 35| [55] 65], 86].

In a recent and related work, Beelen et al. [11] introduced and studied twisted
Reed-Solomon (TRS) codes with one twist as a natural generalization of RS codes

and showed that these codes are not MDS in general. They also identified two
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classes of TRS codes, which are MDS. In another work, Beelen et al. [9] observed
that the dual codes of TRS codes are not TRS codes in general. They further
identified a class of TRS codes whose dual codes are also TRS. Besides this, they
identified a class of TRS codes that resist Sidelnikov-Shestakov and Wieschebrink
attacks on the McEliece cryptosystem. Beelen et al. [10] further studied TRS codes
with ¢ twists and identified several classes of TRS codes, which are MDS. They also
identified several classes of TRS codes that are not monomially equivalent to RS
codes. Fang and Fu [43] constructed six new classes of MDS self-dual codes over
finite fields through GRS and extended GRS codes. Jin [55] constructed several
classes of MDS LCD codes over finite fields through GRS codes. Liu and Liu [65]
provided methods to construct MDS LCD codes over finite fields through generalized
twisted Reed-Solomon (GTRS) codes with ¢ twists.

Additive MDS codes over finite fields have nice connections with geometric ob-
jects such as pseudo-arcs [7] and are also useful in constructing quantum stabilizer
codes [61]. Recently, Shi et al. [92] remarked that only the additivity and com-
plementarity properties (and not the linearity property) of a code are needed to
design orthogonal direct-sum masking schemes, which are useful in protecting sen-
sitive information against side-channel attacks (SCA) and fault injection attacks
(FIA). Hence additive codes with complementary duals (ACD codes) can also be
used in counter-measures to passive and active side-channel analyses on embedded
cryptosystems. One can easily see that the security parameter of such schemes is
equal to the Hamming distance of the code. In another recent work, Choi et al. [32]
provided methods to construct ACD codes over finite fields. They also listed some
ACD codes with good parameters over Fy, Fg and Fy, and identified some MDS
ACD codes among these codes.

In Chapter [§, we introduce and study two new classes of additive codes over
finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes and ad-
ditive generalized twisted Reed-Solomon (additive GTRS) codes, which are exten-
sions of linear generalized Reed-Solomon (GRS) codes and generalized twisted Reed-
Solomon (GTRS) codes, respectively. Unlike linear GRS codes, we note that additive
GRS codes are not MDS codes and the dual code of an additive GRS code need not

be an additive GRS code in general. We derive necessary and sufficient conditions
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under which an additive GRS code is MDS. We further apply this result to iden-
tify several new classes of additive MDS codes and a class of additive MDS codes
whose dual codes are also MDS within the family of additive GRS codes. We also
identify several new classes of additive codes that are either MDS or almost MDS
within the family of additive GTRS codes. We also obtain several classes of additive
TRS codes that are not monomially equivalent to additive RS codes. Besides this,
we identify classes of monomially inequivalent additive MDS TRS codes and addi-
tive MDS RS codes, whose dual codes are also MDS. We also provide methods to
construct additive MDS self-orthogonal, self-dual, and ACD codes through additive
GRS and GTRS codes. Based on additive MDS codes whose dual codes are also
MDS, we present a perfect threshold secret-sharing scheme that can detect cheating,
identify a certain number of cheaters among the participants, and correctly recover

the secret.

1.4 Conclusion and future work

In Chapter [9), we mention a brief conclusion and state some interesting open

problems.



Some preliminaries

In this chapter, we will first state some basic properties of finite commutative
chain rings. We will also discuss algebraic structures and some basic properties of
linear codes over finite commutative chain rings and their special subclasses such as
self-orthogonal, self-dual and linear codes with complementary duals (LCD codes).
We will next state some basic results on the geometry of symplectic, unitary, or-
thogonal and quadratic spaces over finite fields. We will also present enumeration
formulae for all self-orthogonal and self-dual codes over finite fields obtained by Pless
[83]. These results are needed to count all self-orthogonal, self-dual and LCD codes

over finite commutative chain rings.

2.1 Finite commutative chain rings

A finite commutative ring R with unity is called (i) a local ring if it has a

unique maximal ideal and (ii) a chain ring if all its ideals form a chain under the

13
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set-theoretic inclusion relation. One can easily see that a finite commutative chain
ring has a unique maximal ideal, and hence is a local ring. However, a local ring
need not be a chain ring. For example, one can easily see that the quotient ring
Folu, v]/{u? v? uv — vu) is a local ring, but not a chain ring. Now the following

theorem provides a characterization of finite commutative chain rings.

Theorem 2.1.1. [36, Prop. 2.1] For a finite commutative ring R with unity, the

following statements are equivalent:
(a) R is a local ring and the mazimal ideal of R is principal.
(b) R is a local principal ideal ring.
(c) R is a chain ring.

If R is a finite commutative chain ring and M is the maximal ideal of R, then
the quotient ring R = R/M is a finite field and is called the residue field of R. Some
examples of finite commutative chain rings are finite fields, quasi-Galois rings and
Galois rings [73].

A quasi-Galois ring is defined as a quotient ring of the form F,[u]/(u), where
IF, is the finite field of order ¢ and e is a positive integer. In particular, when e = 1,
we note that Fy[u]/(u) is the finite field F,. One can easily see that all the ideals of
F,[u]/{u®) form a chain {0} C (u*') C (u*2) C - (u) C (1) = F,[u]/(u). Thus
by Theorem [2.1.1, the quotient ring Fy[u]/(u) is a finite commutative chain ring
with the maximal ideal (u).

We will next define Galois rings and state their basic properties. A finite com-
mutative ring R with unity is called a Galois ring if all its zero-divisors (including 0)
form an ideal of R generated by a prime number. Some examples of Galois rings are
finite fields and rings of integers modulo prime powers. If R is a Galois ring whose
zero-divisors (including 0) form an ideal of R generated by a prime number p, then
by Lemmas 14.2 and 14.4 of [101], we see that the ring R has characteristic p* and
cardinality p*", where s and r are positive integers. Further, for a prime number p
and positive integers s and r, the following theorem provides a method to construct
a Galois ring of characteristic p° and cardinality p*” and shows that such a Galois

ring is unique up to isomorphism.
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Theorem 2.1.2. [101] Let p be a prime number and s, r be positive integers. Let Z,s
be the ring of integers modulo p*, and let Z,s|x] be the ring of all polynomials in the
indeterminate x over Zys. Let h(x) € Zys[x] be a monic basic irreducible polynomial
of degree 1, (such a polynomial h(x) always exists in Zys|x] by Theorem 15.9 of
[101]). Then the quotient ring Zy,s|x]/(h(x)) is a Galois ring of characteristic p° and
cardinality p*". Furthermore, any Galois ring of characteristic p° and cardinality p*

is isomorphic to the quotient ring Zys|x]/(h(x)).

By the above theorem, we see that for every prime number p and positive integers
s and r, there exists a unique (up to isomorphism) Galois ring of characteristic p°
and cardinality p*", which we will denote by GR(p®,r). By Lemma 14.4 of [101], we
see that all the ideals of the Galois ring GR(p®,r) form the chain {0} C (p*!) C
(p*"%) C -+ C (p) C (1) = GR(p*,r). Thus by Theorem [2.1.1, the Galois ring
GR(p®,r) is a chain ring. From this, it follows that the ideal (p) is the maximal ideal
of GR(p®, r) and that the quotient ring W = GR(p°,r)/(p) is the finite field of
order p” and is called the residue field of GR(p®, r). Further, by Theorem 14.8 of [101],
we see that there exists an element & € GR(p®,r), which is a root of a monic basic
primitive polynomial of degree r over Z,» and has multiplicative order p” — 1. One
can easily see that GR(p®, 1) = Zys[€] = {ao+a1&+- - +a, 1 1 a; € Zys for 0 <
i < r — 1}. Furthermore, the cyclic group generated by ¢ is the only subgroup of
the unit group of GR(p®,r), which is isomorphic to the multiplicative group of the
residue field GR(p®, ). The set {0,1,¢,€2,...,£7 "2} is called the Teichmiiller set of
the Galois ring GR(p®,r). By Theorem 14.8 of [101], we see that each element in the
Galois ring GR(p®, ) can be uniquely expressed as ag + a1p + asp? + - -+ + as_1p° ',
where ag, ay, as, ..., as_1 € {0,1,&,€2, ..., & 72

Now the following theorem provides a method to construct all finite commutative

chain rings as extensions of Galois rings.

Theorem 2.1.3. [75, Th. XVIL5] For a prime number p and positive integers s

and r, the quotient ring
_ GR(p,r)l]

(9(z),p>~1at)
is a finite commutative chain ring, where g(x) = x* —i—p(a,{,lm’*_l +---tax+ag) €

GR(p°,r)[x] is an Eisenstein polynomial with ag as a unit in GR(p®,r) and1 <t < K
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when s > 2, while t = k when s = 1. If u:=x + (g(x),p*'2'), then the ideal (u) is
the unique mazximal ideal of R and has nilpotency index e = k(s — 1) +t, and the
residue field R = R/ (u) is of order p". Furthermore, all the ideals of the chain ring
R are given by

{0} c (wh c (w2 - (u) C (1) =R

Conversely, any finite commutative chain ring is isomorphic to a quotient ring of the
form SR for some prime number p, positive integers s, r, k and t, and the Fisentein
polynomial g(x) € GR(p*,r)[x].

(The integers p,s,r, k and t are called invariants of the chain ring R with the maz-

imal ideal of nilpotency index e = k(s — 1) +t.)

From this point on, we assume, throughout this thesis, that p is a prime number
and e, r are positive integers. Let R., denote a finite commutative chain ring with
the invariants p, s, r, & and ¢, the maximal ideal (u) of nilpotency index e = r(s—1)+t
and the residue field R., = R.,/(u) as the finite field of order p". By Theorem @,
we see that all the ideals of R, are given by {0} C (u¢™!) C (u*?) C -+ C (u) C
(1) = R, Further, we note that |(u')| = p"¢= for 0 <i < e.

Theorem 2.1.4. [73] The following hold.

(a) The characteristic of R, is p° for some positive integer s.

Te

(b) We have |R.,| = |Re.

"=p
(¢c) The Galois ring GR(p®,r) is the largest Galois ring contained in R., and is
called the coefficient ring of R.,. Furthermore, the Teichmiiller set T., =
{0,1,,2,...,&7" 72} of the coefficient ring GR(p®,r) is also considered as the

Teichmiiller set of the chain ring R, .

(d) Each element a € R, can be uniquely expressed as

a=ay+ua +---+u"ta._q, where a; € Tep for 0 <i<e—1,

(such a representation of elements of Re, is called the Teichmiiller representa-

tion). Moreover, a is a unit in R, if and only if ag # 0.
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(e) If € is a root of a monic basic primitive polynomial of degree r over Zys, then

GR(p*,1) = Zys[§]. Each element a € R, can also be uniquely expressed as

k—1 r—1 . .
a= Z (Zaijfj)u’,
i=0  j=0

where a;; € Zps for 0 <@ <t —1and 0 < j < r —1, while a;; € Zys— for
t<i<k—1land0<j3<r—1.

One can define a canonical epimorphism ~ : R, — ﬁem as a+— a=a+ (u) for
all a € R.,. Note that the function ~ [z, : 7., — ﬁe,r is a bijection.

Next, let o¢ be an automorphism of R.,, and let 5y be the corresponding auto-
morphism of the residue field ﬁe,r of Re,, defined as

60(6) = 0'0(@) + <U> = O'(](CL)

for all @ = a + (u) € R.,. Let Aut(R.,) denote the automorphism group of R.,.
Let Auty(R.,) denote the set consisting of all automorphisms oy of R, , such that
the corresponding automorphism o of ﬁw is the identity automorphism, and let
Auty(R.,) denote the set consisting of all automorphisms oy of R, such that the
corresponding automorphism @ of ﬁe,r has order 2. Note that Aut;(R.,) is a sub-
group of Aut(R.,). Moreover, when s > 2, we see that e = k(s — 1) +t > k.
Further, by Theorem [2.1.4(d), we can write u* = pfh in R.,, where 3 € T, \ {0}
and h =1+ hu+ hou? + -+ + he_qu®™t € 1+ (u) with hy, ha, ..., he1 € Tor. Now
the following theorem provides the automorphism group Aut(R.,) of R,

Theorem 2.1.5. Let R, be a finite commutative chain ring with invariants p,s,r, K
and t, where e = k(s — 1) + t is the nilpotency index of the unique mazimal ideal
(u) of Reyp. For0 <b<r—1 a € T., and w € 1+ (u), let us define a map
a&”,&, i Reyr = Rer as
k=1 r—1 k=1 -1
ag”zj(a) = Z (Z aijfjpb)aiwiui forall a= Z (Z ai;&)u' € Re,,

=0 j=0 i=0  j=0

where a;; € Zys for 0 < i< kK—1and0 < j <r—1, whileogaij<p5_1 when
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t<i<gkg-—1.

(a) [2, Prop. 1] When s = 1, the automorphism group Aut(R.,) of Re, is given
by

Aut(Re,) = {o® :0<b<r—1,a€7T,,\{0} andw € 1+ (u)}.

(b) [1, Prop. 5] When s > 2, we can write u® = pBh in R.,, where 8 € T., \ {0}
and h =1+ hyu+ hou? + -+ + he_qu € 14 (u) with hy, ha,y ... he—1 € Top
For 0 <b<r—1, let J, denote the set of all pairs (a,w) with o € T, \ {0}
and w € 1+ (u) satisfying o = 7'~ and pw® = p(1 + hlfbozwu + hp a2w2u2 +

o4 hib_laeflwefluefl)hfl. Then the automorphism group Aut(R.,) of Re,
s given by

Aut(R.,) = {O’ 0<b<r—1and (a,w) € Tp}.

By the above theorem, we see that for each automorphism o of R.,, the cor-

I — )
responding automorphism @, of R, is given by o(€) = & if 0o(£) = ¢r" for some
integer b satisfying 0 < b < r — 1. In the following corollary, we explicitly determine

the subgroup Aut;(R.,) of the automorphism group Aut(R.,).

Corollary 2.1.1. Let R., be a finite commutative chain ring with invariants p,s,r, K

and t, where e = k(s — 1) + t.
(a) When s =1, we have

Aut1(Re,) = {0 ca e T, \ {0} and w € 1+ (u)}.

a,w

(b) When s > 2, we have

Auty(Re,) = A{o 01)1) (a,w) € T},

«,

where Jy is the set of all pairs (a,w) with a € Tc, \ {0} and w € 1+ (u) satis-
fying a® =1 and pw™ = p(1+ hyawu+ hoa’w u2+- bty R
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In the following corollary, we explicitly determine the subset Auty(R.,) of the
automorphism group Aut(R.,).

Corollary 2.1.2. Let R., be a finite commutative chain ring with invariants p,s,r, K
and t, where e = k(s — 1) +t. When r is odd, we have Auty(R.,) = 0.

(a) When r is even and s = 1, we have

Auty(Re,) = {U(T/2) ca €T, \ {0} andw € 1+ (u)}.

(b) When r is even and s > 2, we have
Auty(Re,) = {O'(T/Q) (a,w) € Jrpat,
where T2 is the set of all pairs (a,w) with o € Te, \ {O} and w € 1+
(u) satisfying o = B7°~1 and pw* = p(1 + h’frmawu + hg fa2tu? o

hp’“/z e 1we—1ue—1)h—1_

The following lemma is quite useful in counting all self-orthogonal and self-dual

codes over finite commutative chain rings.

Lemma 2.1.1. [12] Let A € Myxn(R er) be a matrixz of rank k. Let us define a map
kan( 67") _>Mk><k( er) as

®A(N) = AN' + NA" for all N € Min(Re).
The map P4 s an ﬁe,r-lz’near transformation with image

Alty(Re,)  if p=2;

D4 (Mpsn(Res)) = —
AMixn(Rer)) Symi(Re,) if p is odd.
Proof. 1t follows from Lemma 3.1 of Betty et al. [12]. O

Now in the following section, we will discuss algebraic structures of linear codes

over the chain ring R., and their dual codes.
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2.2 Linear codes over finite commutative chain
rings

Let n be a positive integer, and let R{, be the set of all n-tuples over R, . The
set Ry, can be viewed as an R.,-module under the component-wise addition and
the component-wise scalar multiplication. A linear code C of length n over R., is
defined as an R ,-submodule of Ry ,.. The code C is called a free code if it is a free
Re~submodule of RY,.. Elements of the code C are called codewords. The number
of codewords in the code C is called the size of the code C.

Now let us define a map dy : Ry, x R, — NU{0} as
di(a,b) ={i:1<i<n,a; # b;}|

for all @ = (ay,az,...,a,),b0 = (b1,ba,...,b,) € RE,. For all a,b € R, it is easy
to see that dy(a,b) > 0, and that dg(a,b) = 0 if and only if a = b. Further,
du(a,b) = dg(b,a) and dg(a,b) < dg(a,c) + dy(c,b) for all a,b,c € RY,. Thus the
map dy is a metric on RY, and is called the Hamming distance on R¢,.

Next, let C be a linear code of length n over R.,. The Hamming distance of
the code C, denoted by dy(C), is defined as the smallest of the Hamming distances
between pairs of its distinct codewords. The following theorem states the well-known

Singleton bound for linear codes over R, .

Theorem 2.2.1. (Singleton bound) If C is a linear code of length n over R., then
we have
’C’ < |Rer|n7dH(C)+1‘

A linear code C of length n over R., is said to be maximum distance separable
(MDS) if it satisfies |C| = |R.,|"~¢#©)+1,

A generator matrix for a linear code C is defined as a matrix over R., whose
rows form a minimal generating set of the code C. Further, two linear codes of length
n over R., are said to be permutation equivalent if one code can be obtained from
the other by permuting the coordinate positions only. Now the following theorem

states Proposition 3.2 of Norton and Salagean [80].
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Theorem 2.2.2. [80, Prop. 3.2] Every linear code C of length n over R., is per-

mutation equivalent to a code with a generator matrix in the standard form

Iy Ay oo Areo Ale1 A T
0 wulp, -+ uAge o UAg 1 uAg . uTy
G=|: & s ; ; = : , (2.2.1)
Ue_z]ke,l ue_QAefl,efl ue_QAefl,e ut?T, 4
] 0o ... 0 w I, ulA,, | | T, |
where the columns are grouped into blocks of sizes ki, ko, ..., ke—1, ke, ker1 =

n— (k1 + ko + -+ k), the matriz Iy, is the k; x k; identity matriz over R., and
the matriz A; j; € Mp,xi, 1 (Rey) is considered modulo w/ ="' for1 <i < j <e, i.e.,
the matriz A; j € My, i, ., (Reyr) is of the form A; ; = AZ(-S») + Ag}j)u +-+ Agj_i)uj_i
with the matrices ALY, AWM Ag?;_i) € Mi,xky i (Ter) for 1 <i < j <e.

i,j 27] g ey
A linear code C of length n over R., is said to be of the type {ki, ka, ks, ..., ke}

if it is permutation equivalent to a code whose generator matrix in standard form

is of the type (2.2.1). By Theorem 3.5 of Norton and Salagean [80], we observe

. 5 (e—i+1)k;
that the code C of the type {ki, ks, ks, ..., k.} contains (p")=1 codewords.

Throughout this thesis, we will denote a linear code C of the type {ki, ko, ..., ke}
and length n over R, with a generator matrix G by C = R\ * kG for our
convenience. The integer k = ki + ko + - -- + k. is called the rank of the code C.
Samei and Mahmoudi [88] derived an upper bound on the Hamming distance of a

linear code over R, in terms of its rank, which we state in the following theorem.

Theorem 2.2.3. [88, Th. 3.7] If C is a linear code of length n and rank k over
R, then we have

A linear code C of length n and rank £k over R, is said to be maximum distance
with respect to rank (MDR) if it satisfies dy(C) =n — k + 1.

Now two linear codes C and D of length n over R., are said to be monomially
equivalent if one code can be obtained from the other by a combination of operations
of the following two types:

A. Permutation of the n coordinate positions of the code.
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B. Multiplication of the code symbols appearing in a given coordinate position

by the units in the ring R ,.

Otherwise, the codes C and D are said to be monomially inequivalent. One can
easily see that all monomially equivalent linear codes over R., have the same size,
rank and Hamming distance.

For a = (ay,as,...,a,) € RZ,, let us define a € ﬁ:,r as a = (ay, as,...,a,). Now

e,r’

given a linear code C of length n over R.,, the i-th Torsion code of C is defined as
Tor;(C) ={a€R.,, :u'"'d €C for some a' € R, satistying a’ = a}

for 1 <i <'e. It is easy to see that the i-th Torsion code Tor;(C) is a linear code of
length n over R, for each i. By Lemma 3.4 of Norton and Salagean [80], we note
that if the code C has a generator matrix GG in the standard form , then the
i-th Torsion code Tor;(C) of the code C has dimension k; + kg + - - - + k; over R,

and has a generator matrix

I, Zl,l ZI,Q ce Zl,i—l s Z1,e—1 Zl,e
0 I, Aoy -+ Agsq v Aoy Ao,

S s (2.2.2)
0 0 0o - Iy, . Zm_l Zz}e

(throughout this thesis, if A is a g x h matrix over R., with the (¢, j)-th entry as
a; j, then A is a g x h matrix over R, whose (i, j)-th entry is @ ; for each i and j).
It is easy to see that

Tor;(C) C Tori1(C)

for 1 <i<e—1 and that

e

] = [T 1Tori(C)l.

i=1
Next, the Euclidean bilinear form on Rf, is a mapping - : R{, X R, — Re,
defined as

&-b:a1b1+a2b2+---+anbn

for all a = (a,a9,...,a,) and b = (b1, ba,...,b,) in RY,. It is easy to observe
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that the map - is a non-degenerate and symmetric bilinear form on R¢,. Now the

(Euclidean) dual code C* of a linear code C of length n over R, is defined as
Ct={yeR;, : z-y=0forall z€C}.

Note that the dual code C* is also a linear code of length n over R.,. By The-
orem 3.10 of Norton and Salagean [80], we see that if the code C is of the type
{ki, ko, ... ke_1,k.}, then its dual code Ct is of the type {n — (ki + ko + -+ +
ko), key ke—1, ..., ko}. Further, the code C is said to be (i) self-orthogonal if it satisfies
C C C*, (ii) self-dual if it satisfies C = C* and (iii) linear code with complementary
dual (or an LCD code) if it satisfies C N C*+ = {0}.

Next, one can easily observe that the Fuclidean bilinear form - on R, induces
the map - : ﬁ:’T X ﬁzr — R, defined as

a-B=opfr+ b+ -+ b,

for all « = (ay, ag, ..., a,) and 8 = (B1, B2, ..., By) in ﬁzr. Note that the map - is a
non-degenerate and symmetric bilinear form on ﬁ:’T. Further, if D is a linear code

of length n over ﬁem then its dual code D+ is defined as

DL:{BER_ZT:a-ﬁ:()forallozED}.
Note that D+ is also a linear code of length n over ﬁem' Now the following theorem

provides a necessary and sufficient condition under which a linear code of length n

over R., is self-orthogonal or self-dual.

Theorem 2.2.4. Let n > 1,e > 2 be integers, and let ki, ko, ..., keyr1 be non-
negative integers satisfying n = ki + ko + -+ + key1. Let C be a linear code of the

type {k1, ko, ..., k.} and length n over R., with a generator matriz G as defined by
(2.2.1). The following hold.

(a) The code C is self-orthogonal if and only if

TTE=0 (modu* 7)) for1<i<j<eandi+j<e+1 (2.23)
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(b) A self-orthogonal code C is self-dual if and only if kj = ke_j 1o for 1 < j <e.
Proof. Its proof is a straightforward exercise. O

Now the following lemma relates the Torsion codes of a self-orthogonal code over
Reyr.

Lemma 2.2.1. [3§] Let C be a self-orthogonal code of length n over R.,. The
following hold.

(a) Tori(C) € Tory(C)* for 1 <i < [<E1].

(b) Tori(C) C Tore_i11(C)* for [ +1<i<e.

In particular, if C is a self-dual code of length n over R, then
Tor;(C) = Tore_iJrl(C)L

for [ <i<e.

Proof. (a) Part (a) follows from Lemma 5.1 of Dougherty et al. [38].

(b) Next, let |<+] +1 < < e be fixed, and let ¢ € T'or;(C) and ' € Tore_i41(C).
Then there exist ¢,y € R, such that ¢ = ¢, § =y and u'~'¢,u""y € C. Since
C CC*H, wehave u 'y-u'~'c = 0forally € R}, satisfying § = /' € Tore_i11(C).
This implies that - ¢ = 0 for all § € Tore_;11(C), which further implies that
d =¢ € Tor._;1(C)*. This shows that Tor;(C) C Tor._;1(C)*.
In particular, if C is a self-dual code of length n over R.,, then one can easily
observe that [Tor;(C)| = |Tore_i+1(C)*| for [<31] < i < e. From this and by part
(b), we get Tor;(C) = Tore_i41(C)* for [<H] <i<e. O

From the above discussion, we deduce the following:

Remark 2.2.1. If C is a self-orthogonal code of the type {ki,ko,... ke_1,ke} and
length n over R, then we have 2k +2ko+- - - +2ke_ii1+ke—izothke—izs+---+k <n
for [ <i <e. From this, it follows that n > 2(ky + ko + - - - + ke) +keir if e is
even, while n > 2(ky + ky + -+ + kepr) if e is odd.
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In particular, if C is a self-dual code of the type {ki, ks, ... ke_1,ke} and length
n over Re,, then we have ki = ke_iro for 1 < i < e. From this, it follows that
n:2(k1—|—k2+-~+k%)+k§+1 if e is even, whz’lenzZ(kl—i-kQ—i-'--—i—k%) if e
18 odd.

In the following section, we will present some basic definitions and results from
groups and geometry, which are needed to count all self-orthogonal, self-dual, and
LCD codes over R.,.

2.3 Some basic results from groups and geometry

Let V' be a finite-dimensional vector space over the finite field F,, and let 7w be
an automorphism of F,. A map B:V xV — [, is called a m-sesquilinear form on

V' if it satisfies the following four properties:

(i) Bla+b,c) = B(a,c) + B(b,c) for all a,b,c € V.
(ii) B(aa,b) = aB(a,b) for all « € F, and a,b € V.
(iii) B(a,b+ c) = B(a,b) + B(a,c) for all a,b,c € V.
(iv) B(a,ab) = w(a)B(a,b) for all a € F, and a,b € V.

In particular, when 7 is the identity automorphism of [y, the m-sesquilinear form B

is called a bilinear form on V. The m-sesquilinear form B on V' is said to be

e left non-degenerate if there exists a € V such that B(a,b) = 0 for all b € V,
then a = 0.

e right non-degenerate if there exists b € V' such that B(a,b) = 0 for all a € V,
then b = 0.

o reflexive if there exist a,b € V' such that B(a,b) = 0, then B(b,a) = 0.

e alternating if 7 is the identity automorphism of F, and B(a,a) = 0 for all
aelV.
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e Hermitian if 7 is the automorphism of I, of order 2 and B(a,b) = n(B(b, a))
for all a,b € V.

e symmetric if 7 is the identity automorphism of F, and B(a, b) = B(b, a) for all
a,beV.

Note that a symmetric or a Hermitian m-sesquilinear form on V' is also reflexive. If B
is a reflexive m-sesquilinear form on V, then B is left non-degenerate on V' if and only
if B is right non-degenerate on V, which we will simply refer to as a non-degenerate
m-sesquilinear form on V.

Now a formed space over I, is defined as a pair (V,B), where V is a finite-
dimensional vector space over [F, and B is a m-sesquilinear form on V. The formed
space (V, B) is said to be left (resp. right) non-degenerate if B is a left (resp. right)
non-degenerate m-sesquilinear form on V. The formed space (V,B) is said to be
reflexive if B is a reflexive m-sesquilinear form on V. The dimension of the formed
space (V,B) is defined as the dimension of V as a vector space over F,, which
is denoted by dimg, (V). Further, the Gram matrix of an n-dimensional formed
space (V,B) with respect to the ordered basis {1, as,...,a,} of V| denoted by
&(aq, g, ..., ay), is defined as an n x n matrix over F,, whose (i, j)-th entry is the
element B(w;,a;) for 1 <i,7 < n. By Theorem 24 of [40, Ch. 11], we see that the

determinant of the Gram matrix &(ay, g, ..., q,) can be expressed as

det(B(aq,ag,...,ap)) = Z sgn(m")B(ou, o 1)) B(az, rr(2)) - - - By (),

T ES

where .7, is the symmetric group of {1,2,...,n} and the function sgn : ., —

{1, —1} is called the signum function and is defined as

1 if #’is an even permutation in .%;

/
sgn(m') =
() —1 if 7’ is an odd permutation in .¥,.

Now the following theorem provides a characterization of a non-degenerate formed

space in terms of its Gram matrix.

Theorem 2.3.1. [95, Th. 5.1.1] Let (V,B) be an n-dimensional formed space over
F, with an ordered basis {1, aa,...,an}. The formed space (V,B) is left (resp.
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right) non-degenerate if and only if the Gram matriz &(ay, as, ..., a,) of (V,B) is

non-singular.
Next, the formed space (V, B) is called

e a symplectic space if 7 is the identity automorphism of F, and B is an alter-

nating, reflexive and non-degenerate bilinear form on V.

e a unitary space if 7 is the automorphism of [F, of order 2 and B is a Hermitian

(and hence reflexive) and non-degenerate m-sesquilinear form on V.

e an orthogonal space (or a finite geometry) if 7 is the identity automorphism
of F, and B is a symmetric (and hence reflexive) and non-degenerate bilinear

form on V.

A formed space (U, By) is said to be a subspace of the formed space (V,B) if U is
a subspace of V and By = B [yxy. A subspace (U, By) of the formed space (V, B)
is said to be non-degenerate if the m-sesquilinear form By is non-degenerate, (or
equivalently, if the m-sesquilinear form B is non-degenerate on U). A direct sum
V = U; & Us of two subspaces U; and U, of (V,B) is said to be an orthogonal
direct sum of U; and Us, written as V = U; L Us, if B(vy,v9) = 0 for all v; € Uy
and vy € Uy. If U is a subspace of the formed space (V,B), then its orthogonal
complement
Ut ={acV:B(ab)=0foralbec U}

is also a subspace of the formed space (V, B). In fact, the following hold.

Theorem 2.3.2. [49, Prop. 2.4] Let (V,B) be a finite-dimensional reflexive and
non-degenerate formed space over F,. If U is a subspace of the formed space (V,B),

then its orthogonal complement
Ut ={vy €V : B(vy,v1) =0 for all v; € U}
is also a subspace of the formed space (V,B) and

dimg, (U") = dimg, (V) — dimg, (U).
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Furthermore, if the formed space (U, B [yxu) is non-degenerate, then we have
V=UL1U"

Let (V,B) be a reflexive and non-degenerate formed space over F,. A non-zero
vector v € V is said to be isotropic if it satisfies B(v,v) = 0, while a vector v € V is
said to be anisotropic if it satisfies B(v,v) # 0. A subspace W of (V, B) is said to be
totally isotropic if it satisfies W C W+. By Theorem w, we see that the dimension
of a totally isotropic subspace of (V, B) is at most %dimyq(V). Further, by Theorem
7.4 of [99], we note that all maximal totally isotropic subspaces of (V,B) have the
same dimension. The dimension v of a maximal totally isotropic subspace of V' is
called the Witt index of V. A subspace U of V is said to be anisotropic if it has no
isotropic vector. A pair (wy,ws) of isotropic vectors in the formed space (V,B) is
called a hyperbolic pair if it satisfies B(wy,wy) = 1. If (wq,ws) is a hyperbolic pair
in the formed space (V, B), then the vectors w; and wy are linearly independent over
[F, and the subspace (wy,ws) of (V,B) with the basis set {wy, wy} over F, is called
a hyperbolic line.

The following theorem states some basic properties of finite-dimensional sym-

plectic spaces over finite fields.

Theorem 2.3.3. [99, pp. 69-70] Let (V,B) be an n-dimensional symplectic space

over F,. Then the dimension n of V is even and the following hold.
(a) The Witt index of the space (V,B) is .
(b) The space (V,B) admits a Witt decomposition of the form

V= <G1,b1> 1 <Cl2,b2> 11 <&%,b >,

w3

where (a1,b1), (ag, b2), ..., (an,bz) are hyperbolic pairs in V.
(¢) The number Tu o of isotropic vectors in V' is given by In g = ¢" — 1.

(d) The number Hr o of hyperbolic pairs in'V is given by Ha o = q" ' (¢" — 1).
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(e) For(0 <k < %, the number of distinct k-dimensional totally isotropic subspaces

k-1 qn—2i -1
H qz‘+1 -1 '

1=0

of V is given by

The following theorem states some basic properties of finite-dimensional unitary

spaces over finite fields.

Theorem 2.3.4. [99, pp. 116-117] Let (V,B) be an n-dimensional unitary space
over Fp2. Let v be the Witt index of (V,B). Then the following hold.

(a) The Witt index v of the space (V,B) is given by

n N N .
5 if nis even;

n=lif n is odd.

M‘

(b) The space (V,B) admits a Witt decomposition of the form
V= <a,1,b1> 1 <a2,b2> 4L <(1,V,by> 1 VV,

where (a1, by), (az, b2), ..., (a,,b,) are hyperbolic pairs inV and W is an anisotropic

subspace of V having dimension n — 2v < 1.

(¢) When n > 2, the unitary space (V,B) contains an isotropic vector, and the

total number I, ,,_a, of isotropic vectors in V' is given by
Iy,n—QV = (qn_l - (_l)n_l)(qn - (_1)”)
(d) When n > 2, the number H, ,,—2, of hyperbolic pairs in V is given by

oz =" ("7 = (=1)" (" — (=1)").
We next proceed to recall some basic results on the geometry of quadratic spaces
over finite fields. A quadratic form on V' is defined as a mapping Q : V — F,

satisfying the following two properties:
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(1) Q(av) =a?Q(v) for all « € F, and v € V.

(ii) The map Bq :V x V — F,, defined as

Bq(vi,v2) = Qv +v2) — Q(v1) — Q(ve) for all wvy,v, €V,

is a symmetric bilinear form on V.

The pair (V,Q) is called a quadratic space over F, with the associated symmetric
bilinear form Bq. The quadratic space (V, Q) over F, is said to be non-degenerate
if it satisfies Q1(0) N V*Pa = {0}, where Q 1(0) = {v € V : Q(v) = 0} and
V*Pa = {w e V : Bo(v,w) = 0 for all v € V}. Further, a non-zero vector v in the
quadratic space (V, Q) is said to be singular if it satisfies Q(v) = 0. A subspace of
(V,Q) is defined as a pair (W, Qw ), where W is a subspace of V and Qw = Q [w .

Next, two quadratic spaces (V;, Q1) and (V5, Q) are said to be isometric if there
exists a vector space isomorphism 7 : V; — V5 satisfying Qs(7(v)) = Qi (v) for all
v € Vi. We next state the Witt’s Cancellation Theorem for quadratic spaces over
finite fields of odd characteristic.

Theorem 2.3.5. [49, Th. 5.1](Witt’s Cancellation Theorem). Let q be an odd prime
power. If U and W are two non-degenerate isometric subspaces of a quadratic space

(V,Q) over IF,, then the subspaces UrBa and WP are also isometric.

A subspace W of (V, Q) is said to be totally singular if Q(w) = 0 for allw € W. By
Corollaries 5.3 and 12.11 of [49], we note that all maximal totally singular subspaces
of (V,Q) have the same dimension. The dimension of a maximal totally singular
subspace of V is called the Witt index of (V, Q). Further, a subspace U of (V,Q)
is said to be non-singular if it has no singular vector. A hyperbolic pair in (V,Q)
is defined as a pair (v, vs) of singular vectors vy, vy € V satisfying Bq(vy,v2) = 1.
One can easily see that if (vy, v5) is a hyperbolic pair in (V,Q), then the vectors vy
and vy are linearly independent over I, and the subspace (v, v2) of (V, Q) with the
basis set {v1, v9} is called a hyperbolic line in (V, Q). Further, we have the following:

Proposition 2.3.1. [49, Prop. 12.1] If there ezists a singular vector in a non-

degenerate quadratic space (V,Q) of dimension at least 2, then there exists a hyper-
bolic pair in (V,Q).
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Now let ¢ be an odd prime power. Here with every symmetric bilinear form

B:V xV —=F,, one can associate the quadratic map Qg : V — F,, defined as
1
Qu(v) = 5%(1},1}) for all v € V.

It is easy to see that the quadratic space (V, Q) is non-degenerate if and only if the
bilinear form ‘B is non-degenerate. Therefore when ¢ is an odd prime power, one can
associate a non-degenerate quadratic space over F, with every orthogonal space over
[F,, and vice versa. Now the following theorem states some basic properties of finite-

dimensional non-degenerate quadratic spaces over a finite field of odd characteristic.

Theorem 2.3.6. [99, pp. 138-141] Let q be an odd prime power, and let (V,Q) be
an n-dimensional non-degenerate quadratic space over Fy. Let v be the Witt index

of (V,Q). Then the following hold.

(a) The Witt indezx v of the quadratic space (V,Q) is given by

/

”T_l if n is odd;
n=2 ) = = :
P if n=2 (mod 4) and ¢ =3 (mod 4);
5 if either n is even and ¢ = 1 (mod 4) or
n =0 (mod 4) and ¢ =3 (mod 4).

(b) The space (V,Q) admits a Witt decomposition of the form
V = <(11,b1> 1 <a2,b2> 41 (a,,,bl,> 1 VV,

where (a1, by), (az, ba), ..., (a,,b,) are hyperbolic pairs in'V and W is an anisotropic
subspace of V' having dimension n—2v < 2. (The corresponding basis {a, by, az, b,

ooy ay, by} ULy with Ay as a basis of W is called a quadratic basis of V.)

(¢) When n > 3, the quadratic space (V,Q) contains a singular vector and the

total number I, ,,_o, of singular vectors in 'V 1is given by

Iy,n—Qu = (qy - 1)((]”7”71 + 1)
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(d) The number H, ,_2, of hyperbolic pairs in V is given by

Hu,n—QV = qn_Q(qV - 1)(qn_y_1 + 1)'

Next, let ¢ be an even prime power. Here if Q) is a quadratic form on V, then
the associated symmetric bilinear form Bq on V satisfies Bg(v,v) =0 for allv € V,
i.e., Bq is an alternating form on V. Here the quadratic form ) can not be uniquely
determined in terms of Bq. Further, the quadratic space (V, Q) over I, is said to
be non-defective if it satisfies V N V> 8 = {0}. Otherwise, the quadratic space
(V,Q) over F, is said to be defective. Now the following theorem states some basic
properties of finite-dimensional non-degenerate quadratic spaces over a finite field

of even characteristic.

Theorem 2.3.7. [49, Prop. 14.47] Let q be an even prime power, and let (V, Q) be
an n-dimensional non-degenerate quadratic space over F,. Let v be the Witt index
of (V,Q). Then the following hold.

(a) The Witt index v of the quadratic space (V,Q) is given by

_ n—=1 ;
o v="7 if n s odd.

o citherv =75 orv= "T_z if n is even.

(b) The space (V,Q) admits a Witt decomposition of the form
V = <a1,b1> 1 <a2,b2> I <ay,b,j> 1 VV,

where (ay,b1), (ag,bs), ..., (a,,b,) are hyperbolic pairs in V and W is a non-

singular subspace of V' having dimension n — 2v < 2.

(¢) The number I, ,_s, of singular vectors in V is given by

"' -1 if v="3%
Iy,n72zx = (q%_l + 1)((]% — 1) ZfV = g,
(@ =) iy =t
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(d) The number H, ,_2, of hyperbolic pairs in V is given by

[asry

qn—2(qn—1 _ 1) ifV — n—1,.
(¢* =1)(¢*"+1) ifv=
¢ D@ 1) iy =

3 N3 ‘
S

w‘

We next state the Witt’s Cancellation Theorem for quadratic spaces over finite

fields of even characteristic.

Theorem 2.3.8. [49, Cor. 12.12](Witt’s Cancellation Theorem). Let q be an even
prime power. Let (V,Q) be a non-defective quadratic space over F,, and let U and

W be two isometric subspaces of V. Then UrBa and WP are also isometric.

For more details, one may refer to [49, [99]. We next recall the following well-

known result:

Theorem 2.3.9. For an integer k satisfying 1 < k < n and a prime power q, the
number of distinct k-dimensional subspaces of an n-dimensional vector space over

the finite field ¥, of order q is given by the Gaussian binomial coefficient

m (@ =1 =) (" =)

(" =" —q)--(¢" —¢"1)

(Recall that the Gaussian binomial coefficient [Z]q is assigned the value 1.)

We also need the following well-known result to discuss the solvability of poly-

nomial equations of the form 2?7 — x — a = 0 over Fym.

Theorem 2.3.10. [62, Th. 2.25] For a € Fym we have Try () = 0 if and only if

a = 39— for some B € Fym, where T'ry,, : Fgm — I, denotes the trace map.

By applying Theorems [2.3.3 and [2.3.6, Pless [83] obtained enumeration formulae

for all self-orthogonal and self-dual codes over finite fields, which we present in the

following section.



34 Some preliminaries

Enumeration formulae for self-orthogonal and self-dual codes

over finite fields

Let F denote the n-dimensional vector space consisting of all n-tuples over F,.
A linear code ® of length n and dimension k£ over Fy is defined as a k-dimensional

subspace of . Further, the mapping - : Fj x Fy — F, defined as

a-B=a10+afs+ -+ anfh

for all @ = (a1, ag, ..., ay) and B = (81, Ba, ..., B,) in Fy, is a non-degenerate and
symmetric bilinear form on [y, and is called the Euclidean bilinear form on [y Thus
the pair (FZ, -) is an n-dimensional orthogonal space over F,,.

Next, if © is a linear code of length n over F,, then its dual code D+ is defined

as
Dt ={z€F,:v-z2=0forallved}

i.e., the dual code D+ is defined as the orthogonal complement of ® with respect
to the Euclidean bilinear form -. It is easy to see that the dual code D= is also a
linear code of length n over F,. Further, the code ® is said to be (i) self-orthogonal
if it satisfies ® C D+, (ii) self-dual if it satisfies ® = D+, and (iii) a linear code
with complementary dual (or an LCD code) if it satisfies ® N D+ = {0}. Next, by
Theorem [2.3.2, we see that dimg, (D) + dimg, (D) = n. From this, it follows that if
the code D is self-orthogonal, then dimg, (D) < 7. Further, if the code D is self-dual,
then n must be an even integer and dimg, (D) = 5.

Since (F7,-) is an orthogonal space, each self-orthogonal code of length n and
dimension %k over I, can be viewed as a k-dimensional totally isotropic IF,-linear
subspace of the orthogonal space (Fy,-). When n is even, each self-dual code of
length n over F, (if it exists) can be viewed as an F-dimensional totally isotropic
[F,-linear subspace of the orthogonal space (F 0 -). Therefore when n is even, there
exists a self-dual code of length n over F, if and only if the Witt index of the
orthogonal space (IFy, ) is 5. Further, we observe that each LCD code of length n
and dimension k over [F, can be viewed as a k-dimensional non-degenerate I -linear

subspace of the orthogonal space (IFy,-).

In particular, when ¢ is an odd prime power, we observe that the orthogonal
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space (7, ) can also be viewed as a non-degenerate quadratic space with respect to

the quadratic map Q : Fy — Ty, defined as

1
Qv) = SV v for all v € Fy.

By making these observations and by applying Theorems [2.3.3 and [2.3.6, Pless [83]

obtained explicit enumeration formulae for all self-orthogonal and self-dual codes
over finite fields. To state these enumeration formulae, let o,(n, k) denote the num-
ber of distinct self-orthogonal codes of length n and dimension k over [, where k,n
are integers satisfying 0 < k < n. It is clear that o,(n,0) = 1 and o,(n, k) = 0 for all
integers £ > 5. Now the following theorem provides the explicit value of the number
oq(n, k) for 1 <k < [3].

Theorem 2.3.11. [83, Th. 2] For an integer k satisfying 1 <k < [3] and a prime

power q, we have

= 1-2i
[T -1)
=0 - if n is odd,
(¢ —1)
j=1
(@ F =+ =) [ ("% 1)
- =1 if n is even, q is odd and
(¢ = 1)
=1 n
’ (—1)z is a square in F;
oq(n, k) = k—1 '
(@ *+q2"—q> =1 [[(¢"* - 1)
- =1 if n is even, q is odd and
[1(¢ —1)
=1 n
! (—1)z is not a square in Fy;
i k=1 4
(@ =1 I (™ -1)
p =1 if both m and q are even.
[1(¢ —1)
\ Jj=1
On considering the case when n is even and on taking & = 7 in the above

theorem, Pless [83] obtained the enumeration formula o,(n, ) for all self-dual codes
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of length n over F,, which we present in the following theorem.

Theorem 2.3.12. If there ewists a self-dual code of length n over F,, then the
integer n must be even. Further, for an even integer n, the number of self-dual codes

of length n over F, is given by

(3-1
[I1(¢+1) if qis even;
n L
o (n ) =8 . |
2 2 [[(¢"+1) if qisoddand (—1)2 is a square in Fy;
i=1
\ 0 otherwise.

As a consequence, there ezists a self-dual code of length n over F, if and only if

either q is even or q is odd and (—1)% is a square in .

In Chapters [3] and 4] we will apply Theorems [2.3.11] and [2.3.12] to count all self-

orthogonal and self-dual codes of length n over R.,. From now on, throughout this

thesis, we will follow the same notations as in Chapter



Enumeration formulae for
self-orthogonal and self-dual codes
over finite commutative chain

rings of odd characteristic

3.1 Introduction

In this chapter, we obtain explicit enumeration formulae for all self-orthogonal
and self-dual codes of an arbitrary length over finite commutative chain rings of odd
characteristic. With the help of these enumeration formulae, we classify all self-
orthogonal and self-dual codes of lengths 2,3,4 and 5 over the chain ring Fs[u]/(u?)
and of lengths 2,3 and 4 over the chain ring F;[u]/(u?). For this, we recall, from

Chapter 2| that R, is a finite commutative chain ring with the maximal ideal (u) of

37
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nilpotency index e > 2 and the residue field ﬁw of order p", where p is a prime and
7 is a positive integer. The set T, = {0,1,&,£2,...,£7 72} is the Teichmiiller set of
the chain ring R.,. We assume, throughout this chapter, that the characteristic of
the chain ring R., is odd, which, by Theorem @, holds if and only if p is an odd

prime.

This chapter is organized as follows: In Section we consider the case e = 2
and count all self-orthogonal and self-dual codes of an arbitrary length n over the
chain ring R,, (Theorems [3.2.3 and [3.2.5). In Section [3.3| we consider the case

e = 3 and obtain enumeration formulae for all self-orthogonal and self-dual codes

of an arbitrary length n over the chain ring R3, (Theorems [3.3.3 and [3.3.5). In

Section [3.4] we first derive a recurrence relation between the enumeration formula
for self-orthogonal (resp. self-dual) codes of the type {ki, k2, ..., k.} and length n
over R., and the enumeration formula for self-orthogonal (resp. self-dual) codes of
the type {k1 + ko, ks, ..., ke—1} and of the same length n over R._y, by providing
a recursive method to construct a self-orthogonal (resp. self-dual) code of the type
{k1, ko, ..., k.} and length n over R, from a self-orthogonal (resp. self-dual) code of
the type {k1 + ko, ks, ..., ke—1} and of the same length n over R._», and vice versa,
where e > 4 is an integer and ki, ko, ..., k. are non-negative integers satisfying
2k1+2ko+ -+ +2ke_i 1t ke iiot ke izz+--+k <nfor [%} <1 < e (Theorems
@ and . By repeatedly applying this recurrence relation and enumeration
formulae for self-orthogonal and self-dual codes over R, and Rs, (as obtained in
Theorems [3.2.3, [3.2.5, [3.3.3 and [3.3.5), we obtain an enumeration formulae for all
self-orthogonal and self-dual codes of an arbitrary length n over the chain ring R,
for all integers e > 4 (Theorems |3.4.5 and [3.4.6). In Section we classify all self-
orthogonal and self-dual codes of lengths 2,3,4 and 5 over the chain ring Fs[u]/(u?)

and of lengths 2,3 and 4 over the chain ring F7[u]/(u?) by applying the classification

algorithm and using the enumeration formulae obtained in Section [3.2]

Throughout this chapter, let N (n; k1, ko, . . . , ko) and M (n; k1, ko, . . ., k) be the
number of distinct self-orthogonal and self-dual codes of the type {ki, ko, ..., ke}
and length n over R.,, respectively. Let N.(n) and M,(n) denote the number of
distinct self-orthogonal and self-dual codes of length n over R.,, respectively. In

the following section, we will consider the case e = 2 and count all self-orthogonal
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and self-dual codes of length n over Ry, .

3.2 Enumeration of self-orthogonal and self-dual

codes over the chain ring R,,

We assume, throughout this section, that e = 2. Here we see, by Theorem [2.2.2,
that every linear code C of length n over R,, is permutation equivalent to a code

with a generator matrix in the standard form

I, A Aig+ubBio
0 uly, uAsy |

where the columns are grouped into blocks of sizes ky, ko, k3 = n — k; — ko, and
Bia € Mpyxrs(T2p)s Aij € Misiyy (Toy) for 1 < i < j < 2. Further, if C is a self-
orthogonal code of the type {ki,k2} and length n over Rs,, then by Remark @
and Lemma@, we have ky < kg, n > 2k;+ky and Tory(C) C Tory(C) C Tor (C)L.
In particular, if C is a self-dual code, then by Remark [2.2.1 and Lemma [2.2.1 again,
we have k1 = ks, n = 2ky + ko and Tor1(C) C Tory(C) = Torl(C)L.

First of all, we will count all self-orthogonal codes of the type {k1, k2} and length
n over Ry, with prescribed Torsion codes. To do this, we assume, throughout this
section, that C is a ki-dimensional linear code of length n over ﬁgﬂf with a generator

matrix
[Ih A,1,1 A/1,2:|

and that Cy is a (k; + ko)-dimensional linear code of length n over ﬁh with a
generator matrix

Ik1 A/l,l A/1,2
0 I, A,

Y

where A, € My i, (Ray), ALy € Miyxiy(Ray) and Aby € Myyyiy(Ray). 1t is
clear that C; C Co. Further, since the map ~[5, : Tor — ﬁgﬂa is a bijection,
there exist unique matrices A;1 € My, xk, (T2r), A12 € My iy (T2,) and Agy €
My <y (Tor) such that A, ; = ALy, Ajg = Al and Agy = Aj,. Then we have the

following:
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Lemma 3.2.1. If C is a linear code of length n over Ry, with Tori(C) = Cy and
Tory(C) = Cy, then there exists a matriz By o € My, xis(T2,r) such that the matriz

I, A Aip+ubByo

(3.2.1)
0 U,IkQ UA272

18 a generator matriz of the code C.

Proof. AsTori(C) = Cy and Tory(C) = Co, there exist matrices My g € My, xk, (To.r),
M1 € My, xk,(T2r) and My o € Mg, i, (To,) such that

k1+ko
RZ,T

Iy, +ubMyo A +ubliy Ajg +ubs ce
0 U[kQ ’LLAQQ -

Now by applying elementary row operations, we obtain

Rk1+k2 ]k‘l — UMI,O 0 Ikl + UMLO A171 + U/Ml’l ALQ + UMLQ
2 0 ]k;g 0 qu2 U,A272
_ Rlatks Iy, Aig+u(Mig — MigAiy) Aig+u(Mig — MigAi o) ce
> 0 U,IkQ UAQ,Q -
We further apply elementary row operations and note that
kit Iy, —(Myg — MygAyy)
1o I,
Iy Ajq+u(Myig — MigAin) Aig+u(Mis — MigA; )
0 uly, uAs o
_ Rhithe I, A Arg+u(Mig— MigArg — MigAgp + MigAy 1 Aso) ce
2 0 qu2 UA272 -

We further observe that there exists a unique matrix By o € My, xk, (T2,-) satisfying

Bl,z = M1,2 - M1,0A1,2 - M1,1A2,2 + M1,0A1,1A2,2 (mod U)
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This gives

I, Ay Ao+ ubBio
0 UIk2 UAQ’Q

k1+k2
RQ,T

CcC.

Furthermore, we have

I, Ain Aipg+ubBip

<cl.
0 U]—k»2 'LLAQ,Q

€] = [Tor (C)|[Tors(C)| = (5)++ =\R

From this, it follows that the code C has a generator matrix of the form (3.2.1). O

For the remainder of this section, we assume that C; C Ci- and Co C Ci. This

implies that 2k; + ko < n and that

]k1 + A/1,1A/1t,1 + A/1,2A,1t,2 = 0, (3-2-2)
Al +ALAY, = 0. (3.2.3)

By equations (3.2.2) and (3.2.3), we get Aj,( — A4,A45,AT, — AY,) = I, from
which it follows that the matrix A , is of full row-rank.

In the following theorem, we enumerate all self-orthogonal codes C of length n
over Ry, with T'or1(C) = C; and Tory(C) = C.

Theorem 3.2.1. There are precisely

k1 (2n—3k{ —2kg—1)
o FL(2n =3k —2ky —1)

(p") 2

distinct self-orthogonal codes C of length n (> 2ky+ks) over Ro, with Tor,(C) = C;
and Tory(C) = C.

Proof. Let C be a self-orthogonal code of length n over Ry, with Tori(C) = C; and
Tory(C) = Cy. Here we see, by Lemma @, that the code C has a generator matrix
of the form . We further observe that the code C is self-orthogonal code if
and only if

Ikl + ALlAi,l + ALQAILQ + U(ALQBiQ + Bl’gAiz) =0 (mod u2), (324)
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Aigp 4 ApAy, = 0 (moduw). (3.2.5)

We further note that (3.2.5) is equivalent to (3.2.3). In view of this, we need to
count the choices of the matrix B; 5 over 7, satisfying (3.2.4). By (3.2.2), we have

[kl + Al,lAil =+ A1,2A§,2 =uP (mod 'LL2>,

where P is a symmetric matrix over 73,. On substituting this in equation (3.2.4),
we get
A112Bi2 + BLQAILQ +P=0 (mod U) (326)

Since the map = [7, 1 Tor — ﬁgjr is a bijection, the number of choices for the matrix
By 5 over Ty, satisfying (3.2.6) is equal to the number of choices for the matrix B »
over R, satisfying
A172B1,2 + B172A172 = _P (327)
Since the matrix A 5 is of full row-rank, we see, by Lemma/2.1.1, that the number of
_ k1 (2n—3k] —2kg—1)
choices for the matrix B, satisfying (3.2.7) is equal to |Ker &4 | = (p") : .
From this, it follows that the number of distinct self-orthogonal codes C of length n
ky(2n—3ky —2ko—1)
over Ry, with T'or1(C) = Cy and Tory(C) = Cy is given by (p") ' a— O
In the following theorem, we count all self-orthogonal codes of the type {ki, k2}

and length n over R,,.

Theorem 3.2.2. The number No(n; ki, ks) of distinct self-orthogonal codes of the
type {k1,ko} and length n over Ro, is given by

] e

0 otherwise,

k1(2n—3k1—2ko—1)
2

if n > 2ky + ko
NQ(n; k17k2) =

where o,r(n, k1) is as determined in Theorem |2.3.11.

Proof. Let D be a self-orthogonal code of the type {ki,ko} and length n over
R, with Tor(D) = Dy and Tory(D) = D,. Here we have dimg, (D1) = ki,
dim@m(Dg) = ki + ks and D; C D,. By Lemma @, we see that the Torsion
codes D; and D, satisty D; C Df and Dy C Df. Further, by Remark @, we
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must have n > 2k; + k2. We next note, by Theorem [2.3.11] that there are precisely
oy (n, ky) distinet self-orthogonal codes D; of dimension k; and length n over ﬁz,r-
Further, for a given k;-dimensional self-orthogonal code D; of length n over R,
we observe that the number of choices for the (k; + ko)-dimensional code Dy of
length n over ﬁgm satisfying D; C Dy, C Df is equal to the number of distinct
ko-dimensional subspaces Dy/D; of the quotient space Di- /Dy, which has dimension

n — 2k; over R,,.. From this and by applying Theorem [2.3.9, we see that the code

n—2k1
ko

code D;. Furthermore, for given codes D; and D,, we see, by Theorem |3.2.1, that

k1 (2n—3k; —2kg—1)

Dy has precisely [ }pr distinct choices for a given choice of the self-orthogonal

there are precisely (p") 2 distinct self-orthogonal codes D of length n
over Ro, with Tori(D) = D; and Tory(D) = D,. From this, the desired result
follows immediately. O]

Now in the following theorem, we obtain an enumeration formula for all self-

orthogonal codes of length n over Ry,

Theorem 3.2.3. The number Ny(n) of distinct self-orthogonal codes of length n

over Ry, 15 given by

5] n2 o 9k, o F1(2n=3k1 —2kp—1)
Na(n) = Z apr (1, k1) Z w) 2 ’
p’r‘

k1=0 k=0 ks
where opr(n, k1), 0 < ky < |5], is as determined in Theorem |2.58.11.

Proof. Tt follows immediately from Theorem |3.2.2. [

In the following theorem, we first derive a necessary and sufficient condition for
a linear code of the type {ki, k2} and length n over Ro, to be a self-dual code. We
also count all self-dual codes of the type {ki, ko} and length n over Ry,

Theorem 3.2.4. (a) Let C be a linear code of the type {ki, k2} and length n over
Ro, whose generator matriz G is given by (3.2.1). The code C is self-dual
if and only if n = 2k + ko and the code C is self-orthogonal (i.e., the block

matrices Ay 1, A12, Asg and By o in the generator matriz G satisfy the matriz

equations (3.2.4) and (3.2.5)).
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(b) The number Ms(n; ki, ka) of distinct self-dual codes of the type {ki,ka} and

length n over Rqy, is given by

oy (g 1)
oy (n, k) (p") 2 if n = 2ky + ko;
Mo(ni ky ko) = 4 7 (n, k1) (p") f 1+ ko

0 otherwise.
Proof.  (a) It follows immediately by Remark [2.2.1 and Theorem [2.2.4.

(b) By part (a), we note that Mo (n; k1, k2) = 0 if n # 2k; +ko. When n = 2k; +ka,
we see, by part (a) and Theorem [3.2.2, that Msy(n; ki, ks) = Na(n;ky,n —

ky(ky—1)
2]{'1) = Opr(n, k’l)(pT) 2 : 0

In the following theorem, we obtain an enumeration formula for all self-dual

codes of length n over R, ,.

Theorem 3.2.5. The number Ma(n) of distinct self-dual codes of length n over
Ra, is given by
15]
o KL (B =)
Ma(n) = o (n k)(p") 2

k1=0

Proof. Tt follows immediately from Theorem [3.2.4. O

Remark 3.2.1. Theorem 2 and Corollary 1 of Galvez et al. [47] follow, as spe-
cial cases, from Theorems |3.2.2 and |3.2.5, respectively. Corollary 1 of Betty and
Munemasa [12] follows from Theorem|3.2.2 as a special case.

In the next section, we will consider the case e = 3 and count all self-orthogonal

and self-dual codes of length n over the chain ring Rs,,.

3.3 Enumeration of self-orthogonal and self-dual

codes over the chain ring R3,

Throughout this section, we assume that e = 3. Here we see, by Theorem [2.2.2,

that every linear code C of length n over Rs, is permutation equivalent to a code
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with a generator matrix in the standard form

Ikl Al,l ALQ + UBLQ A173 + UBL?, + U201,3
0 Ujk2 UA272 U(A273 + UB273) s (331)
0 0 u2[k3 U2A373

where the columns are grouped into blocks of sizes k1, ko, k3, k4 = n—k;—ko—k3, and
Aij € Migsiyr (Ts,) for 1 < < j < 3, Bro € Mpysis (Tr), Biz € Miyxr,(Ta),
Cis € My, xiy(T3), Bag € Muyxr,(T3.-). Now if C is a self-orthogonal code of the
type {k1, k2, ks} and length n over Rj,, then by Remark [2.2.1 and Lemma [2.2.1,
we must have ky < kg, ky + ko < k3 + ky, Tor1(C) C Tor,(C)*, Tory(C) C Tory(C)*
and Tory(C) C Tor,(C)*. In particular, if the code C is self-dual, then by Remark
2.2.1 and Lemma [2.2.1 again, we must have ky = kg, ko = k3, n = 2k; + 2ko,
Tor1(C) C Tory(C) = Tory(C)" C Tory(C)* and Tors(C) = Tory(C)". Furthermore,
when Tory(C) = Tory(C)™, we see, by Theorem [2.3.2, that 2dimg, (Tor2(C)) = n,

which implies that the length n must be an even integer and that the Torsion code

Tors(C) is a self-dual code of length n and dimension 2 over Rj3,. On the other
hand, when n is even, we see, by Theorem that there exists a self-dual code
of length n and dimension 7 over ﬁw if and only if (—1)% is a square in ﬁg,r ~ .
In view of this, we see that if there exists a self-dual code of length n over R3,., then
the length n must be an even integer and the element (—1)% must be a square in

R

To begin with, we will first count all self-orthogonal codes of length n over R,
with prescribed Torsion codes. To do this, we assume, throughout this section, that

C; is a ki-dimensional linear code of length n over ﬁgm with a generator matrix
[Ikl All,l A/1,2 A,1,3] )
Cy is a (k1 +ko)-dimensional linear code of length n over ﬁgﬂﬂ with a generator matrix

‘[kl A/1,1 AI1,2 A/1,3
0 I, A, A’273

)

2

and that C3 is a (ki + ko + k3)-dimensional linear code of length n over R3, with a
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generator matrix

Ik’l All,l A/1,2 A,1,3
0 I ko Al2,2 A/2,3 )
0 0 Iy A,

3

where A ; € My, xp,,, (Rs,) for 1 <i < j < 3. Since the map ~ |5, : T5, = Ra, is
a bijection, there exist unique matrices A; ; € My, xx,,,(7T3,) satisfying Zi’j = A
for 1 <1 < 7 < 3. Further, it is clear that C; C Cy C C3. Then we have the following;:

Lemma 3.3.1. If C is a linear code of length n over Rs, with Tor(C) = C,
Tory(C) = Cy and Tors3(C) = Cs, then there exist matrices Byiao € My, xks(Tsr),
Bis € Mpysiy(Tsr), Bag € Miyxky(T3) and Cr3 € My, xk, (T3) such that the

matrix
I, Avg Aig+uBio Aig+ubBis+ U201,3

0 U[kQ uAQ,Q U,(Azyg -+ 'LLBQgg) (332)
0 0 U2]k3 U2A3,3

18 a generator matriz of the code C.

Proof. As Tor(C) = Cy, Tory(C) = Cy and Tor3(C) = Cs, there exist matrices M ,
Nl,j S Mklxkj+1<75,r) for 0 <7 <3, and My, € Mk;ka,_;H('E,r) for 1 < ¢ < 3 such
that

R§1+k2+k3H cC

where the matrix H equals
Iy +ubMig+u?Nig Arg +ubMyg +u?Nyg A +uMis+u?Nig Ay g+ ubMy s+ u?Nys

0 u([k2 -+ UM2’1> U(A272 -+ UMQQ) U(Az’g + 'U,M273)
0 0 U21k3 U2A3’3

By applying elementary row operations, we obtain

Iy, — uby g — U2N1,o + U2M12,0 Q1 +u@2 Qs
Rg}jkﬁ% 0 ]k2 - UM2,1 Q4 HCC,
0 0 I,
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Q1 = —Mig+ MpAa,

Q2 = —Nig+ M oM+ NigAig— M1270A1,1 + My Moy — My oA 1 Moy,

Qs = —Nig+ M oMo+ NigAis— (M1,0)2A1,2 — Qi1Msy — Q2A59,

Qi = —Myp+ My As,.

From this, we get

I, Avg A+ uMyy, Az +uMiy+u?NY,
ng’lrJrszrkS 0 u-[kg UA272 U(A273 + U’Mél,?)) g C7
0 0 u?l, u2As 5

where

M{IQ = My — MigAis+ Q1A2,
M{/s = Mz — M A3+ Q1A23,
N{ig = Nig— MgMy3— NiogAis+ M1270A1,3 + Q1 Moz + Q2423 + Q3As3,
Mg:s = Myg— My1Ass+ QsAsz3.

We further observe that there exist unique matrices B 2, C 2 and Bs 3 over T3, sat-
isfying MY’y = By s+ uC15 (mod u?) and My's = Bz (mod u). On further applying

the elementary row operations, we see that

Ik)1 0 —0172 ]kl A171 ALQ + UBLQ + UZCLQ A173 + UM{/73 + U2N{/’3
R§3r+k2+k3 0 Ik2 0 0 'LL[kQ UA272 U(A273 + UB273)
0 0 Ik3 0 0 uszg u2A373

I, Avg Aig+uBio Ais+ UM{/?) + uz(N{/ﬁ — Cr2433)
I uAsy u(Azz + uBs3) cc

3,r =
0 0 u2[k3 U2A373

Next, we observe that there exist unique matrices By 3 and C 3 over T3, satisfying
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M{l’g —+ U(N{/’?) — 0172143,3) = BI,S + 'UJCLg (mOd UQ), This giVeS

]kl Al,l ALQ + uBLQ A173 + UB1’3 + U20173
Rg};errkS 0 U]k2 UA272 U(A273 + U,B273) Q C
0 0 u?ly, u?Asz3

Furthermore, we note that

3
IC| = H [ Tor;(C)| = (pr)3+2ke+hs
i=1

Ikl Al,l A1,2 + UBLQ A1,3 + ’LLBL3 =+ u201’3
— ng}T+k2+k3 0 U]kg U/A272 u(A2,3 + uB273) < |C|
0 0 Ly, W2 Ay

From this, it follows that the code C has a generator matrix of the form (3.3.2). [

For the remainder of this section, we assume that the codes Cy, Co, C3 satisfy
C, C Cf, Cy C 62L and C3 C Cf. This implies that

Iy, + AL AT + AL LAY, + AL AT, = 0, (3.3.3)
Ay + A AY, + AjgAyy = 0, (3.3.4)

Alp+ A A5, = 0, (3.3.5)

Ly, + AgpAyy + Ay 3Ays = 0 (3.3.6)

By (3.3.3)-(3.3.5), we see that the matrix Af ; is of full row-rank. In the follow-
ing theorem, we enumerate all self-orthogonal codes C of length n over Rj, with
Tori(C) = Cy, Tors(C) = Cy and Tors(C) = Cs.

Theorem 3.3.1. The number of distinct self-orthogonal codes C of length n (>
2ky + 2ks) over Rs, with Tor,(C) = Cy, Tory(C) = Cy and Tors(C) = Cs is given by

(pT‘ ) k1 (27173]61 7k371)+k2 (n74k1 —ko 7]63)

Proof. Let C be a self-orthogonal code of length n over R3, with Tor(C) = Cy,
Tory(C) = Cy and Tors(C) = Cs. Here by Lemma [3.3.1, we see that the code C
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has a generator matrix of the form (3.3.2). We further observe that the code C is
self-orthogonal if and only if

Iy, + A1,1A§71 + A1,2A§,2 + A1,3A§73
+u(A12Bl, + Bi2Al 5 + A1 3Bl 5 + BisAL,)
+u*(B12Bl, + BisBl s+ A1 30 5 + C13A1 5)
A+ A1,2A§,2 + A1,3A§73

+u(BygAb 5 + BisAl 5+ A1 3By )

Arp + A1,3A§73

Iy, + A2,2Atg,2 + A2,3A§,3

0 (mod u?), (3.3.7)

0 (mod u?), (3.3.8)
0 (mod u), (3.3.9)
0 (mod u). (3.3.10)

It is easy to observe that (3.3.9) is equivalent to (3.3.5) and that (3.3.10) is
equivalent to (3.3.6). In view of this, we need to determine the number of possible

choices for the matrices Bya, Bis, C13 and By over Ts, satisfying (3.3.7) and
(3.3.8). For this, we note that (3.3.3) implies that

Ikl + A171A§71 + ALQA’LQ + A173A§73 = uP1 + U2P2 (mod ug),
where Py, P» € Symy, (Ts,). On substituting this in (3.3.7), we get

P1 + ALQB?Q + BLQAYLQ + A173333 + B173A§73 -+ U(BLQBiQ
+Bl,3Bi,3 + A173C{,3 + 01’314373 + Pg) =0 (II]Od u2). (3311)

As By € My, xks(T3,) can be chosen arbitrarily, there are precisely (p")¥*2 distinct
choices for the matrix B;,. Now for a given choice of the matrix B, we will

determine the number of possible choices for the matrix B 3 satisfying
- =t = —t — = =t - —t

Since Py € Symy, (Rs.), the matrix A, 3 is of full row-rank and the map ~ [ T3
Tsr — ﬁgm is a bijection, by Lemma[2.1.1, we see that the number of relevant choices
for the matrix By 3 satisfying (3.3.12)) is equal to [Ker &5 [ = (p") FLEnAR )
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Further, for given matrices B, 2 and B 3 satisfying , we get

P+ ALgBi,z + BLQAtLQ + A1,3Bi73 + Bl73At173 = uP; (mod u?), (3.3.13)
where P € Symy, (T3,-). Now on substituting this in (3.3.11)), we obtain

Ay 3Cl 3+ Ci3A% 3 = —(Po+ Py + BisBi , + Bi3By 3) (mod u). (3.3.14)

Further, we note that the number of choices for the matrix C; 3 over 7;, satisfying

(13.3.14)) is equal to the number of choices for the matrix 6173 over ﬁgyr satisfying
— =t - —t = = = =t = =t
A1730173 —|— 0173141,3 - —<P2 + P3 + Bl’2Bl,2 —|— 817331’3). (3315)

Since Py, P3 € Symy, (Rs.,), by applying Lemma [2.1.1 again, we see that the matrix
C\3 satisfying (3.3.15) has precisely [Ker &z | = (p") PRI istinet

choices. Next we will count all possible choices for the matrix By 3 over T3, satisfying

(13.3.8). To do this, we see, by (3.3.4), that

Al,l + ALQA;Q + A173At273 = UP4 (mod U,Q)
for some Py € My, «k,(7T5,). On substituting this in (3.3.8), we get
P4 + BLQA;Q + BLgA;g + A173B§73 =0 (mod U) (3316)

Now the number of choices for the matrix By 3 over 73, satisfying ((3.3.16|) is equal

to the number of choices for the matrix EQ’:} over ﬁg’r satisfying
— =t — = = - —t
A1733273 - —(P4 + Bl’2A272 + BL?’AQ,S)‘ (3317)

To count the choices for the matrix By, let A;3 = (a;) and Byz = (x;), where a;’s
and x;’s are the rows of the matrices Zl’g and §2,3, respectively. Moreover, let us
suppose that — (P, + ELQZ;Q + §173E;73) = (m;;), where m;; denotes the (¢, j)-th
entry of the matrix —(ﬁgﬁ +§172Z;2 + §1732273) for1<i<kand1<j<k.In

view of this, the matrix equation (3.3.17)) is equivalent to the following system of
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equations over ﬁgmi
a;-x; =my; for 1<i<k and 1<j <k,

which can be represented by the following matrix equation:

ay

e _ -

X1 mi1

t

X9 mio a

A Xg = mis , where A =

. ag,
x! m
L k2 L' kika

Note that the matrix A is of order kiks X ko(n — k1 — ko — k3). Since the matrix
Ay 3 = (a;) is of full row-rank, the rows of the matrix A are linearly independent
over R3,,. Thus the number of choices for the matrix By 3 satisfying is given
by (p'r)kg(n—le—kg—kg)'

Now from the above discussion, it follows that the number of distinct self-
orthogonal codes C of length n over R3, with Tor;(C) = Cy, Tors(C) = Cy and
Tors(C) = Cs is given by (p")k(2n=3ki—ks=1)tha(n—dki=kz—ks) O

In the following theorem, we count all self-orthogonal codes of the type {k1, k2, k3}

and length n over Rj,.

Theorem 3.3.2. (a) Let C be a linear code of the type {ki, ks, ks} and length n
over Rs, whose generator matriz G' is given by . Then the code C is
self-orthogonal if and only if ky < ky = n—ky —ky—ks, 2(k1+k2) < n, and the
block matrices A; j for1 <i < j <3, Biy, B13, Ci3 and By 3 of the generator

matriz G satisfy the matriz equations (3.3.7)-(3.3.10)).

(b) The number N3(n; kq, ko, k3) of distinct self-orthogonal codes of the type {ki, k2,
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ks} and length n over R, is given by

(

ki +k — 2k — k
opr(n, k1 + ko) [ ! 21 {n ! 2}
p" p"

k1 ks
% (p’r')k‘l (21173’{17]{371)4»’62(77,74’617’{271{3)
/\[3(71; k1, ko, k3) =
Zf 2]’6’1 + k?g + l{?3 S n and 2(]{31 + k’g) S n;

\ 0 otherwise,

where the number oyr(n, ki + ko) is as determined in Theorem [2.3.11.

Proof.  (a) It follows immediately by Remark [2.2.1 and Theorem [2.2.4.

(b) Here we first note, by part (a), that N3(n;ky, k2, k3) = 0 when either 2k; +

ko + ks > n or 2k; + 2ky > n.

Next, let ki, ko, k3 be non-negative integers satisfying 2k; + ks + k3 < n and
2k; + 2ks < n, and let D be a self-orthogonal code of the type {k1, ko, k3} and
length n over Rs, with Tory (D) = Dy, Tory(D) = Dy and Tors(D) = Ds. Here
we have dimg, | (D1) = Ky, dimz, | (D) = ky+ky and dimz, (D3) = ky+kotks.
Further, by Lemma [2.2.1, we see that the Torsion codes Dy, Dy and Dj satisfy
D, C Dy € D3 C Di and D, C Dy. Now by Theorem , we note that
there are precisely o,-(n, k1 + ko) distinct self-orthogonal codes Dy of length n
and dimension k; + ko over ﬁg,r. Further, for a given (k; +k9)-dimensional self-

orthogonal code D, of length n over ﬁg,r, we see, by Theorem [2.3.9, that there

k1+k2
k1

Dy. Furthermore, for a given (k; + ks)-dimensional self-orthogonal code Dy of

are precisely [ ]pr distinct kj-dimensional linear subcodes D; of the code
length n over ﬁg’r and a given kj-dimensional linear subcode D; of the code
Dy, we observe that there is a one-to-one correspondence between (ky +ko+k3)-
dimensional linear codes D3 of length n over ﬁgﬁ, satisfying Dy C D3 C Dy
and ksz-dimensional subspaces D3/D, of the quotient space Di- /Dy, which has

dimension n — 2k; — ky over Rs3,. Now by applying Theorem [2.3.9 again, we

n—2k1—ko
ks

D; and Ds,. Finally, for given codes D;, D, and D3, we note, by Theorem

3.3.1, that there are precisely (p")f(2n=3ki—ks=1)+k2(n—dki—ka—ks) distinct self-

see that the code D3 has precisely [ }pr distinct choices for given codes

orthogonal codes D of the type {ki, ko, k3} and length n over Rs, satisfying
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Tor1(D) = Dy, Tory(D) = Dy and Tors(D) = Ds. From this, part (b) follows
immediately.

]

In the following theorem, we provide an enumeration formula for all self-orthogonal

codes of length n over Rj,.

Theorem 3.3.3. The number N3(n) of distinct self-orthogonal codes of length n

over Rs, 1s given by

L3) [5]—k1 n—2ki—ky
N3(n) — Z Up?“ (n7 kl + k2>(pr)kl(27173’617]{371)4»’{2(77,74’617’{27]{3)
ki=0 ka=0  k3=0
% |:k31 + k2:| |:7’L — 2](31 — k2:|
kl pr k3 pr
Proof. 1t follows immediately from Theorem |3.3.2. O]

In the following theorem, we derive a necessary and sufficient condition under
which a linear code of the type {ki, k2, k3} and length n over R, is a self-dual code.
Using this, we also count all self-dual codes of the type {k1, k2, k3} and length n over
Rs .

Theorem 3.3.4. (a) Let C be a linear code of the type {ki, ks, ks} and length n
over Rs, whose generator matriz G' is given by . Then the code C 1is
self-dual if and only if ky = ks, n = 2(k1+ky), (—1)% is a square in R, ~ Fr,
and the block matrices A;; for 1 <i < j <3, Big, B13, Ci3 and By in the

generator matriz G satisfy the matriz equations (3.3.7)-(3.3.10)).

(b) The number Ms(n; ki, ko, k) of distinct self-dual codes of the type {ki, ks, k3}

and length n over Ras, is given by

k1
square in ﬁgm, ko = ks and n = 2k + 2ks;

( %_1 n
2 H(pn +1) [ 2} prkl(; . if n is even, (—=1)2 is a
Ms(n; ki, ko, ks) = =1 »

\ 0 otherwise.
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Proof. (a) It follows immediately by Remark [2.2.1, Lemma [2.2.1 and Theorem
2.3.12]

(b) Here we first suppose that n is even, (—1)2 is a square in Rj3,, ky = k3 and
n = 2k; + 2ks. In this case, we see, by Theorems [2.3.12| and |3.3.2, that

— 2k — 2k
Ms(n;khkz,ks) = N3 <n;k17n 5 17n 9 1>

n_g

n 2 n
. n §:| rk1(n—2) . ri |:§:| rky(n—2)
= Oy | N, = 2 =2 +1 2,
P ( 2) {kl o 11 "+ 1) o
Otherwise, by part (a), we have Ms(n; k1, k2, k3) = 0.
[l

From the above theorem, we see that if there exists a self-dual code of length n
over R, then the length n must be an even integer and (—1)% must be a square in
Rs, =~ F,. Now in the following theorem, we provide an enumeration formula for

all self-dual codes of length n over Rs,.

Theorem 3.3.5. The number Ms(n) of distinct self-dual codes of length n over
Rs, is given by

ng

2 H(p” +1)( Z {/3] pTh(;iZ)) if n is even and (—1)3 is a
Ms(n) = i=1 k=0 LI pr

square in Ra,;

0 otherwise.

Proof. Tt follows immediately from Theorem |3.3.4. [

Remark 3.3.1. Theorem 1 of Betty et al. [13] and Theorem 4.1 of Nagata et al.
[76] follow from Theorem|3.5.5 as special cases.

In the following section, we will consider the case e > 4 and count all self-
orthogonal and self-dual codes of length n over R, ,. Towards this, we will first pro-
vide a recursive method to construct a self-orthogonal (resp. self-dual) code of the
type {k1, ko, ..., k.} and length n over R., from a self-orthogonal (resp. self-dual)
code of the type {k1+k2, k3, . .., ke—1} and of the same length n over R._» ., and vice
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versa. With the help of this recursive method, we will derive a recurrence relation be-
tween the number N, (n; k1, ks, ..., ke) (resp. Me(n;ky, ko, ..., k.)) and the number
Neo(n;ky + ko, ks, ... ke_1) (resp. Me_o(n; k1 + ko, ks, ..., ke_1)). By repeatedly
applying this recurrence relation, we will express the number N (n;kq, ko, ..., k)
(resp. Me(n;ka,ka, ..., k)) in terms of the number Ny(n; by + kg + - + ke, ke 1)
(resp. Mo(n;ky + ko + -+ -+ ke, k‘%H)) when e is even and in terms of the number
Ns(niki +ky+ o+ ket keps kegs) (resp. Ma(niky+khe+ - +kes ken kegs))
when e is odd. We will further apply Theorems [3.2.2 and [3.3.2(b) to explicitly
determine the numbers N (n) and M.(n).

3.4 Enumeration of self-orthogonal and self-dual

codes over the chain ring R.,, where e > 4

Throughout this section, we assume that e > 4. Here we first observe that the
quotient ring R, /(u®"?) is a finite commutative chain ring with the unique max-
imal ideal (u + (u®"?)), whose nilpotency index is e — 2. From this point on, we
will denote the quotient ring R.,./(u"?) by R._a, for our convenience. Further, for
each element a € R, we will denote the corresponding element a + (u*"?) € R._a,
by a itself for the sake of simplicity, and we will perform addition and multiplica-
tion in R, 2, modulo u¢~2 In view of this, we can assume, without any loss of
generality, that the chain ring R._o, has maximal ideal (u), where the element u
has nilpotency index e — 2 in R._o,. In particular, we can view the Teichmuller set
Ter ={0,1,€,6%,...,7 72} of R., as the Teichmiiller set of R._s,. From this and
by Theorem @(d), we can assume that each element a € R._2, can be uniquely
expressed as a = ag + a1u + asu?® + - - - + a._su"3, where ag, a1, as, ..., 0e_3 € Ter
Under this assumption, it is easy to see that R., = Re 2, = {0, 1,¢, EQ, . ,Epr_g}.

Next, we make the following observation:

Remark 3.4.1. Assume that C is a self-orthogonal code of length n over R., with
a generator matriz G in the standard form (2.2.1). Here by Lemma |2.2.1(b), we
note that Tor.(C) C Tor (C)*. Further, by (2.2.2), we obtain the following system
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of matriz equations over R, :

i=1 j=b+1

Now using the above matrix equations, one can easily observe that there exists a
matriz C, € M1 <y (Rer) satisfying A, .C. = I, which implies that the matriz

A, is of full-row rank.

By Theorem [2.2.2, we see that every linear code C of the type {ki, ko, . .., ke_1, ke }
and length n over R., is permutation equivalent to a code with a generator matrix
in the standard form @ On combining the last two blocks of the columns of
the matrix (2.2.1), we may assume that the code C is permutation equivalent to a

code whose generator matrix is in the following standard form

Ty Iy Avn A 0 Ale Al
uTh 0 wuly, wAss -+ UAge o uAy,
u*T. 0 0 WL, - ulAs. u? Al
G = S - ks e e (3.4.0)
uefZTe_l 0 0 0 . uef2Ik6_1 U,672A/e_1,e
w T, 0 0 0 - 0 uAL

where the columns of the matrix G are grouped into blocks of sizes ki, ko, ...,
ke_1, ke + ket1, the matrix Iy, is the k; x k; identity matrix over R.,, the matrix
Aij € Mpxk; 4, (Re,r) is considered modulo Wil for 1 <i<j<e—2, A, €
My x(betkesr)(Rey) for 1 < € < e and the matrix Z/e,e € /\/lkex(kﬁke“)(ﬁe,r) is of
full row-rank.

In the following theorem, we derive a recurrence relation between the numbers
No(n; ki ko, oo ke, ke) and No_o(n; k1+ko, ks, . . ., ke_1). The proof of this theorem
also provides a recursive method to construct a self-orthogonal code of the type
{k1, ko, ..., kc} and length n over R., from a self-orthogonal code of the type {k; +

ko, ks, ..., ke_1} and of the same length n over R._»,, and vice versa.

Theorem 3.4.1. Let n be a positive integer, and let ky, ko, . . ., ker1 be non-negative

integers satisfying n = ki + ko + -+ keyq and 2ky +2ks + -+ - + 2k i1 + ke_iyo +
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ke izz+ -+ ki <n for [%1 < i <e. The following hold.

(a) There exists a self-orthogonal code of the type {ki, ko,... ke_1,ke} and length
n over R, if and only if there exists a self-orthogonal code of the type {ki +
ko, ks, ..., ke_1} and length n over Re_s,.

(b) Moreover, each self-orthogonal code of the type {ki + ko, k3, ka, ..., ke—1} and

length n over R._a, gives rise to precisely

[l{;l + k2] [l{;e + key1 — k11 (pr)kl(”—kl—krl){ill ki(ket1—F1)
kl pT ke p'r

distinct self-orthogonal codes of the type {ki, ko, ks, ..., ke_1,ke} and length n

over Re.

(¢c) We have

e—1
k1(n—ki—ko—1)+ > ki(ket1—k1)
i=1

Ne(n;ky ko, oo ke) = Neca(ng by + Koy ks, oo keer) (07)

« {kl + lﬂ {k + keyr — kl]
kl p'r ke pr'

Proof. To prove the result, let C be a self-orthogonal code of the type {k1, ko, k3, .. .,
k.} and length n over R.,. Without any loss of generality, suppose that the matrix
G, as defined by (3.4.1), is a generator matrix of the code C. Now consider a linear

code C of length n over R._,, with a generator matrix

L (I, A A Ay o A AL,

Ly 0 Ip, Asp Az -0 Ay Ay,

ULg = 0 0 u]kg UA373 e UA3’6_2 UAg,e s
| u Loy 0 0 0 0 - wT,, utTPAY L

where Iy, is the k; x k; identity matrix over R. o, and A7, = A’ (mod u¢~7) for
3 < j <e—1. Since C is a self-orthogonal code over R.,, we see, by Theorem @,
that 7,77 = 0 (mod u¢~7I*2) for all integers i and j satisfying 1 <i < j < e and
i+ j < e+ 1. This implies that L;L} = 0 (mod u¢~2), L;L}, = 0 (mod u*) for
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2</¢{<e—1and L1L§ =0 (mod u* ") for2<i<j<e—landi+j<e+1.
Now by applying Theorem [2.2.4 again and noting that the dimension of the Torsion
code Tory (5) over ﬁe,zr is k1 + ko, we see that the code Cis a self-orthogonal code

of the type {ki + ko, k3, k4, ..., ke—1} and length n over R._o,.

On the other hand, let Dhbea self-orthogonal code of the type {ki+ks, ks, ..., ke_1}

and length n over R._o,. We first note that T'or;(D) has dimension k; + ko over

ﬁe_gm, and we choose a k;-dimensional subspace Dy of Torl(ﬁ), which can be chosen

ky + ko

e,
distinct ways, by Theorem [2.3.9. Now we will construct a self-orthogonal code D
of the type {ki, k2, ks, ..., k.} and length n over R., such that Tor;(D) = D; and

~

Tori41(D) =Tor;(D) for 1 <i<e—2.

in precisely

For this, we suppose, without any loss of generality, that the code D has a

generator matrix of the form

Sl [ v Y, Y o YL, Yy,

S, 0 Iy, Yoo Yoy -+ Yoo Yo
Hi=| uSs | =10 0 wly u¥sz -+ ul¥seo uYse |,
S| L0 0 0 0 e wTh, utTY

where the columns of the matrix H; are grouped into blocks of sizes ky, ko, ...,
ke—1, ke + kex1 = n — (k1 + ko + - -+ + ke—1), the matrix Iy, is the k; x k; identity
matrix over R._o,, the matrix Yi 1 € My, «k,(Re—2,) is considered modulo u, the
matrix V)", € My, iy, (Re-2,) is considered modulo w1 for 2 < ¢ < e—2, the
matrix YY", € My, x(ketkei1)(Re—2,r) is considered modulo u°~?, the matrix Y, . €
Mo x(ketkesr)(Re—2,) is considered modulo u*~* for 2 < a < e — 1 and the matrix

Yi; € Mp,xi; 1 (Re—2y) is considered modulo v/ =" for 2 < i < j <e—2.

Next, we choose the matrices By j € My, xx,,,(Te,r) for 2 < j < e—2, arbitrarily.
Now for given choices of matrices B; o, B3, ..., Bic_2, we apply elementary row

operations and observe that the code D can also be generated by the matrix of the
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S ] [ v Vi Yy o Y, Y, |
Sy 0 Iy, Yoo Yoz -+ Yoo Yoe
Ho = uS;3 =10 0 wulp, uYsz --- uYsz.o VY3, ;
w3S. | [0 0 0 0 e wL wRY

-1
where Y15 = Y’y +uB, the matrix Y/, = Y, + 3 b By 1 Yii10 + u 1By for
k=2

e—2
3<t<e—2and Y/, =Y/, + > u*'By;Yii1.. We further apply elementary row
F=2

operations and observe that the code D can also be generated by the matrix

[ S ] [In Y Yiz Yz oo Yies Yie |
82 0 [kg }/2,2 }/-273 e )/2,672 }/2,6
H = uSs =10 0 ulp, uYss -+ uYs.o uYs, ,
|u3S,e | 0 0 0 0 - w T, uTYe |

where the matrix Y1 ; € Mg, xx,,, (Re—2,) is considered modulo wfor3<j<e—2.
We next view the matrix H over R.,, and we will now construct a generator matrix

for a self-orthogonal code over R., from the matrix H. For this, let us define

Ty = Si+u?00---0C]+ut00 - 0By (modu),
T; S;+u00 - 0B, (modu 7t for2<j<e—1,
T. 00 --- 0Y..] (modu),

where the matrices Cy . € My x(bo+ke1)(Ter)s Yee € Mixkothesr)(Ter) and B €
M x(kethesr)(Teyr) for 1 < j < e — 1 are to be chosen suitably. Now let D be a
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linear code of length n over R., generated by the following matrix over R ,:

Tl Ik1 }/i,l }/1,2 e 3/176—2 }/l,e + ue—ZCLe + ue_lBl,e-
uly 0 ulp, uYss -+ uYp. o u(Ya,e + u?By)
G/ _ : _ . . . . . .
’U/e_QTefl 0 0 0 cee ’U/e_QIkeil Ue_z(}/é,17e + UBe,1’6>
I ueflTe | I 0 0 0 e 0 uefli/e’e |

We will show that there exist matrices C1 e € My, (ko +ker1)(Teir)s Bie € My (hethes)
(Te,) for 1 <j<e—1and Ye. € My x(kthesr)(Te,r) such that the code D is a self-
orthogonal code of length n over R.,, and we will also count the choices for these
matrices that give rise to distinct self-orthogonal codes of the type {ki, ko, ..., ke}
and length n over R.,. By Theorem M, we observe that the matrix G’ gen-
erates a self-orthogonal code over R., if and only if there exist matrices C, €
My xketker ) (Ter)s Bje € Migxketkesr)(Ter) for 1< j<e—TandY,, €

M. (kotksr)(Ter) such that Y.. is a full-row rank matrix over R., and satisfying

T,TE =0 (mod u®"71?)

J

for all integers ¢ and j satisfying 1 <i<j<eandi+j<e+1.

AsDisa self-orthogonal code of length n over R._s,, by Theorem [2.2.4, we see
that

Si1S! = 0 (mod u¢?),
8§18 = 0 (modu?) for2<j<e—1,
SiS; = 0 (modu"7?) for2<i<j<e—landi+j<e+1, (3.4.2)

which implies that

S8 = ui +ut )y (mod uf), (3.4.3)
S1S) = u%J, (mod ut), (3.4.4)
S$S; = u*IP; (mod w7t for3<j<e—1, (3.4.5)
S8 = 0(modu"7"?) for2<i<j<e—landi+j<e+1, (3.4.0)
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where Ji, Jo € Symu, (Ter), Jo € Mpyxry(Te,r) and Py € My, xp;(Te,r) for 3 < j <
e—1.

For all integers 7 and j satisfying2 <i:<j<e—1landi+j <e+1, by ,
we have §;S! = 0 (mod u*~*/*2), which implies that T;7} = 0 (mod u®*~7+?),
Now it remains to show that there exist matrices C1 . € My, x (b +ke.1)(Ter), Bje €
M s (kerkes)(Tep) for 1 < j <e—1and Yo, € My, s(ko+kesr)(7Te,r) such that Y. is

a full-row rank matrix over R., and

VT = 0 (mod u°),
T}
T

0 (mod u¢7*h) for 2<j<e—1,
0 (mod u),

which is equivalent to saying that

S8t +u (V1O + C1eYY L)

+u (Y1, B, + Bi.YY.) = 0 (mod uf), (3.4.7)

8185 +u (O Yy, + Y1 Bs,) = 0 (modut), (3.4.8)
SiSi+Y1 B, = 0(modu')for3<j<e—1, (3.4.9)

V1Y), = 0 (mod u). (3.4.10)

To prove the existence of the matrix Y, . over 7. ,, we first observe that as the map
N, Tep — ﬁe,r is a bijection, choosing a matrix Y, . over 7., such that ?676 is
a full-row rank matrix over R, and Y .Y/, = 0 (mod u) is equivalent to choosing
a full row-rank matrix 7676 over ﬁem satisfying ?176?276 = 0. Further, since D is
a self-orthogonal code over R._s,, the Torsion codes Ton-(ﬁ), 1 <i1<e—2 of
the code D satisfy Lemma @, which implies that the Torsion codes Tor;(D),
1 < i < e—1, of the code D also satisfy Lemma [2.2.1. So we need to choose
the matrix 7@@ in such a way that the Torsion code Tor.(D) satisfies the relation
Tore_y(D) C Tor.(D) C Tor (D)". Further, for a given choice of Tor._1(D), by

Theorem [2.3.9, there are precisely [k”k;j 1—k1]pr choices for the code Tor.(D), and

e
ke+ke+l_klj|
ke

hence the matrix Y. . has precisely [ . relevant choices.

Next by Remark |3.4.1, we see that the matrix 71,6 is of full row-rank over ﬁe,,«.
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Now for a given choice of the matrix Y. . such that 7676 is of full row-rank and

satisfying ¥1..Y}, =0 (mod u), we shall count the number of choices of the matrices

C1. and By, over 7., satisfying (3.4.7). By (3.4.3), we have
J1+ Y101+ CL Y +u(lo+ Y1 B, + Bi.Y{,.) =0 (mod u?). (3.4.11)

For this, we first determine the number of possible choices of the matrix 61,6 over
R, satisfying

V1.Ch,+CrYy, =i (3.4.12)

Since J; € Symy, (Re,), the matrix Y is of full row-rank and ~ 70t Tep — Re.r
is a bijection, by Lemma [2.1.1, we see that the matrix (' . satisfying (3.4.12) has

precisely
k1 (2ke+2ke 1 —k1—1)
2

[Ker @ | = (")
distinct choices. So for a given choice of the matrix (' . satisfying (3.4.12)), we have
J + Yl,eCie + CLer’e = uJ3 (mod u?)

for some J3 € Symyg, (7c,). Now on substituting this in (3.4.11)), we obtain

Jy+ J3+Y1Bi , 4+ Bi.Y{, =0 (mod u). (3.4.13)

Further, we note that the number of choices of the matrix B; . over 7., satisfying

(3.4.13)) is equal to the number of choices of the matrix ELQ over ﬁe,r satisfying
V1B, + Bi.Y,, = —(Jo+ Js). (3.4.14)

Since Jo, J3 € Symy, (ﬁm) and the matrix ?l,e is of full row-rank, by applying
Lemma [2.1.1 again, the matrix ELe satisfying (3.4.14)) has

kq(2ke+2key1—k—1)
2

[Ker &y, | = (p")

relevant choices. Next we count the number of possible choices of the matrix By,
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over 7., satisfying (3.4.8). By (3.4.4), we have

Ji+ Cre Yy, +Y1B;, =0 (mod u). (3.4.15)

Now the number of choices of the matrix By, over 7., satisfying (3.4.15) is equal

to the number of choices of the matrix EQ,e over ﬁe,r satisfying
?1@?;,6 = _(74 + 61,67276)' (3416)

To count the number of choices of the matrix By, let Y, = (a;) and By, = (x;),
where a;’s and x;’s are the rows of the matrices ?1,6 and Eg,e, respectively. Moreover,
let us suppose that —(J; + 6176?;6) = (myj), where m;; denotes the (7, j)-th entry
of the matrix —(.J4 + 61@7;@) for 1 <7 <kyand 1< j < ko. In view of this, the

matrix equation (3.4.16)) is equivalent to the following system of equations over R,
a;-x; =m;; forl <i<Fkandl<j <k
Since the matrix Y. is of full-row rank, the number of possible choices of By,

satisfying (3.4.16)) is given by (p")k2(kether1=k1)

Further, for 3 < 7 < e—1, we count the number of possible choices of the matrix
B, . over T., satisfying (3.4.9). By (3.4.5), we obtain

P +Y1.Bj, =0 (mod u). (3.4.17)

Now the number of choices of the matrix B; . over 7, satisfying (3.4.17)) is equal to

the number of choices of the matrix Ej,e over ﬁe,r satisfying
Yi.B,, =—P; (3.4.18)

Since the matrix ?1,6 is of full-row rank, the number of possible choices of Ejye

satisfying ((3.4.18) is equal to

(pT)kj (k5+ke+1fk1)
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for 3 < j < e — 1. Hence for given choices of the matrices C . and B, . satisfying

(13.4.11), By satisfying (3.4.15) and B, . satisfying (3.4.17) for 3 < j < e —1, we
get a self-orthogonal code D over R, ,.
Further, let us define

Iy Yii Yip Yizg - Yies Yie+u?Ci +u'B]
0 uly, uYsy uYaz -+ uYae o u(Yae +uBy.,)
G'=11 : Do : : :
u Ty, uT(Yere +ub; )
i 0 uY, . |

where C ., By, € Muyx(beskern)(Ter)s Bje € Miyx(hetken)(Tep) for 2 <j <e—1.
One can easily observe that the matrices G’ and G” generate the same code D
over R, if and only if C1, = C, and B}, = B;. + K;Ye. (mod w), where K; €
Mig;xk (Ter) for 1 < j <e—1.

In view of the above, one can easily observe that each self-orthogonal code of the

type {k1 + ka2, ks, ..., ke_1} and length n over R._o, gives rise to precisely

e—1 e—1 e—1
|:/€1 + kz} |:ke + kep1 — kl} ) 5, bkt 2kt et =K1+ 5 (hetheri k)= X keke
p )= = =
kl p’l‘ ke p’!‘
e—1

kl —+ kQ lfe + ke+1 — ]{}1 . k1(n*k1*k271)+z ki(ket1—k1)
= k k (p =1
1 pr e pr

distinct self-orthogonal codes of the type {ki, ks,..., ke 1,ke} and length n over

From this, the desired result follows immediately. O

e
=3/
Next, let n be a positive integer, and let ki, ks, ..., k.r1 be non-negative integers
satisfying n = k1 +ko+- - -+ ker1. We further define ng = 0 and n; = ky+ko+---+k;
for 1 < 7 < e+ 1. Here we note, by Remark @, that if there exists a self-
orthogonal code of the type {ki,ko,...,k.} and length n over R.,, then we must

From now on, let us define

have ne_;11 +n; < n for s+ 1 < i < e. In the following theorem, we count all
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self-orthogonal codes of the type {ki, ko, ..., ke_1, ke} and length n over R.,, where

e > 4 is an integer.

Theorem 3.4.2. Let e > 4 be an integer, and let ki, ks, ..., ker1 be non-negative

integers satisfying n = ky + ko + -+ - 4 keaq.

(a) When e is even, we have

( s e
n; kj +n— Nj — Ne—j41
o [1[1] 11 k,
i=1 LD j=s41 J pr

s—1
1
> ne(n—ngp1—1)+nspo(n—nsp14e—ns—¢)+ns(n—nsy1)— %

j\/‘e(nv k17k27"'7ke) = X(p?n)e:1

ifne_ix1+n; <n fors+1<i<e

\ 0 otherwise.

(b) When e is odd, we have

( s+1 e
n; k’j +n— Nj — Ne—j41
Opr (n, n5+1) N i
i=1 LD j=s42 J

S

> ne(n—ngr1—1)+nspe(n—nep146-nsyr1-2)

-/\[6(77’7 k'la k27 s 7ke) = X (pT)Zzl

fneir1+mn;, <n fors+1<1i<e

[ O otherwise.

Proof. By Remark @, we note that NV, (n; ky, ko, ..., ke) = 0if ne_;11+n; > n for
some integer ¢ satisfying s +1 <i <e.

On the other hand, when n._;,1 +n; < n for s+ 1 < i < e, we see, by repeatedly
applying Theorem |E(c)7 that

e—1
. ki(n—ki—ko—1)+ Y ki(ket1—k1)
Ne(n; ki ko, ..o ke) = Ne—o(ni by + Koy ks, o k1) (") =1

y [kl + kQ} lke + key1 — k?1]
kl pr ke pr
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—1

No(nyng, kerr) ()=

e

X H {Z’} H [ka’ Tn- Z] - ”e—j+1} if e is even;
i=1 p"

i

‘
[

ne(n—npr1—1)+ns 1 (P—nsp140—"ns_¢)

P j=s+2 J
- e T nal )
ng(n—me41—1)+ Na(N—Naqtr1—Ne—a
. T\ e= a=s
N3 (n7n87 k8+17 k8+2) (p )Zil 2
S e
n; ki+n—mn; —Ne_ji1 o .
X H {kl] H { J kj “ if e is odd.
. i=1 LT =543 J p"

From this and by applying Theorems [3.2.2 and [3.3.2(b), the desired result follows

immediately. [

In the following theorem, we derive a recurrence relation between the numbers
Mc(n; ki ko, .o ke 1, ke) and Mo _o(n;ky + ko, ks, ..., ke_1), where e > 4 is an in-
teger. The proof of this theorem also provides a recursive method to construct a
self-dual code of the type {ki,ko,...,k.} and length n over R., from a self-dual
code of the type {ky + ko, ks, ..., ke—1} and of the same length n over R._»,, and

vice versa.

Theorem 3.4.3. For an integer e > 4, let n be a positive integer, and let ky, ko, . .., keiq

be non-negative integers satisfying n = ki + ko + -+ + key1 and kj = ke_jyo for
1 <j<e+1. The following hold.

(a) There exists a self-dual code of the type {ki,ka, ..., ke_1,ke} and length n over

Re if and only if there exists a self-dual code of the type {ki+ko, ks, ka, ..., ke—1}

and length n over Re_a,. In fact, each self-dual code of the type {ki1+ks, k3, ka, . .

ke—1} and length n over R._o, gives rise to precisely

|:k1 —I— k2:| (pr>k1(n—k1—k2—1)
kl pT

distinct self-dual codes of the type {ki, ko, ks, ..., ke} and length n over R.,.

(b) We have

ki + Kk e
Me(n; k’l,kg,...,]{?e) :M6_2(n; kl+k2>k3,--.,k’6_l)|: lk 2:| (pr)k1(n k1—ko 1).
1 pr

Y
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Proof. Part (a) follows immediately from Theorems [2.2.4 and [3.4.1, while part (b)
follows from part (a). O

In the following theorem, we count all self-dual codes of the type {kq, ko, ..., ke}

and length n over R.,.
Theorem 3.4.4. Let e > 4 be an integer, and let ki, ko, ..., ker1 be non-negative
integers satisfying n = ky + ko 4+ -+ - + key1.

(a) When e is even, we have

s

( : D T e
(n, ns H )i=t

=1

Merskuke R =0 gk o 1< er

0 otherwise.

\
(b) When e is odd, we have

n; ng(nfng+171)

%—1 s+1
k]

S

b: i=1 p"

n
2

1S G square in Rer and

M(nyky, ko, ... ko) =< if nis even, (—1)
kj=Fke_jio for1 <j<e+1;

\ 0 otherwise.

Proof. (a) By Theorem [2.2.4(b), we note that M.(n; ki, ko, ... ko) = 0if k; #
ke_jto for some integer j satisfying 1 < j <e+ 1.

On the other hand, when k; = k._j 1o for 1 < j < e+ 1, we see, by repeatedly
applying Theorem [3.4.3(b), that

ki +k n—ki1—ka—
/\/le(n; kfl,k’g,...,ke) :Me—Q(n; k1+k2;k3,-..,k6_1)|: 1k 2:| (pr)kl( ki—ko—1)
1 p

'

S

s—1
st
i=1 ?

p?"

Now by applying Theorem [3.2.4(b), the desired result follows immediately.
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(b) By Theorem [2.2.4(b) again, we note that M.(n; k1, ko, ..., ke) = 0 if either
k; # ke_j4o for some integer j satisfying 1 < j < e+ 1 or n is odd.

When k; = ke_jio for 1 < j < e+ 1 and n is even, we see, by repeatedly
applying Theorem [3.4.3(b), that

ki +k
Me<n;k1,k2,...,ke>:Me_2<n;k1+kz,k3,...,ke_l){ 1; 2} (pryP iy
Loy

T

—1

] T e )
= M3(n; N, Koy, k?s+1) H [k } (p")= .
. p’l’

=1 g
Now by applying Theorem [3.3.4(b), the desired result follows immediately. By
Theorem [3.3.4(b), we note that M.(n; k1, ka, ..., ke—1, ke) = 0 when n is even

and (—1)% is not a square in R,
[

Remark 3.4.2. Theorem 1 of Nagata et al. [77] follows from Theorem |3.4.4 as a
special case.

Now for an integer d satisfying 2 < d < e and for non-negative integers ki, ko, . . . , kq,

let us define

hg(kl,kz,...,k‘d):(/ﬁ—i—k‘g—i—--'—i-kg)(n—(k1+k2+-"+/€g+1)—1) for1 </<d-—1,
(3.4.19)
and let us define

mj(k17k2>"‘7kd) = hj(ktha"' 7kd) + (kl +k2 +ot kl.gJ‘f'])(n - (kl +k2 + -
thpasy ) = (Rt ka4 ke ) (34.20)

for1 <j < ng — [, where 8 =1 if e is even, while § = 0 if e is odd.
In the following theorem, we provide the enumeration formula for all self-orthogonal

codes of length n over R, ,.

Theorem 3.4.5. (a) When e is even, we have

Ne(n) = > oy (n b+ ka4 + k) (0!

° kj+n—(k1+k2+~--+kj)—(/{:1+k2+~--+k6_j+1)
< T1 3

—1
me(kl,kz ,,,,, ke)—l-@e(kl,kg,...,ke)
=1

Jj=s+1
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Ykt ke+ o+ K
1
7 p’l‘

=1

where O (k1, ko, . .. ke) = (k1+kao+- - -+ks) <2”*2(’“1+’f2+'"+ks+;)*(k1+k2+---+ks)fl)
and the summation Y runs over all non-negative integers ki, ko, ... ke satis-

fying 2k1 4+ 2k +- - - +2ke_ji1 + ke—ijiot ke—iizs+-- -+ ki <n fors+1<i<e.

(b) When e is odd, we have

~
Mo
T

s+1
(k1 ko, e ) ky £yt ootk
Ne(n) = E opr (no ki + ko + -+ + ko) (p") o H{ L }
pT

ki
=1

S Tkj+n—(ki+ka+ 4+ k) — (ki + ket +keji1)
< 11 i ;
p’!

j=s+2 J

where the summation Y runs over all non-negative integers ki, ka, ..., ke sat-

isfying 2k, +2ko+ -+ -4+ 2ke_i 1+t ke_irot ke ii3+---+k <nfors+1<i<e.

Proof. Tt follows immediately from Theorem |3.4.2. [

In the following theorem, we provide the enumeration formula for all self-dual

codes of length n over R, ,.

Theorem 3.4.6. (a) When e is even, we have

s

i+ ko + oo+ K
Me(n):Zapr(n,k1+k2+---+ks)n[ e

i=1 ki P
s—1
oy 2 he(Rrkasoks) e (R1ska, . oks)
x(p")= ,
where the summation Y, runs over all non-negative integers ki, ka, ..., ksi1

satisfying 2(ky + ko + -+ - + k) + ksy1 = n and the number \e(ky, ko, ..., ks) is
given by

ky +ho+-+ ks —1
)\e(kl,kz,...,k3>:<k1+k2+"‘+k5)(1 2 )

2
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(b) When e is odd, we have

% S s+1
Z o(k1,k2,.. ki+ky+ -+ Kk
b 1 2 7
1 =1
r o+ St
Me(n) = o ’
‘ if n is even and (—1)2 is a square in Re,;
L 0 otherwise,
where the summation Y, runs over all non-negative integers ki, ko, ... kg1
satisfying 2(ky + ko + -+ - + k1) = n.
Proof. 1t follows immediately from Theorem |3.4.4. m

The enumeration formulae for MV, (n) and M, (n) are useful in the classification of
self-orthogonal and self-dual codes of length n over R.,, respectively. We illustrate
the same in the following section by classifying all self-orthogonal and self-dual codes
of lengths 2,3,4 and 5 over Fs[u]/(u?) and of lengths 2,3 and 4 over Fr[u]/(u?).

3.5 Classification of self-orthogonal and self-dual

codes

Two self-orthogonal (resp. self-dual) codes of length n over R., are said to be
equivalent if one code can be obtained from the other by a combination of operations

of the following two types:
(A) Permutation of the n coordinate positions of the code.

(B) Multiplication of the code symbols appearing in a given coordinate position
by the element —1 € T,.

Otherwise, the codes are said to be inequivalent.

Next, let &, be the group generated by transformations of the types (A) and (B)
as defined above. If C is a self-orthogonal (resp. self-dual) code of length n over
Re.r, then by Theorem 7.4 of [46], we note that the number of distinct self-orthogonal
(resp. self-dual) codes of length n over R., that are equivalent to the code C is given

by Alui?c where Aut(C)(C &,) is the automorphism group of the code C. In view of



3.5 CLASSIFICATION OF SELF-ORTHOGONAL AND SELF-DUAL CODES 71

this, we see that the total number A, (n) of distinct self-orthogonal codes of length

n over R., can be expressed as

_ €0l
N.(n) = ; A0 (3.5.1)

where the summation ) runs over all the inequivalent self-orthogonal codes C of
C

length n over R.,. Analogously, the total number M. (n) of distinct self-dual codes

of length n over R., can be expressed as

_ €0l
M.(n) = XC: A0 (3.5.2)

where the summation ) runs over all the inequivalent self-dual codes C of length

n over R.,. The mass fcormulae and are useful in the determination
of complete lists of inequivalent self-orthogonal and self-dual codes of length n over
Re.r, respectively (cf. [13], [53} Sec. 9.6 and 9.7]). To illustrate this, we will classify
all self-orthogonal and self-dual codes of lengths 2, 3,4 and 5 over F5[u]/(u?) and of
lengths 2,3 and 4 over F7[u]/(u?) up to equivalence, by carrying out computations
in the Magma Computational Algebra System and by applying the classification
algorithm that has been used in most of the earlier classification attempts (|53} Sec.
9.6 and 9.7]). We also explicitly determine a generator matrix of the code represen-

tative for each equivalence class of self-orthogonal and self-dual codes.

I. There are precisely 5 inequivalent non-zero self-orthogonal codes of length 2 over
Fs[u]/(u*) with generator matrices uls, [1 2} ; [u O} ; [u u} and [u 2u] :

I1. There are precisely 14 inequivalent non-zero self-orthogonal codes of length 3
over Fs[u]/(u?) with generator matrices uls, [1 0 2}, [1 u 2}, [u 0 O],

1 0 2 u 0 0 u 0 u
[uuu},[u 2u u],[qu},[uO?)u], , , )
0O u O 0O u O 0O u O
u 0 2u u 0 4u u 0 4du
, and )
0O w O 0 u 2u 0 u u
ITI. There are precisely 63 inequivalent non-zero self-orthogonal codes of length 4

over F5[u]/(u?), whose generator matrices are as listed below:
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o [1au yu 2| with (5,9) € {(0,0), (1,1),(1,2), (0,2)};

[1 zu+1 yu+2 zu+2} with (z,y,2) € {(0,0,0),(0,1,4),(1,0,2),(1,3,4),
(0,3,2),(2,4,0) };
1 0 zu 2

. ] with (z,y) € {(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)};
0 v yu O

11 zu+2 yu+?2
S with (z,y, 2, w) € {(0,0,0,2),(1,4,0,2), (2,3,0,2),

_O U U WU
(0,0,1,1),(1,4,1,1),(3,2,1,1),(0,0, 3,4), (1,4,3,4)};

1 0 0 2 11 2 2
1 00 2 1 0 u 2
uly, , , 10w 0 0, [0 u 0O 2ul;

01 2 0 01 2 4u
0 0 v O 0 0 v 4u

o [u wu yu zu] with (2,5,2) € {(0,0,0),(1,0,0),(1,1,0),(1,1,1),(2,3,4),
(1,2,4),(2,1,0),(2,0,0)};

v 0 zu yu
0 v zu wu

] with (z,y, z,w) € {(0,0,0,0),(1,0,0,0),(1,1,0,0), (3,0,2,0),

(0,3,1,2),(1,0,0,1), (4,0,2,1), (3,4,2,1), (1,0,0,2), (0,0,0,2), (0,0, 1, 2),
(4,2,1,2), (4,2,2,2), (4,2,2,1), (4,4,4,0), (4,2,4,1),(2,0,0,2), (1,0,1,0) };

u 0 0 zu
0 u 0 yu| with (x,y,2) € {(O, 0,0),(1,0,0),(4,1,0),(2,0,0),(3,1,0),
0 0 u zu

(1,4,1),(4,4,3),(2,4,3)}.

IV. There are precisely 321 inequivalent non-zero self-orthogonal codes of length 5

over F5[u]/(u*), whose generator matrices are as listed below:

o [1 2u yu zu 2] with (z,5.2) €{(0,0,0),(0,0,1),(0,1,1),(0,1,2), (1,1,1),
(1,1,2)};

° [1 xu yu+1 zu+2 wu—i—Q} with (z,y, z,w) € {(0,0,0,0),(0,0,l,él),
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(0,0,2,3),(0,1,0,2),(0,1,3,4), (0,2,0,4), (3,0,2,3), (1,0,0,0), (1,0, 1, 4),
(1,0,2,3),(1,1,0,2), (1,1,1,1), (1,1,3,4), (1,2,0,4), (1,2, 1,3) };

Lout 1 yut Lzt L wut 1 with (z,y,2,0) €{(0,0,0,0), (0,0,1,4),
(0,0,2,3),(0,1,1,3),(0,1,2,2),(1,2,3,4) };

lleuyuQ
[

with (z,y, z, w) 6{(0,0,0,0), (0,1,0,0),(1,1,0,0),(1,2,0,0),
0u zu wu 0

(4,2,0,1),(0,0,0,1),(0,1,0,1),(1,0,0,1),(1,1,0,1), (4,2,1,1),(0,0,1,1),
(07 17 17 1)7 (0707 072)7 (0707 172)7 (07 1707 2)7 (07 17 1? 2)7 (07 17270)7 (07 1727 1)7
(1,1,4,3),(1,1,0,2),(1,1,1,3) };

101 2 2

. [ ] with (z,y,2) €{(0,0,0),(0,1,4),(0,2,3),(1,0,2), (1,3,4),
0u zu yu zu
(2,1,3)};
10 1 2 Ay + 2

. [ SRR ith (2, 2) € {(0,0,0), (0,1,4), (0,2, 3), (1,0,2),
0 uzu yu 2U

(1,1,1),(1,3,4),(2,0,4),(2,1,3),(3,3,3) };

10 1 2u+2 3u+2
[ " N with (2,9, 2) € {(0,0,0),(0,1,4),(0,2,3),(1,0,2),

0 v zu yu zZU

(1,1,1),(1,3,4),(2,0,4),(2,1,3),(2,2, 2)};

with (z,y,2) € {(0,0,0),(0,1,4),(0,2,3),(1,0,2),

10 uwu+1 2 2u+2
0Ou zu yu zu

(1,2,0),(1,3,4),(2,1,3) };

10 utl 3ut2 dut?
[ " " " with (z,y,2) € {(0,0,0),(0,1,4),(0,2,3),(1,0,2),

0 u xu YU Zu

(1,1,1),(1,2,0),(1,4,3),(1,3,4),(2,0,4),(2,1,3),(2,2,2),(2,3,1), (2,4, 0)};

10 2ut1 2 4ut?
[ " “ with (2,9, 2) € {(0,0,0),(0,1,4),(0,2,3),(1,0,2),

0w zu wyu zu

(1,2,0),(1,3,4),(2,1,3) };
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111 1 1
. with (z,y,2) € {(0,0,4), (0,1,3), (2,3,4)};
0 u zu yu zu

(11 1 u+l du+1
0 u zu  yu ZU

(2,0,2),(2,1,1),(2,3,4) };

with (z,y,2) € {(0,0,4),(0,1,3),(0,2,2),(0,4,0),

11 zu+1 yu+1 3u+1
[ Y with (x,y,z,w,a) € {(072707074>7(07270a470)7

0 u zu WU au

(0,2,2,0,2),(0,2,2,1,1),(1,1,0,2,2), (1, 1,2,4,3) };

[1313%

with (z,y, 2 w) € {(1,0,4,0),(1,1,2,0),(1,2,0,0), (1,4, 1,0),
0 v yu zu wu

(0,0,4,0),(0,1,2,0),(0,2,0,0) };

[1 3 u+1 3u+3 zu

with (z,y, z,w) € {(0,0,4,0),(0,1,2,0), (0,2,0,0),
0 u yu Zu Wy

(1,0,4,0), (1,1,2,0),(1,3,3,0), (1,4, 1,0), (1,2,0,0) };

[1 3 3u+1 4du+3 zu
[ ]

with (z,y, z,w) € {(0,2,0,0),(1,2,0,0),(1,0,4,0)};
0 u yu Zu  wu

uls, [1 b I 1 Withxe{O,l};

01 u+2 3u+3 u+t+4

1 3 2u+1 u+3 zu
0w 4u U 0

1000 2 1012 2 11111
0uw0O0O0 OuO0O0 O 0w 00 4u

00«00 0 0 u 0 2u 0 0 uu 3u
000u0 000 v 4u 000 u 4u

11 u+1 2u+1 2u+1
0 uv 3u 2u 4y

100 2u 2

0w 0 yu 0| with (z,y,2) € {(0,0,0),(0,0,1),(0,0,2),(1,0,0),(1,0,1),(1,0,2),
00w z2zu O

(3,1,1),(4,1,2),(0,1,3),(0,1,1) };
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101 2u+2 yu+2
e [0 u0 z2u wu | with (z,y,2,w,v,a) € {(0,0,0,0,0,2),(0,0,0,0,1,1),
00 u wu au
(0,0,0,0,3,4),(0,0,1,4,3,4),(0,0,1,4,0,2),(0,0,1,4,1,1), (1,4,1,4,0,2),
(0,0,2,3,1,1),(0,0,2,3,3,4),(1,4,0,0,2,0), (1,4,0,0,1,1), (1,4,0,0,3,4),
( ), ( ), ( )
(2 ), (2 ), (2 )

1,4,1,4,4,3),(1,4,1,4,1,1),(1,4,2,3,3,4),(1,4,2,3,1,1), (2,3,0,0,2,0),
37174’]"17 3’2737]‘7]‘}’

) (
) (
) (
,3,0,0,1,1), ), (2,3,1,4,0,2),

111 a2u+1 yu+1
e |0 u 0 zu wu | with (z,y,2,w,v,a) € {(0,0,0,4,1,3),(0,0,0,4,2,2),

00 u wu au
(1,4,0,4,4,0),(1,4,0,4,0,4),(0,0,1,3,3,1),(2,3,0,4,1,3), (2, 3,0,4,2,2),
(1,4,1,3,3,1) };

131 3 zu

e [0 w0 4u 0 With:L‘E{O,l};

00 w3u O

. [u U Yu 2u wu} with (z,y, z,w) € {(0,0,0,2),(0,1,2,2) (1,1,1,1),
<O7O7070)7(1707070)7(1717070)7(1717 17())7(2717170)7(2737 17 1)7(2737373)7
(2,1,0,0)};

[u 0 zu yu zu

] with (z,y, z,w,v,a) € {(0,0,0,0,0,0),(0,0,0,0,0,1),
0 v wu vu au

(0,0,0,0,0,2),(0,0,0,0,1,1),(0,0,0,0,1,2), (0,0,0,1,1,1), (0,0,0, 1, 1, 2),
(0,0,0,1,3,3),(0,0,1,4,3,1),(0,0,1,0,0,1), (0,0,1,0,0,2), (0,0,1,0,1, 4),
(0,0,1,0,1,0),(0,0,1,0,1,2),(0,0,1,0,2,0), (0,0,1,0,2,1),(0,0,1,1,1, 1),
(0,0,1,1,1,2),(0,0,1,1,2,0),(0,0,1,1,2,2),(0,0,1,1,4,0), (0,1, 1, 3,4, 0),
(0,1,1,3,4,1),(0,1,1,4,2,1),(0,1,1,1,1,3),(0,1,1,1,2,0),(0,1,1,1,4,0
( ) ( ) ( ) (
( ) ( ) ( ) (
( ) ( ) ( ) (

) Y

0,1,1,2,0,0),(0,1,1,0,4,3),(0,1,1,0,4,2),(0,1,1,0,3,3), (0, 1,2,2,4, 3),
071727072707 071727072717 071727170727 071727171717 071727171737

)
)
)
)
)
)
)
0,1,2,1,2,0),(0,1,2,1,2,1),(0,1,2,1,2,2),(0,1,2,2,0,0),(0,1,2,2,1,1),

) (
) (
) (
) (
) (
) (
) (
) (
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(0,1,2,2,1,3),(2,3,2,0,0,2),(1,2,3,1,1,1),(1,2,2,1,3,4), (1,2,2,2,1,3),
(1,1,1,0,0,2),(0,0,2,3,0,0) };
v 0 0 zu yu
e |0 u 0 zu wz| with (z,y,2,w,v,a) € {(0,0,0,0,0,0), (0,0,0,0,0,1),
0 0 v vu au
(0,0,0,0,0,2),(0,0,0,0,1,1),(0,0,0,0,1,2),(0,0,0,1,4,4),(0,0,0,1,0, 1),
(0,0,0,1,0,2),(0,0,0,1,1,0),(0,0,0,1,1,2),(0,0,0,1,2,0), (0,0,0,2,1,4),
(0,0,0,1,2,1),(0,0,0,2,2,3),(0,0,0,2,2,0),(0,0,1,1,1,2),(0,0,1, 1,1, 3),
(0,0,2,3,4,3),(0,1,2,0,4,4),(0,1,3,2,0,1),(0,1,3,3,0,2), (0,1,3,0,0,4),
(0,1,4,0,1,4),(0,1,4,2,1,1),(0,1,4,3,1,2),(0,1,1,4,3,3),(0,1,1,3,3,2),
(0,1,1,2,3,1),(0,1,0,1,4,4),(0,1,0,1,0,1),(0,1,0,1,0,2), (0,1,0,1,1, 3),
(0,1,0,1,1,0),(0,1,0,2,4,3),(0,1,0,2,0,2),(0,1,0,2,1,4),(0,1,0,2,1,0),
(0,1,0,2,2,0),(0,1,1,4,4,4),(0,1,1,4,2,4),(0,1,1,0,2,2),(1,1,4,3,4,1),
(1,1,4,3,0,2),(1,1,4,3,2,4),(2,2,3,0,4,4),(2,2,1,4,0,2),(2,2,4,2,1,3),
(1,2,2,1,1,4) )

)Y )

7(]‘7272’]‘7273 }7

(w00 0 2u

0wo00

o | YU with (z,y, 2, w) € {(0,0,0,0),(0,0,0,1),(0,0,0,2), (0,0, 1,4),
00w 0 z2u

(000 u wu
(0,0,1,2),(0,1,1,2),(0,1,2,3),(0,1,1,4), (1,1,1,2), (1,4,2,3), (1,4, 1, 1) };
10 zu yu 2

. with (z,y, 2, w) € {(0,0,0,0),(0,0,1,0),(0,1,0,4), (0,1,1,4),
_O 1 zu 2 wu

(1,0,1,0),(1,1,1,4),(1,1,2,4) };

(10 1 zu+2 yu+2
_O 1 zu+2 wu+1 au+3
(0’072737 1)7(1’4707472)’(17471737())’(]‘747272’3)7(27370’374)7(27372’ 170)}7

with (z,y, z,w, a) € {(0,0,0,0,0),(0,0,1,4,3),

(100 zu 2
e |01 0 2 yul| with (z,y) € {(0,0),(1,4)};
00u 0 0
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101 zu+2 yu+2

e 1012 2u+1 wu+3 with (a:,y,z,w)6{(0,0,0,0),(1,4,4,2)}.
00w 4u 3u

V. There are precisely 4 inequivalent non-zero self-orthogonal codes of length 2 over

F7[u]/(u®) with generator matrices uly, [u 0] : [u u] and [u QU} :

VI. There are precisely 19 inequivalent non-zero self-orthogonal codes of length 3

over Fr[u]/(u?) with generator matrices uls, [1 2 3} ; [1 u+2 4du+ 3] ;

1 3ut2 sutssfu 0 0 fuow o) fu 0 2u] fu o] [uou 2],

r 3][2 3} 1 2 3 u 0 0 u 0 0 u 0 0
u u 3ul, |lu 2u 3ul|, , ) ; )
L 0 v 4u 0O v O 0 u wu 0 uw 2u

u 0 u u 0 2u u 0 wu u 0 wu
, , and )
_O U U 0 v 3u 0 u 2u 0 u 4u

VII. There are precisely 118 inequivalent non-zero self-orthogonal codes of length 4

over F;[u]/{u?), whose generator matrices are as listed below:

o [1 2w yu+2 zut3| with (,5,2) € {(0,0,0),(0,1,4),(0,3,5),(1,0,0),
(1,1,4),(1,2,1),(1,3,5),(1,5,6),(1,6,3),(3,2,1) };

e 1 zu+1 yu+1 zu+2] with (a:,y,z)e{(0,0,0),(O,1,3),(0,2,6),(0,3,2),
(0,4,5),(0,5,1),(0,6,4), (1,2,2),(1,3,5),(1,4,1),(1,5,4),(2,4,4) };

[1 0 zu+2 yu+3
[ ]

with (z,y,z,w) € {(0,0,0,0),(1,4,0,0), (3,5,0,0),
0 wu 2U WU

(0,0,1,4),(1,4,1,4),(3,5,1,4),(0,0,2,1),(1,4,2,1),(3,5,2,1),(0,0,3,5),
(1,4,3,5),(3.5,3,5) };

[1 1 zu+1 yu+2
[

0 w 2U WU

with (z,4, z,w) € {(0,0,0,3),(1,3,0,3),(2,6,0,3),

(3,2,0,3),(0,0,2,2),(1,3,2,2),(2,6,2,2), (3,2,2,2), (4,5,2,2), (5,1,2,2),
(6,4,2,2),(0,0,3,5),(1,3,3,5), (3,2,3,5) };
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1 5 4 0 1 5 4 u
L4 UI47 )
0 v 4u O 0 v 4u O

o [u zu yu zu] with (2,9, 2) € {(0,0,0),(1,0,0), (1,1,0), (1,1,1), (2,1,1),
(2,2,1),(272,2),(2,3>1),(0,271),(072,0),(0,3,5),(0,3,6)};

0O v 0 O0f, |0 w 0 3ul|;

]1023 1 1 1 2
0 0 w 4u 0 0 v 3u

w0
o u U yU] Wlth (x7ygsz) E {(O;O7070)7(Oa17070)7(171a070)7(2707070)7
_0 U U Wwu

(2,1,0,0),(2,2,0,0),(2,3,0,0),(6,1,1,0),(0,1,1,0),(1,0,1,0),(2,1,1,0),
(2,0,1,0),(3,0,1,0),(3,1,1,0),(0,2,1,0),(2,0,1,1),(2,1,1,1),(3,1,1, 1),
(3,0,1,1),(3,4,1,1),(3,5,1,1),(0,1,2,1),(2,3,2,1),(2,4,2,1), (3, 3,2, 1),
(3,2,2,1),(3,0,2,1),(4,2,2,1),(5,2,2,1),(5,0,2,2), (5,2,2,2), (0,1,2,2),
(3,0,2,2),(3,1,2,2),(2,3,2,3),(3,5,2,3),(0,2,0,4), (2,0,0,4) };

u 0 0 zu

e |0 u 0 yu| with (z,y,2) € {(0,0,0),(1,0,0),(2,0,0),(2,1,0),(1,1,0),
0 0 u zu
(3’170)7(37671)’(]‘7671)7(2’67]‘)7(27472)’(17473)7(274’0)};

10 zu+2 yu+3

) with (x,y, z,w) € 1(0,0,0,0),(1,4,4,6),(5,6,6,2) ¢.
01 zu+3 wu+5s (@9 ) {( ) ) )}

VIII. Next, by applying Theorem [3.2.4(a), we see that a self-orthogonal code of the
type {k1, ko} and length n over F,[u]/(u?) is self-dual if and only if 2k; 4+ ko = n. In
view of this, we see that there are precisely 2 inequivalent self-dual codes of length 2,
2 inequivalent self-dual codes of length 3, 5 inequivalent self-dual codes of length 4
and 8 inequivalent self-dual codes of length 5 over F5[u]/(u?). Moreover, we note that
there is only one inequivalent self-dual code of length 2 over F7[u]/(u?), while there
are precisely 2 inequivalent self-dual codes of length 3 and 6 inequivalent self-dual
codes of length 4 over F7[u]/(u?).

As special cases, one can deduce enumeration formulae for all self-orthogonal and
self-dual codes over quasi-Galois rings and Galois rings of odd characteristic from
Theorems [3.2.3]3.2.5, [3.3.3,3.3.5, [3.4.5 and [3.4.6. When R., is a quasi-Galois ring
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or a Galois ring of even characteristic, we will observe, in Chapters[4and [p], that each
self-orthogonal (resp. self-dual) code over R._2, can not be lifted to a self-orthogonal
(resp. self-dual) code over R., by employing the construction method given in
the proof of Theorem [3.4.1 (see Examples [4.2.1 and [5.2.1). Thus, the enumeration

technique employed here cannot be extended as it is to count self-orthogonal and self-

dual codes over finite commutative chain rings of even characteristic. In Chapters
and [5] we shall obtain explicit enumeration formulae for self-orthogonal and self-
dual codes of an arbitrary length over quasi-Galois rings and Galois rings of even

characteristic, respectively.
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Enumeration formulae for
self-orthogonal and self-dual codes
over quasi-Galois rings of even

characteristic

4.1 Introduction

Recall that a quasi-Galois ring is a quotient ring of the form F,[u]/(u®). It is easy
to see that F[u]/(u®) is a finite commutative chain ring with the maximal ideal (u)
of nilpotency index e and the residue field FF,. One can easily see that the quasi-
Galois ring IF,[u]/(u®) is of even characteristic if and only if ¢ is an even prime power.
In this chapter, we obtain explicit enumeration formulae for all self-orthogonal and

self-dual codes of an arbitrary length over the quasi-Galois ring For[u]/(u¢) for each

81
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integer e > 2.

This chapter is organized as follows: In Section we first outline the recursive
construction method employed in Chapter [3| (see the proofs of Theorems @ and
3.4.3) in the particular case of codes over the quasi-Galois ring F,[u]/(u’), and we
further note that when ¢ is an even prime power, say ¢ = 2", each self-orthogonal
(resp. self-dual) code over Fyr[u]/(u*~2) can not be lifted to a self-orthogonal
(resp. self-dual) code over For[u]/(u’) by applying this construction method. We
also derive a necessary and sufficient condition under which a self-orthogonal code
over Fo[u]/(u’~%) can be lifted to a self-orthogonal code over Fyr[u]/(uf) using
this construction method, where ¢ > 4 is an integer (Theorem [4.2.1). In Sec-
tion [4.3] for a positive integer n and non-negative integers ki, ks, ..., k. satisfying
2ky + 2ky + -+ 4 2ke—ip1 + keiro + Keiys + - + ki < mfor [R] < i <e, we
provide a modified recursive method to construct self-orthogonal and self-dual codes
of the type {ki, ko, ..., k.} and length n over Fyr[u]/(u®) from a self-orthogonal code
of the same length n and dimension ki + k2 + - -+ + kpg) over Far, and vice versa.
In Section we provide explicit enumeration formulae for all self-orthogonal and
self-dual codes of an arbitrary length over For[u]/(u¢) for each integer e > 2 by
applying the modified recursive method (Theorems 4.4.3 and [4.4.4). In Section
with the help of the enumeration formulae obtained in Section and by applying

the classification algorithm, we obtain complete lists of inequivalent self-orthogonal
and self-dual codes of lengths 2,3,4 and 5 over the ring Fy[u]/(u?) and of lengths
2,3 and 4 over the ring Fy[u]/(u?).

Throughout this chapter, let p be a prime number and r be a positive integer.
Let R. denote the quasi-Galois ring F,-[u]/(u®), where e > 2 is an integer. Here
we recall, from Chapter |2 that the quasi-Galois ring R, is a finite commutative
chain ring, all of whose ideals are given by {0}, R., (u), (u?),..., (u"!) and that
[(u?)| = (pr)¢7 for 0 < j < e. From this, it follows that the ideal (u) is the
unique maximal ideal of R, whose nilpotency index is e and that the quotient ring
R./(u) ~ F,» is the finite field of order p”. Further, we note, by Theorem @(d),
that each element a € R, can be uniquely expressed as a = ag+uaj +- - - +uta._,
where ag, ay, ..., a.—1 € Fyr. Note that the element a € R, is a unit in R, if and only

if ag # 0. It is easy to observe that each matrix A € M,,xx(R.) can be uniquely
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expressed as A = Ag+uA; + - +utA._q, where Ag, A1, ..., Aee1 € Mysi(Fpr).
From this point on, let [B], denote the column block matrix whose ith block is the
matrix B; € My, yn(Fpr) for 1 <i < a.

In the following section, we will outline the recursive construction method em-
ployed in Chapter [3| in the particular case of codes over the quasi-Galois ring R,
and illustrate that not every self-orthogonal code over R, 5 can be lifted to a self-
orthogonal code over R, using this method in the case when p = 2, where ¢ > 4 is
an integer. We will also characterize all self-orthogonal (resp. self-dual) codes over

Ry that can be lifted to self-orthogonal (resp. self-dual) codes over Ry.

4.2 QOutline of the recursive construction method

Throughout this section, let ¢ > 4 be an integer, and let ki, Ko,..., K1 be
non-negative integers satisfying n = k1 + ko + -+ + Ky + Key1 and 2k + 2Ko +
oo 4 2K i1 + Kp_iqo + Ko_jysz + -+ kg < n for (”TW < ¢ < /. Here we observe
that the map = : R, — Ry_o, defined as @ = ag + ua; + --- + v 3a,_3 for all
a=ayg+ua+---+u"la,_; € Ry, is a canonical epimorphism from R, onto Ry_,. In
fact, for each element a = ag +uay + - - - +u‘"tay_; € Ry with ag,ay,...,a,1 € Fpr,
there corresponds a unique element @ = ag + ua; + - - - + v 3a,_3 € Ry_o.

Now let C,_5 be a linear code of the type {k1 + ko, K3,...,k¢1} and length n

over R, o with a generator matrix

Ty
T,
Gg_g = uTé s (4.2.1)
u =Ty,

where © 40 © 407 3 )
0 0 0 0 - j
Ty _ Iy, Ayl Alp 0 Alg s Ay +Zuj Uy’
Tg’ 0 Ikz Ag% Aé,ng Ag,g j=1 U2(])

with I, as the k; X k; identity matrix over Fr, Ag?j) € Myxnjy (Fpr) for 1 <i <2

. . 0 0 j
and i < j <02, AC) € Mywiupiners) Eor)s ALY € Moysupiners) Epr)s [UD], €



Enumeration formulae for self-orthogonal and self-dual codes over
84 quasi-Galois rings of even characteristic

M1 rg)xn(Fpr) for 1 < j <€ —3, and the matrix Tj € M, xn(R¢—2) is of the form
T = Z0 +uZM + - a2 with 20, 20, 2 € My n(Fyr)
for3<y</{—1.

Next, let C; be a linear code of the type {k1, ko, ..., Ke_1, e} and length n over

Ry, with a generator matrix

T
UTQ
u?T
Gy = R (4.2.2)
u€—2n_1

uefng

where
Tl = T{ + u€72 0 RS 0 O Ul(ZE_Q)] + uéil [O ct 0 0 Ul(zg_l)

with Ul(’gz_Q) € My x(wptrors) Fpr), Ul(fe_l) € My, x(wp+rer)(Fpr), the matrix T, is of

the form
_ _ . -
T, =Ty +u ™[00 - 040" with ALY € Meyxiuine) (Fyr)
for 2 <y < /¢ —1, and the matrix T} is of the form

T, = |:0 0O --- 0 Ag)):| with Aé?e) c MHZX(HZ+H€+1)(FPT>'

Now if the code C; is self-orthogonal (resp. self-dual), then by Theorem [2.2.4(a),
we see that the code C,_o is also self-orthogonal (resp. self-dual). Conversely, if
the code Cy_s is self-orthogonal (resp. self-dual), then the code C; is self-orthogonal
(resp. self-dual) if and only if there exist matrices Ul(f[m € My s(rptress) Fpr),

-1 - .
Ul(j s M xretresy) Fpr), Az(;,é v ¢ M, x(rotrgsr) (Fpr) for 2 <y < £, satisfying
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the following system of matrix equations over [F

0) (-2 0—2) ,(0)t (t—2—
AU Ul PN = _ZU(J =
—1)t t
AU U o -0 vl?)
/-1 0 1t E 1_
+Uly VA + o ol Ul = - Z yPyt-i-ir
(4.2.3)
0) 4(£—2)t e 2— £-2) (0t
ARAG = Z oo ol AY)
AgogA;ee—y)t _ i Ul(i)Zg—y—i)t for3<y<(—1,
T i=1
0 0)t
A%AL = o |

When p is an odd prime, working as in Theorem @, we see that the system (4.2.3
of matrix equations has a solution, which implies that the code C; is self-orthogonal
(resp. self-dual), from which it follows that each self-orthogonal (resp. self-dual)
code of the type {k1 + Ko, K3,...,Kke—1} and length n over R,_5 can be lifted to a
self-orthogonal (resp. self-dual) code of the type {k1, k2, ..., k¢} and length n over
Ry. On the other hand, when p = 2 (i.e., Ry = For[u]/(u’)), the system ([4.2.3) of
matrix equations need not have a solution, and hence every self-orthogonal (resp.
self-dual) code of the type {k1 + K2, K3,...,ke—1} and length n over Ry, 5 can not
be lifted to a self-orthogonal (resp. self-dual) code of the type {k1, ka, ..., k¢} and

length n over R,, which we illustrate in the following example.

Example 4.2.1. Let p=2,r =1, =4, n =3, k1 = 1 and ks = k3 = kg = O.
Here we have Ry = Fy[u]/(u*) and Ry = Fslu)/(u?). Let Dy be a linear code of the
type {1,0} and length 3 over Ry with a generator matriz Go =[1 1 0]+ wu[0 1 0].
By Theorem @(&), we see that the code Dy is a self-orthogonal code over Rs.
Now consider the linear code Dy of the type {1,0,0,0} and length 3 over Ry with a

generator matrix
[1 1 0]+u0 1 0]+4%0 a +u’[0 b d], where a,b,c,d € Fs.

Note that corresponding to the codes Dy and Dy, we have Ag?i = [1 0], U(l)
0 1 0], U1(,24) =la ¢ and U(3) = [b d|, and one can observe that the resulting
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system (4.2.3) of matriz equations has no solution. From this, it follows that the self-
orthogonal code Dy can not be lifted to a self-orthogonal code of the type {1,0,0,0}
and length 3 over Ry.

However, there are self-orthogonal codes of the type {k1 + Ko, K3,..., K1}
and length n over R, 5 that can be lifted to self-orthogonal codes of the type
{K1, Ka,...,ke} and of the same length n over Ry. The following example illustrates
this.

Example 4.2.2. Letp=2,r=1,n=3,{=4, k1 =1 and ko = k3 = k4 = 0. Here
we have Ry = Folu]/(u') and Ry = Falu]/(u?). Let By be a linear code of the type
{1,0} and length 3 over Ry with a generator matriz [1 1 0]+u[0 1 1]. By Theorem
@(a), we see that the code By is a self-orthogonal code over Ry. Now consider the
linear code By of the type {1,0,0,0} and length 3 over Ry with a generator matrix

1 1 0]+wu0 1 1]+4%0 a +u’[0 b d], where a,b,c,d € Fs.

Corresponding to the codes By and By, we have Ag(ﬁ =[1 0], Ul(l) =0 1 1], U1(,24) =
l[a ] and Ul(,?:l) = [b d], and the resulting system (4.2.3) of matriz equations has a
solution. In fact, one of the solutions of the system 15 given by U1(,24) =1[1 1]
and U1(,34) = [1 1], which gives rise to a self-orthogonal code By of the type {1,0,0,0}

and length 3 over R, with a generator matrix
11 0]+wu0 1 1]+¢*0 1 1]+*0 1 1].

This shows that the self-orthogonal code By of the type {1,0} and length 3 over Ry
can be lifted to a self-orthogonal code of the type {1,0,0,0} and length 3 over Ry.

This suggests that when p = 2 and ¢ > 4, only those self-orthogonal codes of the
type {Kk1 + Ka, K3, ..., ke—1} and length n over R, 5 can be lifted to self-orthogonal
codes of the type {k1, ko, K3, ..., k¢} and of the same length n over R, for which the
corresponding system (4.2.3) of matrix equations has a solution.

A symmetric matrix A is said to be alternating if it satisfies Diag(A) = 0. In

the following theorem, we characterize all self-orthogonal (resp. self-dual) codes of
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the type {1 + K2,Ks,...,ke_1} and length n over R, 5 that can be lifted to self-
orthogonal (resp. self-dual) codes of the type {k1, ko, ..., K1, K¢} and length n over

R, with the help of the construction method outlined above.

Theorem 4.2.1. Let p = 2, and let £ > 4 be a fixed integer. Let Cy_o be a self-
orthogonal (resp. self-dual) code of the type {k1+ ko, K3, ..., ke—1} and length n over
Ry_o with a generator matriz Gy_o (as defined by ) Then the code Cy_o can
be lifted to a self-orthogonal (resp. self-dual) code C, of the type {k1, Ko, ..., Ke_1,Ke}
and length n over Ry, with a generator matriz G, (as defined by ) if and only
if the matrix Ul(Le_TlD € M, xn(Faor) satisfies

-1

Dz’ag(Ul(L 2 J)Ul(LTJ)It) =0,

LZ%IJ)UI(LZ%J)t

i.e., the matriz Ul( 18 alternating.

Proof. By Remark [3.4.1, we see that Ag?g is a full-row rank matrix over For. Here

one can easily see that the code C;_5 can be lifted to a self-orthogonal (resp. self-
dual) code C; of the type {k1, Ko, ..., Ki_1, k¢} and length n over R, with a generator
matrix Gy if and only if the system of matrix equations in unknowns Ul(f[m c
Mﬁlx(ﬂﬁwﬂ)(FpT)? Ul(,ze_l) € MmX(NeerH)(Fp’")a Ag(fﬁ_y) € M@X(HHWH)(FW) for
2 < y < /¢, admits a solution. Now by applying Lemma [2.1.1, the desired result

follows. L

In the next section, we will present a modified recursive method to construct
self-orthogonal and self-dual codes over R, from self-orthogonal codes over Fqr, and

vice versa.

4.3 A modified recursive method to construct self-
orthogonal and self-dual codes over the ring
R. from self-orthogonal codes over [y

From now on, throughout this chapter, we assume that p = 2 and e > 2. Let us
define
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This gives [§] = s+ 0, where § = 0 if e is even, while § = 1 if e is odd. Let
n be a positive integer, and let ky, ko, ..., kei1 be non-negative integers satisfying
n=ki+ko+---+keyr and 2k +2ko+- - -+2ke_j11+ke_izot ke i3+---+k; <nfor
s+1 < i <e. Further, we define ng =0 and n; = k1 + ko +-- -+ k; for 1 <i<e+1.
For positive integers a and < e, let (B),,3 denote the block matrix whose (i, j)th
block is the matrix B;; € My, x,,,(For) for 1 <i < aand 8 < j < e. Now we

define linear codes satisfying the property (x) as follows:

Linear codes satisfying the property (x): For an integer e > 3, let ¢ be a fized
integer satisfying 2 < € < e, and let {, = ng Let C; be a linear code of the type

{ns_e,41,ks—0,42, -, ksrore, } and length n over Ry with a generator matriz

T
15

Gg - Ts_gl+1 , (431)

UTS—Zl +2

-1
K Ts+0+€1_

where for 1 <h <s—/{;+1,
-1 .
T=T" +Y wU
j=1

with T,EO) € My, xn(For), U,Ej) € My, xn(For) for 1 < j < £ —1, and the matriz
Toty4i € My, . xn(Re) to be considered modulo u= for 2 < i < 0. We say
that the code C, satisfies the property () if the matrices U,Ey)U,Ey)t are alternating
for all integers h and y satisfying 1 < h <min{s — {1+ 1,s+60 —y} and 1 <y <
min{l — 1,s 4+ 0} with y # s + 6.

Example 4.3.1. Lete=5,r=1,n=6,ky =ky=ky=kys=ks =1 and ¢ = 3.
Here we have Ry = Fylu]/(u®) and Ry = Falu]/{u3). Let Cs be a linear code of the
type {2,1,1} and length 6 over R3 with a generator matriz
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10 1 u+u? 14+u® 1+u
01 0 14w u 0
0 0 v ut+u® u? 0
000 u? u? 0
Note that
(1)
U 000101
o = and [Ul(”] = [0 0011 0.
U, 000110

It is easy to observe that the matrices Ul(l)Ul(l)t, U2(1)U2(1)t and Ul(z)Ul(Q)t are alternat-
ing, which implies that the code Cs satisfies the property (x).

One can easily observe that any self-orthogonal code of the type {ki, ka, ..., ke}
and length n over R, satisfies the property (x). In this section, we will start with
a self-orthogonal code Cy of length n and dimension ns, 9 over Fyr, and we will
construct a self-orthogonal code of the type {ns, ks;1} and length n over Ry satisfying
the property (x) and with the 1-th Torsion code as Cy if e is even (see the proof
of Proposition m, while we will construct a self-orthogonal code of the type
{ns, ksi1, ksi2} and length n over Rj satisfying the property (%) and with the 2-th
Torsion code as Cy if e is odd (see the proof of Proposition . We will also count
such codes over Ry and Ry (see Propositions|4.3.1 and 4.3.2). Further, for4 < ¢ <ee,

given a self-orthogonal code Cy_o of the type {ns_s 12, ks—r,43, -, kstg4e,-1} and
length n over R, satisfying the property (x), we will construct a self-orthogonal
code of the type {ns_¢ 41, ks—e;+2,- -, ksrore, } and length n over Ry satisfying the
property (*) and with the (i + 1)-th Torsion code as Tor;(Cy—g) for 1 <i < £ — 2,
and we will count such codes for 4 < ¢ < e, where {; = |£| (see Propositions @
and . These results give rise to a modified recursive method to construct self-
orthogonal and self-dual codes of the type {k1, ko, . .., k.} and length n over R, from
a self-orthogonal code of the same length n and dimension n,.g over Fyr. We will
employed this modified recursive construction method to count all self-orthogonal
and self-dual codes of length n over R, in Section

Now if C. is a self-orthogonal code of the type {ki,ko,...,k.} and length n
over R., then we see, by Lemma @, that its Torsion code Torg¢(C.) is a self-

orthogonal code of length n and dimension n,, ¢ over Far. We next make the following
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observation.

Remark 4.3.1. Let us consider a self-orthogonal code of length n and dimension

ngrg over For with a generator matrix

0 0 0 0 0 0
0] [h AQ AD o A%, o AT, D
7(0) 0 I A0 4O . A(Oz, A(Og
Go= |2 | = T T2 TRener o 2ot el (4.32)
0 0 0
0 Lo 0 0 o g oAU, AT,
where columns of the matriz Gy are grouped into blocks of sizes ki, ka, ..., ke, Kkey1,

Iy, is the k; x k; identity matriz over For and Agg.) € My, (Far) for 1 <i<s+6

and 1 < j < e. Since the matriz Gy generates a self-orthogonal code of length n

o (

and dimension ngyg over For, we have GoGf = 0, which implies that the matriz
(A(O))S+97S+9 1s a full row-rank matrix over For. Further, by permuting the columns
of the matriz Gy, we can assume, without any loss of generality, that the matrices
(A sror1, (A1 ipyn, ooy (AD)yo A§?2 are of full row-rank.

We also need the following key lemma to count self-orthogonal and self-dual

codes over R,.

Lemma 4.3.1. Let v and 7 be fized integers satisfying 1 < v < s and 1 <17 <
s+0—1. Let A, X € My, «n(Far) be two matrices of the form

Iy, A1,1 A1,2 e Al,'u—l e Al,e—l A1,e
0 I A2,2 T Az,v—l T Az,e—l A2,e
A = . . . . . . . .
0 0 0 - I Aper1 Ave
and
Xl 0 -0 Xl,‘r+1 X1,7'+2 e X1,7'+U e Xl,e

X — X2 . 0 -+ 0 0 X2,T+2 U X2,T+U U X2,e
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where columns of the matrices A and X are grouped into blocks of sizes ki, ks, ..., ke,
Key1, Iy, is the k; X k; identity matriz over For, A;; € My xr,,, (For) for 1 <i <w
and i < j < e and X;, 5 € My, sn; (Far) for 1 < iy <wvandip +7 < gy <
e. Suppose that the matriz (A)y 10 € My, xn-n, o)(For) is of full row-rank. Let
B € M, «n,(For) be such that Diag(B) = 0. Then for 1 < w < v, the number of

solutions of the system

j1+1<

t t
AXt'+ XA' = B } (43.3)

and Diag(XthL) = 0 forl1<h<w

of matriz equations in the unknown matric X € M, xn(For) is given by

T+v
Z kini—r—1+ny (ne+1 _n7'+u)_nw_

(2r)i:T+2

no(ny—1)

Proof. To prove the result, let w be a fixed integer satisfying 1 < w < v. Let us
write A = (a;) and X = (x;), where a;’s and x;’s are the rows of the matrices A and
X, respectively. Let d;; denote the (7, j)-th entry of the matrix B for 1 <i,j < n,,.
We note that d;; = 0 for 1 < ¢ < n,. We next observe that the system (4.3.3

of matrix equations is equivalent to the following system of equations in unknowns

X1,Xo,...,X,, over For:

v

a; - X; + a; - X; = dz‘,j for 1 <1 <j < Ny, (434)

x;-%x; =0 for 1 <i < mn,,. (4.3.5)

We further observe that for each integer j satisfying 1 < 5 < n,, there exists a

), where 0 denotes the

zero vector of length ny, 4, and X;l_nbj " denotes the vector of length n — M, 47

unique integer b; satisfying 1 < b; < v and ny,—1 +1 < j < ny, and that the
corresponding unknown x; is of the form x; = (0 X;L_nbj o

obtained from x; after deleting the first n; . coordinates. This implies that the
first ny, 4, coordinates of x; are zero for ny, 1 + 1 < j < ny,, which further implies

that the number of variables in x; are n — ny, 4, for ny, 1 +1 < j < ny,. For

. ~ n—my, 4+r
1§]§nv,1etszxj ’

n — Ny, 4, obtained from x; (resp. a;) after deleting the first ny, . coordinates. In
view of this, equations (4.3.4) and (4.3.5) are equivalent to the following system of

(resp. a; = a:_nbﬁT) denote the vector of length
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equations in unknowns X1, X, . .., X, over Fo:
§Z§j+5]§22d27] f0r1§i<j§nv,

This is equivalent to the following system of equations

ﬁlij—l—’éjil - di,j for1§i<j§nva

1'x, = 0 for 1 <i <n,,

(here 1 denotes the all-one vector having the same length as that of X;), which can

be represented in the matrix form as follows:

x4 0 1
X5
0 1
~t ~ ~
X d1 2 an al
n ]
Al | = ) , where A=
an"l‘l :
din, apn, a;
>t
xnufl
X! a a
Ny dnv— 1,Nv aTLU anv -1

Since (A)ypir is a full row-rank matrix over For, we observe that the vectors
ay "t ay "t ... al~ "+ (obtained by deleting the first n.., coordinates from
aj,asg, ..., a,,, respectively) are linearly independent over For for 1 < ¢ < v. In par-

ticular, the vectors aj, as, . .., a,, are linearly independent over Fy-. We further note

T+v
that the matrix A has order (nw + W) X ( 2;2 kini—r—1 4 ny(nes1 — nTH,)) )
=T
Now we assert that the rows of the matrix A are linearly independent over Fa-.

To prove this assertion, we suppose, on the contrary, that the rows of the ma-
trix A are linearly dependent over Fyr, which implies that there exists a non-zero
symmetric matrix (5; ;) € M, xn, (Far) such that

Ny

Bil+) fBija; = 0 forl<i<n,, (4.3.6)
=1
i
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Zﬂmaj = 0 forn,+1<i <n, (4.3.7)
J?ﬁh

and f;; = 0 for n, +1 < i < n,. Since the vectors a;,ay,...,a,, are linearly

independent over [Fyr, the system (4.3.7) of equations implies that 8;; = 0 for
ny+1<i<mn,and 1l < j(#i) <n,. This gives §;; = 0 for n,+1 <i<n,and 1 <
j < ny. As the vectors aj, @y, . . . , a,, are linearly independent over For, by (1.3.6), we
must have (3, . 7é 0 for some integer z satisfying 1 < z < n,,. Further, by , we

get 17" = Z B ,Bz,ja?_w” for some integer ¢ satisfying 1 < ¢ < v, from which
J_

J#z
it follows that f, , # () for some integer g satisfying 1 < g(# z) < n,. By (4.3.6)
again, we get f,,1 = Z B,.;3;, which implies that 8, 1" = 37 ;a7 """ for
j=1 J=1
J#9 J#g
some integer y satisfying 1 <y < v. From this, it follows that
1V = ZB 2B-5a) " and (4.3.8)
J#z
Bggl" T = Z B, ?1 e (4.3.9)
J1=1
n#g
Now the following two cases arise: (i) ¢ =y and (ii) ¢ # y.
(i) Let £ = y. In this case, equation (4.3.9) is equivalent to
/39 gln T = Zﬂgh e
Ji=1
n#g
From this and by equation (4.3.8), we get
2/8979/8 Bz,]an e = Z /897]1 ;Ll n£+7'
Jj= J1=1
J#z 179
Since the vectors a; """ a; "7, ..., a,, """ are linearly independent over

Fyr, we get 3, . = 0, which is a contradiction.
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(ii) Let ¢ # y. In this case, let us suppose, without any loss of generality, that
¢ <y, which implies that n — ngr, > n — n,.,. Now by equation (4.3.8), we
get 1" "Mt = Zwl B;;BZ7ja?_ny”. From this and by equation (4.3.9), we get

j:
itz

Nw Nw
—1 — —
§ :597952:,2;5243? T = E :Bg,jla;'ll e

7=1 n=1
J#z n#g
. n—m n—m n—nm . .
Since the vectors a; *"",a, “7T,...,an, ' are linearly independent over

Fyr, we get 3, . = 0, which is a contradiction.

This implies that the rows of the matrix A are linearly independent over For. From

this, the desired result follows immediately. O

In the following proposition, we show that given a self-orthogonal code Cy of
length n and dimension ng over Fy, there exists a self-orthogonal code Cy of the
type {ns, ksy1} and length n over Ry satisfying the property (%) and Tor;(Cs) = Cy.
We also count all distinct self-orthogonal codes of the type {ng, ks11} and length n
over Ry satisfying the property (x) and with the 1-th Torsion code as Cy. The proof
of the following proposition also provides a method to construct a self-orthogonal
code of the type {ns, ks11} and length n over Ry satisfying the property (x) from a

given self-orthogonal code of length n and dimension n over Fyr.

Proposition 4.3.1. Let Cy be a self-orthogonal code of length n and dimension ng

over Far.

(a) There exists a self-orthogonal code Cy of the type {ns, ksy1} and length n over
Ry satisfying the property (x) and Tori(Cy) = Co.

(b) Moreover, each self-orthogonal code Cy of length n and dimension ng over Far

gives rise to precisely

s5+2
>0 kini—atns(n—nsy2)—ns—1—

(@)™

ns(ns—1)
2

ks+1 +n— Ng41 — N

ks—i—l or

distinct self-orthogonal codes of the type {ns, ksi1} and length n over Ry sat-
isfying the property (x) and with the 1-th Torsion code as Cy.
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Proof. To prove the result, we assume, without any loss of generality, that the code

Co has a generator matrix

T1( ) Iy, Aﬁi Ag% Agg_l A§,2_1 A§2
© ORNIC) (0) (0)

GO — [T(O)]s — T2 _ O ]kg A.2’2 AQ,‘S 1 A27'€71 A‘27€ 7
7O 0 0 0 I A a0

where columns of the matrix Gy are grouped into blocks of sizes ki, ko, ..., ke, kei1,
Iy, is the k; x k; identity matrix over For and Ag?j) € My (For) for 1 <i <'s
and ¢ < j < e. By Remark [4.3.1, we assume, without any loss of generality, that the
matrices (A©), o1, (AQ) 10, ..o, (A)g, g, A are of full row-rank. Since the

l,e

code Cy is self-orthogonal, we have GoG% = [T©],[T©]% = 0.

Now to show that there exists a self-orthogonal code of the type {ns, ksy1} and
length n over Ry satisfying the property (x) and with the 1-th Torsion code as Cy,

let us define a matrix Gy over Ry as

(7P [+ uuV]
7y 7" + uU"
A I AT
_UTﬁ)l_ I UTs(i)l
with the matrix [U()], of the form
()] [ 1 1 1 1)]
UYL {0 0 ARy ATy - AL e AL
(1) (1) (1) (1)
[U(l)]s _ UQ _ 00 0 AQ,S A2,s+1 e A2,e :
1 1 1
v oo 00 AN AR

where AE}} € Mpxky ., (For) for 1 <@ < sandi < j < e and the matrix Tﬁ)l is of

the form

2 _ 0 0
Ts+1 - [0 0 [ks+1 A£+)1,s+1 Ag—gl,e]
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with A, € My, ny,, (Far) for s +1 < j <e.

Let Cy be a linear code of length n over Ry with a generator matrix Gs,. It
is easy to see that the code C, is of the type {ns, ksy1} and Tori(Cy) = Co. By
Theorem @(a), we see that the code C, is a self-orthogonal code over R, satisfying
the property (x) if and only if there exist matrices [U™M], and Ts(i)l satisfying the
following system of matrix equations over For:

[TO)[UD) + [UW],[TO] = o, (4.3.10)
Diag(U"UMY) = 0 for 1 <h<s—1, (4.3.11)
AU AR (4.3.12)

Since the matrix (A(O))S,SH is of full row-rank, we see, by Lemma {4.3.1, that

there exists a matrix [U™M], satisfying (4.3.10)) and (4.3.11]) and that such a matrix
[UW], has precisely

sk2 ns(ns—1)
> kini—atns(n—nsyo)—ns_1— -5

@)=

distinct choices. Further, by Lemma [2.2.1 and by equation ([2.2.2), we observe that
there exists a matrix Tﬁ)l satisfying (4.3.12) if and only if the Torsion code Tory(Cs)
satisfies Cy C Tory(Cs) C Col. From this, we observe that the number of choices for

the matrix 7T’ (i)l satisfying (4.3.12) is equal to the number of choices for a linear code

S
C’ of length n and dimension n,,, over Fy satisfying Cy C C’ C Cy for a given choice
of Cy. Further, for a given choice of Cy, we see, by Theorem [2.3.9, that there are
precisely [k“ﬁ?;ff*lfns]r distinct choices for the code C’ satisfying Cy C C’ C Cy,

and hence the matrix T’ S(i)l has precisely [ks+ LR g1 s

ks+1
one can easily observe that each of the distinct choices of the matrices [U(V)], and

Tﬁ)l satisfying (4.3.10)-(4.3.12)) gives rise to a distinct self-orthogonal code Cs of the

}W distinct choices. Further,

type {ns, ks11} and length n over Ry satisfying the property (x) and T'or;(Cz) = Cp.

From this, the desired result follows immediately. O

In the following proposition, we show that given a self-orthogonal code Cy of
length n and dimension n.; over For, there exists a self-orthogonal code C3 of the

type {ns, ks11, ksio} and length n over R3 satisfying the property (x) and Tory(Cs) =
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Co. We also count all distinct self-orthogonal codes of the type {ng, ksi1, ksio} and
length n over Rj satisfying the property (x) and with the 2-th Torsion code as Cy.
The proof of the following proposition also provides a method to construct a self-
orthogonal code Cs of the type {ng, ksi1, ksio} and length n over Ry satisfying the
property (x) from a given self-orthogonal code Cy of length n and dimension n,,

over For.

Proposition 4.3.2. Let Cy be a self-orthogonal code of length n and dimension ng,q
over For.
(a) There exists a self-orthogonal code C3 of the type {ng, ks 1, ksi2} and length n
over Rs satisfying the property (%) and Tors(Cs) = Co.

(b) Moreover, each self-orthogonal code Cy of length n and dimension ng.1 over
For gives rise to precisely
s+2 s+2 5
> kini—2+j§4 kjnj_s+(ns+1+ns)(n—nsyz—ns)+ng—ns—1 |:n8+1} |j%+2 + N — Ngyo — Ny
27‘

()=

Ng ks-‘,—? or

distinct self-orthogonal codes of the type {ns, ksy1, ksi2} and length n over R
satisfying the property (x) and with the 2-th Torsion code as Cy.

Proof. To prove the result, we first choose an n;-dimensional linear subcode B; of
the code Cy. By Theorem [2.3.9, we see that the subcode B; has precisely [”nt 1}?

distinct choices. Further, without any loss of generality, we assume that the code Cy

has a generator matrix

[ (0) ] [ 0 0 0 0 0) ]
0 (L, AP AT AR Al A
T(O) 0 I A(O) . A(U . A(O)_ A(O)
GO _ [T(O)]erl _ 2 _ . ’.€2 .2,2 .275 . 2,.6 1 .2,e
0 0 0
_TS(+)1_ | 0 0 0 T Iks+1 e Ag+)1,e—1 Ag—gl,e_

and its subcode B; has a generator matrix

[ (0)] 0 0 0 0 0
O L, A% AT AR AP, AR
0 0 0
7o), V| [0 Ln Ao ALY AN AY) |
TS(O) 0 0 0 - I - Ag?e)_l As(,]e
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where columns of the matrices Gy and [T?)], are grouped into blocks of sizes
ki, ko, ... ke, ket1, Iy, is the k; x k; identity matrix over For and A € My, (Far)
for 1 <7< s+ 1and i < j < e. Further, by Remark [I, we assume, with-
out any loss of generality, that the matrices (A®), 10, (A)s 113, ..., (AD)y, 4,
A§?2 are of full row-rank. Since the code Cy is self-orthogonal, we have GoG§ =
[T [TOTy = 0.

Now to show that there exists a self-orthogonal code of the type {ng, ksi1, ksio}
and length n over Rj satisfying the property (x) and with the 2-th Torsion code as

Co, let us define a matrix GG3 over Rs3 as

T® -Tl(o) +uUM + uzUl(Q)-
TP T + ) + w2U?
Gy — : _ :
T 7" 4+ uU 4+ w?U®
UTs(i)l UTs(i)l
u’ Tﬁé UQTS;)Q

with the matrices [U(@], for a € {1,2}, T, +1 and TJr2 of the forms

[17@)] 0 0 AL, A, Al A

o [ 0 A D)
o I S T S S S
T8 = T +ufo 0 Al L, o AR ] and
Ts(i)Q = [0 o 0 [ks+2 Agz,sw AQQ,E]’

where AZ(?) € Mxkj (For) forl <i < sandita <j<e, ASF)LU € M1 xkyr (Faor)
for s+2 <wv <eand Agu € M oxky,, (For) for s+2 < b <e.

Next, let C3 be a linear code of length n over R3 with a generator matrix Gj.
It is easy to see that the code Cs is of the type {ns, ksi1, ksi2}, Tor1(Cs) = By and
Tore(C3) = Cop. By Theorem @(a), we see that the code Cs3 is a self-orthogonal
code over Rj satisfying the property (*) if and only if there exist matrices [U™M],,
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U@, [0 -0 ASZLHQ ASQLJ and Ts(i)2 satisfying the following system of
matrix equations over [For:

[T(O)]S[U(l)]g_{'[U(l)]S[T(O)]Z = 0, ( )

Diag(UVUYY) = 0for 1 <h<s, (4.3.14)

TP+ UPLITOT, = [UWLUYIL, (4.3.15)

( )

( )

Dz‘ag(UE(Q)Ué(Q)t) = Qfor1</<s-—1,
t

0
[T(O)]S [0 0 Agl,sw Agr)Le] = [U(l)]sTstr)lt’

t
[T, [0 o 0 I, Agzsw Ai?z,e] = 0. (4.3.18)

As the matrix (A(O))S,SH is of full row-rank, we see, by Lemma 4.3.1, that there exist
matrices [UV], and [U®)], satisfying (4.3.13)-(4.3.16)), and that there are precisely

s5+2 s+2
> kini—a+ Y kjnj—3+2ns(n_ns+2)_ng_nsfl
(QT)i:S j=4

distinct choices for such a pair of matrices [UV)], and [U®)],. Further, for given
choices of the matrices [UV], and [U®)], satisfying (4.3.13))-(4.3.16)), we observe
that the matrix equation (4.3.17)) is equivalent to the following matrix equation

t
(AD), s [A§1+)1,s+2 Agm} :[U(l)]sTs(ﬂ)f (4.3.19)

over Fy-. As the matrix (A(O))sysﬁ is of full row-rank, the total number of choices for
the matrix [ASQLS 42 -ASQLG] satisfying (and hence the matrix [0 --- 0

ASQLM e ASELJ satisfying (£.3.17)) has precisely (2")ks+1(n=nsr27ns) Jigtinct
choices. Further, by applying Theorem [2.3.9 and Lemma [2.2.1 and working as in
Proposition @, we can show that there exists a matrix Tii)z satisfying and

s+2 +n_ns+2 —MNs
ksy2

that there exist matrices [UW],, [UP],, [0 -+ 0 A&)st Agl’e] and Ts(i)Q
satisfying (4.3.13)-(4.3.18)), which implies that there exists a self-orthogonal code

that the matrix Ts(i)Q has precisely [k Lr distinct choices. This shows

Cs of the type {ns, ksi1,ksio} and length n over Ry satisfying the property (%),
Tori(C3) = By and Tory(Cs) = Cy. Further, one can easily observe that each of the
distinct choices of the matrices [UW],, [U®)],, [0 -+ 0 A&)st AQL(J and
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Tﬁé satisfying (4.3.13])-(4.3.18) give rise to distinct self-orthogonal codes Cj of the
type {ns, ksi1, ks2} and length n over Rj satisfying the property (x), Tor(Cs) = By
and Tory(Cs) = Cy. From this, the desired result follows. O

Now let 8; = 0 if s is even, while ; = 1 if s is odd. Let £ be a positive integer
satisfying 4 < /¢ < s+ 6046y, and let {; = L%j In the following proposition, we show
that given a self-orthogonal code C;_o of the type {ns_ s 10, ks—t,43, - Kkstore,-1}
and length n over Ry_, satisfying the property (x), there exists a self-orthogonal
code C; of the type {ns_ ¢ 41,ks—e,42,---,ksrore, } and length n over R, satisfying
the property (%) and Tor;11(Cs) = Tor;(Co—2) for 1 < i < £ — 2. We also count
all such distinct self-orthogonal codes of the type {ns_s 11, ks—e, 42, - -, ksiore, } and

length n over R,.

Proposition 4.3.3. Let 6, = 0 if s is even, while 6, = 1 if s is odd. Let ¢ be a fixed
integer satisfying 4 < ¢ < s+ 0 + 61, and let {; = L%J Let Cy_5 be a self-orthogonal
code of the type {ns_¢ 19, ks—t,43,-- -, kstore,—1} and length n over R,_o satisfying

the property (x). Then the following hold.

(a) There exists a self-orthogonal code Cy of the type {ns_ o, +1,ks—t,42, - kssore, }
and length n over Ry satisfying the property (x) and Tor;.1(Cp) = Tor;(Co—_2)
for1<i</f—2.

(b) Moreover, each self-orthogonal code Cy_o of the type {ns_ o +2,ks_o,+3, ks—o, 14,

. kstore,—1} and length n over Ry_o satisfying the property (%) gives rise to

precisely
s+0+£1 s+0+£1
(27 g, Fmient 3 Rimi—eth {”s—mz] [/fs+e+el + 1= Nsorn, — Nty 11
ns—ﬁl—i-l 9r k8+9+£1 or
distinct self-orthogonal codes of the type {ns_¢ 11, ks—t,12,- -, ksrore,} and

length n over Ry satisfying the property (x) and with the (i + 1)-th Torsion
code as Tor;(Cp—3) for 1 < i < € —2, where A = (Ngig40,-1 + Ns—py41)(n —

2
Ngto1+0 — nsf€1+1) + Ng—p1+1 + ns—€1+1 — Ng—p4+2 — Ng—p41-
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Proof. To prove the result, we first note that the Torsion code Tor(Cp—3) is an
Ns—p, +o-dimensional code over Fy-. So we first choose an n,_g, 1;-dimensional linear
subcode B; of the code Tor;(Cy—2). By Theorem @, we see that the subcode B;
has precisely [2341+2] ) distinct choices. Further, without any loss of generality, we

s—L1+1 2
assume that the code T'ori(C,—2) has a generator matrix

0 0 0 o
21( ) Iy, Ag’% e Ag,i%yﬂ e Ag,i
7.0 0) s
Ii = [l (0)]5—€1+2 — 2 _ 0 Ik2 e 42,8—614-1 e A27€
T 0 0
- s(i)glJFZ_ | 0 0 o Iks—ll+2 o A£7€1+2,e

and its subcode B; has a generator matrix

0 0 0 0 0
L I O B IR
0 0 0 0
[T g1 = TQ() 0 D é,s)fel Ag,g—l Aég
s—i+1 — . - . . . . . . . 5
(0) (0) (0)
_Ts—€1+1_ i 0 0 e IkS*[l*f’l T As—£1+1,e—1 As—&—i—l,e_

where columns of the matrices H and [T(»],_, ;1 are grouped into blocks of sizes
ki, ko, . key ks, T, is the k; x k; identity matrix over For and AL € My, (Far)
for 1 <1 <s—¥¢ +2and i < j < e. Furthermore, by Remark @, we assume,
without any loss of generality, that the matrix (A®), s 11 s104¢, is of full row-rank.

We next assume, without any loss of generality, that the code C;_5 has a generator

matrix
[ TI(Z_Q) T [ Tl(O) + uU1<1) + u2U1(2) 4o uEfSUl(f—?’)
T2(€—2) T2(0) + U,U2(1) + U2U2(2) R u€f3U2(£_3)
-2 (0) 1) (2) —377(£=3)
G£72 = Ts(—€1—)&—2 = TS—£1+2 + UUS—fl-‘rQ + uQUS—Kl-i-Z + e + uz 3US—£1+2 )
(-2 (4—2)
UT87€1<)F3 UT87€1+3
-3 (1—2) —3p(—2
K 3Ts+e+el—1_ | u 3Ts(+9+)z1—1 i
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where [T(O)]S—El-f-? € Mns—él+2><n(]F2T)7 [U(j)]s—fl-‘rQ S -/\/lng gl+2><n(IF2T) for 1 S ] S

¢ — 3, and the matrix T(Zzlzjﬂ € My, _, ixn(Re—2) is of the form T(Z 621 = Zs(o)glﬂ +
(1) i— (—i—1) (0) (1) t—i—1)

U’Zs Zl—H +U’£ 1Zs l1+1 with Zs €1+Z’Zs—€1+i7 cee Zs l1+1 € Mks £1+1Xn<]F2r)

for3<ei</l—1.

Since Cy_y is a self-orthogonal code over R, o satisfying the property (x), by
applying Theorem [2.2.4(a), we get

[T(#m]s—hﬂ[T(€72)]g_£1+1 = 0 (mod 7/72),
[T(e_2)]87€1+1Ts(€;123*t2+,8 = 0 (modu'*F) for0<p<l-3,

T2 TSR = 0 (mod wftP ) for 2 < j < 0—land i+ <0+ 1,

Diag(U}(lV)U}(lV)t) = 0forl1<h<min{s—¥¢+2,s+60—v}and 1 <v </{-3.

Now to show that there exists a self-orthogonal code of the type {ns_s 11, ks_¢, 42, - - -,
ksigie, } and length n over R, satisfying the property (x) and with the 1-th Torsion
code as By and the (i + 1)-th Torsion code as Tor;(Cy—z) for 1 < i < £ — 2, let us

define a matrix G, over R, as

Tl(f) | Tl(Z_Q) + uz_QUl(e_z) + ug_lUl(Z_l)
70 1370 4 ut 20y 4ty
Go=| 1" — |2+ “U +uul, (4.3.20)
¢ s—01+1 —01+1 e1+1 z1+1 e
© ©
UTs—fl-‘rQ T —01+2
ul— ( ) ul- ( )
1Ts+9+£1 L 1Ts+9+f1 i

with the matrices [U(®], 4,41 for o € {€ — 2,0 — 1}, T(KL, L, for2<y</i—1and

Ts(-?e o of the forms
Uy 0 - 0 AP, o AT, L, e AR
g | oo o e
_Us(f)él+1_ _0 - 0 0 Ago_‘)zl+1,s—é1+1+a Agoi)fl—i-l,e_
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€ _ m(£=2) £— (L=y) (t-y)
Ts—€1+y - Ts—€1+y +u? [0 0 As—fllj+y,8+9+é1 T As—ﬁgi—iryﬁ] and
0 _ (0) (0)
Ts+9+€1 - |:0 - 0 Iks+9+21 AS-H9+Z178+9+Z1 T As+9+€1,e:| ’

where AEZ‘-) € Mk (
M,y 4 yxkss (Far) for s +0+ 4 <v < e and Ag(_):g_i_gl,b € M,
0+10 <b<e

Fy)for L<i<s—O+landita<j<e AT, e

(Fyr) for s+

s+0+0, Xkbt1

Next, let C; be a linear code of length n over R, with a generator matrix G,. It is
easy to see that the code Cy is of the type {ns_¢ 11, ks—t,49,- -, ksrore, }, Tor1(Cp) =
By and Tor;1(Cp) = Tor;(Cp—3) for 1 < i < ¢ —2. By Theorem @(a), we see that
the code Cy is a self-orthogonal code over R, satisfying the property (*) if and only

. . . _ _ o
if there exist matrices [U“2],_y, 11, [UYY)s g, 41, [0 - 0 A;glyﬁwl

Aie—_f?i)-‘ry,e } for 2 <y </¢—1 and Ts(-?o ¢, satisfying the following system of matrix

equations (4.3.21))-(4.3.27) over For:

-3
T2 [T 1 + Uy a [Ty = D U eg n[U2T 4,
j=1
(4.3.21)
2 ‘
TN, U g1 4 O ey 2 (TN gy = D (U ]ag U,
j=1
(4.3.22)
(t—2) -2y 1 = (t—2—j)t
0 - - j —2—
[T( )]8761+1 |:0 T 0 AS—Z1+2,S+9+€1 T AS—E1+2,6:| = [U(j)]sfel+1US—€1+%
j=1
_ 0
U D) Ty (43.23)
/—
70 A I R L o e (Y
[ Js—t141 [0 e 0 s—lit+y,s+0+0 S—€1+ya€] B Z[ Js—t1+1 s—li+y
=1
for3<y<e¢-—1, (4.3.24
0 0) 0 b
7 )]5—414—1[0 0 Dk gs, Aglore sro+0 "'As+9+€1,e] =0 (4.3.25
Diag(U\PUS ) = o, (4.3.26
Diag(U VU = o, (4.3.27

where 1 < h<s—/¢+2and 1 <v<s—/¢4+1.

Since the code C;_5 is a self-orthogonal code satisfying the property (x), so we
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have

3
Diag ( [U<J'>]sel+1[U<“f>]zMl) =0.
7=1

We also note that (A(O))s_gﬁl,sw%l is a full row-rank matrix over Fyr. Now by ap-
plying Lemma |4.3.1, we see that there exist matrices [U“~2],_,,;; and [UY Y], 41

satisfying (4.3.21)),(4.3.22), (4.3.26]) and (4.3.27) and that there are precisely

s+0+21 s+0+£1 9
(2r) Ze kini 1+ .%:H kjnj—o42ns 0y 41(n—Nst0y40) —Ms—tr2 =41 sty 1175 4y
= =

distinct choices for such a pair of matrices. Further, for a given choice of the pair
of matrices [U“?],_y, 41 and [U¥V],_,, 1 satisfying (@.3.21)),(#.3.22)), (#.3.26) and
(4.3.27), one can easily observe, for 2 < y < ¢ — 1, that there exists a matrix

[0 - 0 AYY e o AP, ] satistying (£:3.23) and (£:3.24) and that

such a matrix has precisely (27)Fs—¢1+s(=notore=ms—t141) distinct choices. Further-

more, by applying Lemma [2.2.1 and Theorem [2.3.9 and working as in Proposition
4.3.1, we see that there exists a matrix Ts(-?9+21 satisfying (4.3.25)) and that such a

matrix has precisely

Esiote, + 1 — Norore, — No—py41

ks+9+€1 or

distinct choices. Next, one can easily observe that each of the distinct choices of

: _ _ o o
the matrices [U2 ],y 41, [U V] g41, [0 -+ 0 Ai—eﬂy,swﬁl Ag_;ﬁrw] for

2<y</{-—1and TS(_?QMI satisfying (4.3.21))-(4.3.27)) gives rise to a distinct and

desired self-orthogonal code of the type {ns_gs 11, ks—e, 12, - - -, kstore, } and length n

over R,. From this, we get the desired result. O

Finally, let ¢ be a fixed positive integer satisfying s+60+6,+1 < ¢ < e, and let {1 =
LgJ In the following proposition, we show that given a self-orthogonal code C;_5 of
the type {ns_¢,+2, ks—t,43, - - -, ks+o+6,—1} and length n over R, satisfying the prop-
erty (x), there exists a self-orthogonal code Cy of the type {ns_¢, 11, ks—o, 42, - - Ksto1e, }
and length n over R, satisfying the property (x) and Tor;11(Cs) = Tor;(Co_5) for
1 < i <0 —2. We also count all such distinct self-orthogonal codes of the type

{ns—éﬁ-l) ks—fr‘r?v R ks+9+€1} and length n over RE-
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Proposition 4.3.4. Let { be a fized integer satisfying s+0+601+1 < < e, and let
0 = L%J Let Cy_q be a self-orthogonal code of the type {ns_s,+2, ks—t, 43, - - - s Ksto+6,-1}
and length n over Ry_o satisfying the property (x). Then the following hold.

(a) There exists a self-orthogonal code Cy of the type {ns—o,+1,ks—t,425 - - Ks+o+0, t
and length n over Ry satisfying the property (%) and Tor;y1(Cp) = Tor;(Co—2)
for1 <i< /-2

(b) Moreover, each self-orthogonal code Cy—_o of the type {ns—_p,+2, ks—t,+3, ks—o,+4,
oy ksyore,—1} and length n over Ry_o satisfying the property (x) gives rise to

precisely

s+0+21 s+0+£1
X kimicerit X kin et (epote —1 sy +1) (R Nspey 10N —0y 41) sy 4102 1y
(27’) i=t j=0+1
o | -2 Estore, + 1 — Ngpope, — No—pi1
2T

Ns—t1+1 ksyore or

distinct self-orthogonal codes of the type {ns_¢ 11, ks—e,12,- -, ksrore,} and
length n over Ry satisfying the property (x) and with the (i + 1)-th Torsion
code as Tor;(Co_g) for 1 <i < —2.

Proof. To prove the result, we first note that the code Tor(C,_2) is an ng_g, 4o-
dimensional code over Fyr. So we first choose an n,_y, +1-dimensional linear subcode
(i.e., subspace) B of the code T'or{(Cy—3). By Theorem [2.3.9, we see that the subcode
B; has precisely ["S*’fl“} distinct choices. Further, without any loss of generality,

Ns—L1+14 9r
we assume that the code T'or;(C,_2) has a generator matrix

0 0 0 ’
Tl( : Iy, Agi Ai,i_m Agz
70 0 I oo AY e A(Og
H _ [T(O)]S_Zl+2 _ 2‘ _ ‘ I‘€2 ' 2,.5?‘61“1’1 . '27
0 0
_Ts(—)ﬁl+2_ i 0 0o - Iksfelw o Ag—)fl‘*‘?ve_

and its subcode B; has a generator matrix
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[ 0 ] [ 0 0 0 0) ]
7" L, AY) - AV, AN AR
0 0 0
[T(O)] . TQ( ) . 0 Ikz e Aé,s)ffl e Aé,g—l Ag,g
s—01+1 — . - . . . . . . . )
(0) (0) (0)
_Ts—€1+1_ | 0 0 Iks £1+1 As—&—i—l,e—l As—&—i—l,e_

where columns of the matrices H and [T®],_, ; are grouped into blocks of sizes
ki, ko, key ks, T, is the k; x k; identity matrix over For and AL € My, (Far)
for 1 <1< s—/¢ +2andi < j < e. Furthermore, by Remark @, we assume,
without any loss of generality, that the matrix (A®), s 11.s104¢, is of full row-rank.

We next assume, without any loss of generality, that the code C;_5 has a generator

matrix
[ [ O 4w+ 2U? U
T T3 + ulUs" +w?UP + -+ 305
(€-2) (0) 1) (2) —377(t=3)
G T 4o B Ty o HuUy o + u2Us—€1+2 +oe 3Us—£1+2
I s P ur?
s—01+3 s—¥1+3
—2 -2
usz(—El-)H UQTS(—KIJ)A
— {—2 _ 0—2
_UZ 3Ts(+0+)el—1_ | u' 3Ts(+9+)21—1 i

where [T©],_, 45 € Mns,gﬁzm(Fzr% (U] 42 € MnS,ZIJFQXn(FQT) for 1 <j <
¢ — 3, and the matrix TS(ZIQL € Mks_gﬁim(Ré—z) is of the form

1
U/ZS(—)fl —+1

for3<i</{-—1.

Since Cy_5 is a self-orthogonal code of the type {ns_ s 19, ks_p, 13, - -

Z(l)

s—01+1) s—f1+1i) * "

(€=2)
Tsfél +1

l—i—1
° Z§—£1+i) € Mk37£1+i><n(F27‘)

_ 40

s—01+1

* k8+9+€1 —

and length n over R, o satisfying the property (x), by applying Theorem [2.2.4(a),

we get
[T(£_2)]3_£1 +1 [T(E_Q)]i—zlﬂ
(A AR i VO
T
Diag (Uhy) Uhy)t)

(mod u*~?),

0
= 0 (mod u‘27F) for0<pB<l-3,
0

(mod w2~ ) for 2<i,j<l—1landi+4j<l+1,

0 forl1<h<min{s—¥¢ +2,s+6—v} and

1<v<s—1+6.
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Now to show that there exists a self-orthogonal code of the type {ns_s, 11, ks—p,42, - - -,
ksio+e, } and length n over Ry satisfying the property (x) and with the 1-th Torsion
code as By and the (i + 1)-th Torsion code as Tor;(Cy_z) for 1 < i < ¢ — 2, let us

define a matrix G, over R, as

7o N I e R
TQ(E) TQ(Z*Z)_|_u€—2U2(£*2)+uZ—1U2(5*1)
¢ -2 -2
Ge=| T, | = |1852, +u2U] el)+1 +u U (4.3.28)

¢ ¢

UT.S(JE1+2 UT.S(JZ1+2

ut-1 () ut-1 ()
Ts+9+€1 L Ts+9+€1 |

with the matrices [U(®],_,, ;1 for a € {£ — 2,0 — 1}, T(eg 4y for2<y<{¢—1and

Ts(-?e v of the forms
U1(a) 0 -0 Agc,yo)ﬂrl A%H T Agc,ys)—él-&-l—&-a e Agae)
Uz(a) _ o -0 0 Ag?éc)wz o Ag,);)—éﬁua e Ag,xe
(@) (@) (o)
_Us—€1+1_ _0 - 0 0 0 T As—ﬁﬁ-l,s—h—i—l—i—a T As—ﬁl—&—l,e_

() _ plt=2) = ¢ —
T ey =Topsy tu y[o - 0 AL zlf)+ys+9+el Ai_eﬂy,e] and

© 0 0
T5+9+@1 [0 - 0 Iks+9+el Ang)eJrel,stl Ag£9+€1,e:|’

where A\% € My, (For) for 1 <i<s—l+landi+a<j<e AT €
Mo, 4 yxkoss (Far) for s +0+ 4, <v < e and As+9+£1,b € M ygps, xkyps (F2r) for s+
0 —|—€1 S b S €.

Now let C,; be a linear code of length n over R, with a generator matrix G,. It is
easy to see that the code Cy is of the type {ns_¢ 11, ks—t,49, -, ksrore, }, Tor1(Cp) =
By and Tor;1(Cp) = Tor;(Cp—z) for 1 < i < ¢ —2. By Theorem @(a), we see that
the code Cy is a self-orthogonal code over R, satisfying the property (*) if and only
if there exist matrices [U“2],_,, 41, [U(Z_l)]s 641, [0 -0 0 Af 231/+y,s+9+€1

Aff ;1’ e } for 2 <y </¢-—1 and T o4, Satisfying the following system of matrix
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equations over For:

-3
IO [Ty + U] [Ty = D U] a [T,
j=1
(4.3.29)
-2
IO U + U] [TO) g = Uy [UTD) e,
j=1
(4.3.30)
t =3 .
-2 -2 ; -2 )t
[T(O)]S_€1+1 |:0 -0 Ai*£1)+2,8+9+f1 e Ag751)+2,61| = [U(j)]s_él+1U§—£1+%)
j=1
U] T L, (43.31)
(0) (¢—y) AR L= S (—y—i)t
[T s-02 [0 0 As—él+y,s+9+€1 As—€1+y76] - Z[U ]S*€1+1Zs—f1+y
=1
for3<y<£-—1, (4.3.32)
t
0 0 0 _
POl 2[00 Ly A% viove A0 = 0 (4.3.33)

Now to show that there exists a self-orthogonal code C, of the type {n,_¢ 11, ks_¢, 12,

.y ksiore + and length n over R, satisfying the property (%), T'or;(C;) = By and
Tori11(Ce) = Tor;(Cp—z) for 1 < i < ¢ — 2, it is enough to show that the above sys-
tem (4.3.29)-(4.3.33)) of matrix equations in unknowns [U“=2],_, 1, [U* V], 4 41,

Ts(?9+f1 and [0 --- 0 Ai{‘gﬂwwﬁl . Ag:eﬂye} for 2 <y < ¢—1 has a solution.

Towards this, we first see that the code Cy_5 is a self-orthogonal code satisfying

the property (*), so we have

-3
Diag (Z[U(j)]s—£1+1[U(€_2_j)]i_41+1) =0.

Jj=1

Since (A(O))s_g1+175+9+gl is a full row-rank matrix over [Fo-, it is easy to observe that
there exists a matrix [U (4_2)]5,51“ satisfying (4.3.29)) and that the number of choices

for the matrix [U2)],_,, 41 satisfying (4.3.29) is given by

s+0+£1
> kini—gp1tns g +1(R—Nstey+0)—

) =

nsfﬁl+1(nsfél+171)
2

Now for a given choice of the matrix [U~2],_, ., satisfying (4.3.29), it is easy
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to observe that there exists a matrix [U“~Y],_, | satisfying (4.3.30)) and that the
number of choices for the matrix [U“~Y],_,, ,, satisfying (4.3.30) is given by

s+0+£1
> kinj—etns—o 41(n—Nsqeg+0)—

(2) =

7LS—Z1+1<77’S—A€1+171)
2

Further, working in a similar manner as in Proposition 4.3.3, we see that for
given choices of the matrices [U“=2],_,, 11 and [U“V],_,, ;1 satisfying (#.3.29) and

(4.3.30), there exist matrices [O - 0 AFf:ﬂﬁy,ere%l Agjﬁye] for 2 <y <

¢—1 and Ts(i)o ¢, satisfying (4.3.31)-(4.3.33)) and that the number of choices for the
: - (- 0

matrices [0 -+ 0 Agfzzﬁy,swwl Asf;i)er,e} for2<y=<{-1and Ts(+9+£1

satisfying (4.3.31))-(4.3.33)) is given by

(27‘)(ns+9+gl_1—ns_gl+1)(n—ns+9+[1 —ns_gl+1) ks+9+£1 + n— n5+9+€1 - ns—gl‘f‘l

Estore, or

From this, the desired result follows immediately. O

In the following theorem, we show that if there exists a self-orthogonal code Cy
of length n and dimension n,,¢ over For, then there exists a self-orthogonal code C,
of the type {ki, ks, ..., ke } and length n over R, satisfying T'or,,4(C.) = Cp, and vice
versa. We also count all distinct self-orthogonal codes of the type {ki, ka,..., k.}
and length n over R, with the (s+60)-th Torsion code as a given self-orthogonal code
of length n and dimension ng, ¢ over For. The proof of the following theorem also
provides a method to construct a self-orthogonal code of the type {ki, ks, ..., ke}
and length n over R, with the (s + 6)-th Torsion code as a given self-orthogonal

code of length n and dimension n, g over Fo-.

Theorem 4.3.1. (a) There exists a self-orthogonal code Cy of length n and di-
mension ngrg over For if and only if there exists a self-orthogonal code C. of
the type {k1, ks, ..., ke_1,ke} and length n over R, satisfying Tors,9(C.) = Co.

(b) Moreover, each self-orthogonal code Cy of length n and dimension ns g over
For gives rise to precisely

s s+6—1 ns(ns—1)
> me(n—ner1)+ D0 Neto(N—Netjr1—nsio—;)—(1-0) 75—
v=1

@)=
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A n; c k‘j +n—n; — Net1—j
[T\l 11 "
i=1 - " J

2" j=s+146 2

distinct self-orthogonal codes of the type {ki, ks, ..., k.} and length n over R,
with the (s + 0)-th Torsion code as Co.

Proof. To prove the result, let C, be a self-orthogonal code of the type {ki, k2, ..., k. }
and length n over R.. By Lemma [2.2.1, we see that the (s + 6)-th Torsion code
Tors,9(Ce) of C. is a self-orthogonal code of length n and dimension ng, g over For.

On the other hand, let Cy be a self-orthogonal code of length n and dimen-
sion ngyg over For. Here we first observe that any self-orthogonal code of the type
{k1,ko,...,k.} and length n over R, must satisfy the property (x). We will now
recursively construct a self-orthogonal code of the type {ki, ks, ..., k.} and length n
over R, satisfying the property (x) and with the (s 4 6)-th Torsion code as Cy. For

this, we will distinguish the following two cases: (i) e is even and (ii) e is odd.

(i) First let e be even. In this case, we have § = 0. Here we will show that there
exists a self-orthogonal code of the type {ki, ko, ..., k.} and length n over R,
satisfying the property (%) and with the s-th Torsion code as Cy, and we will
also enumerate such codes. To do this, we see, by applying Proposition [4.3.1,
that there exists a self-orthogonal code Cy of the type {ns, ksy1} and length n
over Ry satisfying the property (x) and Tor(C2) = Cp, and that the code Cy

has precisely

s+2
> kini_odns(n—nsy2)—ns_1—

@)

ns(ns—1)
2

ks+1 +n— Ng41 — Ny

k8+1 2'r

distinct choices for a given choice of Cy. Further, for an even integer ¢ satisfying
4 < ¢ < s+ 6, we see, by applying Proposition [4.3.3, that if there exists a
self-orthogonal code Cy_5 of the type {ns_s, 12, ks_¢,+3, .-, ksre,—1} and length
n over R,_, satisfying the property (x), then there exists a self-orthogonal code
Cy of the type {ns—¢+1, ks—ty42, - - -, kste, } and length n over Ry satisfying the
property (%) and Tor;1(Cy) = Tor;(Co—s) for 1 <i < ¢ — 2, and that the code
Cy has precisely
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Foyr 111
s+4Lq s+4q1
(2") z kinH“Jrj:%lkjn””HA |:n351+2:| [ksHl TN Ny — Nos—ty 41
n87£1+1 or ks+51 or
distinct choices for a given choice of the code C;_5, where ¢; = L%J and

(i)

A = (g1 + Ny 1) (N = Ny, — Nampy1) + Ny 11 + 124 — N2 —
ns_¢yr1. Further, for an even integer ¢ satisfying s + 6, +1 < ¢ < e, we
note, by applying Proposition [4.3.4], that if there exists a self-orthogonal code
Ci—o of the type {ns_¢,+2,ks—t, 43, - -, kstye,—1} and length n over R,_, satis-
fying the property (x), then there exists a self-orthogonal code C, of the type
{ns—e, 41, ks—o,42, - - -, ks+e, } and length n over R, satisfying the property (x)
and Tor;y1(Cy) = Tor;(Co_z) for 1 < i < ¢ — 2, and that the code C, has

precisely
s+4€q1 s+01
<2T) z;e kzmi—z+1+7_;{i_1 ki ot (Nsggy —1+1s ey 1) (N—Nspy =gy 41) Mgy 4103y 4y
> Ns—r1+42 k8+f1 +n— Ngyry — Ns—t14+1
2T

n8751+1 ker@l or

distinct choices for a given choice of the code Cy_s, where ¢; = | £|. From this,
it follows that there exists a self-orthogonal code C, of the type {ki, ka, ..., k.}
and length n over R, satisfying the property (%) and Tors(C.) = Cy, and that
the code C. has precisely

s s—1
(27,);::1nz(n—wﬂ)-l-g::lns+v(n—ns+j+1—nsfj)—w f[ n;
- k’L ar
=1
e
H [kj +n— n; — ne+1_j:|
k; or

Jj=s+1
distinct choices for a given choice of the code Cy.
Let e be odd. In this case, we have § = 1. Here working in a similar manner as

in case (i) and by applying Propositions 4.3.2«|4.3.47 the desired result follows

immediately.
O

In the following theorem, we consider the case ky = keyy = n— (k1 +ka+- -+ ke)

and k; = k._; 9 for 2 <1 < e, and we show that there exists a self-orthogonal code
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Cy of length n and dimension ngyy over For if and only if there exists a self-dual
code C, of the type {ki, k2, ..., k.} and length n over R, satisfying Tors,¢(C.) = Co.
We also count all distinct self-dual codes of the type {k1, ko, ..., ke} and length n
over R, with the (s + #)-th Torsion code as a given self-orthogonal code of length
n and dimension ng.g over For. The proof of the following theorem also provides a
method to construct a self-dual code of the type {ki, ko, ..., k.} and length n over
R, with the (s + 6)-th Torsion code as a given self-orthogonal code of length n and

dimension ng, ¢ over Fyr.
Theorem 4.3.2. Let kl = k6+1 = n — (kl -+ kg + -+ ke) and kl = ke,prg fO’f'

2<i<e.

(a) There ezists a self-orthogonal code Cy of length n and dimension ngyg over For
if and only if there exists a self-dual code C. of the type {ki,ka,... ke_1,ke}
and length n over R, satisfying Tors,e(C.) = Co. (When e is odd, we see that
Nero = 5 and that a self-orthogonal code of length n and dimension ngyg over

Fyr is a self-dual code. This may not hold in the case when e is even.)

(b) Moreover, each self-orthogonal code Cy of length n and dimension ns g over

For gives rise to precisely

i=1 kl or
distinct self-dual codes of the type {ki,ka, ..., ke} and length n over R, with
Co as the (s + 0)-th Torsion code.

Proof. By Theorem|2.2.4(b), we see that a self-orthogonal code of the type {k1, ko, . . .,
k.} and length n over R, is self-dual if and only if k; = k._;,5 for 1 <i <e. So on
taking k; = ke_;1o for 1 <17 < e in Theorem [4.3.1, the desired result follows. ]

4.4 Enumeration formulae for self-orthogonal and

self-dual codes of length n over R,

From now on, throughout this chapter, let S.(n; ki, ks, ..., k.) and De(n; ky, ko,
..., k) denote the number of distinct self-orthogonal and self-dual codes of the type
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{k1,ko,...,ke} and length n over R., respectively. Further, let S.(n) and D.(n)
denote the number of distinct self-orthogonal and self-dual codes of length n over R,,
respectively. In this section, we will obtain enumeration formulae for the numbers
Se(n; ki, ko, ... ke), De(n; ke, ko, ... ke), Se(n) and D.(n). Towards this, we recall,
from Chapter 2| that oo (n, k) equals the number of distinct self-orthogonal codes
of length n and dimension k over For, where 0 < k£ < n. Note that o9r(n,0) = 1
and oy (n, k) = 0 for all integers & > [4]. For 1 < k < [5], let o2r(n, k) be as
determined in Theorem [2.3.11]

In the following theorem, we obtain the explicit enumeration formula for the
number S, (n; k1, ka, .. ., ke).

Theorem 4.4.1. Let e > 2 be an integer, and let ki, ks, ..., ker1 be non-negative

integers satisfying n = ky + ko + -+ - 4 kegq.

(a) When e is even, we have

( K] e
n; k]' +n — le — n6+1,j
oz (n, 1) H k. H k.

i=1 L7027 =1 J 2r

s—1

Se(n; kluk27"'7ke) = X(2T)Z:1

-1
ne(n—mgi1)+nspe(n—nsiop1—ns_g)+ns(n—nsy1)— =22 <”25 )

fnepi1+n, <n fors+1<v<e

| 0 otherwise.

(b) When e is odd, we have

( s+1 e
n; k’j +n — Nj — Nety1—j5
o2 (1, 7s1) H k. H k-
vd2r Jj=s5+2 J

i=1 2r

s

> ne(n—npp1)+nspe(R—Ts 140~ Ts1-0)

Se<n; kl? k27 SRR ke) = X<2r)l:1
fNewi1+n, <n fors+1<wv<e

\ 0 otherwise.

Proof. To prove the result, we see, by Remark [2.2.1, that S.(n; ki, ko, ..., k.) = 0 if

Ne—yi1 + Ny > n for some integer v satisfying s + 1 < v < e. On the other hand,
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when ne_,11 +n, < n for s+ 1 < v < e, by applying Theorems [2.3.11| and 4.3.1,

the desired result follows immediately. O]

In the following theorem, we obtain the explicit enumeration formula for the
number D, (n; ki, ks, ..., k).

Theorem 4.4.2. Let e > 2 be an integer, and let ki, ko, ..., ker1 be non-negative

integers satisfying n = ky + ko 4+ -+ - + ker1. Then we have the following:

(a) When e is even, we have

( s s—1
21 ne(n—ngy)+ 2t

oo (n.n) ] m Zr(zf)ef

=1 LV
Do(n:ky, ko, ko) =4
(niha, e ) if by = ke—yyo for 1<v<e+1;

L 0 otherwise.

(b) When e is odd, we have

(2! stl n ZS: o 04+1)
n . i ne(N—nyg41
21)39 41 97}
[T+l M @)

D.(n; k1, ko, ... ko) = , ,
(n; ko, Ko ) if n s even and ky, = ke_yio for 1 <v <e+1;

\ 0 otherwise.

Proof. To prove the result, we see, by Theorem [2.2.4(b), that D.(n; ki, ka, ..., ke) =
0 if k, # ke_,yo for some integer v satisfying 1 < v < e + 1. On the other hand,
when k, = k._,.10 for 1 < v < e+ 1, the desired result follows on taking k, = k.12
for 1 <wv <e+1in Theorem [4.4.1 and by applying Theorem [

We will next determine the numbers S.(n) and D.(n). To do this, for an integer
d satisfying 1 < d < e and for non-negative integers ki, ko, ..., kq, let the num-
bers h;(ki, ko, ..., kq) and my(ky, ko, ..., kq) be as defined by and ,
respectively, for 1 <j<d—-1land 1</ < (%ﬂ - 1.

In the following theorem, we obtain the explicit enumeration formula for the
number S(n).
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OF LENGTH n OVER R,
Theorem 4.4.3. For an integer e > 2, we have the following:

(a) When e is even, we have
: [k1+k2+---+k:i}
2T

Se(n) = Z agr(n,kl—i—k:g—i----—l—ks)H L
i=1 '
X ﬁ kjtn—(ki+ke+-+k) = (ki + ke + -+ ker1)
. k:] or
j=s+1
sil mg(kl,k:z,...,k’e)-‘r ES: (k:l+k22+~~+k2a)+h5(kl,kz,...7k5)—)\/e(k1,kz,...,k’e)
X(QT)Z:I a=1 ,

where X, (ky, ko, ... ke) = (k1+ko+- - -+ky) (M) and the summation
> runs over all non-negative integers ky, ko, . .., k. satisfying 2ky +2ka+- - - +

2]4?@_1'_;,_1 +ke—i+2+ke—i+3 + - +k’2 S nfors—i— 1 S 1 S e.

(b) When e is odd, we have
s+1 |:k1+k}2+-~-—|—]{jzj|
27

Zﬁgr(n,k1+k2+"'+k5+1>n L.

S.(n) =
i=1
ﬁ [kj+n—(k1+k2+...+kj)—(k1+k2+...+ke+1_j)}
Jj=s+2 kj o
gy el )

Y

where the summation Y runs over all non-negative integers ki, ka, ..., ke sat-

isfying 2k, +2ko+ -+ -4+ 2ke i1+t ke_irot ke ii3+---+k; <nfors+1<i<e.
]

Proof. Tt follows immediately from Theorem |4.4.1.

In the following theorem, we obtain the explicit enumeration formula for the

number D,(n).

Theorem 4.4.4. (a) When e is even, we have

[k ke 4+ ks
D.(n) = Zazy(n,k1+k2+~-+ks)ﬂ[l 2/{‘
(2 or

i=1
s—1
> ho(k1 ko, ks)+ (k1 +kattke)+ N (k1,ka,....ks)
X (27) =1

Y
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where the summation Y runs over all non-negative integers ki, ko, ... keiq
satisfying 2(ky + ko -+ + ks) + ksp1 = n and the number )\g(kl, ko, ... ks) is
given by

) ki +ko+ -+ ks +1
)\e(kl,kg,...,ks):(k1+k2+---+k5)(1 2 )

2

(b) When e is odd, we have

i=1

( i s+1
j=1 Z )

De(n) = S ek ke k) b ko tke)
X (2")=1 if nis even;
L 0 otherwise,
where the summation Y, runs over all non-negative integers ki, ka, ... ksiq

satisfying 2(ky + ka -+ + ks1) = n.
Proof. Tt follows immediately from Theorem [4.4.2. O

Remark 4.4.1. Theorem 2 and Corollary 1 of Galvez et al. [47] follow, as special
cases, on taking e = 2 in Theorems|4.4.1 and|4.4./, respectively, while Theorem 1
of Betty et al. [13] follows on taking e = 3 in Theorem |].4.4.

The following example illustrates Theorems |4.4.3 and |4.4.4.

Example 4.4.1. When r = 1, we see, by carrying out computations in the Magma
Computational Algebra System, that S4(2) = 25, S4(3) = 459, S,(4) = 18321,
S4(5) = 1616679, S5(2) = 32, S5(3) = 1014, S5(4) = 83991, S5(5) = 18404093,
Dy(2) = 7, Dy(3) = 31, Dy(4) = 823, Dy(5) = 11191, D5(2) = 7, D5(3) = 0,
D5(4) = 1719 and D5(5) = 0, which agree with Theorems |4.4.53 and |4.4.4.

The enumeration formulae for S.(n) and D.(n), obtained in Theorems [4.4.3 and
4.4.4, are useful in the classification of self-orthogonal and self-dual codes of length

n over R., which we illustrate in the following section in certain specific cases.
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4.5 Classification of self-orthogonal and self-dual

codes

The enumeration formulae for self-orthogonal and self-dual codes of length n
over R,, obtained in Theorems [4.4.3 and [4.4.4, are useful in the determination of
complete lists of inequivalent self-orthogonal and self-dual codes of length n over
R. (cf. [13], [53, Sec. 9.6 and 9.7]). We will illustrate this in certain specific
cases by applying the classification algorithm ([53) Sec. 9.7]) and by carrying out
computations in the Magma Computational Algebra System. More precisely, we will
classify all self-orthogonal and self-dual codes of lengths 2, 3,4 and 5 over Fo[u]/{u?)
and of lengths 2,3 and 4 over F4[u]/(u?) up to monomial equivalence. We will also
explicitly determine a generator matrix of the code representative of each equivalence
class of these codes.

I. There are precisely 6 inequivalent non-zero self-orthogonal codes of length 2 over

Folu]/(u?). Among these codes, there are

e 3 self-orthogonal codes of Hamming distance 1, whose generator matrices are

u
];and
2

u

u?l,, [uQ O] and [g

e 3 self-orthogonal codes of Hamming distance 2, whose generator matrices are

] [ 2] e [ ]

II. There are precisely 19 inequivalent non-zero self-orthogonal codes of length 3

over Fy[u]/(u?). Among these codes, there are

e 10 self-orthogonal codes of Hamming distance 1, whose generator matrices are

27 [2 0 O} u uw 0 u ou  u? u 0 u+u2_ w? 0 0

u , lu s ) ) ) )

’ 0w 0]’ 0w 0] 0w 0 |'|0
u 0 u-

w? 0 0 1 u 1+u 1 0 1+u? dlo 2 o

) ) al u 5

0 u?> 0 0w 0 0w 0

0 0 u?

e 8 self-orthogonal codes of Hamming distance 2, whose generator matrices are
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[1 1 0},[1 u? 1},[1 U 1+u],[uu0},[u u? u+u?
u ou u u? 0 u?
and ; and
0 u? u? 0 u? u?
e 1 self-orthogonal code of Hamming distance 3 and with a generator matrix

[u2 u? uZ].

III. There are precisely 83 inequivalent non-zero self-orthogonal codes of length 4

over Fy[u]/(u®). Among these codes, there are

e 37 self-orthogonal codes of Hamming distance 1, whose generator matrices are

W21, [UQ 00 o],

uu+u2u20 u u 00 uu 0 u u 0 u u
0 u? 0u2 00/ [0w20 0] |0u2o0 0

2

U ou u u ou u? u? 0 0 O w? 0 0 0 1 uw 0 14+u
_0u2u2u270u Ouzuu70u2u20’0u200
(w2 0 00 10 01 1012 [10wiltu 1 uw u+u? 1
_0 w2 00| [0 w200 0 u? 0 0 0 u? 0 0 0 u? 0 0
- U ou u _u 0 0 wu u 0 0 u+u?
1w w? 14+u+u? ) ) )
0w 0 0 , 10w 0 0,0 w O Of,]0 w O 0 ,
u
- 0 0 u? u? 0 0 u? u? 0 0 w2 O
_u 0 ww O u 0 u 0 u 0 u u? uw u 0 u? u 0 0 u
0w 0 0,0 w> 0 «|[,(0w 0 «*[,{0u* 0 O],]|0wuw wu O
00 w20 00 u 0 0 0 w2 0 00 u* 0 00 w0
w0 w2 [1oo1] [w20o 0w [w200 0] [u20 00
Owu 0 w|,|0uw* 0 0,0 «* 0 0], w 0 w?l,[0 w2 00
00w 0 00 w20 0 0 u? u? 0 w? 0 0 0 w0
1w u 1+u? 1 0 uw 1+u 1 w4+ u? 1 10 u+u?® 14u
0u? 0 0 10 w2 0 0 , 10 U U 10w u+u?r w?
00 u? 0 0 0 wu? 0 0 0 u? 00 u? 0
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2

’

U
U
0

o O O

2

o O o =

o O & O

U
0

u2
0

u

u 0 wu
0 u? 0
0 0 wu?
0 0 0

N

IS

uou U u
0u> 0 0

and :
0 0 w 0
00 0 u?

e 42 self-orthogonal codes of Hamming distance 2, whose generator matrices are

u ou u? O},[uOuO},[uuuQ u2],[1 u? u? 1],[1 uQIO},
1 w0 1+u],[1 1+ u uﬂ,[l 00 1},[1 1w u][vﬁ 00 uﬂ,
(W 0 u 0 uur 0 u uur 0 wu u u u? u? u u u® 0
_0u20u2’0u27ﬁO’OuQOuQ’OuQuQuQ’OuQuQu27
_u uw u? u? 101 0 _1 01 u? w u+u ou ou+ u?
0w w? 0] [0101+u?] |01 w®1+u? [0 w2 u® 0 |
(W2 0 0 w? w2 0 0 «?] [u2 0«20 10 U 14+ u+u?
_0 u? u? u?|’ 0 u? u? 0 7_0 u? u? ’ 01 14u+u? U
111 1 1001+ [10wiltu+ra®l [101+u2 w2
_Ouu2u+u2’0uu 0_’0uu u? 10w 0 wl’
1111 u 0 0 u+u? u 0 u? u+u? w0 utur 0
_OuOu’O vou w | |0waw W |T0uw 0w+l
1w 1+w? u+u?] [T w 0 1+u+a?] [t 0 0 1] J1 0 w21
_()u2 0 u? 10 u? w? 0 10 u? w? 1o w? w? 0|’
- -1 1 1+ u? 1 v 0 u 0 uouou U
1 1 142

10w W u4WP|, |0 w0 WP, |0 w0 Wl
0w u2 0
- 00 u? u? 0 0 u? u? 0 0 u? u?
(w0 0 utu?] [u2 0 0 w2 114w 1 14u+u?
0 u wu 0 10 w2 0 w?| and |0 w?2 0 u? :
00 u? 0 0 u? u? 0 0 u? u?

e 1 self-orthogonal code of Hamming distance 3 and with a generator matrix
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[u2 u? 0 UQ] ; and

e 3 self-orthogonal codes of Hamming distance 4, whose generator matrices are

[1 11 1], [u u+u® u u} and [u2 u? u? UQ].

IV. There are precisely 334 inequivalent non-zero self-orthogonal codes of length 5

over Fy[u]/(u?). Among these codes, there are

e 157 self-orthogonal codes of Hamming distance 1, whose generator matrices are

Iy, [uQ 000 o], [

0 u? u

u u u u 0

u u 00 u? u ou u? u? u?
"low200 0| |0w 0 0 0]

u
wou 0w w?] [u w000 Ju00uwo] [u0utu? utu? u
0w 00 0] |0u?000[ [0u?2000] |0u® 0 0 0]
v ou ou ou 10100 v 0 u? u 0 uw 0 u? v u+tu?
0w uw?w? 0] [0w2 000/ [0u? 000 |0uw?0 0 0 |
1w 00 1+ul [T 010w [«>000 0] [1uwo0ltu
0 u? 00 0w 00 0] [0w0uw? [0u? 00 0 |
10 w2 1+u® ] [u2 0 000 [u2 0 00 «?] [u2 0 w2 u? u?
0w 0 0 0] [0xw000/ |0w?000|] [0w 00 0]
1w 1w utu?] (1w w0l

0 0

0u> 0

0u> 0

(10 2

00 u?

U2

0

v 14+u u u+u?

1

Ou 0 u+u®0

0

v 14w 1+u2 1]

0w 000

0

Y

1 0 1 14+u+u?® 14+u
"o w? 0

10 udu® 1+u® u

0 u
00

[1 u u? l+u u?

0 u?

u

u

2

] [1 0 u+u2u1] [10u2u1~|—u

0w 0 00 Ou> 00 0

Y

10 1+u+tu? u 0]

0 0 0 u? 0 00

] 10 ut+u? 1+u+u® u?

0u wu u? 01,
0 0

00 u? 0 0

1 w2 u+u: 0 1+u-
w? 0, |0 wu 0 wu+u® 0 |,
0 0 0 0 u? 0 0
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0 v 10 1 14+u+u? u 1 1 11 u+u? 1+u+u? 1
wu+u? 00,0 u w? u? ul, 0w W ut+u: 0
0 u? 00 0 0 w? 0 0 00 u? 0 0
v uw l4+u 10 w1 u? 1 14w uw? 1+u? 1+u
u v ur |, |0 u u+u2 0 0,10 w w wu u? |,
0 u? 0 0 00 0 0 u? 0 0
w20 1] 1o w2 wigul 10wt 0 1+4u
2 , uut+uz 0 w oo ou+ur 0 |,
0 u? 0 0 0 0
wu? ou 1 _1 0 u+u> 0 1+u+u? 1 u4u? u+u> 0 1
u u? u?|, u u+u? 0 u? 10w 0 u u?,
0uz 0 0 0 u? 0 0 0 0 u? 00
0 wu 10 v u+u? 1+u+u? 1 w2 u? 1+u+u® u
u , u o u? 0 0 u 0 u? u
0 w2 0 00 u? 0 0 0 0 u? 0 0
w? o ou? o u? 1- -1 14+u?2 0 14w 1+u- -1 0 u u-+u? 1+u2-
v u+u W o], 0 u 0 wu+wr 0 |,]01 uw 14w wu
0 u? 00 0 u? 0 0 00 u? 0 0
0 u u? 1+u- -1 0 u 14+u+u® u? | -1 0 0 u? 14+ u?
0 1 w |,[01 w 0 14+ul,[01 0 1+u* @
0w 0 0 00 u? 0 0 00 u? 0 0
00 1420 [10 u 1+u2 u 100 14u2 0 |
1 0 0 1/,101 0 w4u® 1l+u+u?|,[01 u 0 14u
0 u? 0 0 00 u? 0 0 00 u? 0 0
0O 0 0 O w? 0 0 0 0 100 1+u+u? uwu+u?
w 0w w?|, |0 w2 0 0 WX,|01 0 wu+4+ur 1+u+u?
0 v 0 u? 0 0 u? v 0 00 u? 0 0

Y

’
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(L0 0 u 4+ u? o] Tuo u w2 o 1 v uw l4+u+u? u+u?
0w u w 0|,]0wu 0 ut+u® w?|,[0u® 0 0 0
00 u? 0 0 00 u? 0 0 0 0 wu? 0 0
(w0 0 u+u2 0| [u0 0w 0 1w 0 0 14u+u?

u U 0 O0|,10wuw 0 0 ut+wu?|, |0 u* 0 u? 0 ,
00 u? 0 0 00 w20 0 0 0 w 0 0

u 0 144 u 10 0 1+u*> 0 1w 1 1+u+u® 1

uw? 0 0 O, (0w 0 0 «?|, |0 uw® 0 0 01,

0 u? 0 0 0 0 u? 0 0 0 0 u? 0 u?
_u 0 u? u+u? 1 0 00 1+u2_ _1 U U U 1+u+u2_

u 0 0 1o w?2 00 0 10 w2 0 0 0 ,

0 u? 0 0 00 w20 0 0 0 u? u? 0

v 0 uw? 14w 1 u 0 u? 1—|—u_ _1 0 w 0 1+u+u?

w0 0 0 |,|0ur 0 0 0 |,]0uw 0 0 ,

0 w?> v 0 00 w20 0 00 w2 0 0

0 0 1+u u 1 v uw 0 1 (1 0 uw 0 1+ u—+u?

w? 0 0 0,10 «> 0 0 O, |0 w> 0 O 0 ,

0 w>» 0 0 0 0 w? uw? 0 0 0 w0 0

001« [1wwiw [1uwwoitl [1 001w
Ow> 00 O0|,[0uw>00O0O0O]|,[0u2000|,/0u*00°O0]|,

0 u? 0 u? 00 w20 0 00 w200 00 w20 0
(w0 0 0wl [uwwoww [uwoow [uo oo

w0 0 0,0 w2 0 w? w?|,|0 w2 0 w? 2,0« 0 w20

0 u? u? 0 00 w2 0 0 00 w2 0 0 00 w2 00
uw 0 v uw ouw ou 2] [u 0 0 u? ul Tu v u w 0-
0w 0 10w 0 w2 0f,(0w 0 0 0],]0 w2 0 w20
0 0 u? u? 0 0 w2 0 0 0 0 v 0 u? 0 0 w2 00
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w0 0 00 u 0 u u? u? w0 0 u u w0 0 u u
0 w2 0 00|,(10wuw 0 w O0,(0wu 0 w w?|,|0u u u? u?|,
0 0 w200 00 u2 0 0 00 u2 0 0 00u2 0 0

w0 u v 0 11 0 11 w0 u uw 0 1w 0 w1
Ou 0 0 wl, 0w 0 w2 0[,[0wu 0 w? u+u?,[0u? 0 w0
00wu2 0 0 00 w2 00 00 w2 0 0 0 0 wu?

(w0 w 0 0] [uo0 w2 o w0 0 0 u u U u? u
0w 0 w? w?|,|0w 0 «? w?|,|0uw> 0 0 0],]|0 w? 0
00 w>» 0 0 00 w>» 0 0 0 0 u? u? u? 00 w> 0 u

(w2 000 00| [2o 0wo] [u20 00 0] [u00wuw
0w 0 0O0[,]/0 « 0 0O0[,|0 w0 0 O0|,|0u 00 u
0 0 w? u?®0 0 0 w? u? o0 0 0 u? u? u? 00w 0 0
(v uw 000] [u0 uoaw w ou 0 u? u? u 0 u u? 0
Ow> 00 O0[,]0uw>0O0O0|,[0u*? 0 0 O0f,|0w 0 0 v
0 0 uw? 0 u? 00 «>0 0 00 w20 0 00 x>0 0

u 0 u+4u® u u 0 0 u? u+u? v u 0 u+tu® u

w0 wr 0, (0w 0 O 0 10 w2 0w WP,

0w 0 0 |00 «2uw 0 00w 0 0

(w00 0wl [u0O0 0 u w00 u ]l [udw 00
Owu wu 00 0Ou 0 u u? Owu u 0 0 0u 0 u u?
00w 00/ (00w 0 0 00w 0 0| 00w 0 u2|’
00 0«0 [000 w0 00 0 u 0 00 0 w2 0
(w2 0 0 0 0] w00 w O] [u0w 0 w] [u20 0 0 0
0 w2 0 0 0 Ouw u 00 0Ou 0 u u? 0 w2 0 0 0
00w 0«2 00w 00/ {00u20 0| [0 0w 0 u?
00 0 ww| |00 0 w20l [00 0 w0 00 0 w0
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1 uw 0 u 1+u? 10 0 0 1+u? 1l v v v 14w
Ouw> 0 0 0 0w 0 0 0w 0 0 0
00w0 0 |'jloo«wo o0 |"jo0owo o]
_000u20 00 0w 0 00 0 w2 0
- -u()OOu--uuqu-
10 v uw 1

0w 0 u 0 0w 0 0 0
0w u 0 u?

10 0 w2 0 0,0 0 w?> 0 0} and
00w 0 O

00 0 w2 0 00 0 w 0
00 0 w? O
- _0000u2_ _OOOOUQ_
W 0 0 0 u)
0w 0 0 0
0 0 w2 0 0];
00 0 w 0
_0000u2_

e 165 self-orthogonal codes of Hamming distance 2, whose generator matrices are

u u~+ u? u20u2},[u uzOOu],[uOuOO],[u w? u+u? u? uQ],
10010],[1 u? 1—|—u2uu],[10uu2 1—|—u+u2],[1 u201u2],
1 u? u? 1u2},[u20u200],[1 14+u+u? u? u? u},[lOlOu]

r _u0uu+u
1ul+uuu],[1u0u1],[11+u0u0},

0 u? u?

-uuu2u2u2 u 0 uw 0 0 w0 u2 u 0 -uOu

_0u2u20 070u2u20u270u0u2u’0uu2u+u u?|’

(v u w0 0 w00 wu 0 w00 u u v ou ou u? u?)
0 u0O0 u+u?

_Ou2u20u2 0 uwu 0 u? 0 w? u? u? 0

u 0 u?

[ u+u2 0] [u woo0w] [wo 0wol [wo0woo0]
_Ouu2 0 U,7OU,2OOU270U2u20U270U200u2_7
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(v 0w 0 0 [u00ww][1owo1] [10 o010
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0 u? u? u?
-u 0 u v u
0 w2 0 w2 0
0 0 u? u? u?

11

0 u?

0 0 w0 u?

1 w 1+u+u?
0 0 u?

Y

10 0 1+u® 0
0 u> 0 0 u?
00 w2 0 u?

uou u u ou 1 1 14w u? 14+u+u?
0w 0 0 w?|,|0uwu> 0O O u?
00 w?> 0 u? 00 w 0 u?
w0 u 0 u? w0 0 0 utu?
10 0w 0 w? u+u?|, |0u u O 0
0 0 uw? u? 0 00 w2 u> 0
u? w0 u u? u? w0 u u? u?
W, 10w 0 0 u+u?|l,|0uw 0 0 wul,
0 00 u? u?> u? 00w u?2 0
_u 0 0 0 u—i—uZ_ _u uou u+ u? 0_
0w 0 w2 0 10 w2 0 W WP
0 0 w>u 0 0 0 w? uw? u?
0 0 w? u+u? (v 0 0 u—+ u? u?]
0w 0 0 .10 w? 0 0 wu?
0 w? u? u? 0 0 w2 0 u?
(v 0 u 0 0 | [u v u 0 wtu?
0 u 0 0 u+u? 0 w2 0 0 u?
00w 0 > | |00 w2 0 w?
00 0 w* u | 0 0 0 u® u?
(v uw 0 w2 0] [u u w u+u® 0
10 w2 0 w2 o], |0 w2 0 W o 0f,
0 0 w u? 0 0 0 wu? u? 0
u u? 0 u 0 0 v u
, 2.0 w2 0,0 w2 0 0 u?|,
0 u? u? u? 0 0 w2 0 u?

?
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w2 0 0 0 wu? vw 0 u 0 0
0 w2 0 0 u? q 0w 0 0 u?
an )
0 0 u* 0 u? 0 0 v 0 u?
0 0 0 u? u? 00 0 u? u?

e 5 self-orthogonal codes of Hamming distance 3, whose generator matrices are
u? 0 0 u? u2] [u 0 u u+u? u]
Y Y

_uQ 00 u? uQ],
L [ 0 v w2 @ 0

0 u? u? u? u?
11 w2 14+utu? 1+utu?

0 u? u? u? 0 0 u? wu? u? 0

[1 u 14+u 1+u+u® 1+u
and

e 6 self-orthogonal codes of Hamming distance 4, whose generator matrices are

[1 1 11u2],[101+u 14+ u? 1+u],[u2 u? u20u2},[uuuu2 u},

[1 1+u 1 u 1] and [u 0 utu? u u];and

e 1 self-orthogonal code of Hamming distance 5, whose generator matrix is

[u2 u? u? u? uz}.

V. By Theorem [2.2.4(b), we see that a self-orthogonal code of the type {ki, ko, k3}

and length n over F,[u]/(u®) is self-dual if and only if n is even, ky = k3 and

2(ky + k2) = n. From this and by parts I-IV, we deduce the following:

e There is only one inequivalent self-dual code of length 2 and Hamming distance

1, and one inequivalent self-dual code of length 2 and Hamming distance 2 over
Falul/ (u?).

e There are precisely 3 inequivalent self-dual codes of length 4 and Hamming dis-
tance 1, and 4 inequivalent self-dual codes of length 4 and Hamming distance
2 over Fafu]/(u?).

Now to classify self-orthogonal and self-dual codes of lengths 2,3 and 4 over

Fy[u]/(u?), we assume, from this point on, that ¢ is a primitive element of F,.

VI. There are precisely 4 inequivalent non-zero self-orthogonal codes of length 2

over Fy[u]/(u?). Among these codes, there are
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e 2 self-orthogonal codes of Hamming distance 1, whose generator matrices are
u 0
[u O] and ; and
0 u
e 2 self-orthogonal codes of Hamming distance 2, whose generator matrices are
[u u} and [1 1—1—74 .

VII. There are precisely 12 inequivalent non-zero self-orthogonal codes of length 3

over Fy[u]/(u*). Among these codes, there are

e 5 self-orthogonal codes of Hamming distance 1, whose generator matrices are

00 0 ¢ 1 Cu 1+¢ w 00

U U U U U

[u 0 O]’ ) ) and {0 u 0] ;
0O u O 0O uw O 0 wu 0 0 0

e 5 self-orthogonal codes of Hamming distance 2, whose generator matrices are

o o [ 1 1o 1], [g : ] and [1 ¢ ¢

; and
U ou 0 wu Cu

e 2 self-orthogonal codes of Hamming distance 3, whose generator matrices are
[u u u} and [1 ¢ QZ] :
VIII. There are precisely 42 inequivalent non-zero self-orthogonal codes of length 4

over Fy[u]/(u*). Among these codes, there are

e 14 self-orthogonal codes of Hamming distance 1, whose generator matrices are

r 0 0 0} u 0 u u v 0 0 0 v 0 0 0 1 Cu 1 Cu
u ) ) ) ) Y
L 0w 0 0] |0 w O Cul |0wOO0 |0 uwu 0 0
e @ crca Mo 1ace gl |n 000 [eoo 0
u u u
) , 10w 0 wl, |0 u 0 Cuf,
0w 0 0 0 u 0

0 0 u u 00 uw O

u 0 0 0 1w 01 1 14C¢u 1 14 Cu 1 Cu C+Cu ¢
0O v 0 0,0 w O Of, |0 u 0 u ;10w 0 0
0 0 w O 0 0 u O 0 0 u u 0 0 U Cu
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and

o O o =
o o 2 O
o & O O
< O o O

e 19 self-orthogonal codes of Hamming distance 2, whose generator matrices are
r r u 0 u 0
1001},uu00},[1uu1},[1u10], ,
L L 0 u Cu u
w00 ¢l Juwowol [T 01 ¢l [10o01] [10cu 1
0 w 0 Cul [00w 0w [0w O w| [01 10 [01 1 Cul
1 ¢+Cu ¢ 1 1 Cu 1 Cul
0 u w0 0w 0 (Rl

= O

01 1 U

[1 0 u 1+ Cu

[ Cu 1

01 14u Cu|’
1 C+Cu 0 ¢+l
0 U 0 Cu

)

C+Cu ¢ Cul [1 CHu 1+u Cu
0 w Cu 0] |0 wu Cu 0

00 u 1 1+Cu 2 Ctu
w 0 Cu | and [0 u 0 Cu |
0 0 u Cu 0 0 u u

e 7 self-orthogonal codes of Hamming distance 3, whose generator matrices are

u 0 Cu u]

:1 0 ¢? C}a[l Cu (+Cu 52}’[“ wo 0 [0 u Cu Cu

1 1+u 14+Cu 1+u
0 wu Cu Cu

Y

1 C4+Cu u C+Cul g |10 Cru G
0 U Cu  Cu 01 C+4u (+u

and

e 2 self-orthogonal codes of Hamming distance 4, whose generator matrices are

111 1fandfu uow ]

IX. By applying Lemma [2.2.4(b), we observe that a self-orthogonal code of the type
{k1, ko} and length n over F[u]/(u?) is self-dual if and only if 2k; + ko = n. From
this and by parts VI-VIII, we deduce the following:
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e There is only one inequivalent self-dual code of length 2 and Hamming distance

1, and one inequivalent self-dual code of length 2 and Hamming distance 2 over
Falul / (u?).

e There are precisely 2 inequivalent self-dual codes of length 3 and Hamming dis-
tance 1, and one inequivalent self-dual code of length 3 and Hamming distance
2 over Fyfu]/(u?).

e There are precisely 4 inequivalent self-dual codes of length 4 and Hamming
distance 1, 5 inequivalent self-dual codes of length 4 and Hamming distance

2, and 1 inequivalent self-dual code of length 4 and Hamming distance 3 over
Falu] / (u?).

Note that Theorems [4.4.3 and [4.4.4 together with Theorems |3.2.3/3.2.5, [3.3.3,

13.3.5, 13.4.5 and [3.4.6 provide enumeration formulae for all self-orthogonal and self-

dual codes over quasi-Galois rings. Thus the problem of determination of enumera-

tion formulae for self-orthogonal and self-dual codes over quasi-Galois rings is now

completely solved. Apart from this, as a consequence of Theorems|3.2.313.2.5,[3.3.3,

13.3.5, [3.4.5 and |3.4.6, the enumeration formulae for self-orthogonal and self-dual

codes over Galois rings of odd characteristic are also known. In the next chap-
ter, we will count all self-orthogonal and self-dual codes of an arbitrary length over

Galois rings of even characteristic.
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Enumeration formulae for
self-orthogonal and self-dual codes
over (zalois rings of even

characteristic

5.1 Introduction

In this chapter, we will count all self-orthogonal and self-dual codes of an arbi-
trary length over Galois rings of even characteristic. For this, we assume, through-
out this chapter, that e > 2 and r are fixed positive integers. Here we recall, from
Chapter [2, that GR(p®, ) denotes the Galois ring of characteristic p® and cardinal-
ity p°”, where p is a prime number. We also recall that the Galois ring GR(p,r)

135
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is a finite commutative chain ring with the maximal ideal (p) of nilpotency in-
dex e and the residue field GR(pe,7) = GR(p¢,r)/{p) of order p’. Further, there
exists an element £ € GR(p®,r) whose multiplicative order is p" — 1 and the set
Tor =40,1,&,6%,...,&7 72} is the Teichmiiller set of the Galois ring GR(p®, r).

Next, for an integer p satisfying 1 < p < e, we observe that the quotient ring
GR(p¢,r)/(p") is the Galois ring GR(p*,r) of characteristic p* and cardinality p"*
and has a unique maximal ideal (p + (p")). We further observe that the element
&, =&+ (p") € GR(p",r) has multiplicative order p” — 1 and that the set 7,, =
{0,1,€,,€, ..., 62 72} is the Teichmiiller set of GR(p#, 7). One can define a canonical
epimorphism from GR(p®,r) onto GR(pH,r) as a — a + (p*) for all a € GR(p®, 7).
In view of this, we shall identify each element a+ (p*) € GR(p*, r) with the element
a € GR(p®, ), and we shall perform addition and multiplication in GR(p*, r) modulo
p". In particular, we shall identify the element &, € 7,, with the element £ € T¢,.

So we assume, throughout this chapter, that
73,7 - 757T == 7;—1,7“ - 7;,7’ = {07 17€a §27 cee ’ng—Z} - 7; (SaY)'

Further, for 1 < p < e, we see, by Theorem 14.8 of [101], that each element a €
GR(p*,r) can be uniquely expressed as a = ag + a1p + agp® + - - - + a,_1p"~*, where
ag, @1,0az,...,a,-1 € Ty. Define a map v : GR(p",7) — T, as yo(a) = ao for all
a = ay+ ap+ ap® + -+ a,_1p*t € GR(pt,r) with ag,a1,as,...,a,-1 € T;.
Furthermore, for a,b € 7, let us define a ® b € T, as a ® b = vy(a + b). Note that
@ is a binary operation on 7,.. One can easily observe that the Teichmiiller set 7,
of the Galois ring GR(p®,r) can be viewed as the finite field of order p" under the
addition operation @ and the usual multiplication operation of GR(p®, ). In view

of this, we assume, without any loss of generality, that

GR(p7 T) = GR(p,T) = GR(p2,T‘) == GR(pe,’I") = 7:’

from this point on. Throughout this chapter, we shall denote the Galois ring
GR(2",r) by %, for 1 < p < e. The main goal of this chapter is to count all
self-orthogonal and self-dual codes of an arbitrary length over Z., = GR(2¢,1).

When p = 2, a linear code € of length n over 7, is said to be k-doubly even if
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it has a k-dimensional linear subcode % satisfying ¢ - ¢ = 0 (mod 4) for all ¢ € %,
where each ¢ € % is viewed as an element of Z[, and - denotes the Euclidean
bilinear form on Z',.. A k-doubly even code of length n and dimension k over 7, is
simply called a doubly even code. In this chapter, we will consider the case p = 2,
and we will first count all doubly even codes over 7, and their two special classes, viz.
the codes containing the all-one vector and the codes that do not contain the all-one
vector by studying the geometry of a certain special quadratic space over 7,.. We will
further provide a recursive method to construct self-orthogonal and self-dual codes
of the type {ki1, ks, ..., k.} and length n over Z , from a (k1 +ka+- -+ )-doubly
even self-orthogonal code of the same length n and dimension k1 +ko+- - -+ krey over
T., where n is a positive integer and kq, ko, . . ., k. are non-negative integers satisfying
2ky + 2ko + - -+ 2ke_i1 + Ke—io + kemivs -+ k; <nfor [<H1] <i <e. With the
help of this recursive construction method and the enumeration formulae for doubly
even codes over 7, and their two special classes, we will obtain explicit enumeration

formulae for all self-orthogonal and self-dual codes of an arbitrary length over % ,.

This chapter is organized as follows: In Section we first outline the recursive
construction method employed in Chapter [3| (see the proofs of Theorems @ and
@ in the particular case of codes over the Galois ring GR(p®,r), where £ > 4
is an integer. Here we note that when p = 2, each self-orthogonal (resp. self-
dual) code over %Z;_s, can not be lifted to a self-orthogonal (resp. self-dual) code
over %y, by applying this construction method. We further derive a necessary and
sufficient condition under which a self-orthogonal code over %;_s, can be lifted to a
self-orthogonal code over #;, using this construction method (Theorem [5.2.1). In
Section [5.3] we consider the case p = 2 and count all doubly even codes over 7, and
their two special classes consisting of the codes containing the all-one vector and
the codes that do not contain the all-one vector (Theorems [5.3.145.3.3). In Section
5.4] we extend the recursive construction method provided by Nagata et al. [75] to
construct self-orthogonal and self-dual codes of the type {ki, ks, ..., k.} and length
n over X, from a (ky+ko+-- -+ kt% | )-doubly even self-orthogonal code of the same
length n and dimension &y + ko + - - + krgy over T., where ki, ks, ..., k. are non-
negative integers satisfying 2k +2ko + - - -+ 2ke_j11 + ke—izo t ke_iuz+-- -+ k <n
for (%1 < i < e. In Section , we obtain explicit enumeration formulae for all



Enumeration formulae for self-orthogonal and self-dual codes over
138 Galois rings of even characteristic

self-orthogonal and self-dual codes of an arbitrary length over %, , by applying the
recursive construction method provided in Section and the results derived in
Section In Section we classify all self-orthogonal and self-dual codes of
lengths 2,3 and 4 over %»2 = GR(4,2).

In the following section, we assume that ¢ > 4 is an integer, and we outline the
recursive construction method employed in Chapter |3|in the particular case of codes
over the Galois ring GR(p?, 7). Here when p = 2 (i.e., when GR(p%,r) = GR(2%,r) =
K, we illustrate that not every self-orthogonal code over %_,, can be lifted to
a self-orthogonal code over %, using this method. We also characterize all self-
orthogonal (resp. self-dual) codes over Z,_», that can be lifted to self-orthogonal

(resp. self-dual) codes over %,

5.2 Outline of the recursive construction method

Throughout this section, let £ > 4 be an integer, and let ki, ks, ..., ks 1 be non-
negative integers satisfying n = ky +ko+- - -+ks+kpyq and 2k; +2kg+- - -+2kp ;41 +
Ke_iso +keisg + -+ Xk <nfor [E1] <i <L

Now let Dy_5 be a self-orthogonal (resp. self-dual) code of the type {k; +

ko, ks, ...,k 1} and length n over GR(p*~2,r) with a generator matrix
_ 7 i
Zy
|4
Gro=| .° (5.2.1)
Pz,
_pf—Bzé_l_
with
’ =3 ()
21 e An A oo Ares Ary n Zp] Vi
Zé 0 Ikz A2,2 e AZ,Z—2 AQ,Z j=1 ‘/2(]) ’
where the matrix Iy, is the k; X k; identity matrix over 7., A;; € My, xx;,,(7,) for

I1<i<2andi<j<{-2 Ay€ Mklx(kg+kg+1)<77-")> Ay € ngX(k[+kz+1)(71-”)7
Vb(y) € My,xn(T;) for 1T < b < 2and 1 <y < £ — 3, and the matrix 7, €
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/\/lkuxn(GR(pZ*Q,r)) is to be considered modulo p** for 3 < p < £ —1, (i.e.,
the matrix Z, € My, xn(GR(p"?,7)) is of the form Z|, = Z], , + pZ],, + p*Z, 5 +
et Z Ly where Z), 0, 20y 2y g € Mg n(Ty) for 3 < < £—1).

Further, let D, be a linear code of the type {ki,ko,...,k/_1,k¢} and length n

over GR(p%,r) with a generator matrix

G = : (5.2.2)

where

21:Z{+pf—2[o 000 Vu}ﬂf‘l[o 00 Uy

with ‘/Lg € Mk1><(k4+k4+1)(7;>7 ULg € Mklx(kg+k4+1)(7;)7 the matrix ZM is of the form
Zu=Z5 070 0 o 0 Ayg| With Ay € Musurn, o (T)
for 2 < pu < /¢ —1, and the matrix 7, is of the form

7y = [0 0O --- 0 AM} with Ag’g S ngx(kg+ke+1)<7:')'

Since Dy_s is a self-orthogonal (resp. self-dual) code of the type {k;+ko, k3, ..., ke—1}
and length n over GR(p*~2,r) with a generator matrix G,_» (as defined by (5.2.1)),
we see, by Theorem [2.2.4, that

2Z¢ = pPBi+p ' By (mod p),

2123 = pPh (mod pt),

Z0Z = p*J, (mod p"HtY) for 3 < pu<l—1,

Zz! = 0 (modp™7?) for2<i<j<l—landi+j</{+1,

where By € Symy, (T;), Ba € Symy, (T;) and J, € My wx,(T;) for 2 < p < 0 — 1.
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Now by applying Theorem [2.2.4, we observe that the code Dy_, can be lifted to a
self-orthogonal (resp. self-dual) code Dy of the type {ki, ko, ..., k,} and length n over
GR(p', r) with a generator matrix G, (as defined by (5.2.2)) if and only if there exist
matrices V; 4 € Mk1><(kg+kg+1)(7f—r>a Ui € Mk1><(kg+k(g+1)(7;>) A € Mkux(kg+kg+1)(7;>

for 2 < p < /¢, satisfying the following system of matrix equations:

Bl + Al,évﬁg + Vl,éAiz

+p(Ba + AUy + Ui gAl ) = 0 (mod p?),
A Ay +VigBy +J; = 0 (mod p), (5.2.3)
A Ay +Ji = 0 (mod p) for3<i< /-1,
A1 Ay, = 0 (mod p). )

Working in a similar manner as in Remark @, we note that the matrix A;, is a
full-row rank matrix over 7,. When p is an odd prime, by applying Lemma[2.1.1, one
can show that there exist matrices V; 4, Uy 4, A; 4 for 2 < < £, such that the code D,
is a self-orthogonal (resp. self-dual) code over GR(p%, ) (see the proof of Theorem
@ for more details). However when p = 2, we recall that GR(p*,r) = %, and
GR(pe_Q, r) = K2, and we observe that for each self-orthogonal code Dy_s of the
type {ki + ko, ks, ...,k,—1} and length n over %,_s,, the system ([5.2.3) of matrix

equations need not have a solution. The following example illustrates this.

Example 5.2.1. Letp=2,r =2, =4, and let Zso = GR(2*,2) = Z5[€], where &
is a root of the monic basic irreducible polynomial 2* 4+ x + 1 € Zyg[x]. Here we have
Koo = GR(22,2) = Z16[€]/(2%) ~ Z4[€]. Let n = 4, k) = 2 and ky = k3 = k4 = 0.
Let € be a linear code of the type {2,0} and length 4 over %»o with a generator

[10g2 5]%[00052].
01 ¢ & 000 ¢

Note that the code € is a self-orthogonal code over %5 5. Next, consider the linear

matrix

code 9 of the type {2,0,0,0} and length 4 over %42 with a generator matriz

1 0 & 00 0 & 0 0 0 0 bp b
& ¢ 19 3 492 ap a1 193 o 01 7
01 ¢ 52 00 0 ¢ 0 0 ay ag 0 0 by by
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where ag, ay, az, as, by, by, by, bz € Ty = {0,1,&,£2}. Here we have

52 § Gy a1 bo b 52 1 52 0
Ay = Vig= Uiy = B, = d By =
1,4 [ ¢ 52] y V1,4 L2 a;j , Ul [b2 bJ , D1 L J an 2 0 5]

corresponding to the codes € and 2. Further, it is easy to see that the resulting

system (5.2.3) of matriz equations in unknown matrices Vi 4 and Uy 4 has no si-
multaneous solution. This shows that the self-orthogonal code € can not be lifted
to a self-orthogonal code of the type {2,0,0,0} and length 4 over %yo using the

construction method outlined above.

Now in the following example, we illustrate that there are self-orthogonal codes
of the type {k; + ko,ks,...,k,—1} and length n over %, _», that can be lifted to
self-orthogonal codes of the type {ki, ko, ..., k¢} and length n over %,

Example 5.2.2. Letp=2,r =2, =4, and let Zyo = GR(2*,2) = Z5[€], where &
is a root of the monic basic irreducible polynomial x* + x + 1 € Zg[z]. Here we have
oo = GR(22,2) = Z1[€]/(2%) ~ Z4[€]. Let n = 4, ky = 2 and ky = k3 = ky = 0.
Let € be a linear code of the type {2,0} and length 4 over %5 with a generator

[1052 §]+2[oof52 0]'
01 ¢ & 000 0

Note that the code € is a self-orthogonal code over H#s5. Next, consider the linear

matriz

code P of the type {2,0,0,0} and length 4 over %42 with a generator matric

10 & ¢ o 00 & 0 L2 00 a a g8 0 0 by by |
01 & & 00 00 0 0 ay as 0 0 by b3
where ag, ay, as, as, by, by, by, b3 € To = {0,1,&,£%}. Here we have

2 bg b 01
A1,4 = &8 ,V1,4 = o @ 7U1,4 | , By = and By =
£ & as as by b3 10

corresponding to the codes € and 2. By applying Theorem [2.2.4, we see that the
resulting system (5.2.3) of matriz equations in unknown matrices Vi 4 and Uy 4 has

a simultaneous solution. In particular, one of the solutions of the system (5.2.3) is
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given by

Via=

0 1 2
and U174 = g g .
IS & ¢
From this, it follows that the self-orthogonal code € can be lifted to a self-orthogonal
code of the type {2,0,0,0} and length 4 over %45 using the above construction

method.

From the above discussion, we see that it is not always possible to lift a self-
orthogonal (resp. self-dual) code of the type {k; + ko, k3,...,k,—1} and length n
over %o, to a self-orthogonal (resp. self-dual) code of the type {ki, ko, ..., k}
and length n over %, via the construction method outlined above.

From now on, we assume, throughout this chapter, that p = 2. In the next
section, we will first characterize all self-orthogonal (resp. self-dual) codes over

Hy—o, that can be lifted to self-orthogonal (resp. self-dual) codes over Z,,.

5.2.1 A characterization of self-orthogonal (resp. self-dual)
codes over %5, that can be lifted to self-orthogonal

(resp. self-dual) codes over %,

To characterize all self-orthogonal (resp. self-dual) codes over %Z,_», that can
be lifted to self-orthogonal (resp. self-dual) codes over %y, we will first define a
special class of linear codes over #,,,, which are called doubly even codes, where

1<pu<e.

Definition 5.2.1. Let p = 2, and let p be an integer satisfying 1 < p < e. A free
linear code € of length n over %,,, is said to be doubly even if it satisfies z - z =0
(mod 2#*1) for all z € €, where each z € € is viewed as an element of Z',. Further,
a linear code € of length n over %, is said to be k-doubly even if it has a free linear
doubly even subcode of rank k.

In particular, when p = 2 and p = 1, we recall that %, = T, s the finite field
of order 2". So in this particular case, we say that a linear code € of length n over
T is doubly even if it satisfies z - z = 0 (mod 4) for all z € €, where each z € €
is viewed as an element of #,.. Further, a linear code € of length n over T, is said

to be k-doubly even if it has a k-dimensional doubly even subcode.
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When =17 =1 (i.e., when Z,,, = T, ~ F,), the above definition of doubly even
codes over 7, coincides with that of binary doubly even codes, which are studied
and enumerated by Gaborit [45]. We refer the reader to Section 1.4 of [53] for more
details on the properties of binary doubly even codes. Note that the enumeration
formula for doubly even codes over 7, is known only when r = 1, i.e., when 7, ~ F,
(see Theorem 7 of Gaborit [45]). However, when r > 2, the enumeration formula
for doubly even codes over 7, is not known, which we will obtain in Section [5.3]
In general, the enumeration of k-doubly even codes over the Galois ring Z,,, is an

open problem when either r=1and 2 <pu<eorr>2and 1< p<e.

Example 5.2.3. Let %55 = GR(22,2) = Z4[€], where £ is a oot of the monic basic
irreducible polynomial x*> + x + 1 € Z4[x]. Here we see that %15 = To = {0,1,, &%}
18 the finite field of order 4 under the addition operation @ and the multiplication
operation in K. Let C be a linear code of length 6 and rank 2 over %o with a
generator matriz

1 0& €& 00

[o 100 ¢ 52] '

It is easy to see that z - z = 0 (mod 4) for all z € C, (here z € C is viewed as an
element of #3,). This implies that the code C is a doubly even code over % .

In the following theorem, we consider the case p = 2 and characterize all self-
orthogonal (resp. self-dual) codes of the type {k; + ko,ks3,...,k,1} and length n
over Zp_s, that can be lifted to self-orthogonal (resp. self-dual) codes of the type
{k1,Kko,...,ke—1,k¢} and length n over %, with the help of the construction method

outlined above.

Theorem 5.2.1. Let p = 2, and let £ > 4 be a fixed integer. Let Dy_5 be a self-
orthogonal (resp. self-dual) code of the type {ki +ka,ks,...,ke_1} and length n over
Ro—o, with a generator matriz Ge_o (as defined by ) Then the code Dy_y can
be lifted to a self-orthogonal (resp. self-dual) code Dy of the type {ki, ko, ..., ke—1,ke}
and length n over %y, with a generator matriz G, (as defined by ) if and only
if the free linear code D),_, generated by the rows of the matriz Z; is a ky-doubly

even code over Zy_a,, i.e, v-v =0 (mod 2°°Y) for allv € D, _,.

Proof. To prove the result, one can easily observe that the code Dy is a self-orthogonal
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code over %y, if and only if the system ([5.2.3) of matrix equations in unknown ma-
trices Vi, € Mklx(kg+kg+1)<7;)> Ue € Mklx(kfrkprl)(’];)? Aue € Mkux(kg+kg+1)(7;) for
2 < pu < ¢ admits a solution. Working in a similar manner as in Remark [3.4.1, we
see that the matrix A, is a full-row rank matrix over 7,. Now by applying Lemma
2.1.1, the desired result follows immediately. O

In the following section, we will count all doubly even codes of given length and
dimension over 7., and their two special subclasses, viz. the codes containing the

all-one vector and the codes that do not contain the all-one vector.

5.3 Enumeration of doubly even codes over 7,

To count all doubly even codes over 7,, we first observe that the set V, = T
of all n-tuples over 7, can be viewed as an n-dimensional vector space over 7,
under the component-wise addition induced by ¢ and the component-wise scalar
multiplication induced by the usual multiplication operation in Z,,. Next, let us

define a map B, : V, x V, = 7, as
B.(a,b) = vy(a-b) forall a,b eV,

where both a,b € V, are viewed as elements of Z, to compute a - b. Note that the
map B, is a non-degenerate and symmetric bilinear form on V,. Now a linear code
¢ of length n over 7, is defined as a 7,-linear subspace of V,. The dual code of the

linear code % is defined as
¢+ ={a eV, :B.(c,a) =0forall c€ €}

Note that the dual code €% is also a linear code of length n over 7. Further,
a linear code € of length n over 7, is said to be (i) self-orthogonal if it satisfies
€ C €+# and (ii) self-dual if it satisfies € = €15, It is easy to see that a doubly

even code of length n over 7, is self-orthogonal. We next observe that

ZWV,)={v eV, :B.(v,v) =(v-v) =0}
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is an (n — 1)-dimensional 7,-linear subspace of V., where each v € Z(V,) is viewed

as an element of [, to compute v - v. Note that
I(V)'s = (1),

where 1 denotes the all-one vector (1,1,...,1) € V, from now on. We further define
amap Q,:Z(V,) — T, as

Q,(v) = 70(%11 ~v) €T, for all v e Z(V,),

(recall that each v € Z(V,) satisfies v - v = 0 (mod 2)). One can easily observe
that (Z(V,), Q,) is a quadratic space over 7, with the associated symmetric bilinear
form B, [z0v,)xz(v,) on Z(V;). Note that any self-orthogonal code of length n over 7,
is contained in Z(V,). Further, one can easily observe that a doubly even code of
length n and dimension k over 7, is a k-dimensional totally singular subspace of the

quadratic space (Z(V,), Q,), and vice versa.

Next, we observe that (7 = {0,1},6,-) is the subfield of (7,,,) of order 2
and that )V = 7™ is an n-dimensional vector space over 7. Further, since the vector
space V can be viewed as a subset of V,, the map B = B, [y«y is a non-degenerate

and symmetric bilinear form on V. We next see that the set
IZV)={veV:B(v,v)=0}

is an (n — 1)-dimensional 7 -linear subspace of V, Z(V) C Z(V,) and that Z(V)'5 =
(1). Furthermore, the mapping Q = Q,[z(y) is a quadratic form on Z(V) with
the associated symmetric bilinear form Blzx)xz) on Z(V). We next observe that
1=(1,1,...,1) € Z(V) if and only if n is even. From this, it is easy to see that the
quadratic space (Z(V), Q) is non-defective if and only if n is odd.

When n is even, we choose an (n — 2)-dimensional 7-linear subspace V, of Z(V)
such that 1 ¢ Vy. Note that Z(V) =V, L (1). Tt is easy to observe that (Vo, Qly,)

is non-defective.

Now by the discussion in Section 5 of Wood [102] pp. 452-458] and by Theorem
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2.3.7(a), we see that the Witt index v of the quadratic space (Z(V), Q) is given by

(

n—1 ifn=1,7 (mod 8);
n=3 if p = 3,5 (mod 8);
2 if n =0 (mod 8);

n=2 ifp =246 (mod 8)

(5.3.1)

\

and that the quadratic space (Z(V), Q) admits an orthogonal direct sum decompo-

sition of the form

(a1,b1) L (ag,by) L -- J_<anT—l,bnT—l> if n=1,7 (mod 8);
{a1,b1) L {ag,by) L -- L(aana,banzﬁLW if n=3,5 (mod 8);

TOVZY b L (anba) L L (e, bas) L (1) if n=0,2,6 (mod 8);
(a1,b1) L (az,bp) L - L{ )

1 W L (1) ifn=4 (mod 8),
(5.3.2)

where (a;, b;)'s are hyperbolic pairs in Z(V) and W is a 2-dimensional non-singular
subspace of Z(V).

Now in the following lemma, we study the geometry of the quadratic space
(Z(V,), Q,) and obtain its Witt index v,..

Lemma 5.3.1. (a) The Witt index v, of the quadratic space (Z(V,), Q,) is given
by

\
3

|
—_

if either n = 1,7 (mod 8) orn = 3,5 (mod 8) and r is even;

] ‘
| (V]
w

if n=3,5 (mod 8) and r is odd;

vy =

N3 1\3‘

if either n =0 (mod 8) orn =4 (mod 8) and r is even;

n=2  f either n = 2,6 (mod 8) orn =4 (mod 8) and r is odd.

~ ‘

(b) The quadratic space (Z(V,), Q,) admits an orthogonal direct sum decomposition
of the form:
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{(a1,b1) L{ag,bo)L-- ‘J_<aan1,ban1> if either n = 1,7 (mod 8) or

n = 3,5 (mod 8) and r is even;
(a1,b1)L{ag,ba)L-- ‘J_<aana,bana>L W, if n=3,5 (mod 8) and r is odd;
(a1,b1) L{ag,bo) L--- J_<a%,ban2>J_<1> if either n =0,2,6 (mod 8) or

n =4 (mod 8) and r is even;

<a1,b1)J_(a2,b2>J_'--L(anT%,bnT%ﬂ_WT 1(1) if n =4 (mod 8) and r is odd,

where (a;, b;)'s are hyperbolic pairs in Z(V,) and W, is a 2-dimensional non-

singular subspace of Z(V,.).

Proof. Recall that 1 € Z(V,) if and only if n is even. Accordingly, we will distinguish

the following two cases: (i) n is odd and (ii) n is even.

(i) Let n be odd. Here by , the Witt index v of the quadratic space
(Z(V), Q) is given by v = 2% if n = 1,7 (mod 8), while the Witt index v
of (Z(V), Q) is given by v = "7_3 if n = 3,5 (mod 8). Further, by , we
see that the space (Z(V), Q) admits an orthogonal direct sum decomposition

of the form:
Z(V) = (a1,b1) L {ag,bo) L --- L (ay,,b,) LW,

where (aq,b1), (az,b2), ..., (a,,b,) are hyperbolic pairs in Z(V) and W is a non-
singular subspace of Z(V) having dimension n—1—2v. Note that dim(W) =0
if n = 1,7 (mod 8), while dimy(W) = 2 if n = 3,5 (mod 8). As Z(V) C
Z(V,), we see that (ai,by), (az,bs), ...,
n—1

Z(V,). This implies that v < v, < 252 So when n = 1,7 (mod 8), we see

that v, = v = 251 and that the quadratic space (Z(V,), Q,) admits an orthog-

(a,,b,) are also hyperbolic pairs in

onal direct sum decomposition of the form:

Z(V;) = (a1, by) L (ag,ba) L --- L <a/nT—l,bnT—l>.

Further, let n = 3,5 (mod 8). Here we have dimy(W) = 2. By Proposition
12.7 of [49], we note that W = (vq,vq), where vy, vy € Z(V) satisfy Q(vy) =
Q(vg) = 1 and B(vy,v9) = 1. Let W, be a T,-span of {v1,vs}, i.e., W, is a
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T--linear subspace of Z(V,). By applying Theorem [2.3.10] we observe that the

quadratic space (W,., Q, [w,) has a singular vector if and only if r is even.

In view of this, we see that when n = 3,5 (mod 8) and r is odd, the space

(Z(V,), Q,) admits an orthogonal direct sum decomposition of the form:
Z(Vr) = (a1,b1) L (ag,by) L--- L {a,,b,) LW,

where (aq,b1), (az,bs),...,(a,,b,) are hyperbolic pairs in Z(V,) and W, is a
2-dimensional non-singular subspace of Z(V,). This implies that v, = v when
n=3,5 (mod 8) and r is odd.

On the other hand, when n = 3,5 (mod 8) and r is even, by applying Propo-
sition [2.3.1, we see that W, = (wy, ws), where (wq,ws) is a hyperbolic pair in
Z(V,). Hence the space (Z(V,), Q,) admits an orthogonal direct sum decom-

position of the form
I(VT) = <(1,1,b1> 1 <a2,b2> 4oL <CLl,,bl,> 1 (wl,w2>,

where (ay,b1), (ag,b2), ..., (a,,b,), (wy,ws) are hyperbolic pairs in Z(V,.). This

implies that v, = v+ 1 when n = 3,5 (mod 8) and r is even.

From this and by (5.3.1), parts (a) and (b) follow immediately in the case

when n is odd.

(ii) Next, let n be even. Here 1 belongs to both Z(V) and Z(V,). Further, by
(5.3.1), we see that the Witt index v of the quadratic space (Z(V), Q) is given
by v =2 if n =0 (mod 8), while v = 252 if n = 2,4,6 (mod 8). We further
observe that v < v, < §. We note that Q,(1) = 1 when n = 2,6 (mod 8),
which implies that the all-one vector 1 does not belong to any totally singular
subspace of Z(V,). We also note that Q,(1) = 0 when n = 0,4 (mod 8). Now
working in a similar manner as in case (i), parts (a) and (b) follow immediately

in the case when n is even.

]

From now on, let v, denote the Witt index of the quadratic space (Z(V,), Q).
Now for 0 < k < n, let ®,(n; k) denote the number of distinct doubly even codes
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of length n and dimension k over 7,, or equivalently, the number of distinct k-
dimensional totally singular subspaces of the quadratic space (Z(V,), Q,). Note that
D,(n;0) =1 and D,(n; k) = 0 for v, < k < n. In the following theorem, we obtain
the explicit value of the number ©,(n; k) for 1 < k < v,.

Theorem 5.3.1. For 1 < k < v,, the following hold.

(a) When n is odd, we have

k=1 [ or(n—2i-2) 4 or(gt—i) _ or("zt—i-1) _q
H or(i+1) —_ 1

=0
if either n = 1,7 (mod 8) orn = 3,5 (mod 8) and r is even;
]ﬁ <2r(n22 2) _ 27"( —z)+2r(——z 1) _ 1)
r(i+1) _
=0 2 () 1
if n=3,5 (mod 8) and r is odd.

Dr(n;k) =

\

(b) When n is even, we have

2r(n7k71) + 21”(%) _ 21”(% k 2 27" ——z (27“(" 2.4) 1)
ark _ 1 or 1—0—1) 1

1= O

if either n =0 (mod 8) orn =4 (mod 8) and r is even;

gr(n—k—1) _ 2r( ) + 27’( k—2 ——z (Qr(——z) + 1)
2k — 1 27"(“‘1) —1

=0

D, (n; k)

if n =4 (mod 8) and r is odd,

k=1 [ or(n—2-2i) _ 4 ‘
W Zf?'LE2,6 (mod 8)

=0

Proof. To prove the result, let k£ be a fixed integer satisfying 1 < k& < v,.. We first
note that 1 € Z(V,) if and only if n is even. Accordingly, we will distinguish the

following two cases: (I) n is odd and (II) n is even.

(I) First let n be odd. Here by Lemma [5.3.1, we see that the quadratic space

(Z(V,), Q,) admits an orthogonal direct sum decomposition of the form

I(Vy) = (o, B1) L (a9, B2) L -+ L{ew,,By,) LW,
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where v, is the Witt index of the quadratic space (Z(V,), Q,), the pairs
(a1, B1), (a2, B2), ..., (au,, B,,.) are hyperbolic pairs in Z(V,) and W, is a non-
singular subspace of Z(V,) having dimension n — 1 — 2v,. By Lemma[5.3.1(a),
we note that v, = 254 if either n = 1,7 (mod 8) or n = 3,5 (mod 8) and r
is even, while v, = ”7_3 if n = 3,5 (mod 8) and r is odd. We next observe
that any k-dimensional totally singular subspace U of the quadratic space
(Z(V,), Q,) is of the form U = (vy, vy, ..., vx), where vy, vg, ..., v} are mutu-
ally orthogonal singular vectors in Z(V,) that are linearly independent over

T.. Now by applying Theorems [2.3.2, [2.3.7 and [2.3.8, we see that

k-1 27“(21/,«—22'—1) =+ 2r(1/r—i) _ 27’(1/T—i—1) -1
I1 ( 1 ) i =25

=0

or(i+1) _ 2

gr 7k =
(TL ) k—1 or(2vr—=2i+1) _ or(vr+1-i) + or(vr—i) _q _ -
11( o) 1 ) if v, = 552

From this and by Lemma [5.3.1(a), the desired result follows.

(IT) Next, let n be even. Here we see that 1 € Z(V,). Let V! be an (n — 2)-
dimensional 7,-linear subspace of Z(V,) satisfying 1 ¢ V.. Then we have
Z(V,) =V, 1 (1). By Lemmal5.3.1, we see that the quadratic space (Z(V,), Q,)

admits an orthogonal direct sum decomposition of the form

(ar, B1) L (g, B2) L -+ L{aw,, Bu,) L (1)

if n=2,6 (mod 8);

(ar, B1) L {az, B2) L -+ L {ay,—1, By—1) L (1)

if either n =0 (mod 8) or n =4 (mod 8) and r is even;
(a1, 1) L {az, Ba) L -+ L{ay,-1,B8y,-1) LW, L (1)

if n =4 (mod 8) and r is odd,

\

where v, is the Witt index of the quadratic space (Z(V,), Q,), the pairs
(an, 51), (g, Ba), ..., (u,, By,) are hyperbolic pairs in Z(V,) and W, is a 2-
dimensional non-singular subspace of Z(V,). By Lemma [5.3.1(a), we note
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that v, = § if either n = 0 (mod 8) or n = 4 (mod 8) and r is even, while
v, = 152 1f either n = 2,6 (mod 8) or n = 4 (mod 8) and r is odd. One
can observe that any totally singular 7,-linear subspace of Z(V,) is either (i)

contained in V., or (ii) contained in Z(},) but not in V..

(i) Now we will first count all distinct totally singular 7,-linear subspaces of
Z(V,) that are contained in V.. To do this, we see that any k-dimensional
totally singular subspace U of the quadratic space (Z(V,), Q,) contained
in V! is of the form U = (vy,vg, ..., vx), where vy, vg, . .., vy are mutually
orthogonal singular vectors in V), that are linearly independent over 7,.
By Theorems 2.3.2, 2.3.7 and [2.3.8, we see that the total number D of
distinct k-dimensional totally singular 7,-linear subspaces of Z(V,) that

are contained in V! is given by

(@G -G 1) b oz
or _ 1 H( or(i+l) _ )

=1

if n=2,6 (mod 8);

2r(n 2i—3) + 27”(2 —i) _ 2r(%—i—2) -1
of H 2r(+1) — 1

=0

if either n =0 (mod 8) or n =4 (mod 8) and r is even;

k-1 27“(77,—21— ) 27‘(2 —1) 4 2r(§—z 2) 1
H or r(i+1) _ 1

=0

if n =4 (mod 8) and r is odd.
(5.3.3)

(ii) Next, we will count all distinct k-dimensional totally singular 7,-linear
subspaces of Z(V,) that are not contained in V. Towards this, we first
observe that any k-dimensional 7,-linear subspace U of Z(V,.) that is not

contained in V), is of the form
U= <U1,U2, vy Up—1, 1+ Uk>,

where vy, vg, ..., v € V. are such that the vectors vy, vy, ..., v5-1,1 +

vg are linearly independent over 7,.. We further observe that such a
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subspace U is totally singular if and only if (v, ve, ..., vk_1) isa (k—1)-
dimensional totally singular 7.-linear subspace of V| and the vector vy
is either 0 or a singular vector in (vy, vy, ..., Up_1)75 \ (U1, Vo, ..., Up_1)
when n = 0,4 (mod 8), while the vector vy is a non-singular vector
in (v, vg, ..., 0p_1) 8 \ (Ug,v9,...,05_1) satisfying Q,(vx) = 1 when
n = 2,6 (mod 8). Now by applying Theorems [2.3.2, [2.3.7 and [2.3.8

again, we see that the total number ©; of distinct k-dimensional totally

singular 7,-linear subspaces of Z(},.) that are not contained in V! is given
by

.

k—2 ) n ) 0o
r(n—2k—1) r(2—k—1) gr(n—2i-3) L gr(§—1—0) _or(§-2-1) 3
(2 — 2"3 ) | |0 e
1=

if n=2,6 (mod 8);

r(n—2k—1) | or(Z—k) _ or(Z—k—1) 2r(n—2i-8) 4or(5 1= _or(3-i72)
o _ (2 + 275 273 )1‘[0 T T
1= i=

if either n =0 (mod 8) or n =4 (mod 8) and r is even;

k—2 _ 0 n
r(n—2k—1) _ or(%—k) 4 or(%—k-1) 2r(n=2i=3) 4 or(5 -1 _or(5-i-2)
(2 23 + 272 )1_[() G 1
1=

if n =4 (mod 8) and r is odd.

\

(5.3.4)

The desired result follows by noting that ©,.(n; k) = ©+9; and on substitut-
ing the values of ®y and ©; from equations (5.3.3) and ([5.3.4), respectively.

]

Remark 5.3.1. Theorem 7 of Gaborit [45] follows, as a special case, on takingr = 1

in the above theorem.

Next, for 1 < k < n, let 0,(n;k) denote the number of distinct doubly even
codes of length n and dimension k£ over 7, containing the all-one vector 1 € V,,
or equivalently, the number of distinct k-dimensional totally singular subspaces of
the quadratic space (Z(V,), Q,) containing the all-one vector 1 € V,. Note that
or-(n; k) = 0 for v, < k < n. In the following theorem, we determine the explicit

value of the number &,(n; k) for 1 < k < v,.
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Theorem 5.3.2. For 1 < k < v,, we have

(

k—2 , n_g n .
or(n—2i-3) 4 or(§—i-1) _ or(§-i-2) _q
H ( i 27:;“) 1 - if either n =4 (mod 8) and
i=0 -

r is even or n =0 (mod 8);
k

|
I\

or(n; k)

or(n—2i-3) _ 2r(ﬂ—i—1) 27’(2—2'—2) -1
( ’ ree if n =4 (mod 8) and r is odd;

or(i+1) _ 1

@
Il
o

0 otherwise.

Proof. To prove the result, let k& be a fixed integer satisfying 1 < k < v,. We recall
that the number ,.(n; k) equals the number of distinct k-dimensional totally singular
subspaces of the quadratic space (Z(V,), Q,) containing the all-one vector 1 € V,.
We further note that 1 € Z(V,) if and only if n is even. This implies 7,(n; k) = 0
when n is odd. Further, it is easy to observe that Q,.(1) = 1 when n = 2,6 (mod 8).
This implies that when n = 2,6 ( mod 8), the vector 1 does not belong to any totally
singular subspace of Z(V,), which further implies that &,.(n; k) = 0 in this case.

When n = 0,4 (mod 8), we recall that Z(V,) =V, L (1), where V), is an (n—2)-
dimensional 7,-linear subspace of Z(V,) satisfying 1 ¢ V/. It is easy to see that any
k-dimensional totally singular subspace U of the quadratic space (Z(V,), Q,) con-
taining 1 is of the form U = (v, vy, ..., vk_1, 1), where vy, vy, ..., v;_1 are mutually
orthogonal and linearly independent singular vectors in V/. By Lemma @, one
can easily observe that the Witt index v, of the quadratic space (V), Q, [vixyr) is
given by

222 if either n =0 (mod 8) or n =4 (mod 8) and r is even;

vi=v,—1=
24 if p =4 (mod 8) and 7 is odd.

Now working as in Theorem [5.3.1 and applying Theorems [2.3.2,[2.3.7 and [2.3.8, the

desired result follows. O

Next, let 7,.(n; k) denote the number of distinct doubly even codes of length n
and dimension & over 7, that do not contain the all-one vector 1 € V, for 0 < k < n.
Note that 7,(n;0) = 1 and ,(n; k) = 0 for v, < k < n. In the following theorem,

we determine the explicit value of the number ,(n; k) for 1 < k <.
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Theorem 5.3.3. For 1 < k < v,, we have

(k-1 2r(n—2i—2) + ZT(%fz) o QT("Tflfifl) -1
H 2r(i+1) -1

=0

if either n = 3,5 (mod 8) and r is even or n = 1,7 (mod 8);

k=l [or(n—2i-2) _ or(25t-i) + or(5t—i-1) _q
Z]](): ( or(i+1) _ 1 )
if n = 3,5 (mod 8) and r is odd;
—1 or(n=2i-2) 4 or(§—i) _ gr(§—i-1) _ or

( or(i+1) _ 1 )

e

or(n; k) =

=0

if either n =4 (mod 8) and r is even or n =0 (mod 8);
k=l /or(n—2i=2) _ or(5—i) 4+ or(3—i=1) _or
]:10: ( 2r(z’+1) -1 )

if n =4 (mod 8) and r is odd;

-1 or(n—2-2i) _
( 2r(i+1) -1

E

) if n=2,6 (mod 8).

[ =0

Proof. Tt follows immediately from Theorems|5.3.1 and[5.3.2 by noting that ©,.(n; k) =
or(n; k) + o.(n; k) for 0 < k < n. O

The numbers ®,.(n; k), 0,.(n; k) and 7,(n; k) are needed to count all self-orthogonal
and self-dual codes of length n over Z. .. In the following section, we will extend the
recursive method employed by Nagata et al. [T5] to construct self-orthogonal and

self-dual codes over the Galois ring %, ,.

5.4 A modified recursive method to construct and
enumerate self-orthogonal and self-dual codes

over X,

Throughout this section, let us assume that

-3}
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One can easily see that [5] = s + 6, where § = 0 if e is even, while 6 = 1 if e is
odd. Next, let n be a positive integer, and let ki, ks, ..., ke, keyr1 be non-negative
integers satisfying n = ky + ko + -+ - + ke + ko1 and 2k + 2k + - -+ + 2ke_; 1 +
ke_ivo + ke—izz+ -+ k <nfor s+ 1< i < e. Further, let us define np = 0 and
n,=ki+ky+--+kforl<i<e+1.

In this section, we will extend the recursive construction method employed by
Nagata et al. [T5] to construct and count self-orthogonal and self-dual codes of the
type {k1, ko, ..., k.} and length n over Z,, from an n,-doubly even self-orthogonal
code of the same length n and dimension n,4 over 7, (see the proofs of Theorems
@@) Towards this, for positive integers o and § satisfying 5 < e, let (D)3
denote the block matrix whose (7, j)th block is the matrix D;; € My« (7;) for
1 <i<aand f <j < e Moreover, for a positive integer w, let [H],, denote the
column block matrix whose ith block is the matrix Hy € My, «,(7;) for 1 </ < w.

J+1

We need the following lemma to count self-orthogonal and self-dual codes over

R

Lemma 5.4.1. Let ¢ > 3. Let A € M, ,xn(T) and Y € M, n(T;) be two
matrices of the form

Ay Iy Aig Arp oo Aisior 0 Alet Aie
A= As _ 0 I, A -+ Assror -0 Aser A
_As+9_ L O 0 O e Iks+0 A5+97671 A5+9,e_
and o ) )
Y; 0 0 Yio Yig -+ Yigrr -+ Yiear Yie
Ya| {000 0 Yag oo Yae o Yoo Vi
Y = . = . . . . . . . )
| (00 0 0 - Yo - Y Yi
where columns of the matrices A and 'Y are partitioned into blocks of sizes ky, ka, . . .,
ke, ket1, the matriz Iy, is the k; X k; identity matriz over T, A;j € My, xk,.,(Tr) for

1<i<s+0andi<j<e, andYop € Myysp,,,(Tr) for1<a<sanda <b<e.
Suppose that the matriz A satisfies the condition AA* = 0 (mod 2) and that the
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matriv (A)ssy146 € M, x(n—noy110)(Tr) 15 of full row-rank. Let us write
[Als[AL =2F +4H (mod 8),

where F € Alt, (T,) and H € Sym, (T;), (here the matriz [Al], is viewed over
Rey). Next, let w be a fized integer satisfying 1 < w < s—1+ 60, and let H,, be the
matriz over T, whose rows are the first n,, rows of the matriz H. Then consider the

following system

[ALY" + Y]AJ

and Diag(Ho+ (ALY, + VL) = (5:4.1)

F (mod 2)
0 (mod 2)

of matrixz equations in the unknown matrixY € M, «n(T.). Then the following hold.

(a) If 1 does not belong to the T.-span of the rows of the matriz [Al,, then the
system (5.4.1) always has a solution.

(b) If 1 belongs to the T.-span of the rows of the matriz [A],, then the system
(5.4.1) has a solution if and only if either n = 0 (mod 8) orn = 4 (mod 8)

and r is even.

Moreover, if the system has a solution, then the number of its solutions is
given by

where e = 0 if 1 does not belong to the T.-span of the rows of the matriz [Al,, while
e = 1 if 1 belongs to the T.-span of the rows of the matriz [A|, with either n =0

(mod 8) orn =4 (mod 8) and r is even.

Proof. To prove the result, let us suppose that A = (a;) and Y = (y;), where a;’s
and y,’s are the rows of the matrices A and Y, respectively. Let F' = (f;;), where
fij € T, denotes the (7, j)-th entry of the matrix F for 1 <14, j < n,. Here we note
that f;; = 0 for 1 < i < n,. Further, let H = (h;;), where h;; € 7, denotes the
(1, 7)-th entry of the matrix H for 1 < 4,j < n,. We next observe that the system

(5.4.1) of matrix equations is equivalent to the following system of equations in
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unknowns yi,ys,...,¥y,, over 7.

a;-y;+a;-y; = fij (mod2) for1<i<j<n,and } (5.4.2)

a -y, ty,'y;, = hi,i (HlOd 2) fOl"lSiSnw,

When r = 1, we see that the equation a; -y, +y, - y; = hi; can be rewritten as
a,-y,+1-y,=h;, for 1 <i<mn,, and hence the system (5.4.2) is indeed a system
of linear equations. However, when r > 2, the system consists of both linear
and non-linear equations. Further, we observe that counting solutions of the system

(5-4.2) of equations in unknowns y,;,y,,...,y,, over 7, is equivalent to counting

solutions of the following systems of equations in unknowns y,,ys,...,y,, over 7,:
a-y;ta;j-y; = fi; (mod 2) for 1 <i<j<ny,
a;-y; = O;+hi; (mod 2) for1<i<n,and (5.4.3)
Y y; = 6; (mod 2) for 1 <i < n,,

where (01,0,,...,0, ) runs over (7,)™.

To count solutions of the system (5.4.3), let (©1,0,,...,0,,) € (T,)™ be fixed
arbitrarily. For this particular choice of (01,0,,...,0,,) € (7,)™, we observe that
the system ([5.4.3) of equations is equivalent to the following system of equations in

unknowns y,ys,...,y,, over 7,:
aj-y;+aj-y; = fi; (mod 2) for 1 <i<j <n,,
a-y; = ©,+h;; (mod 2) for1l<i<n,and (5.4.4)
1.y, = 62" (mod 2) for 1 <i < mn,,.

We further note that for each integer ¢ satisfying 1 < ¢ < ng, there exists a unique
integer ¢, satisfying 1 < ¢, < s and n.,_1 +1 < ¢ < n,, and that the corresponding

unknown vector y, is of the form y, = (0 yZﬁnC‘“), where 0 denotes the zero vector of
length n.,4+1 and yz_nc‘“ denotes the vector of length n—n,,+1 obtained from y, after
deleting the first n.,,; coordinates. From this, we see that for n,,_; +1 < ¢ < n,,,

the first n.,41 coordinates of y, are zero, which implies that there are n — ng,4;

variables in y,. Now for 1 < ¢ < n,, lety, =y, " (resp. 3, =a, ") denote

the vector of length n — n.,41 obtained from y, (resp. a,) after deleting the first
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Ne,+1 coordinates. In view of this, we observe that the system (5.4.4) of equations

is equivalent to the following system of equations in unknowns y,,y,,...,y,, over
T,
a;-y;+a;-y; = fi; (mod 2) for 1 <i<j<n,,
a;,-y, = ©,+h;; (mod 2) forl<i<n, and
1.y, = 62" (mod ?2) for 1 <i < nyg,

where 1 denotes the all-one vector having the same length as that of y, for each i.

Note that the above system of equations can be represented by the following matrix

equation:
y)jfl @%'rfl
~t
Yo :
¥ e
: @1 + h171
M|y 1| = : (mod 2), (5.4.5)
~t
ynw @nw _I' hw,w
~t
Yno+1 fi2
~t
L yns i L fns_1,n5
where o .
1
1
a;
M = A,
a, a;
5713 51
ans 5nsfl
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1 s+1
It is easy to see that the matrix M is of order (an + %) X ( kin;_o+ns(n—
i=3
ns—‘rl)) .

We next assert that the rows of the matrix M are linearly dependent over 7,
if and only if 1 belongs to the 7T,-span of the rows of the matrix [A],. To prove

this assertion, we first note that the matrix (A)ssr110 is a full row-rank matrix

over 7;, which implies that the vectors a; "' a;”"“*' ... al' "' obtained by
deleting the first n.,q coordinates from the vectors aj, as, ..., a,, respectively, are

linearly independent over 7, for 1 < ¢ < s. From this, it follows that the vectors
aj, ay,...,a,, are linearly independent over 7,. Next, it is easy to see that if the rows
of the matrix M over 7, are linearly dependent, then there exist integers i1, o, . . ., iy

satisfying 1 <7 <9 < --- < 1p < n, and
Bi i, + B, + - + B, = 1 (mod 2) for some f;,, Bi,, - - ., Bi, € Tr \ {0}.

This implies that 8;a; """ + Bia;, "' + -+ Fa; """ = 177"+ (mod 2) for
some integer c satisfying 1 < ¢ < s, which further implies that 3;,a;, + B,ai, +- -+
Bi,a;, = (0 aa’ 1" ") (mod 2), where a and a’ are vectors of lengths k. and k.4

over 7T,., respectively.

Here we claim that 5, a;, + Bna;, + -+ + Bi,a;, = (0 177" 1) (mod 2), i.e.,
a= 1% (mod 2) and a’ = 1%+ (mod 2).

To prove this, we see that if both k. and k., are zero, then we are through. Now
if k..1 > 0, we note that for an integer j; satisfying n. + 1 < 77 < n.y1, the vector
a;, is of the form (0 e;, aj "**"), where e;, is a vector of length k.., having 1 at the
(j1—n.)-th position and 0Os elsewhere. Since the matrix A satisfies AA* = 0 (mod 2),
we have a;,-a;, =0 (mod 2) and a;, - (5;,a;, +Fi,ai,+ - -+5;,a;,) =0 (mod 2). From
this, we obtain a’ = 1%+ (mod 2), which implies that 3;,a;, + Bi,a;, +- - + B;,a;, =
(0 a 1) (mod 2). Now if k. = 0, then we have §;,a;, + Bi,a;, +--- + [, a;, =
(0 1" 1) (mod 2). On the other hand, if k. > 0, then for an integer j satisfying

ne-1 +1 < j < n., we note that the vector a; is of the form (0 e; a’ "), where

J
e; is a vector of length k., having 1 at the (j — n._1)-th position and Os elsewhere.
Using again the fact that the matrix A satisfies AA"* = 0 (mod 2), one can show that

a = 1% (mod 2), which further implies that 3; a;, + Bi,a;, +- - -+ 3;,a;, = (0 1" ")
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(mod 2). From this, we obtain §;,a;, + Sia;, + -+ f,a;, = (0 1"7"1) (mod 2)

in all the cases, which proves our claim.

Now if k; = 0 for 1 < j < ¢ —1, then we have 3; a; + Bi,a;, +---+ B;,a;, = 1"
(mod 2), which implies that 1 = (1,1,...,1) belongs to the 7,-span of the rows of
the matrix [A],.

Next, suppose that there exists a positive integer « satisfying 1 < a < c¢—1,
ko > 0 and ko1 = kqyo = - -+ = k.1 = 0. This implies that §;,a;, + Bi,a;, + - +
Bi,a;, = (0 1" ™) (mod 2). Now for an integer g satisfying n,—1 + 1 < g < n,, the
vector a, is of the form (0 e, a;~"*), where €, is a vector of length k, having 1 at
the (g — nq_1)-th position and Os elsewhere. Since the matrix A satisfies AA" =
(mod 2), we have a, -a;, = 0 (mod 2) and a, - (8;,a;, + Bi,a, +---+ [i,a;,) =0
(mod 2). This implies that 1 4 1"7" - ap~" =0 (mod 2) and 1" - aj~" =0

(mod 2), which is a contradiction.

This proves that ¢ = 1. From this, it follows that 8, a;, + Bi,a;, + -+ + 5;,a;, =
(b b’ 1"7"2) (mod 2), where b and b’ are vectors of lengths k; and ky over 7,
respectively. Here working as above, one can show that b = 1% (mod 2) and
b’ = 1% (mod 2). This implies that 3; a;, + 8,a;, +- -+ 3,8, = 1 (mod 2), which
further implies that the all-one vector 1 belongs to the 7,-span of the rows of the
matrix [A],. This shows that if rows of the matrix M are linearly dependent over
7., then 1 belongs to the 7T,-span of the rows of the matrix [A],. Further, since
the vectors aj, ag, ..., a,,  are linearly independent over 7., we see that there exist

unique scalars 8;,, Bi,, . . ., Bi, € T, such that 5, a;, +fi,a;,+ - -+5;,a;, =1 (mod 2).

Conversely, if 1 belongs to the T,-span of the rows of the matrix [A],, then the

rows of the matrix M are linearly dependent over 7,. This proves the assertion.

(a) First of all, suppose that 1 belongs to the 7,-span of the rows of the matrix
[A].,. Here we see that 1 can be uniquely expressed as a linear combination of
the rows of the matrix [A], over 7,. We further see that all the rows of the
matrix M except the last row are linearly independent over 7., which implies
that the row-rank of the matrix M is 2n,, + w — 1. We next observe that
the matrix equation (5.4.5) has a solution if and only if (©1,0,,...,0,,) €
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(7)™ satisfies

4 ¢
(Zﬁib@g_l)Q + Z&U@?:_l = % (mod 2)
b=1 v=1

and the number of its solutions is independent of such a choice of (01,09, ...,

O,,) € (T,)™. From this and by applying Theorems [2.3.10| and [5.3.2, we
observe that there exists a matrix Y € M,,_«,(7,) satisfying the system ([5.4.1

of matrix equations if and only if either n =0 (mod 8) or n =0 (mod 4) and

r is even and that such a matrix Y has precisely

Silk ( ) 2 ns(n 71)_"_1
_ iNi—2+Ns(n—ngq1)—2ne— 57—
2 x (2Nt x (27)i=
s+1
> king_atns(n—nsy1)—ne

= 2(2)

_ns(ns—1)

distinct choices.

Suppose that 1 does not belong to the 7,-span of the rows of the matrix [A],,.
This, by the above assertion, implies that the rows of the matrix M are linearly
independent over 7. This further implies that the row-rank of the matrix M

is 2n,, + w and that the matrix equation (5.4.5) always has a solution.

Further, the number of solutions of the system (5.4.3) in the unknown matrix
Y € M, .«n(7,) is independent of the choice of (©1,0,,...,0,,) € (7,)" and

is given by
s+1
> kini—atns(n—nsy1)—2nu—

(2T)i:3

ns(ns—1)
2

From this, we observe that there exists a matrix Y € M,,_x,(7,) satisfying
the system ([5.4.1) of matrix equations and that such a matrix Y has precisely

Silk-n- 2+ns(n—ns41)—2n —nsns=1)
- by — S S w 2
(2 x (2)%
s+1
> kini—otns(n—nsi1)—nw—

— (2T)i:3

ns(ns—1)
2

distinct choices.

This proves the lemma. O
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Now we shall distinguish the following two cases: (i) e = 2 and (ii) e > 3.

5.4.1 The case e =2

Throughout this section, let us assume that e = 2. Here ky, ks, k3 are non-negative
integers satisfying n = ky + kg + k3 and k; < k3. In the following theorem, we show
that if there exists a doubly even code %, of length n and dimension k; over 7, then
there exists a self-orthogonal code %, of the type {ki, k2} and length n over %5,
satisfying T'or,(%,) = Py, and vice versa. We also count all distinct self-orthogonal
codes %, of the type {k1, k2} and length n over %, satisfying Tor (%) = A, for

a given choice of %.

Theorem 5.4.1. (a) There exists a doubly even code By of length n and dimen-
sion ki over T, if and only if there exists a self-orthogonal code %o of the type
{k1, ka} and length n over s, satisfying Tor (%B2) = Po.

(b) Furthermore, each doubly even code By of length n and dimension ky over 7T,

gives rise to precisely

LGk 2k 1) [kz + k3 — kl}
k2 -

distinct self-orthogonal codes By of the type {ki,ko} and length n over %s,
satisfying Tor,(%,) = B.

Proof. To prove the result, let %, be a self-orthogonal code of the type {ki, k2}
and length n over %,,. We see, using Lemma @, that %y = Tori (%) is a
k1-dimensional doubly even code over 7.

From now on, let %, be a doubly even code of length n over 7,.. Here by Remark
[4.3.1, we assume, without any loss of generality, that the code %, has a generator
matrix

Go=|L, A" A9,

where columns of the matrix Gy are partitioned into blocks of sizes ki, ks, k3, the
matrix [, is the k; x ky identity matrix over 7y, Aﬁ?) € My, i, (7T:) and A§?§ €

M, ks (Tr), and the matrix Ag is of full row-rank over 7.. Since the matrix Gy
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generates a doubly even code over T,., we have
GoGY = I, + AYAY) + ACASY = 2F (mod 4), where F € Alty,(7;),

(note that the matrix GoG} is viewed over %5 ,). Now let us define a matrix G
over s, as
g AR A 4240

G
o oe2n, 240

where A?Q € My, «ks(7T:) and Ag € Myyxis(T:). Let By be the linear code of
length n over %5, with a generator matrix Gs. It is easy to see that Tor (%) =
Ay and that the code %, is of the type {ki,ko}. Further, by Theorem [2.2.4, we
observe that the code %, is a self-orthogonal code over %, if and only if there
exist matrices Aﬁlg € My, xks(T-) and Agg € My, ks (Tr) satisfying the following

two matrix equations:

ADBALY + ADASY = F (mod 2), (5.4.6)
AP+ ADATY = 0 (mod 2). (5.4.7)

To show that there exists a matrix Ag satisfying (5.4.6), we note that Diag(F') = 0

and that the matrix .Ag?% is a full row-rank matrix over 7,.. By applying Lemma/2.1.1,
we see that there exists a matrix A@ satisfying (5.4.6) and that such a matrix Aglg

has precisely

rkq(2n—3k1 —2ko+1)
2

distinct choices. Further, to show that there exists a matrix Ag?; satisfying (5.4.7),
we observe, by Lemma 2.2.1 and by , that there exists a matrix Agg satisfying
(5.4.7) if and only if the Torsion code Tory(%s,) satisfies By C Tory(%,) C By
Furthermore, for a given choice of the code %, we see that the number of choices
for the matrix Ag?; satisfying is equal to the number of choices for a linear
code # of length n and dimension k; + ky over 7, satisfying %, C % C %y,
k2+k3_k1}2r distinct choices. Moreover, one

ko
can easily see that each of the distinct choices for the pair of matrices Af; and

Ag?; satisfying (5.4.6) and (5.4.7) gives rise to a distinct self-orthogonal code %, of
the type {k1, ko} and length n over %, satisfying T'or (%,) = Hy. From this, the

which, by Theorem [2.3.9, has precisely [
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desired result follows immediately. O

By Theorem [2.2.4(b), we see that a self-orthogonal code of the type {k1,k2} and
length n over %, is self-dual if and only if 2k; + k2 = n. In the following theorem,
we show that if there exists a doubly even code % of length n and dimension k;
over 7., then there exists a self-dual code %, of the type {k1, k2} and length n over
Hs,, satistying Tori(Hy) = By and vice versa, where ky = n—2k;. We also count all
such distinct self-dual codes % of the type {k1, ko} and length n over %, satisfying
Tor (%,) = B, for a given choice of H.

Theorem 5.4.2. Let ky, ks be non-negative integers satisfying n = 2k + ko. The
following hold.

(a) There ezists a doubly even code By of length n and dimension ky over T, if
and only if there exists a self-dual code By of the type {ki,ks} and length n
over Ho, satisfying Tor,(HB2) = Po.

(b) Furthermore, each doubly even code By of length n and dimension ky over 7T,
rkp(k1+1)

gives rise to precisely 27 2 distinct self-dual codes By of the type {ki, ks }
and length n over %, satisfying Tor,(%B2) = B.

Proof. On substituting k3 = k; = n — (k; + ko) in Theorem |5.4.1, the desired result

follows immediately. O

5.4.2 The case e > 3

Throughout this section, let us suppose that e > 3. Here kq, ko, ..., ki1 are non-
negative integers satisfying n = ky + ko + - -+ + keyq and 2k + 2ko + - - + 2k ;41 +
ke—ivo + ke—jug+ -+ k <ntfor s+1 < i < e In the following proposition, we
consider a doubly even code % of length n and dimension n, over 7, and an n,_;-
dimensional linear subcode %, of the code % satisfying the additional property that
1¢ %, when n =4 (mod 8) and r is odd, and we provide a method to construct
an ng_1-doubly even self-orthogonal code %5 of the type {n, ks.1} and length n
over %, with a free linear doubly even subcode %, satistying T'or,(62) = 6, and
Tor (%) = P. We also count all such distinct ns_;-doubly even self-orthogonal

codes %, of the type {ns, ks11} and length n over %s,..
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Proposition 5.4.1. Let 6, be a doubly even code of length n and dimension ng over
T, and let Dy be an ng,_1-dimensional linear subcode of 6y satisfying the additional

property that 1 ¢ 2y when n =4 (mod 8) and r is odd.

(a) There ezists an ngs_1-doubly even self-orthogonal code €5 of the type {ns, ksi1}
and length n over %s, with a free linear doubly even subcode Py satisfying

TO’T’l (%2) = (go and TOT1(22> = .@0.

(b) Furthermore, the pair (6, Zo) of codes over T, gives rise to precisely

s+1
> king_a+ns(n—nsy1)—ns_1—

2¢(97) %%

ns(ns—1)
2

ks—i—l +n— N1 — N

ks-‘rl or

distinct ns_1-doubly even self-orthogonal codes € of the type {ns, ksi1} and
length n over %, with a free linear doubly even subcode Py satisfying Tor,(€s) =
¢o and Tor(Da) = Dy, where e =1 if 1 € Py with either n =0 (mod 8) or

n =4 (mod 8) and r even, while ¢ = 0 otherwise.

Proof. By Remark [4.3.1, we assume, without any loss of generality, that the code

%o has a generator matrix

i 7 i 0 0 0 0 0)]

7200 Ly AY A o AD Al A

(0) 0 0 0 0

Go— 170, — |2 | 2|0 e é,% «45,‘3—1 Aé,‘i_l A;,i
z& 0 0 0 - Iy - AY Al

and its subcode %, has a generator matrix

0 0 0 0 0
Z01 LAY AY - AT, AR AR
(0) 0 0 0
[Z(O)] _ Zy 0 I, Aé% Aé,i_g «45,2_1 Agg
871 - . - . . . . . . . . ’
Zs(o—)l 0 0 0 ]k?s—l Ago—)l,e—l Ago—)l,e

where columns of the matrices Gy and [Z (0)]5_1 are partitioned into blocks of sizes

ki, ko, ... ke, ker1, the matrix Iy, is the k; x k; identity matrix over 7, Ag?j) €

Miisiy o, (Tr) for 1 < i < s and i < j < e, and each of the matrices (A, 11,
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(A), o, (AD)y ) A are of full row-rank over T,. Since the matrix Gy

l,e

generates a doubly even code over 7,, we have
GGt = [Z29,[2O] = 2F +4H (mod 8),

where F' € Alt, (7,) and H € Sym,, (T;), (note that the matrix GoGf is viewed over

Her). Now to prove the result, let us define a matrix G, over %», as

[ 20 (22 20V
A4S, zy + 21y
Gy = : = : ;
2 2 4 2V
or0) [ 22

where the matrix [VM], € M, ., (7;) is of the form

B 1 1 1 1

W oo Al AR e AR e AR

1 1 1

I L I L Apy o Al e A
vl foo o o0 oAl ALY

with AZ(-}J-) € My xr; (Tr) for 1 < i < sand i < j < e, and the matrix Zs(i)l €
M, xn(Ty) is of the form

0 0
Ag£1,5+1 Ang)l,e

s+1

Zglz[o e 0 I

Further, let 4> and %, be linear codes of length n over %5, with generator
matrices Go and [Z (2)]3_1, respectively. We also note that the code % is a free linear
subcode of &, of rank ng_;. It is easy to see that Tor (%) = %y and Tori(62) = %
and that the code %, is of the type {ns, ks;1}. Now by Theorem @, we observe
that the code % is an n,_;-doubly even self-orthogonal code over %, with a free

doubly even linear subcode as %, if and only if there exist matrices [V(V)], and Z s(i)l
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satisfying the following system of matrix equations:

(ZOL[WVORL + [VOL[ZzO) = F (mod 2), (5.4.8)

S

Dmg<H’+[Z<0>]s_1[v<1>]g,1+[v“)]s_l[v(l)]g,l) = 0(mod 2), (5.4.9)
(291,220 = 0 (mod 2), (5.4.10)

where H' is an ns_; X ne_; matrix over 7, whose rows are the first n,_; rows of

the matrix H. Now by applying Lemma [5.4.1, we observe that there exists a matrix
[V], satisfying (5.4.8) and (5.4.9) and that such a matrix [V V], has precisely

s+1
> kini_o4ns(n—nsy1)—ns_1—

ns(ns—1)

2¢(2")i=s ’

distinct choices, where ¢ = 1 if 1 € %, with either n = 0 (mod 8) or n = 4
(mod 8) and 7 even, while e = 0 otherwise. Further, by applying Lemma [2.2.1 and
Theorem [2.3.9 and working as in Theorem [5.4.1, we see that there exists a matrix
Z (_221 satisfying and that such a matrix Zﬁ)l has precisely [ks+ LR fet 17"5} ”

s k5+l
relevant choices. Further, it is easy to see that each of the distinct choices for the

pair of matrices [VW], and Z%| satisfying the system (5-4.8)-(5.4.10) of matrix
equations gives rise to a distinct n,_;-doubly even self-orthogonal code %5 of the
type {ns, ks4+1} and length n over %, with a free linear doubly even subcode %,
satisfying Tor (%) = 6o and Tor1(%2) = %y. From this, the desired result follows

immediately. [

In the following proposition, we consider an n,-doubly even self-orthogonal code
%y of length n and dimension n,,; over 7., an ns,-dimensional doubly even linear
subcode as %, satisfying the additional property that 1 ¢ %, when n =4 (mod 8)
and r is odd, and an n,_;-dimensional linear subcode %, of the code Z,, and we
provide a method to construct an ns_;-doubly even self-orthogonal code %3 of the
type {ns, kst1, ksy2} and length n over %5, with a free linear doubly even subcode
95 satistying Tor (63) = Y, Tors(€3) = 6o and Tor(Z5) = Z,. We also count all
such distinct ns_;-doubly even self-orthogonal codes @3 of the type {ng, ksi1, ksi2}

and length n over #Zs.,.
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Proposition 5.4.2. Let 6, be an ng-doubly even self-orthogonal code of length n
and dimension ngy 1 over T., and let Yy be an ng-dimensional doubly even linear
subcode of the code 6y satisfying the additional property that 1 ¢ Py when n = 4
(mod 8) and r is odd. Let 2, be an ns_y-dimensional linear subcode of %y. The
following hold.

(a) There exists anng_1-doubly even self-orthogonal code €5 of the type {ng, ks, 1, ksio}
and length n over %s, with a free linear doubly even subcode P satisfying

Tori(63) = Dy, Tory(63) = 6o and Tor1(Z3) = D.

(b) Furthermore, the triplet (6o, Zo, 21) of codes over T, gives rise to precisely

s+2 s+2
kin;_o+ king_ +n§—n5, +(ns+ns N—"Ngi12—"Ns _ _
26(27”)1';3 2 j§4 78 1+ +1)( +2 ) k3+2+n Ns42 Ng
ks+2 or
distinct ns_1-doubly even self-orthogonal codes €3 of the type {ns, ksi1,ksi2}
and length n over %s, with a free linear doubly even subcode P satisfying

Tor (€5) = Dy, Tory(63) = 6o and Tor((Z3) = Py, wheree =1 if 1 € Yy with

either n =0 (mod 8) or n =4 (mod 8) and r even, while e = 0 otherwise.

Proof. Here by Remark 4.3.1, we assume, without any loss of generality, that the

code %y has a generator matrix

i T [ 0 0 0 0 0) ]
Z0 | | AR A AR Al A
(0) 0 0 0 0
Go = [Z(O)]S+1 _ Z? _ O 11'42 'Ag,% e Aé,s) e Ag,gl -A'g,g ’
| Z5 ] [0 0 0 e Ly e A AT

the subcode % of 6 has a generator matrix [Z(?)], and the subcode 2, of %, has

a generator matrix [Z(?)],_;, where columns of the matrices Gy, [Z(?], and [Z")],_,

are partitioned into blocks of sizes ki, ko, ..., ke, ket1, the matrix I, is the k; x k;
identity matrix over 7T, AE?} € Miysiy o (Tr) for 1 < i < s+1landi < j <e,

and each of the matrices (A©), 410, (AQ) 113y, (AD) 4, A{Q are of full
row-rank over 7,.

Since %, is an ng-doubly even self-orthogonal code of length n and dimension
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nsy1 over 7. with an n,-dimensional doubly even linear subcode as %, we have

(Z0],[z9] = 2F +4H (mod 8),

20,z = 2P (mod 4),

where F' € Alt, (T,), H € Sym, (T;) and P € M, «k.,,(7), (note that the matri-
ces [Z0],[Z©] and [Z(O)}SZQI are viewed over Z.,). Now to prove the result, let

us define a matrix Gs over %, as

[ 70 2 + 2+ av?]
Z ZY + 2V + 4v?
g = ) pu— ’ 5
T z® 20 1 2v 4 av®
22,3, 273,
I I Y

where for ¢ € {1,2}, the matrix [V®], € M,,.«n(T;) is of the form

()] I [ ¢ ¢ 0)]

VIOL o 0 A, AD, e AL e A

) () ) 0

Vo), = Vol (0 0 0 Aspre o Aspys o Ase
0 () ‘

_Vs | _0 e 0 0 0 . As,e+s .. As,e_

. ¢
with -/45]) € Mp,xk; i
M, xn(%s,) is of the form

(7;) for 1 < i < sand i+ ¢ < j < e, the matrix Zs(i)l €

3 0 1 1
zth=z+2fo o0 Al e Al

with Agl,j € My, yxkyir (Tr) for s +2 < j < e, and the matrix Zgz € My oxn(Tr)

is of the form

3 _ 0 0
Z8 =0 0 Ly A%, o A,

with Ai(jr)zj € My oy, (Tr) for s +2 < j <ee.
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Now let €5 and Z3 be linear codes of length n over %5, with generator matrices
Gs and [Z (3)]5,1, respectively. We also note that the code %5 is a free linear subcode
of €3 of rank n, ;. We also observe that Tori(Z;) = 2, Tor(%63) = %y and
Tory(¢3) = %y and that the code %3 is of the type {ns, ksi1,ksio}. Further, by
Theorem [2.2.4, we observe that the code %3 is an n,_;-doubly even self-orthogonal
code over %5, with a free linear doubly even subcode as %5 if and only if there
exist matrices [V, [VP],, [0 -+ 0 .,4221,8” Ag?l’e] and Z, satisfying the

following system of matrix equations:

F+ [ZO) VO + [VOL[ZO) + 2(120,[v@).

H[VOL[ZO) + VO] [VOL 4+ H> 0 (mod 4), (5.4.11)
Diag(H'+ (2] [VOL + VOl VOl

+2[Z<°>]S,1[v<2>]g,l) = 0(mod 4), (5.4.12)

P+ [z, [0 0 AN L, Agljl,e]t = 0 (mod2), (5.4.13)

(21,2 = 0 (mod 2), (5.4.14)

where H' is an ny_; X ng_; matrix over 7, whose rows are the first n,_; rows of the

matrix H.

First of all, we see, by Lemmal(5.4.1, that there exists a matrix [V, € My, «n(T;)
satisfying the following two matrix equations simultaneously:

[ZO[VORL + [VIL[ZO) = F (mod 2), (5.4.15)

S

Diag (H +[ZO1, VO + [V“)]S[V(U]t) = 0(mod2),  (5.4.16)

S S

and that such a matrix [V(V], has precisely

s+2k
o (27")1';3 ini—2+ns(n—nsy2)—

ns(ns+1)
2

distinct choices, where € = 1 if 1 € %, with either n =0 (mod 8) or n =4 (mod 8)

and 7 is even, while ¢ = 0 otherwise. Next, for a given choice of the matrix [V (],
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satisfying ([5.4.15)) and ([5.4.16)), we obtain

(ZOLVOE + [VOL[ZO + F = 2J; (mod 4),  (5.4.17)
Dz’ag<H+[Z<0>]s[v<1>]g+[v“)]s[v(l)]g) = 2/, (mod 4)  (5.4.18)

for some J; € Sym,, (7,;) and an ng x ng diagonal matrix J, over 7,. From this and
by equations (5.4.11)) and (5.4.12)), we get

(ZOL VO VL2 = L+ H A4 [VOLVOE (mod 2),  (5.4.19)

Dmg([Zm)]s_l[v(?)]g,l) J (mod 2), (5.4.20)

where J) is an n,_; X ns_; diagonal matrix over 7. whose rows are the first n,_;

rows of the matrix Jy. Here we note that
Diag(J; + H+ [V, VY =0 (mod 2).

Now using the fact that the matrix (A(O))575+2 is a full row-rank matrix over 7., we

see that there exists a matrix [V/(?)], satisfying equations (5.4.19) and (5.4.20)) and
that such a matrix [V )], has precisely

2 ns(ns—1)
S kini_gns(nenago)—"20aTD

@)=

distinct choices. Further, using the fact that the matrix (A®), 4,9 is of full row-rank
over 7T,, we see that there exists a matrix [0 -0 ASBLS FURRER -’4&)1,@] satisfying
(5.4.13) and that such a matrix has precisely (27)Fs+1(n=ns+2=ns) distinct choices.
Further, by applying Lemma [2.2.1 and Theorem [2.3.9 and working as in Theorem
5.4.1, we see that there exists a matrix ZSBQ satisfying (5.4.14]) and that such a

matrix ZS(% has precisely

ks+2 +n— Ngto — N

k5+2 or

relevant choices. Further, it is easy to see that each of the distinct choices of the
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matrices [V, V@], [0 --- 0 A&)l,sw A£21,e] and ZS(?Q satisfying (5.4.11])-
gives rise to a distinct ng_;-doubly self-orthogonal code %3 of the type
{ns, kst1, ks+2} and length n over %5, with a free linear doubly even subcode %
satisfying Tor,(€3) = %o, Tora(63) = 6o and Tor,(Z3) = Z,. From this, the desired

result follows immediately. m

Next, let pu be a fixed integer satisfying 4 < p < e, and let us define p; = [§].
In the following proposition, we consider an n,_,, +1-doubly even self-orthogonal
code 6,_o of the type {ns_ 42, ks—py+3,- -+ ksro4—1} and length n over %Z,,_o,
and a free linear doubly even subcode Z,_5 of the code 4,_o of rank ns_,, 41,
and we provide a method to construct an n,_,,-doubly even self-orthogonal code
%, of the type {ns_p 41, ks—pi+2,- -, ksto4u,  and length n over %, , satisfying
Tor1(6,) = Tor1(Z,—2) and Tor;1(6,) = Tori(€,—2) for 1 < i < p—2. We
also count all such distinct n,_,,-doubly even self-orthogonal codes %), of the type

{ns—py+1, ks—py+2s - -, ksio+p, b and length n over Z,, ..

Proposition 5.4.3. Let p be a fixed integer satisfying 4 < p < e, and let us de-
fine py = |5]. Let 6,5 be an n,_,, 11-doubly even self-orthogonal code of the type
{ns—py+2, ks—p+3s -+ s Kssorp—1} and length n over Z,_s,, and let D,_o be a free

linear doubly even subcode of the code €, of rank ng_,, 1. The following hold.

(a) There exists an ns_,, -doubly even self-orthogonal code €, of the type {ns_,, 41,
ks—pyt2s- - kstorp, b and length n over Z,,, satisfying Tor,(€6,) = Tor1(Z,—2)
and Tor;11(6,) = Tor;(€,—2) for 1 <i<pu—2.

(b) Furthermore, the pair (€,—2, Z,—2) of codes over %#,,_», gives rise to precisely

s+0+4p1 s+0+uq
kini—pr1+ Y. kjnj_,+(n +ns— )(n—n —Ng— Y—Ns—pq +02
Mi—p+17T Jj—n s+0+u1—1 s—p1+1 s+0+p1 s—p1+1 s—pq s—pq+1

(27") i=p j=p+1
« |:ns—u1+1:| |:ks+9+u1 +n— Nst04+pu1 — Ts—pqy+1
27‘

Ns—py ks—&-@-‘,—pq or

distinct ns_,,, -doubly even self-orthogonal codes 6,, of the type {ns_,,+1, ks—p,+2,
oy ksyoy b and length n over %, satisfying Tor(€,) = Tor(Z,—2) and
Tori1(6,) = Tor{(€,—2) for 1 <i<p—2.
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Proof. To prove the result, we assume, without any loss of generality, that the code

¢,—2 has a generator matrix

Z{M_Q) T i Zfo) + 2‘/1(1) + 4‘/1(2) 4o 2u73v'1(ﬂ—3)
ZQ(M—Q) Z2(0) + 2‘/2(1) + 4‘/2(2) 4ot 2u—3‘/2(ﬂ—3)
Guo= ngli/_j)m = Zé(i)uwz + QVS(—laum + 4‘Q(EL1+2 +ooet 2“73‘/3(5;22
(1—2) (n=2)
2Z8liu1+3 QZS}i‘U‘l-‘rg
—37(p—2) —3 (n—2)
_2u Zs+u1+9—1_ L 21 Zs+u1+9—1 i

and that the free linear doubly even subcode %,,_5 of the code €),_2 of rank n,_,,+1
has a generator matrix [Z*W=2],_, 11, where the matrix [Z©],_, 1» € Mo, oxn(Tr)

is of the form

0 T [~ 0 0 0 0
Z£ ) ]kl Ag,% T Ag,zf,uﬁrl e Ag;,l Aig
0 0 0 0
20 B A |0 L, - Aé,g—um e AR Aé’g
s—p1+2 — . -1 . . . . . . )
0 0 0
_Z£2#1+2_ | 0 O o ‘[k57u1+2 Ag3”1+276,1 Ag3#1+276_

with Iy, as the k; x k; identity matrix over 7, and Ag}) € Myxk;p, (Tp) for 1 <i <
s—m+2and i < j <e, the matrix [VO],_, 10 € My, L oun(Ty) for 1 <0< p—3,
and the matrix Zs(’i;fzﬂ € ./\/lks_umxn(%u_g,r) is to be considered modulo 2#~* for 3 <
i < g — 1. We next see that the Torsion code T'or(%6,_2) is an n,_,, +o-dimensional
code over 7, and has a generator matrix [Z(O)]S,MH and that the Torsion code
Tori(2,_») has a generator matrix [Z],_,,, 1;. Now we choose an n,_,,-dimensional
subcode Z of the code Tori(Z,—2). By Theorem [2.3.9, we see that the code 2 has
precisely [”jl:;rlhr distinct choices. We assume, without any loss of generality,
that the code 2 has a generator matrix [Z()],_,,. Furthermore, by Remark @,
we assume, without any loss of generality, that the matrix (A©),_, 115101, is of

full row-rank.

Since 6),— is an ns_,,+1-doubly even code over #,,_,, with a free linear doubly

even subcode as ,,_5, we have
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[Z(M 2)]5 I +1[Z(M 2)]5 p1+1
Diag([Z( _2)]5—;1 +1[Z( _2)]37;““)

[Z(M 2)]5 M1+1Z( ,u1zra

(
(
(mod 2#7%) for2<a<pu-—1,
(

Il
o o o o

Z(M 2) Z(H 2)t

s—p1+i = s—p1+j mod 2u+2—i—j> for 2 < 7’7.] < n—= 1

and i+ 75 < p+1,

which implies that
VA S A

282F 4+ 271 (mod 2M),

s—p1+1
[Z(“_2)]5—M1+1Z(Muf£a = 2#7%J, (mod 2" ™) for2<a < pu—1,
Zs(li;fliZs(’iuflj = 0 (mod 2""* ") for 2 <i,j<p—1

and i+ j < p+1

for some F' € Alt,,_, ., (T;), H € Symn,_, .,(T;) and Jo € My, ixke pial(Tr)

for 2 < a <y — 1. Now to prove the result, let us define a matrix G,, over Z,,, as

Zfﬂ) T [ Zf#*Q) + 2#—2‘/1(:“*2) + 2#_1‘/1@71)
Zé#) ZSM*Q) + 2;1—2‘/2(11*2) + 2/1—1‘/2(#*1)
Go=| zM . | =|2" 2 +2 2v b pontylel) L (5.4.21)
(w) (w)
2Z8 /"’1+2 2Z8 N1+2
( ) ( )
2# 1Zsi€+,u1 L 28 1Zsi€+,u1 i

where the matrices [V7],_, 1 € My, un(Ty) for 7€ {p—2,pu— 1}, Z(”M1+a €
M saxn(Ppy) for 2 <a < p—1and Zii)eﬂ“ € M, (7.) are of the forms

s+0+pq XM

Vl(T) 0 -0 Ag‘,rr)ﬂ Al T2 00 Ag?s)—ul-i-l-‘ﬂ' U AQ

VQ(T) o 0 -0 0 «45%2 e Agﬁwﬂw T AéTe)

() ) (7)
_Vts—/“—l—l_ _O - 0 0 0 e As—u1+1,s—u1+1+7 s As—ul—‘rl,e
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(1) _ 7(h-2) @ ) (n—a)
Z b = Zs ke QH— [0 e 0 _ASN u?+oe o As‘iﬂ‘i:rme} and
(1) _ (0) (0)
Z5+9+M1 - [O - 0 Iks+9+u1 As+9+u1,s+9+u1 e As+6+u1,e}
with AE;) € My, (Tr) for 1 <i<s—pmpp+landi+7 <5 <e, AS m+av €

Mkswﬁaxkvﬂ(ﬁ) for s+60+pu; <v <eand As+9+u1,y € Mkswﬂlxkyﬂ(ﬁ) for
s+0+4+pu <y<e.

Next, let 6, and 2, be linear codes of length n over %, , with generator matrices
G, and [ZW],_,,, respectively. We also note that the code 2, is a free linear subcode
of €, of rank ny_,, and that Tor1(2,) = 2. We also observe that the code 6, is
of the type {ns_p 11, ks—pi42, - - -+ ksyosps } satisfying Tor(€,) = Tor(Z,—2) and
Tori41(€6,) = Tori(€,—2) for 1 <i < — 2. Further, by Theorem @, we observe
that the code €, is an n,_,,-doubly even self-orthogonal code over %, , with a free
linear doubly even subcode as 2, if and only if there exist matrices [V#=2],_, .,
VD], [ 0 AP g e AP ] for2<a<pu—1and 2%

s+0+p
satisfying the following system of matrix equations:

F+[z0),_ u1+1[V( AL 1 T [V(”Q)]s—uﬁrl[Z(O)]E—MH
+2 (H + [Z( )]s—m-i-l[v(uil)]zfmﬂ + [V(uil)]s—m-i-l[Z(O)]Luﬁl

"’[V(l)]sfuﬂrl{V(“_z)]i—m—kl + [V(“_2)]S*u1+1[V(l)]g—uﬁ'l) =0 (mod 4)’

(5.4.22)
DZQQ(HI+ [Z( )]S 1258 [V(u 2)]8 1258 +2<[V(1)]8—N1 [V(u72)]7:;7p,1
2O VOV, ) = 0 (mod 4),
(5.4.23)
(0) w-a)
Jo 12O s [0 0 AV A ] = 0 (mod 2),
(5.4.24)
(2O 128 L = 0 (mod 2), (5.4.25)

where H' is the n,_,, Xxn,_,, matrix over 7, whose rows are the first n,_,, rows of the
matrix H. Now we will show that there exist matrices [V #=2],_, 1, [VEV] 1,

0 - 0 AW e Al Jfor2<a<pu- 1 and 2"

s—p1+a,s+0+u1 s—p1ta.e s+04p, Satistying
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the system ([5.4.22)-(5.4.25)) of matrix equations. Towards this, we first note that

Diag(F) = 0 and that the matrix (A®),_, 1151410 is of full row-rank over 7.
Now working similarly as in Proposition [5.4.2, we see that there exist matrices

V=2, and [VED] o satisfying (5.4.22) and (5.4.23)) and that such a

pair of matrices has precisely

s+0+u s+0+p1
S king + Z kjng_,+2n (n—n )—Ns—py —2
i—p+1 J—K s—pq+1 s+p1+0 s—pq s—p1+1

(QT) i=p j=p+

distinct choices. Using again the fact that the matrix (A©), , 11 110 is of full

row-rank matrix over %, ., one can easily observe that for 2 < o < p — 1, there

L,7 s

exists a matrix [ -0 .AS M+a NPT Ag“ M‘i‘Jm e} satisfying (5.4.24) and that
such a matrix has precisely

(Qr)ks—uﬁ—a (nfns+9+,ul TMs—pq +1)

distinct choices. Further, by Lemma [2.2.1 and Theorem [2.3.9 and working as in
Theorem [5.4.1, one can show that there exists a matrix Z(+6+u1 satisfying (|5.4.25|)

and that such a matrix Zs(i)g o

has precisely

ks+0+u1 TN = Nty — Ms—pr+1
ks+0+#1 or

distinct choices. Further, it is easy to see that each of the distinct choices of the
matrices [V, oy, [VED 0, [0 -0 0 Al AU | for

s—u1+a,e
2 <a<p—1and 2%,

s— u1+a s+0+pr
satisfying (5.4.22)-(5.4.25)) gives rise to a distinct

ns—u, -doubly even self-orthogonal code 6, of the type {1, +1, ks—pi+2: - - - Ksto4p
and length n over #,, with a free linear doubly even subcode as ¥, satisfying
Tori1(%6,) = Tor1(Z,—2) and Tor;41(€6,) = Tor;(€,—2) for 1 <i < i —2. From this,

the desired result follows immediately. O]

In the following theorem, we show that there exists a self-orthogonal code of the
type {k1, ko, ..., k.} and length n over %, if and only if there exists an ns-doubly
even self-orthogonal code of length n and dimension ng,.y over 7., where 6 =

when e is even, while # = 1 when e is odd. The following theorem and the proofs
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of Propositions [5.4.145.4.3 also provide a method to construct such self-orthogonal
codes over Z,., from a given ns;-doubly even self-orthogonal code of length n and

dimension ng, ¢ over 7,.

Theorem 5.4.3. For an integer e > 3, let n be a positive integer, and let ki, ks, ...,
ketr1 be mon-negative integers satisfying n = ky + ko + - -+ + key1 and 2ky + 2ky +
"'+2ke—z’+1+ke—i+2+ke—z’+3+"'+ki Snfm“s—l—l SZS €.

(a) Let e be even. There exists a doubly even code 6y of length n and dimension n
over T, with an ns_i-dimensional linear subcode as Py satisfying the additional
property that 1 ¢ Py when n = 4 (mod 8) and r is odd if and only if there
exists a self-orthogonal code €, of the type {ki, ko, ..., k.} and length n over
K., satisfying Tors_1(6.) = Do and Tors(6.) = 6o. Furthermore, each such

pair (6o, Zo) of codes over T, gives rise to precisely

s—1 s—1
2o ni(n—nip1—1)+ 30 neyj(n—nspjp1—ns—j)+ns(n—nsi1)—
25(2T)i:1 j=1
s—1 e
|:n7.1 ket+n—mng—mne1g
k k
VA2 =1 ¢

ns(ns—1)
2

X

v=1 2r

distinct self-orthogonal codes €, of the type {ki, ko, ..., k.} and length n over
Re, satisfying Tors_1(6.) = Py and Tors(6.) = 6y, where e = 1 if 1 €
Dy with either n = 0 (mod 8) or n = 4 (mod 8) and r even, while € = 0

otherwise.

(b) Lete be odd. There exists an ng-doubly even self-orthogonal code 6y of length n
and dimension ngyq over T, with an ng-dimensional doubly even linear subcode
as Yy satisfying the additional property that 1 ¢ Yy whenn =4 (mod 8) and r
1s odd, and an ns_y-dimensional linear subcode of the code Yy as P if and only
if there exists a self-orthogonal code €, of the type {ki,ka, ..., ko} and length
n over He, satisfying Tors_1(6.) = D, Tory(6.) = Yy and Torg1(€.) =
©o. Furthermore, each such triplet (6o, 2o, Z1) of codes over T, gives rise to

precisely

S S
> ni(n—nit1—=1)+ 3 netj(n—nstjp1—ns1—5)+ns
i=1

2¢(27) =

]

v=1
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o Tke4+n—ng—nep1
<11 { .

l=s+2 2r

distinct self-orthogonal codes €. of the type {ki,ks,...,k.} and length n over
e, satisfying Tors_1(6.) = Dv, Tors(6.) = Py and Tors,1(6.) = 6o, where
e =11 1€ Yy with either n = 0 (mod 8) or n = 4 (mod 8) and r even,

while e = 0 otherwise.
Proof. By applying Propositions [5.4.145.4.3, we get the desired result. [

Next, by Theorem @(b), we see that a self-orthogonal code of the type
{k1, ko, ..., kc.} and length n over Z., is self-dual if and only if k1 = keyy =
n— (kg +ko+ - +k) and k; = ke_jyo for 2 < i < e. On taking k; = ke_jyio
for 1 <1 < e in the above theorem, we see that there exists a self-dual code of the
type {ki1, ks, ..., ke} and length n over %, if and only if there exists an ns-doubly
even self-orthogonal code of length n and dimension n4y over 7,.. Note that when
e is odd, we have § = 1 and ng9 = 5. This implies that an n,-doubly even self-
orthogonal code of length n and dimension n,. ¢ over 7, is self-dual if e is odd. The
following theorem and the proofs of Propositions [5.4.145.4.3 provide a method to
construct such self-dual codes over Z, , from a given ns-doubly even self-orthogonal

code of length n and dimension n,y over 7T,.

Theorem 5.4.4. For an integer e > 3, let n be a positive integer, and let ki, ko, .. .,
keyr1 be non-negative integers satisfying n = ky + ko + -+ + ker1 and k; = ke_j1o for
1<i<e+1.

(a) Let e be even. There exists a doubly even code 6y of length n and dimension ng
over T, with an ns_i-dimensional linear subcode as Py satisfying the additional
property that 1 ¢ 2y when n = 4 (mod 8) and r is odd if and only if there
exists a self-dual code €. of the type {ki, ko, ..., ke} and length n over Z,,
satisfying Tors_1(%.) = Yy and Tors(6.) = 6. Furthermore, each such pair
(6o, Po) of codes over T, gives rise to precisely

sl ns(ns s—1
i B ]
kv or

v=1
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distinct self-dual codes 6. of the type {ki, ks, ... . k.} and length n over Z,,
satisfying Tors_1(%.) = Py and Tors(6.) = 6o, where e = 1 if 1 € Dy with

either n =0 (mod 8) orn =4 (mod 8) and r is even, while ¢ = 0 otherwise.

(b) Let e be odd. There exists an ng-doubly even self-dual code €y of length n and
dimension ng1 over T, with an ns-dimensional doubly even linear subcode as
Dy satisfying the additional property that 1 ¢ %y when n = 4 (mod 8) and
r s odd, and an ng_q-dimensional linear subcode of the code Py as Y if and
only if there exists a self-dual code €, of the type {ki, ks, ... k.} and length
n over He, satisfying Tors_1(6.) = D, Tory(6.) = Yy and Tors1(€.) =
©o. Furthermore, each such triplet (6o, 2o, Z1) of codes over T, gives rise to
precisely

S s—1
rnEre g [
k’l} or

v=1
distinct self-dual codes €. of the type {ki, ko, ..., k.} and length n over .,
with Tors_1(%6.) = P, Tors(6.) = Yy and Tors.1(6.) = 6y, where e = 1 if
1 € 9y with either n = 0 (mod 8) or n = 4 (mod 8) and r is even, while

e = 0 otherwise.

Proof. On substituting k; = k._;10 for 1 <7 < e+ 1 in Theorem [5.4.3, the desired

result follows immediately. ]

5.5 Enumeration formulae for self-orthogonal and

self-dual codes over %, ,

Throughout this section, for an integer e > 2 and non-negative integers ki, ks, . . .,
ko1 satisfying n = ky + ko + - -+ + key1, let us define n; = ky + ko + --- + k; for
1 <i<e+1,andlet B.(n; ky, ko, ..., k) and We(n; k1, ka, . . ., ke) denote the num-
ber of distinct self-orthogonal and self-dual codes of the type {ki, ks, ..., k.} and
length n over Z.,, respectively. Further, let B.(n) and W,(n) denote the number
of distinct self-orthogonal and self-dual codes of length n over %, ,, respectively. In

this section, we will obtain explicit values of these numbers by applying the results
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derived in Sections and For this, we will distinguish the following two cases:
(i) e =2 and (ii) e > 3.

In the following theorem, we consider the case e = 2 and obtain enumeration
formulae for the numbers By (n; ki, k2) and Ba(n).

Theorem 5.5.1. We have

’Dr(n, k1)2

k1 (2n—3k1 —2ko+1) |1 — 2k
2

ko

0 otherwise

Zf 2/€1 + k‘g S n;
%2(71; k1, k2) = Lr

and
%]

n—2kq
T 2n— —2 1 —2]{
By(n) = § D, (n; k1) E: g {” ko 1} ’
k=0 2"

k1=0

where the number ©,(n; ky) is as obtained in Theorem |5.5.1.

Proof. Tt follows immediately from Theorems [5.3.1 and [5.4.1. O

In the following theorem, we consider the case e = 2 and obtain enumeration
formulae for the numbers Wh(n; k1, ko) and Wa(n).

Theorem 5.5.2. We have

O, (n; k)2 if 2k + K
7 [ =n,
Wa(n; ky, ko) = ' 1 . i
0 otherwise
and
) rky (k1 41)
Ws(n) = Z Dr(n;k)27 2,

k1=0

where the number ®,.(n; k1) is as obtained in Theorem |5.3.1.

Proof. To prove the result, we first note, by Theorem @(b), that Wh(n; ki, ks) =0
if 2k1 + ko # n. Further, by Theorem [2.2.4(b) again, we see that a self-orthogonal
code of the type {k1, k2} and length n over %5, is self-dual if and only if 2k, +ky = n.
Now the desired result follows on substituting 2k; + k2 = n in Theorem [5.5.1. [

Remark 5.5.1. Corollaries 1 and 2 of Betty and Munemasa [12] follow, as special

cases, on taking r = 1 in Theorems|5.5.1 and|5.5.2, respectively.
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Example 5.5.1. By carrying out computations in the Magma Computational Alge-
bra System, we see that there are precisely 6 non-zero self-orthogonal codes of length
2, 83 non-zero self-orthogonal codes of length 3 and 1988 non-zero self-orthogonal
codes of length 4 over %9, which agree with Theorem @ Besides this, we see
that there is exactly one self-dual code of length 2, 9 self-dual codes of length 3 and
165 self-dual codes of length 4 over %o, which agree with Theorem @

In the following theorem, we consider the case e > 3 and obtain an enumeration

formula for the number B, (n; ky, ks, ..., k).
Theorem 5.5.3. For an integer e > 3, we have the following:

(a) When e is even, we have

( s—1 e

’ Koo 410 — g — Ny

)\O(n;k‘l,k’z,...,ks)H{Z] H |:é+n Zj Net1—¢
v 9r

v=1 l=s+1
s—1 s—1
2 ni(m=nip1—1)+ 30 ey (R—nstjr1—ns—j)+ns(n—nep1)—

%e(n; k17k27"-7ke) = X(Qr)izl j=1

27‘

ns(ns—1)
2

ifneir1+n; <n fors+1<i<e

L0 otherwise,

where Xo(n; k1, ko, ..., ks) equals

e 5. (n;ny) {Zs} if eithern =1,2,3,5,6,7 (mod 8) orng_1 # 0 with
sdor

n =4 (mod 8) and r is odd;

e 25,(n;n,) [nsk_ 1] + 0, (n; ) {ZS] if ne_1 # 0 with either
S 27’ S 2T

n =4 (mod 8) and r is even or n =0 (mod 8);

e ©D.(n;ng) ifngy =0 withn=0,4 (mod 8).
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(b) When e is odd, we have

( e
by 10— g — s
M(nsky ko k) [ N — N — Nep1-¢
ke )
l=5+2
s—1 s s
nv r 2 ni(n_ni+1_1)+~2 ns+j(n_ns+j+1_ns+1*j)+ns
%e(n; k17k27"'7k6> g X H |:kv:| 2T(2 )7,71 =

ifneir1+n; <n fors+1<1i<e

0 otherwise,
\

where A1(n; ki, ko, ..., ksy1) equals

Ng41—1 T
_ N 2r(n 2i—1) _ 1 .
® O, (n, ns) |iks‘| H (m) ka5+1 7£ 0 andn = 1, 3, 5, 7 (HlOd 8),

T .
2" i=n,

B N, or(n—2ns—kst1) _ 1 Ms+1-2 or(n—2i-2) _ 1 '
e U, (n; ns) |]<Z;| 2T< 27~]€S+1 -1 > H (27’(i+1—n5) . 1) Zf ks—i—l 7é 0

=Ny

with either n =4 (mod 8) and r is odd or n = 2,6 (mod 8);

_ Ng or(n—2ns—kst1) _ 1 Mst1—2 gr(n—2i-2) _ q
® O, (na ns) |:k,5:| 2r( 2Tk:,9+1 _ 1 ) H (m)

ngt1—1 —2i
o~ ns 27‘(71 21) - 1
+20, (n; ny) |:ks:| N H (W)

if ks11 # 0 with either n =0 (mod 8) or n =4 (mod 8) and r is even;
e 07, (n;ns) {28} if ksy1 = 0 with either n =1,2,3,5,6,7 (mod 8) or
s19r

n =4 (mod 8) and r is odd;

e 20, (n; ns) {Zs} +0, (n; ns) {ZS} if ksy1 = 0 with either n = 0 (mod 8)
s |or s

2T
orn =4 (mod 8) and r is even.

(Here the numbers o, (n;ns) and o, (n;ns) are as obtained in Theorems |5.5.2 and
5.3.5, respectively.)

Proof. To prove the result, we first note, by Remark[2.2.1, that B.(n; ki, ko, ..., k.) =

0 if ne_j11 + n; > n for some integer i satisfying s + 1 < ¢ < e. So from now on,
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throughout the proof, we assume that n._;11 +n; < n for s+ 1 <1 < e. Here, we

shall distinguish the following two cases: (a) e is even, and (b) e is odd.

(a) First let e be even. Here we see, by Theorem [5.4.3(a), that each pair (%o, %)
of an n,-doubly even code %, of length n and dimension n, over 7, and an
ns_1-dimensional linear subcode %, of %, satisfying the additional property

that 1 ¢ %, when n =4 (mod 8) and r is odd, gives rise to precisely

s—1 s—1

S ni(n—nip1—1)+ 2 et (n—nspjp1—nsj)+ns(n—nsy1)—
2¢(2") =t i=

=1

s—1 e
|:nv:| {ke +n—ng—Ner1
k
2" p—st1 ¢

ns(ns—1)
2

X

v=1 v or

distinct self-orthogonal codes €, of the type {ki, ks, ..., k.} and length n over
K., satistying Tors_1(6.) = Py and Tors(6.) = 6o, where e = 1 if 1 € %
with either n = 0 (mod 8) orn =4 (mod 8) and r even, while ¢ = 0 otherwise.
Now we will count the number of choices for the pair (45, %), where % is an
n,-doubly even code of length n and dimension ng over 7, and %, is an n,_q-
dimensional linear subcode of the code % satisfying the additional property
that 1 ¢ 2, when n =4 (mod 8) and r is odd.

When ng 1 = 0, we see that the desired result follows by applying Theorems

15.3.1 and [5.3.3. So from this point on, we assume, throughout the proof, that
ns_1 7 0. Here, by Theorem [5.3.2, we see that a doubly even code of length n

over 7, contains 1 if and only if n = 0,4 (mod 8).

When n = 1,2,3,5,6,7 (mod 8), we see, by Theorems [2.3.9 and [5.3.3, that
the pair (%0, Zo) has precisely

&y (n;ms) { " LT

Ng—1

distinct choices.

When n = 0,4 (mod 8), working as in Proposition [5.4.1 and Lemma|5.4.1, we
observe that if 1 € %, then 1 € %, which, by Theorem [2.3.10], holds if and

only if either n =0 (mod 8) or n =4 (mod 8) and r is even.
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Now when n =4 (mod 8) and r is odd, we see, by Theorems [2.3.9 and [5.3.3,
that the pair (%5, %) has precisely

~ n
O-T(n; nS) |:n S 1:|
S— or

distinct choices.

Finally, let us suppose that either n = 0 (mod 8) or n = 4 (mod 8) and 7 is
even. Here the following two cases arise: (i) 1 ¢ % and (ii) 1 € %p.

(i) When 1 ¢ %, we note, by Theorems|2.3.9 and|5.3.3, that the pair (40, Z)

has precisely

5T(n;ns){ " Lr

Ns—1
distinct choices.
(ii)) When 1 € %, working as in Proposition [5.4.1 and Lemma [5.4.1, we

observe that 1 € Z,. This, by Theorems [2.3.9 and [5.3.2, implies that the
pair (%o, %) has precisely

N ng— 1

distinct choices.
From this, we get the desired result.

(b) Next, let e be odd. Here we see, by Theorem @(b), that each triplet
(60, P, 71) of an ns-doubly even self-orthogonal code %, of length n and
dimension n,,1 over 7, with an ng-dimensional doubly even linear subcode as
9, satisfying the additional property that 1 ¢ %, when n = 4 (mod 8) and
r is odd, and an n,_;-dimensional linear subcode of the code %, as %; gives

rise to precisely

S S
~1
> ni(n—nip1—1)+ 3 nepj(n—nspji—nsi1—)+ns 1o [n,
26(27”)1‘:1 j=1 | |
kv or

v=1
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= [ke+n—ne—nerie
<11 { .

l=s+2 2r

distinct self-orthogonal codes %, of the type {ki, ks, ..., k.} and length n over
K., satistying Tors_1(6.) = 21, Tors(6.) = Dy and Tors1(6.) = 6y, where
e =1if 1 € 9, with either n = 0 (mod 8) or n = 4 (mod 8) and r is even,
while € = 0 otherwise. We will now count the number of choices for the triplet
(6o, P, 1), where %, is an ns-doubly even self-orthogonal code of length
n and dimension ngyq over 7., % is an ng-dimensional doubly even linear
subcode of the code %, satisfying the additional property that 1 ¢ %, when
n =4 (mod 8) and r is odd, and %, is an n,_;-dimensional linear subcode of
the code %.

For this, we see, by Theorem [5.3.2 and by applying Theorem that
1 € 2, if and only if either n = 0 (mod 8) or n = 4 (mod 8) and r is even.
When ky41 = 0, we see, by Theorems [2.3.9, [5.3.2 and [5.3.3, that the desired
result follows immediately. So from this point on, we assume, throughout the
proof, that ks,1 # 0. Here we recall that any self-orthogonal code over 7T, is
contained in Z(V,) = {v € V, : B,(v,v) = 0}. We next note that 1 € Z(V,) if
and only if n is even. Accordingly, we will distinguish two cases: (i) n is odd,

and (ii) n is even.

(i) First of all, let n be odd. In this case, we see that the pair (%, %) has

precisely

ar-(n;ng) {ZS}
sdor

distinct choices. Further, for a given choice of (%, %), we see that
the number of choices for %; is equal to the number of choices for a
ks41-dimensional self-orthogonal 7,-linear subspace U of Z(V,) satisfying
U C (%)™ \ %y. Further, since (Z(V,), B, Izv,)xz(v,)) is an (n — 1)-
dimensional symplectic space over 7., we see, by Theorem @(e), that
such a subspace U of Z(V,) has precisely

netiol sor(n—2i-1) _

1=Ng
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distinct choices.

Next, let n be even. In this case, we see that 1 € Z(V,). Here we choose
an (n — 2)-dimensional 7,-linear subspace V. of Z(V,) such that 1 ¢ V..
This gives Z(V,) = V. L (1). It is easy to observe that (V, B[y xyr)
is an (n — 2)-dimensional symplectic space over T,. When either n =
2,6 (mod 8)orn =4 (mod 8)and ris odd, we see that the pair (%, Z1)

has precisely
~ N
i)}
ks or

distinct choices. Now for a given choice of (%, Z1), we see that the
number of choices for % is equal to the number of choices for a kg ;-
dimensional self-orthogonal 7,-linear subspace U of Z(V),) satisfying U C
(Z)*5- \ Zy. We further observe that any such k., ;-dimensional 7,-linear
subspace of Z(V,) is either of the form U = (uy,us,. .., u,,) or of the
form U = (u1,ug, ..., up,,,—1,1), where uy, ug, ..., up,, are mutually or-
thogonal and linearly independent vectors in V!. Now by Theorem [2.3.3
(e), we see that such a subspace U of Z(V,) has precisely
mef1=2 sor(n—2i-2) _ | or(n—2n,—ket1) _ |

H <2r(z’+1—ns) — 1) ( Qrks+1 — 1 )

1=ng

distinct choices. On the other hand, when either n = 0 (mod 8) or
n = 4 (mod 8) and r is even, working similarly as above, we get the

desired result.

In the following theorem, we consider the case e > 3 and obtain the explicit

enumeration formula for the number W,(n; k1, ks, . . ., k).

Theorem 5.5.4. For an integer e > 3, we have the following:
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(a) When e is even, we have

( s—1

oy 2o Mi(n—nipi—1)+ Dalnatl) s

)\0(77,, kl,kg,...,ks)<2 )izl H
j=1 ] 27
We(n;k'l,kQ,...,ke) = .
kav :kevarZ fOT’l <wv< 6—|—17

0 otherwise,

\

where the number \o(n; k1, ko, . .., ks) is as obtained in Theorem [5.5.3(a).

(b) When e is odd, we have

r . N
oy 2o Mi(n=nipi—1)+ns
Al(n;kl,kg,...,kerl)(z )2;1 |: :|
.7 or

—_

=1
We(n; k17k27"'7ke) == ) ) ’
if nois even and ky = ke_yio for 1 <v <e-+1;

| 0 otherwise,

where the number Ay (n; ki, ko, ..., ksi1) is as obtained in Theorem|5.5.53(b).

Proof. To prove the result, we first note, by Theorem [2.2.4(b), that We(n; k1, ks, . . .,
ko) = 0if k, # ke 12 for some integer v satisfying 1 < v < e + 1. Further, by
Theorem[2.2.4(b) again, we see that a self-orthogonal code of the type {k1, k2, ..., ke }
and length n over %, , is self-dual if and only if k; = k._; 1o for 1 <i < e+ 1. Now
the desired result follows on substituting k; = k._; 12 for 1 <7 < e+ 1 in Theorem

5.5.3. O

Remark 5.5.2. Theorems 4.1 and 4.2 of Nagata et al. [75] follow, as special cases,

on taking r =1 and e > 4 in the above theorem.

We now proceed to determine enumeration formulae for the numbers B.(n) and
W, (n) for each integer e > 3. To do this, for an integer d satisfying 1 < d < e and for
non-negative integers ky, ko, . .., kq, let hj(ki, ko, ..., kq) and my(kq, ko, . . ., kq) be as
defined by and , respectively, for 1 < j<d—1land 1</ < (%ﬂ —1.

In the following theorem, we obtain an enumeration formula for the number

B.(n) when e > 3.

Theorem 5.5.5. For an integer e > 3, the following hold.
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(a) When e is even, we have

ki + kg + -+ kj
Z)\Onkl’kQ""7k>(2r) (k1,k2,-.., k:)H{l Qk' ]
J or

e

y H {kﬁn—(k1+k2+-~~+k:g)—(k1+k2+~~+ke+1_4)1

Y
2T

Ky

l=s+1

where the summation Yy runs over all non-negative integers ky, ko, ..., ke sat-
ZSfyZTLg 2]{31 + 2](72 + e +2ke—i+1 + ke—i+2 +ke—i+3 + s + kfl S n for S+ 1 S Z S e
and the number A(ky, ko, ..., ke) is given by

A(ky, ko, ke Zml ki koy oo ke) + k4 ko + - + kg

ki +ko+--+ ks —1
—(k1+k;2+~~+ks)(1 2+2 - )

(b) When e is odd, we have

s—1
5 , T [+ bt ey
— )\1(”; k17k2,--.7k8+1)(2T)A (klka ----- ke) |: 1 2 k j:|
=1 !

27‘

e

ke+n—(ki+ko4--+ki)— (k1 +ka+ -+ kep1-0)
< 11 by

Y

l=s+2 2r

where the summation Y runs over all non-negative integers ky, ka, ..., ke sat-
ZSfleLg 2]{31 —I— 2]{72 —I— e +2ke—i+1 + ke—i+2 +ke—7ﬁ+3 + s + k?z S n for $+ 1 S Z S e
and the number N'(ky, ko, ..., k.) is given by

Nk ko, ke) =Y malky ko, ke) + (ky+ by + - + k).
=1

(Here the numbers Ao(n; ki, ka, ..., ks) and Ay(n; ki, ko, ... key1) are as obtained in

Theorem [5.5.5.)

Proof. Tt follows immediately from Theorem [5.5.3. [

In the following theorem, we obtain explicit enumeration formula for the number
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W,(n) when e > 3.
Theorem 5.5.6. For an integer e > 3, the following hold.

(a) When e is even, we have

We(n) = Y Xo(niki ko, k) [ ]

= [k1+k2+---+k:j

j=1 kj 2r
s—1
oy 2 hi(k1k2, ks+1)+(k1+k2+”'+ks)(w)
X(2 )1:1 )
where the summation Y, runs over all non-negative integers ki, ka, ... ksi1

satisfying 2(ky + ko + -+ + ks) + ksp1 = n.
(b) When e is odd, we have

s—1

(
fy ko4 Ky
ZAl(n;kl,kQ,...,ks+1)H{l " ’
o j or
j=1
We(n) - i hi(ki,ka,....ksy1)+ki+ko++ks )
X (27)i=1 if n is even,
(0 otherwise,
where the summation Y runs over all non-negative integers ki, ko, ... keiq
satisfying 2(ky + ko + -+ + ksy1) = n.
(Here the numbers Ao(n; k1, ka, ..., ks) and Ay(n; ki, ko, ... ker1) are as obtained in
Theorem |5.5.3.)
Proof. 1t follows immediately from Theorem [5.5.4. O]

Remark 5.5.3. Theorem 4.1 of Nagata et al. [76] follow, as a special case, on

taking r = 1 and e = 3 in the above theorem.

Example 5.5.2. Let e = 3 and r = 2. By carrying out computations in the Magma
Computational Algebra System, we see that there are precisely 11 non-zero self-
orthogonal codes of length 2, 388 non-zero self-orthogonal codes of length 3 and 41998
non-zero self-orthogonal codes of length 4 over %5 5, which agree with Theorem @
We also see that there is exactly one self-dual code of length 2 and 1317 self-dual
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codes of length 4 over %55 and that there does not exist any self-dual code of length
3 over Hsz, which agree with Theorem|5.5.6(b).

The above enumeration formulae for self-orthogonal and self-dual codes over Z.
are useful in classifying these two classes of codes up to monomial equivalence. We
illustrate this by classifying self-orthogonal and self-dual codes of lengths 2,3 and 4
over the Galois ring %52 = GR(2?,2) in the following section.

5.6 Classification of self-orthogonal and self-dual

codes

With the help of the enumeration formulae for self-orthogonal and self-dual codes
of length n over %, , (obtained in Section and by applying the classification algo-
rithm [53, Sec. 9.6 and 9.7], one can obtain complete lists of monomially inequivalent
self-orthogonal and self-dual codes of length n over Z,.,. We will now illustrate this
in certain specific cases by carrying out computations in the Magma Computational
Algebra System. For this, we first note, by Example [5.5.1, that there are precisely
6 non-zero self-orthogonal codes of length 2, 83 non-zero self-orthogonal codes of
length 3 and 1988 non-zero self-orthogonal codes of length 4 over %, and that
there is only 1 self-dual code of length 2 over %, o, while there are precisely 9 self-
dual codes of length 3 and 165 self-dual codes of length 4 over %5 5. In this section,
we will obtain all inequivalent codes belonging to these classes of codes. To do this,

we see that there exists ( € %y satisfying (* + ¢ + 1 = 0. Now the following hold.

[. There are precisely 3 inequivalent non-zero self-orthogonal codes of length 2

over %s5. Among these codes, there are

e 2 self-orthogonal codes of Hamming distance 1 and with generator ma-
trices [2 O] and 21,; and

e 1 self-orthogonal code of Hamming distance 2 and with a generator matrix
[2 2+ 2(} .

I1. There are precisely 9 inequivalent non-zero self-orthogonal codes of length 3

over %s2. Among these codes, there are
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e 4 self-orthogonal codes of Hamming distance 1 and with generator ma-

2 00 2 00
trices 213, [2 0 0}, and ;
0 2 2 020

e 3 self-orthogonal codes of Hamming distance 2 and with generator ma-
1 143 20 2
trices [2 0 2], [ ¢ 3 and [

: and
0 2 242C 0 2 242C

e 2 self-orthogonal codes of Hamming distance 3 and with generator ma-

trices [1 34¢ 2+3¢} and [2 242 2+2C]-

III. There are precisely 28 inequivalent non-zero self-orthogonal codes of length 4

over #,2. Among these codes, there are

e 10 self-orthogonal codes of Hamming distance 1 and with generator matri-

2000 2 0 2 242 1 2 1+
ces 21y, [2 0 0 0], ; ¢ ; ¢ ¢

0200 0 20 0 02 0 O
- 2 00 2 20 00 2 00 0
2 0 24+2¢ 0

;10 2 0 0],(0 2 0 Of,]|0 2 0 2+2C| and

0 2 0 0
- 00 2 2 0020 00 2 0

1 243C 20 143¢

0 2 0 2+2¢];

0 0 2 0

° 9_self—orthogonal codes of Hamming distance 2 and with generator matri-

2 0 2 0 2 00 2 20 0 2
ces [2 2¢ 0 0} ) ) ) 3
0 2 2 2+42¢ 0 2 0 2 0 2 2¢ 0

1 ¢ 3+¢ 2] [1 3420 3 1+2¢] [1 14+3¢C 0 2+¢
022+20 0 0 2 2 o0 |0 2 o0 2|
200 2 11 142 3
0 2 0 2+2C| and [0 2 0 2|
002 2 00 2 2

. 7_ self-orthogonal codes of Hamming distance 3 and with generator ma-
trices [1 14+¢ 0 2+¢|, |2 2¢ 0 2|, [1 2¢ 3+4¢ 2+3¢],

10 ¢ 143 [11 1420 1 2.0 20 2
0 1 343C 2+4¢| |02 2¢ 242 [0 2 2 242

?
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1 0 3+3¢C 2+3
and[ T3¢ JrC;amd

02 2 2

e 2 self-orthogonal codes of Hamming distance 4 and with generator ma-
trices [1 1 3+2¢ 1+2¢] and |2 2420 2+2¢ 2+2].

IV. By Theorem [2.2.4(b), we see that a self-orthogonal code of the type {ki, k2}
and length n over %, is self-dual if and only if 2k; + k3 = n. From this, it
follows that

e there is exactly one inequivalent self-dual code of length 2 and Hamming

distance 1 over % .

e there is exactly one inequivalent self-dual code of length 3 and Hamming
distance 1 and one inequivalent self-dual code of length 3 and Hamming

distance 2 over %5 .

e there are 2 inequivalent self-dual codes of length 4 and Hamming distance
1, one inequivalent self-dual code of length 4 and Hamming distance 2
and one inequivalent self-dual code of length 4 and Hamming distance 3

over Hs9.

Note that Theorems|[5.5.1,[5.5.2,[5.5.5 and[5.5.6 together with Theorems|3.2.3[3.2.5,
13.3.3,13.3.5,[3.4.5 and [3.4.6 provide enumeration formulae for all self-orthogonal and

self-dual codes over Galois rings. Thus the problem of determination of enumeration
formulae for self-orthogonal and self-dual codes over Galois rings is now completely
solved. In the next chapter, we will study and enumerate LCD codes over finite

commutative chain rings.



On o-LCD codes over finite

commutative chain rings

6.1 Introduction

Recall that R., is a finite commutative chain ring with the maximal ideal (u)
of nilpotency index e > 2 and the residue field ﬁem = R, /(u) of order p", where
p is a prime and 7 is a positive integer. The set 7., = {0,1,&,£2,...,67 72} is the
Teichmailler set of the chain ring R. .

Now let F' be a mapping from R{, into itself satisfying the following three

conditions:
(1) F(a+b) = F(a)+ F(b) for all a,b € R,.
(2) dy(F(a), F(b)) = dg(a,b) for all a,b € R,.
(3) If C is a linear code of length n over R.,, then F'(C) is also a linear code of

193
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the same length n over R ,.

For a mapping F' : R, — R, satisfying conditions (1)-(3), the F-inner product
on R¢, is defined as
la,b]p = a- F(b) =Y ac; for all a,b € RY,,
i=1

where a = (ay,as,...,a,) and F(b) = (¢1,¢2,...,¢,). The F-dual code of a linear

code C of length n over R., is defined as
Cr={aeR!, : la,blp=0forallbeC}.

The code C is said to be F-LCD if it satisfies C N C*+# = {0}. The F-LCD codes
of length n over R., are recently introduced and studied by Liu and Liu [66]. One
can easily observe that each automorphism oy of R, can be naturally extended to

an automorphism o of R? ., defined as

o(a) = (oo(a1),00(az),...,00(a,)) foral a=(a,ay,...,a,) €R,. (6.1.1)

Note that the map o satisfies conditions (1)-(3).

From now on, throughout this chapter, let oy be an automorphism of R.,, and
let &y be the corresponding automorphism of the residue field R,, = Rer/(u) of
Re,r, defined as

Eo(a) = 0'0(@) + <U> = O'()(CL)

for alla = a + (u) € ﬁw. Corresponding to the automorphism oy of R, let o be
the automorphism of R, as defined by (6.1.1). Now the o-inner product on R? . is
amap [, : R, X RY, = Re,, defined as

[Cl, b]g =a- U(b) = alO'o(bl) + &20’0(1)2) + -+ Can'o(bn)

for all a = (ay,az,...,a,), b= (b1,b,...,b,) € R],. Note that the o-inner product

[-,-]» is a non-degenerate o-sesquilinear form on R?,. Further, if C' is a linear code
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of length n over R.,, then the o-dual code of C is defined as
C={veR! : [v,d,=0forallceC}

Note that the o-dual code C*< of the code C coincides with the (Euclidean) dual
code C* of the code C' when 0y is the identity automorphism of R. .. The code C is
said to be a linear code with complementary o-dual (or a o-LCD code) if it satisfies
C'NC*e = {0}. In particular, when oy is the identity automorphism of R, ., o-LCD
codes are called Euclidean LCD codes (or simply called LCD codes). When R, is
a finite field, the o-inner product on R¢, is called the Galois inner product, which
was introduced and studied by Fan and Zhang [42] as a generalization of Euclidean
and Hermitian forms over finite fields. When R, is the finite field of order ¢* and
0y is the automorphism of R, ,(~ F,2) of order 2, the o-inner product matches with
the Hermitian form, and hence o-LCD codes are called Hermitian LCD codes.

The main goal of this chapter is to obtain the explicit enumeration formula for
all 0-LCD codes of an arbitrary length n over the chain ring R., when 73 is the
identity automorphism of R.,. Note that Corollaries @ and [2.1.2 characterize
all automorphisms o of R., (and hence all the corresponding automorphisms o of
R:,) for which 72 is the identity automorphism of R, . Besides this, we will show
that the class of 0-LCD codes over R., is asymptotically good and that every free
linear [n, k, d]-code over R, is equivalent to a 0-LCD [n, k, d]-code over R., when
|Rer| > 4. We will also explicitly determine all inequivalent o-LCD [n, 1, d]-codes
and [n,n — 1,d]-codes over R, for 1 < d < n.

This chapter is organized as follows: In Section we state some basic re-
sults needed to derive our main results. In Section we first enumerate all k-
dimensional Euclidean and Hermitian LCD codes of length n over F, by applying
the Witt decomposition theory, where ¢ is a prime power (see Theorems @, @
and[6.3.6). It is worth mentioning that Carlet et al. [27, Sec. IV and V] also recently
enumerated all k-dimensional Euclidean LCD codes of length n over IF, when either
g = 2 or ¢ is an odd prime power, and Liu and Wang [69] later counted all Euclidean
and Hermitian LCD codes over [, by using cogredience theories of matrices. How-
ever, our proof technique to enumerate all k-dimensional Euclidean and Hermitian

LCD codes over F, is quite different from the ones employed by Carlet et al. [27, Sec.
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IV and V] and Liu and Wang [69]. Further, with the help of the enumeration formu-
lae for Euclidean and Hermitian LCD codes over [, we obtain explicit enumeration
formulae for all o-LCD codes of an arbitrary length over R, when 72 is the identity
automorphism of R, (Theorems [6.3.5 and [6.3.8). In Section we show that the
class of 0-LCD codes over R, is asymptotically good (Theorem @ In Section
6.5, we show that every free linear [n, k, d]-code over R., is equivalent to a o-LCD
[n, k, d)-code over R., when |R.,| > 4 (Theorem @) Besides this, we explicitly
determine all inequivalent o-LCD [n, 1, d]-codes and [n,n — 1, d]-codes over R., for
1 < d <n (Theorems [6.5.2 and [6.5.3). With the help of the enumeration formulae
obtained in Section and by applying the classification algorithm, we classify all
Euclidean LCD codes of lengths 2,3,4 and 5 over the chain ring Fo[u]/(u?) and of
lengths 2,3 and 4 over the chain ring F3[u]/(u?), and all o-LCD codes of lengths

2,3 and 4 over the chain ring F,[u]/(u?), where oy is an automorphism of Fy[u]/(u?)

such that the corresponding automorphism @, of the residue field F; has order 2

(see Section [6.5.2).

6.2 Some preliminaries

In this section, we will state some basic results needed to derive our main re-
sults. Towards this, we first note, by Theorem 2 of Bhowmick et al. [14], that any
Euclidean LCD code over a finite commutative chain ring is a free code. In the

following theorem, we extend this result to o-LCD codes over R, .
Theorem 6.2.1. Every o-LCD code over R, is a free code.

Proof. To prove the result, let C be a 0-LCD code of length n over R.,. Now let

us define
o(C) = {(00(01), oo(ca),...,00(cn)) : (c1,09,...,¢n) € C}.

One can easily see that ¢(C') is also a linear code of length n over R., and that
Cte = o(C)*+, where o(C)* denotes the (Euclidean) dual code of the code o(C).

Since R, is a finite commutative chain ring, the code C satisfies

Cl % |G| = |C| x [o(C) | = |o(C)] x |o(C)*| = IRE, |,
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which implies that C @& Cte = Re,. This shows that the code C'is a projective
R.,-module. Now by applying Theorem 2 of Kaplansky [59], we see that the code

C is a free code. O

For any m x n matrix B over R., with the (7, j)-th entry as b, ;, let 0(B) denote
an m x n matrix over R, whose (i, j)-th entry is oo(b; ;) for each i and j. Recall
that a square matrix A over R., is said to be non-singular if the determinant of
the matrix A is a unit in R.,. Now the following theorem provides a necessary and
sufficient condition under which a linear code over R., is a o-LCD code in terms of

its generator matrix.

Theorem 6.2.2. [66, Th. 3.7] A linear code C' of length n over R, with a generator

matriz G is a o-LCD code if and only if the matriz Goo(G)' is non-singular.

Next, corresponding to the automorphism o of R, as defined by (6.1.1), one

. — b~y
can define an automorphism o of R, as

5(@) = (70(@1), 5o(@), .. ., 7o(ayn)) for all @ = (@1, @, ..., @) € R

e,r:

Now the 7-inner product on ﬁzr is a map [, ‘]z : ﬁzr X ﬁ:,r — R, defined as
¢, dlz =¢-5(d) = ¢150(d1) + C200(d2) + - - - + CuT0(dy)
for all ¢ = (¢,,¢,...,¢,) and d = (dy,dy,...,d,) in ﬁ:,r' If D is a linear code of

length n over ﬁe,,«, then its @-dual code D7 is defined as

Dl = {E c ﬁzr . [b,als =0 for alla € D},

Note that D7 is also a linear code of length n over ﬁe,r. The code D is said
to be a linear code with complementary @-dual (or a 7-LCD code) if it satisfies
Dn D+ = {0}.

Now by Theorem @, we see that every free linear code C of length n over R, ,

is permutation equivalent to a code with a generator matrix in the standard form

G:[[k\A},
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where I} is the k x k identity matrix over R., and A is a k x (n — k) matrix over
R, Recall that the integer k is the rank of the code C. One can easily observe
that |C| = |Re,|* = p™*. Moreover, for 1 < i < e, by (2.2.2), we see that the
i-th Torsion code T'or;(C) of the code C' is permutation equivalent to a code with a

generator matrix in the standard form

From this, we see that Tor (C) = Tory(C) = Tor3(C) = --- = Tor.(C). In a recent
work, Liu and Wang [68, Cor. 17| provided a necessary and sufficient condition
under which a linear code over R, , is a Euclidean LCD code in terms of its Torsion
codes. The following theorem extends this result to o-LCD codes over the finite

commutative chain ring R., for each automorphism o of R, ,.

Theorem 6.2.3. Let C be a linear code of length n over R., with a generator

matrix G. Then the following three statements are equivalent:

(a) The code C is a o-LCD code.

(b) For 1 < i < e, the Torsion code Tor;(C) is a G-LCD code over R., with a

generator matriz G.

¢) The code C is a free code and the matriz Goo(G)* is non-singular.
(c)

Proof. To prove the result, we see, by Theorem [6.2.2, that the code C' is o-LCD if
and only if the matrix Goo(G)! is non-singular, i.e., the determinant of the matrix
Goo(G)* is a unit in R.,. Further, we observe that det(Goo(G)t) = det(Gao(G)Y),
which implies that the determinant of the matrix Goo(G)" is a unit in R, if and
only if the determinant of the matrix G&o(G)* is non-zero. Thus by Theorem @,
it follows that the code C' is ¢-LCD if and only if its Torsion code Tor(C) is a
o-LCD over ﬁw. From this, the desired result follows immediately. O

In view of Corollaries|2.1.1 and [2.1.2, we note that the class of 0-LCD codes over

Re, is a much broader class as compared to that of Euclidean LCD codes over R,

even if we assume that o € Auty(Re,) U Auta(Re,).
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From now on, we shall follow the same notations as in Section In the
following section, we will count all o0-LCD codes of length n over R., when oy €
Aut1 (Reﬂ-) U AUtQ (Re,r>-

6.3 Enumeration of ¢-LCD codes over R., when
op € Aut1(Re,) U Auta(Re ;)

Throughout this section, we assume that oy € Aut;(Re,) U Auta(R.,). We
recall, by Theorem [6.2.3, that a linear code C' of length n over R, is a 0-LCD code
if and only if T'or,(C) = Tory(C) = --- = Tor.(C) and the Torsion code Tor(C') is
a 0-LCD code of length n over ﬁw. We next recall that the residue field ﬁw of the
chain ring R., has order p", where p is a prime number and r is a positive integer.
Now to count all o-LCD codes of an arbitrary length n over R, ,, we will first count
all o-LCD codes of length n and rank & over R., with a prescribed 1-th Torsion
code. To do this, we assume, throughout this section, that C; is a k-dimensional

linear code of length n over ﬁw with a generator matrix

where L is a k x (n— k) matrix over R.,. Further, since the map ~ 7, Ter — Rer
is a bijection, there exists a unique k x (n — k) matrix Ay over 7., satisfying Ay = L.

Now we make the following observation.

Lemma 6.3.1. If C is a free linear code of length n over R., with Tor(C) = C4,

then there exist k x (n — k) matrices Ay, As, ..., Ae_1 over T, such that the matriz
I, | Ao +uA; + -+ UeilAe_l (631)

is a generator matriz of the code C.

Proof. As Tori(C) = C}, there exist k X k matrices My, My, ..., M, 1 and kX (n—k)

matrices Py, Ps, ..., P._y over T, such that

RE, [Ik +uly 4+ uT Moy | Ag+uP 4+ ue‘lPe,l] cc
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Now by applying the elementary row operations, we obtain

Rlz,r |:[k + UBl +ooee ue_lBe—l

X |:[k—|-’U,M1+"'+’U,e_1Me,1 | AO—’—U/Pl—’—"‘—i—Ue_lPe,l QC,

where By, By, ..., B._; are k x k matrices over R.,, given by
Bl = _Ml
and
j—1
Bj=—M; - > B;M,_;
i=1

for 2 < j < e —1. From this, it follows that
RE, (I | Ao+ udf + w24l + -+ w4 | €€,
where A}, Af, ... AL, are k x (n — k) matrices over R.,, given by
Al = P+ B1 Ay

and
j—1

i=1
for 2 < 7 <e—1. It is easy to observe that there exist unique k x (n — k) matrices

Ay, Ay, oL, Acy over T, satisfying

AL+ udy - ut2 A

e

L =A Fudy o ut2 A, (mod utTh).
This implies that

Rep [Tk | Ao+ udy +u?Ay + -+ +u A 4| CC.
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Furthermore, we see that
Cl = [Tory (€)= () =|RE, [ I | Ay +udy +u2ds + - +us— A || < 1€,
from which it follows that the code C has a generator matrix of the form (6.3.1). O

In the following theorem, we enumerate all 0-LCD codes C' of length n over R, ,
with Tor,(C) = C}.

Theorem 6.3.1. If the code Cy is a k-dimensional 7-LCD code of length n over

Re,r, then there are precisely

prk(nfk) (e—1)

distinct o-LCD codes C' of length n over R, with Tor,(C) = C}.

Proof. To prove the result, let C' be a free linear code of length n over R., with
Tor1(C) = Cy. Here by Lemma [6.3.1, we see that there exist k x (n — k) matrices
Ay, Ag, ..., Ae_y over T, such that the matrix

G = [Ik | Ag+ udy + -+ ue—lAefl}

is a generator matrix of the code C. By applying Theorem [6.2.3, we see that the
code C'is 0-LCD if and only if the matrix

Eﬁo(a)t = Tk + Zoﬁo(Zo)t = Tk + LE()(L)t

is non-singular. This implies that the code C is o-LCD for arbitrary choices of the
k x (n — k) matrices Ay, Ay, ..., Ac_q1 over T, ,. Furthermore, one can easily observe
that the distinct choices of the k x (n — k) matrices Ay, Ao, ..., Ac_q over T, give
rise to distinct o-LCD codes of length n over R., with Tor;(C) = C;. From this
and by using the fact that the matrices Ay, As, ..., A._1 have precisely pr*n—*)e=1)

distinct choices, the desired result follows immediately. O]

Now we shall distinguish the following two cases: (i) o9 € Auti(R.,) and (i)
0 € Auty(Re.,).
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6.3.1 The case oy € Aut;(R.,)

Throughout this section, we assume that oy € Aut;(R.,), i.e., 0¢ is an au-
tomorphism of R., such that o, is the identity automorphism of ﬁe,r. Now to
enumerate all 0-LCD codes of length n and rank k over R.,, we shall first count all
k-dimensional Euclidean LCD codes of length n over the finite field F, of order ¢
by distinguishing the following two cases: (i) ¢ is an even prime power and (ii) ¢ is
an odd prime power. It is worth mentioning that Carlet et al. [27, Cor. 17 and 32]
also enumerated all k-dimensional Euclidean LCD codes of length n over F, when
either ¢ = 2 or ¢ is an odd prime power. Recently, Liu and Wang [69] also counted
all Euclidean and Hermitian LCD codes over I, by using cogredience theories of
matrices. However, our proof technique is quite different from the ones employed
by Carlet et al. [27, Sec. IV and V] and Liu and Wang [69].

Now to count all Euclidean LCD codes of length n and dimension k over [F; when
g is an even prime power, we need to study derangements of the set {1,2,..., n}.
A derangement of a non-empty set {1,2,...,n} is defined as a permutation 7 of
{1,2,...,n} satisfying (i) # i for all i« € {1,2,...,n}. Next, let 2, be the set
consisting of all the derangements of the set {1,2,... n}. By Exercise 21 of [19, Ch.

6], we have the following lemma.
Lemma 6.3.2. |2, is even if and only if n is an odd integer.
We also need the following lemma by Sharma and Kaur [91].

Lemma 6.3.3. [91, Lem. 3.7] Let (V,B) be an m-dimensional symplectic space
over Fy. Then the integer m is even. Further, for 0 < k < m, the number My, of

distinct k-dimensional non-degenerate IF-linear subspaces of V' is given by

S {m/Q
M, = k/2

0 otherwise.

if k is even;
q2

From now on, let £,(n; k) denote the number of distinct k-dimensional Euclidean
LCD codes of length n over F, for 0 < k < n. It is easy to see that £,(n;0) =
L,(n;n) = 1. So we assume, throughout this section, that 1 <k <n — 1.
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Determination of the number £,(n; k) when ¢ is an even prime

power

Throughout this section, we assume that ¢ is an even prime power. In the follow-
ing theorem, we explicitly determine the number £,(n; k) of distinct k-dimensional
Euclidean LCD codes of length n over [F, for 1 <k <n — 1.

Theorem 6.3.2. Let q be an even prime power. For 1 <k <mn — 1, we have

( 1 —_
(n=k)(kt1) (n—1)/2 if both k and n are odd,;
(k—1) /2

nkk2+’ﬂ1 (n_2/2
(k—1 /2

k(n—k+1) k+1) 7’L — 1 /2

q

k/2 2

iof k is odd and n s even;

if k is even and n is odd,;

£yn:k) =

a2

—2)/2
@R — R ) [EZ B 2;;2} > if both k and n are even.
q2

\

To prove the above theorem, let - denote the Euclidean bilinear form on Fy. It
is easy to see that the Fuclidean bilinear form - is a non-degenerate and symmetric
bilinear form on Fy, i.e., the formed space (IF;‘, ) is an n-dimensional orthogonal
space over [F,. We further observe that each Euclidean LCD code of length n and
dimension k over F, can also be viewed as a k-dimensional non-degenerate IFy-
linear subspace of the orthogonal space (Fy,-). In view of this, the number £,(n; k)
equals the number of distinct k-dimensional non-degenerate F,-linear subspaces of

the orthogonal space (Fy,-). Now we define

W0:{<w1,w2,.‘., G]Fn ZMZ—O}

It is easy to observe that the set W, is an (n — 1)-dimensional F,-linear subspace of
the orthogonal space ;. Further, we see that (W, - [w,xw,) is a symplectic space
over [F,. We also note that the all-one vector 1 = (1,1,...,1) € W) if and only if n

is an even integer. Accordingly, we will distinguish the following two cases: A. n is
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odd and B. n is even.

In the following proposition, we determine the number £,(n; k) when ¢ is even

and n is odd, where 1 <k <n — 1.

Proposition 6.3.1. Let g be an even prime power, and let n be an odd integer. For
1<k<n-—1, we have

(k—1)/2

k(n—k+1) (n — 1)/2:| ) .
2 if k is even.

q% {(” - 1)/2] if k is odd;
Ly(n; k) = '

Proof. To prove the result, we first note that the all-one vector 1 = (1,1,...,1) € W,
and that wg - 1 = 0 for all wy € Wp. This implies that Fy = W, L (1). We further
observe that any k-dimensional F -linear subspace of [y is either contained in Wj
or not contained in W;.

First of all, we will count all k-dimensional non-degenerate F,-linear subspaces
of Fy that are contained in Wy. For this, we see, by Lemma [6.3.3, that there does
not exist any k-dimensional non-degenerate [ -linear subspace of Fy contained in
Wy when £k is odd, while the number of such k-dimensional non-degenerate IF-linear

subspaces of W, is given by

glen) _ gt {(n - 1)/2}
2.,

when £ is even.

Next, we observe that any k-dimensional F-linear subspace of [y not contained
in W is of the type (v, v,..., 01,1+ vy), where v; € Wy \ {0} for 1 <i:<k—1
and v, € Wy. Here we will distinguish the following two cases: (i) k is odd and (ii)

k is even.

(i) Let k be odd. When v, = 0, we see, by applying Theorem [2.3.1 and Lemma
6.3.2, that the k-dimensional F,-linear subspace (vi,vs,...,v5_1,1) of Fy is
non-degenerate if and only if (vy,vs,...,v5—1) is a (k — 1)-dimensional non-

degenerate IF -linear subspace of W,. Now by applying Lemma [6.3.3, we see
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(i)

that there are precisely

=

distinct k-dimensional non-degenerate F -linear subspaces of Fy of the type
(v1,v2, ..., 061, 1), where v; € Wy \ {0} for 1 <i <k —1.

Next, let vy # 0. Here by applying Theorem 2.3.1 and Lemma [6.3.2 again, we
see that (vi,va,...,vk-1,1 + vg) is a k-dimensional non-degenerate F-linear
subspace of Iy if and only if (v1,v,...,v4-1) is a (kK — 1)-dimensional non-
degenerate IF-linear subspace of Wy. Further, we observe that each (k — 1)-
dimensional non-degenerate [ -linear subspace (v, va,...,vx_1) of Wy gives

rise to precisely (q"*

— 1) distinct k-dimensional non-degenerate F -linear
subspaces of [ of the type (vi, vy, ..., v6-1,1 + vg), where vi(# 0) € Wh.

From this and by applying Lemma [6.3.3 again, we see that there are precisely

k=D(n=k) (n—1)/2
¢l k‘”[u«—l)mh

distinct k-dimensional non-degenerate [F,-linear subspaces of Fy of the form
(v1,v9, ..., Vg_1, 1 + vg), where v; € Wy \ {0} for 1 < i < k.

On combining both the cases, we see that the number of distinct k-dimensional
non-degenerate Fy-linear subspaces of Fy of the form (vy, v, ..., vp_1,1+ vg)
with v; € Wy \ {0} for 1 <i <k —1 and v, € W, is given by

€@ - ’“[EZ N7 PR e
Sl A

Let k be even. When v, = 0, we see, by applying Theorem [2.3.1 and Lemma
6.3.2, that (vq,vs,...,vk_1,1) is a degenerate F,-linear subspace of Fy.

Next, let v, # 0. Here by applying Theorem [2.3.1 and Lemma |6.3.2, we see that
(v1,v2, ..., Vg1, 1 + vy) is a k-dimensional non-degenerate F -linear subspace

of Iy if and only if (vy, vy, ..., vx) is a k-dimensional non-degenerate I -linear
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subspace of Wj. Further, we observe that each k-dimensional non-degenerate
[F,-linear subspace (vy, vy, . .., vx) of W gives rise to precisely (¢* — 1) distinct
k-dimensional non-degenerate IF -linear subspaces of Iy of the type (vi, va, ...,

Uk—1, 1 +v;). From this and by applying Lemma [6.3.3 again, we see that there

are precisely

(e2) E(n—k=1) (n—1)/2
— 2 — 1

distinct k-dimensional non-degenerate F,-linear subspaces of Fy of the form
(v1,v9, ..., Uk—1,1 4+ vg), where v; € Wy \ {0} for 1 <i < k.

On combining the above cases, we get

n— —-1)/2
L,(n; k) = @lo) _ [(n } when £ is odd,
Q< ) k q (kf . 1)/2 2
and
n—k —-1)/2
L,(n; k) = @,(fl) + (’l,(c@) = qk( e |(n = 1)/ when k is even.
k/2 .2
O
Next, let n be an even integer. In this case, we first note that 1 = (1,1,...,1) €

Wo. Now to enumerate all k-dimensional non-degenerate F,-linear subspaces of Fy,
let W, be an (n—2)-dimensional IF-linear subspace of W, such that 1 ¢ W,. One can
easily observe that there exists an element z € Wi-\Wj. In view of this, we can write
Fy =W @ (1) @ (z). We further see that (Wi, [yw,xw,) is an (n — 2)-dimensional
symplectic space over [F;. We next observe that any k-dimensional IF;-linear subspace
of ]FZ is either contained in W;, or contained in W; @ (1) but not in W, or contained
in Wi @ (2) but not in Wi, or contained in F} = W, @ (1) @ (2) but not in any of
the subspaces Wi, Wy @ (1) and W, @ (z). Accordingly, we proceed as follows:

In the following lemma, we count all A-dimensional non-degenerate F,-linear

subspaces of Fy that are contained in W.

Lemma 6.3.4. Let q be an even prime power, n be an even integer, and let k be

an integer satisfying 1 < k < n — 1. The number @,(:) of distinct k-dimensional
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non-degenerate Fy-linear subspaces of Fy, that are contained in Wi is given by

. —2)/2
) qk( 72 {(n )/ } if k is even;
9123 ) — k/2 q2
0 otherwise.
Proof. The desired result follows by applying Lemma [6.3.3. m

In the following lemma, we count all k-dimensional non-degenerate F,-linear

subspaces of Iy that are contained in W; @ (1) but not in W;.

Lemma 6.3.5. Let g be an even prime power, n be an even integer, and let k be
an integer satisfying 1 < k < n — 1. The number 91(3) of distinct k-dimensional
non-degenerate Fy-linear subspaces of Fy that are contained in VW, & (1) but not in

Wi, is given by

n—k— —2)/2
qk( S (" —1) {(n )/ } if k is even;
q2

91(92) _ k/2
0 otherwise.
Proof. Working as in Proposition [6.3.1, the desired result follows. O

In the following lemma, we count all k-dimensional non-degenerate [F,-linear

subspaces of Iy that are contained in W; @ (z) but not in W.

Lemma 6.3.6. Let q be an even prime power, n be an even integer, and let k be
an integer satisfying 1 < k < n — 1. The number CD,(S’) of distinct k-dimensional
non-degenerate Fy-linear subspaces of Iy that are contained in Wy @ (z) but not in

Wi, is given by

kt)(n—k-1) [(n — 2
2
1

)/2 .
(k= 1) L2 if k is odd;

/2
k(n—k—2)

T (1) F" ;/22)/2] ) if k is even.

Proof. Working as in Proposition [6.3.1, the desired result follows. m
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Finally, we proceed to enumerate all distinct k-dimensional non-degenerate F-
linear subspaces of F that are contained in Fy = W, @ (1) @ (z) but not in any
of the subspaces Wy, Wi @ (1) and W; @ (z). For this, we first observe that any
such k-dimensional non-degenerate F-linear subspace U of F is exactly one of the

following two types:

(a) U = (v1,v9,...,06-1,1 + vg + Az), where A(£ 0) € F,, v; € Wy \ {0} for
1<i<k—1anduv, € W.

(b) U = (v1,v9, ..., 059, 1401, 24vx), where k > 2, v; € Wi\{0} for 1 < i < k-2
and vi_1, v € Wy.

Now in the following lemma, we first count all k-dimensional non-degenerate F-
linear subspaces of F} of the type (v1,vs, ..., vk—1, 14 v + Az), where A(# 0) € I,
v; €W\ {0} for 1 <i <k —1and v, € W.

Lemma 6.3.7. Let g be an even prime power, n be an even integer, and let k be
an integer satisfying 1 < k < n — 1. The number @,(f) of distinct k-dimensional
non-degenerate F-linear subspaces of By of the type (U1, V9, ..., Ug—1, 1 + vg + A2),
where \(# 0) € Fy, v; € Wy \ {0} for 1 <i <k —1 and v, € W, is given by

@(4) B k/2 2
f] e [(n—2)/2 if k is odd
q (q— ){(k—l)/zlqz if k is odd.

Proof. To prove the result, we will consider the following two cases separately: k is

even and k is odd.

(i) Let k be even. When v, = 0, we see, by applying Theorem @ and Lemma
@, that (vy,ve,...,v6-1,1 4+ Az) is a degenerate F,-linear subspace of Fy.
On the other hand, when v, # 0, we see, by applying Theorem [2.3.1 and
Lemma [6.3.2 again, that (vi,vs,...,v5-1,1 + Az + v;) is a k-dimensional
non-degenerate [F,-linear subspace of Fy if and only if (v1,09,...,0%) 18 a k-
dimensional non-degenerate F-linear subspace of W;. We further observe that
each k-dimensional non-degenerate F -linear subspace (vy,vs,...,vg) of W,

gives rise to precisely (¢* — 1)(q — 1) distinct k-dimensional non-degenerate
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(i)

F,-linear subspaces of Fy of the type (v1,v9, ..., Uk_1,1 + Az + vg), where
A(# 0) € F,. From this and by applying Lemma [6.3.3, we see that there are

precisely
k(n—k—2) k (n - 2)/2:|
2 —1)(g—1
R UEE v
distinct k-dimensional non-degenerate Fy-linear subspaces of Fy of the type
(1,V9, ..., Vg—1, L+ Az4v), where A\(# 0) € F,, v; € Wi\{0} for 1 <i < k-1
and v, € W;.

Next, let & be odd. Here by applying Theorem E and Lemma @, we see
that (vy,va,...,v5-1,1+ Az +vy) is a k-dimensional non-degenerate I -linear
subspace of Fy if and only if (v1,va,...,v4-1) is a (kK — 1)-dimensional non-
degenerate F -linear subspace of ;. We further observe that each element
A(# 0) € F, and each element vy € (vy,vs,...,v5_1)" give rise to a distinct
k-dimensional non-degenerate F -linear subspace of Fy of the type (v1,09,. ..,
Uk—1, 1 + Az + vg). This implies that each (k — 1)-dimensional non-degenerate
[F,-linear subspace (v, vs, ..., vx_1) of W, gives rise to precisely ¢" *71(¢ — 1)
distinct k-dimensional non-degenerate [Fj-linear subspaces of Iy of the type
(U1,v2, ..., V-1, 1 + Az 4+ vy), where A(# 0) € F, and v, € W;. From this and
by applying Lemma [6.3.3 again, we see that there are precisely

(k+1)(n—k—1) (n — 2)/2
[T

distinct k-dimensional non-degenerate F -linear subspaces of Fy of the type
(1,V2, ..., Vg1, L+ Az+uvg), where A(#£ 0) € F,, v; € Wi\ {0} for 1 <i < k—1
and v, € W;.

]

In the following lemma, we proceed to count all k-dimensional non-degenerate

[Fy-linear subspaces of [y of the type (1,09, ..., Vg2, 1 + vp_1,2 + vg), where 2 <
E<n—1ve W \{0}for 1 <i<k—2and vx_q1,v, € W).
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Lemma 6.3.8. Let q be an even prime power, n be an even integer, and let k be an
integer satisfying 2 < k < n — 1. The number C‘DS) of distinct k-dimensional non-
degenerate IFy-linear subspaces of Fy of the type (V1,V9, ..., Vg2, 1 + Vp_1,2 + vg)
with v; € Wy \ {0} for 1 <i <k —2 and v,_1,v, € W, is given by

E(n=k)+(n=2k+1) , 1 (n—2)/2 o
2 —1 .
q (g ){(k—l)/2 . if k is odd;
nk—k?-2 e n—2)/2
o el
q
k(n—k—2) _ n — 2)/2 ) )
+¢ 2z (=) 1) {( k;/Q)/ } if k is even.
\ q2

Proof. To prove the result, we will distinguish the following two cases: k is odd and

k is even.

(i) Let k& be odd. Here when v,_; = 0, by applying Theorem [2.3.1 and Lemma
6.3.2, we see that the k-dimensional F-linear subspace (vy,va, ..., Uk—2,1, 2 +

vg) of Fy is degenerate.

When v;_1 # 0 and v, = 0, by applying Theorem [2.3.1 and Lemma6.3.2 again,
we see that (vi,ve,..., V52,1 + vg_1,2) is a k-dimensional non-degenerate
F-linear subspace of Fy if and only if (vi,v,...,v52,v5-1) is a (K — 1)-
dimensional non-degenerate Fy-linear subspace of W;. We further observe that
each (k — 1)-dimensional non-degenerate F,-linear subspace (v, va, ..., vk_1)
of W, gives rise to precisely (¢! — 1) distinct k-dimensional non-degenerate
[ -linear subspaces (vi,vs, ..., U2, 1 + v}_1,2) of Fy. Further, by applying
Lemma [6.3.3, we see that there are precisely

T [

(k—1)/2

distinct k-dimensional non-degenerate Fy-linear subspaces of Fj of the type
(V1,V9, ..., Vg2, 1 + vg_1, 2), where v; € Wy \ {0} for 1 <i <k —1.

Now let vi_1, v, € Wi both be non-zero. Here we will consider the following
two cases separately: vy_1, vy are linearly dependent over F, and v;_;, vy are

linearly independent over FF,.
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First let vy_1, v, € Wi be linearly dependent over F,. Here we have v, = avi_;

for some a(# 0) € F,. Further, it is easy to observe that
(U1, V9, ooy Vk—2, 14 Vg1, 2 + vg) = (U1, V2, ..o, Uk, L+ 01, 1+ A2)

for some A(# 0) € F,. Next by applying Theorem [2.3.1 and Lemma [6.3.2, we
see that (v1,va, ..., 02,14+ v5_1,1 4+ Az) is a k-dimensional non-degenerate
F-linear subspace of Fy if and only if (vi,vy,..., 05 2,v41) is a (k — 1)-
dimensional non-degenerate I, -linear subspace of W,. Now working as in
Proposition @(u) and by applying Lemma @ again, we see that there

are precisely

T - )@ - ﬁk - m :

distinct k-dimensional non-degenerate Fy-linear subspaces of Fy of the type
(U1,V2, ..., Vg2, 1 + vp_1,1 + Az), where A\(# 0) € F,, v;(# 0) € W, for

1 <1 < k, such that v;_; and v, are linearly dependent over IF,,.

Next, let vy_1, vy € Wi be linearly independent over F,. By applying Theo-
rem@ and Lemma@ again, we see that (vi,ve, ..., Vg2, 1+vg_1, 2+ vk)
is a k-dimensional non-degenerate F,-linear subspace of Fy if and only if
(U1,V2,...,Up—2,Vk_1) is a (k — 1)-dimensional non-degenerate F,-linear sub-
space of Wy. Further, working as in Proposition [6.3.1(ii), we observe that
cach (k — 1)-dimensional non-degenerate F,-linear subspace (vy,va, ..., vp_1)

k—1

of Wy gives rise to precisely (¢"~' — 1) distinct (k — 1)-dimensional non-

degenerate [F,-linear subspaces of Fy of the type (V1,V9, ..., Vg2, 1 + v_1),

where v; € Wy \ {0} for 1 < i < k — 1. Furthermore, by applying Theorem
k-1

2.3.2, we can write vy = > a;v; + w, where a; € F, for 1 < j <k —1 and
j=1

w € (v1,va,. .., 1) \{0}. We next observe that (vy, vy, ..., V5o, 14+vp_1, 2+
Vg) = (U1, V9, ..., Vg2, 1 + Up_1,2 + ar_1vx_1 + W). It is easy to observe that
ag—1Vk—1 +w # 0. Further, each element a;_; € F, and each non-zero element
w € (v1,vy,... ,vk,l)L gives rise to a distinct k-dimensional non-degenerate

I -linear subspace of Fy of the type (vi, vy, ..., vgp—2,1 + Vp_1,2 + v}). From
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this and by applying Lemma [6.3.3 again, we see that there are precisely

e ) [EZ i i;g} .

distinct k-dimensional non-degenerate F -linear subspaces of Fy of the type

(v1,V9, ..., Vg2, 1 +vg_1, 2+ vx), where v;(# 0) € Wy for 1 <i < k, such that

(k—1)(n—k—1)
2

q

vi—1 and v are linearly independent over [F,.

On combining the above cases, we see that when £ is odd, there are precisely

q

(k—1)/2

distinet k-dimensional non-degenerate Fy-linear subspaces of Fy of the type
(1,09, ..., Vg2, 1 + V1,2 + vp), where v; € Wy \ {0} for 1 <i <k —2 and
Vgp—1, Uk € W

k(n—k)+(n—2k+1) n—2)/2
q2

Next, let k be even. Here when vy = v = 0, by applying Theorem [2.3.1

and Lemma [6.3.2, we see that (vi,vs,..., 05 2,1,2) is a k-dimensional non-
degenerate I -linear subspace of Fy if and only if (U1,V9,...,0p_2) is a (k —

2)-dimensional non-degenerate F -linear subspace of W;. Now by applying
Lemma [6.3.3, we see that there are precisely

=

distinet k-dimensional non-degenerate F-linear subspaces of Fy of the type
(v1,V9,...,0k_2,1,2), where v; € Wy \ {0} for 1 <i <k —2.

When v;_1 # 0 and v, = 0, by applying Theorem [2.3.1 and Lemma6.3.2 again,
we see that (vy, v, ..., U4, 14+ vg_1, 2) is a k-dimensional non-degenerate -
linear subspace of Fy if and only if (vi,vs,...,v4_2) is a (kK — 2)-dimensional
non-degenerate F,-linear subspace of W;. Further, working as in Proposition
@(1) and by applying Lemma @, we see that there are precisely

q

(k=2)(n=k) . (n—Q)/Q
rl ‘1)[<k—2>/2L2
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distinct k-dimensional non-degenerate Fy-linear subspaces of Fy of the type

(1,V9, ..., Vg2, 1 4+ vk_1, 2), where v; € Wy \ {0} for 1 <<k —1.

When vj,_; = 0 and vy # 0, by applying Theorem[2.3.T and Lemmal6.3.2 again,
we see that (vy,va,...,05-2,1, 2 + v}) is a k-dimensional non-degenerate F,-
linear subspace of Fy if and only if (vi,vs,...,v42) is a (kK — 2)-dimensional
non-degenerate F,-linear subspace of W;. We next observe that each ele-
ment vy € (v, Vg, ..., 0p_2)" \ {0} gives rise to a distinct k-dimensional non-
degenerate F -linear subspace (v, va, . .., vk_2, 1, 24vy,) of [Fy;. Now by applying

Lemmal6.3.3, we see that the number of distinct k-dimensional non-degenerate

[F,-linear subspaces of Fy of the type (v1,v9,...,Uk_2,1, 2 + vg) is given by
=2)nk) (n—2)/2
S|
q2

Now let vg_1, v, € Wi both be non-zero. Here we will consider the following
two cases separately: v,_; and v, are linearly dependent over F,, and v,_; and

vy, are linearly independent over F,,.

First let v;_; and v, be linearly dependent over F,. Here we observe that
(U1, V9, ..., Vg9, 1+ V1,2 + V) = (V1,V9, ..., V52,1 +v5_1,1+ Az) for some
A(# 0) € F,. Further, for each A( 0) € F,, we see, by applying Theorem [2.3.1
and Lemma [6.3.2, that (vi,va,...,v4-2,1 + vp_1,1 + A2) is a k-dimensional
non-degenerate [F,-linear subspace of Fy if and only if (vy, vy, ..., v 2) is a
(k —2)-dimensional non-degenerate [F-linear subspace of W,. We next observe
that each element A\(# 0) € F, and each element vy, € (vy,va,...,v;_2)-\{0}
give rise to a distinct k-dimensional non-degenerate F -linear subspace of Fy
of the type (vi,vg, ..., 062,14+ v4_1,1 + Az). Now by applying Lemma @
again, we see that there are precisely

(k—2)(n—k)
2

q

@t = n6-] 5l

distinct k-dimensional non-degenerate F -linear subspaces of Fy of the type
(U1,V2, ..., Vg2, 1 + vk_1,1 + Az), where \(# 0) € F, and v; € W, \ {0} for
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1< <k—-1.

Finally, let v;_; and vy, be linearly independent over F,. Let &(vy, v, ..., vk),
&(vy,v9,...,05_2) and &(vy,vg, ...,k 2,1 + vk_1,2 + v}) denote the Gram
matrices of F-linear subspaces of IFy with respect to the bases {v1,v9, ..., 0},

{v1,v9, ..., 052} and {vy,vg, ..., Up_o9, 1+ vp_1, 2+ vi}, respectively. Then by
applying Theorem [2.3.1 and Lemma [6.3.2, we observe that

det(@(vl,vz,...,vk_g,l+vk_1,z+vk)) = det(@(vl,vg,...,vk_g))
+ det(B(vy, v, ..., vg)).

This implies that the k-dimensional F,-linear subspace (v, vs,...,v5_2,1 +

Vg1, 2 + v) of Fy is non-degenerate if and only if either

(x) the k-dimensional F,-linear subspace (v, va, ..., v) of W, is degenerate
but the (k — 2)-dimensional F-linear subspace (vy,va, ..., vx_2) of Wj is

non-degenerate, or

(0) the k-dimensional F -linear subspace (v, v, . . ., vx) of W is non-degenerate
but the (k — 2)-dimensional F-linear subspace (v, va, ..., vx_2) of W is

degenerate, or

(1) both F,-linear subspaces (vq,vs,...,vx_2) and (v1,vs,...,v;) of Wy are

non-degenerate, and det(&(vy,vq, ..., v5_2)) # det(&(vy, v, ..., vk)).

We will first enumerate all k-dimensional non-degenerate F,-linear subspaces
of IFy of the type (vi, vy, ..., vr—2,1 +vp_1, 2 + vg) satisfying (x). For this, we
see, by Lemma [6.3.3, that the number of distinct (k — 2)-dimensional non-
degenerate F -linear subspaces of W; of the type (vi, v, ..., v5_2) is given
by
R [(n - 2)/2} |
(k—2)/2 2
Further, by applying Theorem @, we can write Wy = (v1,v9, ..., Up_2) L
(v1, V9, ..., 05_2)", where (v,vy,...,0,_9)T is an (n — k)-dimensional non-

degenerate F-linear subspace of W;. We next observe that each pair (vg_1, vg)
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of linearly independent vectors in (vy,vs, ..., v5_o)T gives rise to a distinct k-
dimensional non-degenerate Fy-linear subspace of Iy of the type (v, vy, ...,
Uk—2, 1+vg_1, 2+v). It is easy to observe that (vy, va, ..., vk) = (v1, V9, ..., Vk_2)

1 (vg_1,vy), which implies that
det(&(vy,va, ..., vx)) = det(S(vy, v, ..., vk_2)) det(B(vk_1, vx)).

From this, we note that the F,-linear subspace (v, vs, ..., vg) of Wi is degen-
erate if and only if det(&(vj,_1,v;)) = 0 if and only if vy, € (vy,va,. .., vp_1)".
This implies that there are precisely (¢"* — 1)(¢" %! — ¢) relevant choices

for the pair (vy_1,v,). Now by applying Lemma [6.3.3, we see that there are

precisely
(h=2n=k) , 4 k1 (n—2)/2
2 —1 —_
q (q )(q Q)[(k_2)/2 )
distinct k-dimensional non-degenerate F,-linear subspaces (v, v, . . ., Vg2, 1+

V-1, 2 + ) of Fy satisfying (x).

Next we will enumerate all k-dimensional F -linear subspaces (v, v, . . ., k2, 1+
Vp—1,2 + vg) of Fy satisfying (¢). For this, we see, by Lemma [6.3.3, that the
number of distinct k-dimensional non-degenerate F -linear subspaces (vq, v, . . .,

vg) of W is given by

q

(2,

Further, we observe that every k-dimensional non-degenerate F,-linear sub-

space (v, vs, ..., v;) of Wy has precisely

“Qhk?;mka

distinct (k — 2)-dimensional non-degenerate F,-linear subspaces. From this
and by Theorem [2.3.9, we see that there are precisely

(P s PR By

distinct (kK — 2)-dimensional degenerate F -linear subspaces (v, vs, ..., Ux_2)
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of the k-dimensional non-degenerate F -linear subspace (vq,vg, ..., v;) of W;.
Next let (y1,y2, ..., yr—2) be a fixed (k — 2)-dimensional degenerate F-linear
subspace of (vq, vy, ...,v). Now we will choose two linearly independent vec-
tors yx_1, Yy, belonging to the F,-linear subspace (v, vs,...,v5) of Wy such
that (y1,92,...,y%) = (v1,02,...,v;). Note that the pair (yx_1,yx) has (¢ —
1)(¢* — q) distinct choices. From this and by applying Lemma @, we see
that the number of distinct k-dimensional non-degenerate F,-linear subspaces

of Fy' of the type (vi,va, ..., Vk—2, 1+ vp_1, 2 + vy) satisfying (o) is given by

v (R R PP

Finally, we will enumerate all k-dimensional F-linear subspaces (vq,vs, .. .,
Vg2, 1+vg_1, z+vy) of Fy satisfying (f). For this, we see, by Lemma[6.3.3, that
the number of distinct (k — 2)-dimensional non-degenerate F-linear subspaces

(v1,v9,...,U0k_2) of W is given by

e,

By Theorem [2.3.2, we can write Wi = (v1, Vg, ..., Up_2) L (U1,0,..., Up_2)",
where (vy,v,...,v5 2)" is an (n — k)-dimensional non-degenerate F,-linear
subspace of W;. It is easy to observe that (v, v, ..., vk) = (v1, V9, ..., Vk_2) L

(Ug_1,Vg), which implies that
det(&(vy,va, ..., vx)) = det(S(vy, v, ..., vk—2)) det(B(vk_1, vi)).

This further implies that the F -linear subspace (v, vs, ..., v,) of W, is non-
degenerate if and only if det(®(vy_1,v;)) # 0 if and only if vy & (vy_1)t and
(vr_1,v%) is not a hyperbolic pair in (vy, vy, ..., v5_9)=. Thus there are pre-
cisely ¢"*~1(q — 1)(¢"* — 1) distinct choices for the pair (vgx_1,vy) such that
the [F-linear subspaces (vq,vs,...,vp—2) and (vy,vs,...,v;) of W, are non-
degenerate. Next by Theorem @, we see that the Witt index of (vq,vg, ...,

vp_2) "t is (n—Fk)/2 and that the number of hyperbolic pairs in (vy, va, . .., Vg_2)*
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is Huk g = ¢" " 1(¢"% —1). This implies that there are precisely (¢" % —
2 b

1)(g — 2)g" %=1 relevant choices of the pair (vg_1,vy). From this, we see that

the number of distinct k-dimensional non-degenerate F -linear subspaces of Fy

of the type (v1,vs,..., vk 2,1 + vp_1, 2 + v;) satisfying (1) is given by

(n— 2)/2}
(k—2)/2] 2

k(n—k)—2

=2 - 1) [

From the above discussion, we see that the number of distinct k-dimensional
non-degenerate [F,-linear subspaces of F} of the type (vi,va,... v 2,1 +

Vg—1, 2+ vg) with v; € Wi\ {0} for 1 <i < k—2 and vg_1, v, € Wy, is given by

(k—2)/2

—}-qw(qkﬂ_l _ Q) (qk—Q _ 1) [(n ;/22)/2} E

nk—k?-2 n— n—2)/2
¢ 2 ("M =g '“rl){( )/]
e

]
Now in the following proposition, we determine the number £,(n; k) when both
q and n are even, where 1 <k <n — 1.

Proposition 6.3.2. Let g be an even prime power, and let n be an even integer.

For1<k<n-—1, we have

(st [EZ B f;g] 2 if k is odd;
Lynik) =4 ¢" 5 <(qk +q-1) {(n ;/22)/2} )
Hg T =g {EZ i ;gg] qz) if k is even.

\

Proof. The desired result follows from Lemmas [6.3.446.3.8 by noting that

Lok =20 + 2 + 20 + D + 0.
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Proof of Theorem It follows immediately from Propositions [6.3.1 and
6.3.2.

Determination of the number £, (n; k) when ¢ is an odd prime

power

Throughout this section, let us suppose that ¢ is an odd prime power. In the

following theorem, we determine the number £,(n; k) for 1 <k <n —1.

Theorem 6.3.3. Let q be an odd prime power. For 1 <k <n — 1, we have

(o —1)/2
q( S [EZ _ 1;?2} . if both k and n are odd;
nk— 2—1 n —_— 2 2
Q%(Cﬁ —1) {EZ 15;2} if k is odd and n is even with either
a q=1 (mod 4) orn=0 (mod 4)
and ¢ = 3 (mod 4);
] = nk—k2— n — 2 2
£qlni ) q =2 1(6]5 +1) [EZ B 1;?2} if k is odd, ¢ = 3 (mod 4) and
2
" n=2 (mod 4);
n— —1)/2
C]k( e (n =1/ if k is even and n is odd;
k/2 2
n— 2
qk( 7 n/ if both k and n are even.
\ k/2 e

Proof. To prove the result, let - denote the Euclidean bilinear form on Fy. It is easy
to see that the Euclidean bilinear form - is a non-degenerate and symmetric bilinear
form on Fy, i.e., the formed space (FZ, ) is an n-dimensional orthogonal space over
[F,. Since ¢ is an odd prime power, one can easily observe that the orthogonal space
(IF;‘, ) can also be viewed as a non-degenerate quadratic space with respect to the

quadratic map Q : Fj — F,, defined as
1 n
Qv) = U v for each v € Fy.

We further observe that each Euclidean LCD code of length n and dimension k over
[F, can also be viewed as a k-dimensional non-degenerate [F,-linear subspace of the

n-dimensional quadratic space (F}, Q). In view of this, the number £,(n; k) equals
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the number of distinct k-dimensional non-degenerate quadratic Fy-linear subspaces
of the quadratic space (Fy, Q) for 0 < k < n. Further, it is easy to see that £,(n;0) =
L,(n;n) = 1. So from this point on, we assume that 1 <k <n — 1.

By Theorem [2.3.6(b), we see that a k-dimensional non-degenerate quadratic
F-linear subspace U of F; has a Witt decomposition of the form U = (ay,b1) L
(ag,be) L -+ L (ay,,b,) L Uk, where v is the Witt index of U, (a;, b;) is a
hyperbolic pair in Fy for 1 <7 < 14, and Uy is an anisotropic Fy-linear subspace of
[y satisfying dimp ,(Ur) = k — 21, < 2. Now we shall distinguish the following two

cases: (a) k is odd and (b) k is even.

(a) First let k& be odd. Here by Theorem [2.3.6(a), we see that v, = (k — 1)/2,
which implies that dimg, (Uy) = 1. This implies that the k-dimensional [Fy-linear

subspace U of Fy has a Witt decomposition of the form
U= <a1,b1> 1 <a2,b2> 4L <a%,bk2;1> 1 <’LU>,

where (a;, b;) is a hyperbolic pair in Fy for 1 <4 < % and w is a non-singular
vector of the quadratic space (Fy, Q). The set {ay,b1,a2,by, ..., ar-1,bs_1,w} is
2 2

called a Witt basis of U over F,. Further, we observe that
,Cq(n; k) = D%’V/'D%,

where D%W is the number of Witt bases of the form {ay, by, as, ba, . . ., o1, b%,
w} inFy and D ket is the number of Witt bases of a k-dimensional non-degenerate
quadratic F -linear subspace of Fy. Now by applying Theorems @, @ and
[2.3.6, we see that

’Dﬂ v - %I/,n72UHllan—2y o r}—[l/*(k773> n—2v (qn7k+1 - 1 o nyac;l) n721/)
2 2 B 2 )
(k—3)/2
2n(k A1) —k(kta)+1 o , o
) ] (1) iy = 25k
v=0
_ k- (k4% k-2 . .
= 3 MG S Dg- T] (-1 ity =2
v=1
mh-(b+12 |, n eV/2 . -
¢ (e De-1 I (-1 if v = 122
\ v=
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and that
(k‘J)Q (kg,g)/2
D% :H%’IH%J--.%Ll(q_l) :q 4 (q_l) H (qk_QU_l—l),
v=0

From this and by Theorem [2.3.6(a), the desired result follows immediately in

the case when £ is odd.

Next let &k be even. Here by Theorem [2.3.6(a), we see that either v, = £2
or vy = £ Now let S;(n;k) and S,(n;k) denote the number of distinct k-
dimensional non-degenerate quadratic Fy-linear subspaces of [y having the Witt

indices % and g, respectively. We note that

L,(n: k) = Sy(n; k) + Sy(n; k).

First of all, we will enumerate all distinct k-dimensional non-degenerate quadratic
[Fy-linear subspaces of Fy having the Witt index k—gz In this case, we have
dimg, (Ux) = 2. Here working in a similar manner as in Lemmas 3.2 and 3.3 of
Sharma and Kaur [91], we see that each 2-dimensional anisotropic [F-linear sub-
space of U has an orthogonal basis and that the number of distinct orthogonal

bases of a 2-dimensional anisotropic [F-linear subspace of U is given by

( qnfk(q . 1)2(qnfk+l o 1)

ifV:”T*l,
n—k —1)2 "—7’“_1 7"7k+2_1
a,, = ¢ eV z —1ig = ) ity — o
’ 2
n—k n—k+4+2
CHa- DT AN )
5 1 V—T.

\

From this, it follows that the k-dimensional non-degenerate quadratic F,-linear
subspace U of Fy having the Witt index k—;2 has a Witt decomposition of the
form

U= <a1,b1> 1 <a2,b2> - L (a%,b%> 1 <w1,w2>,

where (a;, b;) is a hyperbolic pair in Fy for 1 <7 < % and {wy,ws} is an

orthogonal basis of the 2-dimensional anisotropic F,-linear subspace Uj, of U.
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The set {a1, b1, az2,b,...,ar—2,br—2,wy, ws} is called a Witt basis of U over F,.
2 2

We next observe that

Sq(n; /{Z) = 'D%J//D%,

where Di—2 , is the number of distinct Witt bases of the form {ay, b1, as, ba, . . .,
2 b

r2, b%, wy, wy} in Fy and D% is the number of distinct Witt bases of a k-
dimensional non-degenerate quadratic F -linear subspace of I having the Witt

index % Now by applying Theorems |2.3.2, |2.3.5 and |2.3.6(d), we see that

D% = Hl/,n—Ql/HV—l,n—2u to H,}f (k;l) ,anZ/Qlkvl’

sV

and that
Diz = Hez yHiay - Hia(d® — (g - 1).

Further, by Theorem [2.3.6, we obtain

k(n—k) k
((] 2 (q2_1) (n—l)/Q ifl/:n—_l'
2 k2 ] 2
k(n—k) k n—k -
¢ = (¢2—-1)(gz —1)[n/2 -
. — _ £ = Q;
Sﬁl(”? k) 2(q5+1) _k/z 2 v 2
k(n—k) k n—~k ~
¢ 7 (¢ —-1(¢"F +1) n/Q} if = n=2
2(qz — 1) k/2] 2

We will next count all distinct k-dimensional non-degenerate quadratic IFy-
linear subspaces of Fy having the Witt index % In this case, we note that
dimg,(Uy) = 0. This implies that the k-dimensional non-degenerate quadratic
[Fy-linear subspace U of Fy having the Witt index g has a Witt decomposition

of the form
U= (ap,b) L {as,by) L --- L (ag,bg,

M

where (a;, b;) is a hyperbolic pair in Fy for 1 <4 < g The set {ay, b1, a2,ba, . .. @,

bg} is called a Witt basis of U over [F,. This implies that

~

Sy(n; k) = ngy/Dg,
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where D,
27

is the number of Witt bases of the type {ai, b1, as,bo, ... ,ag,b%}
in Fy' and D% is the number of Witt bases of a k-dimensional non-degenerate
quadratic [F,-linear subspace of [Fy having the Witt index % Further, by applying
Theorems [2.3.2, 2.3.5 and [2.3.6(d), we see that

v

Dg,y = HV,TL—QVHV—LTZ—QII ce HV_ (kgz) n—2

and

Wit [(n - 1)/2} if v = 252
2 k/2 7 N
(g2 +1) k/2] g2
gt D" - 1) {n/?] if 1 = 152
2(q> — 1) k2 N

From this and by Theorem [2.3.6(a), the desired result follows immediately in

the case when £ is even.

In the following theorem, we provide the explicit enumeration formulae for all
distinct o-LCD codes of length n and rank k over R., when oy € Aut;(R.,).

Theorem 6.3.4. Let 0 € Auty(Re,) be fized. For 0 <k <mn, let Q,r(n;k) denote
the number of distinct o-LCD codes of length n and rank k over R.,. Here we have

Q,r(n;0) = Qpr(n;n) = 1. Further, for 1 <k <n —1, we have the following:

(a) When p =2, we have
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2r(n7k)(22kefk+1) [

Qor(nik) =

2r(k(n7k)(226—1)+n71) [(n —

(k-

(n— 1)/2}
(k= 1)/2] 0

2)/2]
1)/2] g2r

+(2r(n—k+1) _ 2r(n—k) + 1) [

o Thln=k)Ce=1) 1) [(n — 1)/2]
22r

k)2

(b) When p is an odd prime, we have

p

p

Qpr(n; k): P

p

p

\

(k—1)/2

r(nk) ke k) {(n — 1)/2}
p2'r

r(k(n—k’)ge—l)—l)( m 1) (n — 2)/2-
P (k- 1)/2
r(b(n—k)(2e—1)=1)  rn [(n —2)/2

c Al Ek—li?Z

rk((n=k)(Ze=1) 1) [(n — 1)/2}
p2r

k)2

rk(n—k)(2e—1) n/2
2
p2r

k)2

if both k and n are odd,
if k is odd and n is even;

if k is even and n is odd,

)

RECCSAEENE ) ((2”“ For o) [(n — 2)/2}
k/2 22r

(n—2)/2
(k—2)/2

if both k and n are even.

if both k and n are odd;

if k is odd and n s even with

either p” = 3 (mod 4) and

n=0 (mod 4) orp" =
if k is odd, p" = 3 (mod 4)
and n =2 (mod 4);

if k is even and n s odd;

if both k and n are even.

Proof. To prove the result, we see, by Theorem [6.2.3, that a linear code D of length

n and rank & over R., is a 0-LCD code if and only if D is a free code and its

Torsion code T'or; (D) is a k-dimensional -LCD code of length n over R, .. Further,
we see, by Theorem @, that there are precisely p™*=*)(=1 distinct o-LCD codes
of length n over R., with a prescribed Torsion code. Therefore if £,-(n; k) denotes
the number of distinct Euclidean LCD (or 7-LCD) codes of length n and dimension
k over R.,(~ F,), then the total number of distinct o-LCD codes of length n and

rank k over R., is given by

Qpr (n; k) = Ly (n; k)prk(nik)(eil)-

(mod 4);
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Now on substituting the values of the number £,-(n;k) from Theorems [6.3.2 and

6.3.3 in the respective cases, we get the desired result.

]

In the following theorem, we provide the explicit enumeration formulae for all

0-LCD codes of length n over R., when oy € Aut;(Re.,).

Theorem 6.3.5. Let 0g € Aut1(R.,) be fized. Let Q,r(n) denote the number of

distinct o-LCD codes of length n over R. .

(a) When p is an odd prime, we have

r(n—k)(2ke—k+1) (n—1)/2 n—1
2+ Z p 2 [(kfl)/Q]Ip + E
k=1 (mod 2) k=0 (&o
if n is odd;
n—1 r(k(n— e—1)— rn
e ey e

] (k—=1)/2] por
k=1 (mod 2)

r(k(n—k)(2e—1)—1) rn

2+ Z P 2 (pz

k=1 (mod 2)

+ DG

if " =3 (mod 4) and n =2 (mod 4).

(b) When p =2, we have

rk((n— k)(ze D41 r(n_1)/2 n—1
2+ Z 2 [nk/2)/ ]22r+ kz
k=0 (mod 2) k=1 (El
if n is odd;
n-1 r(k(n—k)(2e—1)—2)
Qp(m)=4{ 2+ X 20 (@

k=1
k=0 (mod 2)

r(k(n—k)(2e—1)+n—1)
2

rk((n— k)(25 1)+1) [(nk/l)/2]
2 27
p

Z p

k=0 (mod 2)

rk(n—k)(2e—1)

HAp

if n is even with either p" =1 (mod 4) or n =0 (mod 4) and p" = 3 (mod 4);

n—1 rk(n—k)(2e—1) n/2
+ Z p ? [k/Z] 2

k=1 p
k=0 (mod 2)

r(n—k)@ke—k+1) r(n_1)/2
2 [(kq)/z] 92r
2)

—gr(n—k) 1 1) [(”—2)/2

(k—2) /2] 927

SR v R Z
k=1 (mod 2)

if n is even.

Proof. Tt follows immediately from Theorem [6.3.4.
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6.3.2 The case 0y € Auts(R.,)

Here we recall, by Corollary @, that Autz(Re,) = 0 when r is odd. So we
assume, throughout this section, that » > 2 is an even integer and oy € Auts(R.,),
i.e., 0¢ is an automorphism of R., such that & is the automorphism of ﬁw(: Fyr)
of order 2. Now to count all o-LCD codes of length n over R, ,, we first enumerate
all distinct k-dimensional Hermitian LCD codes of length n over the finite field F 2

of order ¢? in the following theorem.

Theorem 6.3.6. For 0 < k < n, let qu(n; k) denote the number of distinct k-

dimensional Hermitian LCD codes of length n over Fp. Then we have qu(n; 0) =

Lp(n;n) = 1. Further, for 1 <k <n —1, we have

k-1 qnf'u ( 1)n7v
~ . _ k(n—k) —\T
Loty = [ (=)

v=0

Proof. To prove the result, let [-,-]s denote the Hermitian d-sesquilinear form on
7, where ¢ is the automorphism of Fg2 of order 2. One can easily observe that
the formed space (IFZQ, -, -]s) is an n-dimensional unitary space over F,2. Further, by
Theorem @(a), we see that the Witt index v of the unitary space (Fj, [, ]s) is
given by

5 if nis even;

if n is odd.

‘3
W |
—_

We next observe that each Hermitian LCD code of length n and dimension &k over
Fq

of this, the number qu (n; k) equals the number of distinct k-dimensional unitary

> can be viewed as a k-dimensional unitary IF2-linear subspace of . In view

[F 2-linear subspaces of the n-dimensional unitary space (]FZQ, [ ]5)-

First of all, we observe that L;(n;0) = L;(n;n) = 1. So from this point on,
we assume that 1 < k <n — 1. Now to determine the number qu (n; k), we see, by
Theorem @(b), that a k-dimensional unitary F.-linear subspace U of IFZQ has a

Witt decomposition of the form
U = <6L1,b1> J_ <a2,b2) J_ v J_ <(ll,k,b,,k> J_ Uk,

where vy, is the Witt index of U, (a;, b;) is a hyperbolic pair in IF7. for 1 <4 < v, and
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Uy, is an anisotropic F2-linear subspace of Fe satisfying dirmgq2 (Up) =k =21, < 1.

Now we shall distinguish the following two cases: (i) k is odd and (ii) k is even.

(i) First let k be odd. Here we see that the k-dimensional unitary Fg-linear
subspace U of I, has a Witt decomposition of the form U = (a1,b1) L
<(I2,bg> 4 -

L (asa
IF” for 1 < i < kT and w is an anisotropic vector in IF” The basis set

1, b 1) L (w), where (a;,b;) is a hyperbolic pair in

{al, bi,as,be, ... ar1,br1,w} is called a Witt basis of U. Now one can easily
2 2
observe that the number of distinct Witt bases of the type {ay, b1, as,bs, ...,

ar-1,br—1,w} in IFZQ is given by
2 2

Dn,k = Hgm,n—2<p1ng,n—2—2¢2Hg03,n—4—2<p3 e Hgob,n—k—}-?)—%ok;l
2 2

2(n—k+1
X <q ( ) — 1-— I‘Pk+1 Mm—k+1=20 k11 )7
o

e

where ; denotes the Witt index of the unitary space {(ay, by, a, by, . .., a;_1,b;_1)*°
and Hy, n—2i+2-2,, denotes the number of hyperbolic pairs in the unitary space

<a1,bl,a2,b2,. .. ,ai_l,bi_1>l‘5 for 1 S 1 S k—é—l’ and 7,

Prpt k=205 denotes

the number of isotropic vectors in the unitary space (a;, bl, g, by, .. @k, br1)Ls.
2 2
Now by Theorem [2.3.4, we get

k—1
Dn’k _ qk(2n2k 1) q B 1 H nfz').
=0

Further, working in a similar manner as above and by applying Theorem [2.3.4,
we see that the number of distinct Witt bases of a k-dimensional unitary F -

linear subspace of i is given by

k(k—1)

Dij =Mz Moy Hia(@® = 1) =q¢ = (a= 1) ] [(¢"" = (=D)").

From this, we obtain

k—1
A Dk k(n—k ¢ = (="
Lot = et = I (=)
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(i) When £k is even, we see that the k-dimensional unitary F.-linear subspace U

of 7 has a Witt decomposition of the form

U= <a1,b1> 1 <&2,b2> 4L <a5,bg>,

|

where (a;, ;) is a hyperbolic pair in Fj;, for 1 <7 < Now working in a
similar manner as in case (i) and by applying Theorem [2.3.4, the desired result
follows.

]

In the following theorem, we provide the explicit enumeration formula for all

0-LCD codes of length n and rank k over R., when oy € Auts(Re,).

Theorem 6.3.7. Let the residue field R., of the chain ring R., be of order p’,
where p is a prime number and r > 2 is an even integer. Let oy € Auty(R.,) be
fixed. For 0 < k < n, let @pr(n; k) denote the number of distinct o-LCD codes of
length n and rank k over R.,. Then we have @pr(n; 0) = @pr(n; n) = 1. Further,
for1 <k <n-—1, we have

r(n—uv)

~ rh(n—k)(2e—1) p 2z — (=1
Qpr(n;k) =p 2 H ( (k—v) ) .

o \p T — (1)

Proof. Working in a similar manner as in Theorem [6.3.4 and by applying Theorem
6.3.6, the desired result follows. O

In the following theorem, we provide the explicit enumeration formula for all
o-LCD codes of length n over R., when oy € Auts(R..).

Theorem 6.3.8. Let the residue field R., of the chain ring R., be of order p’,
where p is a prime number and r > 2 is an even integer. Let oy € Auty(R.,) be

fixed. The number @pr(n) of distinct o-LCD codes of length n over R, is given by

~ n-t rk(n—k)(2e—1) kol pr(n;w — (—l)n_v
Qpr(n) =2+ ZP ? H (h—v) .
k=1

oo \p T — (1)

Proof. Tt follows immediately from Theorem [6.3.7. m
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6.4 The class of 0-LCD codes over R, , is asymp-
totically good

In this section, we will show that the class of o-LCD codes over R, is asymp-
totically good. To do this, we recall that the Hamming distance of a linear code C' of
length n over R., is the smallest of the Hamming weights of its non-zero codewords.
From now on, we shall refer to a linear code C of length n, rank k£ and Hamming
distance d over R., as a linear [n, k, d]-code over R.,,.

Now let § ={C1,Cs,...... } be a sequence of codes, where the code C; is a free
linear [n;, k;, d;]-code over R., such that lim n; = co. The rate R of the sequence

1—00
§ is defined as

ki
R = limsup —

i—oo Ty
and the relative distance A of the sequence § is defined as

A = liminf é
71— 00 ni

The family § of linear codes over R, is said to be asymptotically good if it satisfies
RA > 0.
In the following proposition, we provide a method to construct a ¢-LCD code

over R, from a linear code over the residue field R, of the chain ring R,

Proposition 6.4.1. Let C' be a linear [n, k,d']-code over R.,. Then there ezists a
0-LCD [N, k,d]-code over the chain ring R, where d > d and

2n—k  if p=2;
4dn — 3k if p is an odd prime.

Proof. To prove the result, without any loss of generality, let us suppose that C’ is

a linear code whose generator matrix G’ is in the standard form
G/ = |:7k ‘ A0:| )

where I, denotes the k x k identity matrix and Ay is a k x (n — k) matrix over R.,.

As the mapping — : 7., — R, is a bijection, there exists a unique k x (n — k)
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matrix A over 7., such that A = Ay. Now we shall distinguish the following two

cases: (i) p =2 and (ii) p is an odd prime.
(i) Let p = 2. Let us consider the linear code C over R., with a generator matrix
G=|L | Atud|A+ud|.
Now by applying Theorem [6.2.3, we observe that the code C is a ¢-LCD
[2n — k, k, d]-code over R.,. Further, one can easily observe that d > d'.

(ii) Let p be an odd prime. Here by Lagrange’s Four-Square Theorem, we see
that there exist non-negative integers ag, bg, ¢y and dy (not all zero) such that
p = a2 +0b2 + 2 + d2. This implies that @2+ b, +c2+d, = 0 in Re.r. We further
see that the elements @y, by, Co, do in ﬁeﬂ. are not all zero. Since the mapping
Ty — R.. is a bijection, there exist unique elements a, b, ¢, d € T, such
that @ = @y, b = by, © = ¢, and d = dy. Now let us consider the linear code C

over R, with a generator matrix
G = [Ik | aA+uA | bA+uA | cA+uA | dA—iruA] :
We next observe that
G= [Tk | GoAg | boAo | GoAo | 80140} ;

60(50) = 60, 60<50) = Bo, 60(60) = Eo and 50(30) = 30. From this and by
applying Theorem [6.2.3 again, we observe that the code C is a 0-LCD [4n —
3k, k, d]-code over R, .. Further, one can easily observe that d > d'.

This completes the proof of the theorem. O]

In the following theorem, we show that the class of 0-LCD codes over R, is

asymptotically good.
Theorem 6.4.1. The class of 0-LCD codes over R., is asymptotically good.

Proof. To prove the result, we see, by Theorem 3 of Sendrier [89], that the class of
linear codes over R., is asymptotically good. Further, by Proposition [6.4.1, we see
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that corresponding to a linear [n, k, d']-code over ﬁw, we can construct a o-LCD
[N, k,d]-code over R.,, where d > d', and N = 2n — k if p = 2, while N = 4n — 3k
if p is an odd prime. From this, it follows that the class of 0-LCD codes over R,
is also asymptotically good. O]

In the following theorem, we show that a linear code C over R., is a 0-LCD
MDS code if and only if its o-dual code C*< is a ¢~ '-LCD MDS code.

Theorem 6.4.2. A linear code C' of length n over R., is a o-LCD MDS code if
and only if its o-dual code C*e is a 0~ -LCD MDS code.

Proof. To prove the result, we see, by applying Theorem 5.3 of Norton and Salagean
[81] and by Theorem [6.2.3] that the ¢-LCD code C' is an MDS [n, k, d]-code over
R, if and only if the code C is a free code and its Torsion code Tor(C) is a &-
LCD MDS [n, k, d]-code over R.,.. We next observe that the Torsion code T'or;(C)
is a 7-LCD code if and only if its 7-dual code Tor;(C)*= is a 7 '-LCD code over
Rer. Now by applying Proposition 2.10 of Liu et al. [64] and using the fact that
7(Tor1(C)) = Tory(o(C)), we see that the Torsion code Tor;(C) is a 7-LCD MDS
[n, k, d]-code over R, if and only if the code Tor,(C)*= = Tor, (U(C’))L is a o -
LCD MDS [n,n—k, k+1]-code over R, where Tor; (cr(C’))L denotes the Euclidean
dual code of the code T'or(o(C)). Next, by applying Theorem 3.10(ii) of Norton

and Salagean [80], we see that
Tory (U(C))L = Tory(0(C)") = Tor (C*).

From this, it follows that the code C is a ¢-LCD MDS [n, k,d]-code over R., if
and only if the code C1v is a free code and the code Tor(C*) is a o~ !-LCD
MDS [n,n — k, k + 1]-code over ﬁe,ra which, by applying Theorem 5.3 of Norton
and Salagean [81] and Theorem @ again, holds if and only if the code Ct7 is
a 0~ -LCD MDS [n,n — k,k + 1]-code over R.,. From this, the desired result
follows. O
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6.5 Classification of 0-LCD codes over R, ,

We first recall that two linear codes of length n over R., are monomially equiv-
alent if a generator matrix of one code can be obtained from the generator matrix
of the other code by post multiplying it with an n X n monomial matrix. Otherwise,
these two codes are said to be inequivalent.

In a recent work, Carlet et al. [29] showed that every linear code over the finite
field F, is equivalent to a Euclidean LCD code over F, when ¢ > 3, and that every
linear code over F . is equivalent to a Hermitian LCD code over F,. when ¢ > 2. In

the following theorem, we extend this result to o-LCD codes over R.,.

Theorem 6.5.1. Let the residue field R., of the chain ring R, be of order p" > 4,
where p is a prime number and r is a positive integer. Let C be a free linear [n, k, d]-
code over Re,. Then there exists a word = (S, Bz, ..., Bn) of length n over the
unit group Ry, of the chain ring R, such that the linear code Cg, defined as

Cs = {(Bic1, Baca, - .. Bncn) €RL, = (c1,¢2,...,¢n) €CY,

is a 0-LCD [n, k,d]-code over R,.

Proof. To prove the result, without any loss of generality, let C be a free linear
[n, k, d]-code over R, with a generator matrix G = [Ik | A} , where Aisakx(n—k)
matrix over R.,. It is easy to see that its Torsion code D = Tor;(C) is a linear
[n, k, d]-code over R, with a generator matrix G = [ Iy | A ] . Working in a similar
manner as in Theorem 16 and Corollary 18 of Carlet et al. [29], we see that there

exists a word a = (v, a, ..., ) of length n over R, \ {0} such that the code

—n

Da = {(O[ldl,agdg, Ce ,Oéndn) - R (dth, e ,dn) - D}

e,r °

is a -LCD [n, k, d]-code over R,,,.. Now corresponding to the word @ = (o, aa, . . . , @),
we observe that there exists a word 8 = (81, B2, ..., Bn) of length n over R} . such
that 3, = a; for 1 < i < n. Further, let us consider the code Cs of length n over
Re,r, defined as

Cg = {(ﬁlcl, 5202, Ce 7ﬁncn> c RZ’T : (Cl, Co, ... ,Cn) c C}
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It is easy to see that T'or;(Cz) = D,. From this and by applying Theorem [6.2.3, we
see that the code Cg is a 0-LCD [n, k, d]-code over R.,. O

6.5.1 Classification of ¢-LCD [n,1,d]-codes and [n,n — 1,d]-

codes over R,

Let B(n, k) denote the set consisting of all inequivalent o-LCD [n, k]-codes over
the chain ring R.,, and let B(n,k,d) denote the set of all inequivalent o-LCD
[n, k, d]-codes over the chain ring R. ., where 1 < k., d < n and 0y € Aut(R.,). Note
that

B(n, k)= U B(n,k,d) (a disjoint union) for 1<k <mn. (6.5.1)

d=1
In this section, we shall explicitly determine the sets B(n, k) and B(n, k,d) for 1 <
d < n when k € {1,n — 1}. To do this, for a = (a1,a,...,a,) € RE,, let C,(a)
denote the linear [n, 1]-code over R, with a generator matrix [a; ay -+ a,]. Next

for an integer j > 1, let Y, denote the set of all j-tuples (iy,1o,...,4;) of integers
i1,12,...,0; satisfying 1 < 73 < iy < --- < 4; < e. In the following lemma, we

determine the cardinality of the set Y.

Lemma 6.5.1. For an integer j > 1, we have

_ele+1)--(e+j—1) fe+j—1
= J! _< j )

Proof. Tts proof is a straightforward exercise. m

We recall that the residue field R, of the chain ring R., is of order p", where
p is a prime number and r is a positive integer. Next, we see, by Theorem 2.21 of
[62], that Aut(R.,) = Auti(R.,) when p" = |R.,| is either 2 or 3 (or equivalently,
when r = 1 and p € {2,3}), while Aut(R.,) = Aut1(R.,) U Auty(R.,) when
P =|Re,| =4 (or equivalently, when p = r = 2).

In the following theorem, we explicitly determine the sets B(n, 1,d), B(n,n—1,d)
for 1 < d < n, B(n,1) and B(n,n — 1) when either p" = |R.,| € {2,3} and
0o € Aut(Re,) = Aut1(Re,) or p" = |Re,| = 4 and 0y € Auty(Re,).
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Theorem 6.5.2. Suppose that cither " — |ﬁe7r| € {2,3} and 0¢ € Aut(R.,) or
P = Res| = 4 and oy € Auty(R..,).

(a) For 1 <d <mn, we have
{Co(1, 1, L uf w2, o uinmd) o (iy,da, .. ipeg) € Yaoa)
B(nalad): ifd#0 (mOdp);
0 otherwise.

As a consequence, we have

(1757 i d# 0 (mod p);

0 otherwise

B(n,1,d)| =

for1 <d<n, and

1B(n,1)| = |B(n,n—1)| = i (€+Z:3_1)‘

d=1
d#0 (mod p)
(b) Forn>2 and 1 < d < n, we have
([ {Ca(L, 1, Lt 2, i) et s (i g, inej) € Yo,
1<j<n-—1andj#0 (mod p)} ifd=1;
B(n,n—1,d) =
{Cn(1,1,..., 1)1} if d=2 and n # 0 (mod p);
0 otherwise.

\

As a consequence, forn > 2 and 1 < d < n, we have

( n—1 + 1
etn=j— if d =1;
DENCERN
J#0 (mod p)
|IB(n,n—1,d)| =
1 if d=2 and n %0 (mod p);
\ 0 otherwise.

Proof. (a) When p" = [R.,| is either 2 or 3 and 0y € Aut(R.,), by Theorem 2.21 of
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[62], we see that Aut(R.,) = Auti(R.,), i-e., 0 is the identity automorphism
of R., for every automorphism oy of R.,. Further, by Propositions 4 and 5
of Araya and Harada [3], we note that there does not exist any a-LCD (or
equivalently, Euclidean LCD) [n,1,d]-code over R., when d = 0 (mod p),
while up to equivalence, there exists a unique a-LCD [n, 1, d]-code over ﬁw

with a generator matrix

[11---100--- 0] whend# 0 (mod p).
d

On the other hand, when p" = |R.,| = 4 and oy € Auty(R.,), working
as in Propositions 4 and 5 of Araya and Harada [3], we see that every o-
LCD [n,1,d]-code over R, is equivalent to the 7-LCD code over R, with a

generator matrix

[11---100--- 0] whend# 0 (mod p),
d

while there does not exist any -LCD [n, 1, d]-code over R, when d = 0 (mod p).

Now by applying Theorem 4.2(ii) of Norton and Salagean [81] and Theorem
6.2.3, we see that the set B(n,1,d) is empty when d = 0 (mod p). Next, to
determine the set B(n,1,d) when d #Z 0 (mod p), we first observe that if C;
and Cy are two o-LCD [n, 1, d]-codes over R., such that their Torsion codes
Tori(Cy) and Tor (Cy) over R., are inequivalent, then the codes C; and C,
over R., are inequivalent. Further, up to equivalence, we can assume that a

0-LCD [n, 1,d]-code over R., has a generator matrix of the form
11 - Ty -y,

where (i1,19,...,9n—-q) € Yn_q. We next observe that if (iy,is,...,4,_4) and
(41,72, - - - » jn_a) are distinct elements of Y;,_g4, then the codes C,, (1,1, ..., 1, u",

u?, ... u=d) and C,(1,1,...,1,u’, w2, ... u"-?) over R., are inequivalent.
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From this, we obtain
B(n,1,d) = {Cp(1,1,..., Lu",u, ... ,u" ) : (i1,i9, ... in—q) € Yn_a}

when d # 0 (mod p). Further, by Lemma [6.5.1, we get

O e

(n—d)!

e+n—d—1
n—d

when d #Z 0 (mod p). Finally, we observe that two 0-LCD codes C; and Cy of
length n over R, are equivalent if and only if their o-dual codes Ci-* and Cy”
over R., are equivalent, which implies that |[B(n,n — 1)| = |B(n,1)|. From
this and by (6.5.1), part (a) follows immediately.

(b) We will next determine the set B(n,n—1,d) for n > 2 and 1 < d < n. For this,
we see that the code Cy, (a1, ag, . . ., a,) With (a1, a9, ..., a,) € R, isa o 1-LCD

Lo-1isao-

[n, 1]-code over R, if and only if its o~ '-dual code C,(ay, ag, . . . , a,)
LCD [n,n—1]-code over R, with a parity-check matrix [a; as - - - a,]. Further,
by applying Theorem 4.2(ii) of Norton and Salagean [81] and Corollary 1.4.14
of [53], we observe that the o~!-dual code C,(ay,as,...,a,)*>~' has Hamming

distance at most 2. From this, it follows that
B(n,n—1,d) =0 when d > 3.

Moreover, the code Cy(ay,as, ..., a,) >~! has Hamming distance 1 if and only
if a; = 0 for some j but not all @,’s are zero, which, by Theorem 4.2(ii) of
Norton and Salagean [81], holds if and only if the code C,(ay,as, ..., a,) has

Hamming distance strictly less than n.
From this and by part (a), we get

B(n,n—1,1) = {Cu(L,1,..., L,u" u, ... oum) ot 2 (iy,da, . oy ineg) € Yooy,
1<j<n-—1landj#0 (modp)}.

Now to determine the set B(n, n—1,2), we see that the code C, (a1, as, . . . , ay) o1

has Hamming distance 2 if and only if all @;’s are non-zero, which, by Theorem
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4.2(ii) of Norton and Salagean [81], holds if and only if the code Cy,(aq, as, . . ., ay,)
has Hamming distance n. We next see that there exists a 07*-LCD [n, 1,n]-
code over R, if and only if n # 0 (mod p). Further, when n # 0 (mod p),
there exists a unique ¢ !'-LCD [n,1,n]-code C,(1,1,...,1) over R, up to
equivalence. From this, we get B(n,n —1,2) = 0 if n = 0 (mod p), while
B(n,n —1,2) = {C,(1,1,...,1) =1} when n # 0 (mod p). This proves (b).

[l

In the following theorem, we explicitly determine the sets B(n, 1,d), B(n,n—1,d)

for 1 < d < n, B(n,1) and B(n,n — 1) when either p" = |R.,| = 4 and 0y €
Auti(R.,) or p" = |Re,| >4 and 0 € Aut(R.,).

Theorem 6.5.3. Suppose that either p" = |R.,| = 4 and oy € Aut;(R.,) or
P = |Res| >4 and o9 € Aut(R.,). Let & be a unit in R, having order p" — 1 (so
that the Teichmiiller set T., of Re, is given by To, = {0,1,&,&2,...,E7 72} such
an element & exists in Re, by Theorem|[2.1.4(c)).

(a) For1<d <n, we have

({Cu(L, 1, w2, uind) s (i, inea) € Yiea)
if d # 0 (mod p);
{C,(1, 1,1, & uf w2, o ufnmd) o (iy,ds, ... ig—a) € Yaoa)
[ if d =0 (mod p).

B(n,1,d) =

As a consequence, we have

B(n,1,d)| = (e+"_fl_1) for1<d<n,
o

and

() = 80 -1 = (7" 1Y)

n—1
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(b) Forn>2 and 1 <d <n, we have

({Co(1,1,. ., Louit w2, uina) ot s (i, i, i) € Yooj,
1<j<n-—1andj#0 (modp)}U{Cu(1,1,...,1,§u",u2,...,
uin=i)to-1 (i1,92,...,in—j) € Yp_j,1<j<n—1and j =0 (mod p)}

B(n,n—1,d) = < ifd = 1;

{Cn(1,1,..., 1)1} if d=2 and n # 0 (mod p);
{Cn(l,l,...,l,f)%—l} if d =2 and n =0 (mod p);
0 otherwise.

As a consequence, forn > 2 and 1 < d < n, we have

(“fr Y =1 ifd=1;

|B(n,n —1,d)| = 1 if d=2;

0 otherwise.

Proof. (a) To determine the set B(n, 1,d), we will first determine the set B(n, 1, d)
consisting of all inequivalent a-LCD [n, 1, d]-codes over ﬁe,r. For this, let
D, (Y1, Y2, - - -, Yn) denote the linear [n, 1]-code over R, with a generator ma-
trix [y1 y2 -+ yn). We next observe that if a = (ay, as, ..., a,), b= (b1,bs,. ..,
b,) € ﬁzr are such that their Hamming weights are not equal, then the linear
codes D, (ay,az,...,a,) and D, (b1, b, ..., b,) over R, are inequivalent. We
further observe that each 7-LCD [n, 1, d]-code over R, is equivalent to the
7-LCD code

when d # 0 (mod p), while each -LCD [n, 1, d]-code over R, is equivalent
to the o-LCD code
D,(1,1,...,1,£,0,0,...,0)
————
d—1
when d = 0 (mod p). From this, it follows that there exists a unique 7-LCD

[n,1, d)-code over R., up to equivalence for 1 < d < n. Further, working as in
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Theorem [6.5.2(a) and by applying Lemma |6.5.1, part (a) follows.

(b) Working in a similar manner as in Theorem [6.5.2(b) and by using part (a), the
desired result follows.

]

6.5.2 Classification of Euclidean LCD codes over the chain
rings Fy[u]/(u?) and F3[u]/{u?), and o-LCD codes over
the chain ring Fyu|/(u?) when oy € Auty(Fylu]/{u?))

The enumeration formulae obtained in Theorems [6.3.5 and [6.3.8 are useful in
the determination of complete lists of inequivalent o-LCD codes of length n over
R, when oy € Auty1(Re,) U Auta(R,,). To illustrate the same, we will now classify
all Euclidean LCD codes of lengths 2, 3,4 and 5 over Fy[u]/(u?) and of lengths 2,3
and 4 over F3[u]/(u?), and all o-LCD codes of lengths 2,3 and 4 over the chain ring
Fylu]/(u?) when oy € Auty(F4[u]/(u?)) (or equivalently, when &, is the automor-
phism of F, of order 2) up to monomial equivalence, by carrying out computations
in the Magma Computational Algebra System and by applying the classification al-
gorithm [53, Sec. 9.7] that has been used in most of the earlier classification attempts
[3]. We will also explicitly determine a generator matrix of the code representative

of each equivalence class of these codes.

[. There are precisely 3 inequivalent non-zero Euclidean LCD codes of length 2

over Fy[u]/(u?). Among these codes, there are

e 2 Euclidean LCD [2,1, 1]-codes over Fy[u]/(u?) with generator matrices
[1 0] and [1 u} ; and
e 1 Euclidean LCD [2,2, 1]-code over Fy[u]/(u*) with a generator matrix

L.

I1. There are precisely 9 inequivalent non-zero Fuclidean LCD codes of length 3

over Fylu]/(u?). Among these codes, there are

e 3 Euclidean LCD [3,1,1]-codes over Fo[u]/(u?) with generator matrices
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100/, [1 0 ufand 1w

e 3 Euclidean LCD [3,2, 1]-codes over Fy[u]/(u?) with generator matrices

1 00] [1 0 w 10 w
, and :
_010] [010] [01u]

e 1 Euclidean LCD [3, 1, 3]-code over Fy[u]/(u?) with a generator matrix

11 1};

1 Euclidean LCD 3,3, 1]-code over Fy[u|/(u*) with a generator matrix

I3; and
1 Euclidean LCD [3,2,2]-code over Fy[u]/(u?) with a generator matrix

1 0 14w
01 1+ul|

IIT. There are precisely 26 inequivalent non-zero Euclidean LCD codes of length 4

over Fy[u]/(u?). Among these codes, there are

e 4 inequivalent Euclidean LCD [4, 1, 1]-codes over Fy[u]/{u?) with genera-

tor matrices [1 0 wu u},[l 00 u},[l U u u] and [1 0 0 O};

e 2 inequivalent Euclidean LCD [4, 1, 3]-codes over Fy[u]/{(u?) with genera-

tor matrices -1 1 1 0} and [1 v 1+u 1];

e 9 inequivalent Euclidean LCD [4, 2, 1]-codes over Fy[u]/{u*) with genera-

100w [to1 1] [10wwul [10wo0
0100/ (01 wuwu [0100 (01 uul

1 0 u wu 1 0 0 w 1 0 0 u
, , , and
[O 1 u u] [0 1 0 u] [O 1 u 0]

tor matrices

(10 14+u 14w
01 0 0

9

(1 00 0
0100

e 4 inequivalent Euclidean LCD [4, 2, 2]-codes over Fo[u]/(u?) with genera-

. 1 01 1 1 01 1I+u
tor matrices , ,
01 1 u 011 0

1 00 1+wu
01 v 14+u

and
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10 1+u 0]
01 14u 0]
e 6 inequivalent Euclidean LCD [4, 3, 1]-codes over Fy[u]/{u?) with genera-

1 000 1 001 1 00 u 1 00 u

tor matrices |0 1 0 1|, |0 1 O w|,|0 1 O 0Of,|0 1 O wu|,
0011 0011 0010 0 01 u

1 00 u 0

0 1 0 0OJand [0 1 0 Of;and

001 u 0

e 1 Euclidean LCD [4,4, 1]-code over Fy[u]/(u?) with a generator matrix
1y.

IV. There are precisely 85 inequivalent non-zero Euclidean LCD codes of length 5

over Fylu]/(u?). Among these codes, there are
e 5 Euclidean LCD [5, 1, 1]-codes over Fy[u]/(u?) with generator matrices
10000, [1u000f,[tuwoof,[tuuuofand|t uuuu
e 3 Euclidean LCD [5, 1, 3]-codes over Fo[u]/(u?) with generator matrices
11100/, (111w ofand |1 11w ul;
e 1 Euclidean LCD [5,1, 5]-code over Fy[u]/(u*) with a generator matrix
-1 111 1};

e 21 Euclidean LCD [5, 2, 1]-codes over Fy[u]/(u?) with generator matrices

1011w [1owwwl [1O0000] [1000w] [1t0000O
0lwuwO] (01110 0111wl [01110] [01110]
1o0110] [1o11a] [1o11w] [too0wo] [10wo0o0]
_01uu0_’_01u0u_ _0100u’_010uu_ _010uu_’
[10000] [Towwuw|l [10000] [10wwwl [10wwuo0]
010w0] [010wu0] (01000 [01000] [01 uuu|
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10uwu0 10uwuwO 10w wuwO 1000w 10w wuuw
01uOwu|l [01lwwo0|l 01000/ |0100wu|l [01uuu

1000
and[ u];

0100

e 12 Euclidean LCD [5, 2, 2]-codes over Fy[u]/(u?) with generator matrices

1014w u 1
01 1 0 1+u

101 wwl [101+u1 "101'1ﬂ

o1t11101r 1 w0l (01100

1014+ul+u0] [101wwu|l [10ulduwu]l [10111
01 1 0 0/ 01101 [01ultuwu| (01111

1014ul+4uwo0] [1owil+wo0]l [1001+uo0 .
s s an

01 1 w 07010 1 w010 1 0

100 1+u u|

010 1 of

e 31 Euclidean LCD [5, 3, 1]-codes over Fy[u]/(u?) with generator matrices

1001 1 1000 u 100 0 u 1000 u
10w 14+ul,{01011{, 1+ 0,010 u ul,
001w O 00101 00 14+u 0 0010w

10014uw] [too11] [too0 1 wl [t00uww
0101+uo0l,l0100ul, l+uwul,l0100 0],
001 0 ol [o01wuw|l 001 0 wl [001uu

— O

=}

100w 1 10000 0 1 0 10
0101 1+u[,{01010{,]010 v wu|,[01000O0],
0010 O 00110 001 I1+4+uo0 00111

—_
]
]
]
—
e}
e}
]

1+u 0 10000
v 0/,]101 0w wul,]010 =« Of,]|]01000{,
001 1+wul 0010 u 001 1 O 001 wxwoO
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e 2 Euclidean LCD [5,3

10

0O O U 100u0 1001u- 100 u u
0 14+u 1 ,101011],{010 w u|l,[{01O0O0 ul,
1 1+u 001 wuwoO 00110 001w wu
0 1 w 1000 u 100wu0 -10000
u 0 0100 u 010 wwul, 010w ul,
1 14+u u 00100 00100 00100
01+ul+u] [100wwu| [1T0o0wo]l [100wo0
0 1+4+u 1 , 101 0 v u 010w0],/{]010w0],
U U 001 uww 0010 wu 001 woO
100 100 14+uw 14w
OlOOuandOIO 0 14wul;
001w O 001 O 0

0

u

1

100

0

0101+u l4+wu|land [01 0 14w
1+u

00

e 8 Euclidean LCD [5,4, 1]-codes over Fo[u]/{u?

0

o o O
o O =

o O O =
o O = O

1

0

oS = O

o = O O
_ o O O

f & & =

_ o O

u

S Rk = O

o o O

o O O

o = O O
_ o O

o = O O
_ o O O
S & & O

001

0
0
u
0_

o O O

o O O =

o O = O

o O = O

0

o = O O
_ o O O

g & & o

o = O O
_ o O O
_ = O 2

,2]-codes over Fylu]/(u?) with generator matrices

1+uw
1 s
1

) with generator matrices

1000 14w
0100 1
0010 wu
0001 wu

10000
01000
0010 0]’
00010

and

e 1 Euclidean LCD [5,4,2]-code over Fy[u]/(u?) with a generator matrix
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1000 1
0100 14w
; and
0010 14w
0001 1
e 1 Euclidean LCD 5,5, 1]-code over Fy[u]/(u*) with a generator matrix

I5.

V. There are precisely 4 inequivalent non-zero Euclidean LCD codes of length 2

over Fs[u]/(u?). Among these codes, there are

e 2 inequivalent Euclidean LCD (2, 1, 1]-codes over F3[u]/{(u*) with genera-
tor matrices [1 0] and [1 u};

e 1 Euclidean LCD [2,1,2]-code over F3[u]/(u*) with a generator matrix
[1 1]; and

e 1 Euclidean LCD [2,2, 1]-code over F3[u]/(u*) with a generator matrix
Is.

VI. There are precisely 11 inequivalent non-zero Euclidean LCD codes of length 3

over F3[u]/(u*). Among these codes, there are

e 3 Euclidean LCD (3,1, 1]-codes over Fs[u]/(u?) with generator matrices
10 0},[1 0 u}and[l u U};
e 2 Euclidean LCD [3,1,2]-codes over F3[u]/(u?) with generator matrices
11 u]and |11 0);
e 5 Euclidean LCD [3,2, 1]-codes over F3[u]/(u?) with generator matrices
100 100 1 00 1 0 2 1 0 2u

, , , and ; and
011 0 1 u 010 0 1 u 01 wu

e 1 Euclidean LCD 3,3, 1]-code over F3[u]/(u?) with a generator matrix

Is.

VII. There are precisely 38 inequivalent non-zero Euclidean LCD codes of length 4

over F3[u]/(u?). Among these codes, there are
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4 Euclidean LCD [4,1,1]-codes over F3[u|/(u?) with generator matrices
1000, [t wool,[t 0w ufandt uu

o 3 Euclidean_ LCD [4,1,2]-codes over F3[u]/(u?) with generator matrices
1100, [t 10 uadt 1w s

e 1 Euclidean LCD [4,1, 4]-code over F3[u]/(u*) with a generator matrix

1 1 1 1};

e 16 Euclidean LCD [4, 2, 1]-codes over F3[u]/(u?) with generator matrices
1010l [1o1 w (101w 101 0] [1014+u0
0100/ 01200/ [010wu [012u2u] [01 2u 0
101 w 1010 [102u2u] [1000] [10u2u
0122w (010w |01 0 0] 0100 01w ul’
-10u2u 1 0 2u 2u 10 w O 10 2u O 100 2u
_o1u2u’012u0’012u0’0102u’0100

10 1+2u u
and :
01 0 0

Y

e 5 Euclidean LCD [4, 2, 2]-codes over F3[u]/(u?) with generator matrices

[102144] [1012+4] [1 014w ] [1014u u .
) M ) an

011 20| [0112+u’ (01 w 1/7[01 0 1

10 1+u 0]

01 o0 1

e 7 Euclidean LCD [4, 3, 1]-codes over Fs[u]/(u?) with generator matrices

(100w [100 20
010w|,lo10 1],
001w |001 24

—_

000 100 u 100 2u
101,010 w|l, ({010 0]},
010 0010 001 0

o O

100 2u 10
0102+2u|and 0 1 0 0]
001 0 0010

e 1 Euclidean LCD [4,3,2]-code over Fs[u]/(u®) with a generator matrix

=}

0

= O
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100 24u
010 2+2u|;and
001 1

e 1 Euclidean LCD [4,4, 1]-code over F3[u]/(u*) with a generator matrix

Iy

VIII. Let ¢ € Auty(F4[u]/(u?)), and let ¢ be a primitive element of Fy. There are
precisely 3 inequivalent non-zero o-LCD codes of length 2 over Fylu]/(u?).

Among these codes, there are
e 2 0-LCD [2,1,1]-codes over Fy[u]/(u?) with generator matrices [1 0]

and [1 CQu] ; and

e 1 0-LCD [2,2,1]-code over Fy[u]/(u?) with a generator matrix I5.

IX. Let 09 € Auty(F4[u]/(u?)), and let ¢ be a primitive element of F,. There are
precisely 9 inequivalent non-zero o-LCD codes of length 3 over Fylu]/(u?).

Among these codes, there are

e 30-LCD [3, 1, 1]-codes over Fy[u]/(u?) with generator matrices [1 0 O] ,
[1 0 u] and [1 u u];

e 10-LCD [3,1, 3]-codes over F4[u]/(u?) with a generator matrix [1 1 1] ;
- ftoo
e 40-LCD [3,2,1]-codes over Fy[u] /(u?) with generator matrices 0 :

10
1 0 Cu 1 0 Cu 1 0 1+Cu
, and
01 wu 01 0 01 ¢*+C%u

e 1 0-LCD [3,3, 1]-code over Fy[u]/{u?) with a generator matrix I3.

; and

X. Let ¢ € Auty(F4[u)/(u?)), and let ¢ be a primitive element of Fy. There are
precisely 31 inequivalent non-zero o-LCD codes of length 4 over Fy[u]/(u?).

Among these codes, there are
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e 4 inequivalent o-LCD [4,1,1]-codes over Fy[u]/(u?) with generator ma-
trices -1 0 u u}, [1 00 u}, [1 u u u} and [1 00 O];

o 2 ineql_livalent o-LCD [4, 1, 3]-codes over Fy[u]/{(u?) with generator ma-
trices [1 1 1 0| and |1 w 1 1];

e 11 inequivalent o-LCD [4,2, 1]-codes over Fy[u]/(u?) with generator ma-

. (10 ¢u Cul [10 Cu u 10 Cu Cu
trices , ) )
01 Cu Cu| |01 ¢+Cu 14+ul |01 (+Cu 1
(10 ¢u ul [t000] [10 Cu cul [1OCH+u 1+
01 C¢u 0] J0100] [01Cu u| [01 0 0 |

100w [to0¢cwul [t00w L[roo g
b ) an ;
010w/ [01 0 0/ (0100 01 Cu 0

e 7 inequivalent o-LCD [4,2,2]-codes over F,[u]/(u?) with generator ma-

o 100C+cu| [10cu@+c] [10 v C+u
rices ) , )
010 ¢ 01 Cu ¢ 01 1+Cu 1
10 Cuw C+Cul |10 Cu CH4+Cul |10 0 +Cu
01 u ¢ 01 14¢u 14w | |01 14+u 14u

10 w C2+u'
01 1+u 1+4+ul’

e 6 inequivalent o-LCD [4, 3, 1]-codes over F,[u]/(u?) with generator ma-

1000/ [100 O 100 ¢ 100 Cu
trices |0 1 0 0|, |0 1 0 Cu|, |01 0 C+ul, (010 u/|,
0010[ [001 0 001 0 001 Cu
100 w 100 u
010 ¢+ and [0 10 Cul;and
001 ¢+ C% 001 0

e 1 0-LCD [4,4,1]-code over Fy[u]/(u?) with a generator matrix I.

In the next chapter, we will study S-additive codes over R and their dual codes

with respect to the ordinary trace bilinear form, where R and S are two finite
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commutative chain rings such that R is the Galois extension of S of degree m > 2,
(recall that an S-additive code of length n over R is defined as an S-submodule of
R™). We will also study their three special classes such as S-additive self-orthogonal
codes, S-additive self-dual codes and S-additive codes with complementary duals
(ACD codes) and further apply the results derived in Chapters [3{6| to enumerate

these three classes of codes.
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Additive self-orthogonal, additive
self-dual and ACD codes over

finite commutative chain rings

7.1 Introduction

Additive codes over finite commutative chain rings are natural extensions of lin-
ear codes. These codes have rich algebraic structures [23] [71} 93] and are useful
in constructing quantum error-correcting codes [22, 93]. This motivated several
researchers to study these codes and provide methods to construct these codes.
Mahmoudi and Samei [71] studied algebraic structures of additive codes over Ga-
lois rings by establishing a one-to-one correspondence between linear codes over the

ring Z,e of integers modulo p® and additive codes over the Galois ring GR(p®,r),

249
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where p is a prime number and e, r are positive integers. They also studied permu-
tation equivalent additive codes and decomposable additive codes over Galois rings.
Besides this, they proved the MacWilliams identity and Delsarte’s Theorem for ad-
ditive codes over Galois rings. Cao et al. [23] studied cyclic additive codes over
Galois rings and provided a canonical form decomposition for these codes. With the
help of this decomposition, they further enumerated all cyclic additive codes of an
arbitrary length over Galois rings. Moro et al. [74] studied cyclic additive codes over
finite commutative chain rings with respect to two different notions of additivity, viz.
Galois-additivity and Eisenstein-additivity. Recently, Sidana and Kashyap [93] con-
structed entanglement-assisted quantum error-correcting codes (EAQECCs) from
additive codes over finite commutative local Frobenius rings. They also provided a
formula for the minimum number of entanglement qudits required to construct an

EAQECC from an additive code over a Galois ring.

Throughout this chapter, let » > 1, m > 2 and e > 2 be integers. Let

_ GR(p,r)[z]
Rer = (), p1at)
and ,
Repm GR(p®,rm)[z]

(g(x), p~'at)

be two finite commutative chain rings, where g(z) = z* + p(a,_12* '+ -+ + ayz +
ap) € GR(p®,r)[z] is an Eisenstein polynomial with ay as a unit in GR(p®,r), e =
k(s —1)+t, and 1 <t <k when s > 2, while ¢t = x when s = 1. Note that R, is a
subring of R ;. By Theorem 4.3.1 of [16], we see that R, ., is the Galois extension
of R., of degree m. If u := x + (g(x),p* '2"), then one can easily see that e is the
least positive integer satisfying u® = 0 in R, (and in R.,,,) and (u) is the unique
maximal ideal of both R., and R, . Note that the residue field R, , = R./{u) of
R is of order p™ and the residue field R m = Repm/ (1) of Rem is of order p™.

n
e,rm

One can easily see that the set R of all n-tuples over R.,,, can be viewed as
an R.,-module under the component-wise addition and the component-wise scalar
multiplication. Now an additive code & of length n over R, is defined as an

R -submodule of R”

e,rm*

The main goal of this chapter is to study additive codes over R.,,, and their
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dual codes with respect to the ordinary trace bilinear form. We will also study their
three special classes, viz. additive self-orthogonal codes, additive self-dual codes
and additive codes with complementary duals (ACD codes) with respect to the
ordinary trace bilinear form. We will also derive necessary and sufficient conditions
under which an additive code over R.,,, is (i) self-orthogonal, (ii) self-dual, and
(iii) ACD. We will derive necessary and sufficient conditions for the existence of an
additive self-dual code over R, ,,. As an application of these results, we will obtain
explicit enumeration formulae for all additive self-orthogonal and self-dual codes of
an arbitrary length over R.,,, in the following three cases: (i) both p and m are
odd (ii) p=2and s = 1, and (iii) p = 2, kK = 1 and m is odd. We will also count
all ACD codes of an arbitrary length over R, ,.,, where e > 2, r > 1 and m > 2 are
arbitrary integers.

This chapter is organized as follows: In Section we state some preliminaries
and study algebraic structures of additive codes over R, ,,, by establishing a one-to-
one correspondence between additive codes over R, and linear codes over R, ,. In
Section we derive necessary and sufficient conditions under which an additive
code over R, is self-orthogonal or self-dual (Theorem @) We further obtain
explicit enumeration formulae for all additive self-orthogonal and self-dual codes of
an arbitrary length over R, in the following three cases: (i) both p and m are odd
(ii) p=2ands = 1, and (iii) p = 2, kK = 1 and m is odd (Theorems|7.3.4/7.3.5,|7.3.8-
[7.3.11} [7.3.14|and [7.3.15)). In Section we first show that any ACD code of length
n over R, is a free code, i.e., it is a free R, -submodule of R}, (Theorem @)

e,rm

We further derive necessary and sufficient conditions under which an additive code
over Re,m is ACD (Theorem @) We also obtain explicit enumeration formula
for all ACD codes of an arbitrary length over R, ,,, where e > 2, r > 1 and m > 2
are integers (Theorems [7.4.10| and [7.4.11)).

7.2 Additive codes over finite commutative chain
rings

In this section, we will state some basic definitions and results needed to prove

our main results. We will also study algebraic structures of additive codes over
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Rerm and their dual codes with respect to the ordinary trace bilinear form. Since
GR(p®,rm) is the Galois extension of GR(p®,r) of degree m, we see, by Theorem
14.23 of [101], that there exists an element ¢ € GR(p®,rm) of multiplicative order
p"™ — 1, such that

GR(p*,rm) = GR(p*,r)[C]
= {vo+vil+ -+ v, 1" v € GR(P,7) for 0 <i <m —1}.

Further, by Theorem 2.4 of Moro et al. [74], we see that
Regm = ReplC] = {ao + arC+ -+ + amaC™" : a; € Rey for 0 <i <m—1}.

Thus Re,m is a free module over R., with a basis set {1,(,(?,...,{™ '}. Note
that the set To,m = {0,1,¢,¢%,...,¢P"" 2} is the Teichmiiller set of the chain ring
Rerm and the set T, = {0,1,&,2,...,&7 72} is the Teichmiiller set of the chain
ring R.,, where { = C% Further, if u := z + (g(z),p* '2t), then the ideal
(u) is the unique maximal ideal of both the chain rings R., and R.,, and has
nilpotency index e = k(s — 1) + ¢. Further, all the ideals of R., are given by
{0} € (ue™y € (ue2) C --- C (u) C (1) = R, and all the ideals of R, are given
by {0} C (uY) C (u2) C--- C (u) C (1) = Repm. Moreover, if R., = Re,/{u)
and Rerm = Rerm/ (1), then R, is the residue field of R, of order p” and R, ., is
the residue field of R. ., of order p"™. Let us define @ = a + (u) for all a € R . It
is easy to see that Re,m = Re,[(] = {Zo+ 21+ —i—Em_lZm_l : Z; € Rey for 0 <
i<m—1}, ie., ﬁemm is the Galois extension of ﬁe,r of degree m.

n
e,rm

Next, let n be a positive integer, and let R be the set of all n-tuples over

Rerm- The set R” . can be viewed as an R.,-module under the component-wise

addition and the component-wise scalar multiplication. An additive code € of length

n
e,rm:*

n over R, is defined as an R, ,-submodule of R Elements of the code € are
called codewords. Further, a matrix over R ,,, is called a generator matrix of the
code % if its rows form a minimal generating set of the code . The rank of the
code € is defined as the cardinality of a minimal generating set of the code €. The

Hamming distance of the code %, denoted by dy (%), is given by

dy (%) = min{wg(c) : ¢(#£0) € €}.
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Further, the additive code ¢’ is said to be free if it is a free R, ,-submodule of R¢,,,,.
The rank of the free additive code € equals the rank of ¢ as a free R, ,-submodule
of R”

e,rm*

Further, for 1 <17 < e, the i-th Torsion code of the additive code % is defined as

n

Tori(¢)={z€R c w2 € € for some 2 € R, satisfying 2/ = 7}.

e,rm ° e,rm

One can easily observe that the i-th Torsion code Tor;(¢) of € is an ﬁw—linear

subspace of R, . i.e., Tor,(€) is an additive code of length n over R, . Further,

the additive code € of length n over R, is said to be of the type {ki, ko, ... ,k.}
if ki = dimg, (Tor(%)) and k; = dimg, (Tor;(¢)) — dimg, (Tor;1(¥)) for 2 <

1 <e.

The mapping ¢ : Rerm — Rerm, defined as
p(a) = ag+ ar(? + - 4 ap_ (" "Y

for all @ = ag + a1 + -+ 4+ am_1("™"' € Repm With ag,a1,...,a4,1 € Rey, is an
automorphism of R.,, which fixes each element of R.,. By Corollary 5.1.5 and
Theorem 5.1.6 of [16], we see that the automorphism group Autz,, (Rerm) of Rerm
over R., is the cyclic group {¢" : 0 <i < m — 1} generated by the element . We
next observe that the mapping Trpr p, : Repm — Re,r, defined as

Try m(a) = a+ @(a) + p*(a) + -+ ¢" (a) for all a € Re m,

is a surjective R, ,-module homomorphism and is called the generalized trace map.
Now define a map (-,-) : R,,, X Rl — Rer as

e,rm e,rm

(a,0) = Try m(aib;)
=1

for all a = (&1,&2,...,an), b= (bl,bg,...,bn) € R}

e,rm*

One can easily see that (-, )

n
e,rm

is a non-degenerate and symmetric bilinear form on R and is called the ordinary

trace bilinear form. Further, if 4" is an additive code of length n over R, then
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its dual code €+ is defined as

¢t ={z€R:,, : (z,c)=0forall ceF}.

e,rm

Note that the dual code €~ is also an R, ,-submodule of RZ ., and hence it is
an additive code of length n over R ,n,. A generator matrix of the dual code E+
is called a parity-check matrix of the code €. Further, the additive code € is said
to be (i) self-orthogonal if it satisfies € C €+, (ii) self-dual if it satisfies ¢ = ¢+
and (iii) an additive code with complementary dual (an ACD code) if it satisfies
¢ NEt ={0}.

Further, corresponding to the automorphism ¢, we observe that the mapping
P Rerm — Rerm, defined as B(z) = 7y + ?@pr + 4 ?m_lzpr(m_l) for all z =
Zo+Z1C+ - +Em,1zm71 € Rerm With Z9,Z1, ..., Zm_1 € Res, is an automorphism
of ﬁwm that fixes each element of ﬁeﬂ. and is called the Frobenius automorphism
of ﬁwm over ﬁw. Next, we observe that the mapping Trp'r7m : ﬁe’rm — ﬁw,
defined as Try (@) = @ + (@) + @%(@) + --- + " 1(a) for all @ € Repm, is a
surjective ﬁeﬂ«—module homomorphism, which coincides with the usual trace map
from ﬁe,rm onto ﬁe,r. Now the ordinary trace bilinear form on ﬁ:’r

() : ﬁ:ﬂnm X ﬁ:,'rm — Re,r, defined as

m 1S a map

(v,w) = Z Trpr m(vw0;)
i=1

for all v = (v1,v9,...,0,), w = (W1, ws, ..., w,) € Rﬁnem. By Lemma 1 of Huffman

[52], we see that (-,-) is a non-degenerate and symmetric bilinear form on R,

An additive code Z of length n over ﬁe,rm is defined as an ﬁe,r—submodule of
R. . The dual code 2+ of the code 2 is defined as

2+ ={a Gﬁ:,rm : {a,d)y =0foralld € Z}.

It is easy to observe that the dual code 2+ is also an additive code of length n
over Re,m. By Theorem @, we see that dimg () + dimg, (Z) = nm. From
now on, throughout this thesis, for each k x ¢ matrix B over R, with the (i, j)-th
entry as b; ;, let T'ryr ,,,(B) denote the k x ¢ matrix over R., whose (4, j)-th entry is
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Tryr m(bi;) and Trpr . (B) denote the k x ¢ matrix over R.,. whose (i, j)-th entry is
Trprym(l;i’j), where 1 < i <k and 1 <j < /(. Note that Tr,- ,,(B) and Trpr7m(g) are

not equal to the usual traces of the matrices B and B, respectively.

Let a = {1, a, ..., } be a basis of R, over R.,. Now let us define a map
II, : R?

e,rm

nm
— Re,r as
Ha</(}1, Vo, ... ,’Un) = ('ULl,/ULQ, Ce 7/01,m7/02,17v2,25 Ce 7U2,m7 e avn,17vn,27 e 7Un,m)

for all v; = v;101 + v 2000 + -+ - + Vi 1y € Repm, Where v;1,0i9,...,0m € R, for

1 <14 < n.Itis easy to see that the map I, is an R, ,-module isomorphism. From

n
e,rm

this, it follows that a non-empty subset € of R is an additive code of length n
over R.,m if and only if its image I1,(%) is a linear code of length nm over R.,.
That is, the isomorphism II,, induces a one-to-one correspondence between additive
codes of length n over R.,, and linear codes of length nm over R.,. Further, we
observe that (vi,va,...,v,) € RY,, with v; € (uf) for 1 < i < n if and only

if Ha(Ul,Ug, . ,Un) = (?]171, V1,2y---,VU1,m,02,1,022,.-..,V2my---,Un1,Un2,... 7Un,m) €
R with v, ; € (u'y for 1 <i<mand1<j<m, where 0 </ <.

Next, we note that if & = {ay,a9,...,a,} is a basis of R, over R, then
a = {@1,qs,...,0,} is a basis of ﬁwm over ﬁw. Further, corresponding to the

~nm

mapping Il,, we define a mapping Il : ﬁ:,rm —R,, as

€,r

HE(EMEQ? s 7271) = (31,1721,27 s 721,m732,1>52,27 s 732,m7 s 7371,17371,27 s 7zn,m)

for all z; = Z;100 + Zi20 + -+ + Zi O, € ﬁmm, where Z;1,%Zi2,...,Zim € ﬁem
for 1 <17 < n. It is easy to observe that the map Il is an ﬁw—linear vector space
isomorphism. From this, it follows that the isomorphism Iz induces a one-to-one
correspondence between additive codes of length n over ﬁemm and linear codes of
length nm over ﬁeyr, i.e., 2 is an additive code of length n over ﬁem if and only

if [Iz(2) is a linear code of length nm over R,

In the following lemma, we relate the Torsion codes of an additive code & of
length n over R, with the Torsion codes of the linear code II, (%) of length nm

over Re,.
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Lemma 7.2.1. Let € be an additive code of length n over Re,m. We have
Tor;(Il,(%)) = Ug(Tory(€)) for 1<i<e.

Proof. To prove the result, let ¢ € Tory(I1o(%’)). So there exists ¢’ € R such that

u~t¢ € 11,(€) and @ = c. Since the map I, is an R, ,-module isomorphism, there
exists d € RY,,, such that «'~'d € € and I,(u'"'d) = v~'¢. This implies that
d € Tory(%), which further implies that ¢ = @ = Ilz(d) € g(Tor;(%)). This shows
that

Tor;(I1,(€)) C llg(Tor;(¥)).

Conversely, let v € TIz(T'or;(€)). So there exists v’ € Tor;(¢") such that Ig(v') =
v. This implies that there exists z € R7,,, such that v"~'z € € and Z = . Further,

u"lz € € implies that u' T, (z) € I1,(%). From this, we get v = [Ix(v') = lx(Z) €
Tor;(I1,(€)). This implies that

g(Tori(€)) C Tor;(I1,(€)).

From this, it follows that Tor;(I11,(%)) = x(Tor;(¢)). O

Remark 7.2.1. By Lemma |7.2.1, we see that an additive code € is of the type
{k1,ko, ..., k.} and length n over Re,m if and only if the linear code 11,(€) is of
the type {k1,ka,...,k.} and length nm over R.,. From this, it follows that

€

S (e—i+1)k;
€| = H|Torl )| = (ph)i= .

Given an ordered basis a = {1, g, ..., am} of Re,m over R.,, its trace dual
basis is defined as an ordered basis 8 = {51, B2, - . ., B} of Re rm Over R, satisfying
Tryr m(aiB;) = 85 for 1 < 4,5 < m, where §; ; denotes the Kronecker delta function.
Further, if @ = 3, then « is said to be a self-dual basis of R, ., over R.,. That is,
an ordered basis a = {aq,az,...,an} of Re,m over R, is said to be a self-dual
basis if it satisfies Trpr o (uicyj) = 0;; for 1 <, j < m.

In the following lemma, we note that every ordered basis of R, over R, has

a unique trace dual basis.
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Theorem 7.2.1. Every ordered basis of Reym over R, has a unique trace dual

basis.

Proof. We note that R, is a free module over R., of rank m, and hence there
exists a basis of Re,m over R.,. Now working as in Lemma 13 of Irwansyah et al.
[54], the desired result follows.

]

Proposition 7.2.1. Let a = {ay, o, ..., o} be an ordered basis of Reym over R,
with the trace dual basis B = {B1, B2, ..., Pm}. For an additive code € of length n

over Rerm, we have

IM5(¢) = (Ia(%))"

In particular, if o« = {1, o, ..., 0} is a self-dual basis of Re,m over R, then we

have T, (€+) = (I1,(€))*.

Proof. To prove the result, let ¢ € TI5(€*). So there exists y = (y1,ya, - .., Yn) € €+

such that y' = Hﬁ(y) = (3/1,1, Y1255 Yims Y2,1, 42,2, - - - Y2oms - - -5 YUn1s Yn2s - - 7yn,m)a
where v; = vi181 + Yi2B2 + - -+ + YimBm for 1 < i < n. This holds if and only if

c) = ZTrprym(yici) =0 for all c=(¢1,¢9,...,¢n) €F,

i=1
where ¢; = ¢; 100 + ¢ 200 + - - - + € iy, for 1 <4 < n. This further holds if and only
if

n m

Z Z:y”cZ (Trpr m(Bjou) = Z Zyi,jci,j =1Ilg(y) - u(c) =0 for all c € F,
i=1 j=1 (=1 i=1 j=1

(here - denotes the Euclidean bilinear form on R7"). This implies that (y,c) = 0

for all ¢ € ¢ if and only if v - I1,(c) = g(y) - I, (c) = 0 for all ¢ € €, which holds

if and only if ¢’ € (IL,(%))*. From this, the desired result follows immediately. [

In the following theorem, we determine the type of the dual code of an additive

code over Re rpm-

Theorem 7.2.2. Let € be an additive code of the type {ki,ka,...,k.} and length
n over Reym. The dual code €+ of € is an additive code of the type {nm — (k; +
Ko+ -+ ko), Ke,Kee1, ..., Ko} over Repm.
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Proof. Let o = {aq, aa, ..., oy, } be an ordered basis of R ., over R, with the trace
dual basis 8 = {f1, B2, - ., Bm}, (such a basis 5 always exists uniquely by Theorem
[7.2.1). By Remark [7.2.1, we note that the code € is of the type {ki,ks,...,ke}
and length n over R, if and only if I1,(%) is of the type {ki,ks,...,k.} and
length nm over R.,. Now by applying Theorem 3.10 of Norton and Salagean [80]
and Proposition [7.2.1, the desired result follows. O

In the following lemma, we derive some sufficient conditions under which there

exists a self-dual basis of R, over R.,.

Lemma 7.2.2. (a) When m is odd, there exists a self-dual basis of Re,m over
Rer

(b) When Repm = Form[u]/(u) and Re, = For[u]/(u), there exists a self-dual

basis of Rerm over Re,.
Proof.  (a) It follows from Corollary 3.3 of Bagio et al. [6].

(b) By Theorem 1 of [58], we see that there exists a self-dual basis « = {aq, ag, . . .,
am } of Form over Fyr. Now one can easily see that « is also a self-dual basis of

Form[u]/(u®) over For[u]/(u®). .

7.3 Additive self-orthogonal and self-dual codes

over R, m

In this section, we will study additive self-orthogonal and self-dual codes over
Rerm- Towards this, we first observe that if ¢ is an additive code over R, ., with a
generator matrix G and a parity-check matrix H, then we must have T'rpr ,,(GH') =
0.

The following theorem provides necessary and sufficient conditions under which

an additive code over R, ,, is self-orthogonal or self-dual.

Theorem 7.3.1. Let € be an additive code of the type {ki,ka,...,k.} and length

n over Re,m with a generator matriz G. Then the code € is self-orthogonal if and
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only if the matrix

Try m(GGY) = 0.

Furthermore, the code € is self-dual if and only if the code € is self-orthogonal,
ky=nm—(k; +ko+ -+ ko) and k; = ko109 for2 <i<e.

Proof. Its proof is a straightforward exercise. O

Now the following lemma relates Torsion codes of an additive self-orthogonal

code over R rpm.

Lemma 7.3.1. Let € be an additive self-orthogonal code of length n over Re rm.
The following hold.

(a) Tori(€) C Tory(€)*" for1 <i< |
(b) Tory(€) C Tore_iy1(€)*" for | +1<i<e.
In particular, if € is an additive self-dual code of length n over R, then we have

e+1
2

Tori(€) = Tore_i1(€)*" for { —‘ <i<e.

Proof. Working in a similar manner as in Lemma|2.2.1, the desired result follows. [

As a consequence of Lemma [7.3.1, we deduce the following:

Remark 7.3.1. If € is an additive self-orthogonal code of the type {kq, ko, ..., ke}

and length n over R, ., then we have
2k +2ko + -+ 2Keip1 T Reito t Reiyz + - ks S nm

for [%1 <i < e. From this, it follows that nm > 2(k; + ko + -+ + kg) +key ife
is even, while nm > 2(ky +ko + -+ + k%) if e is odd.
In particular, if € is an additive self-dual code of the type {ki,ko,...,k.} and

length n over Re ypm, then we have

ki = ke—i+2 fOT 1 S ) S €.
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From this, it follows that nm = 2(k; + ko + -+ - + kg) + ket if e is even, while
nm = 2(k; +k2+-~-+k%1) if e is odd.

In Chapter |3, we obtained enumeration formulae for all linear self-orthogonal
and self-dual codes of an arbitrary length over finite commutative chain rings of
odd characteristic. In Chapters ] and [5] we counted all linear self-orthogonal and
self-dual codes of an arbitrary length over quasi-Galois rings and Galois rings of even
characteristic, respectively. By Lemma [7.2.2, we see that when either m is odd or
Rerm = Form[u]/(u®) and R., = Faor[u]/(u), there exists a self-dual basis of R ,m,
over R.,. Further, by Proposition @, we observe that if @ = {ag,a9,...,a,}
is a self-dual basis of R, over R.,, then Il, is a duality preserving R. ,-module
homomorphism, i.e., I, (¢1) = (II,(%))*. This implies that II, induces a one-to-
one correspondence between additive self-orthogonal (resp. additive self-dual) codes
of the type {ki, ks, ...,k.} and length n over R, and linear self-orthogonal (resp.
linear self-dual) codes of the type {ki, ko, ..., k.} and length nm over R. . Thus one
can obtain enumeration formulae for all additive self-orthogonal and self-dual codes
of an arbitrary length over R.,, by applying the results obtained in Chapters

in the following three cases:
(i) both p and m are odd
(ii) p=2and s =1, and
(iii) p=2, k =1 and m is odd.

Throughout this section, let n be a positive integer, and let ki, ko, ..., k.1 be non-
negative integers satisfying nm = ky; + ky + - - - + k1. Further, let us define ng = 0
and n; = k; + kg + -+ k; for 1 <i < e+ 1. Further, let M (n; %y, ke, ..., k.) and
M. (n;ky, ko, ..., k) denote the number of distinct additive self-orthogonal and self-
dual codes of the type {ki, ko, ..., k.} and length n over R, ., respectively. Further,
let MNM.(n) and M. (n) denote the number of distinct additive self-orthogonal and self-

dual codes of length n over R, ,,, respectively. We also recall that

-3}
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7.3.1 The case when both p and m are odd

Throughout this section, we assume that p is an odd prime and m is an odd
integer.
In the following theorem, we count all additive self-orthogonal codes of the type

{ki, ko, ...,k } and length n over R .

Theorem 7.3.2. Let e > 2 be an integer, and let ky,kso, ..., k.11 be non-negative

integers satisfying nm = ky + ko + - + keiq.

(a) When e is even, we have

( i n; < kj +nm — Nj — Ne—j41
opr (nm,ny) H H
k; k;
i=1 LMD" j=s41 J p"
s—1
’ng(TL’n’LfTLg+171)+’n5+[(TL’TH7TLS+1+[7HS,[)+TLS(HM7HS+1)7%S+1)
‘ﬁe(n;kl,kg,...,ke) = X(pT)Zzl
ifNe_ip1+n; <mm  fors+1<1i<eg
[ 0 otherwise.
(b) When e is odd, we have
( s+1 e
n; kj +nm — Nj — Ne—j+1
o (e ) [T 17 11
- kil k; .
i=1 P j=s+2 p

S
> ne(nm—ng1—1)+nspe(nm—nsy1pe—nsy1-)

x(p")=
ifNe_ip1+n; <mm  fors+1<i<e;

me(”; kla k2a s 7ke)

0 otherwise.

Proof. Since m is odd, we see, by Lemma @(a), that there exists a self-dual basis
of Reym over R.,. By Proposition @, we note that there exists a one-to-one
correspondence between additive self-orthogonal codes of the type {ki, ko, ..., ke}
and length n over R, ,,, and linear self-orthogonal codes of the type {ki,ko,... k.}
and length nm over R, ,. Now the desired result follows by applying Theorems @,
3.3.2 and [3.4.2. O
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In the following theorem, we count all additive self-dual codes of the type

{k1,ko, ..., k. } and length n over R .

Theorem 7.3.3. Let e > 2 be an integer, and let ky,ks,...,ker1 be non-negative

integers satisfying nm = ky + ko + -+ + Kepq.
(a) When e is even, we have

ns(ns—1)
2

( s z
n; . > ne(nm—mnpy1—1)—
opr (nm,ny) H [ } (p")=r
pT‘

=1 L7

me(n; k17 k27 o 7ke)

if Ry =Ke_pyo for 1 <v<e-+1;

L 0 otherwise.

(b) When e is odd, we have

(P

2 Tl oI [1] o

b=1 =1 L7

Mm

ne(nm—mnpy1—1)

~
I
—

nm

if nis an even integer, (—1)"2 is a square in R,

and ky, = Ke_yio for 1 <wv <e+1;

me(n;k17k27 cee 7k6>

0 otherwise.

\

Proof. Working as in Theorem [7.3.2 and by applying Theorems [3.2.4, [3.3.4 and
3.4.4, we get the desired result. O]

Now for an integer d satisfying 2 < d < e and for non-negative integers ky, ko, . .., ky,

let us define
Zg(kl, ]{32, cvey kd) == (kl + k2 +--+ kg) (nm - <k1 + kg + -+ kg_H) - 1) (731)
for 1 </ <d-—1, and let us define

’yj(kl,kg,...,kd) = Zj(klakQ;--wkd)+(k1+k2+"'+ktgj+j>(nm_(kl
+k2+-~-+k(%m)—(k1+k2+---+kL%J_j)) (7.3.2)
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for 1 <j<[4]-1.
The following theorem provides the enumeration formula for all additive self-

orthogonal codes of length n over Re p,.

Theorem 7.3.4. For an integer e > 2, the following hold.

(a) When e is even, we have

s—1 -
Z (k K 7"'7k€)+@€(k & 7“"k5)
MNe(n) = E opr (nm,ky + ko + -+ - + k) (p”)‘lew o o

% ﬁ [kj"—nm—<k1+k2+"'+kj)—(k1+k2+"'+kej+1):|
p’l‘

j=s+1 K
S
K +ky o4k
, k; .
=1 p
where ée(kl, Ko, ..., ko) = (ky+kot- - -+ky) (2"m—2(k1+k2+"'+ks;1)—(k1+k2+~~+ks)—1)
and the summation Y runs over all non-negative integers kq,Ks, ..., K. satis-

fymg 2k1+2k2+ . '+2ke—i+1 +ke—i+2 +ke—i+3+' . —f-kz S nm fO?“ s+1 S 1 S €.

(b) When e is odd, we have

s s+1
o 2 Yel(k1 ko, k) ki +ky+---+k;
MNe(n) = g Opr (nm,kl +ky+---+ k5+1)(p )i=1 | | [ N LT

=1
y ﬁ {kjjunm—(k1+k2+---+kj)—(k1+k2+---+ke_j+1)}
p’i’

k .
=542 J

where the summation Y runs over all non-negative integers ki, ko, ..., K. sat-

1sfying 2k, +2ko+- - - +2ke i1+ ke jiotke i1zt -tk <nm fors+1 <i<e.

Proof. Tt follows immediately from Theorem [7.3.2. O

The following theorem provides the enumeration formula for all additive self-dual

codes of length n over Re ..

Theorem 7.3.5. For an integer e > 2, the following hold.
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(a) When e is even, we have

[k ke o+ + K
fme(n):Zapr(nm,kl—l—kQ—{—---—i—ks)H{1 ?

iy k; o
s—1 ~
o 2o 201K ks ) e (K1 K2, Ks)
X(p )2:1 )
where the summation Y, runs over all non-negative integers ki, ks, ..., Ksi1

satisfying 2(ky + ko + - -+ + k) + ksp1 = nm and the number Xe(kl, ko, ..., k)

s given by

Ae(kr ko, .o k) = (k1+k2+"'+ks)(

k1+k2—1—---+k5—1)
5 .

(b) When e is odd, we have

( %—1 s s+1
> 2o(k1,k2,.. 0 Ks) ki +ko+---+k;
9 rb 1 /=1
> 2 [T+ 0 [Ty
b=1 =1 p
9:)/te(n) = . . . nm . -
if nis an even integer and (—1)2 is a square in R.,;
L O otherwise,
where the summation Y runs over all non-negative integers ki, ks, ..., Ksi1

satisfying 2(k; + kg + -+ +kep1) = nm.

Proof. Tt follows immediately from Theorem |7.3.3. [

7.3.2 Thecasep=2ands=1

Throughout this section, we assume that p = 2 and s = 1, w.e., Repm =
Form[u] /(u®) and R, = Far[u]/{u®).

In the following theorem, we count all additive self-orthogonal codes of the type
{k1,ko, ...,k } and length n over R ..

Theorem 7.3.6. Let e > 2 be an integer, and let ky,kso, ..., k.11 be non-negative

integers satisfying nm =ky + ko + -+ - + Ke 1.
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(a) When e is even, we have

( S €
n; kj +nm — Nj — Ney1—j
oo (nm,ng)
=1 Loidor ooy k; 2r
s—1
> ne(nm—mngi1)+nspe(nm—nmgyor1—ns_g)+ns(nm—mgey1)—

‘ﬂe(n; ki,ko,... ,ke) = X(QT)ézl

ns(ns—1)
2

if ne_ir1+n; <nm fors+1<i<e;

L 0 otherwise.

(b) When e is odd, we have

( s+1 e
n; kj +nm — Njg — Net1—j
oor (MM, ngyq) H H
2" j=s+2

i=1 L kj 2r

S
> ng(nm—ngi1)+nsie(nm—nsi1pe—nsy1-0)

MNe(n;ky, ko, ..., ke) X (27)é=t

if Ne_ip1+n; <mm fors+1<i<e;

L 0 otherwise.

Proof. Working in a similar manner as in Theorem [7.3.2 and by applying Lemma
7.2.2(b) and Theorem {4.4.1, the desired result follows immediately. O

In the following theorem, we count all additive self-dual codes of the type

{k1,ko,...,k.} and length n over R ..

Theorem 7.3.7. Let e > 2 be an integer, and let ky,kso, ..., k.11 be non-negative

integers satisfying nm = k; + ko + -+ - + kKey .

(a) When e is even, we have

( s s ns(ns+1)
N oy 2 me(nmenggg )+
oor (NM, N 2" )e=1
s om ) T[] )
Mo (n; ki, ko, ..o k) = B
e(mi k1, K, °) ifky =ke_ypio for 1 <v<e+1;

0 otherwise.

\

(b) When e is odd, we have
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(5! st n; ine(nm*ne )
2r)% I 41 { 1 L= o
]1:[1 ((27) )g K, 25 )

me(n;klak%"'vke): < . . .
if nm is an even integer and k, = ke_,19 for 1 <v <e+1;

0 otherwise.

\

Proof. Working as in Theorem [7.3.2 and by applying Lemma [7.2.2(b) and Theorem
4.4.2, we get the desired result. [l

Now for an integer d satisfying 1 < d < e and for non-negative integers ky, ko, . . ., kyq,

let z;(k1,ko,...,kq) and y¢(ki, ko, ...,kq) be as defined by (7.3.1) and (7.3.2), re-
spectively, where 1 < j<d—1land 1</ < [g] —1.
In the following theorem, we count all additive self-orthogonal codes of length n

over Re rm.

Theorem 7.3.8. For an integer e > 2, the following hold.

(a) When e is even, we have

o[k ket kK
Ne(n) = Zazr(nm,k1+k2+---+ks)ﬂ[l " }
i=1 7 or

y ﬁ ki +nm—(k +ky+-+k)— (ky +ko+ - +keyy )

) k; or

J=s+1

Sil ’yg(k1,k2,‘..,ke)+ i (k1+k2+---+ka)+zs (kl,kz,...,ke)f)\é(lq,kQ,..‘,ke)

X(QT)Z:1 a=1 ,

where X, (K1, ks, ..., ko) = (k1 +ko+- - -+k,) (%ﬁs_l) and the summation
> runs over all non-negative integers ki, ks, . . ., k. satisfying 2ky +2kg+- - - +
2k iy1 +Keip2 tReipzt+ o+ ki <nm fors+1<i<e.

(b) When e is odd, we have

s+1

k) +ky+ -+ Kk

Ne(n) = Y 02"(nm’k1+k2+"‘+ks+1)n{ 1 Zk. ]
=1 ? or

ﬁ {ijrnm_<k1+k2+m+kj)_(k1+k2+"~+ke+1—j)]

27"

k.
j:s+2 J
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S
> ve(ki,k2,... ke ) k1 +ka+-+kg
X (2T)£:1 ,

where the summation Y runs over all non-negative integers ki, ko, ..., k. sat-

1sfying 2k, +2ko+- - - +2ke i1+ ke jiotke i1zt +k; <nm fors+1 <i <e.
Proof. Tt follows immediately from Theorem [7.3.6. O

In the following theorem, we count all additive self-dual codes of length n over
Re,rm‘

Theorem 7.3.9. For an integer e > 2, the following hold.

(a) When e is even, we have

[k kot + kg
ﬂﬁe(n):Zagr(nm,kl—i—kg—l—--~—|—ks)Hl1 T

=1
s—1 ”
Zg(kl ,kg,.‘.,ks)+k1+k2+~~-+k2+)\e (kl,kz,...,ks)

X (2T>Z:1 )

where the summation Y runs over all non-negative integers ki, ks, ..., Kei1
satisfying 2(ky + ko + -+ - + k) + kg1 = nm and the number )\Z (kq, ko, ..., k)

18 given by

, Ky + Ky + Kk + 1
)\e(klak27"'aks):(k1+k2+“'+ks)( ! 2 )

2

(b) When e is odd, we have

( %_1 s+1 Ky + ko + +k
nm 1 2+ i
> [Ty o]l |
j=1 i=1 ki 2
gjte(n) = i zo(k1,k2,....ks)+k1+ko+-+ky . . .
X (27)=1 if nm is an even integer;
L 0 otherwise,
where the summation Y runs over all non-negative integers ki, Ka, ..., Ksi1

satisfying 2(k; + ko + - - - + Keyp1) = nm.

Proof. Tt follows immediately from Theorem [7.3.7. m
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7.3.3 The case when p =2, Kk =1 and m is odd

Throughout this section, we assume that p =2, kK = 1 and mis odd, i.e., Rerm =
GR(2°,rm) and R., = GR(2°r), where m is an odd integer. Here to obtain
the enumeration formulae for the numbers M. (n; ky, ko, . . ., k), Me(n; k1, ko, . . ., ke),
MN.(n) and M. (n), we will distinguish the following two cases: (i) e = 2 and (ii) e > 3.

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers My (n;ky, ko) and Ny (n).

Theorem 7.3.10. We have

rkq(2nm—3ky —2ko+1) | NI — 2k .
D, (nm; k)2 . P [ 1} if 2k; + ko < nm;
m2<n;k1,k2) = ko or
0 otherwise
and
L5 R (2nm—=3k; —2kp+1) [N — 2K
. T 1 nm— 1_ 2 - 1
M) = 3 Dilumii) Y 2
k1=0 ko=0

where the number ©,.(nm;k;) is as obtained in Theorem |5.3.1.

Proof. Working as in Theorem [7.3.2 and by applying Lemma|7.2.2(a) and Theorem
5.5.1, the desired result follows. m

In the following theorem, we consider the case e = 2 and obtain enumeration

formulae for the numbers MMy (n;ky,ky) and My (n).

Theorem 7.3.11. We have

rky (k1 +1) .
D,.(nm;k)27 2 if 2k + ko = nm;
My (n;ky, ko) =
0 otherwise

and
(252 ]
Ma(n) = Z D, (nm; k)2

k1=0

where the number ©,(nm;ky) is as determined in Theorem |5.3.1.

rky (k1 +1)
2 )

Proof. Tt follows immediately by applying Theorems[7.3.1 and [7.3.10] O
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In the following theorem, we consider the case e > 3 and obtain an enumeration

formula for the number 9. (n; kq, ko, . .., ke).

Theorem 7.3.12. Let e > 3 be an integer, and let ky,ks, ..., k.11 be non-negative
integers satisfying nm = ky + ko + - + Kepq.

(a) When e is even, we have

( s—1 e
k — — _
Ao(nm;kl’kQ,,,_’ks)H |:77/v:| H |: ¢+ nm Ny Net1—2
2T

k .
v f=s5+1 ¢ 2

v=1
s—1 s—1
> ni(nm—nip1—1)+ > nspj(nm—nsijp1—ns—j)+ns(nm—nsi1)—

’ﬁe(n; kl,kg,...,ke> = X(Qr)izl j=1

ns(ns—1)
2

if Ne_ir1 +n; <mm fors+1<i <e;

w otherwise,

where the number \g(nm;Xky, ks, ..., k) is as determined in Theorem|5.5.3(a).

(b) When e is odd, we have

( e
ke +nm —ng — ey
A(nm; ke, Ko, .. Keq) H [ ‘
l=5+2 kg ar
s Ny . _leni(nm*nHl*l)Jr_2321"s+j(nm*"s+j+1*ns+1fj)+ns
i= Jj=
Me(niky ko, ... k) = XL | | (2)
v=1 vdar
if Ne_ip1+n; <mm fors+1<1i<e;
\ 0 otherwise,

where the number Ay (nm; Xk, ks, ..., ks 1) is as determined in Theorem|5.5.3(b).

Proof. Working as in Theorem [7.3.2 and by applying Lemma|7.2.2(a) and Theorem
5.5.3, the desired result follows. n

In the following theorem, we consider the case e > 3 and obtain an enumeration
formula for the number M. (n; kq, ko, ..., k).

Theorem 7.3.13. Let e > 3 be an integer, and let ky,ks, ..., k.11 be non-negative

integers satisfying nm =k + ko + -+ + Keqq.
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(a) When e is even, we have

( s—1 —1
i —n; 1 ns(ns+1) S
)\o(nm;k17k2a~~->ks)<2T)i§1n(nm n+1 H [ }
=1 J 2r

Me(n; ke, ko, ..., ke) .
Zf ky = Ke_py2 fO?"l <v< €+1a

(0 otherwise,

where the number X\o(nm;Xky, ko, ..., Kks) is as obtained in Theorem[5.5.53(a).

(b) When e is odd, we have

( S s—1

oy 2 Mi(nm—nip1—1)+n, n;

)\1(71777,7 kla k27 s s+1)<2 )Z: [ ]:|
27’

j=1

me<n;k17k27'-'7ke> . .
if nois even and k, = ke 1o for 1 <v < e+ 1;

0 otherwise,

where the number A\;(nm; ki, ks, ..., ker1) s as obtained in Theorem [5.5.3(b).

Proof. Tt follows immediately by applying Theorems|[7.3.1 and [7.3.12] O

In the following theorem, we consider the case e > 3 and obtain an enumeration

formula for the number 91.(n).
Theorem 7.3.14. For an integer e > 3, the following hold.

(a) When e is even, we have

s—1
. k k “u k.
ﬂum—E:%WmmmwwmmW””““qIP+QI.*_ﬂ
j=1

J 27

I

27‘

T [ke+nm— (ki +ko+ - +k) — (ki + ko4 + Keq1—¢)
< 11 .

l=s5+1

where the summation Y runs over all non-negative integers ki, ko, ..., K, sat-

1sfying 2k, +2ko+- - - +2ke i1+ Ke_iiotKe i3t +k <nm fors+1 <i<e
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and the number A*(ky, ko, ..., k) is given by

AN (ki ko, ..o ke) = Z%‘(k1,k2,-~,ke)+k1 +ko + -+ kg
i=1

k1+k2—|—~~-—|—ks—1)

—(k1+k2+--~+ks)< 5

(b) When e is odd, we have

s—1

" k k oo+ ki

N.(n) = E A(nm;ky, K, .. ke )(20)4 (k1 k2, ke) | | [ 1tk 4ot J}
27

j=1 ki
13[ {kg—i—nm— (ki + ko + -+ - + k) — (k1+k2+-~+ke+14)}
9
l=s+2 k@ 2"
where the summation Y runs over all non-negative integers ky,Xka, ..., k. sat-

1sfying 2k, +2ko+- - - 4+2ke ;1 +ke jiotke i3+ +k <nm fors+1 <i<e
and the number A”(ky, ko, ..., ke) is given by

ANk, &, k) = Z%‘(khk% cooke) + (B ko 0+ k).
i=1

(Here the numbers Ao(nm;Xky, ks, ..., ks) and A (nm;Xky, ks, ..., kei1) are as obtained

in Theorem|5.5.5.)
Proof. 1t follows immediately from Theorem [7.3.12} m

In the following theorem, we consider the case e > 3 and obtain an enumeration

formula for the number . (n).
Theorem 7.3.15. For an integer e > 3, the following hold.

(a) When e is even, we have

s—1

ki +ko+---+k;
Me(n):ZAO<nm;k17k2,...,ks)H|: ! 2k~ J
j=1 ] 27
Sil Zi(k17k2,--~7ks+1)+(k1+k2+~~+ks)(M)

X (2T)i:1 3
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where the summation Y runs over all non-negative integers kq, Ko, ... Keyq

satisfying 2(k; + &g + - - - + K,) + Koy = nm.

(b) When e is odd, we have

( S
> zi(ki,k2,.. ket1)+ki+ko+-+ks

Z A (nm; kg, ke, . ke ) (27)0

s—1
M, (n) = 4 [k1+k2+~~+kj

X if n is an even integer;

j=1 k] 2r
L 0 otherwise,
where the summation Y runs over all non-negative integers ki, ks, . .., kg1 satisfy-
ing 2(ky + ko + -+ + kep1) = nm.
(Here the numbers A\g(nm;Xky, Ko, ..., ks) and Ay (nm;ky, Ky, ..., ke 1) are as obtained
in Theorem|5.5.5.)
Proof. It follows immediately from Theorem [7.3.13] [

7.4 ACD codes over R,

In this section, we count all ACD codes of an arbitrary length over R ,,. First

of all, we show, in the following theorem, that any ACD code over R, ., is a free

n
e,rm*

code, i.e., it is a free R, ,-submodule of R
Theorem 7.4.1. Every ACD code over Re.m 1S a free code.

Proof. Working as in Theorem |6.2.1 and applying Theorem 2 of Kaplansky [59], the

desired result follows. O

Remark 7.4.1. Working as in Proposition 3.13 of Norton and Salagean [80], we
see that an additive code € of length n over R, is a free code if and only if
Tori(€) =Tory(€) =---=Tor.(€). So we will call Tor,(€) as the Torsion code
of the free additive code € over Re m.

From now on, we shall refer to an additive code %€ of length n, rank k and

Hamming distance d over R. ., as an additive [n, k, d]-code over R ;.
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The following theorem provides a necessary and sufficient condition under which

a free additive code of length n over R, ., is ACD.

Theorem 7.4.2. Let C be a free additive code of length n over R, with a generator
matriz G. The code C is ACD if and only if the matriz Tryr ,,(GG") is non-singular,
i.e., det(Tryr n(GGY)) is a unit in Re,.

Proof. To prove the result, suppose that C is an ACD code. Here we assert that the
matrix Trpr7m(ggt) is non-singular.

To prove this assertion, we suppose, on the contrary, that the matrix T, ,,(GG")
is singular. Thus there exists a non-zero vector z € RY . satisfying Trpr m(2GG") =
2Try m(GGY) = 0. From this, it follows that the vector 2G € C N C* = {0}, which
gives zG = 0. As the code C is ACD, we see, by Theorem [7.4.1, that the code C
is a free code over R, ,,, which implies that the rows of the matrix G are linearly
independent over R.,. From this, we obtain z = 0, which is a contradiction.

Conversely, let us assume that the matrix Trpr’m(ggt) is non-singular. Here,
we assert that the code C is ACD, i.e., C N C*+ = {0}. To prove this assertion,
let v € CNC*E One can write v = v'G for some o' € Rf, . This implies that
U'Tryr m(GGY) = Trpr m(V'GGY) = 0. Since Tryr ,,(GG?) is non-singular, we get v' = 0,

which implies that v = 0. This proves the assertion. O

In the following theorem, we show that if C and D are ACD codes over Re ,m,
then their direct sum C @ D is also an ACD code over R .

Theorem 7.4.3. Let C be an ACD [ny, ky, d1]-code over Re v, and let D be an ACD
[ng, ka2, da]-code over Re . The code CED = {(c,d):ceC and d € D} is an ACD
[n1 + no, k1 + ko, min{dy, da }]-code over Re .

Proof. Let G1 € My, xny (Rerm) and Go € My, xn, (Rerm) be generator matrices of
the codes C and D, respectively. It is easy to observe that their direct sum C & D
is an additive code of length n; 4+ ny and rank k; + k2 over R, ,,, with a generator

matrix

Gy O
0 Go
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Since C and D are ACD codes over R ., we see, by Theorem|7.4.2, that det(Trpr ,,(G1GY))
and det(Trpr m(G2GY)) are units in R.,. We next note that

det(Trpr,m(GGt)) = det(Trpr7m(G1G§)) det(Trprym(GgGé)),

which implies that det(7ry ,,(GG")) is also a unit in R,,. This, by Theorem [7.4.2,
further implies that C ® D is an ACD code over R, ,,. Further, it is easy to observe
that the Hamming distance of the code C @ D is min{d;, d»}. O

An additive code C of length n over ﬁwm is defined as an ﬁw-linear subspace of
ﬁ: rm:*

an ACD code) if it satisfies C N C+ = {0}. We next make the following observation.

Further, the code C' is called an additive code with complementary dual (i.e.,

Lemma 7.4.1. Let € be an additive code of length n over R. ., with a generator

matrix G. The following three statements are equivalent:

(a) The code € is an ACD code.
(b) The code € is a free code and the matriz Trpr7m(@t) is non-singular.

(¢c) We have Tor((€) = Tory(€) = --- =Tor.(€) and the Torsion code Tor,(¥)

1s an ACD code over ﬁwm with a generator matriz G.

Proof. Working as in Theorem [6.2.3, the desired result follows. O

By the above lemma, we see that an additive code of length n over R, is an
ACD code if and only if it is a free code whose Torsion code is an ACD code of
length n over Re (=~ Fym). In the following theorem, we provide a method to

construct ACD codes over Form.

Theorem 7.4.4. Let n, k be positive integers satisfying 1 < k < n. Let C be an For-
additive code of length n and dimension k over Form (i.e., k-dimensional Fyr-linear

subspace of F... ) with a generator matriz




7.4 ACD CODES OVER Re,m 275

where a € Form satisfies Tror ym(a?) # 0 and b = 0 if n — k is odd, while b = 1 if

n — k is even. Then the code C is an ACD code over Form.

Proof. Tt is easy to see that det(Trgr ,,(GG")) = (Trar ;m(a?))* # 0. Now the desired
result follows by applying Theorem [7.4.2. ]

Now, we proceed to count all ACD codes of an arbitrary length n over Re .
For this, we see, by Lemma @, that an additive code € of length n over R, ., is
an ACD code if and only if Tor (€) = Tory(¢) = --- = Tor.(%) and its Torsion
code T'ory (%) is an ACD code of length n over ﬁwm. First of all, we will enumerate
all ACD codes of length n and rank k£ over R, with a prescribed Torsion code.
To do this, throughout this section, we assume that & is an additive code of length
n and dimension k over ﬁe,rm with a generator matrix L. Further, since the map
N - Teym — ﬁwm is a bijection, there exists a unique k£ x n matrix G, over

Term satisfying Gy = L. We next make the following observation.

Lemma 7.4.2. Let € be a free additive code of length n over Re .y with Tor(€) =

2. There exist k x n matrices G1,Ga, ..., Ge_1 over T, m such that the matric
Go+ uGi + Gy + - +u Gy

s a generator matriz of the code €.

In the following theorem, we count all ACD codes ¢ of length n over R, with
Tor (€)= 2.

Theorem 7.4.5. Let 9 be an ACD code of length n and dimension k over ﬁe,rm.
There are precisely pr*m=F)(e=1) distinct ACD codes € of length n and rank k over
Rerm with Tor (€) = 2.

Proof. Working as in Theorem [6.3.1 and by applying Lemmas [7.4.1 and [7.4.2, the

desired result follows. O]

Here we recall that the residue field ﬁe,rm of the chain ring R, is of order p™™
and the residue field R, of the chain ring R., is of order p", where p is a prime
number and r,m are positive integers. Now to count all ACD codes of length n

and rank k over R, we will first count all k-dimensional [F,--linear subspaces D
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of Fjm satisfying D N D+ = {0}, i.e., all ACD codes of length n and dimension k
over [Frm for 0 < k < nm. Let £, ,,(n; k) denote the number of distinct ACD codes
of length n and dimension k over Fym for 0 < k < nm. One can easily see that
Lrm(n;0) = £,,,,(n;nm) = 1. Here, we will distinguish the following two cases: (i)
p =2 and (ii) p is an odd prime.

In the following theorem, we consider the case p = 2 and obtain the explicit

enumeration formula for the number £, ,,(n; k) for 1 <k <nm — 1.

Theorem 7.4.6. Let p=2. For 1 <k <nm — 1, we have

o —1)/2
()" gxk+1>[(?£ﬁ;_1);é }er if both k and nm are odd,
nmk—k24+nm— — 2 2
(2") BT [(nm )/ ] if k is odd and nm is even;
(k—1)/2 |,
k(nm—k+1) [(nm — 1) /2 . ,
Lom(n;k) =< (27) 2 if k is even and nm is odd,
’ k/2 92r
nmk—k2—2 (nm - 2)/2
2z (24 2r -1
e e e v
_ _ —2)/2 ,
+ 2T(nm k+1) 2T(nm k) +1 [(nm :| both k d '
\ ( ) (k—9)/2 22) if bo and nm are even

Proof. Since p = 2, we see, by Theorem 1 of [58], that there exists a self-dual
basis of Form over Far. By Proposition [7.2.1, we note that there exists a one-to-one
correspondence between ACD codes of length n and dimension & over Form and
LCD codes of length nm and dimension k over Fyr. Now the desired result follows
by applying Theorem [6.3.2. O

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number £, ,,(n; k) for 1 <k <nm — 1.
Theorem 7.4.7. Let p be an odd prime. For 1 <k <nm — 1, the following hold.
(a) Let k be odd.
o When nm is odd, we have

(nm=k)(k+1) [(nM — 1)/2
Lomln k)= (p") 2 : l( )/ ] :
p3r

(k—1)/2
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e Suppose that either p" = 1 (mod 4) and n is even or m = 2 (mod 4)
and p" =3 (mod 4) or m is odd, p" =3 (mod 4) and n =0 (mod 4) or

m =0 (mod 4), p” =3 (mod 4) and n is even. Here we have

(i k) = (7)™ ()T~ 1) [((k —1)/2

nm — 2)/2}
p2'r'
e Suppose that either m is odd, p" = 3 (mod 4) and n = 2 (mod 4) or m
is even, n is odd and p" =1 (mod 4) or m =0 (mod 4), p" = 3 (mod 4)

and n is odd. Here we have

nmk—k2—1

smwmaw2<WW””WmﬂwL;

(k—1)/2
(b) Let k be even.

e When nm s odd, we have

awmmzwﬁmfmrm_wmhg

k/2
o When nm s even, we have

o\ Kim—k) (M /2
Sonliib) = 1) T
p T

k)2

Proof. To prove the result, we see, by Lemma 1 of Huffman [52], that the ordinary
trace bilinear form (:,-) on F}... is a non-degenerate and symmetric bilinear form
on [F,m, i.e., the formed space (]F;}Tm, (- >) is an nm-dimensional orthogonal space
over [F,-. Since p is an odd prime, it is easy to observe that the orthogonal space
(IFZTm, (-, )) can also be viewed as a non-degenerate quadratic space with respect to
the quadratic map Q : F.. — Fpr, defined as Q(a) = 3(a,a) for each a € Fll..
We next observe that each ACD code of length n and dimension k over [, can
also be viewed as a k-dimensional non-degenerate F,.-linear subspace of the nm-
dimensional quadratic space (F}.., Q). In view of this, the number £, ,,,(n; k) equals
the number of distinct k-dimensional non-degenerate quadratic IF,--linear subspaces

of the quadratic space (IF}..,Q) for 1 < k < nm — 1. Further, by Theorem 7 of
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Huffman [52], we note that the Witt index v of the quadratic space (Fj..,Q) is
given by

”";_1 if nm is odd;
mm=2 i either m is odd, p" = 3 (mod 4) and n = 2 (mod 4) or m is even, n is
B odd and p" =1 (mod 4) or m =0 (mod 4),p" = 3 (mod 4) and n is odd,;
o g if either p” =1 (mod 4) and n is even or m is odd, p" = 3 (mod 4) and

n =0 (mod 4) or m =2 (mod 4) and p" = 3 (mod 4) or m =0 (mod 4),

p" =3 (mod 4) and n is even.

(7.4.1)
By Lemma 5 of of Huffman [52], we observe that a k-dimensional non-degenerate

quadratic [r-linear subspace W of F},.. has a Witt decomposition of the form
W = <6L1,b1> 1 <a2,b2> 4L <ayk,byk> 1 Wk,

where v, is the Witt index of W, (a;, b;) is a hyperbolic pair in F.. for 1 <i <,
and W is an anisotropic Fpr-linear subspace of ... satisfying dimg , (W;) = k —
2v;, < 2. Now we shall distinguish the following two cases: (a) k is odd, and (b) k is

even.

(a) First, let k& be odd. Here working as in Theorem[6.3.3 and by applying Theorems
[2.3.2,2.3.5 and [2.3.6, we get

(. em-ke+) [(nm—1)/2 e
v [(k—l)/Q]pzr iy =
Comlnik) = ()TN E - ) [(?ZL —_1%2} , Tv=1
p T

(nm —2)/2
(k—1)/2

W) () ¢ 1){

if y = nm=2
p2'r

(b) Next, let k& be even. Here we see, by Theorem 7 of Huffman [52], that either

v, = % or v, = %, which implies that £, ,,(n;k) = &, n(n; k) + ér,m(n; k),

where &,.,,(n; k) and érvm(n; k) denote the number of distinct k-dimensional

non-degenerate quadratic Fy--linear subspaces of F... having the Witt indices

% and %, respectively. Further, working as in Theorem [6.3.3 and by applying

Theorems [2.3.2,[2.3.5 and [2.3.6, we get
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(P 1) [(im - 1))2 if v = md
! o2 if v = "=,
p2r
PTET Y DT Y /2] L,
2(p 5 + 1) /2 p2r
P (pT — (™ 4 1) {”m/ 2} if = nm=2
k 207 — 1) 52 o 2
and
P 0% 4 1) {(”m — /2 if v = 2oL,
2 k/2 i p2'r ’ ’
S,m(n; k) = pE T (T + )" + 1) [nm)2 if p = nm,
o ; 2(p”;m + 1) L k/z pgr 2
P (T + (™ — 1) [nm/2 i =2
2(p 5 1) L k/2 p2r

\

From this and by ((7.4.1), the desired result follows when k is even.
[

Next, let H, ,,(n; k) denote the number of distinct ACD codes of length n and
rank k over R, for 0 < k < nm. It is easy to see that H, ,,,(n;0) = H,m(n;nm) =
1. In the following theorem, we consider p = 2 and obtain the enumeration formula
for the number H, ,,(n; k) for 1 <k <nm — 1.

Theorem 7.4.8. Let p=2. For 1 <k <nm — 1, the following hold.
(a) Let k be odd.

e When nm s odd, we have

r(nm—k)(2ke—k+1) (nm - 1)/2}
Hr,m n; k = 2 2 |: :
;) (k=1)/2 |,

o When nm s even, we have

o) = gt ffom =2
227

(k—1)/2
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(b) Let k be even.

e When nm s odd, we have

Hr,m(n; kf) - QT’“(("W*’“%(QE*UJA) |:(nm B 1)/2:| .
k/2 22r

e When nm is even, we have

r(k(nm—k)(2e—1)—2) (nm - 2)/2
. . k' . 27‘k 21” -1
i ) N G v

S (rim—he ) _ gr(um—k) 4 1) {(75;71_—23%2} 2%)'

Proof. Working as in Theorem [6.3.4 and by applying Theorem [7.4.5, we see that
Hyn(n; k) = prEm=k)Ne=1 g (n; k). Now on substituting the values of the number
L£.m(n; k) from Theorem [7.4.6, the desired result follows. ]

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number H, ,,(n; k) for 1 < k < nm — 1.
Theorem 7.4.9. Let p be an odd prime. For 1 <k < nm — 1, the following hold.

(a) Let k be odd.

o When nm is odd, we have

Hr,m<n; k) =P

rnm k) 2k k1) {(nm— 1)/2]
(k=1)/2 |2

e Suppose that either p" = 1 (mod 4) and n is even or m = 2 (mod 4)
and p" =3 (mod 4) or m is odd, p" =3 (mod 4) and n =0 (mod 4) or

m =0 (mod 4), p" =3 (mod 4) and n is even. Here we have

r(k(nm—k)(2e—1)—1) rnm (nm - 2)/2
Hy (s ) = p™ R —1)[ } |
(k=1)/2 |

e Suppose that either m is odd, p” = 3 (mod 4) and n = 2 (mod 4) or m
is even, n is odd and p" =1 (mod 4) or m =0 (mod 4), p" =3 (mod 4)
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and n is odd. Here we have

r nm-— e—1)— nm - 2 2
Hnm(n; k) —p (k( k;(Q H-1) (pT + 1) {(nm )/ :| )
p27‘

(k—1)/2

(b) Let k be even.

o When nm is odd, we have

oo = [Om= 112
p27

k/2
o When nm s even, we have

rk(nm— e— 2
Hym(nsh) =p" 2 [nm/ } .
pQ'r

k/2

Proof. Working as in Theorem [6.3.4 and by applying Theorem [7.4.5, we see that
Hyn(n; k) = prEm=R)e=1 g (n; k). Now on substituting the values of the number

L£.m(n; k) from Theorem [7.4.7, the desired result follows. O]

Further, let H,,,(n) denote the number of distinct ACD codes of length n over
Rerm- Here, we will distinguish the following two cases: (i) p = 2 and (ii) p is an
odd prime. In the following theorem, we consider the case p = 2 and obtain the

explicit enumeration formula for the number H,. ,,(n).
Theorem 7.4.10. Let p = 2. Then the following hold.

e When nm s odd, we have

nm—1
rk((nm-k)2e=1)+1) [(nm — 1) /2
Hom(n) = 24 S |
r,m ; k/z 927
k=0 (mod 2)

nm—1

rm=k)@he—k+1) [(nm — 1)/2]
+ 2 2 |: .
kzl (k; - 1)/2 227
k=1 (mod 2)
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o When nm is even, we have

7"( (nm—k)(2e—1)—2) —92)/2
Hym(n) = 2 + Z k B)(ze=1)=2 ((zr(nm_k+1) _27’('ﬂm—k)+1) [(nm )/ ] 2
22r

(k—2)/2
k=0 (mod 2)
2 /2 e r(k(nm k) 2e 1)4+nm—1) (nm — 2)/2
27"k 7 _1q (nm :| |:
R VL kZ (b= 1)/2 |
k=1 (mod 2)
Proof. 1t follows immediately from Theorem |7.4.8. [

In the following theorem, we assume that p is an odd prime and obtain the

explicit enumeration formula for the number H, ,,,(n).

Theorem 7.4.11. Let p be an odd prime. Then the following hold.

o When nm is odd, we have

nm—1

Hem(n) = 2+ Z prE [(?;n __1%2} )

k=1 (mod 2)
nm—1
rk((nm—k)(2e—1)+1) (nm — 1)/2
2
+ D P [ k)2 LQ,.‘

k=1
k=0 (mod 2)

o Suppose that either p" = 1 (mod 4) and n is even or p" =3 (mod 4) and m =
2 (mod 4) orp” =3 (mod 4), m is odd and n =0 (mod 4) or m =0 (mod 4),

n is even and p" = 3 (mod 4). Here we have

iy (e(nm—F)(2e=1)~1) (nm —2)/2
o — 2 TNnm . 1
Honl) = 24 30 g [
k=1 p
k=1 (mod 2)
nm—1

rk(nm—k)(2e—1) nm/2
2
RN e }

k=1
k=0 (mod 2)

e Suppose that either m is odd, p" = 3 (mod 4) and n = 2 (mod 4) or m is
even, n is odd and p" =1 (mod 4) or m =0 (mod 4), p" = 3 (mod 4) and n
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1s odd. Here we have

i (k(nm—k)(2e=1)~1) (nm —2)/2
,}_[rmn _ 2+ T nm—2e—— %_ﬁ_l
() > w0 o]
k=1 (mod 2)
nm—1
rk(nm—k)(2e—1) nm/2
ooy preEe
k=1 k2 P
k=0 (mod 2)
Proof. Tt follows immediately from Theorem [7.4.9. m

The following theorem states the well-known Singleton bound for additive codes

over Re rm.

Theorem 7.4.12. [94] (Singleton bound for additive codes over Re,m): For an

additive code C of length n over R, we have
|C| < |Rerm|n_dH(C)+1~

In particular, if C is a free additive code of length n and rank k over Re ym, then we

have

dy(C) <n— %} g

An additive code C of length n over R.,, is said to be maximum distance
separable (MDS) if it satisfies |C| = |Re | O+,

Proposition 7.4.1. For an additive code C of length n over R m, we have
dH(C) = dH(TOTe(C>).

Proof. Working as in Theorem 4.2(ii) of Norton and Salagean [81], we get the desired
result. O

Theorem 7.4.13. A free additive code C over Re,m is MDS if and only if its
Torsion code Tor(C) is an additive MDS code over Re .

Proof. Tt follows immediately from Proposition [7.4.1. O
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In the following theorem, we provide a method to construct free additive MDS
codes over R, from additive MDS codes over ﬁe,m. To do this, let Cy be an
additive MDS code of length n and dimension k& over ﬁwm with a generator matrix
Gy Further, since the map ~[7 .. @ Tepm — ﬁe,rm is a bijection, there exists a

unique k& X n matrix Gy over T¢ ., satisfying Go = G-

Theorem 7.4.14. Let C be a free additive code of length n over Re ,m with a gener-
ator matriz Go +uGy +u?Ga + - - - +u*1Ge_q, where G1,Ga, ..., Ge1 € Miscn(Term)-
Then the code C is an additive MDS code over Re,m with Tori(C) = Co.

Proof. 1t follows by applying Theorem [7.4.13| O

The following theorem provides a necessary and sufficient condition for a free
additive code over R, to be an ACD MDS code.

Theorem 7.4.15. Let C be a free additive code of length n over Re,m. Then the
code C is an ACD MDS code over R, if and only its Torsion code Tori(C) is an
ACD MDS code over ﬁ”m.

Proof. The desired result follows by applying Lemma [7.4.1 and Theorem [7.4.13, [

Theorem provides a method to construct free additive MDS codes over
Rerm from additive MDS codes over ﬁwm(: F,rm). Theorem provides a
construction of ACD MDS codes over R, from ACD MDS codes over ﬁemm(z
F,rm). In the next chapter, we will introduce and study two new families of additive
codes over finite fields. We will further identify some new classes of additive MDS
and almost MDS codes within these two families of codes. We will also provide
methods to construct additive MDS self-orthogonal, self-dual, and ACD codes over
finite fields.



Some new classes of additive M DS

and almost M DS codes over finite

fields

8.1 Introduction

In this chapter, we introduce and study two new classes of additive codes over
finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes and addi-
tive generalized twisted Reed-Solomon (additive GTRS) codes, which are extensions
of linear generalized Reed-Solomon (GRS) codes and twisted Reed-Solomon (GTRS)
codes, respectively. Unlike linear GRS codes, additive GRS codes are not maximum
distance separable (MDS) codes, and the dual of an additive GRS code need not
be an additive GRS code in general. We derive necessary and sufficient conditions
under which an additive GRS code is MDS. We further apply this result to iden-

tify several new classes of additive MDS codes and a class of additive MDS codes

285
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whose dual codes are also MDS within the family of additive GRS codes. We also
identify several new classes of additive codes that are either MDS or almost MDS
within the family of additive GTRS codes. We also obtain several classes of additive
TRS codes that are not monomially equivalent to additive RS codes. Besides this,
we identify classes of monomially inequivalent additive MDS TRS codes and addi-
tive MDS RS codes, whose dual codes are also MDS. We also provide methods to
construct additive MDS self-orthogonal, self-dual, and ACD codes through additive
GRS and GTRS codes. Based on additive MDS codes whose dual codes are also
MDS, we present a perfect threshold secret-sharing scheme that can detect cheating,
identify a certain number of cheaters among the participants, and correctly recover

the secret.

This chapter is organized as follows: In Section we state some preliminaries
needed to derive our main results. In Section [8.3] we establish a one-to-one corre-
spondence between linear codes and additive codes over finite fields, which gives rise
to a method to construct additive MDS codes over finite fields as images of linear
MDS codes over finite fields (Theorem [8.3.1 and Corollary [8.3.1). We will also show
that not every additive MDS code can be obtained as an image of a linear MDS code
(Theorem [8.3.2). We next observe that the dual of an additive MDS code is not
an MDS code in general (Example . We further provide an elementary proof
of Theorem 9 of Ball et al. [7], which states that the dual code of a k-dimensional
additive MDS code over Fym is an MDS code if % is a multiple of m, where m > 2
is an integer (Theorem [8.3.3). In Section we introduce and study additive
generalized Reed-Solomon (additive GRS) codes and extended additive generalized
Reed-Solomon (extended additive GRS) codes over finite fields. We also derive a
necessary and sufficient condition under which an additive GRS (resp. extended
additive GRS) code is MDS (Theorems [8.4.1 and [8.4.2). With the help of these
results, we further identify new classes of additive MDS codes within the family of
additive GRS and extended additive GRS codes (Corollaries [8.4.1 and [8.4.2). We
also observe that the dual code of an additive GRS code need not be an additive GRS
code (Example m We further identify a class of additive MDS codes within the
family of additive GRS codes, whose dual codes are also additive MDS GRS codes
(Theorem m We also construct some additive MDS self-orthogonal, self-dual,
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and ACD codes through additive GRS codes (Theorems|8.4.4 and [8.4.5). In Section
8.5, we introduce and study additive generalized twisted Reed-Solomon (additive
GTRS) codes and extended additive generalized twisted Reed-Solomon (extended
additive GTRS) codes over finite fields. We identify several classes of additive GTRS
and extended additive GTRS codes, which are either MDS or almost MDS (Theo-
rems @— . We also construct additive self-orthogonal codes through additive
GTRS codes (Theorem [8.5.10). In Section we identify several classes of addi-
tive TRS codes that are not monomially equivalent to additive RS codes (Theorems
@ We also identify monomially inequivalent classes of additive MDS TRS
codes and additive MDS RS codes, whose dual codes are also MDS (see Theorem
. In Section , we provide a perfect threshold secret-sharing scheme that can

detect cheating, identify a certain number of cheaters among the participants and

recover the secret correctly based on additive MDS codes whose dual codes are also

MDS.

8.2 Some preliminaries

In this section, we will state some basic definitions and results needed to derive
our main results. For this, we recall that a linear code C of length n and dimension k
over I, is defined as a k-dimensional subspace of [F;;. We will refer to a linear code of
length n, dimension k£ and Hamming distance d over F, as a linear [n, k, d]-code over
F,. In the following theorem, we recall the well-known Singleton bound for linear

codes.

Theorem 8.2.1. [94] (Singleton bound for linear codes over F,): For a linear
[n, k, d]-code over F,, we have d <n —k + 1.

A linear [n, k, d]-code over F, is said to be maximum distance separable (MDS)
if it satisfies d = n — k+ 1. An important and well-known class of linear MDS codes
is that of generalized Reed-Solomon (GRS) codes. To recall these codes, let IF[z]
denote the ring of all polynomials in the indeterminate = with coefficients from F,.

For a positive integer k satisfying k& < n, let us define

F,[z]<r = {f(x) € Fy[x] : either f(z) =0 or deg(f(z)) < k},
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which is clearly a k-dimensional subspace of F,[z] over F,, with a basis set {1, z, 22, .. .,

771} Let n < ¢, and let a = (ay,a, ..., qy), where ay, as, . .., o, are distinct el-
ements of Fy. Let v = (vi,v,...,v,) € (F;)", where F; = F, \ {0}. Then the

evaluation map &, : Fy[z]<x — F7, defined as

Ean(f(2)) = (v1f(on),vaf (a2), ..., vnf(cw,)) for all f(z) € Fylz]cs,

is an injective F,-linear vector space homomorphism. The code
GRSk(,v) = Eqo(Fylz] <)

is a linear code of length n and dimension k£ over F, and is called the generalized
Reed-Solomon (GRS) code over F, with evaluation points aq, as, .. ., o, and column
multipliers vy, vg, ..., v,. In particular, if v = (1,1,...,1) is the all-one vector of
length n, then the code GRSy (v, v) is called the Reed-Solomon (RS) code of length
n over F, with evaluation points aq, @, ..., a,. By Theorem 5.3.1 of [53], we see
that the code GRSy (o, v) has Hamming distance n — k + 1, and hence it is a linear
MDS code over F,. Further, the extended generalized Reed-Solomon (extended GRS)
code of length n + 1 over F, with evaluation points oy, o, ..., a,, 00 and column

multipliers vy, va, ..., v,, 1 is defined as
gRSk(a7U7 OO) = {(Ulf(al)? UQf(QQ)a s 7Unf(an)7 f(OO)) : f(ZU) S Fq[$]<k}>

where f(00) is defined as the coefficient of 2%~ in f(z) for each f(z) € F,[z]<y.
In particular, if v = (1,1,...,1) is the all-one vector of length n, then the code
GRSk (a,v,00) is called the extended Reed-Solomon (extended RS) code of length
n + 1 over F, with evaluation points ay,as, ..., a,,00. By Theorem 5.3.4 of [53],
we note that the extended GRS code GRSk («, v, 00) is a linear MDS code over F,.
Please refer to [53, Sec. 5.2 and 5.3] for more details.

Linear codes over finite fields are further extended to additive codes, which have
nice algebraic structures and are useful in constructing quantum stabilizer codes
[15, 22]. From now on, throughout this chapter, we assume that m > 2 is an
integer, and Fym denotes the finite field of order ¢. Let n be a positive integer, and

let F7,. denote the set of all n-tuples over Fym. The set Fj.. can be viewed as an
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(nm)-dimensional vector space over F, under the component-wise addition and the
component-wise scalar multiplication. Now an additive code C of length n over F;m
is defined as an F-linear subspace of Fy,.. We will refer to an additive code C of
length n, dimension k& and Hamming distance d over F,m as an additive [n, k, d]-code
C over Fym. Further, we recall, from Chapter|7| that the ordinary trace bilinear form

on F,. is a mapping (-, -) : Fp X Fi — Fy, defined as

(a,0) = Trymaibs)
=1

foralla = (a1, as,...,an),b = (b1,b2,...,b,) € Fp, where T, : Fgm — Fy denotes
the trace map. It is easy to see that (-, ) is a non-degenerate and symmetric bilinear

form on Fy... Further, if C is an additive code of length n over Fym, then its dual

code Ct is defined as
Ct={ve Fo. o (v,¢) =0 forall c € C}.

It is easy to observe that the dual code C* is also an F-linear subspace of [Fym, and
hence it is an additive code of length n over Fym. By Theorem [2.3.2, we note that

dimg, (C) + dimg, (C*) = nm.

Now, in the following theorem, we recall the well-known Singleton bound for additive

codes over Fym.

Theorem 8.2.2. [52] (Singleton bound for additive codes over F,m ): For an additive

[n, k, d]-code C over Fym, we have

An additive [n, k, d]-code C over F;m is said to be maximum distance separable
(MDS) if it satisfies d = n— [£] + 1, and the code C is said to be almost MDS if it
satisfies d = n — (%W

In the following section, we provide a method to construct additive MDS codes
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of length n over F,m from linear codes of length nm over F,.

8.3 A construction of additive MDS codes over
[Fjm

Throughout this section, let 8 = {f1,02,...,0m} be a basis of F;m over F,,
and let v = (v, vy,...,v,) € (Fn)", where Fy,, = Fym \ {0}. Let us define a map

T Fy™ — Fim as

TB,w (Cl,la 1,2, -+, Clm;C21,C22, - - -, C2my -+ -, Cp 15, Cp 25 - - ,Cn,m)
= (vi(cr1Br + c12Ba + -+ A+ CrmbBn), va(C21 1 + 2282 + -+ ComBn),
...... Un(Cpafr + Cpofo+ - + Cn,mﬁm))

for all (0171, Cl2s ey Clms €215,C2,25 -+ Comy v e v - -  Cn1sCn2y e - - ,cn,m) e Fym. It is
easy to see that the map mg, is an F, -linear vector space isomorphism. From
this, it follows that a non-empty subset C of F;™ is a linear code of length nm and
dimension k over F, if and only if its image 73,(C) is an additive code of length n
and dimension k over F,n. That is, the isomorphism 7, induces a one-to-one corre-
spondence between linear codes of length nm and dimension k over I, and additive
codes of length n and dimension &k over Fym. In the following theorem, we show that
the isomorphism g, maps linear MDS codes of length nm and dimension k over

F, to additive MDS codes of length n and dimension k over Fm.

Theorem 8.3.1. Let C be a linear MDS code of length nm and dimension k over
F,. Then the code s ,(C) is an additive MDS code of length n and dimension k over
Fym.

q

Proof. Working as in Theorems 3.1 and 3.2 of Mahmoudi and Samei [71], the desired

result follows. O]
From the above theorem, we deduce the following:

Corollary 8.3.1. Let q be a prime power, and let n, k and m > 2 be positive integers

satisfyingl <k <mnm < q. Let o = (11,002, -+, Qlm, X215, Q294+« s X2y -+ -5 Ay 1,
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n2y -+ Onm) € FY™, where o ;s are distinct elements of Fy. Let 3 = {B1, B2, - -, B}
be a basis of Fgm over Fy, and let v = (vi, vy, ..., v,) € (F7)". Then for1 <k < nm,
the code

Crok(a,v,B) = { (Ul (f(Oém)ﬁl + flarg)Ba+ -+ + f(al,m)ﬁm),vz (f(‘h,l)ﬁl
+flagg)Be + -+ + f(Oé2,m)5m), ------ y Un (f(an,l)ﬂl + fan2)P2
+eee f(an,m>ﬁm)) : f(ZE) € IFq[x]<k}

is an additive MDS' code of length n and dimension k over Fgm.

Proof. Here one can easily see that the code C,, (v, v, ) = 73, (GRSk(c, 1)), where
1=(1,1,...,1) denotes the all-one vector of length nm. By Theorem 5.3.1 of [53], we
see that the RS code GRSk (a, 1) is a linear MDS code of length nm and dimension k
over F,. Now by applying Theorem @, the desired result follows immediately. [J

In the following theorem, we construct an additive MDS code over [F;m whose
inverse image under the isomorphism 73, is not an MDS (linear) code over F, i.e.,
the converse of Theorem [8.3.1 does not hold in general.

Theorem 8.3.2. Letn < q, and let a = (v, z, ..., ) € FY, where ay, g, ... oy
are distinct elements of Fy. Letv = (v1, vy, ..., v,) € (Fin )", and let 8 = {1, Ba, - .
Bm} be a basis of Fym over F,. Let k be an integer satisfying 1 < k < nm, and let
us write k = my + X, where v = | £] and 0 < X < m — 1. Let D y(, v, B) be an

additive code of length n over Fgm with a generator matriz

°

_ St
viB1 viPe - V1B viaafr viaifa - vien B, - via] B via]Be -+ viad By
v2f1 v2fla -+ V2 v2a2ff1 V2P -+ VoS - 1120/%51 12204;/52 UQOégﬁ/\

Gaw,p =
_'Unﬂl Unﬁ? te 'Unﬁm 'Unanﬂl Unan/BQ cee vnanﬁm T vnagﬁl 'Una%52 te Una%ﬂ)\_

The additive code Dy (o, v,B) is an MDS code of length n and dimension k over
Fym. Further, its inverse image Wﬁ_;(@n,k(a,v,ﬂ)) is a linear code of length nm and
dimension k over F,, which is not MDS when k < n(m — 1)+ 1, (here ﬂﬁ_i denotes

the inverse of the vector space isomorphism mg,, ).

Proof. Since oy, aa, ..., a, are distinct elements of F, and § = {1, 2, ..., O} is a
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basis of F,m over [F,, one can easily observe that the rows of the matrix G, , 3 are
linearly independent over F,. This implies that the code Z, (o, v, ) is an addi-
tive code of length n and dimension k over F,». We next assert that the Hamming
distance of the code %, x(a,v, () is n — f%} + 1. To prove this assertion, let ¢ =
(c1,¢2,...,¢y) be a non-zero codeword of &, x(a, v, 5) with wg(c) = s. This implies
that precisely n—s coordinates, say i;-th, io-th, ..., 7,,_s-th coordinates, of the code-
word c are zero. Now since ¢ € 2, ;(a, v, 3), we can write ¢ = 2G,,, 3 for some non-
Z€T0 2 = (20,15 20,25 - - - » 20,ms 21,05 21,25«  + s Z1yms -+« y Zym1,1s Zy—1,25 - « 3 Zy—Tms 2,15 2,25

coyZy0) € IFZ. This implies, for each j € {iy,1s,...,9,_s}, that

2o + 21,005 + Zg7ga]2- + et ZW_Mozj-_l + Z%KO_/; = 0 for1</<A
and 200 + 21,005 + 2275(1? 4+ -+ zy_l,ga;’_l = 0 forA< /i< m.
That is, each of the elements «;,, o, ..., q;, . is a root of the polynomials zj, +

21004+ 2y ) for 1 << XNand 2o+ 2102+ -+ +zv_17gx'7*1 for A\ +1 <0< m.
Since z is non-zero, we see that either the polynomial zg¢ + 2107 + - - 4+ 2,027 is
non-zero for some integer ¢ satisfying 1 < ¢ < X or the polynomial 2g 4 21 ¢z +- - -+
2,-1,,27 " is non-zero for some integer ¢ satisfying A+ 1 < ¢ < m. This implies that
n—s<y—1if A =0, whereas n — s <y = [£]if A\ # 0. From this, we obtain
s >n— [£] 4+ 1. Thus the Hamming distance of the additive code Z,, (cv, v, ) is
at least n — [£] + 1. Now by applying Theorem @, we obtain

Adu(Dni(a,v,5)) =n — {%_‘ +1,

from which it follows that the additive code Z, x(a, v, 5) is MDS.

We next observe that the code W;}}(@n’k(a, v, 3)) is a linear code of length nm
and dimension k over F,, whose Hamming distance d satisfies d < n. We further
note that the code W@i(.@mk(a, v, 3)) is MDS if and only if d = nm — k + 1, which
holds only if £ > n(m — 1) + 1, as d < n. In other words, when k& < n(m — 1) + 1,
the code Wﬂ_j)(.@n,k(oz, v, 3)) is not MDS. O

Theorem [8.3.1 provides a method to construct additive MDS codes of length n

and dimension k over Fgm from linear MDS codes of length nm and dimension k over
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F,, where 1 < k < nm. Theorem @ provides a construction of an additive MDS
code of length n and dimension k over F,» whose pre-image under the isomorphism
Tg is not an MDS code over F, when k < n(m — 1) 4 1. This shows that not every
additive MDS code over Fy» can be obtained as an image of a linear MDS code
over I, under the isomorphism 73 ,. In Sections [8.4{ and we will provide several
methods to construct additive MDS codes over F m.

Next, by Theorem 2.4.3 of [53], we note that the dual code of a linear MDS code
over F, is an MDS code. In a recent work, Ball et al. [7, Th. 9] showed, using
geometric arguments, that when m divides k, the dual code of a k-dimensional
additive MDS code over F,» is an additive MDS code over F,». We provide an

elementary proof of this result in the following theorem.

Theorem 8.3.3. Let k be a positive integer such that 1 < k < nm and m divides
k. The dual code of each k-dimensional additive MDS code over Fym is an additive
MDS' code.

Proof. Let C be an additive MDS code of length n and dimension &k over Fm with a
parity check matrix H. Since the code C is MDS, it has Hamming distance n — % +1.
This implies that any n — % columns of H are linearly independent over F,». By
Theorem @, we see that the dual code C* has dimension nm — k. Now to show
that the dual code C*+ is MDS, it is enough to show that dy(C+) = £ + 1. To prove
this, we first assert that dy(C*+) > £ + 1.

Suppose, on the contrary, that dy(C*) < % Then there exists a non-zero code-
word z € C*+ with wy(z) < % This implies that at least n — % coordinates, say
i1-th, dg-th, ..., q

z € C*, we can write 2 = vH for some v € (F,)"™*. This implies that vH’ = 0,

nek -th coordinates, of the codeword z are zero. Further, since
where H' is the (nm — k) x (n — £) matrix over Fgm whose j-th column is the
i;-th column of the matrix H for 1 < j <n — % Since any n — % columns of the
matrix H are linearly independent over F,m, all the columns of the matrix H’ are
linearly independent over F,m. This implies that v = 0, and hence z = 0, which is a
contradiction. This shows that every non-zero codeword of C* has Hamming weight
at least % + 1, which proves the assertion.

Now by applying Theorem @, we get dy(Ct) = % + 1. This shows that the
dual code C*+ is MDS. O
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However, when m does not divide k, the dual code of a k-dimensional additive
MDS code over F,m need not be an MDS code. The following example illustrates
this.

Example 8.3.1. Let ¢ = 4, m = 2, n = 4 and k = 3. Let £ be a root of the
irreducible polynomial x* + x + ¢ € Fy[z], where  is a primitive element of Fy. Let

€ be the additive code of length 4 over Fig with a generator matrix

1 ¢ 1 ¢
5 66 €14 0
0 512 59 56

It is easy to see that the code € is an additive [4,3, 3]-code over Fig, so it is an MDS
code. We further observe that the dual code €+ is an additive [4,5,1]-code over Fyg

with a generator matrix

_ 59 56-
& &
£ ¢
514 56
0 &

oS O O I =
S MM = O O

Since dy(€+) =1 < 2 =4—[3] 41, the dual code €~ is not MDS. From this,
it follows that when m does not divide k, the dual code of a k-dimensional additive
MDS code over Fym need not be an MDS' code.

In the next section, we will construct a class of k-dimensional additive MDS
codes over [F;m whose dual codes are also additive MDS codes, where £ is not nec-
essarily a multiple of m (see Theorem . Later, in Section we will present
a perfect threshold secret-sharing scheme based on additive MDS codes over finite

fields, whose dual codes are also additive MDS codes.
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8.4 Additive generalized Reed-Solomon (GRS) codes

over finite fields

In this section, we will introduce and study a new class of additive codes over
finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes, which is
an extension of linear GRS codes. We will also study extended additive generalized
Reed-Solomon (extended additive GRS) codes in analogy with extended linear GRS
codes [53], [86].

To define additive GRS codes, let n, k and m > 2 be integers satisfying 1 < k <
nm. Let o = (a1, ay,...,a,) € Fpo \ Fy and v = (v, v9,...,v,) € (F})", where
a1, Q, ..., are distinct and F;,. = Fgm \ {0}. Here one can easily see that the

evaluation map &, , : Fy[z]< — Fp., defined as

Saw (f(m)) = (Ulf(Oél)a’UQf(%)a <o ,vnf(ozn)) for all f(z) € Fylz]<r,

is an F -linear vector space homomorphism, and hence its image &, ,(F,[z]<x) is an
[ -linear subspace of Fy... The additive generalized Reed-Solomon (additive GRS)
code of length n over F;m with evaluation points aq, o, ..., a;, and column multi-

pliers vy, vo, ..., v, is defined as

ARS, k(@,v) = Eno(Folz]<r) = { (vif(ar), vaf (@), ..., vnf(an)) : f(z) € Fyla]ar} -

In particular, if v =1 = (1,1, ..., 1) is the all-one vector of length n, then the code
ARS,, 1(a,v) is called the additive Reed-Solomon (additive RS) code with evaluation
points o, @, ..., . Note that the evaluation map &,, is not always injective.
When the map &, is injective, one can easily see that the code ARS, x(c,v) has

dimension k£ and has a generator matrix

U1 V2 Un,
V10 Vol st UpOp
G = ' ' _ ) (8.4.1)
vl vkt vkt
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Further, the extended additive generalized Reed-Solomon (extended additive GRS)
code of length n + 1 over F,m with evaluation points oy, v, ..., oy, 00 and column

multipliers vy, ve, ..., v,, 1 is defined as

ARS,, (i, v,00) = {(Ulf(Oél),'Ugf<Oég>, o ,vnf(an),f(oo)) f(x) € Fq[x]<k},

where f(00) is defined as the coefficient of 2*~! in f(z) for each f(x) € F,[z]<x. In
particular, if v = 1 = (1,1,...,1) is the all-one vector of length n, then the code
ARS,, 1 (a,v,00) is called the extended additive Reed-Solomon (extended additive
RS) code with evaluation points oy, s, ..., ay,,00. When the map &, , is injective,
one can easily see that the code ARS,, x(cv, v, 00) has dimension k and has a gener-

ator matrix

[ U1 Vg N Up, i
V1001 Voty -+ Vpoy, 0
Goo = : : e : o (8.4.2)
UlOé’f72 v2a§*2 e vno/;;_Q 0
_vla’f_l Ugo/zc_l R e 1]

By Theorems 5.3.1 and 5.3.4 of [53], we see that linear GRS and extended linear
GRS codes over finite fields are MDS codes. However, additive GRS and extended
additive GRS codes need not be MDS codes in general. The following two examples

illustrate this.

Example 8.4.1. Let ¢ =5, m = 2, n = 6 and k = 3, and let £ be a primitive
element of Fas. Let us take o = (€,2,€3,€4,65,€5) € FS, and v = (1,1,1,1,3,2). By
carrying out computations in the Magma Computational Algebra System, we see that
the code ARS,, (e, v) is an additive [6,3,4]-code over Fos. As dg(ARS, (v, v)) =
4<5=6-[31+1=n—[L£]41, the code ARS,x(a,v) is not MDS.

Example 8.4.2. Let ¢ = 3, m = 2, n = 3 and k = 2, and let £ be a primitive
element of Fy. Let us take o = (£,£3,&?) € Fy and v = (1,1,2). By carrying out
computations in the Magma Computational Algebra System, we see that the code
ARS,, 1 (a,v,00) is an additive [4,2,3]-code over Fg. As dy(ARS, k(c,v,00)) =
3<4=4-[21+1=(n+1)—[£]+1, the code ARS, (e, v,00) is not MDS.

In the following theorem, we derive necessary and sufficient conditions under
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which the code ARS,, x(a,v) is an additive MDS code of length n and dimension k

over Fym, where 1 <k < nm.

Theorem 8.4.1. Let a = (a1, qn,...,0,) € Fw \F and v = (v1,v2,...,v,) €
(Frn)™, where a1, ;. .., ap are distinct. For 1 < i < n, let m;(z) denote the
minimal polynomial of o; over Fy, and let d; = deg(m;(z)). For 1 <k < i d;, the
following hold. =

(a) When k < m, the code ARS, x(c,v) is an additive MDS code of length n and
dimension k over Fym if and only if d; > k for 1 <i <n.

(b) When k > m, the code ARS, x(,v) is an additive MDS code of length n and

dimension k over Fym if and only if the polynomials my(x), ma(x),. .., mu,(x)
are distinct and " d; > k for all subsets I of {1,2,...,n} with [I| = [£].
il

Proof. (a) Let k < m. To prove the result, we first assume that the code ARS,, (e, v)
is an additive MDS code of length n and dimension k over F,», which im-
plies that the map &, , is injective and that the Hamming distance of the code
ARS,, 1 (a,v) is equal to n — (%W +1l=n—-1+1=n.

Here we assert that d; > k for 1 < ¢ < n. To prove this assertion, we sup-
pose, on the contrary, that there exists an integer ¢ satisfying 1 < ¢ < n and
d¢ < k, which implies that my(z) € Fy[z]<. As the map &, , is injective, we
see that ¢ = &, (me(z)) = (vime(ar), vame(as), ..., vame(a,)) is a non-zero
codeword of ARS,, x(c, v). Since my(ay) = 0, we have wg(c) < n. This implies
that the Hamming distance of the code ARS,, (e, v) is less than n, which is a
contradiction. This shows that d; > k for 1 < ¢ < n.

Conversely, suppose that d; > k for 1 < i < n. Here one can easily observe that
the evaluation map &, , is injective, which implies that the additive GRS code
ARS,, i(a,v) has dimension k. We will now show that the code ARS,, (v, v)
is MDS. For this, it is enough to show that the Hamming distance of the code
ARS,, i (a,v) is n. To prove this, we suppose, on the contrary, that the Ham-
ming distance of the code ARS,, x(a,v) is less than n. This implies that there

exists a non-zero polynomial f(z) € Fy[x]; such that the corresponding code-

word ¢; = E,u(f(2) = (vif(ar),vaf(2),... . vuf(an)) € ARS,k(c,v) has
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Hamming weight wp(cf) < n. This implies that f(a;) = 0 for some integer ¢
satisfying 1 < ¢ < m. This implies that & > deg(f(z)) > deg(m;(z)) = d; for
some 7, which is a contradiction. From this, it follows that the code ARS,, (v, v)
is MDS.

(b) Let & > m. To prove the result, we first assume that the code ARS,, ;(c, v) is
an additive MDS code of length n and dimension %k over Fym, i.e., the Hamming
distance of the code ARS,, (v, v) is n — [£] + 1.

Here we first assert that the polynomials my(z), ma(x), ..., my(x) are distinct.
To prove this assertion, we suppose, on the contrary, that m;(x) = m;(z) for

some integer ¢ and j satisfying 1 <7 < 7 < n. Now let us define the polynomial
g(x) = my(x) [ [ me(),

where £ C {1,2,...,n}\{i,j} is such that |[£] = | £]| —2if £ is an integer, while
L] = | £] —1if £ isnot an integer. We note that g(z) is a non-zero polynomial

in F,[x]<,. This implies that ¢, = &,,(9(x)) = (vlg(al),UQg(ag), . ,vng(ozn))

is a non-zero codeword of ARS,, (v, v) with Hamming weight wy(c,) < n—[£7,
which is a contradiction. This shows that the polynomials my(z), me(z), ..., m,(z)

are distinct.

We next assert that > d; > k for all subsets I of {1,2,...,n} with |I| = [£].
To prove this assertié;[, we suppose, on the contrary, that there exists a subset
J of {1,2,...,n} such that |J| = [£] and > di < k. Here it is easy to see
that the polynomial h(z) = [] mi(z) € ]Fq[xz]jC and that ¢, = &,,(h(x)) is a
non-zero codeword of the coczlEeJARSnvk(a, v) with Hamming weight wg(cp) <

n — [£7, which is a contradiction. This shows that Y d; > k for all subsets [
il

of {1,2,...,n} with [I] = [£].

To prove the converse part, let us assume that the polynomials m, (z), ma(z), .. .,

my(z) are distinct and that Y d; > k for all subsets I of {1,2,...,n} with
il

n
11| = [£]. As k < " d;, we see that the evaluation map &, , is injective, which
i=1
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implies that the code ARS,, (c, v) is an additive code of length n and dimen-
sion k over F m. Further, it is easy to observe that the code ARS,, (o, v) has
Hamming distance n — [£7 + 1, and hence it is an MDS code.

This completes the proof of the theorem. O

As a consequence of the above theorem, we identify a class of additive MDS

codes within the family of additive GRS codes in the following corollary.

Corollary 8.4.1. Let v = (v, va,...,v,) € (Fjn)", and let o = (ay, an,...,0) €
[Fym, where no two elements among ay, g, . .., form a conjugate pair over Fy and

each o; has ezactly m distinct conjugates over F,. Then for 1 < k < nm, the code
ARS,, 1(a,v) is an additive MDS code of length n and dimension k over Fym.

Proof. Tt follows immediately from Theorem [8.4.1. m
The following example illustrates the above corollary.

Example 8.4.3. Let g =5, m =3, n =40 and k =5, and let & be a primitive ele-
ment of Fros. Let o = (€39, €4, ¢34 €47 ¢21 6 ¢42 16 ¢18 ¢94 ¢2 1l gld 48 ¢08 T
€99 €36 (13 (T3 ¢ BT cd Al €38 19 1T 3 8 69 c43 ¢49 ¢TA 63 12 £22 ¢9 c61 24
) e F, and letv=1=(1,1,...,1) be the all-one vector of length 40. By carry-
ing out computations in the Magma Computational Algebra System, we see that the
code ARS,, ;(a, 1) is an additive [40,5,39]-code over 195, and hence it is an MDS
code. It agrees with Corollary[8.4.1.

In the following theorem, we derive necessary and sufficient conditions under
which the code ARS, (o, v,00) is an additive MDS code of length n 4+ 1 and

dimension k over Fym.

Theorem 8.4.2. Let a = (a1, q,...,0,) € oo \Fy and v = (v1,0,...,v,) €
(Fpn)™, where aq, s, ..., ap are distinct. For 1 < i < n, let m;(z) denote the
minimal polynomial of o; over Fy, and let d; = deg(m;(z)). For 1 < k < i d; + 1,
the following hold. -

(a) When k < m, the code ARS,, (e, v,00) is not an additive MDS code over Fym.



Some new classes of additive MDS and almost MDS codes over finite
300 fields

(b) When k > m, the code ARS,, (e, v,00) is an additive MDS code of length n+1
and dimension k over Fym if and only if the polynomials my(x), ma(x), ..., mu,(x)
are distinct, k =1 (mod m) and > d; =k — 1 for all subsets I of {1,2,...,n}

il

with |I] = [£] — 1.

Proof. Proof of part (a) is trivial. To prove part (b), we first note that if > d; > k—1

il
holds for all subsets I of {1,2,...,n} with [I|] = [£] — 1, then Y d; > k for
jeJ
all subsets J of {1,2,...,n} with |J| = [£]. Now working in a similar manner

as in Theorem [8.4.1(b), we observe that the code ARS, ;(a,v,00) is an additive
MDS code of length n + 1 and dimension k over Fym if and only if the polyno-
mials mq(x), ma(x),...,m,(x) are distinct and > d; > k — 1 for all subsets I of
{1,2,...,n} with |I| = [£] —1. We further obserzveel, for all subsets J of {1,2,...,n}
with [J| = [£] — 1, that Y- d; < k — 2 when k # 1 (mod m), while Y} d; <k —1
when £ =1 (mod m). Frol;] this, the desired result follows. < O

As a consequence of the above theorem, we identify a new class of additive MDS

codes within the family of extended additive GRS codes in the following corollary.

Corollary 8.4.2. Let v = (vi,va,...,v,) € (Fym)", and let o = (ay,an,...,0) €
[, where no two elements among ay, g, . .., ay, form a conjugate pair over Fy and
each «; has exactly m distinct conjugates over F,. Then for 1 < k < nm + 1 and
k=1 (mod m), the code ARS, (v, v,00) is an additive MDS code of length n + 1

and dimension k over Fym.
Proof. Tt follows immediately from Theorem [8.4.2. O

In the following example, we construct an extended additive MDS GRS code to

illustrate the above corollary.

Example 8.4.4. Let ¢ =5, m =2, n =7 and k = 7, and let £ be a primitive
element of Fos. Let o = (£7,€9,&13,€4, €, €2 61), and let v = (3,2,1,1,1,1,1). By
carrying out computations in the Magma Computational Algebra System, we see that
the code ARS,, ;(a,v,00) is an additive [8,7,5]-code over Fos, and hence it is an
MDS code. It agrees with Corollary(8.4.2.
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By Theorem 5.3.3 of [53], we see that the dual code of a linear GRS code is
also a GRS code. However, the dual code of an additive GRS code need not be an

additive GRS code. The following example illustrates this.

Example 8.4.5. Let ¢ = 2, m = 4, n = 3 and k = 10, and let { be a primitive
element of Fig. Let us take a = (¢,¢3,¢%) € F3s and v =1 = (1,1,1). By carrying
out computations in the Magma Computational Algebra System, we see that the code
ARS,. 1 (a, 1) is an additive [3, 10, 1]-code over Fis and its dual code ARS,, x(cv, 1)+

is an additive [3,2,1]-code over Fig with a generator matriz

0 0 1
00 ¢
It is easy to see that ARS,, 1(a, 1)t # ARSnm—r(83, 2) for any choice of the vectors

B = (B, P2, 83) € Fig and z = (21,22, 23) € (Fis). This shows that the dual code
ARS, 1 (o, 1)t is not an additive GRS code.

Further, by Corollary [8.4.1, we see that if ay, g, . .., «, do not form a conjugate
pair over IF, and each o; has exactly m distinct conjugates over F,, then for any
v € (F;m)", the code ARS,, x(c,v) is MDS. In the following theorem, we make use
of this observation to identify a class of additive MDS GRS codes over [ m, whose
dual codes are also additive MDS GRS codes.

Theorem 8.4.3. Let n,k and m > 2 be integers satisfying 1 < k < nm — 1.
Let v = (v1,va,...,0,) € (Fyn)", and let o = (a1, g, ..., o) € Fin, where no two
elements among oy, v, . . ., oy, form a conjugate pair over F, and each o; has exactly
m distinct conjugates over F,. Then there exists a vector w = (wy,wa, ..., w,) €
(Fin)™ such that ARS,k(a,v)t = ARSpmm-r(e, w). As a consequence, the dual
code of the MDS code ARS,, i(cv,v) is an additive MDS GRS code.

Proof. To prove the result, let us consider the matrix

! 1 1]
A= ’ B (8.4.3)
Ck?m_z agm—? CYZm_2
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Let a; denote the i-th row of the matrix A for 1 <i < nm — 1. One can easily see
that the rows aj,as, ..., apm—1 of the matrix A are linearly independent over F,.
Now let & be the F,-linear subspace of Ff;m generated by ai,as, ..., Qpm_1 € F(’;m.
Clearly, ¢ is an additive code of length n and dimension nm — 1 over F,. Further,

since (-,-) : Fy x Fyw — Fy is a non-degenerate and symmetric bilinear form on
F7., we see, by Theorem [2.3.2, that dimg, (4*) = nm — dimg,(4) = 1. So there

q
exists a non-zero vector z = (21,22, ...,2,) € €+. That is, we have (z,q;) = 0 for

1 <1 <nm —1, or equivalently,

Trem(AzY) = 0. (8.4.4)

We next assert that zq,z2s,..., 2, all are non-zero. To prove this assertion, we
suppose, on the contrary, that z; = 0 for some i. Here without any loss of generality,
we can assume that ¢ = n, 7.e., z, = 0. In this case, we see that the matrix equation
(8.4.4) reduces to the following matrix equation:

21 0 1 1 e 1
~ Z9 0 ~ (03] (6D) cee Ap—1
Trom | A| . = | |, where A= !
Zn—1 0 e T
This implies that (21, 22,...,2,-1) € ‘gl, where € is the F-linear subspace of Fym !

generated by the rows of the matrix A. It is easy to see that dimp, (‘g) = (n—1)m,
which implies that ¢ = Fym ! and hence Gt = {0}. From this, it follows that z; =

zp =+ =z, =0, which is a contradiction. This shows that 21, z2,...,2, € Fym.

Next, we see that the additive code ARS,, (o, v) has a generator matrix G as
defined by (8.4.1). Further, let us define w = (wy, wa, ..., wy) = (v; 21,05 2, . . .,
v, 2,). We see that the additive GRS code ARS,, ym—x (@, w) has a generator matrix

wl w2 DR wn
w10 Wa 02 T WnOn
H =
wlo/lmm—k—l w2a721m—k:—1 L U)nOéZm_k_l
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It is easy to see that Tr,,,(GH') = 0, which implies that ARS, pm—r(a, w) C
ARS,, (o, v)*. Further, it is easy to see that

dimg, (ARS nm—k (o, w)) = dimg, (ARS, k(v v)) = nm — k,

which implies that ARS,, m—i(a, w) = ARS, x(a,v)t. By Corollary [8.4.1, we see
that the code ARS,, um—i(a, w) is MDS. This completes the proof of the theorem.
]

The following example illustrates the above theorem.

Example 8.4.6. Letqg="7,m =2,n =06 and k = 5, and let £ be a primitive element
of Fug. Let us take o = (£,£5, &1 €13 17 19 e FSy, and letv=1=(1,1,...,1) be
the all-one vector of length 6. By carrying out computations in the Magma Computa-
tional Algebra System, we see that the code ARS,, (e, 1) is an additive [6, 5, 4]-code
over Fy9 and its dual code ARS,x(a,1)* is an additive [6,7,3]-code over Fy9, and
that ARS,1(a, 1)t = ARS,um—i(a, w), where w = (£22,£36 €21 ¢35 4 €38). From
this, it follows that both the code ARS, x(a, 1) and its dual code ARS,, ;(a,1)* =
ARS  pm—i (o, w) are MDS, which agree with Theorem @

By closely looking at the proof of Theorem [8.4.3, we observe the following:

Corollary 8.4.3. Let A be the matriz as defined by (8.4.3). Then there exists
z € (Fpn)" satisfying Trqm(Az") = 0.

Jin and Xing [56] constructed some classes of linear MDS self-dual codes through
linear GRS codes. We extend this result and identify some classes of additive MDS
self-orthogonal and self-dual codes within the family of additive GRS codes in the

following theorem.

Theorem 8.4.4. Let n,k and m > 2 be integers satisfying 1 < k < "% Let

a = (a,ag,...,q) € Fym, where no two elements among ay, g, ..., a, form a
conjugate pair over Fy and each oy has evactly m distinct conjugates over F,. Let
2= (21,2,...,2,) € (Fym)" be such that Try,,(Az") = 0, where the matriz A is as
defined by , (such a vector z exists in (F}..)" by Corollary @) Let us sup-

pose that z; = w?, where w; € Fr for 1 <i <mn. Let us define w = (wy, wy, ..., wy).

77
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Then for 1 < k < ™%, the code ARS, (a,w) is an additive MDS self-orthogonal
code of length n and dimension k over Fgm. In particular, if nm is even and k = "3,
then the code ARS, (o, w) is an additive MDS self-dual code over Fm.

Proof. The desired result follows by applying Theorem|[7.3.1 and Corollary|8.4.1. [
As a consequence of the above theorem, we deduce the following:

Corollary 8.4.4. Let q be an even prime power, and let n, k and m > 2 be positive
integers satisfying n < W and k < "5 (here ¢ is the Euler phi function). Then
there exists an additive MDS self-orthogonal code of length n and dimension k over
Fym. In particular, when nm is even, there exists an additive MDS self-dual code of

length n over Fym.

Proof. To prove the result, we see that as n < w, there exist primitive elements
aq, o, ..., ap of Fgm such that no two elements among «;’s form a conjugate pair.
Let us take o = (ay, a,...,a,) € Fp.. Note that each a; has exactly m distinct
conjugates over Fy. Now by Corollary [8.4.3, we see that there exists a vector z =
(21,22, -, 2n) € (Fim)" satisfying Ty, (Az") = 0, where the matrix A is as defined
by . Since ¢ is even, we can write z; = w?, where w; € Fym for 1 <@ < n.

Now the desired result follows immediately by applying Theorem [8.4.4. O

In the following examples, we construct additive MDS self-orthogonal and self-
dual codes to illustrate Theorem [8.4.4.

Example 8.4.7. Let q = 3, m = 2 andn = 3, and let & be a primitive element of Fy.
Let a = (£,€%,8%) € F3, de., a1 =&, ag = &% and oz = £°. By carrying out computa-
tions in the Magma Computational Algebra System, we see that z = (£2,£2,£5) € Fy
satisfies Trym(Az") = 0, where the matriz A is as defined by . So let us take
w = (§,&,6%). Further, by carrying out computations in the Magma Computational
Algebra System, we see that the code ARS, 3(a,w) is an additive self-dual [3,3,2]-
code over Fg, while the code ARS,, 2(cv, w) is an additive self-orthogonal [3,2, 3]-code
over Fg. It is easy to see that both the codes ARS,, 3(a, w) and ARS,2(a,w) are
MDS. It agrees with Theorem [8.4.4.

Example 8.4.8. Let ¢ = 2, m =5 and n = 5, and let £ be a primitive element
Of IF132‘ Let us take o = (557575117537523) S Fg% i'e'7 ap = 557 Qg = 57 a3 = 5117
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ay = & and a5 = £23. By carrying out computations in the Magma Computational
Algebra System, we see that z = (£, &%, &%, ¢%0,€8) € F3, satisfies Try,(Az") =0,
where the matriz A is as defined by (8.4.3). So let us take w = (£'2,£%8,¢M,£0,¢%).
Further, by carrying out computations in the Magma Computational Algebra System,
we see, for 1 < k < 12, that the code ARS, (o, w) is an additive MDS self-
orthogonal code over Fso, which agrees with Theorem [8.4.4.

In the following theorem, we construct MDS ACD codes over F,» through addi-
tive GRS codes.

Theorem 8.4.5. Let a = (o, qy,...,ay,) € Fl., where no two elements among
aq, o, ..., ap form a conjugate pair over F, and each o, has exactly m distinct con-

jugates over Fy. Let z = (21, 22, .. ., 2n) € (Fpm)™ be such that Ty, (Az") = 0, where
the matriz A is as defined by (8.4.3), (such a vector z exists in ()" by Corol-
lary @) Neat let a(x) and b(x) be two coprime polynomials in F,[z] satisfying
deg(a(z)) = k, deg(b(z)) = nm — k, and a(e;)b(cy)z; = wi, where w; € Flpn for 1 <

i <n. Then for w'® = ( w1 _Ww2 W ) and w® = (—wl w2 Wn ) in

a(a1)? a(az)’ """ 7 a(am) bla1)? blaz)’ """ blan)

(Fym )", the following hold.
(a) ARS . k(c, w D) = ARS . pm—k(cr, w®).
(b) ARS1(c, w' D) N ARS . pm—i(c, w®) = {0}.

As a consequence, the code ARS,, 1(a,w'®) is an ACD MDS code of length n and

dimension k over Fym.

Proof. Working as in Theorem 9 of Jin [55] and by applying Corollary [8.4.1, the

desired result follows. O
The following example illustrates the above theorem.

Example 8.4.9. Let ¢ = 2, m = 4, n = 3 and k = 5, and let £ be a primi-
tive element of Fig. Let a = (£7,63,€), e, ay = €7, ap = &3 and a3 = €. Let
a(x) = 2> +x+1 and b(z) = 27 + x + 1 € Fyfx]. Note that a(z) and b(z) are
two coprime polynomials in Fy[z] with deg(a(x)) =5 and deg(b(zx)) =nm —k =T.
By carrying out computations in the Magma Computational Algebra System, we see
that z = (£°,£191) € (F16)? satisfies Trym(AzY) = 0, where the matriz A is as
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defined by ([8.4.3). This implies that w® = (£",1,6%) and w® = (£6,£10,¢10),
Further, by carrying out computations in the Magma Computational Algebra Sys-
tem, we see that the code ARS,i(c,w'@) is an additive [3,5,2]-code over Fig and
that the code ARSnm—r(c,w®) is an additive [3,7,2]-code over Fig, and hence
these are MDS codes. We also see that ARSn,k(oz,w(a))L = ARSn,nm_k(a,w(b))
and ARS,, i (v, w®) N ARSn,nm,k(a,w(b)) = {0}. It agrees with Theorem @

8.5 Additive generalized twisted Reed-Solomon

codes over finite fields

Recently, Beelen et al. [9HI1] introduced and studied (linear) twisted Reed-
Solomon (TRS) codes over finite fields and showed that these codes are not MDS in
general. They also identified several classes of linear MDS codes within the family
of TRS codes. In this section, we will introduce and study a new class of additive
codes over finite fields, viz. additive generalized twisted Reed-Solomon (additive

GTRS) codes, which is an extension of linear TRS codes over finite fields.

To define these codes, we assume, throughout this section, that n, £ and m >
2 are integers satisfying 1 < k& < nm. Let ¢ be a positive integer, and let t =
(t1,to, ..., t0) €{1,2,...,nm — k}* and h = (hy, ha, ..., hy) € {0,1,...,k — 1} be
such that the pairs (hy,t1), (ho,t2), ..., (he, ty) are distinct. Let n = (91,m9,...,7) €
IFf;. The positive integer ¢ equals the number of twists, the vector t is called the
twist vector, the vector h is called the hook vector and the vector i is called the
coefficient vector. Then the set &, (¢, h,n) of (n,k,t, h,n)-twisted polynomials

over [, is defined as

k-1 ¢
Pkt h,m) = {Z a;xt + Z njahjxk_“rtj ca; € ]Fq} CF,[z].
=0 j=1

By Lemma 1 of Beelen et al. [10], we see that the set &, x(t, h,n) of (n,k,t, h,n)-

twisted polynomials over I, is a k-dimensional subspace of F,[z] over F, with a basis
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set {po(z),p1(x),...,pr_1(x)}, where

¢
pi(z) =o' + Z nz" T for 0 < i <k — 1. (8.5.1)

j=1
hy=i

Now to define additive GTRS codes, let a = (a1, ay,...,a,) € Fyn \ Fy and v =
(v1,v2, ..., 0,) € (F7)", where a1, ay, ..., a,, are distinct. It is easy to see that the

evaluation map Eny 1 P i(t, h,n) — Fr., defined as

Fan(f(z)) = (vlf(al),v2f(a2), .. ,Unf(an)) for all f(z) € Zux(t.h,n),

is an F,-linear vector space homomorphism, and hence its image E, (% (t, h, 1))
is an F-linear subspace of Fy... The additive generalized twisted Reed-Solomon (ad-
ditive GTRS) code of length n over F,m with £ twists, evaluation points ay, @, . .., ay,

and column multipliers vy, va, ..., v, is defined as

Inp(a,v,t,h,m) = Za,v(,@mk(t,h,n))
= {(’Ulf(Oél),Ugf(Oéz), s ,Unf(@n)) : f([L’) € ‘@n,k(tv h?”)}'

In particular, if v =1 = (1,1,...,1) is the all-one vector of length n, then the addi-
tive GTRS code .7, x(a, v, t, h,m) is called the additive twisted Reed-Solomon (addi-
tive TRS) code over F,m with ¢ twists and evaluation points oy, as, ..., a,. Further,
the extended additive generalized twisted Reed-Solomon (extended additive GTRS)
code of length n + 1 over F,m with ¢ twists, evaluation points oy, as, ..., ®,, 00 and

column multipliers vy, vs, ..., v,, 1 is defined as

Inx(a,v,t, h,m, 00)
= {(Ulf(o‘l)aUQf(OQ)v cee 7Unf(an)7f(oo)) : f(ZU) € yn,k(tv hﬂ?)} )

where f(00) is defined as the coefficient of z*~1*% in f(z) for each f(z) € P, x(t, h,n)
with ty = fg?gg{tj :m; # 0}. In particular, if v = 1 = (1,1,...,1) is the all-one
vector of length n, then the extended additive GTRS code 7, x(«, v, ¢, h,n,00) is
called the extended additive twisted Reed-Solomon (extended additive TRS) code

over F,» with ¢ twists and evaluation points a1, as, ..., a,,00. Note that additive
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GTRS (resp. extended additive GTRS) codes coincide with additive GRS (resp.

extended additive GRS) codes when nn = (0,0,...,0). So from now on, we assume
that 11,72, ..., n are non-zero elements of F,. We also assume, throughout this sec-
tion, that no two elements among a1, as, . .., o, form a conjugate pair over F, and

that each «; has exactly m distinct conjugates over F,.

Proposition 8.5.1. Let v = (vi,va,...,v,) € (F7n)", and let a = (a1, aa, ..., ) €
Fym, where no two elements among oy, g, . .., form a conjugate pair over Fy and
each o; has exactly m distinct conjugates over Fy. Then for 1 < k < nm, the code
Tnrla,v,t, h,m) is an additive code of length n and dimension k over Fym with a

generator matriz

U1Po(041) V2P0 (a2) T Unpo(an)
g Ulpl(al) V2P1 (042) T Unpl(an)
_U1pk—1(a1) Uzpk—l(OQ) ce Unpk:—1(an)_

where the polynomials po(z), p1(x), ..., pr—_1(x) are as defined by (8.5.1).

Proof. Working in a similar manner as in Proposition 1 of Beelen et al. [10] and by
applying Theorem 3.7.4 of [53], the desired result follows. O

We will now identify several classes of additive GTRS and extended additive
GTRS codes over Fgm, which are either MDS or almost MDS. Towards this, we
assume, throughout this section, that ¢ = 1 (unless specified otherwise), t = ¢; = 1,
h=h =he{0,1,2,...,k—1} and p = = n € F}. In this case, we see that the
set P, k(1, h,n) of (n,k,1, h,n)-twisted polynomials over F, is given by

k—1
Pni(l,h,n) = {Z a;xt + nape® a; € Fq} )
i=0
In the following theorem, we consider the case when m does not divide k, and we
identify a class of additive MDS codes of length n and dimension k over F,» within
the family of additive GTRS codes with one twist.
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Theorem 8.5.1. Let n, k and m > 2 be integers such that 1 < k < nm and m does
not divide k. Let v = (vi,va,...,v,) € (Fy)", and let o = (a1, ;.. ., ) € Fpi,
where no two elements among oy, qq,...,q, form a conjugate pair over F, and
each «; has exactly m distinct conjugates over Fy. Let { = 1, t; = 1 and h €
10,1,2,...,k — 1}. Then for each n € F;, the code T, 1(a,v,1,h,n) is an additive
MDS code of length n and dimension k over Fym.

Proof. By Proposition @, we see that the additive code .7, x(a,v,1,h,n) has
dimension k. We next assert that the Hamming distance of the code .7, x(a, v, 1, h,n)
isn—[L£]+1.

To prove this assertion, let ¢y = £, (f(x)) = (vif(on),vaf (a2),. .., v, f(ay)) be
a non-zero codeword of .7, (a, v, 1, h,n) corresponding to the twisted polynomial

f(x) € Z,k(1, h,n) with Hamming weight wg(cs) = s. This implies that precisely

n — s coordinates, say 4i-th, io-th, ..., i,_s-th, of the codeword c; are zero, which
implies that f(«o;) = 0 for j € {i1,ia,...,i,—s}. Now by applying Theorem 3.7.4
of [53], we see that if f(a;) = 0, then f(af) = f(oz;f) = ... = f(a?mfl) =0,

where j € {iy,i2,...,i,_s}. From this, it follows that the polynomial f(x) has at

least m(n — s) distinct roots. Since deg(f(z)) < k, we must have m(n — s) < k,

which gives n — [£] < s. From this and by applying Theorem [8.2.2, we see that the
k

Hamming distance of the code .7, x(a,v,1,h,n) is n — [-X] + 1, and hence it is an

MDS code. L
The following example illustrates the above theorem.

Example 8.5.1. Let g =11, m =2, n =155 and k =5, and let & be a primitive el-
ement of Fig1. Leth =1 andn =2 € Fyy. Let ov = (€52, ¢18, €9, €30 €5 €20 €76 ¢T3 ¢4
541 561 597 549 674 525 57 53 531 542 514 539 515 698 543 537 587 562 6109 553 554 628
538 551 517 565 519 585 640 513 526 586 §63 527 532 575 521 564 58 510 529 550 5 56 52
16) ¢ F35,, and let v =1 = (1,1,...,1) be the all-one vector of length 55. By car-
121
rying out computations in the Magma Computational Algebra System, we see that
the code I, x(c,1,1,1,2) is an additive [55,5, 53|-code over F191, and hence it is an
MDS code. It agrees with Theorem |8.5.1.

Theorem|8.5.1 shows that no two elements among o, s, . . . , a,, form a conjugate

pair over [F, and each a; has exactly m distinct conjugates over F, are sufficient
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conditions for the code 7, i(a,v,1,h,n) to be an additive MDS code of length n
and dimension k over Fym. The following example illustrates that these conditions

on the evaluation points a;’s are not necessary for the additive code .7, x(a, v, 1, h,n)
to be MDS.

Example 8.5.2. Letq=3, m=2,n=4, k=3, h=1, andn =2 € F3. Let & be
a primitive element of Fy. Let us take o = (£,6%,65,2) € Fg andv =1=(1,1,1,1).
Note that the evaluation point 2 has exactly one conjugate over F3. By carrying out
computations in the Magma Computational Algebra System, we see that the code
Ink(a, 1,1, h,n) is an additive [4, 3, 3]-code over Fy, and hence it is an MDS code.

In the following theorem, we assume that m does not divide k, and we identify a
class of k-dimensional additive codes over [Fym that are either MDS or almost MDS

within the family of extended additive GTRS codes with one twist.

Theorem 8.5.2. Let n, k and m > 2 be integers such that 1 < k < nm and m does
not divide k. Let v = (vi,va,...,v,) € (Fi)", and let o = (a1, q, ..., ) € Fi,
where no two elements among ai,as,...,a, form a conjugate pair over F, and
each o; € Fym has exactly m distinct conjugates over Fy. Let { = 1, t; = 1 and
h €{0,1,2,...,k — 1}. Then for any n € F;, the code (v, v,1,h,m,00) is an

additive code of length n + 1 and dimension k over Fym with Hamming distance

k
dH(%ﬁ(Oé,U, 17 hﬂ]’ OO)) >n+1- ’V_-‘ :

m
As a consequence, the code T, (o, v,1,h,n,00) is either MDS or almost MDS.

Proof. Working in a similar manner as in Theorem [8.5.1 and by applying Theorem
8.2.2, the desired result follows immediately. O

The following two examples illustrate the above theorem.

Example 8.5.3. Letq=7,m=2,n=21, k=5 h=2,andn=1¢€ F;. Let§ be a
primitive element of Fag. Let o = (€25, €13, ¢4 ¢ €9, €33 €3 ¢34 11 €26 ¢19 ¢10 ¢18 20
ET €5 &1 €27 €6 €2 €1 and let v =1 = (1,1,...,1) be the all-one vector of length
21. By carrying out computations in the Magma Computational Algebra System, we
see that the code T, (a,1,1,2,1,00) is an additive [22,5,19]-code over Fy9, and
hence it is an almost MDS code. It agrees with Theorem [8.5.2.
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Example 8.5.4. Let q =3, m =2, n =3,k =3, h =0, andn = 2 € Fs.
Let & be a primitive element of Fy. Let a = (£,£2,8%), and let v = 1 = (1,1,1).
By carrying out computations in the Magma Computational Algebra System, we see
that the code T, x(a,1,1,0,2,00) is an additive [4,3,3]-code over Fy, and hence it
is an MDS code. It agrees with Theorem[8.5.2.

In a recent work, Huang et al. [51] derived necessary and sufficient conditions
under which a linear GTRS code with one twist is either MDS or almost MDS. In
the following theorem, we assume that m divides k, and we derive necessary and
sufficient conditions under which the additive GTRS code 7, x(a, v, 1, h,n) is either
MDS or almost MDS.

Theorem 8.5.3. Let n,k and m > 2 be positive integers such that 1 < k < nm
and m divides k. Let £ = 1, t; = 1, h € {0,1,2,...,k — 1}, and let n € F}.

Let v = (v1,v2,...,v,) € (Fin)", and let a = (a1, qz,...,a,) € Fi., where no
two elements among o, @, ...,y form a conjugate pair over F, and each o; has
exactly m distinct conjugates over F,. For each subset I of {1,2,...,n}, let us define

R = {a?j ci €1l and 0 < j <m — 1}. Further, let us define the set

| k
L = {(—1)“ S Iw: 1cii2....n} with|1] = —}. (8.5.2)
J|=k—h

Then the following hold.

(a) The Hamming distance of the code T, (e, v,1,h,n) is at least n — %,

(b) The code T, (v, v,1,h,n) is MDS if and only if n=* ¢ Zip.
(¢) The code T, ;(a,v,1,h,n) is almost MDS if and only if 1= € Zjp.

Proof. (a) By Proposition [8.5.1, we see that the code 7, x(c, v, 1, h,n) has dimen-

sion k. Further, working in a similar manner as in Theorem |[8.5.1, we see that
k

m"

the Hamming distance d of the code 7, x(a, v, 1, h,n) satisfies d > n —

(b) To prove (b), let us first assume that the code 7, (v, v,1,h,n) is MDS, i.e.,
d=n— % + 1. Here we assert that n=' ¢ 2 5.
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To prove this assertion, we suppose, on the contrary, that n=' € 2, i.e., there
exists a subset I of {1,2,...,n} such that |I| = £ and

m

=0y I e

JCRy peJ
|J|=k—h

Now consider the polynomial g(z) = n[[(x — a;)(x — o) -+ (z — afmjl). It is
i€l
easy to see that the polynomial g(z) € &, (1, h,n) and that the codeword

Cqg = Fan(9(x)) = (v1g(ar1),v29(q2), ..., vng(an)) € T i(a,v, 1, h,n)

has Hamming weight n — % This implies that the code 7}, (o, v, 1, h,n) is not

MDS, which is a contradiction.

Conversely, let us assume that = ¢ 2} ,. We assert that the code 7, (o, v, 1, h,n)
is MDS. To prove this, we suppose, on the contrary, that the code .7, x (v, v, 1, h, 1)

is not MDS, which implies that there exists a non-zero codeword

¢ = Fan(2(2)) = (12(a1), v22(a2), ..., v2(ay))

of the code 7, (v, v,1, h,n) corresponding to the twisted polynomial z(x) €

Pnr(1,h,n) with Hamming weight wy(c,) < n — % This implies that the
k-1

polynomial z(z) = Y aa’ + napa® € P, (1, h,n) has at least £ roots among
i=0

aq,Q9, ..., a,. Now by applying Theorem 3.7.4 of [53], we see that a;, # 0, and

that

2(z) =nap [J(@— )@ —af) -+ (z — ")

i€l
for some subset Iy of {1,2,...,n} with |Io| = £. Since z(z) € 2, (1, h,n), we

note that the coefficient of z* is equal to 7 times the coefficient of z" in z(x).

U Co VA || 7

JCRy, peJ
|J|=k—h

This gives

This implies that = € 2}, which is a contradiction.
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(c) It follows immediately from parts (a) and (b).

On taking h = k — 1 in the above theorem, we deduce the following;:

Theorem 8.5.4. Let n,k and m > 2 be integers such that 1 < k < nm and m
divides k. Let v = (v1,vq,...,0,) € (Fyn)", and let o = (a1, 09,...,0,) € Fpu,
where no two elements among oy, aa, ..., o, form a conjugate pair over F, and each
«; has exactly m distinct conjugates over F,. Then the code I, k(co,v, 1,k —1,7) is

an additive MDS code of length n and dimension k over Fgm if and only if
7]_1 7£ - Z Trq,m<04i)
iel
for all subsets I of {1,2,...,n} with |I| = £, where Try,, : Fgn — F, is the trace
map.
Proof. Tt follows immediately on taking h = k — 1 in Theorem [8.5.3. O]

On taking A = 0 in Theorem [8.5.3, we deduce the following:

Theorem 8.5.5. Let n,k and m > 2 be integers such that 1 < k < nm and m
divides k. Let v = (vi,vq,...,0,) € (Fyn)", and let a = (a1, ay,...,0,) € Fpu,
where no two elements among oy, aa, ..., o form a conjugate pair over F, and each
a; has exactly m distinct conjugates over F,. Then the code , x(c,v,1,0,7) is an
additive MDS code of length n and dimension k over Fom if and only if

7t # (D] Vo)
icl
for all subsets I of {1,2,...,n} with |I| = £ where Ny, : Fi — F is the norm

map.

Proof. On taking h = 0 in Theorem [8.5.3, we get the desired result. [

We will now apply Theorems [8.5.4 and [8.5.5 to identify new classes of additive
MDS codes within the family of additive GTRS codes when ¢ = 1, t; = 1, h €
{0,k — 1} and n € F;. Towards this, we see, by Theorem 1 of Cohen [33], that if
m > 3 and (¢,m) # (4,3), then for every A € F,, there exists a primitive element
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p € Fym such that T'r,,,,(8) = A. Moreover, if either m = 2 or (¢,m) = (4, 3), then
for every non-zero element A\ € F,, there exists a primitive element 8 € F,m such
that Tr,m(8) = A\. We will apply this result to identify a class of additive MDS
codes of length n and dimension k over Fy» within the family of additive GTRS

codes with one twist when m divides k.

Theorem 8.5.6. Let n,k and m > 2 be integers such that 1 < k < nm and m
divides k. Let t; = 1, h = k — 1, and let v = (v1,v2,...,v,) € (Fim)". Let H be a
proper subgroup of (F,,+), and let n=' € Fy \ H. Let o = (a1, 9,...,0p) € Fpu,
where oy, ag, . .., o, are distinct primitive elements of Fym such that no two primitive
elements among «;’s are conjugates over F, and Try (o) € H. Further, when either
m =2 or (qg,m) = (4,3), suppose that ay, as, ..., «, satisfy the additional condition
that Try.m(o;) # 0 for eachi. Then the code T, ;(a,v,1,k—1,n) is an additive MDS

code of length n and dimension k over Fym.

Proof. Tt follows immediately by applying Theorem 1 of Cohen [33] and Theorem
854 O

The following example illustrates the above theorem.

Example 8.5.5. Let g =16, m =2, n =36, k=6 and h = 5. Let ( be a primitive
element of F1g, and let € be a primitive element of Fosg. Let H = {0,1,¢, (%, 14+¢, ¢+
C%, 14C%, 1+C+C%} be a proper subgroup of the additive group of Fig, and letn = (' €
FlG- Let o = (556 5112 514 528 5239 5206 5241 573 58 € 5223 5157 5227 541 5103 54 574

5143 5127 52 637 6191 5124 559 552 519 5208 523 592 576 5137 5104 5139 538 5226 5161)
€ F3, and let v=1= (1,1,...,1) be the all-one vector of length 36. By carrying

out computations in the Magma Computational Algebra System, we see that the code
TIni(a,1,1,5,¢*?) is an additive [36, 6, 34]-code over Fos, and hence it is an MDS
code. It agrees with Theorem[8.5.6.

As a consequence of Theorem [8.5.6, we deduce the following:

Corollary 8.5.1. Let ¢ = p", where p is a prime number and r is a positive integer.

r—1

Letn and m > 2 be integers satisfying 1 < n < p"~ —¢€, where e = 1 if either m = 2
or (q,m) = (4,3), while ¢ = 0 otherwise. For any integer k satisfying 1 < k < nm
and m divides k, there exists an additive GTRS code of length n and dimension k

over Fym, which is MDS.
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Proof. Let H be a proper subgroup of the additive group of F, of order p"~'. Let
g1, 92, - - -, gn, be distinct elements of H. When either m = 2 or (¢,m) = (4, 3), we
also assume that each g; # 0. Now for 1 < ¢ < n, we see, by applying Theorem 1 of
Cohen [33], that there exists a primitive element a; € Fym such that T, (a;) = g;.
Note that oy, aq,. .., a, are distinct primitive elements of Fym, which do not form
conjugate pairs over F,. Since H is a proper subgroup of the additive group of F,,
there exists an element 7 € F} such that n~' € F; \ H. Let v = (v1,v,...,v,) €
(F}n)™ be fixed arbitrarily. Now by applying Theorem @, one can easily see that
the code 7, (o, v, 1,k —1,7n) is an additive MDS code of length n and dimension k

over Fym. O

From this point on, we assume, throughout this section, that ¢ > 3 (unless

specified otherwise). Let Z;.._; denote the unit group of the ring Zgm _; of integers

*

modulo ¢™ — 1. It is well-known that the group Z.._

1 is of order ¢(¢™ — 1), where
¢ is the Euler phi function. Further, when ¢ > 3, we observe that for each element
a € Zym_y, there exists an integer j satisfying 1 < j < ¢ — 2, ged(j,¢—1) =1 and
a =j (mod g—1). Now for an integer j satisfying 1 < j < ¢—2 and ged(j,q—1) =1,

let us define the set
Sj={a€Z_y:a=j(modq—1)}. (8.5.3)

One can easily see that

q—2
Ligm 4 = U S; (a disjoint union).
=1
gcd(j],q—l):l
In the following lemma, we show that each of the ¢(q — 1) sets S;’s have the same

cardinality.

Lemma 8.5.1. Let ¢ > 3 be a prime power, and let m > 2 be an integer. For any

integer j satisfying 1 < j < q—2 and ged(j,q — 1) = 1, we have |S;| = %.

Proof. To prove the result, we first note that the set & = {a € Lym_q :a =1
(mod g— 1)} is a subgroup of Z;,._;. We next assert that for each integer j satisfying
1<j<q—2andged(j,q—1) =1, the set S; is a coset of Sy in Z}n ;.
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To prove this assertion, let 7 be a fixed integer satisfying 1 < 7 < ¢ — 2 and
ged(4,q — 1) = 1. Now let us consider the arithmetic progression (A.P.):

...... J—=20q—=1),7—(q—=1),5,7+(q—=1),7+2(¢—1),...... (8.5.4)

By Dirichlet’s Theorem on primes in A.P., we see that the A.P. (8.5.4) contains
infinitely many primes. We can choose a prime number p; such that ged(p;,¢"—1) =
1 and p; = j (mod g—1). That is, there exists an element p; € S;. Further, one can
casily observe that §; = p;S1, which proves the assertion.

From the above assertion, we see that |S;| = |S;] for all j satisfying 1 < j < ¢—2
and ged(j, ¢ — 1) = 1. This implies that

¢(q" = 1) = |Zgpm | = |S1] x &g — 1),
from which the desired result follows immediately. O]

Now let € be a primitive element of Fym. Note that the set G = {¢" i € Lim 1}
consists of all the primitive elements of Fym. We further observe, for a,b € Zjm_,
that N, ,,,(€%) = N,m(€) if and only if both a,b € S; for some j. Accordingly, the

set G can be partitioned as

q—2
g= U G; (a disjoint union),
j=1
where G; = {£* : a € S;} for each j. In the following theorem, we assume that m
divides k, and we derive some sufficient conditions under which there exists n € [y

such that the code 7, (o, v,1,0,n) is MDS.

Theorem 8.5.7. Let g > 3 be a prime power, and let n, k and m > 2 be integers such

(g™ —1)
thatl <n < ol

and let « = (a1, g, ..., Q) € Fym, where aq, g, ..., o are distinct elements of the

, 1 <k <nm andm divides k. Let v = (v, va,...,v,) € (Fjm)",

set G; for some j, which do not form conjugate pairs over Fy, (such a choice of a;’s
#(g™—1)
me(q—1)
Inx(a,v,1,0,1m) is MDS.

18 possible, asn < ). For 1 <k < nm, there ezists n € [, such that the code
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Proof. To prove the result, we first note that N, ,,,(a1) = Nym(aa) = -+ = Nym(an,).
Now by applying Theorem @, we see that the code 7, x(a,v,1,0,n) is MDS if
and only if n=! # (—1)’“(Nq,m(a1))%. Such an element 7 exists, as ¢ > 3. This proves
the theorem. O

The following example illustrates above theorem.

Example 8.5.6. Letq =3, m=5,n=22,k=20,h=0,andn =2 € F3. Let£ be a
primitive element of Fogs. Let v = (€13, €53, €67 ¢ €131 1T €79 ¢95 ¢T1 ¢35 ¢15 (23 125
£25 €47 €19 €29 (161 dl 61 631 €Ty € T2, and let v =1 = (1,1,...,1) be the all-
one vector of length 22. Note that €13, €53, €67 ¢ €181 ¢17 19 ¢95 ¢TL ¢35 (15 ¢ (125
E25 AT ¢49 29 (161 ¢dl ¢Gl 31 eT e G\ By carrying out computations in the Magma
Computational Algebra System, we see that the code T, ;(c,1,1,0,2) is an additive
22,20, 19]-code over Fays, which is MDS. It agrees with Theorem[8.5.7.

In the following theorem, we consider the case when m divides k£, and we derive
some sufficient conditions under which there exist n € F; and o € Fj» such that the
code T, (o, v,1,0,n) is MDS.

(g™ —1) J
m(¢p(g—1)d’

and let a be an integer satisfying 1 < a < ¢(q — 1). Let n, k be integers such that

Theorem 8.5.8. Let ¢ > 3 be a prime power, m > 2 be an integer, w = L

(a—Nw<n<aw, 1 <k <nm and m divides k. Let v = (vi,va,...,0,) € (Fyn)".
Further, if

g—1> min{(% - 1)a71,(w+ )+t }(min{%,n— (a— 1)w} + 1)

holds, then there exist n € F, and o € Fym such that the additive GTRS code
Inx(a,v,1,0,m) is an MDS code of length n and dimension k over Fm.

Proof. To prove the result, let b1,0bs,...,b, be integers satisfying 1 < b; < ¢ — 2
and ged(bj, ¢ — 1) = 1 for 1 < j < a. Let us choose o = (au, q,...,0p) € Fpn,
where o, a9, ..., oy, are distinct elements of Fym that do not form conjugate pairs
over Fy, ayj-1)4i € Gp; for 1 < j <a—Tand 1 <i <w, and aye—1)+s € G, for

1 <s<n-(a—1)w. Now consider the set

a

. k
Y = {(—1)’“1_[ (qu(aw(j_l)ﬂ))ej :0<Y; < min{g,w} for1<j<a-1
j=1
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k
and 0 </, < min{—,n —(a— 1)w}}.
m
It is easy to see that
: k a—1 a—1 : k
Y] < mm{(——i—l) ,(w+1) }(mm{—,n— (a — 1)w} —|—1) <q-—1
m m
We next observe that the set

, k
Lo = {(—1)kHNq,m(ai) 1 C{1,2,...,n} with |I| = E} cy,
el
which implies that |2} | < [Y| < ¢ — 1. Thus there exists an element € F; such
that n=! ¢ 2%.0. Now the desired result follows by applying Theorem [8.5.5. m

The following example illustrates the above theorem.

Example 8.5.7. Let ¢ = 25, m = 2, n = 23 and k = 4. Let ¢ be a primitive
element of Fos, and let € be a primitive element of Feos. Let n = (2 € Fos. Let o =
(€97, €289 ¢193 U5 @241 21T ¢ (265 (T3 ¢313 (121 @9 ¢260 (341 (197 (173 365 (53 ¢317

149 €293 €245 ¢5) ¢ T2, and letv =1 = (1,1,...,1) be the all-one vector of length
§ 625 g
23. We observe that the set'Y (as defined in the proof of Theorem|8.5.8) is given b

g )

{1,¢1Y,¢,4,¢2,¢5,2,(7, ¢19%. Further, we note that the elements €97, €289 £193 ¢145 ¢241
5217 5 6265 573 6313 5121 549 c gl while the elements 5269 6341 6197 5173 5365 553 5317
EH9 €293 €245 5 G By carrying out computations in the Magma Computational
Algebra System, we see that the code T, (a,1,1,0,(?') is an additive [23, 4, 22]-code
over Fgo5, and hence it is an MDS code. It agrees with Theorem |8.5.8.

In the following theorem, we assume that k is a multiple of m, and we identify a
class of additive almost MDS codes of length n+1 and dimension &k over Fym within
the family of extended additive GTRS codes with one twist.

Theorem 8.5.9. Let n,k and m > 2 be integers such that 1 < k < nm and
m divides k. Let { = 1, t, = 1, h € {0,1,2,...,k — 1}, and let n € F;. Let
v = (v1,02,...,0,) € (Fyn)", and let o = (a1, 9,...,0,) € Fpn, where no two
elements among oy, g, . ..,q, form a conjugate pair over F, and each oy has ex-
actly m distinct conjugates over F,. Then the additive code T, (o, v,1,h,n,00) is

an almost MDS code of length n 4+ 1 and dimension k over Fm.
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Proof. Working in a similar manner as in Theorem @(a) and by applying Propo-
sition @, we see that the code 7, x(o, v, 1, h,n, 00) is an additive code of length
n+ 1 and dimension k over F m with Hamming distance dy (7, (o, v,1, h,n,00)) >
n — % + 1. Now to show that the code 7, x(c,v,1,h,n,00) is almost MDS, it is
enough to show that dy (.7, x(a,v,1,h,n,00)) <n — % + 1.

To prove this, let m;(x) be the minimal polynomial of «; over F, for 1 <i <mn.
Now we shall distinguish the following three cases: (i) h =0, (ii) 1 < h < k —m,
and (ili) k—m < h <k —1.

(i)

(i)

(i)

Let h = 0. Here let us define g(z) = = [] my(x), where L is a subset of
teL

{1,2,...,n} with |[L]| = Wﬁl — 1. It is easy to observe that g(x) € &, (1, h,n).
This implies that ¢, = (v1g9(q),v29(a2),. .., v,9(ay), g(c0)) is a non-zero

codeword of 7, (v, v,1,0,n,00) with Hamming weight wy(c,) =n— £ + 1.

Next, let 1 < h < k — m. Here let I be any arbitrary subset of {1,2,...,n}
with |I| = £ — 1, and consider the polynomial f;(z) = [] mi(x).

el

Now if the coefficient of 2" in the polynomial f;(z) is zero, then we see that
fi(x) € P i(1, h,n), which implies that ¢y, = (v1 fr(a1), vafi(aa), ..., vnfr(ow),
f1(c0)) is a non-zero codeword of .7, x(cv, v, 1, h,n, 00) with Hamming weight
wi(ey) =n—£+1.

On the other hand, if the coefficient of z" in the polynomial f;(x) is non-
zero, then we can choose a non-zero polynomial s;(x) = so + s;x + -+ +
Sm—12™" " € F,[z] such that the polynomial b;(z) = s;(z) f1(z) € P, k(1, h, 1),
which implies that ¢,, = (v1br(aq), vebr(as), ..., v,br (), br(c0)) is a non-zero

codeword of .7, x(a, v, 1, h,n, 00) with Hamming weight wg(cp,) =n — % +1.

Finally, when £ — m < h < k — 1, let us define the polynomial z(z) =
[T m;(z), where J is a subset of {1,2,...,n} with [J| = £ — 1. One can
jeg

easily see that the polynomial z(z) € &, x(1,h,n), which implies that ¢, =
(v1z(aq), v2z(ag), ..., v2(ay), 2(00)) is a non-zero codeword of 7, i (v, v, 1, h,

1, 00) with Hamming weight wy(c.) =n — £ + 1,

On combining the above cases, we get dy (T, x(a,v,1,h,n,00)) <n — % + 1, which

completes the proof of the theorem. n
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In the following theorem, we construct additive self-orthogonal codes over [Fym

through additive GTRS codes with ¢ twists.

Theorem 8.5.10. Let ¢ > 2 be a prime power, and let n,k and m > 2 be pos-

itive integers satisfying k < "5t Let a = (au, g, ..., ap) € Fpm, where no two
elements among oy, g, ..., q, form a conjugate pair over F, and each oy has ex-
actly m distinct conjugates over F,. Let 2 = (21, 2,...,2,) € (Fiw)" be such that

Trqm(AzY) =0, where the matriz A is as defined by (8.4.3), (such a vector z exists
m (F;m)" by Corollary |8.4.5). Let us suppose that z; = w?, where w; € Fym for
1<i<n. Lett=(t1,ts,..., ;) € {1,2,...,nm—k}" be such that 2k +t;+t; < nm
for 1 <i,j5 </l Let h = (hy,hy,....,he) € {0,1,....k =1}, n = (n,m2,...,m) €
(FZ)Z, and let w = (wy,we, ..., wy,). Then the code T, (o, w,t,h,m) is an additive

self-orthogonal code of length n and dimension k over Fgm.

Proof. The desired result follows immediately by applying Theorem|7.3.1 and Propo-
sition R.5.1. n

In the following corollary, we construct additive self-orthogonal codes over [Fym

that are either MDS or almost MDS through additive GTRS codes with one twist.

Corollary 8.5.2. Let ¢ > 2 be an even prime power, and let n,k and m > 2 be
positive integers satisfying n < w and k < %‘2 Then the following hold.

(a) When m does not divide k, there exists an additive MDS self-orthogonal code

of length n and dimension k over F m.

(b) When m divides k, there exists an additive self-orthogonal code of length n and
dimension k over Fym, which is either MDS or almost MDS.

Proof. To prove the result, let us choose a = (ay,aq,...,0p) € (Fzm)”, where
aq,Q, ..., 0, are primitive elements of F,m that do not form conjugate pairs over
F,. By Corollary @, we see that there exists a vector z = (21, 22,...,2,) € (Fym)"
satisfying T'rym(Az') = 0, where the matrix A is as defined by (8.4.3). Since
q is even, we can write z; = w?, where w; € IF;m for 1 < ¢ < n. Let us take
w = (wy,wy, ..., w,). Further,let £ =1,¢; =1 and h € {0,1,...,k —1}.
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Now if m does not divide k, then we see, by applying Theorems [8.5.1 and [8.5.10]

that for every n € IF;, the code 7, x(a, w, 1, h,n) is an additive MDS self-orthogonal
code of length n and dimension k over Fym.

On the other hand, if m divides k, then by applying Theorem [8.5.10] we see
that the code 7, (a,w,1,h,n) is an additive self-orthogonal code of length n
and dimension k over F,m. Further, by Theorem @, we observe that the code
Tnr(a,w,1,h,n) is MDS if =1 ¢ 2.5, while the code , (o, w, 1, h,n) is almost
MDS if n=! € Zip, (here the set 2}, is as defined by (8.5.2)). From this, the

desired result follows immediately. O]

8.6 Some classes of additive TRS codes that are

not monomially equivalent to additive RS codes

Two additive codes of length n over F,m are said to be monomially equivalent if a
generator matrix of one code can be obtained from the generator matrix of the other
code by post multiplying it with an n x n monomial matrix over F,». Otherwise,
these two codes are said to be inequivalent.

The Schur squares of linear codes have recently found several applications in the
area of cryptography, and hence this concept has recently attracted a great deal of
attention [30) [34, [85]. Recently, Beelen et al. [10] and Liu and Liu [65] identified
several classes of linear TRS codes that are not monomially equivalent to linear RS
codes by studying their Schur squares. In this section, we will define and study
Schur squares of additive codes, and identify several classes of additive TRS codes,
which are not monomially equivalent to additive RS codes. Since additive codes over
F,m coincide with linear codes over F, when m = 1, we will also identify some new
classes of linear TRS codes that are not equivalent to linear RS codes as a special
case.

Towards this, we recall that the Schur product of two vectors ¢ = (¢q, ¢, ..., ¢p)
and d = (dy,dy,...,d,) in Fp,. is defined as cx d = (c1di,cady, . . ., cndy) € Fpnn.
Now let C be an additive code of length n over Fym. The Schur square of the code
C, denoted by C?, is defined as the F,-linear subspace of [Fym spanned by the set
{cxd: c,d € C}. Note that the Schur square C? is an additive code of length n over
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F,m. We further make the following observation.

Lemma 8.6.1. (a) IfC is an additive code of length n and dimension k over Fm,

then the dimension of its Schur square C* satisfies

k(k—l—l)}.

dimp, (C*) < min {nm, 5

(b) If C and D are two monomially equivalent additive codes over F m, then
dimﬁrq (62) = dim]Fq (DQ)

Proof. Its proof is a straightforward exercise. O]

Since additive GRS (resp. additive GTRS) and additive RS (resp. additive
TRS) codes are monomially equivalent, we will consider additive RS (resp. additive
TRS) codes instead of additive GRS (resp. additive GTRS) codes in this section.
To begin with, we explicitly determine the dimensions of the Schur squares of the

codes belonging to a special class of additive RS codes in the following theorem.

Theorem 8.6.1. Let n,k and m > 2 be positive integers satisfying 1 < k < nm.
Let o = (v, (9, ..., (0) € Fym, where no two elements among oy, g, ..., o form
a conjugate pair over F, and each o; has exactly m distinct conjugates over F,. We
have dimp, (ARS,, (v, 1)?) = min{nm, 2k — 1}.

Proof. To prove the result, we see that the code ARS,, x(a, 1) has a generator matrix

1 1 1
231 % COn
k=1 k-1 k—1
G o |
Let us define o/ = (af, a3, ..., ad) for any integer j > 0. Now one can easily observe

that the Schur square ARS,, . (a, 1)? is the F-linear subspace of [Fym spanned by the
set {a/ : 0 <j <2k —2}. We see that the vectors 1,a,a?,...,a" ! are linearly
independent over F,. From this, it follows that dimg, (ARS, (e, 1)?) = 2k — 1 if
k< 2t while dimp, (ARS, 1 (a, 1)) = nm if k > 2L O
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Let n, kK and m > 2 be integers satisfying 1 < k < nm. Let £ > 1 be any
integer, and let ¢ = (t1,t2,...,t) € {1,2,...,nm — k}* and h = (hy, ho, ..., hy) €
{0,1,2,...,k — 1}* be such that the pairs (hy,t1), (ha,t2), ..., (he, t¢) are distinct.
Let n = (n1,72,...,m0) € (F})". Recall that {po(z),p1(x),...,pr—1(x)} (as defined
by (8.5.1)) is a basis set of &, x(t, h,n). Further, let

D, i(t,h,n) = {deg(pi(z)) : 0 <i <k —1}.
Then by Proposition 5 of Beelen et al. [10], we see that

Dyilt, hym) = ({O,l,...,k— D\ {h; 1< g}) U{k— 1+ max {t,}
hsi
ie{h,:1<a< 6}}. (8.6.1)
Next let us define
Fur(t,h,m) = {d1 +dy:dy,dy € Dyi(t,h,m) and dy + da < nm}.

Further, let W, (¢, h,n) denote the I -linear subspace of F,[z] spanned by the set

{f(@)g(x) : f(x),9(x) € Pnr(t h,m) and deg(f(z)g(x)) < nm},

and let us define
Vik(t, h,n) = {deg(h(x)) : h(x) € Whi(t, h,n)}.

In the following proposition, we derive a lower bound on the dimensions of the
Schur squares of the codes belonging to a special class of additive TRS codes with

0 twists.

Proposition 8.6.1. Let n, k and m > 2 be positive integers satisfying 1 < k < nm.
Let o = (g, 9, ..., 0 € Fym, where no two elements among aq, g, ..., o form
a conjugate pair over Fy and each oy has exactly m distinct conjugates over F,. Let
t = (ti,ta,...,t) € {1,2,...,nm — k}* and h = (hy,ho, ..., hy) € {0,1,2,... .k —
1}¢ be such that the pairs (hi,t1), (ho,t2), ..., (he,te) are distinct, and let n =
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(Mym2y -, M) € (IF;)Z. Then the Schur square T, (a,1,t, h,n)* of the additive
TRS code T, (o, 1,t,h,m) is the F,-linear subspace of Fym spanned by the set

{fa,l(f(m)g(x)) = a,l(f(aj)) * fa,l(g(aj)) : f(x),g(x) € '@n,k@,hﬁn)}

and
diqu(%,k(a7 1,¢t, hun)2) > |Vn,k(t7 hun)| > |-7:n,k(tah777)’

Proof. Working in a similar manner as in Lemma 9 and Proposition 5 of Beelen et
al. [10], the desired result follows. O

In the following theorem, we consider the case f =t; =1l and 0 < h < k —1,
and we identify a class of additive TRS codes (consisting of either MDS or almost
MDS codes), which are not equivalent to additive MDS RS codes.

Theorem 8.6.2. Let n,k and m > 2 be integers salisfying 3 < k < "5*. Let o =
(o, 00, .., 00,) € Fym, where no two elements among aq, @, . . ., oy form a conjugate
pair over Fy and each «; has exactly m distinct conjugates over Fy. Let { =t = 1,
he€{0,1,2,...,k =1} and n € F;. Then we have dimg, (F, x(c, 1,11, R, n)?) > 2k.

As a consequence, the code Ty, (o, 1,1, h,n) is either MDS or almost MDS, but
it is not monomially equivalent to the MDS code ARS, r(a,1). In particular, if
m does not divide k, then for any n € F;, the MDS codes T, (c,1,1,h,m) and
ARS,, 1(a, 1) are not monomially equivalent. On the other hand, if m divides k,
then for anyn™ & Zy.n, the MDS codes T, (o, 1,1, h,n) and ARS, x(a, 1) are not
monomially equivalent, where Zy, is as defined by .

Proof. To prove the result, we first note, by Propositions [8.5.1 and [8.6.1, that
dimg, (F,3(a, 1,1, h,n)?) = 6 for all h € {0,1,2} in the case when k = 3. So from

now on, we assume, throughout the proof, that k£ > 4.

First of all, when h € {0,k — 1}, working in a similar manner as in Theorems 3
and 4 of Liu and Liu [65], we see that dimg_ (7, x(a, 1,1, h, 7)) = 2k.

Next, when h € {1,2,...,k—2}, we see, by (8.6.1), that the set D,, ;(1, h,n) can
be partitioned as D, ;(1,h,n) = AU B, where A = {0,1,...,k—1}\ {h} and B =
{k}. Note that both 0,k — 1 € A and either 1 € A or k —2 € A. We also observe
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that every j € {0,1,...,2k — 2} \ {h,k — 1+ h} can be written as the sum of two

elements of A, which implies that
{0,1,...,2k =2} \{h,k =1+ h} C Fx(1,h,n).

Next, if 1 € A, then we can write h as the sum h = (h — 1) + 1 of two elements
h—1,1€ A, while if k —2 € A, then we can write k—1+h asthesum k—1+h =
(k—2)+ (h+1) of two elements k —2,h + 1 € A. From this, it follows that either
he For(l,h,n)or k—1+he F,x(1,h,n). Further, since k —1 € Aand k € B, we
see that both 2k — 1,2k € F,, (1, h,n). This implies that |F, x(1, h,n)| > 2k. Now
by applying Proposition [8.6.1, we get

dimg, (T, 4 (cv, 1, t1, h,n)?) > 2k.

This shows that dimg, (Z,x(c, 1,t1, h,1)?) > 2k for all k > 3. Further, by apply-
ing Theorem @, we see that the dimension of the Schur square ARS,, 1 (c, 1)? of
the additive RS code ARS,, x(cv, 1) is 2k — 1. Now by Lemma[8.6.1(b), we see that
the additive TRS code 7, x(a, 1,1, h,n) and the additive RS code ARS,, x(a, 1) are
not monomially equivalent. Now by applying Corollary [8.4.1 and Theorems [8.5.1
and [8.5.3, the desired result follows immediately. O

Remark 8.6.1. Additive codes over Fym coincide with linear codes over F, when
m = 1. Further, one can observe, in view of Example 1.6 of Randriambololona [85],
that the above theorem holds in the case when m = 1. When h € {0,k — 1}, Liu
and Liu [65] identified a class of linear TRS codes with one twist and hook h, which
are not equivalent to linear RS codes. So the above theorem also gives rise to new
classes of linear TRS codes (that are either MDS or almost MDS) with one twist
and hook h, which are not equivalent to linear RS codes for all h € {1,2,... k—2}.

The following theorem extends Theorem 6 of Beelen et al. [10] to additive TRS

codes with ¢ twists and additive RS codes over Fgm.

Theorem 8.6.3. Let n, k and m > 2 be integers satisfying 3 < k < =. Let

a = (aj,ag,...,0y) € Fym, where no two elements among oy, g, ..., a, form a

conjugate pair over Iy, and each «; has exactly m distinct conjugates over F,. Let
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n = (n,n2,...,n) € (IF;)Z, and let t = (t1,ty,...,t) € {1,2,...,nm — k}* and
h = (hi,ha, ... he) € {2,3,...,k — 3} be such that either h; = h; or hj — h; > 1
forall1 <i < j </{. Then we have

dimg, (Z,4(c, 1,8, b, m)?) > 2k.

As a consequence, the code T, (o, 1,1, h,m) is not equivalent to the code ARS,, (a, 1).

Proof. Working in a similar manner as in Theorem 6 of Beelen et al. [10] and by
applying Theorem [8.6.1, the desired result follows. n

In the following theorem, we show that the condition h; = h; or h; — h; > 1 for
1 <i < j </ on the hook vector h = (hy, ha, ..., hy) is not necessary for the codes
Ini(a,1,t, h,n) and ARS,, k(a, 1) to be monomially inequivalent. With the help
of this observation, we identify another class of additive TRS codes with ¢ twists,

which are not equivalent to additive RS codes over Fym.

Theorem 8.6.4. Let n, k and m > 2 be positive integers satisfying k < “3*. Let
a = (a1,q9,...,0p) € Fym, where no two elements among ay, g, ..., a, form a
conjugate pair over Iy, and each «; has exactly m distinct conjugates over F,. Let
t=(ti,ta,...,t0) € {1,2,...,nm—k}* be such that 2k+t;+t; < nm for all1 <i,j <
0. Letn= (Ni,n2,...,M) € (IFZ)E, and let h = (hy, ha, ..., he) € {1,2,... k—2}* be

such that hy < hy < --- < hy with either hy > 1 or hy < k — 2. Then we have
dimg, (. x(a, 1,8, h,m)%) > 2k.

As a consequence, the additive codes I, y(a,1,t,h,n) and ARS, i(a, 1) are not

monomially equivalent.

Proof. To prove the result, we will distinguish the following two cases: (i) hy > 1
and (ii) hy < k — 2.

(i) Let us suppose that hy > 1. This implies that h = (hy, ho, ..., hy) € {2,3, ...,
k — 2}4, where h; < hy < --- < hy. Here by , we see that the set
D, x(t, h,n) can be partitioned as D,, (¢, h,n) = AUB, where A = {0,1,2, ...,
k—1}\{h; : 1 <j </(t}and B={k—-—1+1¢; : 1 < j < {}. Note that
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{0,1,k—1} C A.Since 0 € A, every j € A can be written as the sum j = j+0
of two elements 0, j € A, which implies that j € F,, x(t, h,n). Next, we observe
that both hy —1,1 € A, which implies that h; = (hy—1)+1 € F,x(¢t, h,n). We
further note that £, 1(z™), Ey1 (2™ +maz* 1) € T, (o, 1, ¢, h,n)?, which
implies that

Lo 1(‘/L‘k_1+tl) = 771_1 (Za,l(xhl + 77133k_1+t1) — Ea l(xhl)) € %,k(av 17 ta ha 77)2

) )

Now for all j € {2,3,...,¢} satisfying t; = t;, we see that E,;(z") €
Tnr(a, 1t h,n)? which implies that h; € V, (¢, h,n).

Further, let us suppose that t; = ¢;,,t;,,...,t;, are distinct integers among

t1,ta, ..., tp. Now for z € {iy, i3, ...,is}, we observe, for all j(# 2) € {1,2,...,/(}
satisfying t; = t,, that both %, (2" + nja*= 174, £, 1 (a + nab~17) €
Ini(a,1,t h,n)? which implies that

Z:04,1(77]':€hz - nthj) € %,k(aa 17 t7 h‘7 77)2
This implies that max{h., h;} € V, x(t, h,n). From this, it follows that
{hj:1<j<{landt;=t,}\ {fgigg{hj ity =11} C Vor(t, h,m)
IS/
for each z € {iy,i3,...,is}. This implies that
{0,1,2,...,k—1}\ { @i&{hj b=t} 2 € {in,ig, ..., 05} } C Vas(t, h,m).

Next, we observe that both &, 1 (2¥71), £, 1 (2 +n;2* 1) € 7, 1(a, 1, ¢, h,m),
which implies that

o ("5 4 2 2) € T (@, 1,8, hom)2 for 1< j < L.

)

Further, it is easy to see that

{k;,k;+1,...,2k;—2}\{lrgjigz{k—uhj:tj:tz}:ze{il,ig,...,is}}
Q Vn’k(t,h,'f]).
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Furthermore, we observe that

{2k —2+4t;,:1<j < S}U{Qk—2+1r£1§12<{t,~9}—l—tij 1< 5 <s} TVt h,m).

From this, it follows that dimg, (7, x(a, 1, ¢, h,n)?) > [V, k(¢ h,n)| > 2k.

(ii) Next we suppose that h, < k — 2. This implies that h = (hy, hs,..., hy) €
{1,2,...,k — 3}, where hy < hy < --- < hy. By (8.6.1), we see that the
set D, x(t,h,n) can be partitioned as D, x(t,h,n) = C U D, where C =
{0,1,2,...,k=1}\{h;: 1 <j<{}and D={k—1+¢t;: 1 <j </} Note
that {0,k —2,k—1} C A. Now working in a similar manner as in the case (i),
we see that dimg, (7, k(o 1,¢, h,n)?) > 2k.

From this and by applying Theorem [8.6.1, the desired result follows. O

Remark 8.6.2. One can easily observe, in view of Example 1.6 of Randriambololona
[85], that the above theorem also holds when m = 1. So it gives rise to new classes

of linear TRS codes with ¢ twists, which are not equivalent to linear RS codes.

In the following section, we will present a perfect threshold secret-sharing scheme
based on a class of additive MDS codes whose dual codes are also MDS. We will
show that this scheme can detect cheating, identify a certain number of cheaters

among the participants and recover the secret correctly.

8.7 A perfect threshold secret-sharing scheme based
on additive MDS codes, whose dual codes are

also M DS

A secret-sharing scheme is a method to share a secret among a set of partici-
pants. Let P = {Py, P»,..., P,} be a set of n participants, and let s be a secret
that the dealer wants to share. The dealer assigns each participant P, some par-
tial information s; (called the share) about the secret s, where 1 < i < n. The

shares are distributed in a secret manner so that no participant knows any other
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participant’s share. Further, a set of participants B = {P;,, Pj,,..., P;,} is called
a qualified subset of P if the combiner can determine the secret by combining the
shares s;,, 8;,,...,8;, of the participants in B, where 1 < j; < jo < --- < jp < n.
The collection of all qualified subsets of P is called the access structure of the secret-

sharing scheme.

Let w and n be positive integers satisfying 1 < w < n. An (w, n)-threshold secret-
sharing scheme is a scheme to share a secret s among a set of n participants in such
a way that any w or more than w participants can determine the secret by polling
their shares, but no group of w — 1 or fewer participants can do so. Further, an
(w, n)-threshold secret-sharing scheme is said to be perfect if no information about
the secret can be determined by combining shares of w — 1 or fewer participants. A
perfect (w, n)-threshold secret-sharing scheme is said to be an ideal (w, n)-threshold
scheme if |K| = |S1]| = -+ = |S,|, where K is the set of all secrets and S; is the
set of all shares of the i-th participant P; for 1 < ¢ < n. Pieprzyk and Zhang [82]
designed an ideal threshold secret-sharing scheme based on linear MDS codes over
finite fields. Below, we will extend this construction and present a perfect threshold

secret-sharing scheme based on additive MDS codes.

Secret-sharing scheme (A). Let n,k and m > 2 be integers such that 1 < k <
nm and m divides k. Let us write k = mod for some 1 < 6 < n. Let C be an
additive MDS code of length n + 1 and dimension k over Fyn with a generator
matriz G' = [go g1 - gn|, where g; denotes the i-th column of the matriz G’
for0 < i <mn, (here the columns of G' are indexed by 0,1,2,...,n). Letog,o1,...,0n
be permutations of Fym. Let P = { P, P, ..., P,} be the set of n participants. The

dealer chooses a non-zero vector v = (v1,V,...,V) € ]F’; and computes the word
(S0,81,82,...,8,) € Fit! as
/
(80,81, 82,...,8,) =vG".
The dealer further computes the word (Sg, 81, Sa,...,8,) € IFZ# using the relation
(gOJ gla §27 ) gn) = (00(80>7 01(81)7 02(82>7 s 7Un(8n))-

Define sy € Fym to be the secret corresponding to the shares si,82,...,8,. The
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dealer next assigns the share 8; to the participant P; for 1 < i < n. Here we as-
sume that the combiner knows the matriz G' and the permutations ogy,o01,...,0n,
but the participants have no information about the matrix G' and the permutations
00,015+, Op.

In the following theorem, we show that the secret-sharing scheme (A) is a perfect

(6, n)-threshold scheme.
Theorem 8.7.1. The secret-sharing scheme (A) is a perfect (§, n)-threshold scheme.

Proof. To prove the result, we note that m divides k, so by Theorem [8.3.3, the
dual code C* is also an additive MDS [n + 1, (n + 1)m — k, 6 + 1]-code over Fm
with a parity check matrix G’. We next observe that any 0 columns of the matrix
G’ are linearly independent over Fym. Now let B = {P;,, Pj,,..., P;,} be a set of ¢
participants, who submit their shares sj,,s;,,...,s;, to the combiner, where 1 <

J1 < jo < --- < je < n. Here we assert the following:

(i) When ¢ > §, the combiner can determine the secret sy by combining the shares

of the participants in B.

(ii) When ¢ <, the combiner can obtain no information about the secret.

(i) Let us first assume that ¢ > 0. Here, we will show that the combiner can

determine the secret sy uniquely. We recall that the combiner knows the per-

mutations o, oy, ..., 0, and the matrix G’. Thus the combiner first determines
the shares s;,, sj,,...,s;, using the relation
(Sjl’ Sjar - 'Sj/z) = (Oj1(sj1)a 0j2(3j2)’ S vajz<sjz))‘

Next, without any loss of generality, the combiner considers the following

matrix equation in the unknown y = (y1,v2,...,yx) € ]F’; ;

(Sjl’ Sjas s S]};) =Y [gj1 gj, " Gjs| - (871)

Let g;) denote the (7,b)-th entry of the matrix G’ for 1 <i <k and 0 < b <
n. Choose a basis {f1,82...,0mn} of Fgm over Fy, and write s;, = > s;,.:5
i=1
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1 2
Z giga/B’H Where S](L 1, S]a 2y Sja my giy])aj géﬂ)a . 7.g£]

1 <c<k and 1 < a < 0. It is easy to observe that the matrix equation
(18.7.1

and g, € [, for

is equivalent to the following matrix equation in the unknown y =

<y17y27"'7yk) € FI(; :
(Sjl,la Sj1,27 o )8j1,m7 Sj2,17 Sj2,27 sy Sjg,'rTU sy Sj5,17 Sj5,27 cee 7Sj5,m) - yUla
(8.7.2)
where
[ (1) (2) (m) (1) (2) (m) (1) (2) (m)]
150 915 15 Y15 914 91,52 9145 Y155 7 G4
(1) (2) (m) (1) (2) (m) (1) (2) (m)
i 9251 9250 7 Y251 Y250 924 92,52 9245 Y255 7 9245
(1) (2) (m) 1) (2) (m) 1) (2) (m)
| kg1 Ik Iegi Ikge Ikgo Ik, j2 Irgs Irgs ks

Since the columns of the gjé} are linearly independent

matrix [le gj, -
over Fym, the rows of the matrix [gjl gj, - gjé} are linearly independent
over F,. This implies that the rows of the matrix U’ are linearly independent
over [F,, which further implies that the matrix U’ is invertible. This implies
that there exists a unique y = (y1,¥2, . .-

(8.7.2), and hence the equation (8.7.1).
Y1910 + Y2Go0 + - -

,yx) € FI satisfying the equation
Further, the combiner computes sy =

+ Y gr,o and determines the secret sy = 0¢(8p).

Next, let us assume that ¢ < 0. Here, we will show that the combiner can-
not determine any information about the secret. Knowing the permutations

00,01, ..,0p, the combiner determines s;,, sj,,...,s;, using the relation

(gjl’ gjz’ SR gje) - (Oﬁ(sh)agjz(sjé)’ s vajz<sjz))‘

Now working as in case (i), we see that for all z € F;m, there exists v’

(uy,us, ..., u) € IF’; satisfying matrix equation

(2, 8515 8jas - 85,) = u go gj, Gj> " Gjy (8.7.3)
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That is, the secret can be any element of F,» with equal probability. Thus,

the combiner can determine no information about the secret.

This proves our assertion. ]

The following theorem shows that the secret-sharing scheme (A) can detect cheat-
ing, identify a certain number of cheaters among the participants and recover the

secret correctly.

Theorem 8.7.2. Assume that a secret so € Fym is shared using the secret-sharing
scheme (A). Let B = {P;,,P},,...,P;,} be a set of { (> §) participants, where
1 < ji1 < jo < -+ < je <n and the participant Pj, is assigned the share sj,.
Suppose that the participant P;, modifies its share s;, to sj, + €;, where ¢; € Fym for
1 <4 < {, (here the participant P;, is honest if ¢, = 0, otherwise he cheats). Let
€ = (€1,€,...,€). Then the following hold.

(a) Ifwy(€) < €—90, then the combiner can detect that some cheating has happened.

(b) If wy(e) < |52], then the combiner can identify the cheaters who submitted

incorrect shares and determine the secret correctly.

Proof. Since the participant P;, modifies its share s, to sj, + ¢;, the combiner will
receive the vector s’ = (s;, + €1,5j, + €2,...,8;, + €) instead of the vector s =

(S8,,84,,---,5j,). Now let us consider the set
D = {(0j,(¢c;),05(cj,). -, 05,(c;,)) : (¢i, €, - - €j,) = vG" for some v € Fi },

where G = [gjl gj, - gje} . It is easy to observe that the cardinality of the set
D is ¢* and the Hamming distance between any two distinct elements of D is at
least ¢ — o + 1.

(a) When wy(e) < ¢ — 6, we see that e = (0,0,...,0) (i.e., no cheating has
happened) if and only if s’ € D. From this, part (a) follows immediately.

(b) When wg(e) < |52], working as in Theorem 4 of Pieprzyk and Zhang [82],

we get the desired result.
m
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We note that the secret-sharing scheme (A) need not be an ideal scheme, as
|K| = |S1| = |S2] = -+ = |S,] need not hold in general. In the following theorem,
we identify a class of additive MDS codes based on which the secret-sharing scheme
(A) is an ideal (0, n)-threshold scheme.

Theorem 8.7.3. Let a = (g, g, ..., 0p41) € anfl, where no two elements among
a1, Q, ..., anq1 form a conjugate pair over Fy and each oy has exactly m distinct

conjugates over Fy. Let k = md, where 1 < 6 < n. Then the secret sharing scheme

(A) based on the additive code ARS,11,(cv,1) is an ideal (6, n)-threshold scheme.

Proof. To prove this result, we see, by Corollary[8.4.1 and Theorem [8.4.3, that both
the additive code ARS,11x(,1) and its dual code ARS, 1 x(c, 1)t are MDS.
This, by Theorems |8.7.1 and [8.7.2, implies that the secret-sharing scheme (A) cor-

responding to the additive code ARS,, 1 x(cv, 1) is a perfect (0, n)-threshold scheme.
Further, for 1 <4 < n + 1, we observe that {1,a;,a2,...,a/" '} is a basis of Fym
over IF,. From this, we observe that the set K of all secrets and the set S; of all

shares of the i-th participant P; for 1 <17 < n are given by
K=5=5=--=5,=Fm,

which implies that the secret-sharing scheme (A) corresponding to the additive code
ARS, 1 1(c, 1) is an ideal (0, n)-threshold scheme. O
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Conclusion and future work

In this thesis, all self-orthogonal and self-dual codes of an arbitrary length over
finite commutative chain rings of odd characteristic are counted. As special cases of
this work, all self-orthogonal and self-dual codes over quasi-Galois rings and Galois
rings of odd characteristic are also enumerated. However, it is observed that this
enumeration technique can not be extended to count all self-orthogonal (resp. self-
dual) codes over quasi-Galois rings and Galois rings of even characteristic. This
enumeration technique is further modified to count all self-orthogonal and self-dual
codes of an arbitrary length over quasi-Galois and Galois rings of even characteristic.
Besides this, all o-LCD codes of an arbitrary length over finite commutative chain
rings are enumerated. It is further shown that the class of o-LCD codes over finite
commutative chain rings is asymptotically good and that every free linear code over
a finite commutative chain ring is equivalent to a o-LCD code when the residue field
of the chain ring has order at least 5. All inequivalent o-LCD codes of length n, rank

k and Hamming distance d over a finite commutative chain ring are obtained for

335
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ke {l,n—1} and 1 < d < n. Below, we list some interesting open problems in this

direction:

e It would be interesting to count all self-orthogonal and self-dual codes over

arbitrary finite commutative chain rings of even characteristic.

e Another interesting problem would be to classify self-orthogonal and self-dual
codes over an arbitrary finite commutative chain ring up to monomial equiv-

alence.

e It would be interesting to explicitly determine all inequivalent o-LCD codes
of length n, rank £ and Hamming distance d over a finite commutative chain
ring when 2 <k <n-—-2and 1 <d < n.

e [t would be interesting to see whether the classes of self-orthogonal and self-

dual codes over finite commutative chain rings are asymptotically good.

Furthermore, additive codes over finite commutative chain rings and their dual
codes with respect to the ordinary trace bilinear form are studied in the Galois
additivity case. Necessary and sufficient conditions are derived under which an
additive code over a finite commutative chain ring is (i) self-orthogonal, (ii) self-dual,
and (iii) an additive code with complementary dual (or an ACD code). All additive
self-orthogonal and self-dual codes of an arbitrary length over finite commutative
chain rings are counted in certain special cases. All ACD codes of an arbitrary
length over finite commutative chain rings are also enumerated. It is shown that
a free additive code over a finite commutative chain ring is a maximum distance
separable code (or an MDS code) if and only if its Torsion code is an additive
MDS code. This motivated us to introduce and study two new classes of additive
codes over finite fields, viz. additive generalized Reed-Solomon (additive GRS) codes
and additive generalized twisted Reed-Solomon (additive GTRS) codes, which are
extensions of linear GRS codes and linear GTRS codes, respectively. Unlike linear
GRS codes, it is noted that additive GRS codes are not MDS codes in general.
Several new classes of additive MDS and almost MDS codes are identified within
the families of additive GRS and GTRS codes. It is also noted that, unlike linear
codes, the dual code of an additive MDS code need not be an additive MDS code.
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Several classes of additive MDS codes whose dual codes are also MDS are identified
within the families of additive GRS and GTRS codes. Constructions of additive
MDS self-orthogonal, self-dual and ACD codes over finite fields are provided through
additive GRS and GTRS codes. Several classes of additive TRS codes that are not
monomially equivalent to additive RS codes are identified. Based on additive MDS
codes whose dual codes are also MDS, a perfect threshold secret-sharing scheme that
can detect cheating, identify a certain number of cheaters among the participants,
and correctly recover the secret, is also provided. Below we state some interesting

research questions in this direction.

e [t would be interesting to identify new classes of MDS codes within the families
of additive GRS and additive GTRS codes.

e Another interesting problem would be to identify new classes of additive MDS
GRS (resp. additive MDS GTRS) codes whose dual codes are also additive
MDS GRS (resp. additive MDS GTRS) codes.

o Ketkar et al. [61, Th. 15] showed that there exists an additive MDS self-
orthogonal code of length n and dimension 2(d—1) over [F 2 with respect to the
Hermitian trace bilinear form if and only if there exists an [[n,n—2(d—1),d]],
quantum stabilizer MDS code. Thus, another interesting line of research would
be to construct additive MDS self-orthogonal and self-dual codes with respect
to the Hermitian trace bilinear form through additive GRS and GTRS codes.

e Another interesting problem would be to provide new methods to construct
additive MDS self-orthogonal, self-dual, and ACD codes over finite fields.
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