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Abstract

The rapid increase in popularity of location-based services have resulted in huge amount of
spatial textual data being generated by applications like Foursquare, Facebook Places, Flickr
etc. The location-based services offer convenience but threaten the location and query privacy of
the user. The data collected by such servers can be to used study user behaviour or for stalking
personal locations. A novel query which became popular in the past few years is Reverse k
Nearest Neighbour Query (RkNN). Given a set of database objects O and a query point Q, the
RkNN query returns those objects o ∈ O, for which Q is one of its kth nearest neighbour, using an
appropriately defined similarity function on pairs of database objects. We propose a generalized
framework for finding the reverse nearest neighbours of a query point which is independent
of the underlying hierarchical indexing structure used as well as the used similarity measure.
Our framework is independent of the type of database objects, but the only requirement is to
define lower and upper bound similarity between any two object/groups of objects E and E′

of the given index structure and calculate the number of objects for every group of objects.
We present two different approaches, namely, Lazy and Eager for performing monochromatic
Reverse Nearest Neighbour query on spatial textual data. We conduct extensive experiments
on real datasets and study the performance of both approaches. We address the problem of
performing Reverse Nearest Neighbour (RkNN) search while preserving the location privacy of
a user. Location Privacy can be preserved by anonymizing the location of a user using techniques
like k-anonymity[1] or l-diversity[2]. The idea is to send a cloaked region to the server instead
of the user’s exact location so that location privacy is preserved. We formalize the problem
of performing Reverse Nearest Neighbour Search on spatial objects when the exact location of
database objects is not known to the server. A key challenge in performing such queries is to
strike a balance between maintaining the correctness of results versus maintaining the privacy
of a user.
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Chapter 1

Introduction and Research Aim

Location-based services are the services offered to users based on their locations. Location-
based services have many diverse applications like finding the nearest stores in a particular area,
location-based advertisement, analysing wildlife and traffic movements, location-based gaming
etc. The advancements in database and mobile technology and rapidly increasing popularity of
location-based services results in huge amounts of data being collected in databases. Location-
based services have attracted significant attention from the industrial and research community.
The most common type of query performed on location-based server is Nearest Neighbour query.
An example of a Nearest Neighbour query is a person trying to find the nearest pizza store or
a soldier finding the nearest enemy troop. Another type of query gaining popularity nowa-
days is Reverse Nearest Neighbour query. Reverse Nearest Neighbour queries are of two types:
monochromatic and bichromatic. In monochromatic RkNN, both query point and database
objects are of the same type, while in bichromatic RkNN both are of different types. RkNN
query finds applications in decision support systems where the task is to open a new facility like
restaurant in an area such that it will be least influenced by its competitors and attract good
business. Another application is a profile based marketing [3], where a company maintains pro-
files of its customers and wants to start a new service such that the service is under the influence
of maximum number of customers i.e. maximum number of customers are interested in that
service. The RkNN query in decision support system is an example of a monochromatic query
as the database objects and the query are of the same type i.e. restaurants. The application of
RkNN in profile based marketing is an example of a bichromatic query as the database objects
are customers and the query is service to be started by the company.

Location-based services require the users to report their exact location continuously. A user
who doesn’t want to send his/her exact location has to stop using the location-based services
provided by the service provider. The data collected by such servers can be used to study the
user behaviour, visiting patterns, stalking personal locations [4]. A compromised location-based
server can be used to get historical position information of several users. Krumm et. al [5]
presents a literature survey of computational algorithms for compromising and protecting lo-
cation data. There is a need to find a way such that the user can enjoy the benefits of using
location-based services while preserving his/her location privacy. Mokbel et al. [6] proposed a
framework for preserving location privacy of a user and defined three types of Nearest Neighbour
queries namely, Public Query over Private Data, Private Query over Public Data and Private
Query over Private Data. Public Query over Private Data signify that the exact location of the
querying user is known to the server but the exact location of database objects is unknown. An
example of nearest neighbour Public Query over Private Data is a location based advertisement
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where a restaurant wants to send its advertisement to customers in its vicinity. In this scenario,
the customers want to preserve their privacy and the restaurant (query point) wants to find
its nearest customers. An example of Private Query over Public Data is a customer trying to
find the nearest restaurant. An example of Private Query over Private Data is a friend finder
application, where a user wants to find his/her nearest buddy. Here, both the querying user
and his friends (the database objects) want to hide their exact location from the location-based
server.

However, our thesis is a privacy preserving evaluation of reverse nearest neighbour query. Pri-
vacy preserving reverse nearest neighbour queries also find its applications in many scenarios.
Examples of Reverse Nearest Neighbour Public query over Private data is a shopping mall trying
to find customers which have the shopping mall as one of its k nearest neighbours. Another
example is a pizza store owner trying to find customers which have the pizza store in its k
nearest neighbours in order to send them discount coupons. An example of Private Query over
Public Data is a customer finding a good location for his home such that he is in the influence
of at least k facilities like School, Hospitals etc. Examples of Private query over Private Data
include peer to peer applications like file sharing and match fixing application where a match
fixer wants to avoid an area where there are other match fixers around him. Another application
is location-based gaming, where a gamer wants to be in the influence of at least k friends without
revealing their exact location.

1.1 Problem Statement

Reverse Spatial and Textual k Nearest Neighbour Query(RSTkNN): Given a set of
objects O in database D and query point Q each represented by a pair (loc,vct) where loc is
the spatial location and vct is the associated textual description which is of the form (key,w)
∀ key ∈ doc , where doc is the set of words associated with every database object and w is
the weight associated with very word (key), returns those objects o ∈ O in D that have query
point Q as one of its kth Nearest Neighbour. The weights can be calculated on the basis of TF-
IDF scheme [7]. The spatial-textual similarity (SimST) is defined by Jiaheng et. al [8] as follows:

SimST (o1, o2) = α ∗ (1− dist(o1.loc, o2.loc)− ϕs

ψs − ϕs
) + (1− α) ∗ (

EJ(o1.vct, o2.vct)− ϕt

ψt − ϕt
) (1.1)

The parameter α is used to define the relevance factor for spatial and textual similarity while
calculating the total similarity scores and is specified at query time. ϕs and ψs denote the
minimum and maximum distance between any two objects in the database and are used to
normalize the spatial similarity to the range [0,1]. Similarly ϕt and ψt denote the minimum
and maximum textual similarity between any two objects in the database. dist is the Euclidean
Distance between o1 and o2 and EJ is the Extended Jaccard Similarity[9] defined as:

EJ(o1.vct, o2.vct) =

∑n
j=1 o1.wj ∗ o2.w′j∑n

j=1 o1.w
2
j +

∑n
j=1 o2.w

′2
j −

∑n
j=1 o1.wj ∗ o2.w′j

(1.2)

where o1.vct=〈w1, ..., wn〉 and o2.vct=〈w′1, ..., w′n〉.

The problem is to perform RSTkNN query with and without preserving the location of the

2



users. We want to perform RSTkNN public query over private data. In the figure below, we
have some regions and a query point Q. For finding the Reverse k Nearest Neighbour of Q,
every region needs to find its kth nearest neighbour and the regions who have the query point
in their kth nearest neighbour, are the RkNN of the query point.

V1

V4

V2

V3

M

M1

M3 M4

M2

Q

Figure 1.1: Region Objects and Query Point in Space

The notion of minimum and maximum similarity needs to be defined between regions and in
between a region and the query point for finding the RkNN of Q. Conditions for accepting or
rejecting a region to be the RkNN of Q also needs to be defined.

1.2 Research Contribution

Our contributions can be summarized as follows:

• We propose a generic framework for Reverse Nearest Neighbour Query independent of the
underlying indexing structure and the type of data. We also give a proof of correctness of
our proposed framework.

• We propose two different approaches, namely, Lazy and Eager for performing monochro-
matic reverse nearest neighbour query on objects having both spatial and textual informa-
tion for dynamic values of k and α and algorithm for the same. α is the relevance factor
for spatial and textual similarity while calculating total similarity scores.

• We formalize the problem of performing Reverse Nearest Neighbour Public Query over
Private Data.

• We conduct extensive experimental studies and compare the performance of our Lazy and
Eager approach. We understand the factors responsible for a trade-off in performance of
both approaches.
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Chapter 2

Related Work

In this section we review the closely related literature. We divide the related work into two
sections. The first section covers related work on RkNN Query while the second section covers
work done on performing Probabilistic Reverse Nearest Neighbour queries on uncertain data.

2.1 Reverse k Nearest Neighbour Query

Korn et al. [3] introduced the Reverse Nearest Neighbour query, where every database object
pre-computes the exact distance of its nearest neighbour (NN) by drawing a sphere around ob-
jects of radius equal to the distance of the entry with its nearest neighbour, which is used to
decide whether the query point is the nearest neighbour of the object or not. Yang et. al [10]
extends the work of Korn et. al [3] by introducing a new indexing structure RdNN tree which
can answer both NN and RNN queries. The work done by Korn et. al[3] and Yang et. al[10]
compute the exact kth nearest neighbour distance for every object of the underlying indexing
structure. However, the above mentioned approaches are limited for fixed value of k and defined
only for spatial objects.

Achtert et. al [11] proposed MRkNNCop tree which stores distance approximations of the
kth nearest neighbour. They aggregate the maximum and minimum distances to the kth nearest
neighbour for objects in every entry to decide true hits or drops. Their approach only works for
a fixed range of k i.e. k ≤ kmax. A solution which works for dynamic value of k was proposed
by Achtert et. al [12]. The authors proposed a solution to find reverse nearest neighbour for
arbitrary values of k in euclidean and metric spaces. Archtert et. al [12] further proposed a
framework for Reverse Nearest Neighbour Query which is independent of the hierarchically in-
dexing structure but defined only for spatial objects and the similarity metric is spatial distance.

Tao et. al [13] proposed a RkNN algorithm that works for dynamic value of k without any
need for pre-computation and used bisector based pruning techniques. Wu et. al [14] proposed
a solution for performing monochromatic and bichromatic reverse nearest neighbour query on
two dimensional points by finding and tightening the search space around the query point Q.
Cheema et. al [15] used geometric techniques to find the influence zone for a query point Q.
Influence Zone is an area around the query point such that all points in that area, are the RkNN
of q. However, these techniques can’t be applied to find textual similarity between two vectors
and are applicable only for finding RkNN in spatial domain.
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Spatial keyword queries and Reverse Top k Nearest Neighbour queries are also getting much
attention nowadays. A spatial keyword query returns top k objects ordered by spatial and tex-
tual relevance. Spatial relevance is ranked by distance and textual relevance is ranked by the
similarity with the keywords of the query. Felipe et. al [16] proposed a method to answer top-k
spatial keyword queries using IR2 tree as the underlying indexing structure. IR2 is an R-tree
superimposed with textual signatures. Cong et. al [17] introduced location aware top k text
retrieval query which used TF-IDF scheme [7] and IR tree [17] as the indexing structure. IR
Tree is an R-Tree with its nodes combined with inverted lists. Cao et al. [18] proposed prestige
based spatial keyword query that also takes the number of relevant objects around a point into
account along with its textual relevance with the query point. A variant of spatial keyword query
is proposed by Li et. al [19] called keyword-based k nearest neighbour query, which returns the
k nearest points to the query which contain all the query keywords. The Reverse Spatial and
Textual Nearest Neighbour Query is the opposite of spatial keyword queries.

Vlachau et. al[20] introduced Reverse Top-k queries, which finds objects which have query
point as their top-k object based on user preferences. Vlachau et. al [21] proposed a branch and
bound algorithm for efficiently processing Reverse Top-k queries without accessing individual
user preferences or running top k query. However, Reverse Top-k queries are different from
RSTkNN, as they consider only user preferences and textual similarity while RSTkNN consider
both spatial and textual similarity.

Jiaheng et. al[8] introduced the Reverse Spatial and Textual k Nearest Neighbour Search
(RSTkNN) query to find RNN using both spatial and textual information for dynamic val-
ues of k and α. The authors proposed an indexing structure named as Intersection Union Tree
(IUR-tree), where every node of R-tree was embedded with intersection and union textual vec-
tors. The intersection vector contains the minimum weights of the vectors of objects present in
a node of the tree and union vectors contain the maximum weights. The IR2 Tree [16] and IR
Tree [17] are different from IUR Tree as the IUR Tree integrates textual vectors in an R Tree so
that textual similarity can be defined between two entries of the R Tree while IR Tree integrates
inverted lists and IR2 Tree integrates signatures to answer top-k and Boolean queries instead
of similarity queries.

2.2 Probabilistic Reverse k Nearest Neighbour Search

The work on Probabilistic Nearest Neighbour Query focuses on performing nearest neighbour
search when data is uncertain either due to error in measuring equipment or due to privacy
concerns. The authors assume a probabilistic database which consists of many uncertain objects.
Every uncertain object has a set of possible instances with some assigned probability. Lian
et. al [22] proposed an algorithm for finding probabilistic Reverse Nearest Neighbour query
where the appearance probability of uncertain objects is represented as continuous PDF. They
proposed a spatial and probabilistic pruning scheme for spherical objects but their technique
can’t be applied for higher dimensional data and for k >1. Cheema et. al [23] also proposed
a probabilistic pruning approach along complex spatial pruning approach based on extensive
geometric computations. However, their technique is inapplicable for k > 1. Emrich et. al
[24] proposed a new pruning mechanism and obtained tighter bounds by decomposing target
objects. Their solution is not efficient with increment of k and it is non-trivial to find optimal
depth to decompose target objects. Li et al. [25] designed a new spatial and probabilistic pruning
approach based on conceptual partitioning using angle intervals which works for dynamic k.
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Chapter 3

RSTkNN Query

3.1 Generalized Framework for Reverse k Nearest Neighbour
Search

We will now propose a generalized framework for answering RkNN queries using a hierarchical
tree-like index. Our proposed framework is independent of the explicit indexing structure and
is applicable to any type of data as long as similarity can be defined between nodes of the
index. For notational consistency, we assume that the leaf nodes of the given index are the
data points themselves (to be represented by small letters) and all other nodes contain children
nodes. Query point will be denoted by Q, and the dataset by D of size denoted by N . If e′ is
the kth nearest neighbour of e, then we say that rank(e′, e)= k and also write e′ as kNN(e). We
will use the convention that a point is the 0th nearest neighbour of itself.

Given two sets of data points E and E′ and given a similarity measure Sim(.) between them,
we define MinSim(E,E′) and MaxSim(E,E′) as follows:

Definition 1. MinSim(E,E′) gives a lower bound for the minimum similarity between pairs of
points from E and E′ i.e. ∀ e ∈ E , ∀ e′ ∈ E′, Sim(e, e′) ≥ MinSim(E,E′).

Definition 2. MaxSim(A,B) gives a upper bound for the maximum similarity between pairs of
points from E and E′ i.e. ∀ e ∈ E , ∀ e′ ∈ E′, Sim(e, e′) ≤ MaxSim(E,E′).

Definition 3. Sim(e, e′) is the similarity between two points e and e′. Formally,
∀ e ∈ E , ∀ e′ ∈ E′, minSim(E,E′) ≤ Sim(e, e′) ≤ MaxSim(E,E′).

We would like to answer RkNN queries for any value of k, and one way to do this is by computing
the exact NN(e) list for every data point e: NN(e)= 〈 e1,e2,e3,...〉; here, eis are other data points
such that e1 is 1NN(e), e2 is 2NN(e) and so on. Computing this list explicitly for every data
point could be very inefficient, hence, our algorithm traverses the index while maintaining two
NN-lists with each node - one contains an over-estimate of its nearest neighbours, and another
an under-estimate of the same. There are two different approach for traversing the index in a
top-down fashion, Depth First Search (DFS) and Breadth-First Search (BFS). We choose to use
BFS for traversing the index.

Definition 4. A NN-list of a node E is a list of tuples: L = 〈 (E1,m1),(E2,m2)... 〉, where
each Ei is a node and mi is an integer. The size of such a list, denoted by |L| is

∑
imi. The

NN-lists we will maintain are NNU (E) and NNL(E) whose tuples will provide correct estimates
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to the actual r-nearest neighbour (actually we mean, correct estimates to the similarity with rth

nearest neighbour) for some r.

Definition 5. NNU (E)=〈 (EU
1 ,m

U
1 ),(EU

2 ,m
U
2 )...(EU

l ,m
U
l ) 〉 is a valid upper contribution list

if, ∀j = 1...l, Sim(e,
∑j

i=1m
U
i )NN(e)) ≤ MaxSim(e,EU

j ) (the jth entry correctly upper bounds
some nearest neighbour(s)).

Definition 6. NNL(E)=〈 (EL
1 ,m

L
1 ),(EL

2 ,m
L
2 )...(EL

l ,m
L
l ) 〉 is a valid lower contribution list if,

∀j = 1...l, Sim(e,
∑j

i=1m
L
i )NN(e)) ≥ MinSim(e,EL

j ) (the jth entry correctly lower bounds some
nearest neighbour(s)).

Since, we know that the similarity of an entry e with its kth nearest neighbour is more than its
similarity, with its k′ nearest neighbour as shown in the equation below,

Sim(e, kNN(e)) ≥ Sim(e, k′NN(e)) for any k′ ≥ k (3.1)

The lower contribution list provides us correct estimates for rth nearest neighbour for any r ≤∑
imi and the upper contribution list provides correct estimates for a specific range of r as

we will see in the following example. Let NNL(e)= 〈 (E1, 3),(E2, 5),(E3, 9) 〉 be a valid lower
contribution list. Then, by the property of lower contribution list, we know,

Sim(e, 3NN(e)) ≥MinSim(e, E1) (for j = 1)

Sim(e, 8NN(e)) ≥MinSim(e, E2) (for j = 2)

Sim(e, 17NN(e)) ≥MinSim(e, E3) (for j = 3)

(3.2)

Also, by equation 3.1, Sim(e,1NN(e)) ≥ Sim(e,3NN(e))
Therefore, by equation 3.2,
Sim(e,1NN(e)) ≥ MinSim(e,E1)
Similarly, Sim(e,2NN(e)) ≥ MinSim(e,E1)
Sim(e,iNN(e)) ≥ MinSim(e,E2) ∀ i=4...7
Sim(e,iNN(e)) ≥ MinSim(e,E3) ∀ i=9...16
Therefore, Sim(e,iNN(e)) ≥ MinSim(e,E1) ∀ i=1...mL

1

Let NNU (e)= 〈 (E4, 2),(E2, 4),(E6, 6) 〉 be a valid upper contribution list. Then, by the property
of upper contribution list, we know,

Sim(e, 2NN(e)) ≤MaxSim(e, E4)

Sim(e, 6NN(e)) ≤MaxSim(e, E2)

Sim(e, 12NN(e)) ≤MaxSim(e, E6)

(3.3)

Therefore, by equation 3.1,
Sim(e,3NN(e)) ≤ Sim(e,2NN(e)) ≤ MaxSim(e,E4)
Sim(e,4NN(e)) ≤ Sim(e,3NN(e)) ≤ MaxSim(e,E4)
Sim(e,5NN(e)) ≤ Sim(e,4NN(e)) ≤ MaxSim(e,E4)
Therefore, Sim(e,iNN(e)) ≤ MaxSim(e,E4) ∀ i=mU

1 ...L

A point to be observed is we can’t say whether Sim(e,iNN(e))≤ MaxSim(e,E4) ∀i =1...mU
1 -

1, will hold true or not.

We derive additional efficiency by computing and storing estimates for an entire node, instead of
individual data points. The above definitions are extended in a straight forward way to nodes.
The list L = 〈 (EL

1 ,m
L
1 ),(EL

2 ,m
L
2 )...(EL

l ,m
L
l ) 〉 is a valid NNL(E) list for a node E, if L is a

valid NNL(e) for all e ∈ E. NNU (E) is similarly defined.
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Claim 1. NNL(E) is a valid lower contribution list for the region E if and only if ∀e ∈ E,
NNL(E) is also a valid list for e.

Proof. In order to prove our claim, we need to prove that if NNL(E) is a valid contribution list
for E, it implies that NNL(E) is a valid contribution list for every children of E and vice versa.
Let us assume that NNL(E) is a valid contribution list for E and NNL(E) is:
NNL(E)=〈 (E1,m1), (E2,m2) 〉
A lower contribution list has the following property:
∀ e ∈ E and ∀ e′ ∈ E1

Sim(e,e′) ≥ MinSim(E,m1NN(E)).
Similarly, the property holds for E and E2. Suppose ∃ e′′ ∈ E, such that NNL(E) is not
a valid contribution list for e′′ i.e. there exists a similarity score, say S′1 such that S′1 <
MinSim(E,m1NN(E)) and ∀ e′ ∈ E1, Sim(e′′, e′) ≥ S′1, which contradicts our assumption that
NNL(E) is a valid contribution list for E. So, a valid lower contribution list NNL(E) implies
that it is also a valid contribution list for every children of E.
IfNNL(E) is a valid contribution list ∀ e ∈ E, it implies that Sim(e,iNN(e))≥MinSim(E,m1NN(E)),
for i ∈ [1,2....,m1] and, Sim(e,jNN(e)) ≥ MinSim(E,m2NN(E)), for i ∈ [m1+1,...,m2] which im-
plies that NNL(E) is a valid lower contribution list for E since it is valid for every child of E.
Hence Proved.

We will prove a similar claim for NNU (E) in the next section.

3.1.1 Computing NN-List

Now we discuss some properties of these NN-lists which can be used to compute them efficiently.

NNL lists: The central idea behind the NNL list comes from the following observation. Sup-
pose for a set of m points {e′1, e′2, ..., e′m} and another point e, we have that Sim(e, e′i) ≥ s.
Then, it is obvious that if e does not belong to this set, Sim(e,mNN(e)) ≥ s; and if e belongs
to this set, then Sim(e, (m − 1)NN(e)) ≥ s. Extending this concept to nodes, consider any
node E with m data points; now, if MinSim(E, e) ≥ s then, Sim(e,mNN(e)) ≥ s if e 6∈ E and
Sim(e, (m− 1)NN(e)) ≥ s if e ∈ E. Notice that these bounds are tight.

We can even extend this idea to multiple nodes to get the following claim. Let e be a data
point and E1, E2, ..., Ek be a collection of non-overlapping nodes which doesn’t contain e, where
the list is sorted in decreasing order of MinSim(Ei,e). Let mi denote the number of data points in
Ei, and let si be a lower bound on MinSim(Ei, e). Then, for all j= 1...k, Sim(e, (

∑j
i=1)mi)NN(e))

≥ sj . If e ∈ Ei, then mi must be replaced with mi-1 in all tuples containing mi.

We will use this concept to compute NNL lists; in fact, for further optimization we will compute
NNL(E) for nodes E instead of data points. Any list 〈(E1,m1), ...〉 of non-overlapping nodes is
a valid NNL(E) when the following holds:

• the list is sorted in decreasing order of MinSim(Ei, E)

• if E does not overlap any Ei, then mi ≤ |Ei| for all i

• if E overlaps with some Ei, then mi ≤ |Ei| - 1 for that specific i and mj ≤ |Ej | for j 6= i

• E doesn’t have ancestor-descendant relationship with any E′is present in its contribution
list.
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As explained above, the crucial property of this list is that, for any t, if mi−1 < t ≤ mi, then
for all e ∈ E, Sim(e, tNN(e)) ≥ MinSim(e, Ej).

NNU lists: Correct computation of these lists requires an additional concept of completeness.
We say that an NN-list is complete if it provides estimates for rth ranked nearest neighbour
for all possible r; another way, if every data point is present in some node in the NN-list. For
example, if e belongs to the index, then L is a complete NN-list for e if |L| = N -1. It must be
noted that the NNL list computed above need not be complete. However, similar arguments
will not work for NNU . Take for example, a claim similar to the first claim for NNL: we have a
set of points {e′1, e′2, ...e′m} and another point e (all disjoint). But even if we know that Sim(e, e′i)
≤ s for some s and for all i, it is nevertheless not true that Sim(e,mNN(e)) ≤ s, unless, all
points other than e are in the set.

Therefore, similar concepts and results as above can be defined for NNU as well, as long as
we also require that the lists are complete (and of course, using MaxSim instead of MinSim).
We are stating the final claim and avoiding other definitions to avoid repetition.

Claim 2. For a node E, L = {(E1,m1), ..., (El,ml)} is a valid NNU (E) if E′is are sorted in
decreasing order of MaxSim(Ei, E) and L is complete.

For a node E, L={(E1,m1), ...} of non-overlapping nodes is a valid NNU (E) when the following
holds:

• the list is sorted in decreasing order of MaxSim(Ei,E)

• the list of nodes is complete

• if E does not overlap any Ei, then mi ≤ |Ei| for all i

• if E overlaps with some Ei, then mi ≤ |Ei| - 1 for that specific i and mj ≤ |Ej | for j 6= i

• E doesn’t have ancestor-descendant relationship with any E′is present in its contribution
list.

We will now prove a claim for NNU (E) similar to the Claim 1 for NNL(E).

Claim 3. NNU (E) is a valid upper contribution list for the region E if and only if ∀e ∈ E,
NNU (E) is also a valid list for e.

Proof. In order to prove our claim, we need to prove that if NNU (E) is a valid contribution list
for E, it implies that NNU (E) is a valid contribution list for every children of E and vice versa.
Let us assume that NNU (E) is a valid contribution list for E and NNUE) is:
NNU (E)=〈 (E1,m1), (E2,m2) 〉
A upper contribution list has the following property:
∀ e ∈ E and ∀ e′ ∈ E1

Sim(e,e′) ≤ MaxSim(E,m1NN(E)).
Similarly, the property holds for E and E2. Suppose ∃ e′′ ∈ E, such that NNU (E) is not
a valid contribution list for e′′ i.e. there exists a similarity score, say S′1 such that S′1 >
MaxSim(E,m1NN(E)) and ∀ e′ ∈ E1, Sim(e′′, e′) ≤ S′1, which contradicts our assumption that
NNU (E) is a valid contribution list for E. So, a valid upper contribution list NNU (E) implies
that it is also a valid contribution list for every children of E. If NNU (E) is a valid contribution
list ∀ e ∈ E, it implies that Sim(e,iNN(e)) ≤ MaxSim(E,m1NN(E)), for i ∈ [1,2....,m1] and,
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Sim(e,jNN(e)) ≤ MaxSim(E,m2NN(E)), for i ∈ [m1+1,...,m2] which implies that NNU (E) is a
valid lower contribution list for E since it is valid for every child of E. Hence Proved.

In the previous section we gave an example to demonstrate that lower contribution list provides
us correct estimates for rth nearest neighbour for any r ≤

∑
imi but upper contribution list

provides us correct estimates for a specific range of values. We will extend our previous example
below to demonstrate that upper contribution list can also provide us correct estimates for any
r ≤

∑
imi if the upper contribution list is complete. For example,

Let NNU (e)= 〈 (E4, 2),(E2, 4),(E6, 6) 〉 be a valid upper contribution list. In the previous ex-
ample, we observed that, Sim(e,iNN(e)) ≤ MaxSim(e,E4) ∀ i=mU

1 ...L
We were not able to claim that Sim(e,iNN(e))≤ MaxSim(e,E4) ∀i =1...mU

1 -1, will hold true.
However, if we assume that NNU (e) is sorted in decreasing order of similarity score and is com-
plete i.e. every other point is in the upper contribution list of e, we can say that,
Sim(e,iNN(e))≤ MaxSim(e,E4) ∀i =1...mU

1 -1

kNNL and kNNU lists: If we are interested in RkNN for a given k, then we may not re-
quire to store complete NN-lists for all nodes and points. This fact is obvious for the NNL

list: for any b < N, and any valid NNL(E) list L, if we choose the first t tuples of L such that∑t
i=1mi ≥ b, to create a list L′, then L′ is also a valid NNL(E) list which provides correct

estimates for the first b nearest neighbours of data points in E.
For a node E, consider its lists NNU (E) and NNL(E).
NNL(E)= 〈 (E1,5), (E2,2),(E3,4),(E4,2) 〉
NNU (E)= 〈 (E1,5), (E2,2),(E3,4),(E4,2) 〉
Let k=7 and NNL(E),NNU (E) be valid contribution lists. We will consider NNL(E) first.
We are interested in finding RkNN for k=7 and need upper and lower bound estimates for
the7th nearest neighbour. Since, NNL(E) is sorted is decreasing order of MinSim(E,Ei), we
need only the first two tuples as Sim(E,7NN(E)) ≥ MinSim(E,E2). This concept is not appli-
cable to NNU (E) as although, Sim(E,7NN(E)) ≤ MaxSim(E,E2), but there is no guarantee
that the exact 7th nearest neighbour of E will be in the first two tuples, since MaxSim(.) is an
upper bound on the similarity with 7th nearest neighbour. So, simply prefixing NNU (E) like
NNL(E) is incorrect. The NNU (E) will only have those E′is which have MaxSim(E,E′is) ≥
MinSim(E,kNNL(E)).

Before we derive the conditions for pruning or accepting a point or node to be the RkNN
of Q, we would like to state some conditions which must be maintained for ensuring correctness
of results. The conditions are as follows:

Locality Condition: A node trying to find its k nearest neighbours must look at the nodes/points
it contains along with other nodes/points in the neighbourhood. Let us consider two nodes E1

and E2 as shown in the figure 3.1. Assume k=2. If the node E1 while finding its k nearest
neighbours, sees only the points in E2 without looking at the points contained in itself, it will
see itself as the RkNN of Q which is incorrect.

Completeness Condition: Now we will motivate the need for ensuring that contribution lists
are complete as maintaining incomplete contribution lists might result in incorrect results. Let
us consider an example as shown in the figure 3.2.

Lets assume k=3. Node E1 sees objects in itself as well as its neighbouring entry E2. However,
since the query point is also located inside E2, there is a need to access the points inside E2.
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Figure 3.1: Locality Condition
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Figure 3.2: Completeness Condition

Now, if E1 sees point P5 as its kth nearest neighbour, it will be accepted as the RkNN of q.
However, E1 should have seen both points P5,P4 and then decide about its kth nearest neighbour.

3.1.2 Pruning using NNL lists

1. We will first consider the case when the elements in the lower contribution list of point e are
points only. We observe the following:
(a) MinSim(e,eLi ) ≤ Sim(e, iNN(e))
The similarity of e with its ith nearest neighbour(iNN(e)) is greater than or equal to the mini-
mum similarity between e and ith entry in its lower contribution list(eLi ). The ith entry correctly
lower bounds the ith nearest neighbour.
(b) MinSim(e,eLi ) ≥ MinSim(e,eLi+1 )
The minimum similarity of e with the ith entry in its lower CL i.e. its ith nearest neighbour,
is greater than or equal to the minimum similarity of e with the (i + 1)th entry in its lower
contribution list i.e. its (i+ 1)th nearest neighbour.

2. We will now consider a region R such that |R|=m. Assume MinSim(e,R) = S1 which
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implies ∀ e′ ∈ R, Sim(e,e′) ≥ S1.
We can also say that MinSim(e,iNN(e)) ≥ S1 ∀ i = 1 to m,so
NNL(e) = 〈 (R,m) 〉

3. We will now consider two regions |R1|=m1, |R2|=m2 such that MinSim(e,R1)=S1 and
MinSim(e,R2)=S2. Let us assume S1>=S2. The lower contribution list of e will be
NNL(e) = 〈 (R1,m1), (R2,m2) 〉

4. Let us now consider a region R such that, the lower bound list of R is:
NNL(R)= 〈 (R1,m1), (R2,m2) 〉. We will now derive the condition using which we can prune a
point/region to be the RkNN of Q.

Lemma 1. if ∀ e ∈ R, sim(e,kNN(e))>MaxSim(R,Q) then R can be pruned.

Proof. We know that an entry e is not reverse nearest neighbour ofQ if, Sim(e,Q)<Sim(e,kNN(e))
i.e. the similarity of e with its kth nearest neighbour is more than its similarity with the query
point. We can also say if MaxSim(e,Q)<MinSim(e,kNN(e)), then also e can be pruned.
The above argument implies that if MaxSim(R,Q)<Sim(e,kNN(e)) then e can be pruned, since
MaxSim(R,Q) is the upper bound of the actual similarity of every children of R with Q. There-
fore, if ∀ e ∈ R, sim(e,kNN(e))>MaxSim(R,Q) then R can be pruned

5. Till now, we need to compute the actual similarity of every child entry of R with its kth

nearest neighbour to decide whether R can be pruned or not. We now state a pruning theorem
using which we can prune an entry without accessing its children. The lower contribution list
of R is given by:
NNL(R)= 〈 (R1,m1), (R2,m2)..... 〉
Let us assume that m1 ≥ k. The pruning theorem is as follows:

Theorem 1. If the lower bound similarity of a point/region with its kth nearest neighbour is
greater than or equal to its maximum similarity with the query point, then the point/region can
be pruned i.e. if MinSim(R,R1) ≥ MaxSimR,Q), then R can be pruned.

Proof. MinSim(R,kNN(R)) gives a lower bound of its similarity with its kth nearest neighbour.
A point/region can be safely pruned if MaxSim(R,Q) ≤ MinSim(R,kNN(R)), as it guarantees
that there are at least k objects whose similarity is at least equal to the maximum similarity of
the point/region with the query point.

3.1.3 Accepting using NNL and NNU lists

1. We will first consider the case when the elements in the upper contribution list of point e are
points only. We observe the following:
(a) MaxSim(e,eUi ) ≥ Sim(e, iNN(e))
The similarity of e with its ith nearest neighbour(iNN(e)) is less than or equal to the maximum
similarity between e and ith entry in its upper contribution list(eUi ). The ith entry correctly
upper bounds the ith nearest neighbour.
(b) MaxSim(e,eUi ) ≥ MaxSim(e,eUi+1 )
The maximum similarity of e with the ith entry in its upper contribution list i.e. its ith nearest
neighbour, is greater than or equal to the maximum similarity of e with the (i + 1)th entry in
its upper contribution list i.e. its (i+ 1)th nearest neighbour.
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2. We will now consider a region R such that |R|=m. We assume that NNU (R) is complete and
MaxSim(e,R) = S1 which implies ∀ e′ ∈ R, Sim(e,e′) ≤ S1.
We can also say that MaxSim(e,iNN(e)) ≤ S1 ∀ i = 1 to m,so
NNU (e) = 〈 (R,m) 〉

3. We will now consider two regions |R1|=m1, |R2|=m2 such that MaxSim(e,R1)=S1 and
MaxSim(e,R2)=S2. Let us assume S1>=S2. The upper contribution list of e will be
NNU (e) = 〈 (R1,m1), (R2,m2) 〉

4. Let us now consider a region R such that the upper contribution list of R is:
NNU (R)= 〈 (R1,m1), (R2,m2) 〉. We will now derive the condition using which we can accept
an entry to be the RkNN of Q.

Lemma 2. if ∀ e ∈ R, sim(e,kNN(e))<MinSim(R,Q) then R is the RkNN of Q.

Proof. We know that an entry e is the reverse nearest neighbour ofQ if, Sim(e,Q)>Sim(e,kNN(e))
i.e. the similarity of e with its kth nearest neighbour is less than its similarity with the query
point. We can also say if MaxSim(e,kNN(e))<MinSim(e,Q)), then also e belongs to the result.
The above argument implies that if Sim(e,kNN(e))< MinSim(R,Q) then e is the RkNN of Q,
since MinSim(R,Q) is the lower bound of the actual similarity of every children of R with Q.
Therefore, if ∀ e ∈ R, sim(e,kNN(e))<MinSim(R,Q) then R is the RkNN of Q.

5. The lower contribution list can also be used to decide whether a region R is the RkNN of Q
or not. A region R is the RkNN of Q if ∀ e ∈ R, Sim(e, kNN(e)) < MinSim(e,Q). However, for
deciding about the region R to be the RkNN using lower contribution list requires to access the
children of R. We now state a result theorem using which we can add an entry to the results
without accessing its children. The upper contribution list of R is given by:
NNU (R)= 〈 (R1,m1), (R2,m2)..... 〉
Let us assume that m1 ≥ k. The result theorem is as follows:

Theorem 2. If the upper bound similarity of an entry with its kth nearest neighbour is less than
its minimum similarity with the query point, then the entry can be added to the results i.e. if S1
≤ MinSimR,Q) such that m1 ≥ k, then R can be added to the results.

Proof. MaxSim(R,kNN(R)) gives a upper bound of its similarity with its kth nearest neighbour.
A point/region can be added to the results if MinSim(R,Q) > MaxSim(R,kNN(R)), as it
guarantees that there are at most k objects whose similarity is smaller than the minimum
similarity of the point/region with the query point. Completeness condition must be satisfied
to guarantee the correctness of results.

3.2 Public Query over Public Data

We will now discuss how to perform Reverse k Nearest Neighbour Query on spatio-textual
data when both database objects and query point are public i.e. the location-based server
knows the exact location of the database objects and query point, for dynamic values of α and
k. For the sake of clarity, we refer to the nodes/points of the IUR tree as entries. Jiaheng
et. al [8] proposed similarity metrics and algorithms to perform RSTkNN query when both
query object and database objects are public. We will discuss their proposed solutions and give
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counter examples to prove the in-correctness of their proposed similarity metrics and algorithm.
After discussing the conditions necessary for correctness of results, we will discuss our proposed
algorithm and will give a proof of correctness.

3.2.1 Similarity Approximations

Definition 7. (MinST) The authors[8] defined minimum similarity between two entries E and
E′ as follows:

MinST (E,E′) = α ∗ (1− MaxS(E,E′)− ϕs

ψs − ϕs
) + (1− α) ∗ (

MinT (E,E′)− ϕt

ψt − ϕt
) (3.4)

MaxS is the maximum Euclidean Distance between E and E′ and MinT is the minimum textual
similarity defined as:

MinT (E,E′) =

∑n
j=1E.wj ∗ E′.wj∑n

j=1E.w
2
j +

∑n
j=1E

′.w2
j −

∑n
j=1E.wj ∗ E′wj

(3.5)

where the weights are assigned according to the equation below:

E.wj = E.uj , E
′.wj = E′.ij if E.ij ∗ E.uj ≥ E′.ij ∗ E′.uj

E.wj = E.ij , E
′.wj = E′.uj otherwise

(3.6)

Definition 8. (MaxST) The maximum similarity between two entries E and E′ is defined as
follows:

MaxST (E,E′) = α ∗ (1− MinS(E,E′)− ϕs

ψs − ϕs
) + (1− α) ∗ (

MaxT (E,E′)− ϕt

ψt − ϕt
) (3.7)

MinS is the minimum Euclidean Distance between E and E′ and MaxT is the maximum textual
similarity defined as:

MaxT (E,E′) =

∑n
j=1E.wj ∗ E′.wj∑n

j=1E.w
2
j +

∑n
j=1E

′.w2
j −

∑n
j=1E.wj ∗ E′wj

(3.8)

where the weights are assigned according to the equation below:

E.wj = E.ij , E
′.wj = E′.uj if E.ij > E′.uj

E.wj = E.uj , E
′.wj = E′.ij if E.uj < E′.ij

E.wj = E′.wj = E.uj if E′.ij ≤ E.uj ≤ E′.uj
E.wj = E′.wj = E′.uj otherwise

(3.9)

Definition 9. (Similarity Preserving Function): Given two functions fsim: V × V → R and
fdim: R × R → R, where V denotes the domain of n-element vectors and R, the real numbers.
fsim is a similarity function w.r.t fdim, such that for any three vectors ~p= 〈 x1..., xn 〉, ~p′ =〈
x1

′
...,xn

′ 〉, ~p′′= 〈 x1
′′
,...xn

′′ 〉, if ∀ i ∈ [1,n], fdim(xi,xi
′
) ≥ dim(xi,xi

′′
), then we have fsim(~p,~p′)≥

fsim(~p, ~p′′).
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Claim 4. Euclidean Distance function is similarity preserving function, wrt function fdim(x,x′)
= |x-x′|.
Lets consider the scenario where we have points in two dimensions X and Y, and we con-
sider three points p1(x1, y1), p2(x2, y2) and p3(x3, y3). dist(p1, p2)=

√
(x2 − x1)2 + (y2 − y1)2

and dist(p1, p3)=
√

(x3 − x1)2 + (y3 − y1)2. Now if |x2−x1| ≥ |x3−x1| and |y2−y1| ≥ |y2−y1|,
then dist(p1, p2) ≥ dist(p1, p3). So Euclidean distance is similarity function wrt |x-x′|.

Claim 5. Extended Jaccard is similarity preserving function, wrt function fdim(x,x′) = min(x,x′)
max(x,x′) ,

x,x′ >0.

Lemma 3. MinST(E,E′) satisfies the property that ∀ o ∈ E, ∀o′ ∈ E′, SimST(o,o′) ≥MinST(E,E′)
and MaxST(E,E′) satisfies the property that ∀o ∈ E, ∀o′ ∈ E′, SimST(o,o′) ≤ MaxST(E,E′).

Proof. Based on the claim 4 and 5, the authors tried to prove Lemma 3. The detailed proof
can be referred from [8]. We will consider one case of MinST, to get an idea of the derivation.

Consider the case when
√
E.ij ∗ E.uj ≥

√
E′.ij ∗ E′.uj i.e.

E′.ij
E.uj

≤ E.ij
E′.uj

, then for ∀E.w ∈

[E.ij , E.uj ]and∀E′.w ∈ [E′.ij , E
′.uj ],

E′.ij
E.uj

≤ min(E.wj ,E
′.wj)

max(E.wj ,E′.wj)
. The authors claimed that only

the assignments E.wj = E.ujandE
′.wj = E′.ij can guarantee that ∀o ∈ subtree(E) and

∀o′ ∈ subtree(E′), MinT (E,E′) ≤ SimT (o, o′). Similarly, assignments of values are done
for other cases of MinT and MaxT.

x

y

P

P1

P2

XX1

X2

R

Figure 3.3: Counter Example (MinT and MaxT)

Counter Example 1: Now, we will prove that claim 5 is false by providing a counter example.
Let us consider two regions X and P as shown in the figure 3.3, both containing two points
each. Region X contains points X1 with textual vector [100,30] and X2 with vector [100,35].
Region P contains points P1 with vector [1,50] and P2 with vector [1,40]. We will first consider
the textual vectors X1, P1 and P2. For the first dimension, we have 1

100 ≥
1

100 and for second
dimension 30

40 ≥
30
50 , which according to the claim above about the similarity preserving function

of Extended Jaccard implies that EJ(X1,P2) ≥ EJ(X1,P1). But, the exact textual similarity
between X1,P2 EJ(X1, P2) is 0.116 and EJ(X1, P1) is 0.135, which is a contradiction.

Now, we will find MinT and MaxT between regions X and P. The EJ(X2, P1) and EJ(X2, P2) is
0.155 and 0.132. So MinT and MaxT should come out to be 0.116 and 0.155. The intersection
and union of vectors of P and X are:
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P.union=[1,50], P.intersection=[1,40]
X.union=[100,35], X.intersection=[100,30]

We will calculate MinT first. For first dimension, we find 100*100 ≥ 35*30 so, according to
equation (3.3), w=X.uj=100 and w1=P.ij=1. Similarly for next dimension w=X.ij=30 and
w1=P.uj=50. MinT comes out to be 0.135 which is incorrect. Now we will calculate MaxT. For
the first dimension, we find X.ij > P.uj i.e. 100¿1 so w=X.ij=100 and w1=X.uj=1. Similarly
for second dimension we have, X.uj ¡ P.ij , so w=X.uj=35 and w1=P.ij=40.
The MaxT comes out to be 0.132 which is also incorrect.

Method to calculate MinT and MaxT: We now present a simple method to calculate
MinT and MaxT between entries E and E′. The formula for MinT is given below:

MinT (E,E′) =

∑n
j=1E.ij ∗ E′.ij∑n

j=1E.u
2
j +

∑n
j=1E

′.u2j −
∑n

j=1E.ij ∗ E′ij
(3.10)

The idea for computing MinT is that since it is a lower bound, we want to minimize the nu-
merator and maximize the denominator to ensure that ∀o ∈ E and ∀o′ ∈ E′, EJ(E,E′) ≥
MinT(E,E′). We ensure that by multiplying intersection vectors in the numerator and dividing
by union vectors in the denominator. Similarly formula for MaxT is given below:

MaxT (E,E′) =

∑n
j=1E.uj ∗ E′.uj∑n

j=1E.i
2
j +

∑n
j=1E

′.i2j −
∑n

j=1E.uj ∗ E′uj
(3.11)

3.2.2 Search Algorithm

Now we will discuss the algorithm proposed by [8] for Reverse Spatial and Textual Nearest
Neighbour query and then present counter examples. The algorithm proposed by the authors is
as follows.

The algorithm RSTkNN takes as an input Intersection Union Tree R, query Q and returns all
points, i.e. database objects which are RkNN of Q. The algorithm descends the IUR Tree in a
branch and bound manner, computing the upper and lower contribution list for each entry E by
inheriting and updating them. Based on the kNNL(E) and kNNU (E), the algorithm decides
whether to add E to the results, candidates or pruned list. The data structures used: a Priority
Queue (U) sorted in decreasing order on MaxST(E,Q), result list (ROL), pruned list (PEL) and
candidate list (COL). The root of IUR tree is inserted into U. While U is not empty, an entry
P is popped from U. Every child entry E of the parent P inherits (copies) the contribution
list of its parent in order to avoid computing contribution list from scratch and the function
IsHitorDrop is invoked.
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Algorithm 1 RSTkNN(R: IUR-Tree root,Q: query)

1: Output: All objects o, s.t o ∈RSTkNN(Q,k,R).
2: Initialize a priority queue U, and lists COL, ROL, PEL;
3: EnQueue(U,R);
4: while U is not empty do
5: P ← DeQueue(U); //Priority of U is MaxST(P,Q)
6: for each child entry E of P do
7: Inherit(E.CLs, P.CLs);
8: if IS HIT OR DROP(E,Q)==false then
9: for each entry E′ in COL,ROL,U do

10: UPDATECL(E,E′); //update contribution lists of E;
11: if IS HIT OR DROP(E,Q)=true then
12: break;
13: end if
14: if E′ ∈ U∪COL then
15: UPDATECL(E′,E); //Update contribution Lists of E′ using E.
16: if IS HIT OR DROP(E′,Q)==true then
17: Remove E′ from U or COL;
18: end if
19: end if
20: if E is not a hit or drop then
21: if E is an index node then
22: EnQueue(U,E);
23: else
24: COL.append(E); //a database object
25: end if
26: end if
27: end for
28: end if
29: end for
30: end while
31: FINALVERIFICATION(COL,PEL,Q);

32: function Is Hit Or Drop(E: entry, Q:query)
33: if kNNL(E)≥MaxST(E,Q) then
34: PEL.append(E);
35: return true;
36: else
37: if kNNU (E)<MinST(E,Q) then
38: ROL.append(subtree(E));
39: return true;
40: else
41: return false;
42: end if
43: end if
44: end function

An entry is rejected if its lower bound similarity with its kth is greater than its upper bound
similarity with query point and accepted if its upper bound similarity with its kth nearest neigh-
bour is less than its minimum similarity with query point.
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If the entry still can’t be pruned or added to the results, its contribution list is updated from
other entries stored in the candidate list, result list, priority queue.

45: function UpdateCL(E: entry, E′: entry)
46: for each tuple 〈 si,E′i,numi 〉 ∈ EL.CL do
47: if E′i=E or E′i=Parent(E) then
48: remove 〈 si,E′i,numi 〉 from EL.CL; //Clean Conflicts
49: end if
50: end for
51: if kNNU (E)< MaxST(E,E′) then
52: EU .CL ← TOPKMAX( EU .CL, MaxST(E,E′),1);
53: end if
54: if kNNL(E)< MinST(E,E′) then
55: EL.CL ← TOPKMAX( EL.CL, MinST(E,E′),|E′|-1);
56: end if
57: end function

The UpdateCL function updates the contribution list of entry E with the entry E′. The contri-
bution lists of E are scanned to find and remove the parent of E′ or E′ itself, if present. After
the conflicts are cleaned, E′ is added to the contribution lists of E. The TopkMax function
returns a tuple of the form 〈E′, simST, nop〉 where simST is minST or maxST with respect to
E and nop is the number of points.

58: function TopkMax(L,f(E,E′),C)
59: Return the t-th triple in contribution list L, where t is the minimum number fulfilling

t∑
i=1

L.numi ≥k.

60: end function

After updating E with all entries of COL, ROL or U, the algorithm checks if E is an internal
node of the tree or a point. If E is an internal node, it is added to the Priority Queue, otherwise
to candidate list. When the priority queue becomes empty, there might be some candidate
objects left. The function Final Verification is called where candidate objects are updated with
elements present in pruned list to decide if they belong to results or not. The entries were not
updated with elements of pruned list earlier as the algorithm adopts the idea of ”Lazy travel
down” to save I/O cost. In the final verification algorithm, the points which are present in the
pruned lists are given priority over internal nodes. The idea behind updating the candidate
object with points first is that entries in the lower level of the tree may give tighter bounds with
respect to the candidate object than internal nodes of the tree. The algorithm selects an entry
e from the pruned list with the lowest level and updates all candidate objects with respect to
e. Finally, the children of e are added to pruned list and if candidate list is still non empty, the
process continues.
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61: function Final Verification(COL,PEL,Q)
62: while COL!=φ do
63: Let E be an entry in PEL with the lowest level;
64: PEL=PEL-{E};
65: for each object o in COL do
66: UpdateCL(o,E); //update contribution lists of o.
67: if IsHitOrDrop(o,Q)==true then
68: COL=COL-{o};
69: end if
70: end for
71: for each child entry E′ of E do
72: PEL=PEL∪{E′}; //access the children of E′

73: end for
74: end while
75: end function

Now we will present counter examples to prove that the above algorithm is incorrect. Our two
counter examples will highlight some important properties which should be maintained for the
correctness of the algorithm.

Counter Example 2: Let us consider an IUR Tree as shown in figure 3.4 and a query point
Q(30,30) for α=1 and k=2. This counter example will show that locality condition has to be
maintained i.e. an internal entry E should see points in itself also along with its neighbours for
deciding whether query point is in its kNN or not.

The points in the database are P0(95,13), P1(97,17), P2(94,19), P3(22,34) and P4(22,26). The
query point is (30,30). We will first present the brute force results for comparison with the
RSTkNN algorithm results.ψs=77.88 and ϕs=3.61. The similarity of a point with other points
are as follows:

P0 〈P1(0.99), P2(0.97), P4(0.05), P3(0.03)〉. Sim(P0, Q)=0.14
P1 〈P2(1.0), P0(0.99), P4(0.03), P3(0.01)〉. Sim(P1, Q)=0.13
P2 〈P1(1.0), P0(0.97), P4(0.07), P3(0.06)〉. Sim(P2, Q)=0.17
P3 〈P4(0.94), P2(0.06), P0(0.03), P1(0.01)〉. Sim(P3, Q)=0.93
P4 〈P3(0.94), P2(0.07), P0(0.05), P1(0.03)〉. Sim(P4, Q)=0.93

P3 and P4 are the RkNN of Q as their similarity with the query point is more than the similarity
with kth nearest neighbour. The RSTkNN algorithm proceeds as follows:

1. The root of the tree is dequeued from the priority queue. Its child Leaf 0 inherits the
contribution list of its parent, which is empty, so Leaf 0 is enqueued into U.

2. Next Leaf 1 inherits contribution list of its parent and checks whether it can be hit or
drop. Since the contribution list is currently empty, Leaf 1 can’t be added to the results or
pruned. The function UpdateCL is called which updates the contribution list of Leaf 1 by Leaf
0 which is present in the priority queue. The lower and upper contribution list of Leaf 1 is:
NNL(Leaf 1)= 〈 (Leaf 0, 0.02, 2) 〉
NNU (Leaf 1)= 〈 (Leaf 0, 0.07, 2) 〉
MinST(Leaf 1, Q)=0.12, MaxST(Leaf 1,Q)=0.17
Since the kNNU (E) i.e. 0.07 < MinST(Leaf 1,q), Leaf 1 is added to results. However Leaf 1
would have been pruned had the entry seen points in itself along with its neighbours. The lower
and upper contribution list of Leaf 1 should have been:
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Figure 3.4: Counter Example (Locality condition)

NNL(Leaf 1)= 〈 (Leaf 1, 0.96, 2), (Leaf 0, 0.02, 2) 〉
NNU (Leaf 1)= 〈 (Leaf 1, 1.0, 2), (Leaf 0, 0.07, 2) 〉
Since the kNNL(E) > MaxST(Leaf 1, Q), Leaf 1 would have been pruned.

We recently observed that Ying Lu et. al[26] proposed a modified algorithm which maintains the
locality condition and before updating an entry E with the objects in COL, ROL and U, sorts
the objects in descending order on the basis of MaxST(E,o) ∀o ∈ COL∪ROL∪U. However, the
modified algorithm still violates the completeness condition as shown in the following example.

Counter Example 3: Let us consider the distribution of points in space as shown in the
figure 3.5 and a query point Q(15,15) for α=1 and k=1. This counter example will show that
completeness condition has to be maintained i.e. an internal entry E should see all its sib-
lings, only then a decision can be made as completion is necessary for the upper contribution
list.

The points in the database are P1(10,10), P2(30,30), P3(20,20). The query point is Q(15,15). We
will first present the brute force results for comparison with the RSTkNN algorithm results.ψs=28.28
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Figure 3.5: Counter Example (Completeness condition)

and ϕs=12.80. The similarity of a point with other points are as follows:

P1 〈P3(0.90), P2(0.0)〉. Sim(P1, Q)=1.0
P2 〈P3(1.0), P1(0.0)〉. Sim(P2, Q)=0.45
P3 〈P1(0.90), P2(0.0)〉. Sim(P3, Q)=1.0
P1 and P3 are the RkNN of Q as their similarity with the query point is more than the similarity
with kth nearest neighbour. The RSTkNN algorithm proceeds as follows:

1. The root of the tree is dequeued from the priority queue. Its first child P1 inherits the
contribution list of its parent, which is empty, so P1 is enqueued into U since there is no element
in any list(COL,ROL,U) to update contribution list of P1.

2. P2 inherits contribution list of its parent and checks whether it can be hit or drop. Since
the contribution list is currently empty, P2 can neither be added to the results or pruned. The
function updateCL is called and the contribution list of P2 is updated by P1 which is in the U.
The contribution list of P2 is as follows:
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NNL(P2)= 〈 (P1,0,1) 〉
NNU (Leaf 1)= 〈 (P1,0,1) 〉
MinST(P2, Q)=MaxST(P2,Q)=0.5
Since the kNNU < MinST(P1, Q) i.e. 0.5, P1 is added to results. P1 would have been pruned
had it been updated by its exact 1st nearest neighbour i.e. P3. A point to be observed is that
even retrieving entries E′ for updating the contribution list of E in sorted order on the basis of
maximum similarity with the entry E doesn’t help.

Our Algorithm for Reverse Spatial and Textual Nearest Neighbour Search: Now
we present our correct algorithm.

Algorithm 2 Our RSTkNN(R: IUR-Tree root,Q: query)

1: Output: All objects o, s.t o ∈RSTkNN(Q,k,R).
2: Initialize a FIFO queue U, and lists COL, ROL, PEL;
3: EnQueue(U,R);
4: while U is not empty do
5: E ← DeQueue(U); //FIFO Queue
6: for each tuple 〈 si,E′i,numi 〉 ∈ EL.CL do
7: if E′i=E or E′i=Parent(E) then
8: remove 〈 si,E′i,numi 〉 from EL.CL; //remove parent of E
9: end if

10: end for
11: if ( thenE is an internal node)
12: Additself(E) //Add E to its contribution list
13: end if
14: for each entry E′ in U do
15: UPDATECL(E,E′); //update contribution lists of E;
16: UPDATECL(E′,E); //update contribution lists of E′;
17: end for
18: if E is not a hit or drop then
19: if E is an index node then
20: AddChild(U,E); //Add all children of E to U after each child inheriting CL of E
21: else
22: COL.append(E); //a database object
23: end if
24: end if
25: end while
26: FINAL VERIFICATION LAZY TRAVEL DOWN(COL,PEL,ROL,Q);

The algorithm enqueues the root of the IUR Tree in the FIFO queue. While the queue is not
empty, an entry E is dequeued from the queue. The parent of E is removed from its contribution
list and E is added to its contribution list to satisfy the locality condition. The contribution list
of E is updated with every entry present in the queue and IsHitorDrop is invoked. If E still can’t
hit or drop and is an index node, i.e. an internal node, all its children inherit the contribution
list from E and are added to U, else E is added to candidate object list.

We introduce two different approaches for inherit namely, Lazy and Eager. In the lazy ap-
proach, each entry, simply copies the contribution list of its parent in order to save computation.
However, in eager approach each entry copies all the elements of its parent contribution list
and computes its similarity from the elements present in its parent’s CL to get tighter scores.
Next we present two versions of our Final Verification Algorithm. Our first algorithm follows
the lazy travel down approach. For each object belonging to the candidate list, the algorithm
updates candidate object o with all elements in the result list and pruned list. However, even
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after updating the contribution list of the candidates, it can’t be hit or dropped because its
contribution list contains some pruned internal nodes. The algorithm scans the upper and lower
contribution list of object o, finds the first internal node and replaces it with its children. This
process is repeated till its contribution list contains all points. It is possible that after running
Final Verification Lazy Travel Down algorithm, there are some candidates left. These candi-
dates are the points which should have been pruned but because of the property of the lower
contribution list, the internal nodes containing kth nearest neighbour were not able to survive
the prefix filtering of the lower contribution list. The remaining candidates are simply added to
the pruned list.

27: function FINAL VERIFICATION LAZY TRAVEL DOWN(COL,PEL,,ROL,Q)
28: while COL!=φ do
29: for each object o in COL do
30: for each object r in ROL do
31: UpdateCL(o,r); //update contribution lists of o.
32: end for
33: for ( doeach object p in PEL)
34: UpdateCL(o,p); //update contribution lists of o.
35: end for
36: if IsHitOrDrop(o,Q)==true then
37: COL=COL-{o};
38: else
39: while IsHitOrDrop(o,Q)!=true do
40: for each children e of index node E in PEL do
41: PEL=PEL-{E};
42: UpdateCL(o,child(e))
43: end for
44: if IsHitOrDrop(o,Q)==true then
45: break;
46: end if
47: end while
48: end if
49: end for
50: Add the remaining candidate objects to Pruned List.
51: end while
52: end function

Final V erification Eager Travel Down algorithm is the eager version of the first algorithm
where the algorithm eagerly traverses down the IUR Tree and update all candidate objects, with
all the points in the results and the pruned list. The pruned list contains only points, i.e. all
the internal nodes are replaced by the points before updating candidate objects.
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53: function FINAL VERIFICATION Eager TRAVEL DOWN(COL,PEL,,ROL,Q)
54: PEL= SubTree(PEL) //Replace all index nodes with points so that PEL contain points

only
55: while COL!=φ do
56: for each object o in COL do
57: for each object r in ROL do
58: UpdateCL(o,r); //update contribution lists of o.
59: end for
60: for ( doeach object p in PEL)
61: UpdateCL(o,p); //update contribution lists of o.
62: end for
63: if IsHitOrDrop(o,Q)==true then
64: COL=COL-{o};
65: end if
66: end for
67: end while
68: end function

We will now illustrate our algorithm with an example. Consider the IUR Tree shown in the
figure 3.6. We have five points P0(95,13), P1(97,17), P2(94,19), P3(22,34) and P4(22,26). Query
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Figure 3.6: IUR Tree

point Q(94,18), α=1 and k=2. We will first present the brute force results for comparison with
the RSTkNN algorithm results.ψs=77.88 and ϕs=3.61. The similarity of a point with other
points are as follows:

P0 〈P1(0.99), P2(0.97), P4(0.05), P3(0.03)〉. Sim(P0, Q)=0.98
P1 〈P2(1.0), P0(0.99), P4(0.03), P3(0.01)〉. Sim(P1, Q)=1.0
P2 〈P1(1.0), P0(0.97), P4(0.07), P3(0.06)〉. Sim(P2, Q)=1.0
P3 〈P4(0.94), P2(0.06), P0(0.03), P1(0.01)〉. Sim(P3, Q)=0.06
P4 〈P3(0.94), P2(0.07), P0(0.05), P1(0.03)〉. Sim(P4, Q)=0.07

P0,P1 and P2 are the RkNN of Q as their similarity with the query point is more than the
similarity with kth nearest neighbour. The RSTkNN algorithm proceeds as follows:

1. The root of the IUR Tree is dequeued from FIFO Queue. The upper and lower contri-
bution list of the root is:
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NNL(Root)=〈 (Root,0.0,4) 〉
NNU (Root)=〈 (Root,1.0,4) 〉
MinST(Root,Q)=MaxST(Root,Q)=1.0
The root can’t be hit or dropped, so its children Leaf 0 and Leaf 1 inherit the contribution list
of their parent and added to queue.

2. Leaf 0 is popped from the queue and it adds itself to its contribution list.Leaf 0 updates
its contribution list with Leaf 1 and vice versa. The upper and lower contribution list of Leaf 0
is:
NNL(Leaf 0)=〈 (Leaf 0,0.94,1),(Leaf 1,0.0,3) 〉
NNU (Leaf 0)=〈 (Leaf 0,1.0,1),(Leaf 1,0.07,3) 〉
MinST(Leaf 0,Q)=0.06,MaxST(Leaf 0,Q)=0.07
The function IsHitorDrop is called and since Leaf 0 can’t be pruned or added to the results, its
children P3 and P4 inherit contribution list of Leaf 0 and are added to the queue.

3. Leaf 1 is popped from the queue and it adds itself in its contribution list. Leaf 1 up-
dates its contribution list with the elements P3 and P4 present in the queue and vice versa. The
contribution list of Leaf 1 after updation is:
NNL(Leaf 1)=〈 (Leaf 1,0.96,2) 〉
NNU (Leaf 1)=〈 (Leaf 1,1.0,2) 〉
MinST(Leaf 1,Q)=0.97,MaxST(Leaf 1,Q)=1.0
The points P3 and P4 don’t survive the prefix filtering of upper and lower contribution lists and
are removed from the respective lists. Since Leaf 1 can’t be hit or dropped, its children P0,P1

and P2 inherit the contribution list of Leaf 1 and are added to the queue.

4. P4 is popped from the queue and it updates its contribution list with all other points present
in U and vice versa. The upper and lower contribution list of P4 after updation is:
NNL(P4)=〈 (P3,0.94,1),(P2,0.07,1) 〉
NNU (P4)=〈 (P3,0.94,1),(P2,0.07,1) 〉
MinST(P4,Q)=MaxST(P4,Q)=0.07
Since kNNL(P4)≥ MaxST(P4, Q), it is pruned.

5. P3 is popped from the queue and it updates its contribution list with all other points present
in U and vice versa. The upper and lower contribution list of P3 after updation is:
NNL(P3)=〈 (P4,0.94,1),(P2,0.06,1) 〉
NNU (P3)=〈 (P4,0.94,1),(P2,0.06,1) 〉
MinST(P3,Q)=MaxST(P3,Q)=0.05
Since kNNL(P3)≥ MaxST(P3, Q), it is pruned.

6. P2 is popped from the queue and it updates its contribution list with all other points present
in U and vice versa. The upper and lower contribution list of P2 after updation is:
NNL(P2)=〈 (P1,1.0,1),(P0,0.97,1) 〉
NNU (P2)=〈 (P1,1.0,1),(P0,0.97,1) 〉
MinST(P2,Q)=MaxST(P2,Q)=1.0
Since kNNU (P2)≤ MinST(P2, Q), it is added to the results.

7. P0 is popped from the queue and it updates its contribution list with all other points present
in U and vice versa. P0 is updated with P2 present in the result list. The upper and lower
contribution list of P0 after updation is:
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NNL(P0)=〈 (P1,0.99,1),(P2,0.97,1) 〉
NNU (P0)=〈 (P1,0.99,1),(P2,0.97,1) 〉
MinST(P0,Q)=MaxST(P0,Q)=0.98
Since kNNU (P0)≤ MinST(P0, Q), it is added to the results.

8. P1 is popped from the queue and it updates its contribution list with all other points present
in U and vice versa. P1 is updated with P2 and P0 present in the result list. The upper and
lower contribution list of P1 after updation is:
NNL(P1)=〈 (P2,1.0,1),(P0,0.99,1) 〉
NNU (P1)=〈 (P2,1.0,1),(P0,0.99,1) 〉
MinST(P1,Q)=MaxST(P1,Q)=1.0
Since kNNU (P1)≤ MinST(P1, Q), it is added to the results.
After the termination of our algorithm the lists are as follows:
Result list(ROL) = 〈P0, P1, P2〉
Pruned list(PEL) = 〈P3, P4〉
Candidate list(COL) = 〈φ〉

Theorem 3. Given an integer k, a query point Q, and an index tree R, the algorithm 2 correctly
returns all RSTkNN points.

The proof is similar to that given by Jiaheng et al.[8] and is omitted here to avoid repetition.
The only difference in the proof is the lemmas for MinST and MaxST proposed by [8] were
incorrect and our proposed method for calculating MinST and MaxST can be plugged in.

3.3 Public Query over Private Data

In this section, we formalize the problem of performing Reverse Nearest Neighbour Query when
the database objects are not points but regions such that user can be anywhere within the region
and the exact location of the querying user is known to the location-based server. We consider
spatial distance only as the measure of similarity between two objects. In deciding whether
an entry E is in the RkNN of the query point or not, E has to compute the similarity with
kth nearest neighbour either exactly or approximately by computing a lower and upper bound
of the exact similarity. Let us consider the figure below. The region M wants to find out its
kth nearest neighbour and then decide about the query point. The idea is that region M will
expand its cloaked area in every direction, like done in the range query until it finds its k nearest
neighbours as shown in the figure 3.7(a). We will now propose pruning and accept rules for a
region R in space and how to decide the optimal range(d) for the range query.

The MBR M has four corner points named as V1,V2,V3 and V4. The idea is to compute the
maximum distance of each vertex V to its kth nearest neighbour and then decide about the
distance for range query around MBR M. We now present the accept and reject rules and then
present a solution for finding the optimal range.

A region E can be the RkNN of Q if the extended region around the MBR contains less than k
fully overlapped and partial overlapped regions. This ensures that query point is one of the kth

nearest neighbour of the region E since the distance of entry E to its query point is less than
the distance to its kth nearest neighbour.
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Figure 3.7: Public Query over Private Data

If the entry E contains less than k fully overlapped regions, but the number of fully and partially
overlapped regions are greater than k, the entry E can be added to the candidate set. In the
regions belonging to the candidate set, exact distance computations have to be made by the
querying user on the client side and the location-based server will simply return candidates and
result set to the querying user.

We can only prune a region E with respect to Q only if the following condition is satisfied:
∀ p ∈ E, if the distance(p,Q) > distance(p,kthNN), then region E an be pruned. The dis-
tance d by which the region will be extended should be such that we can guarantee that every
point in the region will find its kth nearest neighbour within that distance. The distance d
is defined as follows. We find the maximum distance of the kth nearest neighbour for each
vertex(V1,V2,V3,V4) of the region. Let us assume as shown in figure 3.7(b), that k=5 and the
kthNN for vertices V1, V2, V3 and V4 are A1, A2, A3 and A4 respectively. Let these distances be
denoted as d1, d2, d3 and d4 respectively. Let d′ be the distance between the antipodal corners
(i.e. two opposite corners) of the region. Therefore, distance d can be defined as d=d′+ m,
where m=min{ dmaxkNN(V1), dmaxkNN(V2), dmaxkNN(V3), dmaxkNN(V4) }.In figure 3.7(b),
m=d4. The definition of d guarantees that every point p in the region will find its kth nearest
neighbour within the distance d.
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Chapter 4

Experiments and Results

In this chapter, we present our experimental results and study the effect of different param-
eters on our algorithm. We implemented our proposed algorithm in Java on an Intel Xeon
(R) CPU=26500@2.00 GHz with 64 GB of RAM. We used two real world data sets namely,
SimpleGeoPlaces[27] dataset with 30k points of interest and GeographicNames[28] dataset with
25k points of interest. SimpleGeoPlaces is a dataset containing points of interest with spatial co-
ordinates and textual descriptions. We extracted our textual descriptions from its tags, category
and subcategory elements. GeographicNames is a real life dataset from the United States Board
on Geographic Names. We extracted the locations of points and textual vectors from the feature
name, feature class and county name elements. The statistics of our dataset are shown in figure
4.1: The GeographicNames dataset has more number of unique keywords, textual descriptions

Statistics Shop CD SGP GN

total # of objects 30,000 25,000

total unique words in dataset 2110 20,757

average # words per object 4 4

Figure 4.1: Datasets Statistics

are more sparse compared to SimpleGeoPlaces dataset. We generated for every dataset, a set
of 25 queries randomly. We ran our experiments on different range of parameters as shown in
figure 4.2:

Parameter Range Default

k 2-10 10

Alpha 0-1 0.4

Number of Query Words 1-4 4

Number of Points 1-30,000 15,000

Figure 4.2: Range of Parameters
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Performance of Eager vs. Lazy RSTkNN: We implemented two version of our algo-
rithm Lazy RSTkNN and Eager RSTkNN. We compared the two algorithms on the basis of
query time and page access.
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Figure 4.3: SimpleGeoPlaces Dataset

There are two factors responsible for deciding which approach performs better. The eager
approach computes the exact score of an entry with the elements present in its parent contri-
bution list during inherit. So, eager approach takes more time as compared to lazy approach
as it simply copies the list of parent. Another factor is the similarity scores are tighter with
the elements in the contribution list after inheriting, which leads to a difference in the size of
upper contribution list, as upper contribution list contains elements whose upper bound score
is at least equal to the kth lower bound score. In the SimpleGeoPlaces dataset, eager approach
performs better and in the GeographicNames dataset lazy performs better.

In GeographicNames dataset, the textual vectors are more sparse and even computing the exact
scores doesn’t tighten the lower bound values much. Therefore, lazy approach performs better
than the eager approach. The results also show that the page access is same for both Lazy and
Eager approach and query time increases with the number of points.

Performance of Eager vs. Lazy Final Verification: We implemented two versions of
our algorithm Lazy RSTkNN and Eager Final Verification. We compared the two algorithms
on the basis of query time. The results for both the datasets are shown below.

The results show that eager final verification is better compared to the lazy approach. In the
lazy approach, for every candidate object, the algorithm tries to avoid visiting the children of a
pruned entry, if a decision can be made by updation with the parent itself. However, doing a
linear scan to find an internal node, replacing it with its children and again invoking IsHitorDrop

29



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5K 10K 15K 20K 25K

Q
u

e
ry

 T
im

e
 (

m
s)

Number of Points

Lazy

Eager

(a) Query Time

0

100

200

300

400

500

600

700

800

5K 10K 15K 20K 25K

P
a

g
e

 A
cc

e
ss

Number of Points

(b) PageAccess

Figure 4.4: GeographicNames Dataset
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Figure 4.5: Final Verification Time

is the reason for more time required in lazy final verification.

Number of Candidates Eager vs Lazy: The results for both the datasets are shown in
the figure 4.6. The results show that eager approach results in less number of candidates com-
pared to lazy approach. This is primarily because of the tight similarity score in eager approach.
The results also show that the number of candidates is very less compared to the dataset size.
The percentage of the number of candidates is less than 0.6 for both the datasets.

In the next set of experiments, we analyse how the performance of our algorithm depends
on three parameters, namely, α, k and the number of query words.
Effect of k: We fix α=0.4, qw=4 and vary k from 2 to 10. The results show that the query time
increases with the increase in k as the size of lower and upper bound contribution list depends
on the value of k.
The reason for the increase in the size of contribution lists is with the increase in k, an en-
try/node has to see more number of entries/nodes to find its kth nearest neighbour.

30



0

20

40

60

80

100

120

140

160

180

5K 10K 15K 20K 25K 30K

N
o

. 
o

f 
C

a
n

d
id

a
t
e

s

Number of Points

Lazy

Eager

(a) SimpleGeoPlaces

0

10

20

30

40

50

60

70

80

90

5K 10K 15K 20K 25K

N
o

. 
o

f 
C

a
n

d
id

a
t
e

s

Number of Points

Lazy

Eager

(b) GeographicNames

Figure 4.6: Number of Candidates
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Figure 4.7: Effect of k on query Time
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Figure 4.8: Effect of k on Page Access

Effect of alpha: We fix k=10, qw=4 and vary α from 0 to 1. The results show that the
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algorithm is insensitive to α. The runtime is obviously less in space compared to text, but there
is no relationship between alpha and the performance of our algorithm.
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Figure 4.9: Effect of alpha on query Time
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Figure 4.10: Effect of alpha on Page Access

Effect of query words (qw): We fix k=10, α=0.4 and vary the number of query words
from 1 to 4. The results show that our algorithm runs slower with the increase in the number of
query words. The reason is with the increase in number of query words, the textual similarity
of the query increases with other entries in IUR tree which increases the query time as more
entries/nodes in the IUR tree needs to be visited.
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Figure 4.11: Effect of qw on query Time
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Figure 4.12: Effect of qw on Page Access

Our experimental results show that our algorithm is sensitive to k and the number of query
words and there is a trade-off between the performance of eager and lazy RSTkNN algorithm.
We also show that lazy travel down technique in final verification is better compared to eager
final verification.
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Chapter 5

Conclusion and Future Work

We presented a solution for performing Public Reverse Nearest Neighbour Query over Private
data in two dimensional spaces considering only spatial similarity. We proposed a generic frame-
work for Reverse Nearest Neighbour Search independent of the index structure and the type of
data. We also highlighted the importance of maintaining locality and completeness condition
and presented two different approaches, Lazy and Eager. Our experimental study highlights
the parameters which affect the performance of our algorithm and the factors responsible for
trade-off in performance of Lazy and Eager approach.

In this thesis, we focus only on location privacy, but maintaining query privacy is also im-
portant. It will be interesting to develop efficient algorithms for performing the three Privacy
Preserving Reverse Nearest Neighbour queries while maintaining both location and query pri-
vacy. We would further like to study the impact of textual clustering on the performance of our
algorithm and further optimize our algorithm. We would like to extend our RSTkNN algorithm
for performing bichromatic reverse nearest neighbour queries.

34



Bibliography

[1] Gruteser, Marco, and Dirk Grunwald. Anonymous usage of location-based services through
spatial and temporal cloaking Proceedings of the 1st international conference on Mobile
systems, applications and services. ACM, 2003.

[2] Liu, Fuyu, Kien A. Hua, and Ying Cai. Query l-diversity in location-based services Mobile
Data Management: Systems, Services and Middleware, 2009. MDM’09. Tenth Interna-
tional Conference on. IEEE, 2009.

[3] Korn, Flip, and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries,
ACM SIGMOD Record 29.2 (2000): 201-212.

[4] Foxphilly. Former New Jersey Police Officer Convicted of Stalking Woman
http://www.myfoxphilly.com/story/22687207/former-new-jersey-police-officer-convicted-
of-stalking

[5] Krumm, John. A survey of computational location privacy Personal and Ubiquitous Com-
puting 13.6 (2009): 391-399.

[6] Mokbel, Mohamed F., Chi-Yin Chow, and Walid G. Aref. The new Casper: query pro-
cessing for location services without compromising privacy Proceedings of the 32nd inter-
national conference on Very large data bases. VLDB Endowment, 2006.

[7] Salton. Term-weighting approaches in automatic text retrieval In Information Processing
and Management, pages 513523, 1988.

[8] Lu, Jiaheng, Ying Lu, and Gao Cong. Reverse spatial and textual k nearest neighbour
search Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data. ACM, 2011.

[9] P-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining Addison- Wesley,
2005.

[10] Yang, Congyun, and King-Ip Lin. An index structure for efficient reverse nearest neighbor
queries Data Engineering, 2001. Proceedings. 17th International Conference on. IEEE,
2001.

[11] Achtert, Elke, et al. Efficient reverse k-nearest neighbor search in arbitrary metric spaces
Proceedings of the 2006 ACM SIGMOD international conference on Management of data.
ACM, 2006.

[12] Achtert, Elke, et al. Reverse k-nearest neighbor search in dynamic and general metric
databases. Proceedings of the 12th International Conference on Extending Database Tech-
nology: Advances in Database Technology. ACM, 2009.

35



[13] Tao, Yufei, Dimitris Papadias, and Xiang Lian. Reverse kNN search in arbitrary di-
mensionality Proceedings of the Thirtieth international conference on Very large data
bases,Volume 30. VLDB Endowment, 2004.

[14] Wu, Wei, et al. Finch: Evaluating reverse k-nearest-neighbor queries on location data
Proceedings of the VLDB Endowment 1.1 (2008): 1056-1067.

[15] Cheema, Muhammad Aamir, et al. Influence zone: Efficiently processing reverse k nearest
neighbors queries Data Engineering (ICDE), 2011 IEEE 27th International Conference on.
IEEE, 2011.

[16] De Felipe, Ian, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial databases
ICDE 2008. IEEE 24th International Conference on. IEEE, 2008.

[17] Cong, Gao, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k most
relevant spatial web objects Proceedings of the VLDB Endowment 2.1 (2009): 337-348.

[18] Cao, Xin, Gao Cong, and Christian S. Jensen. Retrieving top-k prestige-based relevant
spatial web objects Proceedings of the VLDB Endowment 3.1-2 (2010): 373-384.

[19] Li, Guoliang, Jing Xu, and Jianhua Feng. Keyword-based k-nearest neighbor search in
spatial databases Proceedings of the 21st ACM international conference on Information
and knowledge management. ACM, 2012.

[20] Vlachou, Akrivi, et al. Reverse top-k queries Data Engineering (ICDE), 2010 IEEE 26th
International Conference on. IEEE, 2010.

[21] Vlachou, Akrivi, et al. Branch-and-bound algorithm for reverse top-k queries Proceedings
of the 2013 international conference on Management of data. ACM, 2013.

[22] Lian, Xiang, and Lei Chen. Efficient processing of probabilistic reverse nearest neighbor
queries over uncertain data The VLDB JournalThe International Journal on Very Large
Data Bases 18.3 (2009): 787-808.

[23] Cheema, Muhammad Aamir, et al. Probabilistic reverse nearest neighbor queries on uncer-
tain data. Knowledge and Data Engineering, IEEE Transactions on 22.4 (2010): 550-564.

[24] Bernecker, Thomas, et al. Efficient probabilistic reverse nearest neighbor query processing
on uncertain data. Proceedings of the VLDB Endowment 4.10 (2011): 669-680.

[25] Li, Jiajia, Botao Wang, and Guoren Wang. Efficient Probabilistic Reverse k-Nearest Neigh-
bors Query Processing on Uncertain Data. Database Systems for Advanced Applications.
Springer Berlin Heidelberg, 2013.

[26] LU, YING, et al. Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-
Nearest Neighbor Search

[27] DataSet SimpleGeoPlaces, http://datahub.io/dataset/simplegeo places dump 20110628
/resource/1f76900b-5238-47b1-92ea-4e265bbc3956

[28] DataSet Geographic Names, http://geonames.usgs.gov/domestic/download data.htm.

36


