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Abstract

Adversarial attacks have been extensively investigated in the recent past. Quite interestingly,

a majority of these attacks primarily work in the lp space. In this work, we propose a novel

approach for generating adversarial samples using Wasserstein distance. Existing Wasserstein

distance-based works generate adversarial samples using balanced optimal transport (OT). How-

ever, balanced OT requires input marginals to be of the same total probability masses these

precluding its immediate application to images. Motivated by the recent unbalanced OT theory,

we propose a UOT based adversarial threat model with relaxed marginal equality constraints.

Our experiments on retrieval and classification tasks demonstrate significantly stronger attacks

with better image quality as well as less computational overhead.
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Chapter 1

Introduction

The radical success of deep learning has led to wide scale deployment of deep learning systems

for multiple tasks in real-world. While these systems have shown tremendous progress over the

years, they are known to be vulnerable to imperceptible perturbations [3, 9, 12, 31, 47, 50, 53]. In

particular, when deep learning systems are deployed in sensitive applications such as autonomous

vehicles, face recognition or malware detection, it is necessary to elaborately evaluate the system’

robustness against various adversarial attacks.

The goal of adversarial attack in a classification setting is defined as follows. Let x be an input

sample, y be the ground truth label, ŷ be a label other than y, and F is a trained classification

model. Then, in order to generate an adversarial sample, the adversary adds an imperceptible

perturbation ∆x to x such that,

F (x+ ∆x) 6= y or F (x+ ∆x) = ŷ. (1.1)

Szegedy et al. [43] proposed the first work on generation of adversarial sample for deep neural

networks. The authors formulated it as an optimization problem and obtained the adversarial

sample using an additive perturbation by solving the objective using L-BFGS. Since then, a lot of
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works have been proposed in this direction. Noting that L-BFGS is computationally expensive,

Goodfellow et al. [15] proposed a fast gradient sign method (FGSM) to efficiently compute the

adversarial sample. Kurakin et al. [22] extended FGSM for targeted attacks where F (x+ ∆x)

can be guided to output a target label other than the ground truth label. These attacks can be

categorised as lp norm based attacks. In particular, a vast majority of attacks are proposed using

lp norm only. However, some notable works perform the attacks using Wasserstein distance

[16, 27, 48, 49], the focus of our work.

In this work, we propose a Wasserstein distance based attack. We first obtain an lp norm perturbed

sample using FGSM which is then projected into the vicinity of original sample measured in

terms of Wasserstein distance. While projecting the sample into Wasserstein ball, the objective

also minimizes the l2 distance between output adversarial sample and the lp norm perturbed

sample. Prominent works in this domain, Wong et al. [48] and Hu et al. [16], derive

the objective formulation from balanced optimal transport (OT) problem. Since balanced OT

computes the distance between probability simplexes only, the images are normalized such

that they lie in a probability simplex. However, we argue that images do not inherently lie

in probability simplexes. Thus, we cast the formulation as an unbalanced optimal transport

problem where normalization is not required [37]. We solve the problem in the dual domain

using modified Sinkhorn iterations. Further, we also demonstrate that when the adversarial

samples are used for training the model, the trained model exhibits a strong defense against

several state-of-the-art attacks.



Chapter 2

Literature Review

2.1 Adversarial Attacks

FGSM’ simplicity and efficiency triggered a huge interest in gradient based attacks which are

predominantly in lp space. Kurakin et al. [22] proposed a basic iterative FGSM which generates

adversarial examples using small step size. The attack is more severe than one-step FGSM and

is also scalable to large scale datasets like ImageNet. Madry et al. [30] introduced projected

gradient descent as a universal first-order adversary and demonstrated it as the strongest first

order attack. This work also emphasizes that more complex models can perform better against

one-step perturbations. However, this also decreases the transferability.

Carlini and Wagner [6] introduced l2, l0 and l∞ attacks to demonstrate the vulnerability of neural

networks against defensive distillation [35]. They evaluate a combination of seven different

objective functions with 3 different box constraints and highlight that cross-entropy based

objective function is the worst performing among all objective functions. Further, they also

investigate transferability of attacks. Here, an unsecured standard model is used to determine

strongly misclassified adversarial example which can also successfully attack the distilled models.
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Papernot et al. [34] proposed a Jacobian based method to construct an adversarial saliency map.

The saliency map is constructed using forward derivative of the network with respect to the input

features. The derivatives which take higher positive values lead to high saliency. These high

saliency values then identify whether the corresponding features will increase the likelihood of

target class or decrease the likelihood of other classes. Further, the features are perturbed to

obtain the adversarial samples. This method has a significant benefit as it perturbs only a small

fraction of the input features. Saliency maps have also been used in other works such as [7].

Athalye et al. [3] synthesized 2D and 3D adversarial objects using an expectation over transfor-

mation. Since many attacks do not survive the real world scenarios like viewpoint variations,

authors propose to use an expectation over affine transformations or rendering of texture in case

of 3D. In [9], Croce and Hein proposed AutoAttack which addresses the fixed step size, budget

and optimization issues of projected gradient descent based attacks.

In [12], Dong et al. identified that iterative FGSM are less transferable as it tends to overfit the

model. To address this issue, the authors proposed a momentum based iterative FGSM which is

both stronger and transferable compared to basic iterative methods. The authors point out that

iterative methods easily get trapped into local maxima which results in poor transferabilty as

the decision boundaries of different models are not the same. On the other hand, incorporating

momentum stabilizes the update direction and allows escaping from local maxima. Su et al.

[42] proposed an extreme attack by modifying the RGB values of a single pixel using differential

evolution [41]. This method does not use any gradient information and has better transferability

as very less target model information is needed.



2.2 Adversarial Defense

Countering adversarial attacks, the goal of adversarial defense is to achieve the accuracy compa-

rable to that of untargeted model. The defense methods either use adversarial examples during

training or modify the network itself. Adversarial training is often considered as a first line

of defense [15, 31, 43] and also demonstrates the strongest defense. Among other class of

defenses which modify the network are defensive distillation [35], gradient regularization [38],

biologically inspired models [21, 33], convex ReLU relaxation [46], image enhancement [32],

image restoration [55].

2.3 Entropic Regularized Optimal Transport

f(Π) = min
Π∈U(x,z)

〈C,Π〉+ γ〈Π, ln Π〉 (2.1)

U(x, z) = Π ∈ Rn×n
+ : Π1 = x,Π>1 = z,

where Π is the transportation plan, ln Π operates element-wise, Cn×n
+ is the cost matrix, and, 1 is

an n−dimensional vector of all ones. 〈., .〉 denotes Frobenius product of matrices. Since the term

γ〈Π, ln Π〉 is strongly convex, the objective in Equation 2.1 is strongly convex and admits an

optimal solution. In addition, the higher computational complexity for computation of exact OT

(O(n3logn)) is also addressed by this entropic regularized version and has been demonstrated to

achieve an O(n2) in the celebrated work by Cuturi et al. [10].



2.4 Regularized Balanced Optimal Transport

In this paper, we focus on Wasserstein space attacks. In contrast to pixel based distance measures,

Wasserstein distances incorporate the geometry of the pixels. Quite recently, Wong et al. [48]

proposed a projected Sinkhorn attack characterized by projected gradient descent followed by

projection onto Wasserstein ball. More formally, let l(x, y) be a cross-entropy loss, α be step-size

and ∇x denotes the gradient of the function with respect to x. Then,

w = x+ α∇xl(x, y) (2.2)

Now, w can be projected either into an lp ball or Wasserstein ball. Here, we consider projection

into Wasserstein ball only. Then, to drop w into Wasserstein ball of ε radius, we solve for,

min
z,Π

λ

2‖w − z‖
2
2 +

∑
ij

Πij ln Πij (2.3)

subject to Π1 = x,Π>1 = z, 〈Π, C〉 < ε.

Upon projection into Wasserstein ball, the images are clamped such that the pixels are in the

range [0, 1]. Due to this clamping, the algorithm overshoots the available budget. Hu et al. [16]

improve this shortcoming by adding an l∞ constraint on z and solve the following,

min
z,Π

λ

2‖w − z‖
2
2 +

∑
ij

Πij ln Πij (2.4)

subject to Π1 = x,Π>1 = z, 〈Π, C〉 < ε, zj ≤
1
‖w‖1

.

Hu et al. [16] also show that l2 norm based PGD step with large step-size is effective compared

to l∞ norm.



Equations 2.3 and 2.4 use a regularized version of OT and in practice compute an approximate

Wasserstein distance. In order to compute exact Wasserstein distance, Wu et al. [48] propose a

dual projection method and apply Frank-Wolfe algorithm to obtain the optimal transport matrix.

In addition to the attacks, certified robustness against Wasserstein attacks based on Wasserstein

smoothing has also been proposed [26]. Wasserstein distance based feature matching is also

demonstrated to be prominent defense mechanism in [52].

2.5 Unbalanced Optimal Transport

The entropic regularized OT can only be used when the total probability masses are same. This

restriction naturally precludes employing entropic regularized OT to pixel domain. In order

to address this issue, unbalanced OT has been proposed [8, 37, 40]. Unbalanced OT uses KL

divergence instead of marginal equality constraints and solves the formulation using the Fenchel-

Legendre dual form [36]. Such relaxed formulation has also been proposed in [14], though

solved in the primal form.

2.6 Contributions

Optimal Transport based on Wasserstein distance is employed to obtain the ideal expense to

move volumes from a distribution to another space [44]. Original OT needs the marginals

(x, z) to be probability vectors. However, converting colour images to normalized vectors leads

to information loss. Recently, several computational biologics applications [39], including

computational imaging [24], used the Unbalanced Optimal Transport (UOT) problem. The UOT

program is a regularized variant of the "Kantorovich formulation" that assigns fine procedures to

the marginal populations depending upon a few provided alterations Liero et al. [29]. Motivated

by the UOT problem, we relax the OT constraints. It helps us to reduce the computational



overhead from Projected Gradient Descent steps and produce a notably more potent "threat

model" than Wong et al. [13] and Hu et al. [17].



Chapter 3

Proposed Method

In this section we discuss our proposed objective formulation and analytically derive the solution.

We also show a geometric convergence proof. The formulations proposed in Equations 2.3 and

2.4 needs the marginals (x, z) to be probability vectors [10]. However, images do not inherently

lie in probability simplexes and normalizing them to probability vectors leads to information

loss [4, 8, 37]. To overcome this, we relax the equality constraints as,

min
Π
〈Π, C〉+ η〈Π, ln Π〉+ τΦ(Π1, x) + τΦ(Π>1, z), (3.1)

where, Φ(a, b) is a divergence measure. In this work, we use Φ(a, b) = KL(a‖b) = ∑n
i=1 ai log

(
ai
bi

)
−

ai + bi. Smooth measures such as l2 can also be applied [5, 25].

By applying Fenchel-Legendre conjugate dual [36], the formulation in Equation 3.1 can be

re-written as,

max
α,β
−F ∗(−α)−G∗(−β)− η

∑
ij

exp(αi + βj − Cij
η

),

9



where,

F ∗(α) = max
Π

Π>α− τKL(Π1||x)

G∗(β) = max
Π

Π>β − τKL(Π>1||z)

Now, we need w, obtained in Equation 2.2, be dropped into Wasserstein ball with respect to x.

In other words, we need the output adversarial sample z which is closer to w in l2 sense and lies

in a given Wasserstein ball with respect to clean sample x. Thus, the objective can be written as,

min
α,β,z

h
(
α, β, z

)
= η

∑
ij

exp(αi + βj − Cij
η

)+ (3.2)

τ〈exp(−α/τ), x〉+ τ〈exp(−β/τ), z〉+ γ

2‖z − w‖
2,

where, ‖.‖ denote l2 norm. We solve for each variable independently by taking derivative with

respect to single variable and setting to zero.

3.0.1 Solving for α

To solve for α, we minimize the following equation,

min
α
η
∑
ij

exp(αi + βj − Cij
η

) + τ〈exp(−α/τ), x〉 (3.3)

Taking derivative of Equation 3.3 wrt. αi,

∇αh(α, β, z) = e
αi
η

∑
j

e(βj−Cij)/η − xie−
αi
τ (3.4)



Setting Equation 3.4 to zero gives,

αi
η

+ ln
(∑

j

e(βj−Cij)/η
)

= ln xi −
αi
τ

(3.5)

αk+1
i =

[
ln xi − ln

(∑
j

e(βkj−Cij)/η
)] ητ

η + τ
, (3.6)

where k denotes the iteration index. We can further manipulate Equation 3.6 to obtain,

αk+1
i =

[αki
η

+ ln xi − ln
(∑

j

e(αki +βkj−Cij)/η
)] ητ

η + τ
. (3.7)

3.0.2 Solving for β

To obtain β, we solve for

min
β
η
∑
ij

exp(αi + βj − Cij
η

) + τ〈exp(−β/τ), z〉+ γ

2‖z − w‖
2.

Similar to solution for α, we obtain,

βk+1
j =

[βkj
η

+ ln zj − ln
(∑

i

e(αki +βkj−Cij)/η
)] ητ

η + τ
. (3.8)

3.0.3 Solving for z

To obtain z, we solve for

min
z
τ〈exp(−β/τ), z〉+ γ

2‖z − w‖
2.



Then,

∇zh(α, β, z) = τe−βi/τ + γ(zi − wi) (3.9)

which gives,

zk+1 = w + τ

γ
e−β

k+1/τ (3.10)

We iteratively solve for α, β and z for a fixed number of iterations. Since the iterations

alternatively update α and β, the algorithm can be considered to perform Sinkhorn-like iterations

[8, 37]. We present these steps in Algorithm 1.

Algorithm 1 Modified Sinkhorn iterations for computing adversarial sample
Input: k = 0, α0 = β0 = 0, η = 0.001, τ = 0.01, γ = 0.5
B(αk, βk) = diag(eα0/η)e−C/ηdiag(eβ0/η)

Ouput: z,B(αk, βk)

while convergence do

rk = B(αk, βk)1n = ∑
j e

(αki−Cij/η+βkj )/η

qk = B(αk, βk)>1n = ∑
i e

(αki−Cij/η+βkj )/η

For even k

αk+1 =
[
αk

τ
+ ln(x)− ln(rk)

]
ητ
η+τ

βk+1 = βk

For odd k

βk+1 =
[
βk

τ
+ ln(z)− ln(qk)

]
ητ
η+τ

αk+1 = αk

zk+1 = w + τ
γ

exp(−βk+1

τ
)

k = k + 1



Chapter 4

Experimental Result

In this section, we show the experimental results of the proposed adversarial attack and show a

comparison with the other well-performed adversarial attack by Wong et al.[13] and Hu et al.

[17]. This chapter contains the performance evaluation of the adversarial attacks on the three

image classification datasets: MNIST [23], CIFAR10 [2], Tiny ImageNet [19] and two person

re-identification datasets: CUHK-PEDES [28], Flickr 8k [51]. Unlike OT, UOT does not require

the marginals to be normalized vectors. Unlike OT, the ε-approximation explanation for UOT

by the “Sinkhorn algorithm” does not know when it is close to solutions. OT has this useful

property because of the constraints on the marginals [20]. As a result, we increase our attack

strength by varying the PGD Iterations.

4.1 Image Classification

We perform Sinkhorn attacks on three image classification dataset- MNIST [23], CIFAR10 [2],

Tiny ImageNet [19]. We perform attacks on one of the states of the art models from each dataset.

Then we finetune them to make them robust towards such types of attacks. We also compare

our robust models with adversarially trained models from Wong et al. [13] and Hu et al. [17] on

13



MNIST and CIFAR10 datasets. While comparing, we keep hyperparameters constants.

4.1.1 MNIST

The MNIST [23] dataset consists of a total of 70000 handwritten digits divided into 10 classes

(0 to 9). The Train and the test datasets consist of 60000 and 10000 images respectively. All

images are grayscale and of the size (28*28). The digits have been size-normalized and centred

in a fixed-size image. It is publically available for non-commercial uses.

((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.1: Our Sinkhorn attacks on the MNIST dataset

Figure- 4.1 presents our Sinkhorn attacks on the MNIST [23] dataset. We take iterations as 75.

Figure- 4.2 presents Wong et al. [13] attacks on the MNIST [23] dataset. We take iterations as

75.

Figure- 4.3 presents Hu et al. [17] attacks on the MNIST [23] dataset. We take iterations as 75.

Figure- 4.4 presents a detailed comparison of performances of our adversarially trained model

with Wong et al. [13], Hu et al. [17] and a standard model [45] on the MNIST [23] dataset



((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.2: Wong et al. [13] attacks on the MNIST dataset

((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.3: Hu et al. [17] attacks on the MNIST dataset
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Figure 4.4: Our Model attacks on the MNIST [23] dataset

against our Sinkhorn attacks. We are varrying iterations from 0 to 75. We can see our model is

performing best compared to all of the models.
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((b)) Hu et al.[17] attacks

Figure 4.5: Adversarial attacks on the MNIST [23] dataset

Figure- 4.5 presents a detailed comparison of performances of our adversarially trained model

with Wong et al. [13], Hu et al. [17] and a standard model [45] on the MNIST [23] dataset

against Wong et al. [13] and Hu et al. [17] attack environment. Here, Wong et al. [13] is

performing well compared to the other models. We are varying iterations from 0 to 75. Our

model is performing second best. The reason Wong et al. [13] is performing well is because of

both Hu et al. [17] and Wong et al. [13] attacks are similar. We can see, against our attack Wong



et al. [13] is performing worst. As a result, we can say Wong et al. [13] is not a robust model.

Our model is more robust towards adversarial attacks.

4.1.2 CIFAR10

The CIFAR10 [2] dataset consists of a total of 60000 images divided into 10 classes. The training

part of the dataset consists of 50000 and the test contains 10000 images.

((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.6: Our Sinkhorn attacks on the Cifar10 dataset

Figure- 4.6 presents our Sinkhorn attacks on the CIFAR10 [2] dataset. We take iterations as 75.

Figure- 4.7 presents Wong et al. [13] attacks on the CIFAR10 [2] dataset. We take iterations as

75.

Figure- 4.8 presents Hu et al. [17] attacks on the CIFAR10 dataset. We take iterations as 75.

Figure- 4.9 presents a detailed comparison of performances of our adversarially trained two

models(normal and robust) with Wong et al. [13], Hu et al. [17] and a standard ResNet18

CIFAR10 classifier [13] on the Cifar10 dataset against our Sinkhorn attacks. We are varying



((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.7: Wong et al.[13] attacks on the Cifar10 dataset

((a)) Input ((b)) Noise ((c)) Attack ((d)) Input ((e)) Noise ((f)) Attack

Figure 4.8: Hu et al.[17] attacks on the CIFAR10 [2] dataset
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Figure 4.9: Our attack on the Cifar10 [2] Dataset

iterations from 0 to 75. We can see both of our models are performing better compared to all of

the models.
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Figure 4.10: Adversarial attacks on the CIFAR10 [2] dataset

Figure- 4.10 presents a detailed comparison of performances of our adversarially trained mod-

els(normal and robust) with Wong et al. [13], Hu et al. [17] and a standard ResNet18 CIFAR10

classifier [13] on the Cifar10 dataset against Wong et al. [13] and Hu et al.[17] attack environ-

ment. Here, Wong et al. [13] is performing well compared to the other models. We are varying

iterations from 0 to 75. Our model(robust) is performing second best. The reason Wong et al.

[13] is performing well is because of both Hu et al. [17] and Wong et al. [13] attacks are similar.



So Wong et al. [13] model is performing better against these attacks but in the case of our attacks,

It is not performing well compared to our two models. Our Robust model is more robust towards

adversarial attacks compared to our normal adversarial model. Although nominal accuracy of

our robust model is low compared to our normal model. The robust model is trained with a PGD

gradient value of 0.4 while the normal model is trained on a gradient value of 0.1. The value of

iterations is taken as 75.

4.1.3 Tiny ImageNet

Tiny ImageNet [19] consists of a total of 110000 images divided into 200 classes. Each class has

equal numbers of images. The training part consists of 100000 images and the test part contains

only 10000 images. The classes are entirely mutually non-overlapping. The dataset is publicly

available for non-commercial uses.

As we do not have any previously trained adversarial model on the dataset, we can not compare

our result with other works. We have used a standard model [1] on the dataset and later attack

that model and make it robust towards such attacks.

Figure- 4.11 presents our Sinkhorn attacks on the Tiny ImageNet [19] dataset. We take iterations

as 40.

Figure- 4.12 presents a detailed comparison of performances of our adversarially trained model,

a well-learned model [1] on the Tiny ImageNet [19] dataset against our Sinkhorn attacks. We

are varying iterations from 0 to 40. We can see the model is performing better and it is robust

towards such attacks.
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Figure 4.11: Our Sinkhorn attacks on the Tiny ImageNet [19] dataset
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Figure 4.12: Our attacks on the Tiny ImageNet [19] dataset



4.2 Person Re-Identification

Apart from simple image classification, we perform our attack model on personal re-identification

problems. The task is to retrieve the query person based on a given description. We use three

evaluations metrics- Top1, Top5 and Top10 retrieval rates. We train our personal re-identification

models from scratch (unlike image classification where we use pretrained model weights. We

experiment on two person re-identification datasets- CUHK-PEDES [28] and Flickr8K [51].

Unlike simple classifications, we do not use cross-entropy loss for our adversarial algorithm.

Motivated by work of [54] We use two different loss functions- CMPM and CMPC losses for

the attack. We employ BERT [11] and ResNet152 [18] pre-trained models to obtain the textual

and image representation. Both representations are project to 512 dimension vectors through

linear layer. Subsequently, we fine tune the textual and image representations using the CMPM

and CMPC losses for the re-identification task. The adversarial attack is performed only on the

Images to reduce top10 retrieval rates, subsequently top1 and top5 retrieval rates drop. Unlike

simple classification datasets, we could not develop adversarially trained models due to their

high computation demand.

4.2.1 CUHK-PEDES

The CUHK-PEDES [28] dataset consists of 40206 pedestrian images of 13003 personalities,

with every image defined by two textual explanations. The dataset is divided into 11003 training

personalities with 34054 images, 1000 validation characters with 3078 images and 1000 test

individuals with 3074 images.

Figure- 4.13 presents our Sinkhorn attacks on the CUHK-PEDES[28] dataset. We take iterations

as 75.

Figure- 4.14 show our adversarial attacks on textual descriptions to image and image to textual
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Figure 4.13: Our Sinkhorn attacks on the CUHK-PEDES [28] dataset

descriptions retrieval on the CUHK-PEDES [28] dataset. We are varying iterations from 0 to 75.

4.2.2 Flickr 8K

Flickr 8k [51] consists of 8,000 images, each paired with five different captions having clear

descriptions of the salient entities and events. The training set contains 6000, the test set contains

1000 and the validation set contains the rest 1000 images. We use this dataset for textual

descriptions to image retrieval and image to text descriptions retrieval purposes.

Figure- 4.15 presents our Sinkhorn attacks on the Flickr 8k [51] dataset. We take iterations as 75.

Figure- 4.16 show our adversarial attacks on text to image and image to text retrieval on the

Flickr 8k [51] dataset. We are varying iterations from 0 to 75.
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Figure 4.14: Our Sinkhorn attacks on the CUHK-PEDES [28] dataset
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Figure 4.15: Our Sinkhorn attacks on the Flickr 8k [51] dataset
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Figure 4.16: Our Sinkhorn attacks on the Flickr 8k [51] dataset



Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we propose an adversarial attack based on unbalanced OT problems. Unlike

standard OT, UOT problems do not require marginals to be probability vectors. It reduces

information loss while working with images. We have performed a detailed comparison with

previous OT based solutions and found our attacks are good enough to confuse well trained

adversarial models. We have also shown our trained models are robust towards other OT based

attacks on different datasets. Based on the results and analysis, we can conclude that our model

is probably more robust against our Sinkhorn attacks than previously trained adversarial models.

5.2 Future Work

The issue of robustness in adversarial attack is not unusual. We have also observed the perfor-

mance drop of our models while facing other types of attacks. Our primary future work will be

to enhance the robustness of classifiers against other types of adversarial attacks. Another issue-

26



even after approximating UOT problems, the algorithm requires more resources than usual to

fine-tune a person re-identification model against our attack and make it impossible to generate a

robust model. This issue applies to OT based solutions as well. A flaw with the UOT algorithm

is it lacks an important property. Unlike OT, the ε-approximation solution for the UOT based on

the Sinkhorn algorithm can not predict convergence conditions. These are some challenges, we

left for further explorations.
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