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Abstract

Correlation filter (CF) based tracker often disregard or weakly incorporate the importance

of feature channels as well as channel similarity. To address this, we propose a channel-graph

regularization correlation filter-based visual object tracker (CGRCF). In our work, we study

two-channel regularization methods. First is the channel regularization that determines the

vital feature channels. Second is the graph-regularization that increases the probability of

assigning similar weights based on the properties of feature channels. The proposed tracker

can be efficiently solved in the Fourier domain using ADMM (Alternate Direction Method

of Multiplier) and achieves a real-time tracking speed of 28FPS. We conduct extensive

experimentation on the TC128, VOT2017 and VOT2019 datasets. The proposed tracker

demonstrates promising results and performs better than several state of the art CF trackers as

well as end-to-end deep learning trackers.
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CHAPTER 1

Introduction

Object tracking is an essential and complex problem in the field of computer vision. It has a

wide range of application such as autonomous driving, surveillance and robotics [1–3]. Object

tracking aims to determine the position of the object in subsequent frames, given the initial

position of the object. The object tracking can broadly be classified into end-to-end deep

learning trackers [4–6] and Correlation filters (CF) based trackers [7–14]. The deep learning

trackers use features from the deep networks that significantly improve their representation

power. Deep learning trackers can be further divided into two groups. The first group contains

trackers [15–17] that do an online update by updating the model at every frame. Online

training will give a robust representation of the object but on the other hand, requires more

computation time. The second group contain the trackers [4, 5, 18] that leverage the use of

extensive offline training to learn the representation of the objects. The major problem with

the deep learning trackers is that they have a very low tracking speed because of the high

computational cost involved in training. The trackers in the second group of deep learning

resolve this problem by using offline training for the network, but this approach cannot adapt

to the change in target appearance due to lack of online training.

Correlation Filters (CF) based tracker learn the appearance of the object using the filters

trained on the object sample images. In recent years, the performance of the CF-based trackers

has increased drastically [9, 14, 19]. The most significant advantage of the CF trackers is

that they can be learned efficiently in the frequency domain via Fast Fourier transform (FFT)

[20]. The filters and the images are converted to the Fourier domain and they are used to

solve the objective function, and the output is again mapped back to the spatial domain using

the Inverse Fast Fourier Transform (IFFT) [21]. This transition from FFT to IFFT can be

1



2 1 INTRODUCTION

done in O(n log n) by using the divide and conquer algorithm [22] where n is the size of

the image in terms of the total number of features. CF trackers can use deep features due to

efficient and faster learning capability that also helps in learning more robust filters which can

give robustness to the visual tracking challenges like Illumination Variation, Scale Variation,

Occlusion, Deformation, Motion Blur, Fast Motion, In-Plane Rotation, Out of view rotation

and Background Clutters. CF-trackers use deep learning features [23, 24] and handcrafted

features [25–27] jointly to learn filters, but all of these features may not be useful. Learning

the model using all of the features may result in a noisy model and tracker drift. Based on

this observation, several spatial and temporal regularization have been investigated [9, 10].

These models help in selecting the features but do not take into consideration the relationship

between the different feature channels that results in assigning different weights to the similar

feature channels.

In this work, we propose a graph-channel regularization technique to handle the problem of de-

termining important feature maps and the unequal weight assignment by using a combination

of regularizations. We propose channel-regularization which helps in selecting the essential

feature channels and the graph regularization which helps in assigning the similar weights

to the similar feature channels. Some channels are sensitive to foreground or background

while some channels are sensitive to noise. Channel regularization selects features to suppress

the channel-wise redundancy or noise. Graph regularization represents the n-dimensional

feature channels in the form of a graph where each channel is represented as a graph node.

The edge weights are assigned by using the distance between the feature channels. This graph

is represented in the form of a matrix by using the Laplacian operator [28] and further used to

compute the weights for each feature channels. By using the channel-graph regularization,

we propose a correlation filter based tracker (CGRCF). We also show how channel-graph

regularization can be used to significantly improve the performance of existing trackers. The

proposed and the modified trackers show promising results on popular datasets like Temple

colour [29] and Visual Object Tracking 2017 [30] and 2019 [31] datasets . These datasets

contain a variety of challenges that can help in better understanding the tracker’s performance

[32].



1 INTRODUCTION 3

1.0.1 Research Contribution

The following are the contributions of this thesis:

• We propose a correlation filter based visual object tracker by using the channel and

graph regularization.

• To show the effect of channel and graph regularization on the trackers, we reformulate

state of art trackers BACF [8] and GFSDCF [9].

• A thorough analysis of the Proposed tracker along with the reformulated tracker is

done on the Visual Object Tracking and Temple colour datasets [29–31].



CHAPTER 2

Visual Object Tracking Background

2.1 Literature Review

Discriminative correlation filter (DCF) based approaches have been successfully applied to

the field of object tracking [29, 33, 34]. In object tracking, there is always a trade-off between

robust tracker performance and speed of tracker. A tracker with frame process rate of more

than 30 frames per second is known as a real-time tracker. Some of the trackers offer real-

time speed [14, 19] but give less promising results whereas, others provide decent tracking

accuracy, but they are not real-time [13, 35]. The object trackers are broadly categorized into

two categories: the end to end deep-learning-based trackers and the correlation filter-based

trackers. They both have their advantages and disadvantages as the end to end tracker have

more robust features, but they are extremely slow whereas, CF trackers are faster but do not

include online training of features. In our work, we use correlation filter trackers because of

their enormously flexible behaviour and robustness.

In [14], Dai et al. proposed a Minimum Output Sum of Squared Error (MOSSE) tracker

that can track up to 700 FPS by using only greyscale samples to train the filters. The tracker

detects occlusion based upon the peak-to-sidelobe ratio, the tracker pause and resumes where

it left off when the object reappears. In [19], Henriques et al. proposed KCF tracker that

shows promising performance with a high tracking rate of more than 150FPS. They trained

their model with translated and scaled sample patches. Instead of training tracking model on

the raw pixel, KCF uses the multi-channel HOG feature. The authors make a circulant matrix

using these features and diagonalize it using the Discrete Fourier Transform to make it space

and computationally efficient.
4



2.1 LITERATURE REVIEW 5

MOSSE [14] and KCF [19] use features from the gray scale images. Similarly [36] introduce

the color naming features to achieve robust tracking in color videos. In [37], Tang et.al. intro-

duce multi-kernel into learning KCF. The authors also reformulate the multi-kernel version

of CF objective function with its upper bound, alleviating the negative mutual interference

of complementary features. In [38], the authors proposed a region of interest-based pooling

method. The pooling operation is used on the cropped ROI regions. It helps in compressing

the model by preserving the localization. Then using these ROI pooled samples, they learn

the correlation filters for tracking. This way, authors were able to use more features but the

tracking speed is as low as 5FPS. Similar to using CF technique, several works also explore

the concept of Reinforcement Learning in object tracking. [39–41] proposed trackers that

use reinforcement and deep reinforcement learning. [39] proposed a neural network-based

tracking model that comprises of a CNN(Convolutional Neural Network) for best features, an

RNN(Recurrent Neural Network) to construct a video memory state and an RL agent that

helps in making decisions about the target localization state.

One of the other approaches in object tracking is based on end-to-end deep learning. In the

past decade, deep learning has become very popular. Recently, [4, 42, 43] proposed trackers

that are based on end-to-end tracking framework. These trackers fine-tune the features after a

specific interval of frames that results in a more robust tracker. In [44], Li et al. proposed a

gradient-guided network which uses the information from the gradient to update the template

in the current frame. Template generalization method is applied during the offline training,

which helps in avoiding over-fitting. In [45], Zhang et al. proposed a deep learning tracker

called UpdateNet, which overcomes the shortcomings of the conventional linear update rule

and learn the updating step as an optimization problem.

Our work focuses on CF based tracker, where we proposed a novel channel-graph regulariza-

tion based tracker and reformulate three trackers to show how we can use graph and channel

regularization to improve the performance. Below is the literature of the tracker used in the

proposed work.



6 2 VISUAL OBJECT TRACKING BACKGROUND

2.1.1 BACF

A background aware CF tracker that was proposed in [8], separates out the background from

the foreground by using a representation matrix P. The objective function for BACF is,

E(H) =

∥∥∥∥∥y −
c∑

k=1

xk ∗ (P Thk)

∥∥∥∥∥
2

2

+
λ

2

c∑
k=1

‖hk‖2
2 (2.1)

Where, P ∈ RT×T is the representation matrix to separate foreground from background.

xk ∈ RT×1 and hk ∈ RT×1 are the k-th channel of vectorize image and features.

2.1.2 GFSDCF

Group Feature Selection method for Discriminative Correlation Filters (GFSDCF) [9] uses

both, spatial and channel regularization to select the features and is formulated as follows:

E(H) =

∥∥∥∥∥y −
c∑

k=1

Xk ∗W k

∥∥∥∥∥
2

2

+ λ1

c∑
k=1

∥∥∥W̃ k
t

∥∥∥
F

+ λ2

N∑
i=1

N∑
j=1

‖wijt‖2 + λ3

c∑
k=1

∥∥W k
t −W k

t−1

∥∥2

F

(2.2)

Where, λ1, λ2 and λ3 are the regularization terms. W and W̃t ∈ RT×1×C is a C channel

feature vector and spatial-regularization . wij is channel-regularization term. t is the response

at t-th frame.



CHAPTER 3

Proposed Method

This chapter contains a detailed formulation of the novel channel and graph regularization

based CF tracker along with the modified formulation of BACF [8] and GFSDCF [9] using

the channel and graph regularization. The formulation contains the objective function, scale

estimation, Lagrangian multiplier update and the model update.

3.1 BACF-Channel Regularized

A fundamental drawback of correlation filter based tracker is that the target background

model is not modeled over time. Background aware correlation filter (BACF) [8] uses the

negative samples around the target to learn filters that are robust and more generalized. BACF

efficiently model the variance in the foreground and background over time.

3.1.1 Objective function

The objective function for Channel regularized BACF tracker is defined as follows:

E(h, q) =
1

2

∥∥∥∥∥y −
C∑
k=1

qk(xk ∗ (P Thk))

∥∥∥∥∥
2

2

+
λ

2

C∑
k=1

‖hk‖2
2 +

β

2

C∑
k=1

‖qk‖2
2 (3.1)

Where, C is the total number of channels and, λ and β are the regularization parameters.

qk ∈ R1×1 a scaler regularization value of k-th feature channel. The eq (3.1) can be efficiently

solved using Parseval’s theorem [7] that is used to represent the energy equivalent in Fourier

domain to time domain.

7



8 3 PROPOSED METHOD

E(Ĝ,H, q) =
1

2

∥∥∥∥∥ŷ −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+
λ

2

C∑
k=1

‖hk‖2
2 +

β

2

C∑
k=1

‖qk‖2
2 (3.2)

s.t., ĝk =
√
TFP Thkqk, and x̂k =

√
TFxk, k = 1, 2, 3, .., C

Where, F ∈ RT×T is a Fourier matrix which transforms a T dimensional signal to Fourier

domain. The symbol ∧ denots that the signal is in the Discrete Fourier Domain. H =

[h1, h2, ..., hC ] contain learned filters for all C channels and Ĝ = [ĝ1, ĝ2, ..., ĝC ] is an auxiliary

variable matrix that helps to obtain the decomposition of E(H, q) which can be efficiently

solved using ADMM [46]. Variables Ĝ,H and q can also be solved using ADMM. The

equivalent Lagrangian form of eq (3.2) can be written as:

E(Ĝ,H, q, Ŝ) =
1

2

∥∥∥∥∥ŷ −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+
λ

2

C∑
k=1

‖hk‖2
2+
µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥+
β

2

C∑
k=1

‖qk‖2
2

(3.3)

Where, λ, β and µ are the regularization parameters. The Fourier transform of the Lagrange

multiplier is represented as Ŝ = [ŝ1, ŝ2, ..., ŝC ] ∈ RT×C . Variables Ĝ,H and q can be solved

individually using ADMM as follows:

Solving for H: Fixing the variable q, Ĝ and Ŝ the optimal solution for H∗ can be obtained by,

h∗k = argmin
hk

λ

2

C∑
k=1

‖hk‖2
2 +

µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥ (3.4)

Differentiating equation (3.4) w.r.t hk we get,

λhk − µ
√
TPF T qk(ĝk −

√
TFP Thkqk +

ŝk
µ

) = 0 (3.5)

λhk − µ
√
TPqkF

T ĝk + µTPP T q2
khk −

√
TPF T ŝkqk = 0 (3.6)

λhk − µTPqkgk + µTPP T q2
khk − TqkP ŝk = 0 (3.7)

(λI + µTPP T q2
k)hk = TqkP (µĝk + sk) (3.8)
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h∗k =
TqkP (µĝk + ŝk)

λI + µTPP T q2
k

(3.9)

where, h∗k is the optimal value of the k-th filter and I is a T × T identity matrix. ˆdenotes

that the variable is in Discrete Fourier domain. P denotes the projection matrix that helps in

separating foreground from background.

Solving for Ĝ∗ : The optimal solution for Ĝ can be obtained by fixingH , q and Ŝ in equation

(3.3)

Ĝ∗ = argmin
Ĝ

1

2

∥∥∥∥∥ŷ −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+
µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥ (3.10)

The equation (3.10) has a high computational complexity. To solve it faster we can change to

process pixel-wise and modify the equation as follows:

V ∗j (Ĝ) = argmin
Vj(Ĝ)

1

2

∥∥∥ŷj − Vj(X̂T )Vj(Ĝ)
∥∥∥2

2
+
µ

2

C∑
k=1

∥∥∥Vj(Ĝ) + Vj(M̂)
∥∥∥2

2
(3.11)

where, Vj(X̂) = [x̂1j, x̂2j, ..., x̂Cj]
T and Vj(Ĝ) = [ĝ1j, ĝ2j, ..., ĝCj]

T are vector with C ele-

ments. Vj(M̂) = Vj( Ŝµ )− Vj(
√
TFP THq) and Vj( Ŝµ ) = [

ŝ1j
µ
,
ŝ2j
µ
, ...,

ŝCj
µ

]. Solving equation

(3.11) for G we get,

[µI + Vj(X̂)Vj(X̂)T ]Vj(Ĝ) = ŷjV̂j)((̂X))− µVj(M̂)

V ∗j (Ĝ) = (µI + Vj(X̂)Vj(X̂)T )−1(ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFP THq)) (3.12)

The equation can be simplified by using the Sherman-Morrison formula [8] and change the

equation (3.12) as follows,

V ∗j (Ĝ) =
1

µ

(
I − Vj(X̂)Vj(X̂)T

µ+ Vj(X̂T )Vj(X̂)

)
(ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFP THq))

(3.13)

Where, V ∗j (Ĝ) denote equivalent value of the optimal value of G.
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Solving for q: To solve for q we need to fix Ĝ,H and Ŝ, Optimal q can be obtained as

follows:

q∗k = argmin
qk

µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥+
β

2

C∑
k=1

‖qk‖2
2 (3.14)

Differentiating w.r.t to q we get,

q∗k =
µ
√
ThTkPgk + ThTkPsk

µ
√
ThTkPP

Thk + β
(3.15)

Where, q∗k denotes the optimal singular value of penalty on the k-th feature channel.
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3.2 GFSDCF-Channel Regularized

GFSDCF-CR incorporates group feature selection using the channel and graph regularization

and a low rank regularization to achieve temporal smoothness of the learned filters during

tracking. GFSDCF original formulation use l-2 regularization on the feature channel. So, to

show how we can use graph regularization, we reformulate the formulation as follows:

3.2.1 Objective function

The objective function for the GFSDCF with the channel-graph regularization is defined as,

W̃ = argmin
W

∥∥∥∥∥
C∑
k=1

W k ∗Xk − Y

∥∥∥∥∥
2

2

+λ1Rs(W )+λ2Rc(W )+λ3RT (W )+λ4Rq(W ) (3.16)

Where, Rs(W ) is the spatial regularization term, Rc(W ) is the group regularization term

for channel selection, RT (W ) is the temporal regularization term and Rq(W ) is the graph

regularization term. W ∈ RN×N×C is the multi channel feature tensor.

3.2.1.1 Channel Regularization

The regularization term for spatial group feature selection can be defined as,

Rs(W ) =
N∑
i=1

N∑
j=1

‖wij‖2
2 (3.17)

Where, wij = [wij1, wij2, ..., wijC ], that is, the channel selection term is defined as,

Rc(W ) =
C∑
k=1

∥∥W k
∥∥
F

(3.18)

Where, W k ∈ RN×N is the k-th feature channel.
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3.2.1.2 Temporal smoothness

The temporal smoothness is obtained to improve the robustness of the correlation filters. To

promote the temporal coherence in the filters, a low rank constraint is imposed as,

RT (W ) =
C∑
k=1

∥∥W k
t −W k

t−1

∥∥2

F
(3.19)

Where, Wt is the feature tensor at t-th frame.

3.2.1.3 Graph regularization

Channel regularization don’t take into consideration the relation between the features. So, to

ensure that the features sharing the same property will have the same penalty, we introduce

graph regularization[47]. Let us consider N -dimensional data points as W ∈ RN , These

points are used to construct a nearest neighbour graph G with N vertices, where each vertex

represent a data point. The adjacency weight matrix of the graph G is computed as,

Zi,j =

dist(Wi,Wj), if i 6= j

0, otherwise
(3.20)

Where, dist(Wi,Wj) is use to compute the distance between the two data points. In our

formulation we are using heat kernel weighing [48, 49], The equation (3.23) become,

Zi,j =


exp

−
‖Wi−Wj‖2

2
σiσj , if i 6= j

0, otherwise
(3.21)

Where, σi and σj are the decay factors on the weight. To represent the graph in the matrix

form, we use the Laplacian operator denote as,

L = D − Z (3.22)

Where, Z is the adjacency weight matrix of size N ×N and D is the degree matrix and can

be computed as D = diag(d1, d2, ..., dC). where degree of ith element is di =
C∑
j=1

Zij .

To obtain a representation for regularization from the graph G, we need to minimize the
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following objective function:

1

2

C∑
i=1

C∑
j=1

(Wi −Wj)
2Zij = Tr(WLW T ) (3.23)

The Laplacian regularizer can be factorized as,

Rq(W ) = Tr(WLW T )

Tr(WLW T ) =
C∑
k=1

Lqkq
T
k

(3.24)

To solve the objective function, we use augmented Lagrangian [50] and introduce a slack

variable W ′
= W . The optimization function changes to:

L =

∥∥∥∥∥
C∑
k=1

W k
t ~Xk

t − Y

∥∥∥∥∥+ λ1

C∑
k=1

∥∥∥W ′k
t

∥∥∥
F

+ λ2

N∑
i=1

N∑
j=1

∥∥∥w′ijt∥∥∥+ λ3

C∑
k=1

∥∥W k
t −W k

t−1

∥∥2

F

+λ4

C∑
k=1

Lqkq
T
k + qTk 2λ4

∑
j 6=k

Lkjqj + +
µ

2

C∑
k=1

∥∥∥∥W k
t −W

′k
t +

Γ

µ

∥∥∥∥2

F

(3.25)

Where, Γk is the Lagrangian multiplier for k-th channel and µ is the penalty. Using the

ADMM, the optimal solution can be obtained as,

ŵijt =

(
I −

x̂ijtx̂
H
ijt(

λ3 + µ
2

)
N2 + x̂Hijtx̂ijt

)(
x̂ijt ŷij
N2

+ µŵ
′

ijt
− µΓ

′

ij + λ3qkx̂ijt−1

)(
1

λ3 + µ

)
(3.26)

The optimal value can be obtained by using the equation (3.31),

x̂
′

ijt
= max

0, 1− λ1

µ
∥∥∥P̂ k

∥∥∥
F

− λ2

µ ‖p̂ij‖2
2

 P̂ k
ij (3.27)

Where, λ1 and λ2 are the regularization parameters and µ is the penalty term. The term P̂ k
ij ,

which is used in equation(3.33), is defined as P̂ k
ij = qkŵ

k
ij +

Γkij
µ

.

qd =
Ŵ T
d X̂

T
d Ŷ − 2λ4

∑
d 6=k Lkdqd

Ŵ T
d X̂

T
d X̂dŴd + λ4 + 2λ4Lkk

(3.28)
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3.3 Proposed - Channel-Graph Regularized CF tracker

In the previous section, we formulated the channel regularization version of BACF [8]. We

also showed how we can apply graph regularization to the existing trackers like GFSDCF [9].

The results in section (4.0.1) show significant improvement in the performance of CF based

tracker. The channel regularization helps us reduce the actual number of features used for

tracking. But, it does not take into consideration the relation between the features. To solve

this problem, we proposed a novel tracker with channel and graph regularization, that not

only selects the important feature channels but, also gives the same weight to channels with

the same properties.

3.3.1 Objective function

The objective function for the channel-graph regularized correlation filter is defined as,

E(h, q) =
1

2

∥∥∥∥∥y −
C∑
k=1

qk(xk ∗ (P Thk))

∥∥∥∥∥
2

2

+ αTr(HLHT ) + βR(q) (3.29)

where, α and β are the regularization parameters. Tr(HLHT ) can be represented as
C∑

i,j=1

Lijh
T
j hi and similarly the Laplacian regularizer R(q) can be obtained as

C∑
i,j=1

Lijqjq
T
i .

Each filter channel is updated individually by keeping the other channels fixed. So, equation

(3.35) can be simplified as,

E(h, q) =
1

2

∥∥∥∥∥y −
C∑
k=1

qk(xk × (P Thk))

∥∥∥∥∥
2

2

+ αLkkh
T
k hk + 2αhTk

C∑
j 6=k

Lkjhj+

βLkkq
2
k + 2βqk

C∑
j 6=k

Lkjqj

(3.30)

To represent (3.36) in the frequency domain, we use Parseval’s theorem and modify the

equation as,

E(h, q) =
1

2

∥∥∥∥∥y −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+αLkkh
T
k hk +2αhTk

C∑
j 6=k

Lkjhj +βLkkq
2
k +2βqk

C∑
j 6=k

Lkjqj

(3.31)
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s.t. ĝk =
√
TFP Thkqk and x̂k =

√
TF x̂k, k = 1, 2, ..., C

The Lagrangian form of the equation (3.37) can be written as

E(h, q) =
1

2

∥∥∥∥∥y −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+
µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥+ αLkkh
T
k hk

+2αhTk

C∑
j 6=k

Lkjhj + βLkkq
2
k + 2βqk

C∑
j 6=k

Lkjqj

(3.32)

where Ŝ = [ŝ1, ŝ2, ..., ŝC , ] are the Lagrange multipliers. The optimal solution for the equation

(3.38) can be obtained by breaking it into sub-problems using ADMM.

Solving for H: The optimal solution for H∗ can be obtained by fixing Ĝ,q and Ŝ,

h∗k = argmin
hk

µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥+ αLkkh
T
k hk + 2αhTk

C∑
j 6=k

Lkjhj (3.33)

By differentiating the equation (3.39) w.r.t hk we get,

h∗k =

Tqk(µĝk + ŝk)− 2α
C∑
j 6=k

Lkjhj

µTPP T q2
k + 2αLkk

(3.34)

Where, hk denotes the optimal value of filters for the k-th channel, Lkj denotes the value of

Laplacian matrix at (k, j)-th index and α is the regularization parameter.

Solving for Ĝ∗ : The optimal solution for Ĝ can be obtained by fixingH , q and Ŝ in equation

(3.38)

Ĝ∗ = argminĜ
1

2

∥∥∥∥∥ŷ −
C∑
k=1

x̂k ~ ĝk

∥∥∥∥∥
2

2

+
µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥ (3.35)

The equation (3.41) has a high computational complexity. To solve it faster, we can change to

process pixel-wise and modify equation as follows:

V ∗j (Ĝ) = argmin
Vj(Ĝ)

1

2

∥∥∥ŷj − Vj(X̂T )Vj(Ĝ)
∥∥∥2

2
+
µ

2

C∑
k=1

∥∥∥Vj(Ĝ) + Vj(M̂)
∥∥∥2

2
(3.36)
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where, Vj(X̂) = [x̂1j, x̂2j, ..., x̂Cj]
T and Vj(Ĝ) = [ĝ1j, ĝ2j, ..., ĝCj]

T are one dimensional

vector with C elements and Vj(M̂) = Vj( Ŝµ )− Vj(
√
TFP THq). Solving equation (3.42) for

G, we get,

V ∗j (Ĝ) = (µI + Vj(X̂)Vj(X̂)T )−1(ŷjVj(X̂)− µVj(
Ŝ

µ
) + µVj(

√
TFP THq)) (3.37)

The equation can be simplified by using the Sherman-Morrison formula which changes the

equation(3.43) as,

V ∗j (Ĝ) =
1

µ

(
I − Vj(X̂)Vj(X̂)T

µ+ Vj(X̂T )Vj(X̂)

)
(ŷjVj(X̂)− µVj

(
Ŝ

µ

)
+ µVj(

√
TFP THq))

(3.38)

Solving for q: To get the optimal value of q, we differentiate the equation (3.38) w.r.t q as,

q∗ = argmin
qk

µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥2

2

+ βLkkq
2
k + 2βqk

C∑
j 6=k

Lkjqj (3.39)

q∗k =
µ
√
ThTkPgk + ThTkPsk − 2β

∑C
j 6=k Lkjqj

µ
√
ThTkPP

Thk + 2βLkk
(3.40)

3.3.2 Lagrangian update

The Lagrangian parameter are updated by differentiating equation (3.3) w.r.t to S,

ŝ∗k = argmin
sk

µ

2

C∑
k=1

∥∥∥∥ĝk −√TFP Thkqk +
ŝk
µ

∥∥∥∥
ĝk −

√
TFP Thkqk +

ŝk
µ

= 0

ŝ∗k = µ
(√

TFP Thkqk − ĝk
)

(3.41)

Where, ŝ∗k denotes the optimal value for the k-th Lagrangian multiplier and F denotes the

Fourier matrix which is multiplied to convert a matrix from spatial domain to Fourier domain.
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Lagrangian variable at frame t can be updated as,

Ŝt = St−1 + Ŝ∗ (3.42)

Where, Ŝ∗ is the optimal value of S obtained at t-th frame. Similarly, µ is updated as,

µt = min(µmax, δµ
t−1) (3.43)

Where, µmax denotes the maximum possible value for the penalty term µ. Both the parameter

S and µ are updated in the iterations of ADMM.

3.3.3 Target Localization

The response map for localizing the target is computed as,

r̂ =

(
C∑
k=1

x̂k ~ ĝk

)
(3.44)

where, the maximum response of r determines the filter response map. To get the location

of the target in the current frame, we convolve the response map r̂ with the frame and, the

location with the maximum response is considered to be the location of the object.

3.3.4 Model update

For current frame the model is updated as,

X t
model = (1− η)X t−1

model + ηX̂ t (3.45)

where, η is the learning rate and superscript t denote the current model template.

The reformulated tracker in Section (3.1,3.2) also uses the same way to update the Lagrangian

parameter and updating the model.



18 3 PROPOSED METHOD

3.3.5 Feature engineering

• Proposed tracker It uses a combination of hand crafted features and the deep

learning features. We use multi-dimentional HOG features to estimate the scale. To

learn the correlation filter we use a combination of Norm1 layer of VGG-M, which

provides a good object representation and, Conv4-3 layer of VGG-16 which provides

good distinguishing features.

• BACF - CR: Similar to Proposed tracker.

• GFSDCF - CR: For the scale estimation, GFSDCF-CR uses a combination of

multi-channel HOG and color features. To train the correlation filters, we use res4ex

layer of resnet-50.

3.3.6 Parameter settings

Our tracker implementation is based on MATLAB-2018b and runs on a computer with an

Intel Xenon 3.60GHz CPU,32 GB of RAM and an NVIDIA 1080-Ti with 11GB of memory.

Parameter Value
α 0.001
β 0.01
η 0.0186
λ 0.001
λ1 10
λ2 1
λ3 [16 12]
δ 10
θ 0.001

µ (initially) 1
µmax 10000

ADMM iterations 3
HOG channels 31

VGG-m & VGG-16 channels 128
resnet50 channels 128

color channels 10

TABLE 1: Tracker parameter values



CHAPTER 4

Results

In this chapter, we discussed the results of the proposed tracker and show a comparison with

the different state of the art trackers BACF [8] and GFSDCF [9]. Object tracking is considered

to be a challenging task and, the dataset used to evaluate trackers should cover a wider domain

of tracking challenges. This chapter contains the performance evaluation of the trackers on

the three datasets: TC128 [29] , VOT2017 [30] and VOT2019 [31]. These datasets contain

sequences that are categorized in different challenges. We show the results of the trackers on

the complete dataset as well as on individual challenges like:

• IV: Illumination Variation

• SV: Scale Variation

• OCC: Occlusion

• DEF: Deformation

• MB: Motion Blur

• FM: Fast Motion

• IPR: In-Plane Rotation

• OPR: Out-of-Plane Rotation

• OV: Out-of-View

• BC: Background Clutters

• LR: Low Resolution

The evaluation of the trackers on multiple challenges give a better view of the performance

and robustness. These evaluations are done using the popular evaluation metrics like success

and precision. A brief introduction of these evaluation metrics are given in the next section.
19



20 4 RESULTS

4.0.1 Evaluation matrices
There are several popular evaluation metrics used in visual tracking and are use widely used in

the literature. These metrics assume that a manual annotation is given for a tracking sequence.

Let us define the description of the object state in a sequence.

Λ = {(Rt, xt)}Nt=1 (4.1)

where, N is the length of the sequence. xt ∈ R2 and Rt denote the center and the bounding

box of the object of the object at time t, respectively. The region overlap based measures

address the normalization problem [51–53]. These measures compute the overlap between

the ground-truth and the predicted target’s region by the tracker.

Φ(ΛG,ΛT ) = {φ}Nt=1, φt =
RG
t ∩RT

t

RG
t ∪RT

t

(4.2)

The region overlap measure takes care of both, size and position of the ground-truth and

predicted bounding box. The measure becomes zero when the tracker drifts and object gets

lost completely. The measure doesn’t shows an arbitrary error at tracking failures. For pixel

classification, the equation (4.2) can be interpreted as,

RG
t ∩RT

t

RG
t ∪RT

t

=
TP

TP + FN + FP
(4.3)

where, TP is the true positive which defines the number of predicted positive sample that are

actually positive. FN is the false negative that is the samples falsely classified as negative.

FP is the false positive that is the sample that are actually negative but classified as positive.

One of the other popular measure we used is precision [52] which is defined as,

Precision =
TP

TP + FP
(4.4)

Where, a prediction is consider as positive if the distance between the center of predicted

and ground-truth is less that equal to 20. To summarize the overlap measures over complete

sequence, we use average overlap [33, 54],

φ̄ =
φt
N

(4.5)

Where, t is the overlap at t-th frame and N is the length of sequence.
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VOT toolkit: Evaluate a tracker by initializing it for the first frame and letting it run for the

end of the sequence and, it resets the tracker if it drift off the target. The performance is

evaluated by using the overlap between the ground-truth and the bounding boxes predicted

from the tracker. VOT handles the problem of bias and variance by using the reset-based

average overlap that does not get hampered by the varying sequence length.The toolkit runs

two experiments on the sequences: baseline and unsupervised. The unsupervised experiments

test tracker on noise errors, random initialization, etc. Results of VOT toolkit are interpret as

follows,

Expected Overlap curve: EO curve is plot by using the expected values of overlap on the

different length sequences. Expected overlap (EO) for a sequence of length n is define as,

E =
[
E[S1], E[S2], ..., E[Sn]

]
(4.6)

Where, E[Si] denote expected value of overlap computed on a sequences of length i. Which

is computed as,

E[Si] =
1

ni

ni∑
k=ni

Seqkwk (4.7)

Where, Seqk and wk denote the k-th sequence and weight associated with sequence.

Accuracy: Accuracy is define as the average overlap of all the tracking sequences, which

can be computed as,

Accuracy =
1

n

n∑
i=1

Φ(ΛG
i ,Λ

T
i ) (4.8)

Where, n is the total number of sequences. ΛG
i and ΛT

i are ground truth and predicted bound-

ing boxes of i-th sequence. Φ(.) denotes the overlap.

Robustness: Average failure on all sequences.

Robustness =
1

n

n∑
i=1

Fi (4.9)

Where, Fi is the number frames where tracker failed. Failure frames are the frames where

overlap is zero.

AR curve: AR curve is a plot between accuracy and robustness of a tracker.
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4.0.2 Improvement using Channel Regularization

In this work, we reformulate state of the art CF trackers [8–10] by using channel and graph

regularization. In this subsection, we will show improvement in the performance of the

already existing CF-based trackers by our modified regularization formulation. Here, we

specifically talk about the performance gain in terms of success and precision rates.

FIGURE 1: Improvement on Success and Precision by using channel regularization

The above plots show improvement in the success rate and the precision which is computed

using a threshold of 20 pixel. The table below show the values of the precision and success.

Tracker BACF BACF-CR GFSDCF GFSDCF-CR
Success 0.4845 0.5751 0.5932 0.5903

Precision 0.6381 0.7829 0.8146 0.8223

TABLE 2: Success and Precision values for comparison

BACF tracker achieve an outstanding improvement of 15.7% on success rate and a gain

of 18.5% on precision rate. Although GFSDCF does not show a decent improvement on

success rate, but it showed a significant improvement on precision. From the above table, we

can conclude that the regularization helps in improving the performance of already existing

CF-based trackers.
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4.0.3 Results on TC128 dataset

This section contains the evaluation results of the twenty state of the art correlation filter

based tracker and the deep learning trackers. TC128 [29] consist of 129 sequences which

contain more than 50k frames. We use the success and precision as evaluation metrics and the

area under the curve (AUC) is use to get a better understanding of the overall performance.

FIGURE 2: Overall Success and Precision plot for TC128 Dataset

To get a better understanding of the performance of the proposed tracker, we rank them on the

basis of their success rate. The below table contains a comparison between the top 9 tracker

with the proposed tracker. Top three tracker are shown in Red, Blue and Green colours.

Tracker GFSDCF Proposed ASRCF TADT GradNet LDES ARCF IBCCF STRCF
Success 0.5932 0.5732 0.5714 0.5680 0.5586 0.5544 0.5327 0.5221 0.5064

Rank 1 2 3 4 5 6 7 8 9

TABLE 3: Ranking on TC128 using success plot AUC

The proposed tracker secured a good rank in the comparison with the state of the art trackers.

The proposed tracker outperformed the deep learning tracker [44, 55]. It also secured a good

position in the comparison with the CF trackers [7, 8, 10, 12, 55, 56]. The deep learning

trackers are considered to have robust features. A comparison with them shows that the

Proposed tracker not only has robust features but, also has a good correlation filter learning

approach. Similarly, a comparison on the different challenges on the TC128 dataset is shown

in the appendix (1.1).
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4.0.4 Results on VOT2017 dataset

This section contains results of the VOT2017 toolkit [30]. There are 23 trackers used to show

a comparison between the Proposed and channel-regularized trackers. VOT2017 is a popular

dataset and comes with a toolkit to evaluate the trackers.

FIGURE 3: VOT2017 expected overlap curves

The figure shows the performance of the tracker using the expected overlap score. The

expected overlap score for baseline shows the comparison based on the AUC obtained from

the overlap curve. To show the performance of the Proposed tracker on the VOT2017, we

rank the top 9 trackers on the basis of their overlap scores.

Tracker ECO CCOT Proposed UCT ATLAS FSTC LDES ASRCF ANT
Success 0.2809 0.2674 0.2061 0.2042 0.1969 0.1889 0.1875 0.1851 0.1676

Rank 1 2 3 4 5 6 7 8 9

TABLE 4: EAO ranking on VOT2017

The Proposed tracker is giving good performance and outperformed several state of the art

trackers [7, 12, 57, 58]. ECO [35] and CCOT [59] are giving better results than Proposed

tracker. CCOT is a CF tracker it gives decent results but it has a tracking speed of less than 1

FPS. On the other hand, ECO is an end-to-end deep learning tracker and gives a tracking speed

of 8FPS whereas, our Proposed tracker has an excellent balance between the tracking speed

and the robustness. The toolkit gives the report on the basis of different evaluation metrics

like overlap. Toolkit also gives a comparison on the different challenges. This section only

contains the comparison on the expected overlap. More results on the different challenges can

be found in the appendix (1.2).
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4.0.5 Results on VOT2019 dataset

This section contains results on the VOT2019 dataset obtained from the toolkit [31]. There is

comparison of the Proposed and reformulated tracker with the other trackers on the basis of

expected overlap.

FIGURE 4: Overall Success and Precision plot for TC128 Dataset

The figure shows a comparison on the basis of expected overlap. The is the plot between

the expected overlap and the length of the sequence which shows the overlap of the tracker

results and the ground-truth on the different length sequences. The below table shows the

comparison of the Proposed tracker with the 7 other trackers.

Trackers LDES Proposed CISRDCF ANT ASRCF ARCF LGT BACF
Success 0.1747 0.1569 0.1533 0.1509 0.1451 0.1351 0.1308 0.1162

Rank 1 2 3 4 5 6 7 8

TABLE 5: EAO ranking on VOT2019

The Proposed tracker gives a decent performance on the VOT2019 dataset. The LDES

[57] tracker secure the first rank but on the other hand, it does not give real-time speed. A

detailed analysis of the speed and robustness is shown in the next section. More results on the

VOT2019 dataset can be found in the appendix (1.3).
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4.1 Tracking speed Comparison

In this section, we will do a comparison between the tracking speed of different state of the

art trackers with our proposed tracker. A tracker is called real-time is it’s tracking speed is

greater than or equal to 30FPS.

FIGURE 5: Tracking speed comparison

The above figure shows the plot between the success rate and the tracking speed in frame

per second. In the object tracking, there is a trade off between the tracking speed and the

robustness. The below table show the ranking of the trackers on the basis of speed.

Trackers Proposed ASRCF ARCF STRCF BACF SAMF MEEM FDSST DSST KCF
FPS 28 26 20 23 52 21 11 111 100 150
Rank 5 6 9 7 4 8 10 2 3 1

TABLE 6: Ranking on tracking speed with CF trackers

KCF [19] , DSST [60] , FDSST [61] track at a speed of more than 100 FPS but do not give

a good tracking accuracy whereas, the trackers like GFSDCF [9], LDES [57] give a robust

tracking but the tracking speed is very less than real time. Our Proposed tracker (CGRCF)

gives a perfect balance between the robustness and the speed.
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4.2 Conclusion

We proposed two efficient regularizers namely, channel regularizer and graph regularizer.

We also proposed a novel tracker using these regularizers. Additionally, we demonstrated

how these regularizers can be plugged into existing trackers. Based on the robust results

and analysis, we can conclude that the channel and graph regularization helps us to build a

tracker that can achieve the state of art performance. Most of the regularization techniques

used in object tracking do not take into consideration the relation between the features. Our

channel-graph regularization formulation helps in selecting the essential features as well as

assign similar weights to the similar feature channels. By using ADMM, the proposed tracker

can be efficiently solved and able to track at a speed 30FPS.

4.3 Future Work

Our proposed tracker currently uses a combination of handcrafted and deep learning features.

These features are used for the scale estimation and for learning correlation filters. While

using a variety of features, the probability of features to become less correlated is high. In

such scenarios, the graph regularization approach may not work as expected. The GR (graph

regularization) based approach works well when the features are correlated. In future, we can

introduce a more robust way to compute the relation between the features. That will help

in making our proposed approach more robust. Currently, we are using the VGG net [23]

for tracking. In future, we may explore features from more sophisticated convolution neural

networks like resnet [24]. We could use graph regularization technique with the end-to-end

deep learning trackers to get more robust features. In our tracker, we are extracting patches

from the localization of the current location of object. But in some scenario where the object

movement is very high, we may loose the object. To resolve this problem, we can increase

the search area by introducing more advance techniques like YOLO [62]. This may result in a

slower tracker but the performance may also increase by a certain factor.
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1 Appendix

1.1 Results on different challenges in TC128 dataset

This section contains the results of the trackers on the different challenges that are discussed

in the Chapter-4. This comparison is done by using the success and precision evaluation

metrics. The plots show the success rate and the precision rate on a visual tracking challenge

in TC128 dataset, along with a table which shows the top 8 trackers and rank according to

their success overlap rate. The values along with the tracker name denotes the area under

the curve. AUC helps to compute the overall performance of the tracker on the particular

challenge. Top three tracker are denoted in red, blue green colour.

1.1.1 Background Clutter

FIGURE 6: Background Clutter

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ARCF Proposed ASRCF LDES BACF STRCF IBCCF
Success 0.5848 0.5625 0.5544 0.5528 0.5502 0.5192 0.5176 0.5070

TABLE 7: Ranking of trackers - Background Clutters
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1.1.2 Deformation

FIGURE 7: Deformation

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF ARCF Proposed IBCCF LDES CF2 SAMF
Success 0.6186 0.6037 0.5837 0.5807 0.5713 0.5691 0.5418 0.5403

TABLE 8: Ranking of trackers - Deformation

1.1.3 Fast Motion

FIGURE 8: Fast Motion

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF Proposed IBCCF LDES CF2 ARCF STRCF
Success 0.5900 0.5340 0.5284 0.5239 0.5176 0.4862 0.4728 0.4698

TABLE 9: Ranking of trackers - Fast Motion
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1.1.4 In-Plane Rotation

FIGURE 9: In-Plane Rotation

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF IBCCF LDES Proposed ARCF CF2 BACF
Success 0.5800 0.5294 0.5215 0.5213 0.5139 0.4880 0.4589 0.4580

TABLE 10: Ranking of trackers - In-Plane Rotation

1.1.5 Illumination variation

FIGURE 10: Illumination variation

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF IBCCF LDES Proposed ARCF STRCF BACF
Success 0.6150 0.5658 0.5441 0.5432 0.5306 0.5198 0.5167 0.5092

TABLE 11: Ranking of trackers - Illumination variance
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1.1.6 Low Resolution

FIGURE 11: Low Resolution

Rank 1 2 3 4 5 6 7 8
Tracker ASRCF Proposed LDES GFSDCF MEEM STRCF Struck ARCF
Success 0.5450 0.5274 0.5171 0.5110 0.4722 0.4711 0.4555 0.4543

TABLE 12: Ranking of trackers - Low Resolution

1.1.7 Motion Blur

FIGURE 12: Motion Blur

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF Proposed LDES IBCCF ARCF CF2 STRCF
Success 0.5301 0.4959 0.4854 0.4845 0.4750 0.4717 0.4532 0.4469

TABLE 13: Ranking of trackers - Motion Blur
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1.1.8 Occlusion

FIGURE 13: Occlusion

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF Proposed LDES ASRCF IBCCF ARCF SAMF CF2
Success 0.5645 0.5370 0.5169 0.5147 0.5025 0.4883 0.4561 0.4502

TABLE 14: Ranking of trackers - Occlusion

1.1.9 Out-of-Plane

FIGURE 14: Out-of-Plane

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF ASRCF Proposed LDES IBCCF ARCF CF2 SAMF
Success 0.5982 0.5658 0.5523 0.5395 0.5291 0.5053 0.4829 0.4716

TABLE 15: Ranking of trackers - Out-of-Plane Rotation
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1.1.10 Out-of-View

FIGURE 15: Out-of-View

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF Proposed ASRCF STRCF LDES ARCF IBCCF BACF
Success 0.5549 0.5093 0.5088 0.4723 0.4505 0.4244 0.4152 0.4056

TABLE 16: Ranking of trackers - Out-of-View

1.1.11 Scale Variance

FIGURE 16: Scale Variance

Rank 1 2 3 4 5 6 7 8
Tracker GFSDCF Proposed IBCCF ASRCF LDES ARCF STRCF BACF
Success 0.6021 0.5522 0.5518 0.5514 0.5453 0.5141 0.4887 0.4707

TABLE 17: Ranking of trackers - Scale Variation



VOT toolkit evaluates tracker on the challenges CM = Camera Motion, EMP = Empty Tag,

IV= Illumination Variation, MC = Motion Change, OCC = Occlusion and SC = Size Change

on both baseline and unsupervised experiments.

Evaluation on VOT2017 dataset is as follows:

(1) TABLE 18 shows the accuracy comparison of the proposed approaches with recent

trackers for the baseline experiment.

(2) TABLE 19 shows the robustness comparison of the proposed approaches with recent

trackers for the baseline experiment.

(3) Figure 17 show the Accuracy-Robustness (AR) plots of individual challenges for

baseline experiments.

(4) FIGURE 18 shows the overlap curves of individual challenges for unsupervised

experiments.

Evaluation on VOT2019 dataset is as follows:

(1) Figure 19 shows the Accuracy-Robustness (AR) plots of individual challenges for

baseline experiments.

(2) TABLE 20 shows the accuracy comparison of the proposed approaches with recent

trackers for the baseline experiment.

(3) TABLE 21 shows the robustness comparison of the proposed approaches with recent

trackers for the baseline experiment.

(4) FIGURE 20 shows the overlap curves of individual challenges for unsupervised

experiments.
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1.2 Results on VOT2017 dataset

CM EMP IV MC OCC SC Mean Weighted Mean Average Pooled
Proposed (CGRCF) 0.5077 0.4503 0.4779 0.4828 0.4524 0.4585 0.4716 0.4737 0.4754

BACF-CR 0.5262 0.4804 0.4668 0.4748 0.4420 0.4655 0.4760 0.4875 0.4904
STRCF-CR 0.5085 0.4817 0.4831 0.4655 0.4148 0.4541 0.4680 0.4779 0.4825

BACF-CR-HOG 0.5153 0.4870 0.4753 0.4484 0.3999 0.4615 0.4646 0.4786 0.4846
STRCF-CR-HOG 0.5236 0.4638 0.4763 0.4656 0.3798 0.4603 0.4616 0.4741 0.4787

Correlation Filter based and Hybrid Trackers
BACF [8] 0.4845 0.4515 0.4532 0.4638 0.4339 0.3440 0.4385 0.4476 0.4526

STRCF-HOG [10] 0.4912 0.4476 0.4758 0.4407 0.3698 0.4337 0.4431 0.4514 0.4552
ASRCF [7] 0.4906 0.4725 0.4809 0.4479 0.4010 0.4506 0.4572 0.4654 0.4701
ARCF [12] 0.4883 0.4633 0.4525 0.4551 0.4100 0.4393 0.4514 0.4615 0.4647
LDES [57] 0.5370 0.4956 0.4783 0.4850 0.4053 0.4559 0.4762 0.4929 0.5023

CCOT [danelljan2016beyond] 0.5158 0.4994 0.4460 0.4835 0.3917 0.4499 0.4644 0.4851 0.4949
ECO [35] 0.5131 0.4846 0.5026 0.4810 0.3520 0.4451 0.4631 0.4762 0.4848

SRDCF [34] 0.4816 0.5080 0.5796 0.4492 0.4171 0.4416 0.4795 0.4767 0.4867
UCT [kristan2017visual] 0.5026 0.4969 0.4726 0.4800 0.4312 0.4257 0.4681 0.4807 0.4887
ANT [kristan2017visual] 0.4890 0.4541 0.3986 0.4504 0.4099 0.4166 0.4364 0.4540 0.4622
BST [kristan2017visual] 0.2376 0.3091 0.2606 0.2391 0.2412 0.2443 0.2553 0.2627 0.2697
CGS [kristan2017visual] 0.5380 0.5018 0.4831 0.4820 0.4289 0.4632 0.4828 0.4979 0.5063

ATLAS [kristan2017visual] 0.4926 0.5079 0.5248 0.4830 0.4098 0.4449 0.4772 0.4835 0.4916
FSTC [kristan2017visual] 0.4926 0.4826 0.4770 0.4986 0.4076 0.4604 0.4698 0.4783 0.4836
GMD [kristan2017visual] 0.4607 0.4573 0.4258 0.4411 0.3801 0.4072 0.4287 0.4422 0.4490

TABLE 18: Accuracy comparison of the proposed approaches with recent
trackers for the baseline experiment on VOT-2017 dataset.

CM EMP IV MC OCC SC Mean Weighted Mean Average Pooled
Proposed (CGRCF) 40.00 30.00 7.00 21.00 18.00 23.00 23.16 29.23 97.00

BACF-CR 53.00 27.00 5.00 28.00 29.00 25.00 27.83 34.26 118.00
STRCF-CR 44.00 31.00 7.00 25.00 19.00 20.00 24.33 31.01 105.00

BACF-CR-HOG 99.00 78.00 9.00 51.00 32.00 38.00 51.16 69.72 231.00
STRCF-CR-HOG 79.00 74.00 10.00 44.00 29.00 34.00 45.00 60.77 203.00

Correlation Filter based and Hybrid Trackers
BACF [8] 77.00 61.00 6.00 43.00 31.00 33.00 41.83 55.77 189.00

STRCF-HOG [10] 85.00 68.00 9.00 46.00 39.00 31.00 46.33 61.33 198.00
ASRCF [7] 45.00 26.00 6.00 29.00 23.00 23.00 25.33 30.97 105.00
ARCF [12] 53.00 49.00 8.00 29.00 34.00 20.00 32.16 41.41 141.00
LDES [57] 47.00 46.00 10.00 31.00 31.00 27.00 32.00 39.64 133.00

CCOT [danelljan2016beyond] 26.00 19.00 6.00 19.00 22.00 14.00 17.66 20.41 68.00
ECO [35] 25.00 14.00 4.00 18.00 22.00 9.00 15.33 17.66 59.00

SRDCF [34] 76.00 86.00 9.00 49.00 32.00 29.00 46.83 64.11 208.00
UCT [kristan2017visual] 44.00 29.00 3.00 24.00 27.00 12.00 23.16 29.79 103.00
ANT [kristan2017visual] 64.00 26.00 8.00 45.00 27.00 30.00 33.33 40.15 135.00
BST [kristan2017visual] 74.73 66.93 4.86 41.93 24.66 26.73 39.97 55.50 188.60
CGS [kristan2017visual] 73.66 62.46 8.40 39.26 24.13 26.73 39.11 53.37 172.06

ATLAS [kristan2017visual] 60.00 30.00 2.00 35.00 24.00 22.00 28.83 37.42 127.00
FSTC [kristan2017visual] 57.00 26.00 1.00 15.00 30.00 15.00 24.00 31.95 114.00
GMD [kristan2017visual] 86.06 50.33 5.40 47.66 30.73 26.20 41.06 54.73 187.46

TABLE 19: Robustness comparison of the proposed approaches with recent
trackers for the baseline experiment on VOT-2017 dataset.
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(a) AR plot - Mean (b) AR plot - Weighted Mean

(c) AR plot - Camera Motion (CM) (d) AR plot - Empty Tag (EMP)

(e) AR plot - Illumination Variance (IV) (f) AR plot - Motion Change (MC)

(g) AR plot - Occlusion (OCC) (h) AR plot - Size Change (SC)

FIGURE 17: AR Plots of individual challenges for baseline experiments
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(a) Unsupervised - Average (b) Unsupervised - Empty Tag (EMP)

(c) Unsupervised - Illumination Variance (IV) (d) Unsupervised - Motion Change (MC)

(e) Unsupervised - Occlusion (OCC) (f) Unsupervised - Camera Motion (CM)

FIGURE 18: Overlap Curves of individual challenges for unsupervised ex-
periments on VOT17
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1.3 Results on VOT2019 dataset

(a) AR plot - Mean (b) AR plot - Weighted Mean

(c) AR plot - Camera Motion (CM) (d) AR plot - Empty tag (EMP)

(e) AR plot - Illumination Variance (IV) (f) AR plot - Motion Change (MC)

(g) AR plot - Occlusion (OCC) (h) AR plot - Size Change (SC)
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(i) AR plot - Pooled
FIGURE 19: AR Plots of individual challenges for baseline experiments

CM EMP IV MC OCC SC Mean Weighted Mean Average Pooled
Proposed (CGRCF) 0.4967 0.4487 0.4362 0.4788 0.4483 0.4571 0.4610 0.4698 0.4719

BACF-CR 0.5106 0.4851 0.4391 0.4689 0.4333 0.4624 0.4666 0.4828 0.4868
STRCF-CR 0.4997 0.4853 0.4459 0.4615 0.4089 0.4505 0.4586 0.4746 0.4800

BACF-CR-HOG 0.4866 0.4680 0.4388 0.4675 0.3828 0.4542 0.4496 0.4641 0.4690
STRCF-CR-HOG 0.5121 0.4650 0.4302 0.4634 0.3748 0.4639 0.4516 0.4711 0.4763

Correlation Filter based and Hybrid Trackers
BACF [8] 0.4821 0.4546 0.4183 0.4607 0.4306 0.3290 0.4292 0.4476 0.4533

STRCF-HOG [10] 0.4789 0.4543 0.4353 0.4447 0.3746 0.4458 0.4389 0.4523 0.4570
ASRCF [7] 0.4825 0.4777 0.4432 0.4524 0.4003 0.4565 0.4521 0.4652 0.4707
ARCF [12] 0.4762 0.4842 0.4050 0.4637 0.4151 0.4515 0.4493 0.4669 0.4716
LDES [57] 0.5321 0.4972 0.4177 0.4745 0.4071 0.4330 0.4603 0.4882 0.4986

CISRDCF [63] 0.4201 0.4243 0.4224 0.4181 0.3853 0.3919 0.4104 0.4147 0.4198
ANT [63] 0.4906 0.4419 0.3650 0.4648 0.4187 0.3881 0.4282 0.4518 0.4581
LGT [63] 0.4067 0.4121 0.3752 0.3991 0.3879 0.3282 0.3849 0.3960 0.4030

TABLE 20: Accuracy comparison of the proposed approaches with recent
trackers for the baseline experiment on VOT-2019 dataset.

CM EM IV MC OCC SC Mean Weighted Mean Average Pooled
Proposed (CGRCF) 53.00 34.00 9.00 64.00 22.00 24.00 34.33 42.16 157.00

BACF-CR 59.00 26.00 6.00 70.00 31.00 23.00 35.83 43.36 163.00
STRCF-CR 56.00 33.00 9.00 69.00 24.00 19.00 35.00 43.25 164.00

BACF-CR-HOG 101.00 69.00 12.00 86.00 29.00 34.00 55.16 73.43 260.00
STRCF-CR-HOG 93.00 59.00 13.00 87.00 34.00 33.00 53.1667 68.38 244.00

Correlation Filter based and Hybrid Trackers
BACF [8] 88.00 58.00 9.00 84.00 33.00 32.00 50.66 65.70 238.00

STRCF-HOG [10] 96.00 61.00 12.00 87.00 41.00 28.00 54.16 70.02 243.00
ASRCF [7] 60.00 28.00 8.00 72.00 28.00 25.00 36.83 44.58 167.00
ARCF [12] 65.00 47.00 11.00 74.00 40.00 20.00 42.83 52.71 197.00
LDES [57] 62.00 45.00 13.00 66.00 35.00 27.00 41.33 50.27 182.00

CISRDCF [63] 62.00 42.00 11.00 72.00 27.00 22.00 39.3333 48.98 176.00
ANT [63] 80.00 28.00 16.00 78.00 35.00 27.00 44.00 53.09 187.00
LGT [63] 77.11 39.44 11.20 79.80 28.65 24.80 43.50 54.86 206.85

TABLE 21: Robustness comparison of the proposed approaches with recent
trackers for the baseline experiment on VOT-2019 dataset.
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(a) Unsupervised - Average (b) Unsupervised - Empty Tag (EMP)

(c) Unsupervised - Illumination Variance (IV) (d) Unsupervised - Motion Change (MC)

(e) Unsupervised - Occlusion (OCC) (f) Unsupervised - Camera Motion (CM)

FIGURE 20: Overlap Curves of individual challenges for unsupervised exper-
iments on VOT19



46 Appendix

1.4 Results summary

Previous sections show the evaluation of trackers on three different datasets. [29–31]. There

are 11 challenges in the TC128 dataset and we used 15 trackers for the comparison where in

four of the challenges, Proposed tracker is able to achieve second rank. On the VOT-2017

dataset, the tracker is able to secure top three rank in the five different comparisons on the

basis of robustness. On the VOT-2019 dataset, the tracker achieves top three rank on the six

different challenges on the robustness. Overall, the tracker gives a decent performance in terms

of both tracking speed and robustness. It performs better than most of the correlation filter

based trackers. We also reformulate three CF tracker by using the channel regularization and

from the results we can conclude that regularization has a positive impact on the performance.

1.5 Quantitative Analysis

This section contains the output of the tracker on the actual video frames. We use [7, 8, 10,

19, 35] trackers to show the comparison with the Proposed tracker. From the results it can

be clearly seen that our tracker is giving a robust tracking and performing better than state

of the art trackers. In some challenges like occlusion, the tracker is not drifting and giving

robust results. An example can be seen in the video Airport in Figure 22 where from frame

55 to 75 the object is not visible but, the Proposed tracker still manages to track in the 80-th

frame. To show a quantitative comparison on the actual video frames, we use three videos

which contain five different challenges i.e. SV, OCC, FM, OPR, IPR. The different trackers

predicted bounding boxes are shown by the different colors as shown in the Figure 21.

FIGURE 21: Legend for the bounding boxes
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(a) Video Frame - 55 (b) Video Frame - 60

(c) Video Frame - 65 (d) Video Frame - 70

(e) Video Frame - 75 (f) Video Frame - 80

FIGURE 22: Video name: Airport ; Challenges: SV, OCC
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(a) Video Frame - 47 (b) Video Frame - 48

(c) Video Frame - 49 (d) Video Frame - 50

(e) Video Frame - 51 (f) Video Frame - 52

FIGURE 23: Video name: Bird ; Challenges: OCC,FM,OPR
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(a) Video Frame - 55 (b) Video Frame - 81

(c) Video Frame - 332 (d) Video Frame - 379

(e) Video Frame - 398 (f) Video Frame - 401

FIGURE 24: Video name: Fish ; Challenges: OCC,IPR,OPR,SV
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