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Abstract

Summarization, an essential technique for efficiently condensing extensive textual content into
concise versions, has become increasingly valuable in the face of the information deluge characterizing
the modern digital era. This thesis goes beyond the traditional scope by not only pushing the
boundaries of summarization techniques, focusing on both unimodal and multimodal approaches
for standard and extreme summarization tasks but also addressing the critical issue of biases within
summarization systems. In addition to proposing innovative methods for bias identification, the
thesis introduces mechanisms to control and mitigate biases, contributing to a more comprehensive
and equitable approach in the domain of information condensation and knowledge extraction.

The first section of this thesis investigates the area of unimodal summarization, focusing on
the intricate task of transforming extensive textual content into succinct and coherent summaries.
Existing datasets and systems often exhibit biases, both intrinsic (stemming from data) and
extrinsic (introduced during training), leading to unfaithful and hallucinating summaries. By
tackling the challenges of bias in unimodal summarization, this work proposes novel methods to
generate coherent, and faithful summaries in both general and extreme summarization settings.

The next section of the thesis explores the area of multimodal summarization, integrating
videos, audio, and text to generate comprehensive and coherent summaries. Existing literature
in multimodal summarization is still in its early stages, with highly limited datasets and systems
available. This is especially true for the task of multimodal summarization of scientific videos.
To address this challenge, we introduce the problem of multimodal summarization and extreme
multimodal summarization of scientific videos. Multimodal summarization generates concise and
coherent summaries that capture the key points of a video in 5-7 lines, while extreme multimodal
summarization generates extremely short summaries in 2-3 lines.

In the subsequent section, we meticulously examine biases in existing summarization systems by
thoroughly evaluating both datasets and models. Employing diverse intrinsic and extrinsic metrics,
we systematically identify biases, gaining a nuanced understanding of the constraints in current
summarization datasets and methodologies. Building upon these insights, we introduce a novel
method designed to counteract biases and enhance coherence and faithfulness while preserving
crucial information. This method represents a significant step forward in advancing the reliability
and integrity of summarization systems.

The research findings of this thesis have significant implications for summarization’s future
applications. By improving unimodal summarization, the proposed methods promise coherent,
and faithful models across domains like news aggregation and decision-making. Advancements
in multimodal summarization will revolutionize fields rich in multimodal data, like education
and entertainment. Enabling automatic generation of comprehensive summaries from various
sources empowers users to access and comprehend multimedia content efficiently. Additionally,
bias identification and mitigation methods are crucial for ensuring fairness and inclusivity in
summarization technologies.
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Chapter 1

Introduction

1.1 Thesis Overview and Statement

In today’s world, the Internet is a big part of our daily lives, helping us get information easily.
Whether we’re reading news, checking out scientific papers, sharing thoughts, or hanging out on
social media, these activities are now second nature. But there’s so much information out there that
it’s impossible to absorb everything. To tackle this problem, summarization has become important.
Summarization is the process of condensing the crucial information while keeping the main ideas
intact. Research on automatic summarization, using statistical and machine learning algorithms to
create short summaries, is gaining attention, showing how technology can help us make sense of a
lot of information without getting overwhelmed. This approach not only deals with the challenges
of information overload but also makes learning and understanding content more efficient.

Within the scope of this thesis, we extend this narrative by proposing novel text summarization
models that enhance the efficiency and effectiveness of information extraction. Additionally, we
delve into multimodal text summarization methods, exploring how the integration of diverse modes
such as images, audio, and video can contribute to more comprehensive and engaging summaries.
Furthermore, our research addresses the critical issues of bias identification and fairness in sum-
marization. We recognize the importance of ensuring that summarization outcomes maintain
faithfulness to the original content while being free from biases that may impact comprehension.
We centre our primary investigation on six crucial dimensions of summarization: abstractive text
summarization, abstractive extreme text summarization, abstractive text summarization using
multimodal signals, extreme text summarization using multimodal signals, fingerprinting corpus
bias and its effects on systems, and instilling fairness in summarization systems.

Abstractive Text Summarization: Abstractive text summarization simplifies the extraction
of vital information from lengthy documents. Unlike traditional methods that merely extract
existing content, abstractive summarization generates condensed versions with new, coherent
summaries written in a language similar to human-generated content. This method adds a layer
of sophistication, providing concise yet comprehensive summaries (cf. Figure 1.1). It effectively
addresses the challenges posed by information overload and contributes to enhancing the efficiency
and accessibility of knowledge in our data-driven era. In essence, abstractive text summarization
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The goal of reducing sequential computation also forms the foundation of the Extended 
Neural GPU [16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural 
networks as basic building block, computing hidden representations in parallel for all input 
and output positions. In these models, the number of operations required [....]

The paper introduces the Transformer, a novel neural network architecture 
for sequence transduction, relying solely on attention mechanisms, 
eliminating the need for recurrence and convolutions. Experimental results 
on machine translation tasks demonstrate the Transformer's superior 
quality, achieving a BLEU score of 28.4 on English-to-German translation 
and setting a state-of-the-art BLEU score of 41.8 on English-to-French 
translation. The model exhibits improved parallelizability and reduced 
training time compared to existing models, establishing a new benchmark 
in neural network architectures for natural language processing tasks.

Abstract

Introduction

Background

The dominant sequence transduction models are based on complex recurrent or 
convolutional neural networks that include an encoder and a decoder. The best performing 
models also connect the encoder and decoder through an attention mechanism. We 
propose a new [....]

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural 
networks in particular, have been firmly established as state of the art approaches in 
sequence modeling and transduction problems such as language modeling and machine 
translation [35, 2, 5]. Numerous efforts have since continued to push the boundaries of 
recurrent language models and encoder-decoder architectures [....]

Section …
Remaining Sections text … 

Source Document

Summary

The paper introduces the Transformer, a revolutionary neural network 
architecture solely based on attention mechanisms, showcasing superior 
performance in machine translation tasks with enhanced parallelizability 
and reduced training time.

Extreme Summary

Figure 1.1: Example of abstractive summary and an extreme abstractive summary. Abstractive
summarization provides detailed insights in 5-8 lines, while extreme summarization condenses
information drastically for a concise overview in 1-2 lines.

acts as a bridge, making intricate content more easily understandable and accessible.

Abstractive Extreme Text Summarization: General summarization, while effective in
providing condensed version of information in a few paragraphs (cf. Figure 1.1), may fall short
when dealing with time-sensitive scenarios. In situations where users require quick access to critical
details, traditional summarization methods might not deliver summaries with the urgency and
brevity necessary for rapid decision-making. This is where extreme summarization [5] becomes
indispensable. Recognizing the limitations of standard summarization approaches in time-sensitive
contexts, extreme summarization aims to distill information into a short, two-line summary, cap-
turing the essence of the content with maximum conciseness (cf. Figure 1.1)). By prioritizing
the most vital elements and eliminating superfluous details, extreme summarization ensures that
users can rapidly grasp key insights, making it particularly well-suited for scenarios where timely
decision-making is paramount.

Abstractive Text Summarization with Multimodal Signals: In this evolving landscape, the
exploration of integrating multimodal signals in text summarization holds tremendous promise for
elevating the quality of generated summaries (cf. Figure 1.2). Multimodal signals, sourced from
diverse channels such as text, image, audio, and video, introduce a wealth of contextual information
that significantly enhances the summarization process. Harnessing these signals empowers summa-
rization models not only to preserve the core semantics and overall meaning of the original text but
also to capture nuanced tonal-specific details embedded in accompanying audio and visual cues.
This capability becomes particularly crucial when considering academic presentation videos, where
the convergence of multiple modalities contributes to a more comprehensive understanding of the
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content being presented. The escalating volume of multimedia data, further accelerated by events
like the COVID-19 outbreak, underscores the imperative of adeptly leveraging multimodal signals
to effectively grapple with the intricate challenges associated with summarizing longer academic
presentations.

The paper introduces the Transformer, a neural network architecture 
relying exclusively on attention mechanisms for sequence transduction. 
Unlike traditional models with recurrent or convolutional structures, the 
Transformer achieves superior performance in machine translation tasks. 
Notably, it attains a BLEU score of 28.4 on the WMT 2014 
English-to-German task, surpassing existing results by over 2 BLEU. On 
the English-to-French task, it sets a new state-of-the-art BLEU score of 
41.8, outperforming models with significantly lower training costs. The 
Transformer's innovative approach, emphasizing attention mechanisms 
and parallelizability, marks a significant advancement in natural language 
processing.

Text

Video

Audio

The dominant sequence transduction models are based on complex recurrent or 
convolutional neural networks that include an encoder and a decoder. The best performing 
models also connect the encoder and decoder through an attention mechanism. We 
propose a new simple network architecture, the Transformer, based solely on attention 
mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two 
machine translation tasks show these models to be superior in quality while being more 
parallelizable and requiring significantly less time to train. [...]

Source Modalities

Summary

The paper introduces the Transformer architecture, relying solely on 
self-attention mechanisms, attaining superior BLEU scores in machine 
translation tasks, and demonstrating enhanced parallelization efficiency, 
thus marking a paradigm shift in sequence transduction models.

Extreme Summary

Figure 1.2: Example of abstractive summary and an extreme abstractive summary using multimodal
signals (video, audio, and text). Abstractive summarization system utilizes syntactical information
from text, important cues from audio, and important keywords mapping from video (OCR) to
generate an informative and faithful summary.

Abstractive Extreme Text Summarization using Multimodal Signals: Additionally, the
demand for extreme text summarization (cf. Figure 1.2) further accentuates the need to incorpo-
rate multimodal signals. The challenges posed by the overwhelming volume of online literature
necessitate innovative approaches to distill high-level contributions from extensive textual content.
Extreme summarization, aka TL;DR (Too Long; Didn’t Read) [5], requires models to efficiently
process and synthesize information across different modalities. In scientific content setting, where
complex ideas are presented through text, images, audio, and video, a multimodal approach
becomes indispensable for generating concise yet informative summaries. Traditional text-only
summarization methods fall short in capturing the intricate nuances and comprehensive insights
conveyed through diverse modalities. Therefore, the integration of multimodal signals not only
enriches the summarization process for longer academic presentations but also becomes a crucial
component in addressing the unique challenges posed by extreme text summarization, contributing
to a more effective and nuanced approach in distilling essential information from complex scientific
literature.

Fingerprinting Corpus Bias and its Effects on Systems: In the midst of these technological
advancements, the literature emphasizes a crucial concern: the identification and mitigation of
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biases1 embedded within textual data. Within the context of summarization, biases can manifest
in diverse forms [6], exerting influence over the selection and presentation of information [7]. These
biases encompass considerations like the relevance of information in multi-document summarization,
where certain documents may disproportionately dominate attention. Information redundancy, a
prevalent bias, has the potential to overemphasize repeated content in the summary, leading to
a skewed overall representation. Position bias2, reflective of a tendency to prioritize information
based on its position (cf. Table 1.3) within the source document, can introduce distortions during
the summarization process.

Moreover, biases associated with evaluation metrics [8], such as the widely used ROUGE [9]
metric, can impact the assessment of summary quality, potentially favoring specific types of content
or structures. Recognizing and addressing these nuanced biases is paramount to ensuring the
objectivity and fairness3 of automatic summarization systems. As the field advances, efforts to mit-
igate biases become integral to the development of ethical and unbiased automatic summarization
methodologies.

Bringing Fairness into Text Summarization: In response to the nuanced biases identified
in automatic summarization systems, the imperative to prioritize fairness in terms of ensuring
accurate and truthful summaries while minimizing the inclusion of fabricated or misleading infor-
mation becomes increasingly apparent [10]. Acknowledging the potential impact of biases on the
summarization process, there is a growing emphasis on developing models that promote fairness,
inclusivity, and unbiased representation of information (cf. Figure 1.3). This pursuit of fairness
involves not only detecting and mitigating biases within the corpus but also extends to the design
and evaluation of summarization models [11]. This paradigm shift highlights the importance
of incorporating robust mechanisms for bias detection, mitigation, and fine-grained control in
automatic summarization models. By fostering a more balanced and equitable summarization
process, these efforts strive to improve the accuracy and reliability of generated summaries. This
research aims to contribute to a more responsible and fair integration of automatic summarization
systems within the broader information landscape, ensuring that summaries accurately reflect the
source material and avoid the inclusion of incorrect or invented content.

This thesis is motivated by the pressing challenges of information overload, biases, and the
imperative for fairness in automatic summarization systems. The contributions of this research are -
innovative methodologies are introduced to enhance unimodal summarization, covering standard to
extreme summarization, while also exploring multimodal summarization. Additionally, the thesis
addresses biases in summarization, providing methodologies for bias identification and assessment
of datasets and systems. The research further endeavors to bring fairness into text summarization
through models equipped with robust bias detection, mitigation, and control mechanisms. These

1In this context, bias refers to partiality or skewness concerning the faithfulness and comprehension of the source
document.

2Position bias refers to a type of bias in summarization where the initial sentences or paragraphs of a document
disproportionately influence the content and structure of the summary. This bias can lead to an overemphasis on
the beginning of the text, potentially overlooking essential information located in other sections of the document.

3In this context, faithfulness denotes the degree to which the summarization ensures a faithful and accurate
coverage of information in alignment with the original document. It emphasizes maintaining the integrity and
reliability of the content throughout the summarization process.
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The goal of reducing sequential computation also forms the foundation of the Extended 
Neural GPU [16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural 
networks as basic building block, computing hidden representations in parallel for all input 
and output positions. In these models, the number of operations required [....]

Addressing the constraints of traditional recurrent and convolutional neural 
networks, this investigation presents the Transformer architecture as an 
innovative advancement, predominantly relying on attention mechanisms. 
Challenging the well-acknowledged state-of-the-art techniques such as 
long short-term memory and gated recurrent neural networks, the study 
portrays the Transformer as a transformative force in sequence modeling 
and transduction challenges. Underscoring the drawbacks of recurrent 
models, the research champions the superiority and efficiency of the 
proposed Transformer, potentially eclipsing the nuanced strengths of 
established architectures in language modeling and machine translation.

Abstract

Introduction

Background

The dominant sequence transduction models are based on complex recurrent or 
convolutional neural networks that include an encoder and a decoder. The best performing 
models also connect the encoder and decoder through an attention mechanism. We 
propose a new [....]

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural 
networks in particular, have been firmly established as state of the art approaches in 
sequence modeling and transduction problems such as language modeling and machine 
translation [35, 2, 5]. Numerous efforts have since continued to push the boundaries of 
recurrent language models and encoder-decoder architectures [....]

Source Document

Remaining Sections text … 

Section …

Summary w/ Lead Bias

This paper introduces the Transformer architecture, a groundbreaking 
approach exclusively relying on self-attention mechanisms. Compared to 
traditional recurrent or convolutional structures, the Transformer 
outperforms existing models in machine translation tasks, achieving a 
BLEU score of 28.4 on the WMT 2014 English-to-German task. Notably, it 
surpasses baselines, including ensembles, by over 2 BLEU. On the 
English-to-French task, the Transformer sets a state-of-the-art BLEU score 
of 41.8, with a remarkable reduction in training time on eight GPUs. This 
architecture, eliminating the need for recurrence, establishes a new 
paradigm in natural language processing, demonstrating its scalability and 
interpretability compared to traditional models.

Comprehensive Summary

Figure 1.3: Example of abstractive summary with position bias and a summary with reduced
bias. The sample on the top right demonstrates a summary with position bias, while the one
on the bottom left showcases a summary with significantly reduced bias. Current systems often
exhibit position bias, emphasizing the need for improved approaches that foster more balanced and
unbiased summarization.

contributions collectively aim to advance the field by providing more accurate, unbiased, and
ethically conscious automatic summarization techniques.

This thesis aims to improve summarization methods by focusing on both unimodal and multimodal
approaches for standard and extreme summarization tasks, while also addressing the critical issue
of biases within existing systems.

1.2 Background

Text summarization is the process of distilling the essential information from a given source text
to create a concise and coherent summary while preserving the main ideas and key details. Text
summarization comes in two flavors – extractive and abstractive (cf. Figure 1.4). Extractive
summarization involves selecting and extracting key sentences or phrases directly from the source
text to form a concise summary. This method relies on identifying the most significant information
and preserving the original wording. In contrast, abstractive summarization aims to generate a
summary by understanding the content of the source text and expressing it in a new, condensed
form. This approach involves paraphrasing and rephrasing the information, often using original
language to create a summary that may not be directly present in the source text. While extractive
summarization maintains the integrity of the original content, abstractive summarization allows for
more flexibility and creativity in conveying the essential meaning.
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Text SummarizationBased on Input 
Type

Based on Output 
Type

Single-Document

Multi-Document

Extractive

Abstractive

Based on 
Modality
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(text only)

Multimodal
(Video + Audio + Text)

Figure 1.4: Classification of summarization approaches according to input type, output type, and
input modalities. Regarding modality, the input can be categorized as either unimodal (text) or
multimodal (video, audio, and text), while the output remains consistently in text form.

Single-document summarization and multi-document summarization are two distinct approaches
to condensing information but differ in terms of the scope of the input data they handle. Single-
document summarization (SDS) focuses on summarizing the content of a single document.
The goal is to distill the key information, main ideas, and relevant details from a given source
document into a concise and coherent summary. Single-document summarization is often used when
dealing with individual articles, reports, or pieces of content, providing a condensed version while
retaining the essential meaning of the original document. Multi-document summarization
(MDS) involves the synthesis of information from multiple source documents on a particular topic.
The task is to identify and extract the most important information across various documents,
offering a comprehensive overview of a subject by considering diverse perspectives. Multi-document
summarization is especially useful when dealing with large datasets or collections of documents
related to the same theme, such as news articles on a current event or research papers on a specific
topic.

Enhancing text summarization through the incorporation of multimodal signals represents a
significant avenue for improvement. In this context, multimodal input refers to the utilization
of diverse types of data, such as text, audio, and videos, to generate more comprehensive and
contextually rich text summaries. By integrating information from multiple modalities, including
textual content and associated multimedia elements, the summarization process gains a more
nuanced understanding of the input, leading to improved summarization outcomes. This approach
acknowledges the complementary nature of various modalities and leverages their combined strength
to enhance the overall quality and depth of the generated summaries.

1.3 Challenges and Motivation

Abstractive Text Summarization: Abstractive text summarization, particularly within the
context of multi-document summarization, confronts intricate challenges arising from the unique
characteristics of handling multiple source documents. One significant challenge stems from the
demand for extracting relevant information while considering long context relations and implement-
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ing lossy information compression. Existing methods, including document concatenation [12, 13],
struggle to maintain layout fidelity and address the varying importance of information across
different segments. The state-of-the-art MDS systems [12, 14, 15], utilizing attention-aware [4]
encoder-decoder architectures, encounter issues of producing repetitive and unfaithful summaries,
resembling extractive systems [7] due to unchecked copying from source documents. The capture of
long-range dependencies in MDS poses an additional hurdle, as current approaches often fall short in
preserving language semantics, leading to inconsistent and unfaithful summaries. Truncating source
documents before encoding introduces complexities related to incomplete information representa-
tion, resulting in heightened model hallucinations. Balancing the need for concise yet informative
summaries in the face of these complexities remains a fundamental challenge in advancing the field
of automatic summarization.

Abstractive Extreme Text Summarization: Summarizing a document in an extremely
abstractive manner presents a significant challenge, especially given the impracticality of relying
on human annotations to distill crucial information from the massive volume of yearly literature.
The available human-annotated datasets are notably small, requiring the development of robust
summarization systems capable of extracting meaningful insights from limited data. This challenge
is crucial, considering the complex nature of documents, and it involves not only the scarcity of
annotated datasets but also the necessity to create systems that can effectively summarize intricate
technical documents within constraints.

Abstractive Text Summarization using Multimodal Signals: Generating abstractive text
summaries for academic presentation videos using multimodal signals poses substantial challenges.
This intricate task becomes even more complex when incorporating information from diverse sources
such as text, audio, and video. The goal of preserving the key semantics and overall meaning of
the original text while seamlessly integrating tonal-specific details from the speaker’s audio and
visual cues presents a multifaceted challenge. Integrating automatic speech recognition (ASR)
and optical character recognition (OCR) generated text transcripts adds an additional layer of
complexity, requiring the model to optimize for semantic understanding, sentiment analysis, and
information extraction from various sources. Despite state-of-the-art studies [16, 17, 18, 19] in
abstractive text summarization with multimodal signals primarily focusing on short videos and
images, these approaches prove inadequate for the distinctive demands of longer academic videos,
such as lectures or conference tutorials. The scarcity of benchmark datasets specifically tailored
for this task exacerbates the challenges. Existing datasets, as utilized in recent studies, primarily
comprise short videos accompanied by brief text summaries, thereby restricting their suitability for
longer academic presentations. In essence, the challenges stem from the paucity of relevant datasets
and the inherent complexity of integrating multimodal signals for abstractive text summarization
in longer academic videos, standing as significant hurdles in advancing research in this domain.

Abstractive Extreme Text Summarization with Multimodal Signals: The introduction of
TL;DR, aimed at generating extremely concise summaries from text-only articles, faces challenges
when extending this notion to extreme multimodal summarization. The proposed problem statement
introduces a novel task of multimodal-input-based TL;DR generation for scientific content, striving
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to produce extremely concise and informative text summaries. However, integrating visual elements,
tonal-specific details from audio, and aligning them with textual modalities poses substantial
challenges, particularly considering the structured and complex vocabulary prevalent in scientific
documents. Existing state-of-the-art approaches in related domains, such as image and video
captioning, predominantly focus on shorter videos or images with limited vocabulary diversity.
This stark contrast underscores the difficulties of the proposed task, which involves handling longer
and more intricate scientific documents. Despite recent strides in creating datasets for multimodal
text summarization of scientific presentations, current methods fall short in generating coherent
summaries for the extreme multimodal summarization (TL;DR) task.

Fingerprinting Corpus Bias and its Effects on Systems: Navigating the challenges of
document summarization involves a multifaceted exploration impacting both the quality of existing
corpora and the efficacy of summarization systems. The challenges within this landscape span a
spectrum, encompassing the variability in quality among crowd-sourced corpora dictated by factors
such as community size, genre, and the presence of moderation. Despite the recent introduction of
sizable MDS datasets [12, 20], a void persists in comparative studies gauging their relative complex-
ity. Notably, existing MDS systems [4, 12, 15] exhibit divergent behavior across different corpora
[12, 13], underscoring the necessity to unravel intrinsic properties influencing their performance.
This study lays the foundation for crucial research inquiries concerning the modeling of MDS
corpora quality, understanding system performance variations across diverse datasets, addressing
biases within generated summaries, and determining the status of the MDS task—whether it is
approaching completion or still poised for refinement. In essence, these challenges underscore
the imperative need for a holistic understanding of MDS corpora characteristics, insights into
system behavior across diverse datasets, and the formulation of strategies to alleviate biases in
summarization outputs.

Bringing Fairness into Text Summarization: On the forefront of research lies the endeavor to
bring fairness to summarization, particularly in the context of text summarization. Despite the
advancements introduced by Language Models (LMs) such as BERT, BART, and T5, ensuring
factual accuracy and faithfulness in generated summaries persists as a persistent challenge. Recent
studies have explored various avenues to enhance faithfulness and factuality in summarization
models, ranging from post-editing models to multi-task learning with question-answering and entail-
ment, and the incorporation of external knowledge. Balancing the need for concise yet informative
summaries in the face of these complexities remains a fundamental challenge in advancing the
field of automatic summarization. Addressing biases in summarization outputs is crucial, and a
comprehensive understanding of the intrinsic properties affecting system performance across diverse
datasets is essential.
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1.4 Thesis Organization

In this thesis, we identify the causes behind the shortcomings and propose novel methodologies
to ameliorate the challenges. In particular, this thesis addresses the below research objectives.
Additionally, we list the full forms of major abbreviations used in the thesis in Table 2.1.

1) Abstractive Text Summarization: In the area of text-based summarization, our fo-
cus is on introducing novel models tailored for standard abstractive summarization, typically
generating concise 5-line summaries. To elevate the quality of conventional summarization, we
advocate a reinforcement learning-based methodology that exploits dual rewards, namely Rouge-L
and BERTScore. This approach aims to stimulate the generation of syntactically and semantically
impactful phrases, enriching the overall summary. Additionally, we incorporate a reinforced atten-
tion span mechanism, compelling the model to attentively consider diverse segments of the source
document. This comprehensive approach aims to enhance the standard summarization process,
providing more nuanced and informative summaries for a variety of textual content.
2) Abstractive Extreme Text Summarization: Venturing into the domain of extreme text
summarization, our methodology embraces the confluence of Fractality, Graph Convolutional
Networks (GCN), and Fast Fourier Transform (FFT) techniques. This strategic integration enables
the extraction of crucial information from two distinct spaces, leading to the creation of highly
informative, coherent, and faithful summaries, distilled into 1-2 lines. Leveraging the synergistic
potential of these modules, we aim to redefine the boundaries of extreme summarization, offering
solutions that are both efficient and effective in capturing the essence of source documents with
brevity and precision.
3) Abstractive Text Summarization with Multimodal Signals: Within the domain of
multimodal summarization, this thesis underscores the importance of advancing techniques that
harness the power of multiple modalities to extract comprehensive information from textual content.
A pivotal aspect of this research involves the introduction of a novel multimodal dataset, and a
model, tailored for summarizing conference videos. This novel approach integrates video, audio,
and transcript inputs, employing a Factorized Multimodal Transformer and Guided Attention to
generate summaries that are both faithful and coherent. By exploring the synergies of different
modalities, the research aims to enhance traditional summarization processes, providing a more
holistic understanding of textual information through the incorporation of diverse signals.
4) Abstractive Extreme Text Summarization with Multimodal Signals: Exploring multi-
modal extreme summarization, this thesis expands the scope of knowledge extraction from scientific
content. The proposed methodology integrates human-annotated summaries with multimodal
signals, offering a comprehensive approach to summarizing scientific videos. By harnessing the
intricate interplay between different modalities, the research aims to provide nuanced insights
and condensed representations of information within the extreme summarization framework. This
approach caters to the demand for efficient and effective knowledge extraction from multimedia
sources.
5) Fingerprinting Corpus Bias and its Effects on Systems: This thesis sheds light on
the critical issue of biases prevalent in the summarization setting, emphasizing the necessity of
identifying biases within datasets and models and recognizing their implications during inference.
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Our research proposes methodologies to assess the quality of datasets and system-generated
summaries using various intrinsic and extrinsic metrics. By analyzing the impact of biases, we
contribute to promoting fairness in summarization, ensuring accurate and unbiased representation
of information.

It is imperative to highlight that, as of now, the availability of datasets for multimodal
summarization remains limited [21], posing a significant impediment to conducting comprehensive
studies on biases inherent in multimodal data. Acknowledging this critical gap, we have proactively
addressed the issue by introducing two novel multimodal datasets [22, 23] as part of our ongoing
research endeavors. These new datasets not only contribute to filling the existing void but also
play a pivotal role in advancing research initiatives focused on multimodal summarization. The
continued emphasis on fairness and accuracy within summarization underscores the significance of
these datasets, marking a substantial stride towards promoting unbiased representation in both
multimodal data and the systems designed to process it.
6) Bringing Fairness in Summarization: Armed with insights into the potential limitations
and biases within the corpus and existing models, this thesis strives to overcome these challenges
by proposing novel models that not only aim for enhanced performance but also prioritize fairness,
inclusivity and ethical considerations. By incorporating robust bias detection, mitigation, and
fine-grained control mechanisms, our proposed models aim to foster a more balanced and equitable
summarization process.

In tandem with the scarcity of datasets, it is crucial to recognize that the landscape of multimodal
summarization systems is also constrained [17]. Existing systems often face limitations in addressing
the diverse complexities of multimodal data, hindering the exploration of novel approaches for
effective summarization. In response to this limitation, we have proposed two novel systems:
FLORAL [22] and mTLDRgen [23]. By integrating linguistic, acoustic, and visual modalities, these
systems aim to provide a more comprehensive understanding of source content and enhance the
summarization process. The introduction of FLORAL and mTLDRgen represents a significant
step forward in advancing the capabilities of multimodal summarization systems, offering novel
solutions to the evolving challenges in this domain.

In conclusion, this thesis catalyzes significant advancements in text summarization, tackling
the complexities posed by information overload, biases, and limitations of existing systems. The
envisioned methodologies and models establish a robust bedrock for subsequent research endeavours,
fostering equitable, precise, and streamlined knowledge extraction. These advancements will cater
to the ever-evolving needs of information management, ensuring that emerging demands are met
with fairness, accuracy, and efficiency.
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Chapter 2

Related Works

2.1 Abstractive Text Summarization

Numerous advancements have been made in the regime of sequence modelling. With the introduction
of seq2seq architectures and attention mechanisms, tasks like machine translation [24, 25, 26, 27],
question-answering [28, 29], caption generation [30, 31, 31], dialogue generation [32, 32, 33],
abstractive text summarization [34, 35, 36] have all been benefited vastly. Nallapati et al. [37] and
See et al. [38] were the first to introduce the attention mechanism in seq2seq network for abstractive
summarization and obtained significant improvement on the CNN/Dailymail [39] corpus. Lebanoff
et al. [40] exploited the extractive maximum marginal relevance (MMR) approach to improve
the pointer-generator (PG) model and showed significant gains on multiple documents. Later,
Cohan et al. [41] leveraged the discourse structure of a long document to model the dependencies,
while Pasunuru et al. [42] model graph and text encoders to fuse graph-based knowledge into the
text-only pre-trained encoder. However, these models are benchmarked on the SDS corpora and fail
when ported to the MDS corpora due to its information representation complexity and long-range
relations. Fabbri et al. [12] and Chowdhury et al. [43] introduced PG extended hierarchical
attention networks to capture sentence-level relations and long context relations in MDS tasks.
Recently, Wu et al. [44] introduced the fusion of text encoder and graph encoder to create phrase
relations in multi/long documents.

Transformer-based architectures [45] have also been applied for text summarization. Xu et al.
[46] used an unsupervised approach by computing the self-attention weights to rank sentences, while
Narayan et al. [47] used structured Transformers to generate extractive summaries. Gehrmann et al.
[15] extended the big Transformer architecture to enable content selection in the source document
and to constrain the model’s visibility to generate abstractive summaries. Since the attention
computation is computationally expensive, Zaheer et al. [48] proposed attention approximation in
a linear time while Beltagy et al. [49] made use of both windowed local attention and task-oriented
global attention in linear scalable complexity. Liu et al. [50] extended BERT [51] for both extractive
and abstractive summarization by incorporating a document-level encoder.

Recent studies in transfer learning have also produced promising results in SDS. With the
introduction of large pretrained language models such as BERT and GPT-2 [51, 52], the finetuning
for downstream tasks achieves significant improvement with a limited number of training samples.
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The T5 model [53] maps all NLP-based tasks as text-to-text problems; the model was pretrained
on the C4 (Colossal) dataset and further fine-tuned on numerous NLP downstream tasks such
as summarization and machine translation. However, the T5 model is highly computationally
expensive and works on limited task domains. Zhang et al. [36] proposed a new pretraining objective
of gap sentences by masking the most relevant sentences and tasking the model to regenerate
them, and achieved state-of-the-art performance on various summarization corpora. Fabbri et al.
[54] introduced data augmentation and regularization to improve the performance by few-shot
transfer. Chen et al. [55] utilized language model and meta-learning to improve low-resource
summarization using transfer learning. Goodwin et al. [56] used content selection to generate
topic-aware summaries with zero-shot learning.

Keneshloo et al. [57] provided insights into how various RL-based algorithms pave the way
for improvement in the seq2seq networks. In an unsupervised setting, Narayan et al. [58], and
Dong et al. [59] ranked sentences by tasking the model to optimize the ROUGE-based rewards.
In abstractive summarization, [60, 61, 62, 63, 64] introduced the notion of how RL-based models
can aid in text summarization. Paulus et al. [61] introduced ROUGE-L-based rewards along
with the standard log-likelihood loss to improve SDS. Böhm et al. [64] amalgamate the human
feedback to the RL system to generate more human-readable summaries. Pasunuru et al. [63]
focused on combining various reward metrics such as ROUGE-L, entailment and ROUGESal to
improve readability. Fabbri et al. [65] combined various reward measures similar to [63]. However,
all the RL-based models include rewards such as ROUGE-L, entailment, etc., constraining the
model to optimize the syntactical information rather than semantics [66], which often leads to high
exposure biases. Some of the rewards [65] use pre-trained models trained on a separate dataset that
negatively affects the quality of the summarization system by adding extrinsic hallucination effects.

2.2 Abstractive Extreme Text Summarization

The objective of extreme summarization is to condense information within a source document
into a succinct summary. Initially, this task was formulated in order to produce TLDRs for social
media content [67]. Subsequently, for scientific summary generation, Cachola et al. [5] introduced
a novel dataset, SciTLDR. More recently, CiteSum [68], a new corpus, has been introduced using
citation information in the source document. The difference between SciTLDR and CiteSum is that
CiteSum is produced by an algorithm, whereas SciTLDR is a human-annotated dataset. However,
despite these advancements, the challenge of achieving extreme summarization within the realm of
scientific documents remains unresolved, and there is a pressing need for a system that can generate
succinct summaries without the need for data augmentation.

Scientific document summarization: Scientific document summarization has witnessed
significant progress with the use of Transformers [45], and their variations [15, 69, 70, 71, 72]. The
availability of datasets like Arxiv, Pubmed [73], and SciSummNet [74] has also contributed to the
advancement. More recently, extensions of advanced language models like BERT [75] have further
improved performance by using techniques such as sparse attention [76, 77], and directed graphs
[78, 79] to compute similarity in vector space. Additionally, utilizing citation context [80] and
building connected graphs [81] from citation networks have also been shown to enhance performance
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in this task. Topic modelling [82, 83] has also been used to generate topic-aware scientific summaries.
However, challenges still persist in summarizing very short documents.

2.3 Abstractive Text Summarization with Multimodal Sig-

nals

Abstractive text summarization with multimodal inputs has gained increasing attention in recent
years with the surge of multimedia data on the Internet and social media. Unlike unimodal text
summarization systems, which are vastly studied, multimodal approaches make use of visual and
acoustic modalities in addition to the textual modality, as a valuable source of information for
generating a fluent and informative summary. A few existing experiments [84, 85] have shown that
compared to unimodal text summarization systems, multimodal summarization can improve the
quality of generated summary by using the information in the visual modality.

Abstractive text summarization with multimodality deals with the fusion of textual, acoustic
and visual modalities for summarizing a video document with a text precise that outlines the
content of the entire video. Multimodal information is very useful in learning human-like meaning
representations [86, 87, 88, 89]. Since text rarely occurs in isolation in the real world, it becomes
very effective to use all available information to optimize the quality of the summary jointly. The
existing literature on multimodal text summarization include multimodal news summarization
[85, 90, 91] and summarization of instructional videos [17]. Li et al.[84] were the first to collect a
multimodal corpus of 500 English news videos and articles with manually annotated the summaries.
However, the size of this dataset is very small. Zhou et al. [92] presented the YouCookII dataset,
containing instructional videos for cooking recipes with temporarily localized annotations for the
procedures. [93] introduced the notion of multimodal summarization with multimodal output,
which takes the news with images as input, and finally outputs a pictorial summary. Most recently,
Palaskar et al.[17] studied the task of summarization of instructional videos on the How2 dataset
[21], which can be considered as the closest task to ours. However, all existing multimodal text
summarization methods focus on summarizing images and/or short videos and generate one- or
two-line long summary, and thus, can not be generalized to longer videos.

2.4 Abstractive Extreme Text Summarization with Multi-

modal Signals

The objective of extreme text summarization is to drastically reduce the size of the source document
while preserving its essence in the resulting summary. The concept of extreme summarization was
first introduced by voelske et al. [67] with a novel dataset focused on social media summarization.
Subsequently, cachola et al. [5] and Mao et al. [68] presented new corpora, namely SciTLDR and
CiteSum, respectively, for extreme summarization of scientific documents. However, it remains an
open area to explore extreme abstractive text summarization using multimodal signals.
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2.5 Fingerprinting Corpus Bias and its Effects on Systems

Previous attempts to evaluate the quality of the benchmark summarization corpora are few in
number and mostly from the time when corpora were manually accumulated. [94] primarily used
the intrinsic metrics of precision and recall to evaluate corpus quality. In addition, the authors
proposed an extrinsic metric, called ‘Pseudo Question Answering’. This metric evaluates whether a
summary has an answer to a question that is otherwise answerable by reading the documents or not.
Although effective, the cost of such an evaluation is enormous and is not scalable to modern day
corpora sizes. For such corpora where multiple references are available, [95] used an inter-annotator
agreement to model the quality of the corpora. They also used non-redundancy, focus, structure,
referential clarity, readability, coherence, length, grammaticality, spelling, layout, and overall quality
as quantitative features for an MDS corpus. Recently, [43] proposed an MDS system that used
the baseline PG model along with Hierarchical structural attention to take into account long-term
dependencies for superior results compared to baseline models.

There have been a series of very recent studies that look into how to strengthen the definition
and discover system biases in single-document summarization. Very recently, [96] studied how
position, diversity and importance are significant metrics in analyzing the toughness of single-
document summarization corpora. Another recent work [97] extensively studied the Layout Bias in
news datasets that most single-document summarization systems seem to exploit. Two seminal
works, namely [6] and [98], exploited the theoretical complexity of summarization on the ground of
importance, analyzing in-depth what makes for a good summary. [6] mathematically modeled the
previously intuitive concepts of Redundancy, Relevance and Informativeness to define importance
in single-document summarization. [99] proposed a new single-document summarization corpus
and quantified how it compares to other datasets in terms of diversity and difficulty of the data.
They introduced metrics such as extractive fragment density and extractive fragment coverage to
plot the quality of SDS corpus. To the best of our knowledge, no comparative work exists for either
corpora or systems in MDS, and the current paper is the first in this direction.

2.6 Bringing Fairness into Text Summarization

Existing methods for improving faithfulness include proposing new fact-corrected datasets [100],
ensembling language models [101], adversarial techniques [102], target correction [103, 104, 105],
Natural Language Inference (NLI) models [106], rejecting noisy tokens [107], controlling irrelevant
sentences [108], and contrasting candidate generation [109]. Others use auxiliary information from
source documents like additional input [110], entity [111], knowledge graphs [112, 113, 114] or
RL-based approaches with rewards as entailment feedback [115], and structured fact extraction
[116]. Nevertheless, these methodologies either raise question upon the veracity of the datasets, cull
out discordant data points or employ extrinsic data sources to alleviate the factual incongruities.
Formulating a new dataset entails substantial costs, and winnowing existing ones might diminish
the dataset pool for training a competitive model. In contrast, our proposed approach surmounts
these constraints, capitalizing on the entirety of accessible data during training and leveraging the
dynamics of simplicial complexes and sheaf graphs to apprehend the inter- and intra-document
relationships, thereby engendering exceedingly faithful and factual summaries.
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2.7 Abbreviations

Table 2.1: List of abbreviations and their meanings in the thesis.
Abbreviations Meaning

SDS Single-document Summarization
MDS Multiple-document Summarization

ROUGE Recall-Oriented Understudy for Gisting Evaluation
DUC Document Understanding Conference
TAC Text Analysis Conference
MMR Maximal Marginal Relevance
PG Pointer Generator

BLEU Bilingual Evaluation Understudy
ILP Integer Linear Programming

SOTA State-of-the-Art
SciTLDR Scientific TLDR

ASR Automatic Speech Recognition
OCR Optical Character Recognition

TL;DR/TLDR too long; didn’t read
RL Reinforcement Learning

GCN Graph Convolutional Network
FFT Fast Fourier Transformer
MLE Maximum Likelihood Estimation

REISA Reinforced Span Attention Calibration
AVIATE Audio Video Language Dataset
FLORAL Factorized Multimodal Transformer based Decoder-only LM
mTLDR Multimodal TLDR

mTLDRgen Multimodal TLDR Generator
FABRIC Fairness using BART, Simplicial Complex, and Sheaf
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Chapter 3

Abstractive Text Summarization

Abstractive text summarization systems using recently-improved RNN-based sequence-to-sequence
architecture have shown great promise for the task of single-document summarization. However,
such neural models fail to perpetuate the performance in the multi-document summarization
setting owing to the long-range dependencies within the documents, overlapping/contradicting facts
and extrinsic model hallucinations. These shortcomings augment the existing models to generate
inconsistent, repetitive and non-factual summaries. In this work, we introduce REISA, a sequence-
to-sequence model with a novel reinforced selective attention span that attends over the input and
recalibrates the local attention weights to focus on important segments while generating output at
each time step. REISA utilizes a reinforcement learning-based policy gradient algorithm to reward
the model and formulate attention distributions over the encoder input. We further benchmark
REISA on two widely-used multi-document summarization corpora – Multinews and CQASumm,
and observe an improvement of +2.91 and +6.64 ROUGE-L scores, respectively. The qualitative
analyses on semantic similarity by BERTScore, faithfulness by question-answer evaluation and
human evaluation show significant improvement over the baseline-generated summaries.

3.1 Introduction

The Internet has become a pre-eminent constituent of our day-to-day life. We utilize the textual
formulation of the content to keep us updated by reading news articles, exchanging ideas, and
discussing on social media. However, the ever-increasing textual data has curtailed us from going
through every bit of information, thus limiting our exposure to wide information. Thankfully,
the task of abstractive text summarization has very much helped us quickly grasp the gist of
the topic. Early research in text summarization mainly focused on the extractive summarization
[117, 118, 119, 120], which lately has been advanced with the abstractive summarization techniques
[121, 122, 15, 22].

Abstractive text summarization is broadly classified into two types – single-document summa-
rization (SDS) and multi-document summarization (MDS). Despite apparent similarities w.r.t. the
high-level task, MDS is far more challenging than SDS due to its inherent complications. Unlike
SDS, MDS deals with n number of source documents to generate a single reference summary.
Filtering out the relevant information from each individual document requires long context relations
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and lossy information compression. One of the most common ways of representing the source
documents is by concatenating them. Multinews [12] concatenates each individual document in a
series, while CQASumm [13] arranges each answer of a question using a heuristic to put the most
relevant document on the top. As evident from Dey et al. [7], the information layout in a document
plays an important role in the performance of the summarization system as the models tend to pick
most of the information from the first few segments of the document rather than giving importance
to each segment. We aim to address this issue of layout fidelity and long context relation in the
summarization models.

The field of abstractive summarization has benefited vastly from the improvements in the
attention-aware encoder-decoder architecture [25]. Nallapati et al.[37] and See et al.[38] used
attention mechanism for single-document summarization (SDS) and achieved high accuracy; however,
the SDS corpora used by them were restrictive in terms of the length of both the source documents
and the reference summaries [20]. Our analysis with the baselines on MDS corpora based on
quantitative and qualitative parameters reveals that the summaries generated by the sequence-to-
sequence (seq2seq) based systems are often repetitive and unfaithful. The coverage mechanism
[123] used in traditional seq2seq networks [38, 12] and transformer-based [15, 69] models penalizes
the decoder on generating the same set of trigrams, which in turn forces the decoder to again
generate inconsistent, non-readable and unfaithful summaries. The pointing mechanism [124] on the
vocabulary probabilities also gets skewed and forces the model to copy from the source document
rather than generating novel phrases to minimize the training loss. The unchecked copying based
only on the probability distribution makes the abstractive model behave more like an extractive
system.

The long-range dependencies in the source documents in MDS aid in the complexity of the task.
Certain studies for capturing long-range dependencies in MDS corpora are proposed – Huang et
al. [125], Jiang et al. [126] and Chowdhury et al. [43] introduced structured attention; Cohan et
al. [41], Xu et al. [127] utilizes the discourse information on documents; Manakul et al. [128] and
Lebanoff et al. [129] exploited the attention and content selection. However, when these systems
are modelled on long or multiple documents, the generated summaries show huge inconsistency in
language semantics and high unfaithfulness w.r.t. the source document [130, 131, 132]. This can
be attributed to the fact that the source documents are often truncated before feeding them to the
encoder. However, the truncated input may not encode the information completely, resulting in
high model hallucinations.

Our exhaustive study on 15 baselines for the SDS system unfolds their limitations when used on
MDS datasets. We further envision the solution of MDS by incorporating reinforcement learning
(RL) based dual reward policies. Where the reward function based on the ROUGE score [133]
helps the model to syntactically capture the information, BERTScore [134] based reward aids
by capturing the semantic context. Recent studies Li et al. [135], Pasunuru et al. [63] showed
promising results by adding reward policies in the RL-based setting on the SDS datasets. However,
the attention distribution obtained by the base network architecture is often arbitrary, resulting in
redundant summaries. Here, we attempt to mitigate the issue of non-redundancy by recalibrating
the attention weights for both the encoder and decoder at each time step. This not only impels the
model to look at other source document segments during summary generation but also helps the
model to generate more faithful summaries.
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Major contributions. Our major contributions are threefold:

1. We propose a novel method, REISA1 that recalibrates the attention weights at the encoded
sequence based on the generated token at each time step t. The attention weights are
recalibrated using the policy gradient algorithm.

2. We propose dual loss dual reward functions. For the RL framework, we devise ROUGE-L and
BERTScore-based rewards, which not only minimize the exposure bias introduced due to the
classic log-likelihood loss but also produce more faithful summaries.

3. We evaluate REISA using three standard metrics – ROUGE, BERTScore and QAEval, to
assess the quantitative, and qualitative performances and faithfulness. We demonstrate
that REISA fares well against five widely-popular extractive and ten abstractive baselines.
REISA beats the strong Transformer based model [136] (best baseline) by 2.91 ROUGE-L on
Multinews and [137] by 6.64 ROUGE-L on CQASumm. On abstractiveness, REISA generates
highly abstractive summaries compared to all the baselines. Our qualitative analyses on
semantic similarity by BERTScore and faithfulness by question-answer evaluation also show
considerable gains compared to the baseline-generated summaries. We also perform an
exhaustive human evaluations to compare the quality of the system-generated summaries.
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Figure 3.1: Illustration of REISA. at and αd are attention distributions of the encoder and decoder,
respectively. The context vectors and hidden state are represented by C and H/h, respectively.

1REISA: REInforced Span Attention calibration
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3.2 Proposed Architecture

In this section, we introduce our proposed REISA model for multi-document summarization. We
first describe the base seq2seq architecture. We use bi-directional LSTMs for both the encoder
and decoder. We then elaborate on how the encoder attention weights are recalibrated using the
reinforced attention span. The recalibration of attention weights is recomputed at each decoder
time step to help the model attain all parts of the source document. Based on the attention scores
obtained during a token generation, we penalize the highest attention weights. We then describe the
dual reward functions, ROUGE and BERTScore, used in the RL setting. We use both syntactical
and semantic level rewards to help the model capture better contextual information. Figure 3.1
shows the schematic architecture of REISA.

3.2.1 Base Architecture

We make use of a single bidirectional LSTM layer. Input tokens wi are fed to the encoder to obtain
a hidden representation hi at each time step t. A single layer unidirectional LSTM obtains the
previous word embeddings and the decoder state hj. The initial attention distribution is obtained
by [25]:

eti = vT tanh(Whhi +Wsdt + battn);

at = softmax(et);h∗t =
∑
i

atih
t
i

(3.1)

We obtain h∗t as the initial context vector in Equation 3.1. The network parameters are initialized
using the above equations.

3.2.2 Reinforced Span Attention

As evident from Equation 3.1, attention distribution [25] is computed over a sequence which is
formulated into a context vector. The context vector represents the importance of individual tokens
as a weight matrix. However, during the attention weight calculation, the softmax function based on
et assigns a non-zero score to each token. Therefore, for some tokens, the weights can be attributed
to a near-zero value. However, certain tokens with near-zero values can hold importance and may
adversely affect the model learning strength. To address these issues, we introduce the notion of
reinforced attention calibration using the policy gradient training algorithm with ROUGE-L and
BERTScore as rewards. The reward functions are discussed later in Section 3.2.3.

For the reinforced attention calibration, we extend the studies of [138] and [139]. We compute
attention weights wi from a given function f(T, v) as follows:

wi = softmax(f(T, v)) =
exp(f(T, vi))∑n
j=1 exp(f(T, vj))

(3.2)

Here, T is the target vector, and vi is the source vector representation. Context vector is computed
by C =

∑n
j=1wjvj.
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As it can be seen from Equation 3.2 that
∑n

j=1wj = 1, the attention mechanism can be
thought of as a computation that adaptively learns the distribution over input vectors, accurately
representing the context of the problem.

We extend the attention mechanism to adaptively sync the REINFORCE [140] reward settings.
Instead of using multi-heads in the attention module of the seq2seq-based network, we make use
of RL agents. A total of m+ 1 critics accompany each agent i. The idea here is that each critic
will be able to attend to the information at different document segments, allowing the network
to capture long-range dependencies in multiple documents. Finally, the single-layer perceptron
encodes the state and state-action information.

The perceptron output is passed on to a feed-forward embedding layer, which in turn formulates
the attentions: Key, Value, and Query pairs representing the state-actions and encodings for each
agent. Finally, we compute the attention weights using:

wj = softmax
(qiKT

j√
dk

)
, (3.3)

where dk represents the key size. The agent critic2 Qi is obtained using

Qi = fi(gi(oi, ai),
∑
j ̸=i

wjVj), (3.4)

where fi is a multi-layer perceptron with two layers, oi is the observation, gi is an embedding
function for agent i, Vj is a state-action encoding, and xi represents the contribution of other agents
to agent i.

The attention vector Wi(wi) is formulated with all action conditional Q-values Qk
i (s, ai|⃗a−i;wi).

The Q values represent the critic network, ai represents the local action of agent i, and a−i represents
the joint action. We compute the dot product to calculate W k

i (wi):

W k
i (wi) =

exp(hi(wi)Q
k
i (s, ai |⃗a−i;wi))∑K

k=1 exp(hi(wi)Qk
i (s, ai |⃗a−i;wi))

(3.5)

Here, wi is the attention weight, and hi indicates the encoder’s hidden state.
The K action conditional Q-value Qk

i (s, ai |⃗a−i;wi) is generated for each a⃗−i to approximate
Qπi

i (s, ai, a⃗−i), where wi is the critic network parameter for i. The Qk
i (s, ai |⃗a−i;wi) is generated

using ai on all observations ai, a⃗−i. The action conditional Q-values Qk
i (s, ai |⃗a−i;wi) are computed

using

Q
πi|π⃗−i

i (s, ai) = Σa⃗−i∈A⃗−i
[π⃗−i(⃗a−i|s)Qπi

i (s, ai, a⃗−i)] (3.6)

Here, in the current state s, π−i represents the joint policy, ai indicates agent i and a⃗−i denotes the
other agents.

Lastly, the contextual Q-value Qc
i(s, ai, a⃗−i;wi) is calculated as a weighted summation of W k

i

and Qk
i :

Qc
i(s, ai, a⃗−i;wi) =

K∑
k=1

W k
i (wi) (3.7)

2In the RL setting, the actor decides which action should be taken, while the critic informs the actor how good
the action was and how it should be adjusted.
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To align Qc
i with the encoder-side attention weights, we compute the new contextual Q-value

using

Qi = fi(Q
c
i(s, ai, a⃗−i;wi)), (3.8)

Here, fi indicates the feed-forward layer.
For the score et, the new attention weights are recalibrated by

e′ti = exp(eti)/
t−1∑
j=1

exp(eji) (3.9)

where exp(eti) represents the initialized attention weights and Qi represents the reinforced attention
weights. Given Qi based on rewards obtained, we calibrate exp(eti) by learning a new attention
function and assigning a penalty to the high attention weights. The new attention weights at each
time step are learned using:

αe
ti = vatanh(Wa[e

′
ti;Q

i]) (3.10)

where both va and Wa are weight matrices that are learned for alignment. The attention weights
are recomputed at each decoder time step to update the encoder attention weights.

Finally, the normalized attention scores αe
ti are computed for all inputs:

αe
ti =

αe
ti∑n

j=1 α
e
ti

(3.11)

and based on αe
ti and the hidden state hei , the context vector cet is formulated as:

cet =
n∑

i=1

αe
tih

e
i . (3.12)

For intra-decoder attention, we use a similar approach as given by [61]. At each decoding step
t, the context vector cdt is computed. cd1 is initialized with zeros and at t > 1, we use the following
equation:

edtt′ = Wa(h
d
th

d
t′) (3.13)

Finally, the normalized attention scores αd
tt at the decoder side are computed to formulate the

context vector cdt as follows:

αd
tt′ =

exp(edtt′)∑t−1
j=1 exp(e

d
tj)

; cdt =
t−1∑
j=1

αd
tjh

d
j (3.14)

For word generation, we adopt PG network [38]. The recalibrated attention scores represent
the Pcopy copy probabilities, and the decoder state generates Pvocab. Pgen acts as a switch to allow
the model to copy or generate words from the vocabulary.

p(word) = pgenpvocab(word) + (1 − pgen)ati (3.15)
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3.2.3 Reward and Loss

Paulus et al. [61] used ROUGE-L as a reward measure for the summarization task, which again
motivates the model to copy the syntactical information rather than the semantic information. To
promote both syntax and semantic capabilities in a model, we introduce the dual reward optimization
approach. We use ROUGE-L for syntax-level reward and BERTScore for semantic-level reward.

1. ROUGE: Similar to [63], we include the ROUGE-L reward based on the oracle summaries
[141]. Our experiments corroborate [63] and [61] that ROUGE-L acts as a better reward measure
in support of promoting important phrases than unigram (ROUGE-1) or bigram (ROUGE-2) based
rewards. 2. BERTScore: Since ROUGE-L alone can be biased towards copying the token/phrases
verbatim, we also include BERTScore [134] as another reward for better context-based information
optimization. For BERTScore computation, we use ”bert-base-uncased” [51] to compute the
similarity between the generated summary and the reference summary. The reward scores are
combined linearly as Rwmixed = νRwROUGE + (1 − ν)RwBertScore Here ν is a tunable parameter.

For the loss function, along with the negative log-likelihood loss, we also incorporate an auxiliary
loss function based on the RL policy gradient algorithm [61]. To generate an intermediate summary
and optimise the ROUGE-L score during training, we use the oracle summary generation method
provided by [7]. The generated oracle summary is extractive in nature and is derived using Integer
Linear Programming (ILP) solvers.

RN (R,O) =

∑|U(R)|
j=1 min(C(gNj , O), C(gNj , R))∑U(R)

j=1 C(gNj , O)
(3.16)

Here given the greedily decoded summary from the current probability distribution Rs and an
oracle summary as Os, the ROUGE-L score is maximised. We utilise RN(R,O) and the output
ys from the sampled decoding probability, p(yst |ys1, ..., yst−1, x) at the current state. The RL loss is
computed as:

Lrl(x, y
∗) = (r(ŷ, x, y∗) − r(ys, x, y∗))

N∑
t=1

log p(yst |ys1, ..., yst−1, x)

We also make use of the standard negative log-likelihood loss:

Lml = −
N∑
t=1

log p(y∗t |y∗1, ..., y∗t−1, x)

and linearly combine both as Lmixed = γLrl + (1 − γ)Lml.
Here γ is a tunable parameter. We use Lmixed as a combined loss function. We apply equal

weights to both the reward functions.

3.3 Datasets

For comparative evaluation, we run the competing summarization systems on one SDS and two
benchmark MDS corpora.
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1. Multinews [12]: This dataset comprises news articles curated from the newser.com site, and
summaries are written by professional editors. On average, the source documents consist of 2k
tokens, while the reference summaries consist of 260 tokens. The dataset is split into 44, 972
(80%) training instances, while the validation and test sets contain 5622 (10%) instances
each. With respect to abstractiveness, the Multinews dataset exhibits 32.28% novel unigram,
67.53% novel bigrams, and 80.45% novel trigram formation in reference summaries.

2. CQASumm [13]: It makes use of the L6 yahoo! answers dataset for the MDS task. Here,
the highest voted, or the accepted answer is treated as the reference summary, while the
other answers are treated as individual source documents. The reference summaries are
truncated to hundred words. The dataset is split into 80k (80%) training instances and 10k
(10%) validation and test instances, each. In terms of abstractiveness, CQASumm shows the
presence of 41.41%, 80.72%, and 88.79% of novel unigram, bigram and trigram formation,
respectively.

Table 3.1: Comparative analysis on two datasets – Multinews and CQASumm. We report ROUGE-1
(R-1), ROUGE-2 (R-2), ROUGE-L (R-L), and ROUGE-L F1 (R-L F1) scores for five extractive
(ext) and eight abstractive (abs) baselines. We also compare the methods based on BERTScore F1
(BS F1) and avg. QAEval F1..

System
Multinews CQASumm

R-1 R-2 R-L R-L F1 BS F1 QAE F1 R-1 R-2 R-L R-L F1 BS F1 QAE F1

ext-Lead3 39.41 11.77 14.51 14.84 - - 8.7 1.01 5.2 5.1 - -

ext-LexRank [117] 38.27 12.7 13.2 14 83.29 0.0853 28.4 4.7 14.7 14.8 79.28 0.0103

ext-TextRank [118] 38.4 13.1 13.5 14.47 83.82 0.061 27.8 4.8 14.9 14.87 79.64 0.0113

ext-MMR [142] 38.7 11.92 13.11 14.71 84.38 0.0935 29.31 4.97 14.87 14.81 80.34 0.0107

ext-ICSISumm [143] 37.2 13.5 13.87 15.13 84.46 0.0835 28.99 4.24 14.93 14.94 80.67 0.0115

abs-PG [38] 41.85 13.91 16.46 17.14 85.04 0.0525 23.2 4 14.6 14.8 81.45 0.0263

abs-PG-MMR [40] 36.42 9.36 13.23 17.35 85.09 0.0522 16.2 3.2 14.35 11.31 81.47 0.0266

abs-Himap [12] 40.28 13.79 18.81 21.38 83.28 0.0686 30.09 4.69 14.9 14.87 80.57 0.0263

abs-CopyTransformer [15] 42.17 13.03 19.75 20.5 84.57 0.0557 30.12 4.36 14.81 15.32 81.11 0.02

abs-PEGASUS [36] 42.24 13.27 21.44 23.08 84.89 0.0787 32.51 5.14 15.1 15.48 81.68 0.0211

abs-PG+HSA [43] 43.49 14.02 17.21 21.73 84.72 0.0562 31 5 15.2 15.87 81.24 0.0207

abs-rl-RL-ConvS2S [144] 41.17 13.12 16.74 21.47 83.52 0.0527 29.21 4.46 14.83 15.13 81.12 0.0202

abs-rl-ML+RL [61] 42.18 13.21 17.11 21.29 83.58 0.0531 30.72 4.81 15.01 15.26 81.11 0.0205

abs-LongT5 [136] 46.01 17.37 23.5 23.31 84.07 0.055 30.29 4.67 14.88 15.03 80.76 0.0202

abs-TGM [137] 46.04 16.43 19.82 22.41 84.29 0.0602 32.18 5.1 17.54 16.72 81.33 0.0224

abs-ChatGPT 44.12 13.7 23.75 24.11 84.12 0.0917 34.23 7.58 22.64 20.32 79.18 0.0231

abs-REISA 47.28 17.2 25.41 25.34 87.49 0.0942 36.67 7.72 24.18 22.35 83.41 0.0286

3.4 Baseline Systems

We consider 15 baselines for comparative analysis; five of them are extractive, and the remaining
ten are abstractive summarization systems. The motivation behind choosing extractive baselines is
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to compare their performance against the abstractive baselines. Each dataset possesses its distinct
modality – while Multinews favours simple extractive baselines, CQASumm favours complex
extractive baselines. We benchmark both datasets across extractive and abstractive baselines to
compare the performance.

1. Lead3 is an extractive summarization system where the first 100 tokens of the source
documents form the generated summary.

2. LexRank [117] is an unsupervised graph based algorithm. Lexrank represents the sentences as
nodes, and the edge represents the sentence importance computed using eigenvector centrality.
The similarity is calculated using the frequency of the word in the sentence.

3. TextRank [118] is an unsupervised graph-based algorithm that represents the sentences as a
fully-connected graph where nodes are the sentences and edges indicate similarities among
sentences. TextRank assumes all edge weights between sentences to be unit weights, and
finally sentences are ranked based on the derived version of PageRank [145].

4. Maximal Marginal Relevance (MMR) [142] reduces redundancy while maintaining
relevant sentences. MMR calculates the relevance of a query to sentences using a similarity
metric. The similarity value between two sentences is calculated, and similar sentences are
removed.

5. ICSISumm [143] optimizes the coverage of the summary by adopting linear optimization
framework. It extracts sentences containing frequent bigrams from the corpus. Given an
upper bound on the summary length, it optimizes the summary using ILP. It generates
the globally optimal summary by searching for the most important concepts present in the
document.

6. Pointer Generator (PG) network [38] is an abstractive summarization framework. The
PG architecture uses a bidirectional LSTM based encoder, and a unidirectional decoder
architecture along with attention [25]. The context vector and the decoder state produce
a vocabulary distribution Pvocab, while the attention distribution creates a copy probability
Pcopy. Finally, the pointer variable Pgen acts as a switch to allow either to copy or to generate
new words from the vocabulary.

7. Pointer Generator-MMR (PG-MMR) [40] incorporates the usage of MMR along with
the PG network [38]. MMR tries to find K highest-scored source sentences; the weights of all
sentences are calculated, and based on the weights, the sentences that relate to the partial
summary generated by the model receive low scores. It helps the model to find the important
content that might not have been included in the summary.

8. Hierarchical MMR-Attention PG (Himap) [12] combines the architectural advantages
of PG and MMR. Here, the encoder takes the word tokens for the whole document as input,
and the encoder output for the last token is saved to obtain the representation of both
source articles and summaries. MMR scores are computed for the sentence representations to
determine the optimal sentences based on relevance and redundancy.
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9. Bottom-up Summarization (CopyTransformer) [15] leverages Transformer [45] along
with length and coverage penalty. It uses the same encoder-decoder model but with stacked
self-attention and point-wise feed-forward layers. Here, one of the random attention heads
acts as a copy pointer.

10. PegasusBASE [36] is a pretrained encoder-decoder based model finetuned over various
downstream tasks using the transfer learning approach. The model is based on the big
Transformer architecture [45]. The main highlight of Pegasus is its usage of a novel pretraining
objective of sentence masking and further tasking the model for regenerating it. We use the
PegasusBASE architecture as our baseline.

11. PG-HSA [13] extends the work of PG by incorporating structural attention in a hierarchical
encoder setting to capture the long-range contextual dependencies. The authors also proposed
a hierarchical encoder with multi-level structural attention to capturing inter-document
discourse information and multi-level contextual attention at the word level to generate
abstractive summaries.

12. RL-ConvS2S [61] is a reinforcement learning (RL) based baseline. This method combines
the intra-attention at the encoder as well as the decoder side. It also makes use of a hybrid
learning objective along with a policy learning framework to formulate a mixed training
function. The proposed method uses ROUGE-L as a reinforcement learning reward.

13. ML+RL [144] is an RL-based baseline that uses the greedily decoded sentences and the
sampled distribution sentences as a combined RL reward. The ML+RL fuses a topic-aware
attention module along with the RL self-critical technique into a CNN architecture to jointly
align the text encoding and topic-level information to optimize the overall learning pipeline.

14. LongT5BASE [136] scales the T5 [53] architecture over the input length and the model size
while combining the Pegasus pretraining objective and TGlobal attention.

15. TGM [137] combines topics extracted from multiple documents and represents them as a
global knowledge graph. The extracted topics act as Semantic Content Units while generating
summaries.

3.5 Experimental Setup

In this section, we discuss the system setup and the evaluation setting of competing systems and
the ablation versions of the proposed system. We then elaborate on the experimental results – both
quantitative and qualitative analyses.

3.5.1 Evaluation Setup

We provide quantitative analysis of the system-generated summaries using the standard metrics
for sequence modelling task: ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L) and ROUGE-L
F1 [133]. ROUGE measures the unigram, bigram, and longest common sequence overlap between
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Table 3.2: Ablation study of REISA on the two datasets. Base Model represents the PG-based
seq2seq network with attention. The subsequent systems include RL modules with rewards and
attention calibration modules. The final system uses the REISA architecture.

System #P
Multinews CQASumm

R-1 R-2 R-L R-1 R-2 R-L

Base Model 60m 34.11 10.17 13.21 17.23 3.64 14.41
+ RWR 60m 35.57 11.32 14.62 21.87 3.83 14.57
+ RWR+BS 60m 37.75 13.38 15.5 25.8 4.8 14.73
+ RAS 61m 42.43 13.61 19.67 28.62 4.94 15.48
REISA 61m 47.28 17.2 25.41 36.67 7.72 24.18

Table 3.3: Scores for human evaluated metrics - Informativeness (INF), Relevance (REL), Coherence
(COH), Fluency (FLU) over extractive and abstractive systems on Multinews and CQASumm
datasets.

System
Multinews CQASumm

Inf Rel Coh Flu Inf Rel Coh Flu

LexRank 2.47 2.51 2.79 3.1 1.74 1.41 2.18 2.07

ICSISumm 2.52 2.64 2.71 2.94 1.87 1.47 2.24 2.17

PG 2.73 2.91 3.21 3.34 2.93 2.54 2.73 2.83

Transformer 2.84 3.14 3.37 3.38 3.38 2.86 2.81 3.17

RL-ConvS2S 2.96 3.21 3.48 3.43 3.47 3.04 3.17 3.29

TGM 3.25 3.37 3.54 3.57 3.54 3.12 3.22 3.41

REISA 3.39 3.34 3.59 3.64 3.61 3.15 3.31 3.48

the reference and system generated summaries. We also benchmark the performance on the newly
introduced BERTScore metric – it utilises the pre-trained BERT model and matches the cosine
similarity of tokens between the reference and system summaries. We use the large RoBERTa [146]
model for evaluating BERTScore. We further perform a qualitative evaluation using the already
proposed QAEval [147] metric. It uses the question-answering task, where a pretrained model
formulates questions from the reference summary and then estimates the number of questions
that can be answered by the system-generated summary. This metric gives an estimate of the
faithfulness of the system-generated summaries.

3.5.2 Human Evaluation Setup

We perform the human evaluation on the system-generated summaries to evaluate the qualitative
aspect of the following parameters: Informativeness (Inf), Relevance (Rel), Coherence (Coh) and
Fluency (Flu). We randomly select 100 test samples from the system-generated summaries for
the assessment. A total of 30 annotators participated in this study. All annotators had strong
background in NLP and machine learning. A minimum of two annotators annotated each sample,
and inter-annotations of greater than two degrees are discarded. The scores obtained are averaged
for each sample.

38



3.5.3 Ablation Studies

We perform system ablation to understand the impact of individual modules of REISA. Table 3.2
presents the ablation results. We initially run a base model (PG based seq2seq model with the
cross-entropy loss). Later, we introduce the reinforcement learning based objective function with
ROUGE-L score as the reward metric to capture the syntactical information. Further, we include
BERTScore as a reward metric to study the inclusion of both syntactical and semantic-based
rewards. When compared with the base model, the inclusion of dual reward helps in attaining
an improvement of +2.29 ROUGE-L on Multinews and +0.32 ROUGE-L on CQASumm. Later,
we introduce the reinforced attention span, which, when combined with both ROUGE-L and
BERTScore as a reward, shows a significant improvement. On Multinews, it gains +13.17 ROUGE-
1 and +12.2 ROUGE-L, while on CQASumm, it shows an improvement of +19.44 ROUGE-1
and +9.77 ROUGE-L against the base model. The improvements, when compared with the base
PG-based seq2seq model along with the Reinforced Attention Span, gains +8.32 ROUGE-1 on
Multinews and +11.39 ROUGE-1 on CQASumm.

As evident from Table 3.2, we infer that the reinforced attention calibration performed at
the encoder and decoder side results in the highest gains w.r.t. the model’s performance. The
improvement is not just consistent with the quantitative score but also performs well with the
qualitative metrics.

3.5.4 Quantitative Analysis

We summarise the comparative analysis in Table 3.1. We observe that with the introduction of
reinforced attention span, ROUGE-L and BERTScore as reward functions, REISA attains 47.28
ROUGE-1 and 25.41 ROUGE-L scores on the Multinews corpus and 36.67 ROUGE-1 and 24.18
ROUGE-L scores on the CQASumm corpus. Compared to the best baseline (Multinews: ROUGE-1
of TGM and ROUGE-L of LongT5; CQASumm: ROUGE-1 of Pegasus and ROUGE-L of TGM) ,
REISA performs better over ROUGE-1 and ROUGE-L (R-1 +1.24, R-L 2.91 for Multinews and R-1
+4.16, R-L 6.64 for CQASumm).

A similar trend is observed with the BERTScore as well. REISA attains a BERTScore of 87.49,
improving +2.4 over the best baseline (PG-MMR) on Multinews. On CQASumm, REISA shows an
improvement of +1.73 by scoring 83.41 BERTScore against the best baseline (PegasusBASE). We
also compare the performance of the proposed model REISA on CNN/Dailymail dataset (Table 3.5).
Our model performs better on all three ROUGE metrics, showing an improvement in ROUGE-L of
+4.87 over ML+RL on CNN/Dailymail-400 and +3.98 over Transformer on CNN/Dailymail-800.
This shows that our approach of recalibrating the attention weights and dual reward not only entitles
the model to consider individual segments fairly but also helps in attaining significant improvements
over both the quantitative metrics, ROUGE and BERTScore. We present a detailed example of
our approach in action, demonstrating its effectiveness in achieving both high faithfulness and
minimal hallucinations, in Table 3.4. We find that baseline systems such as PG and Transformer
pick sentences from specific source segments forming incoherent phrases. At the same time, REISA
takes all individual source segments into account while generating a highly-readable and faithful
summary.
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Table 3.4: Individual source documents, reference summary and the sample summaries generated
by PG, Himap, Transformer, Pegasus, TGM and REISA over a sample of CQASumm corpus. For
the summary generation, the baselines use one or a few documents to formulate their summaries;
REISA is designed to combine critical information from each document in order to generate a more
comprehensive summary. Different colors show positive correlations with the source documents and
reference summaries.
Type Text
Source 1 Probably you have low memories to run the games that means you have to increase the ram. If that doesn’t

help try to download the latest graphics driver from the manufacturer’s website sometimes it helps.
Source 2 This sounds like it could def be a heating issue. ”Random” reboots and shutdowns are often as a result

of overheating and given that this happens during gaming when you are really pushing your system, this
is probably the case. Replace your CPU heatsink/fan and be sure to use Arctic Silver paste between the
heatsink and CPU. Also could improve case airflow with additional or bigger fans.

Source 3 its probably ur low RAM or you have a virus. possibly bad power supply but i doubt it.
Source 4 check your video card, it might be over heating. games use alot of proccessing power and can greatly increase

the temp. of your computer, open it and blow off the fans. DISCHARGE YOURSELF BEFORE YOU
TOUCH ANYTHING. if there is alot of dust goto your neares comp. store and buy a comp. vacume its this
really small thing that sucks up dust, ect.. and clean it out.

Source 5 could be something about the games? Are the games labour intensive games for computer? Or are you
talking about Solitaire?

Reference Summary heat is a big issue. when the inside of your computer case is dirty the cooling system ca n’t do its job properly.
either take it to a reputable shop and have them clean it or go buy a can of compressed air , open the case
and blow all the dust out of it taking care to get it all out of the louvres under the cpu fan. DO NOT use
a vacuum! it creates a static electricity charge that can corrupt the components on your mother board. a
static charge weaker than you can feel can and will

PG it ’ s a gaming card , but it ’ s a good time for the first time , the new york times reports . ” you need
a bigger fan on the mother board. could be something about the control panel , then to system then to
hardware then to device manager or here for the rest of the weirdest things that sucks up in the games :
click to see a picture of a goto ’ s comp. comp. comp. and be sure to be your .

Himap it ’ s a good time for a gaming card , the new york times reports . ” sometimes the motherboard will cause
it to reboot you need a bigger fan on the mother board. could be something about the about the , the
interrupts will cause it the system to reboot. here for the rest of the weirdest things sucks up in the games :
you ’ ll be able to reports the los angeles times .

Transformer if you ’ re looking for a new ram and buy a comp. possibly bad power supply , you should go to the control
panel , then to system your video card , is it a gaming card ? sometimes the interupts will cause it to reboot
, reports the los angeles times . it ’ s This sounds like it could be over heating. open it and blow off the fans.

Pegasus you should go to the control panel , then to system your video card , is it a gaming card ? sometimes the
interupts will cause it to reboot you need a bigger fan on the mother board. could be something about the
control panel blowoff the air weirdest things that sucks up in the games vacume its this really small thing
that sucks up dust, ect.. and clean it out.store and buy a comp.

TGM blowoff the fan. the interrupts will cause it the system to reboot. you should go to the video card and the
gaming card. blow the dust. open the power supply, then will cause it to reboot. could be heat and video
card. overheating , create a static charge. buy a computer , open it and blow off the fans. could be something
about the gaming card.

REISA buy compressed air, blow all the dust and blow off the fans. heat is a big issue. if you ’ re looking for a new
ram , you ’ ll be able to increase the ram of your computer. it ’ s probably your video card or bad power
supply , you have low memories. get the latest driver for it. if there is a dust and clean it out. intensive
games for computer improve case airflow with heatsink and CPU.

3.5.5 Faithfulness

In analogous to the quantitative evaluation, we also perform human evaluation, Table 3.3 shows
that our proposed model REISA generates high quality, redundant, faithful and human-readable
summaries. We also use the QAEval [147] metric to evaluate the faithfulness of the system
summaries with respect to the reference summaries. QAEval [147] is a question-answer based
metric where the question-answer pairs are generated automatically from the reference summary,
and the system summaries are evaluated over the presence of information required to answer the
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Table 3.5: Comparative analysis on CNN/Dailymail-400 and CNN/Dailymail-800 datasets. We
report ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L (R-L) scores.

Method
CNN/Dailymail-400 CNN/Dailymail-800

R-1 R-2 R-L R-1 R-2 R-L

Lead3 40.34 17.7 36.57 40.34 17.7 36.57

LexRank 34.12 13.31 31.93 32.36 11.89 28.12

TextRank 31.38 12.29 30.06 30.24 11.26 27.92

PG 39.53 17.28 36.38 36.81 15.92 32.86

PG-MMR 39.82 17.68 36.72 37.48 16.61 33.49

Transformer 39.94 17.44 36.61 39.50 16.06 36.63

ML+RL 39.87 17.82 36.90 28.42 16.87 36.06

REISA 43.48 20.19 41.77 42.15 19.31 40.61

learned questions.
We compare the faithfulness of summarization systems in Tables 3.1 and 3.3. Here, we observe

a considerable gain in terms of the faithfulness of REISA-generated system summaries. Extractive
summarization systems on Multinews show significantly better results when compared to other
competing abstractive baselines. This can be attributed to the fact that the extractive summaries
preserve the sentence syntax that helps the pre-trained language models to formulate better
question-answer pairs. The questions generated are robust and require rational answers. However,
on CQASumm the trend is inverse. Since CQASumm is extracted from the Yahoo answers and
each answer from a thread contains short and unstructured syntax, the pre-trained model finds it
hard to extract the necessary information even to formulate the question-answer pairs. Pre-trained
QA modal finds it hard to generate insightful questions and often repeats the same questions. The
answers to these generated questions show very low correlations with the reference summaries
and are often random. This in turn affects the overall faithfulness of the systems. Our analysis
shows that the summaries generated by REISA are readable, informative, and faithful. In case of
CQASumm, as the summaries are shorter on average compared to Multinews, REISA, with the help
of ROUGE-based rewards, is able to learn the short summary representation, showing significant
improvements throughout.

3.6 REISA vs ChatGPT

We conducted a comparison between the summaries generated by REISA and ChatGPT-4-turbo, and
the results are presented in Table 3.1. For this analysis, we generated summaries from the MultiNews
and the CQASumm test set. While ChatGPT’s summaries scored well on several quantitative
metrics, they did not outperform the proposed method. ChatGPT’s summaries generally provide
a crisp overview of the source document, starting strong with relevant information. However, as
the summaries progress, they tend to deviate from the source material, often expanding based
on ChatGPT’s internal knowledge graph. This comparison illustrates that while general-purpose
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LLMs like ChatGPT excel in linguistic fluency, they often struggle to maintain faithfulness to
the factual information and context of the original document, making them less suitable for tasks
requiring strict adherence to the source content.

3.7 Analysis and Discussion

This section presents a critical analysis of the proposed model to explain its superiority and
limitations. We also discuss further analysis and limitations in this section.

Reward Analysis. We analyze the notion of adding multiple rewards in our architecture. Upon
manual inspection, we find that the summaries generated with ROUGE-L as a reward contain more
readable and non-repetitive phrases than the baselines; this is in line with the findings reported
by [63]. However, the ROUGE-L reward forces the model to directly copy more phrases from the
source documents rather than generate them. Therefore, to counter this, we introduce BERTScore
as a reward. Compared to ROUGE-L reward, BERTScore is able to generate consistently readable
summaries with new novel phrases as it helps the model in structuring the vocabulary with the
semantic meaning. We do not consider rewards such as entailment, NLI [148] etc. In the entailment,
NLI systems need a separate dataset to train and rank sentences in the summarization corpora;
therefore, the performance quality of entailment/NLI rewards will be directly affected by the dataset
and the quality of the trained models, thus leading to degradation of the summarization model.

Abstractiveness. We analyse the formation of novel n-gram in the system-generated summaries
by three abstractive text summarization systems and REISA with only ROUGE-L as a reward
and complete REISA. Our analysis shows that REISA generates the highest abstractive summaries
against the most popular systems. Also, when we use REISA with only ROUGE-L as a reward,
the abstractiveness of the system drops significantly. This supports our earlier intuition that
just the ROUGE-based rewards copy the phrases directly from the source documents hurting the
abstractness of the system. However, when combined with BERTScore, the model generates more
abstractive summaries.

Attention Calibration. We compute the attention distribution using [25]. As the softmax
function assigns all the tokens a non-zero value, the computed attention distribution sometimes
gets very skewed due to high vocabulary size, which may adversely affect the values of important
tokens during summary generation. To counter this issue, we recalibrate all the attention weights
at each step by penalizing the highest attention weights after the decoder generates a token. The
highest encoder attention weights are penalized and recomputed to help the model attain to other
source document fragments and maintain uniformity while generation. The results show that the
summaries generated by REISA account for all informative source segments fairly and generate a
highly faithful summary. The benchmarks performed on the system-generated summaries perform
better w.r.t. all evaluation metrics.

Length Analysis of the Generated Summaries. For the baselines and the proposed
REISA system, we set the generation summary length in analogous to the length of the target
summaries. However, we also assess the effects of generating long and short summaries to examine
the robustness of the systems. We observe that the generated summaries with above the average
length often show redundant information, high hallucinations with respect to the source documents
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or copy verbatim phrases from source, while the ones with below the average length fail to capture
the entire gist of the source document and are incomplete in information.

Limitations of Traditional Seq2seq Networks. In NLP, deep learning systems tend to
optimize the maximum likelihood estimation in the network. At the same time, evaluation metrics
such as BLEU and ROUGE are used for assessing the performance of the systems. This, in turn,
creates an inconsistency between the metrics used for training and testing the network. The encoder-
decoder-based architecture can only work with metrics such as MLE during training since it is
differentiable, while ROUGE and BLEU are non-differentiable metrics. However, RL-based models
can optimize the non-differentiable metrics and help the models learn similar evaluation metrics
during training. Another problem with the seq2seq network is the availability of ground-truth
and the previous state during training. However, the ground-truth is not made available during
inference, and the model relies on its distribution, thus leading to high exposure biases.

Limitations of Our Proposed Model. Our proposed REISA model uses reinforcement
learning and the traditional seq2seq network, allowing the model to optimize multiple loss and
rewards metrics jointly. During reward computation, REISA makes use of oracle summaries generated
using eq. 3.16 which is extractive and greedy, adding additional cost and limitation in terms of
an extractive-based reward policy. The addition of rewards and recalibration of attention weights
also adds to the computing cost of the overall network. The ROUGE-L and BERTScore scores are
highly compute-intensive and stall GPU for seconds to get the reward calculated and added to the
loss function. This GPU stalling adds a toll on the entire training pipeline and increases the overall
training time. We note that our model requires extensive experiments to draw sound conclusions.

3.8 Conclusion

In this work, we introduced REISA, a reinforced attention calibration-based model that constraints
the encoder into attending at the fixed number of tokens at each step and recalibrates the attention
scores to allow the model to attend to other source segments fairly. With the inclusion of dual
rewards, ROUGE-L and BERTScore, and dual loss, MLE and RL loss, REISA shows significant
improvements on ROUGE and BERTScore over both Multinews and CQASumm datasets. We
further studied the faithfulness of our generated summaries using the QAEval metric, showing
that our model generates more faithful summaries than any other competing baselines. We also
perform human evaluations and extensive ablation studies with REISA to argue that our model
performs better on all fronts. In future, we plan to extend our work by applying it to low-resource
summarization tasks and for various other domains.
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Chapter 4

Abstractive Extreme Text Summarization

The task of succinctly and accurately encapsulating salient points of long scientific papers, while
preserving the integrity of the original content and accentuating novel findings, is a formidable
undertaking that necessitates specialized expertise for the extreme text summarization task. The
utilization of human annotations for this purpose can be exorbitantly expensive. To address the
challenge, we introduce ExGrapf2, a novel encoder-decoder-based architecture that utilizes the
efficiencies of Fast Fourier Transform (FFT), the expressiveness of Fractal Graph Embeddings,
the relational comprehension of Graph Convolutional Networks (GCN), and the quantifiable
improvement of contrastive loss. FFT enhances the model’s performance for the NLP task, while
Fractal Graph Embeddings capture the fundamental concepts. GCN is employed to apprehend
the inter-sentential representations, and contrastive loss optimizes the quality of the generated
summaries. Our experimentation on the SciTLDR dataset demonstrates that ExGrapf2 surpasses
the state-of-the-art models in terms of +3.97 Rouge-1 and +4.17 Rouge-L points, without resorting
to data augmentation. Furthermore, our qualitative evaluations along with human assessments
show that ExGrapf2’s summaries are more faithful to the original content and offer more profound
insights than the target summaries themselves.

4.1 Introduction

The challenge of generating extreme summary (aka TL;DR/tl;dr/TLDR – too long; didn’t read)
for scientific papers is a problem of paramount importance, given the sheer volume of literature
published annually [149]. The use of human annotations for this task is impractical and onerous,
given the expertise and time required to produce an accurate and faithful summary. To date, the
only human-annotated benchmark dataset available for extreme summarization of scientific papers
is SciTLDR [5]. However, this dataset is relatively small, particularly for a generation task, with
only 1, 992 training instances.

This necessitates the development of robust systems capable of extracting more information
from a limited-size dataset. In this chapter, we address extreme abstractive text summarization of
long scientific documents (aka TLDR generation). A common approach to address this challenge
is to train models for prolonged periods, which may lead to overfitting. However, we posit that
by leveraging distinct modules to encompass different perspectives of the data, it is possible to
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enhance the performance even with limited data, as opposed to the current paradigms in which
reliance on increasing parameter size and larger datasets is the norm.

To this end, we present a novel and unconventional architecture, ExGrapf21, for the formidable
task of extreme abstractive summarization of scientific papers that comprises four key modules.

• The first module is the Fast Fourier Transform (FFT), which ingeniously blends tokens and
affords the feed-forward sublayers unencumbered access to all of the Transformer tokens [150].
This approach diverges from FNet [150], in which FFT was substituted with attention, as
ExGrapf2 synergizes it with the attention mechanism. Our experimentation reveals that FFT
helps in identifying keywords within the source.

• While FFT is efficacious at identifying keywords, it does not provide context. To surmount
this, we introduce the second module – fractality. For years, fractals have bewitched the
mathematical world because of their ability to create intricate patterns despite their simple
formulation [151]. The self-similarity structure of fractals aligns with how text is presented
in scientific papers. A scientific paper can be thought of as a structure with “one central
concept” repeatedly occurring in various forms. To date, fractality has been primarily used
for keyword extraction [152] or extractive summarization [153]. We are the first to apply the
concept of fractality for abstractive text summarization.

• The third module, Graph Convolutional Network (GCN), applied on Sentence Relation Graph
(SRG) constructed using MPNet [154] and SciBERT [155], provides a sentence-level view of
the document and apprehends the inter-sentential relationships within the same document.
Both fractality and GCN can be combined to provide word and sentence perspectives.

• Lastly, we adopt the idea from BRIO [14] and use a non-deterministic distribution, unlike
one-point target distribution, for summary generation, using contrastive loss. This approach
assigns probability mass to different candidate summaries according to their quality.

In short, our contributions are as follows. We propose a novel encoder architecture, ExGrapf2,
which can be seamlessly unified with existing encoder architectures to enhance their ability to extract
more information from smaller data without data augmentation. ExGrapf2 employs Fractality-
infused Graph Embeddings of sentences and FFT to identify salient details at different levels,
viewing the task of extreme summarization at the level of words, sentences, and the document.
Word view and its interaction with other words: FFT effectively blends the Transformer
tokens, providing the feed-forward sublayers with unimpeded access to all tokens [150]. Additionally,
it is capable of capturing keywords, as demonstrated in our experiments.
Individual word view: Fractality also caters to keyword capturing but based on the context and
its distribution over the entire document.
Sentence view: GCN derives graph embeddings of sentences from Sentence Relation Graphs,
yielding a holistic view of sentences and the relationships between them.
Document view: We employ a Transformer to generate embeddings for the entire document,
encapsulating document-level information.

1ExGrapf2 stands for Extreme abstractive summarization utilizing Graph embeddings integrated with fractality
and FFT Transformer.
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Figure 4.1: A schematic architecture of ExGrapf2. The encoder of DistilBART [2] is adopted, and
the decoder remains unchanged. Newly-added modules in the encoder are 2D-FFT, Fractality,
Sentence Relation Graph (SRG), and Graph Convolution Network (GCN). The contrastive loss is
used at the decoder layer. The details for SRG and GCN are given in Figure 4.2.

We conduct extensive experiments and ablation of ExGrapf2 on the SciTLDR dataset and
compare its performance against 15 widely-popular baselines. We evaluate our generated summaries
over standard quantitative (Rouge-1, Rouge-2 and Rouge-L) [133] and qualitative (BERTScore
[134] and FEQA [66]) metrics. We also perform human evaluations to access the quality of the
generated summaries. ExGrapf2 attains an improvement of +3.97 Rouge-1 and +4.17 Rouge-L;
while on qualitative metrics like BERTScore and FEQA, the improvements are +4.02 and +0.04,
respectively.

4.2 Datasets

We consider SciTLDR [5] for our experiment. This dataset consists of a source document and a
target (TLDR) summary. For the purpose of our experiment, we utilize the AIC subset of SciTLDR,
encompassing the Abstract, Introduction, and Conclusion sections of a given paper. On average,
the source document comprises 2k tokens, while the reference summary comprises 50 tokens. The
dataset is split into 1, 992 training, 619 validation, and 618 test samples. The statistics of the
dataset are shown in Table 4.1.
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Table 4.1: Statistics of SciTLDR: training, validation, and test sets (average token length for source
document, target summary and the number of samples).

Train Validation Test

Source length 2000 2000 2000
Target length 50 50 50
num samples 1992 619 618

The training set features a singular target summary corresponding to each source instance.
However, in the validation and test sets, certain samples possess one or more target summaries. In
this scenario, the Rouge score is calculated as the maximum Rouge score2 between the generated
summary and the various candidate summaries. The presence of multiple gold summaries per
scientific paper is crucial for evaluation, as they account for the natural variability in human-written
summaries.

4.3 Proposed Methodology

We present ExGrapf2, a novel and perceptive method for extreme abstractive text summarization
of scientific papers. Our approach overcomes the hindrance of the restricted size of training data
by integrating four components to glean more knowledge. Figure 4.1 shows a schematic diagram of
ExGrapf2. This section explains each component of ExGrapf2 in detail.

4.3.1 2D-Fast Fourier Transform

The first component introduces 2D-FFT (two dimensional Fast Fourier Transform), capable of
extracting signal properties and features from composite signals. ExGrapf2 examines the utilization
of attention and 2D-FFT in tandem to ascertain if a synergistic effect can be observed. The
2D-FFT technique measures the Discrete Fourier Transform (DFT) twice – one along the hidden
dimension and the other along the sequence dimension. We notice that the utilization of FFT
extends beyond its application in token mixing and possesses the potential to extract imperative
keywords from scientific papers [152]. This approach is inspired by the insight that a scientific paper
can be perceived as a composite signal, wherein simplified components correspond to the words
or sentences that compose the document. Furthermore, the novel concept of a paper would be
reiterated and used more frequently than less crucial terms, which FFT could potentially capture.
To maintain consistency, only the real part of FFT is retained while the rest of the architecture
remains intact. The following equation explains this:

y = ℜ(Fseq(Fh(x))) (4.1)

where ℜ represents the real input, Fseq represents the sequence dimension, and Fh(x) represents
DFT along the hidden dimension.

2Furthermore, we disseminated the outcomes of the average Rouge evaluation metrics.
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Figure 4.2: SRG and GCN modules of ExGrapf2 – Sentence Relation Graph (SRG) for sentences in
the document and Graph Convolution Network (GCN) to obtain graph embeddings for sentences.

The outcome of the experiments demonstrates that FFT indeed supplies supplementary informa-
tion, as elaborated in Section 4.5. This is likely owing to the fact that attention concentrates on the
relationship of one token to others, which is highly informative; while FFT provides a “word-level”
perspective of the document generating a hierarchical representation that is more advantageous
and efficient despite being less rich representation than attention.

4.3.2 Fractality

Fractals are not only visually striking but also possess powerful mathematical properties. In simpler
terms3, fractals exhibit self-similarity. This self-similarity can manifest in the form of repeating or
iterative patterns. It is worth noting that even slight variations in the repeating unit can result in
distinct structures. A term in a scientific paper repeated again and again with different contexts
will form a separate unit. For instance, the process of ‘backpropagation’ may repeatedly appear in
the context of ‘recurrent neural networks’. In some instances, it may refer to the standard method,
while in other cases, it may pertain to the specific application of ‘backpropagation’ over time. The
ability of fractals to inherently identify repeating units with slight variations is momentous.

We employ the box-counting method to calculate the fractal dimension of words [152]. This
method allows for the identification of repeating units within the text, as well as any variations or
tweaks in those units.

The mathematical formulation for the fractal dimension through box-counting follows power-law
and hence transforms to a Linear Regression (Eq. 4.2) on a log-log scale.

log N = log c+D log (1/s) (4.2)

where N denotes the number of boxes that are impacted by the word of concern, D denotes the
dimensionality of the fractal, s symbolizes the box size, and c represents a constant. The fractal
dimension can be obtained by determining the slope of the line obtained from the mathematical
formulation presented in Eq. 4.2. In our specific problem, the window size serves as the equivalent
of the box size, and a box is considered to be touched by the document if the word of interest
appears within that window.

3A little caveat, more precisely, a fractal is by definition a set for which Hausdorff-Besicovitch dimension (D)
[156] strictly exceeds the topological dimension.
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The fractal dimension of the word can be mathematically determined as:

fracDim(word) =
Ds(word)

Dns(word)
(4.3)

where Ds(word) and Dns(word) are the dimensions of shuffled and non-shuffled words, respectively,
and Ds is given by

Ds =

∑T
i=1Di

T
(4.4)

where Di represents the i− th word and T is the number of shuffled experiments.
Note that the sequence of words in a sentence plays a significant role in determining the meaning

of the text. Typically, less important words are uniformly distributed throughout the document,
while important words are clustered in certain areas. To measure the degree of fractality, we
compare a measure calculated before shuffling the text (x) to a measure calculated after shuffling
the text (y). As the clustering of important words is disrupted after shuffling, the value of y will be
greater than x. However, the distribution of less important words remains unchanged, resulting in
the proposed formulation. While this method has been previously applied in the context of keyword
extraction [152], to the best of our knowledge, it has not been utilized for text summarization.

4.3.3 Sentence Relation Graph and Graph Convolutional Network

To instil the sentence-level perspective, we construct a Sentence Relation Graph (SRG) on which
Graph Convolution Network (GCN) can be applied. The steps to generate the graph are explicated
below (c.f. Figure 4.2).

1. For each sentence in a document, MPNet4 embeddings are computed. The sentences are used as
nodes in the graph.

2. An edge is established between two sentences if the cosine similarity between them exceeds a
predefined threshold (we set it to 0.2). The weight of the edge is set to the cosine similarity
value.

3. Reinitialize node features with the SciBERT embedding of the sentence. We use SciBERT as it
is pre-trained on scientific papers and will generate rich embeddings for the task.

4. Apply GCN [78] on this graph to compute the embeddings of the sentence. This methodology
astutely embodies the context of neighbouring sentences into the embedding of the sentence of
interest, providing a comprehensive “sentence view” of the data.

4.3.4 Combining Graph and Fractality

Our approach employs a synergistic fusion of GCN and fractality to formulate a unified and robust
model. By exploiting the fractal dimension of words, our method can identify prominent keywords
within a document. By calculating the prevalence of top fractal words in each sentence of the
document, we assign weights to the corresponding graph sentence embeddings. The more top

4MPNet is selected for this purpose as it is the benchmark for semantic text similarity.
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fractal words present in a sentence, the higher the weight of the corresponding graph embedding.
This weighting mechanism is applied post-GCN graph embedding computation and pre-encoder
layer input, resulting in fractality being overlaid on the GCN-induced embeddings. This results in
sentences containing pivotal keywords having a greater influence on the process.

4.3.5 Contrastive Loss

Inspired by BRIO [14], we adopt the notion of contrastive loss and a non-deterministic target
distribution, in which the system generates multiple candidate summaries and then learns to rank
them. This aligns with our philosophy of extracting more information from the same data. We
adopt a similar approach to compute the contrastive loss using Eq. 4.5.

Losscstv =
∑
i

∑
j>i

max(0, S(Cj) − S(Ci) + βij) (4.5)

The decoder employs varied techniques such as beam search [14], to generate two variations of
summaries, represented by Ci and Cj in Eq. 4.5. The Rouge score is calculated for both sets of
summaries. The difference in rank between candidate summaries is represented by βij, while S(Ci)
denotes the estimated probability values.

4.3.6 Module Intergation

Figure 4.1 presents the fusion of these modules into the encoder architecture. FFT has a parallel
branch with multi-head attention, and in each encoder layer, they add up after the application
of the feed-forward layer. The embeddings generated by the module combined with GCN and
fractality are subsequently added to the encoder layer. We use static embeddings as they are
already SciBERT embeddings fused with fractality, and making it a trainable parameter would
make it lose its efficacy. Therefore, we add them only with the encoder layer’s output. Since the
dimensions aren’t the same (the dimensions of the graph depend on the number of sentences in the
document), we use dense layers to keep the dimension consistent. We also use 2D-FFT to boost
the performance further and compensate for not making it a trainable parameter. The decoder
remains unaltered. The training regime is contrastive learning.

4.4 Experimental Setting

We prototype our model on Pytorch (1.10) framework with CuDNN 7.2 installed. All experiments
are run over A6000 with 48GB of VRAM. Our proposed ExGrapf2 model is trained over 13 epochs,
with 8 gradient steps accumulated. We set the MLE weight as 0.1, max learning rate as 2e− 3,
warmup steps at 10000, and ranking loss margin as 0.001. We clip the source document at 1024
tokens and the summary at 35 token length. During decoding, we use a beam size of 8. We use
cross-entropy as the loss and ReLU as the activation function for the hidden layers.

Evaluation metrics. We benchmark ExGrapf2 on the quantitative metrics – Rouge-1 (R1),
Rouge-2 (R2) and Rouge-L (RL), over the maximum and average settings, as well as on qualitative

50



Table 4.2: Evaluation benchmark over five extractive (ext) and ten abstractive (abs) baselines along
with the ablation study of ExGrapf2. The evaluations are performed over Rouge-1 (R1), Rouge-2
(R2), Rouge-L (RL), BERTScore (BS) and FEQA. The Rouge scores are computed over the max
and mean settings. The best model (resp. best baseline) is highly in bold (resp. in italics).

System
Max Rouge-Score Mean Rouge-Score BS FEQA F1
R1 R2 RL R1 R2 RL

ext-Top-K Sentence 22.82 4.61 15.47 17.34 3.00 12.24 62.41 0.10
ext-PACSUM [157] 27.41 6.87 17.43 18.61 4.18 15.94 63.70 0.11
ext-LexRank [158] 29.18 7.82 20.22 22.12 4.63 15.60 63.10 0.13
ext-BertExtractive [159] 30.72 10.91 23.66 21.9 5.78 16.75 64.52 0.15
ext-MatchSum [160] 28.57 9.34 18.39 20.42 5.10 16.20 63.44 0.16
abs-Pointer Generator [38] 24.14 5.43 19.83 21.08 4.33 16.48 59.86 0.15
abs-Himap [12] 24.61 5.48 19.94 21.09 4.36 16.57 59.91 0.17
abs-Bottom-up [15] 25.71 6.08 21.67 23.46 5.26 18.39 60.7 0.19
abs-BERT [75] 26.55 6.68 22.71 24.85 4.79 20.17 62.14 0.21
abs-BART [161] 36.99 11.08 31.71 29.84 7.11 21.87 65.87 0.24
abs-LongT5 [136] 35.11 8.71 26.05 26.46 5.33 20.19 63.92 0.22
abs-T5 [162] 37.65 13.42 27.2 29.57 6.75 22.82 65.84 0.22
abs-Pegasus [163] 36.37 13.14 26.66 29.71 7.13 22.91 64.36 0.24
abs-BigBird [48] 35.83 12.47 23.57 27.21 5.57 20.74 64.13 0.22
abs-BRIO [14] 41.38 17.54 32.87 29.79 8.36 23.11 66.32 0.27
ExGrapf2 45.35 22.49 37.04 32.37 11.62 25.53 70.34 0.31
– FFT 44.74 21.71 35.97 32.24 11.36 25.11 67.14 0.26
– Fractality 45.09 22.09 36.43 32.18 11.47 25.20 68.92 0.26
– (Fractality + GCN) 44.84 21.53 36.16 31.92 11.21 25.00 68.57 0.28
– (FFT + Fractality + GCN) 44.01 20.72 35.32 31.85 11.04 25.00 68.54 0.29
∆ExGrapf2−BEST ↑ 3.97 ↑ 5.0 ↑ 4.17 ↑ 2.53 ↑ 3.26 ↑ 2.42 ↑ 4.02 ↑ 0.04

Table 4.3: Results on test dataset for three configurations of placing the 2D-FFT module. Config.
1: 2D-FFT placed in parallel with MHA, and they share the same feed-forward networks; Config.
2: Same as Config. 1, except that they have different feed-forward networks; Config. 3: 2D-FFT
used after MHA.

Configuration Rouge-1 Rouge-2 Rouge-L

Transformer 12.39 1.12 10.28
Transformer+
FFT (Config. 1) 13.43 1.12 10.70
Transformer+
FFT (Config. 2) 14.07 1.49 11.21
Transformer+
FFT (Config. 3) 11.04 0.63 9.20
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Table 4.4: Rouge scores (Rouge-1 (R1), Rouge-2 (R2), and Rouge-L (RL)) on testing dataset for
Transformer and Transformer fused with fractality.

R1 R2 RL

Transformer 12.39 1.12 10.28

Transformer + Fractality 13.54 0.81 10.96

metrics – BERTScore and FEQA. Rouge computes the token overlap between the target and
the generated summaries. BERTScore computes the similarity between the target and generated
summaries in the embedding space, while FEQA evaluates faithfulness using the pre-trained Q/A
generation model.

4.5 Ablation of ExGrapf2

Our experimentation involves evaluating individual modules of ExGrapf2 in isolation, devoid of
pre-trained models, in order to access their relative importance. The aim is to determine whether
the output is solely a product of the novel module and not influenced by pre-trained models.
Furthermore, we seek to discern if the modules are mutually complementary. On the basis of these
findings, we subsequently integrate all the modules into the final architecture of ExGrapf2.

To evaluate the efficacy of the FFT module, we employ a standard Transformer and incorporate
FFT in three distinct configurations – (Config. 1) placing 2D FFT in parallel to multi-head
attention (MHA) to help FFT capture relations among tokens and MHA capture relations between
keywords, (Config. 2) utilizing feed forward independently in the 2D-FFT and MHA to learn
the same components independently, and (Config. 3) placing 2D-FFT after MHA to help FFT
use the additional context. The performances are presented in Table 4.3, with the results being
generated when the difference between consecutive training losses is less than 0.001. These figures,
representing the maximum Rouge score, are reported for F-measure.

Analysis of the results: We employ various enumerations of configuring the FFT module
in the standard Transformer. The configurations – Config. 1 and Config. 2 of the FFT module
outperform the standard Transformer, with the exception of Config. 3. The vanilla Transformer
produces higher Rouge scores than Config. 3 (c.f. Table 4.3 and Table 4.5); however, the summaries
generated by Config. 3 are found to be more coherent and meaningful than those of the vanilla
Transformer. Nevertheless, Config. 1 and Config. 2 also produce superior results, and their
summaries amalgamate relevant keywords.

Based on this result, we consider proceeding with Config. 2 – utilizing 2D-FFT in parallel with
the multi-head attention mechanism in ExGrapf2. This configuration is optimal as multi-head
attention and 2D-FFT provide complementary information and yield superior results when employed
in parallel.

Subsequently, to the experimentation of the FFT module, we conduct a thorough examination
of fractality. Figure 4.3 illustrates the overlap between the most fractal words from the source
and target summaries. The curve increases until 100, at which it begins to plateau. As a result,

52



the GCN embeddings are weighted based on the top 100 fractal words. We add fractal words as
inputs, in conjunction with the source, to the Transformer and subsequently compare the results to
validate the utility of fractality. Table 4.4 confirms the significance of fractality. The graph for
divide + log10(frequency) may appear to be more favourable than “divide only”; however, upon
further analysis, we notice that when the frequency term is added, words such as “the” and “and”
are also included. Therefore, we ultimately decide to go forward with “divide only”. In our final
model of ExGrapf2, we use 75 top fractal words. we explore different variations for ExGrapf2; the
results are presented in Section 4.6.

4.6 Performance Comparison

Table 4.2 shows that ExGrapf2 attains 45.35 R1 and 37.04 RL at the maximum Rouge setting,
beating the best-performing baseline BRIO by +3.97 R1 and +4.17 RL. With the average Rouge
setting, ExGrapf2 attains 32.37 R1 and 25.53 RL, beating BART by +2.53 R1 and BRIO by +2.42
RL. We also perform an ablation study to evaluate the effectiveness of the proposed modules
of ExGrapf2. Table 4.2 showcases the ablation efficacy. Compared to the base Transformer
architecture, the inclusion of FFT gives 44.74 R1 and 35.97 RL at max Rouge setting. Further,
fractality boosts R1 and RL scores by +0.4 points each. All modules combined push ExGrapf2 to
attain an improvement of +0.6 R1 and +1.0 RL against the only FFT variant. This shows that
each module of ExGrapf2 helps in gathering more context and generating better summaries.

We further assess the quality of the summaries generated by ExGrapf2 using BERTScore and
FEQA. For BERTScore, ExGrapf2 attains an improvement of +4.02 F1, and for FEQA +0.04 F1
against the best baseline (BRIO). The qualitative improvements are also supported by human
evaluation5. We randomly sample 100 summaries from extractive baselines – LexRank, BERTEx-
tractive and abstractive baselines – Bottom-up Transformer, Pegasus and BRIO and compare
them with ExGrapf2-generated summaries. We evaluate the summaries over four parameters –
Informativeness, Relevance, Coherence and Fluency. Informativeness assesses the preservation of
information w.r.t. the source document. Relevance measures the information overlap between the
source document and the summary. Coherence refers to well-structured and organised sentences.
Fluency refers to the quality of generated sentences concerning syntaxes and grammar.

Table 4.6 shows that ExGrapf2 generates highly faithful, relevant and fluent summaries against
the baselines. We also compare ExGrapf2 generated summaries with ChatGPT6 and find ExGrapf2

generating significantly better summaries (c.f. Section 4.9).

5The human evaluators are NLP experts (i.e., graduate and undergraduate students with sufficient background
in ML, DL and NLP), and their age varies between 25 to 35 years old. A total of 17 human evaluators compared
our system with the baselines. Each instance is annotated by a minimum of 3 evaluators. Inter-annotations with a
difference of more than 3 degrees are discarded.

6https://openai.com/blog/chatgpt/
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Figure 4.3: Number of top fractal words chosen from source vs avg. number of overlapping words
between top fractal words and target summary.

Table 4.5: Generated summaries for three configs of placement of 2D-FFT modules. Config. 1:
2D-FFT placed in parallel with MHA, and they share the same feed-forward networks; Config. 2:
Same as Config. 1, except that they have different feed-forward networks; Config. 3: 2D-FFT used
after MHA.

Target Summary: the paper presents a multi-view framework for improving sentence representation in
nlp tasks using generative and discriminative objective architectures.

Transformer: a general and effective model for avoiding negatve transfer in neural network few shot
learning
Transformer + FFT (Config. 1): multi view learning improves the semi supervised learning improves
training and dependency relationship
Transformer + FFT (Config. 2): multi view learning improves unsupervised sentence representation
learning
Transformer + FFT (Config. 3): multi view learning improves unsupervised sentence representation
learning

Table 4.6: Scores for human evaluation metrics - Informativeness (Inf), Relevance (Rel), Coherence
(Coh), Fluency (Flu) over two extractive (ext) and four abstractive (abs) systems on SciTLDR.

System SciTLDR
Inf Rel Coh Flu

ext-LexRank 2.78 2.45 2.37 3.11
ext-BERTExt 2.53 2.61 2.65 2.83
abs-Bottom-up 2.82 3.08 3.14 3.23
abs-Pegasus 3.12 3.32 3.38
abs-BRIO 3.21 3.32 3.44 3.42
ExGrapf2 3.41 3.54 3.61 3.71

4.7 Error Analysis

As demonstrated in Table 4.6, we observe substantial improvements across all four metrics of human
evaluation. The generated summaries are comparable to the target summaries and in many cases,
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Table 4.7: ExGrapf2 generated summary. The summary is generated via mathematical formulation
of the source document.

Target Summary: An image to image translation method which adds to one image the content of
another thereby creating a new image .
ExGrapf2 Summary: we study the problem of learning to map , in an unsupervised way , between
domains A and B such that the samples vb contain all the information that exists

are superior. For example, in sample #1 in Table 4.8, the generated summary captures the entire
gist of the source document and is highly correlated to the target summary. For sample #2, the
generated summary is superior to the target summary, highlighting the unique contributions of the
scientific work. Similarly, for sample #3, the model effectively generates a summary that is similar
to the target summary. However, on further manual inspection, we observe that ExGrapf2 struggles
to generate a summary within the token limit or fails to capture the entire gist of the document
in summary. Additionally, a few samples (c.f. Table 4.7) also show that ExGrapf2 deviates from
the target summary and generates a mathematical formulation of the source document giving an
enriched bird’s eye view of the document.

These qualitative improvements cannot be quantified using the standard Rouge metric [132],
and any qualitative improvements will negatively impact the Rouge score. The target summaries
themselves are subjective [164], and therefore, cannot be relied upon as a definitive measure of
performance for any system.

4.8 ExGrapf2 vs ChatGPT

In this study, we compare our proposed model, ExGrapf2, with OpenAI’s ChatGPT. We generate
50 summaries using the ChatGPT interface and compare them to those generated by ExGrapf2.
Our manual analysis reveals that the summaries generated by ChatGPT are overly general and
provide only minimal scientific contributions. In contrast, ExGrapf2’s summaries are highly
informative, providing detailed explanations of the major contributions and the reasoning behind
the methodology. Table 4.8 presents a few examples of summaries generated by both ExGrapf2 and
ChatGPT, along with the target summary for comparison. This analysis highlights the importance
of task-specific systems as a general language model may not be sufficient for all NLP tasks.

4.9 ExGrapf2 vs REISA

While REISA has proven effective for general summarization, its application to extreme summa-
rization is limited due to inherent constraints. Extreme summarization demands a highly focused
approach to condense vast amounts of information into concise summaries, posing challenges for
REISA in terms of information compression, prioritization, and maintaining coherence within a
constrained space. Therefore, a dedicated system tailored specifically for extreme summarization is
necessary to address these challenges effectively. Our proposed model, ExGrapf2, integrates FFT,
fractality, GCN, and contrastive loss to capture nuanced contextual information, prioritize salient

55



Table 4.8: Comparative study of summaries produced by ExGrapf2 and ChatGPT under TLDR
word limit.

Example 1 (Target Summary) We take face recognition as a breaking point and propose model
distillation with knowledge transfer from face classification to alignment and verification .
Example 1 (ExGrapf2 Summary) we take face recognition as a breaking point and propose model
distillation with knowledge transfer from face classification to alignment and verification .
Example 1 (ChatGPT Summary) The paper presents a method for compressing large neural networks
using knowledge distillation, tested on face recognition and showing good results, even surpassing the
teacher network in some cases.
Example 2 (Target Summary) we proposed a novel contextual recurrent convolutional network with
robust property of visual learning .
Example 2 (ExGrapf2 Summary) In this paper , we proposed a novel Contextual Recurrent
Convolutional Network with contextual recurrent connections with feedback , which widely exists in
biological visual system .
Example 2 (ChatGPT Summary) This paper introduces a new CNN architecture with feedback
connections, outperforming standard feedforward CNNs in various image classification tasks.
Example 3 (Target Summary) Generatively discover meaningful , novel entity pairs with a certain
medical relationship by purely learning from the existing meaningful entity pairs , without the requirement
of additional text corpus for discriminative extraction .
Example 3 (ExGrapf2 Summary) a generative model called Conditional Relationship Variational
Autoencoder ( CRVAE ) , which can discover meaningful and novel relational medical entity pairs without
the requirement of additional external knowledge .
Example 3 (ChatGPT Summary) The paper introduces a model, CRVAE, that generates novel and
meaningful medical entity pairs without external knowledge. Tested and shown to be effective.

details, and ensure coherence and readability in extremely short summaries.

4.10 Conclusion

In this work, we presented ExGrapf2 an encoder-decoder model that utilizes a combination of
Fast Fourier Transform (FFT), fractality, Graph Convolutional Networks (GCN), and contrastive
loss to produce informative, coherent, and fluent extreme summaries. The FFT component of
ExGrapf2 provides a word-level perspective, while GCN and fractality offer a blend of sentence-level
and word-level perspectives. Additionally, the contrastive loss function contributes to further
improvements by generating multiple candidate summaries. Our experimental results demonstrated
that ExGrapf2 outperforms fifteen state-of-the-art models both quantitatively and qualitatively.
We also conducted human evaluations to argue that our generated summaries are highly faithful,
coherent and fluent against all baselines.
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Chapter 5

Abstractive Text Summarization using
Multimodal Signals

In recent years, abstractive text summarization with multimodal inputs has started drawing
attention due to its ability to accumulate information from different source modalities and generate
a fluent textual summary. However, existing methods use short videos as the visual modality
and short summary as the ground-truth, therefore, perform poorly on lengthy videos and long
ground-truth summary. Additionally, there exists no benchmark dataset to generalize this task on
videos of varying lengths.

In this chapter, we introduce AVIATE, the first large-scale dataset for abstractive text sum-
marization with videos of diverse duration, compiled from presentations in well-known academic
conferences like NDSS, ICML, NeurIPS, etc. We use the abstract of corresponding research papers
as the reference summaries, which ensure adequate quality and uniformity of the ground-truth. We
then propose FLORAL, a factorized multi-modal Transformer based decoder-only language model,
which inherently captures the intra-modal and inter-modal dynamics within various input modalities
for the text summarization task. FLORAL utilizes an increasing number of self-attentions to capture
multimodality and performs significantly better than traditional encoder-decoder based networks.
Extensive experiments illustrate that FLORAL achieves significant improvement over the baselines in
both qualitative and quantitative evaluations on the existing How2 dataset for short videos and
newly introduced AVIATE dataset for videos with diverse duration, beating the best baseline on
the two datasets by 1.39 and 2.74 ROUGE-L points respectively.

5.1 Introduction

With the emergence of multimedia technology and the rapid growth of social media video-sharing
platforms such as Youtube and Vimeo, multimedia data (including text, image, audio, and video)
have increased dramatically. Specifically, during the COVID-19 outbreak in the last six months,
there has been a steep rise in various e-learning platforms, resulting in a drastic increase of online
video tutorials and academic presentation videos. However, such videos often do not have the text
meta-data associated with them, or the existing ones fail to capture the subtle differences with
related videos [165]. Additionally, different modalities in most of these videos are asynchronous
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with each other, leading to the unavailability of subtitles. In this work, we address the task of
generating an abstractive text summary of a given academic presentation video so that the viewers
can acquire the gist of the presentation in a short time, without watching the video from the
beginning to the end. For this purpose, we incorporate automatic speech recognition (ASR) and
optical character recognition (OCR) generated text transcripts and capture tonal-specific details
of the speaker in addition to extracting semantics and sentics from the video, which are jointly
optimized to produce a rich and informative textual summary of the entire presentation. We also
show the generalizability of our model on the non-academic dataset (instructional videos).

State-of-the-art and Limitations: The existing studies on abstractive text summarization
with multimodal signals include multimodal news summarization [85, 91, 90] and summarization
of instructional videos [17]. However, all of them use images and/or short videos as the visual
modality, which do not generalize on long videos. The generated summaries by these systems
are also one or two lines long, and therefore, not suitable for longer academic videos (such as
course lecture, conference tutorials). Some other closely related studies include image and video
captioning [166, 167, 168, 169, 170], video story generation [171], video title generation [172] and
multimodal sentence summarization [173]; but all of them deal with short videos or images which
are not appropriate for our application. The lack of previous studies on this task can be attributed
to the absence of a suitable benchmark dataset. In a very recent work, [17] studied the task of
summarization of instructional videos on the How2 dataset [21], which is the only existing dataset
for abstractive text summarization with multimodality. However, the How2 dataset consists of
short videos, with an average duration of 90 seconds only. The ground-truth text summaries of this
dataset have an average length of 33 words, which are very small as well.

Our Contributions: In this chapter, we explore the role of multimodality in abstractive text
summarization for academic presentation videos of diverse duration and introduce a new resource
to further enable research in this area. More specifically, our main contributions in this work are as
follows:

1. We curate the first large-scale dataset, Audio VIdeo lAnguage daTasEt (AVIATE), for abstrac-
tive text summarization using multimodal inputs for academic presentation videos of diverse
duration. To collect the videos for this dataset, we scraped 6 publicly available websites and
accumulated paper presentation videos from 28 well-known international conferences in computer
science and social science. To obtain the transcripts of these videos, we apply Deep Speech [1],
a pre-trained end-to-end automatic speech recognition (ASR) system. We use the abstracts of
corresponding research papers as the ground-truth summaries, which ensure adequate quality and
uniformity. In contrast to How2, AVIATE contains longer videos and larger ground-truth sum-
maries, which help the deep learning models trained on AVIATE to generalize the performance
on other datasets.

2. We introduce several baselines to show that multimodal frameworks are substantially more
effective when compared to their unimodal variants for abstractive text summarization.

3. We propose Factorized Multimodal Transformer based decoder-only Language Model
(FLORAL), which uses an increasing number of self-attentions to inherently capture inter-modal
and intra-modal dynamics within the asynchronous multimodal input sequences. FLORAL
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(a) Duration statistics across the
dataset.

(b) Source statistics across the dataset.

Figure 5.1: Duration and source statistics of AVIATE.

demonstrates the utility of pre-trained language model (LM) for summary generation in relatively
low-resource setups over traditional encoder-decoder based networks.

4. For the videos of AVIATE, we show the importance of OCR generated text transcripts, which
contain keywords and informative phrases displayed on slides in academic presentations. To
fuse ASR and OCR generated texts, we introduce a novel guided attention based fusion
mechanism which attends the complementary features in both the sources and filters out
repetitive and redundant words. After the incorporation of OCR transcript, the baselines and
FLORAL yield [0.7 − 3.6] ROUGE-L points performance improvement on AVIATE.

5. FLORAL reports benchmark results in terms of both automatic and manual evaluation metrics
on How2 for short videos. It beats the best baseline by 1.39 ROUGE-L points. On AVIATE,
FLORAL also turns out to be highly effective − it beats the best baseline by 2.74 ROUGE-L
points.

6. Finally, we report the transferability of FLORAL between How2 and AVIATE. When trained on
AVIATE and tested on How2, FLORAL yields 49.9 ROUGE-L score, which is only 6.9 points less
than ROUGE-L obtained when both trained and tested on How2. The diverse-length videos of
AVIATE make the model transferable, which is tremendously effective for practical applications.

5.2 Dataset

To enable the exploration of abstractive text summarization using multimodal signals and to
generalize the task for videos of different lengths, we introduce AVIATE, the first large-scale
multimodal text summarization dataset with videos of diverse duration, compiled from academic
paper presentations. Currently, the only existing benchmark dataset relevant to our task is the
How2 dataset [21], which includes short instructional videos on different topics like cooking, sports,
indoor/outdoor activities, music, etc. Our study reveals that deep neural models trained on such
short videos fail to produce satisfactory results on longer videos. Moreover, the facial expression
of the speakers in academic talks and presentations often plays an important role to preserve the
most informative frames, which is not always the case for the How2 dataset.
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5.2.1 How2 Dataset

The How2 dataset consists of 2, 000 hours of short instructional videos, where the training, validation,
and test set contain 73, 993, 2, 965, and 2, 156 videos respectively, with an average length of 90
seconds. Each video in this dataset is accompanied by a human-generated transcript and a 2 − 3
sentence ground-truth summary. The average length of transcripts and summaries is 291 and 33
words respectively.

5.2.2 AVIATE Dataset

To collect conference presentation videos, we identified 28 academic conferences in computer
science and social science, spanning over various domains such as Machine Learning, Natural
Language Processing, Data Mining, Computer Vision, Computational Linguistics, Semantic Web,
and Complex Systems. Most of the videos of our dataset come from conferences like NDSS, ICML,
NeurIPS, ACL, NAACL, CVPR, EMNLP, ISWC, KDD, etc. To collect the oral and spotlight
presentations of these conferences, we scrapped six different academic online video repositories,
namely Videolectures.NET1, ACL Anthology2, CVF Open Access3, ICML4, NeurIPS5, and NDSS
Symposium6 websites. All the paper presentation videos are accompanied by an abstract, which
we use as the ground-truth summary. Thus, unlike the How2 dataset, we did not annotate the
summaries ourselves, which significantly improved the quality of ground truth summaries, and
hence of the entire dataset.

AVIATE consists of a total of 8, 201 videos, which spans over almost 2, 300 hours. Among them,
we use 6, 680 videos for training, 662 for validation, and 859 for testing. The length of summaries
is mostly between 100 − 300 words, with an average of 168 words. A brief source and duration
statistics of AVIATE is presented in Figure 5.1.

Transcription: Since we collected all the videos from six different sources, not all of them had
subtitles or transcripts readily available. This is particularly the case for videos from ACL Anthology
and Videolectures, which contribute the majority of the AVIATE dataset. In the case of videos from
NDSS, ICML, NeurIPS, and CVF Open Access corpus, subtitles are available for those videos which
are present on Youtube. To maintain uniformity in the quality of transcripts, we apply Deep Speech
[1], a pre-trained end-to-end speech recognition algorithm, to extract transcripts for all the videos.
To ensure the quality of Deep Speech generated transcripts, we manually transcribe 300 randomly
selected videos from our dataset. A low word error rate (24.19%) of the Deep Speech model for
those videos indicates the satisfactory standard of the transcripts. An additional normalization
step, which includes formatting7 entities like numbers, dates, times, and addresses, helps us to
further reduce the error rate to 20.12%.

1http://videolectures.net/
2https://www.aclweb.org/anthology/
3https://openaccess.thecvf.com/
4https://icml.cc/
5https://nips.cc/
6https://www.ndss-symposium.org/
7For example, labeling ‘September 16, 2017’ as ‘september sixteenth twenty seventeen’.
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(a) Video length and ground-truth summary length distribution for AVIATE.

(b) Video length and ground-truth summary length distribution for How2.

Figure 5.2: Correlation between duration of videos and ground-truth summary length for AVIATE
and How2 datasets.

Figure 5.2 shows a comparison of video length and ground-truth summary length distribution
for AVIATE and How2. For both datasets, longer videos generally have a longer ground-truth
summary, which leads to an overall positive correlation between video duration and ground-truth
summary length. The average length of AVIATE videos is almost 12 times more than that of How2
videos. The longer videos and lengthier summaries in AVIATE make it harder than How2 to train
on, which is explained in Section 5.5.

5.3 FLORAL: Our Proposed System

In this section, we describe our proposed system, Factorized Multimodal Transformer [3]
based Language Model (FLORAL) for abstractive text summarization using multimodal signals.
Figure 5.3 shows the overall architecture of FLORAL. It takes a video, its corresponding audio and
text transcript as input and generates an abstractive textual summary. A video generally has
three distinct modalities – visual, textual, and acoustic, which supplement each other by providing
complementary information, and thus when fused, separately contribute to generating richer and
more fluent summaries. The first part of FLORAL extracts unimodal features using respective
unimodal feature extraction networks. This phase does not consider the contextual relationship
between the three different modalities. In the next part, unimodal features are processed using the
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(a) Overview of our proposed model, FLORAL. (b) Architecture of MTL. (c) Architecture of

guided attention.

Figure 5.3: The complete architecture of FLORAL, our proposed Factorized Multimodal Transformer
based decoder-only Language Model. The Factorized Multimodal Transformer [3] consists of a
stack of Multimodal Transformer Layers (MTL), which is shown in Figure 5.3(b). Figure 5.3(c)
shows the architecture for guided attention layer used for the fusion of ASR and OCR generated
text transcripts.

Factorized Multimodal Transformer (FMT) based decoder-only network over multiple steps, which in
turn generates one summary word in each step. After every step, the generated word is appended
to the source text with a delimiter. Therefore, FLORAL considers the entire summarization problem
as a language modeling task, simplifying traditional encoder-decoder architecture. The remaining
part of this section discusses individual modules of FLORAL in detail.

5.3.1 Video Feature Extraction

The visual features are extracted using a pre-trained action recognition model, ResNeXt− 152 3D
Convolutional Neural Network [174] trained on the Kinetics dataset [175] to recognize 400 different
human actions. All the frames, computed at a rate of 5 FPS, are first preprocessed by resizing,
center-cropping, and normalization to have a resolution of 112 × 112. For every 16 non-overlapping
frames in a video, ResNeXt− 152 extracts a 2048 dimensional feature vector. Therefore, the result
is a sequence of feature vectors per video rather than a global one. The sequential feature vector,
uv = {uvi }lvi=1, is then used as the visual embedding input to the FMT.

5.3.2 Speech Feature Extraction

The acoustic modality is expected to contribute information related to tonal-specific details of
the speaker [176]. To achieve this, we obtain low-level features from the audio stream for each
video. Similar to [177], we use the popular speech processing library, Librosa [178] and perform the
steps mentioned next. First, the audio sample for a video is stacked as a time-series signal with a
sampling rate of 16000 Hz. Next, we remove the echos and background noise from the audio signals
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by integrating it with Audacity instance8, which is a free and open-source audio editor. Then,
we segment the audio signals into dw non-overlapping windows with a window size of 25 ms and
successive window shift of 10 ms to extract low-level features that include Mel Frequency Cepstral
Coefficients (MFCCs) with hamming window and the related temporal derivatives. Padding and
segmentation are performed to achieve a fixed-length representation of the audio sources which are
otherwise variable in length. At last, we concatenate all the extracted features to compose a da = 512
dimensional joint representation for each window. Final MFCC features are obtained by applying a
log Mel frequency filter bank over 0 to 8000 Hz and applying discrete cosine transformation (DCT).
Similar to the visual features, the audio features, ua = {uai }lai=1, are also sequential for every video
sample and are then used as the acoustic embedding input of FMT.

5.3.3 Textual Feature Extraction

Both How2 and AVIATE datasets contain textual transcripts corresponding to video samples. For
How2, the transcripts are manually annotated, while for AVIATE, a pre-trained automatic speech
recognition (ASR) algorithm, Deep Speech [1], is used to extract the transcripts for all the videos
(as discussed in Section 5.2.2). Since the AVIATE dataset consists of conference presentation videos,
we observe that in the majority of video samples of AVIATE, the speaker uses presentation slides
that contain the most informative key-phrases. Thus, we extract the text shown in the slides using
Google OCR Vision API9 and fuse the OCR-generated text with ASR-generated text using a novel
guided attention mechanism to attend complementary and non-redundant words of both sources.

Guided Attention: At first, we represent the text in both ASR and OCR-generated transcripts
using pre-trained BERT [179], which provides dynamic embedding for every word. In particular,
we use the sequence of 768-dimensional hidden states at the output of the last layer of the BERT
model. Let F ∈ Rn×768 and H ∈ Rm×768 be the BERT representations for ASR and OCR texts
respectively, where n and m are the respective token counts. The guided attention mechanism
begins with defining an affinity matrix C ∈ Rn×m, whose element cij denotes the similarity between
the feature vector pairs, hi ∈ R768 and fi ∈ R768:

C = tanh(HWbF⊤) (5.1)

where Wb ∈ R768×768 is a correlation matrix to be learned during training.
Subsequently, we compute a normalized weight αh

ij to denote the relevance of the ith ASR-
generated word to jth OCR-generated word. Therefore, the weighted summation of the ASR
transcript, ahj , can be represented as,

ahj =
n∑

i=1

αh
ijhi (5.2)

where, αh
ij = exp(cij)/

n∑
i=1

exp(cij) (5.3)

8https://github.com/officeonlinesystems/audacityonline_audioeditor/
9https://cloud.google.com/vision/docs/ocr\#vision\_text\_detection-python
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Since our goal is to emphasize the dissimilar features between the ASR and OCR transcripts,
we define the relevance matrix R(fi, a

h
j ) as cosine distance between the attended ASR sentence

vector ahj and OCR word embedding fi –

R(fi, a
h
j ) = 1 −

f⊤
i · ahj

∥fi∥∥ahj ∥
(5.4)

Now, the weighted summation of all word embeddings produces the modified ASR representation
U computed as,

U =
m∑
j=1

R(fi, a
h
j ) · fi (5.5)

where R(fi, a
h
j ) acts as a filter for the ASR encoding fi.

Finally, we concatenate the attended ASR word representations with OCR word embeddings to
get the sequential textual features ut = {uti}lti=1, which is used as the textual embedding input of
FMT.

5.3.4 Language Model Pre-training

The pre-trained Language Model (LM) has recently been shown to have superior performance
in abstractive summarization, particularly to enhance sample efficiency [180]. This decoder-only
network, known as Transformer LM, takes a pre-trained transformer [4] as its base module and treats
summarization as a language modeling task where each generated summary word in every step is
appended to its source article. We extend the concept of Transformer LM to a multimodal setting,
where we use Factorized Multimodal Transformer [3] based Language Model (FLORAL) for
multimodal sequential learning. After each step of summary generation, we append the generated
summary word to its source text transcript, along with a delimiter, and train the transformer on
this reformulated data. FLORAL has three crucial advantages over traditional encoder-decoder based
summarization networks:

1. In contrast to encoder-decoder architecture, FLORAL uses a single network to encode the
source and generate the target, and thus, avoids the loading of same pre-trained weights into
separate encoder and decoder.

2. Compared to the encoder-decoder network, FLORAL has fewer number of parameters.

3. Most critically, all the parameters of FLORAL can be pre-trained.

Since there is no available large-scale multimodal corpus, we pre-train FLORAL on the text-only
2-billion word corpus10 based on Wikipedia, called WikiLM [180], and fine-tune on the AVIATE
and How2 datasets.

10https://github.com/tensorflow/tensor2tensor
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Figure 5.4: Overview of a single Factorized Multimodal Self-attention (FMS) in MTL. Each FMS
consists of 7 distinct self-attention [4] layers, which inherently capture inter-modal and intra-modal
dynamics within the asynchronous multimodal input sequence. Blue, red and green colors are used
to illustrate the propagation of visual, acoustic and textual features within FMS.

5.3.5 Factorized Multimodal Transformer LM

Factorized Multimodal Transformer (FMT) [3], which is the current state-of-the-art model for mul-
timodal emotion recognition and multimodal speaker traits recognition on well-studied IEMOCAP
[181] and POM [182] datasets, applies seven distinct self-attention mechanisms to simultaneously
capture all possible uni-modal, bi-modal, and tri-modal interactions across its multimodal input.
We use the FMT architecture as the backbone of our decoder-only Transformer LM. Before feeding
into FMT, the unimodal embeddings are resampled using a reference clock so that modalities can
follow the same frequency [18]. Additionally, zero paddings are used to unify the length of all
samples of the entire dataset to a desired fixed length L. Hence, the ith data point consists of three
distinct sequences of embeddings corresponding to three modalities – visual, acoustic, and language:

D = {xi = [x(t,i) = ⟨u(t,i)v , u(t,i)v , u(t,i)v ⟩]Lt=1, [tarti ]
M
t=1 }Ni=1 (5.6)

where xi ∈ RL×dx and tari ∈ RM×dy are the inputs and target summaries respectively, M is the
length of the summary; dx, dy denote the input and output dimensionality at each time step
respectively; N is the total number of samples within the dataset. Positional embeddings are also
added to the input.

The FMT consists of a stack of Multimodal Transformer Layers (MTL), which captures
factorized dynamics within multimodal data and aligns the time asynchronous information both
within and across modalities using multiple Factorized Multimodal Self-attentions (FMS), each
of which has 7 distinct self-attention layers. Each attention has a unique receptive field with
respect to modalities f ∈ F = {L, V, A, LV, LA, VA, LVA}. The high dimensional output of FMS is
controlled by a summarization network S1 to have a reduced dimension RL×dx which goes through
feedforward and normalization layers. If there are a total of P number of FMS units inside MTL,
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the dimensionality of the normalization layer is RP×L×dx which is again mapped to RL×dx using a
secondary summarization network S2. The output of the last MTL of FMT, thus computed, is fed
into a Gated Recurrent Unit (GRU) to have a dy dimensional predicted summary word embedding,
Summi. An overview of a single Factorized Multimodal Self-attention (FMS) block in MTL is
presented in the 5.4.

The summary word predicted by the FMT in the first step, Summ1, is appended to the text
transcript and fed into the same FMT in the next step to predict the second summary word,
Summ2. This process is continued until the model generates a stop-word or a predetermined
summary length is reached. We only compute loss over the target sequence, as suggested by [180].

5.4 Experiments

To explore the role of multimodality in abstractive text summarization, we conduct multiple
experiments evaluating textual and visual modalities separately and jointly on both How2 and
AVIATE datasets. Additionally, we investigate the role of OCR-generated text for the academic
presentation videos in AVIATE for improving summary generation.

5.4.1 Training

We train FLORAL using Pytorch framework on NVIDIA Tesla V100 GPU, with 32 GB dedicated
memory, with CUDA-10 and cuDNN-7 installed. We pre-train all the parameters of FLORAL using
WikiLM [180], and fine-tune on the summarization datasets (How2 and AVIATE). Similar to
encoder-decoder models, we only compute loss over the target sequence. In Table 5.1, we present
the details of hyper-parameters used in the baselines and in FLORAL.

Table 5.1: Hyperparameters of different abstractive baseline models compared to FLORAL.

Modality Models
Hyperparameters

Batch-size #Steps Peak LR Optimizer Dropout #Parameters

Unimodal
(Text Only)

PG 16 230K 0.01 Adagrad 0.2 42m
PG-MMR 16 230K 0.01 Adagrad 0.2 42m
Hi-MAP 32 200K 0.01 Adagrad 0.1 36m
CopyTransformer 16 200K 0.05 Adam 0.2 105m

Multimodal
(Text +
Audio +
Video)

Multimodal HA 64 300k 0.05 Adam 0.3 8m
MulT En-De 24 300k 0.01 Adam 0.2 477m
FMT En-De 32 300k 0.01 Adam 0.2 495m
MulT LM 32 500k 0.01 Adam 0.1 242m
FLORAL 16 500k 0.01 Adam 0.1 260m

5.4.2 Baselines

We compare the performance of the following extractive and abstractive unimodal and multimodel
text summarization models both on How2 and AVIATE datasets.
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Extractive Summarizers (Text Only)

• Lead3 is the most common baseline which simply selects the leading three sentences of the
document as its summary.

• KLSumm [120] is a greedy algorithm that minimizes the Kullback-Lieber (KL) divergence
between the original document and the ground-truth summary.

• TextRank [118] runs a modified version of PageRank on a weighted graph, consisting of nodes
as sentences and edges as similarities between sentences.

• LexRank [117] is a graph-based algorithm that represents sentences as vertices, and edges
represent the similarity.

Abstractive Summarizers (Text Only)

• Pointer Generator (PG) [38] network is one of the most popular sequence to sequence
(seq2seq) summarization architectures. PG allows both generating words from the vocabulary or
copying from the source document.

• Pointer Generator-MMR [40] uses MMR along with PG for better coverage and redundancy
mitigation. Here MMR computes a similarity score of sentences with the source text and modifies
the attention weights for a better summary generation.

• Hi-MAP [12] is a hierarchical MMR-attention based PG model, which extends the work of PG
and MMR. Here, MMR scores are calculated at word level and incorporated in the attention
weights for a better summary generation.

• CopyTransformer (Bottom-up Abstractive Summarization) [15] uses the transformer param-
eters proposed by [45]. It uses a content selection module that over-determine phrases in the
source document.

Abstractive Summarizers (Video + Audio + Text)

• Multimodel Hierarchical Attention [17] extends the work of [183], which was originally
proposed for multimodal machine translation. This model fuses visual and textual modalities
and captures the context of visual and textual features along with hierarchical attention to
generate summaries.

• MulT Encoder-Decoder is an encoder-decoder based summarization architecture, which uses
MulT (Multimodal Transformer for Unaligned Multimodal Language Sequences) model [19] as
its encoder and decoder unit.

• FMT Encoder-Decoder is an encoder-decoder network, similar to MulT encoder-decoder.
This baseline uses Factorized Multimodal Transformer [3] as the encoder and decoder units.
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Table 5.2: Ablation results after incorporating OCR generated text into the ASR generated text
transcript using guided-attention for different extractive and abstractive unimodal and multimodal
text summarization systems on AVIATE.

Model Modality
AVIATE Dataset

R-1 R-2 R-L

Extractive
(Text only)

KLSumm
ASR 22.19 2.05 15.59

ASR+OCR 24.27 2.31 16.92

TextRank
ASR 22.15 2.71 16.42

ASR+OCR 24.55 2.72 22.1

LexRank
ASR 22.63 2.49 15.68

ASR+OCR 24.55 2.72 22.1

Abstractive
(Text only)

PG
ASR 26.27 2.01 22.96

ASR+OCR 27.77 2.05 23.81

PG-MMR
ASR 27.34 2.72 22.63

ASR+OCR 27.82 3.97 23.93

Hi-MAP
ASR 27.62 3.16 22.1

ASR+OCR 28.13 3.87 22.5

CopyTransformer
ASR 29.93 3.73 25.13

ASR+OCR 30.27 3.94 27.06

Multimodal
(Text +
Audio +
Video)

Multimodal HA
ASR+A+V 27.51 4.83 25.32

(ASR+OCR)+A+V 28.14 4.91 26.12

MulT Encoder-
Decoder

ASR+A+V 29.65 4.12 26.47

(ASR+OCR)+A+V 30.89 4.34 27.2

FMT Encoder-
Decoder

ASR+A+V 31.8 4.49 26.1

(ASR+OCR)+A+V 32.85 4.6 27.65

MulT LM
ASR+A+V 31.71 4.07 27.58

(ASR+OCR)+A+V 33.47 4.12 28.73

FLORAL
ASR+A+V 33.26 6.38 28.52

(ASR+OCR)+A+V 37.13 11.04 31.47

• MulT LM is MulT-based architecture. This is most akin to our proposed FLORAL model; only
the FMT module of FLORAL is replaced by MulT [19] to have this multimodal summarization
baseline.

5.5 Experimental Results

We present a quantitative analysis of the summaries using the standard metrics for abstractive
summarization – ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) [9, 184] that measure
the unigrams, bigrams, and longest common sequence between the ground-truth and the generated
summaries, respectively. Additionally, we perform extensive qualitative analysis using human
experts to primarily understand the fluency and informativeness of the summaries. We also analyze
the word distributions in the transcriptions and summaries.
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5.5.1 Quantitative Analysis

At first, we evaluate the performance of commonly used extractive and abstractive text summa-
rization models both on the How2 and AVIATE datasets. Note that the average length of text
transcripts in How2 is much less than that of AVIATE. Following our intuition, PG-based text
summarization networks perform relatively well on How2 as shown in Table 5.3; but their perfor-
mance drastically drops on AVIATE. This result can be attributed to the fact that attention-based
encoder-decoder networks often fail to capture long-term dependencies when the source text is long
and noisy. Hence, we decide to use transformer-based pre-trained BERT [179] as the text-embedding
layer in our model.

In addition to text-only models, we train two video-only models – the first one uses a single
convolutional and pooling layer for feature extraction from the entire video, while the second one
applies a single layer RNN over these vectors in time. We observe in Table 5.3 that even using
only action features in the videos leads to almost competitive R-1, R-2, and R-L scores compared
to text-only models, in some cases often better than extractive text-only systems. This result
demonstrates the importance of both modalities for summarization.

Table 5.3: FLORAL achieves highest performance in ROUGE-1, ROUGE-2 and ROUGE-L over
text based extractive system (Lead3, KLSumm, TextRank and LexRank) and abstractive systems
(Seq2Seq, PG, PG-MMR, Hi-MAP and CopyTransformer) and multimodel baselines (Multimodel
HA, MulT based encoder decoder, FMT based encoder decoder, MulT based language model and
FLORAL) in How2 and AVIATE datasets.

Modality Model
How2 AVIATE

R-1 R-2 R-L R-1 R-2 R-L

Extractive
Systems (Text

only)

Lead3 43.97 10.31 35.76 19.23 1.82 14.69
KLSumm 28.64 12.3 16.2 24.27 2.31 16.92
TextRank 27.48 12.41 16.55 22.15 2.71 16.42
LexRank 27.95 12.48 16.98 22.63 2.49 15.68

Abstractive
Systems (Text

only)

Seq2Seq 55.32 23.06 53.9 26.62 2.88 23.32
PG 51.67 22.65 50.21 27.77 2.05 23.81
PG-MMR 52.9 23.21 50.24 27.34 2.72 22.63
Hi-MAP 49.2 21.36 47.36 28.13 3.87 22.5
CopyTransformer 53.7 23.87 48.04 30.27 3.94 27.06

Video only
Action Ft. only 45.21 12.74 38.5 22.87 2.78 17.13
Action Ft. + RNN 48.23 19.1 46.3 23.54 2.92 18.21

Multimodel
Systems
(Video+Audio+Text)

Multimodal HA 55.87 26.32 54.9 28.14 4.91 26.12
MulT En-De 55.89 26.79 55.1 30.89 4.34 27.2
FMT En-De 55.98 26.83 55.4 32.85 4.6 27.65
MulT LM 56.13 26.89 55.41 33.47 4.12 28.73
FLORAL 56.89 26.93 56.80 37.13 11.04 31.47

Incorporation of OCR

Since the AVIATE dataset is composed of conference presentation videos, we observe that in almost
94.8% videos in the entire dataset, the speaker shows slides during the presentation. The text in
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these slides is succinct and contains the most important key-phrases which are crucial for summary
generation. Table 5.2 shows the performance improvement for every summarization model when
the OCR is fused with ASR transcript using our guided attention mechanism. We also consider
direct concatenation of OCR transcript with the ASR-transcript; however, it resulted in lower
performance as compared to guided attention fusion. The guided attention ensures the filtering of
redundant and repetitive words in OCR and ASR transcripts. For every summarization model, we
only use the first 500 tokens of the OCR transcript. We did not consider incorporating OCR for
How2 as this dataset only contains instructional videos, and there is no text shown in the frames of
instructional videos.

Table 5.2 shows that unimodal extractive text summarization models, namely KLSumm,
TextRank and LexRank, yield an improvement of [2.1 − 2.3] R-1 points, [0.1 − 0.3] R-2 points
and [0.6 − 6.5] R-L points after incorporating OCR-generated text. Similarly for abstractive
summarization, the very popular PG-MMR network produces 0.5, 1.25, and 2.3 points performance
improvement in terms of R-1, R-2, and R-L scores, respectively. The other abstractive summarization
networks, namely PG, Hi-MAP, CopyTransformer, also support our hypothesis and show an
improvement of [0.5 − 4] points in terms of all three evaluation metrics.

Influenced by the performance of unimodal summarization models, we incorporate the OCR
transcripts into all of our multimodal baselines. Supporting our intuition, the multimodal systems
obtain significant performance enhancement with OCR transcripts as shown in Table 5.2. The
multimodal hierarchical attention model, MulT, and FMT-based encoder-decoder models show
[0.8 − 1.5] points improvement in the R-L score. Our proposed FLORAL model yields the highest
performance boost with OCR among all the multimodal systems, showing 3.87, 4.66, and 2.95
point enhancement in R-1, R-2, and R-L scores respectively. The performance boost can be easily
attributed to the keywords in the OCR-generated transcript, which guides the text-embeddings
to attend the most important portions in a very long ASR transcript. Hence, in the rest of our
discussion, we always report results with (ASR + OCR) transcript, fused with guided attention, as
the textual modality.

Complementarity of Multiple Modalities

Table 5.3 shows the ROUGE scores for different unimodal and multimodal text summarization
systems on the How2 and AVIATE datasets. Among the unimodal variants, the abstractive text
summarization systems generally perform much better than the extractive systems, especially
on AVIATE. Note that despite being a very strong extractive baseline, Lead3 does not perform
well on AVIATE, as the text transcripts of academic presentation videos do not tend to be
structured with the most important information at the beginning. The two video-only models,
simple conv-pool action features and action features with RNN perform very close to the abstractive
text-only baselines, which clearly indicates the necessity of visual modality in addition to the
textual modality.11 As presented in Table 5.3, the MulT, and FMT multimodal baselines and
the proposed FLORAL model beat most of the unimodal systems by a large margin, on both the

11We do not evaluate the performance of acoustic modality separately, as the MFCC audio features are typically
incorporated to capture the pitch, intonation, and other tonal-specific details of the speaker, which do not contribute
individually to the summarization task.
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datasets. This result is expected because of the inherent ability of MulT and FMT to capture the
intra-model and inter-modal dynamics within asynchronous multimodal sequences and incorporate
diverse information in a single network. Overall, the combination of visual, acoustic, and textual
signals significantly improves over the unimodal variants, with an improvement of 1.57, 3.04, and 3
R-1, R-2, and R-L points on How2 and 6.86, 7.1 and 4.41 on AVIATE.

We manually investigate some video samples of AVIATE where the multimodal system generates
a better summary than the unimodal system. In most of these samples, the textual transcript
is very noisy and contains many irrelevant words that are not much required for the summary
generation. Figure 5.5 shows an example training instance of the AVIATE dataset with three
different modalities. A closer look into the ASR and OCR transcripts reveals the presence of
irrelevant and noisy words. For example, the very first sentence of the ASR transcript ”hi i’m lisa
ann hendricks and today” does not contribute to the summary generation. As a result, these samples
require additional cues for performance improvement, which are availed from the multimodal signals.
The variation of outputs from various unimodal and multimodal summarization networks for a
single video sample is shown in Table 5.10.

Comparative Study on How2

Table 5.3 shows that the performance of unimodal and multimodal summarization systems on
How2 as compared to AVIATE. In contrast to prior work on news-domain summarization [185], the
seq2seq model performs the best among all unimodal systems on How2, achieving 55.32, 23.06, and
53.9 R-1, R-2, and R-L scores, respectively. As indicated by [17], the PG model performs lower
than seq2seq on How2 due to the lack of overlaps between input and output, which is the important
feature of PG networks. Among the multimodal systems, our proposed FLORAL model yields the
best results; however, the other multimodal baselines reach almost competitive ROUGE scores
compared to FLORAL on this dataset. Noticeably, despite having a simple structure, the multimodal
hierarchical attention model performs very well on How2. On this dataset, FLORAL achieves 56.89,
26.93, and 56.80 R-1, R-2, and R-L scores, respectively, which are [0.1 − 2] points higher than the
scores achieved by other multimodal baselines.

Comparative Study on AVIATE

AVIATE contains longer videos than How2, resulting in longer transcripts and ground-truth
summaries. As shown in Table 5.3, the best performing unimodal summarization model on AVIATE
is CopyTransformer. As the ASR and OCR generated summaries are very long, the extractive
systems do not perform well on this dataset. While PG and seq2seq yield 23.32 and 23.81 R-L
scores respectively, CopyTransformer produces a 27.06 R-L score, outperforming all other unimodal
systems. The superior performance of CopyTransformer over PG and seq2seq can be attributed
to the self-attention mechanism of transformers which helps to capture long-term dependencies.
The incorporation of visual and acoustic modalities significantly improves the ROUGE scores
on this dataset. FLORAL beats all the transformer-based encoder-decoder networks and language
models. FLORAL produces 37.13, 11.04 and 31.47 R-1, R-2 and R-L scores respectively, where the
second-ranked model on AVIATE, MulT-LM obtains 33.47 R-1, 4.12 R-2, 28.73 R-L scores, which
are almost [2.7 − 7] points lower than that of FLORAL. Since AVIATE contains 6, 680 training
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samples, which may not be enough for today’s deep neural models, the factorization mechanism
on FMT, which allows an increasing number of self-attention to better model the multimodal
phenomena, results in its superior performance, without encountering difficulties even on the
relatively low-resource setup of AVIATE. Pre-training of all the parameters of FLORAL also has an
immense impact, which helps in beating all other baselines by a significant margin.

Table 5.3 also shows that all the unimodal and multimodal summarization models obtain almost
[18 − 25] points higher R-1 and R-L scores and [3 − 6] points higher R-2 score on How2 over
AVIATE. For example, FLORAL yields 56.89, 26.93, and 56.80 R-1, R-2, and R-L scores on How2
and 37.13, 11.04 and 31.47 R-1, R-2 and R-L scores on AVIATE. We can observe from Table 5.3
that all the baseline models as well as FLORAL yield higher R-1, R-2 and R-L scores on How2 than
AVIATE. The overall better performance of every system on How2 than AVIATE can be attributed
to two factors – firstly, the text transcripts of How2 are manually annotated. In contrast, we use
ASR and OCR outputs as the transcripts for AVIATE. The large margin of ASR and OCR errors
in some of the train and test samples significantly affect the model performance. Secondly, since
the video length, transcript length, and reference summary length are much longer in AVIATE than
How2, the summarization task becomes more challenging in AVIATE. Furthermore, since AVIATE
comprises many scientific presentation videos, the audio transcript contains complex academic
words, leading to a larger dictionary for the language generation task. Overall, the results in Table
5.3 conclude that the AVIATE dataset is more exacting than How2, indicating room for further
research with fine-grained and sophisticated multimodal models for long videos.

In our next experiment, we demonstrate how the summarization task becomes more challenging
with longer videos. We divide the AVIATE dataset into three portions - short videos (duration
less than 10 minutes), medium videos (duration between 10 minutes and 30 minutes) and long
videos (duration more than 30 minutes). We split each portion in 4 : 1 ratio and train and test
all the multimodal systems on each segment. Table 5.4 shows the performance reduction of each
model with the increase in video length. In general, we observe that all four multimodal baselines
yield R-L score in the range of [27.03 − 34.09] on the short videos. However, the score reduces
to [23.19 − 28.69] for the long videos. The performance of FLORAL also decreases from short to
medium and long videos; however, the span of reduction of R-L score is only [0.39 − 0.64], which is
relatively less than all other baselines. We also notice that the LM-based systems generally capture

Table 5.4: Performance of multimodal baseline models and FLORAL on short (< 10 min), medium
(> 10 min & < 30 min) and long (> 30 min) videos of AVIATE. As the video length and the
corresponding reference summary length increase, the performance of all baseline models decreases
heavily. However, FLORAL performs well across all video lengths.

Model

AVIATE Dataset

Short Videos Medium Videos Long Videos Whole Dataset

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Multimodal HA 30.11 5.12 27.03 26.54 4.97 25.31 24.18 4.65 23.19 28.14 4.91 26.12

MulT En-De 31.44 5.32 27.38 27.73 4.93 26.89 25.62 4.67 24.12 30.89 4.34 27.2

FMT En-De 33.62 5.81 31.06 32.1 5.91 28.31 31.48 4.96 27.02 32.85 4.6 27.65

MulT LM 33.13 5.65 30.58 34.09 5.95 29.27 33.37 5.31 28.69 33.47 4.12 28.73

FLORAL 36.13 11.62 31.44 35.59 11.64 31.05 34.31 10.39 30.8 37.13 11.04 31.47
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Table 5.5: Significance of multimodal cues in FLORAL. The combination of visual, textual, and
acoustic signals significantly improves over the unimodal variants, with a relative improvement of
R-1, R-2 and R-L scores of 9.99%, 8.11% and 11.80% respectively over the best unimodal variant.

Model Modality
AVIATE

R-1 R-2 R-L

FLORAL

T 27.14 2.93 19.67
A 21.64 1.97 16.83
V 22.31 2.29 17.04

T+A+V 37.13 11.04 31.47
∆multi−unimodal ↑ 9.99 ↑ 8.11 ↑ 11.80

long-term dependencies better than traditional encoder-decoder based systems.
The complementarity of multiple modalities in the performance of FLORAL is shown in Table 5.5.

To understand the importance of visual modality, we feed zero input in other two modality channels
of FLORAL and continue the process for all three modalities. We observe that the textual modality
provides the best performance among unimodal variants. The addition of visual and acoustic
features improves significantly over the unimodal baselines and achieves the best performance - with
an increase in R-1, R-2 and R-L score of 9.99, 8.11 and 11.80 respectively over the best unimodal
variant.

Table 5.6: Transferability of the proposed FLORAL model on the two available multimodal abstractive
text summarization datasets - How2 and AVIATE. The network is trained on the dataset in each
row, and is tested on the dataset shown in each column. The second row indicates the performance
of FLORAL on the How2 videos whose transcripts are generated from ASR.

How2 AVIATE

R-1 R-2 R-L R-1 R-2 R-L

How2 56.89 26.93 56.80 21.35 4.88 23.11

How2 with ASR 54.19 24.07 52.11 22.77 5.98 24.07

AVIATE 52.68 21.33 49.9 37.13 11.04 31.47

Table 5.7: Transferability of the proposed FLORAL model when instead of the annotated transcript,
Automated method for Transcription generation [1] is used on the two available multimodal
abstractive text summarization datasets - How2 and AVIATE. The network is trained on the
dataset in each row and is tested on the dataset shown in each column.

How2 AVIATE

R-1 R-2 R-L R-1 R-2 R-L

How2 54.19 24.07 52.11 19.67 3.54 21.87

AVIATE 52.68 21.33 49.9 37.13 11.04 31.47
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Table 5.8: Transferability of the proposed FLORAL model on videos of different length in the AVIATE
dataset. The network is trained on the videos in each row, and tested on the videos shown in each
column.

AVIATE

Short Videos Medium Videos Long Videos

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

AVIATE
Short Videos 31.05 8.49 28.25 27.22 7.36 23.74 24.71 6.12 21.53

Medium Videos 31.43 8.74 28.34 30.21 8.48 26.90 28.66 8.29 26.54

Long Videos 32.84 9.43 28.56 31.08 9.64 26.98 30.23 8.89 27.25

Transferability of FLORAL

Table 5.7 shows the transferability property of FLORAL between How2 and AVIATE. When trained
and tested on the same dataset, FLORAL produces the best ROUGE scores, which is expected.
However, when trained on AVIATE and tested on How2, FLORAL yields an R-L score of 49.90,
which is just 6.9 decrease in R-L score (11.83% reduction in performance) than the one when
trained and tested on How2. The vice-versa is not true, i.e., when trained on How2 and tested on
AVIATE, the performance drop is drastic (26.56% reduction in performance). As the videos in
How2 have human-annotated transcripts and those in AVIATE have ASR-generated transcripts,
for fair comparison of transferability, we extract the ASR transcripts of the How2 videos and train
FLORAL. The results of this experiment are shown in the second row of Table 5.7. We observe that
the ASR transcript reduces the test performance on How2, which is expected due to the noise in
the ASR output. The transferability score on AVIATE improves a bit, but the performance drop is
still heavy (25.51% reduction in performance). From all these experiments, we can conclude that
since the videos of How2 are very short, the learned weights do not perform well for longer videos.
However, AVIATE consists of diverse-length videos, and thus, the trained model on AVIATE yields
good results on How2 as well.

Table 5.8 shows the transferability of FLORAL across short, medium and long videos of AVIATE.
When trained on the long videos, FLORAL performs the best across all three portions. However,
when trained on short videos, the model can not learn long-term dependency for lengthier videos.
The same property supports the results on Table 5.7. Since the How2 dataset contains only short
videos, the model does not perform well when trained on How2 and tested on AVIATE. The longer
videos in the training set helps the model to generalize well across videos of various lengths.

5.5.2 Qualitative Analysis

In addition to ROUGE scores, we conduct a qualitative analysis by performing a human evaluation
to understand the standard of the summary outputs. Following the abstractive summarization
human annotation work of [186], the summaries were evaluated by five annotators12 to rate the
generated summaries on a scale of [1−5] on four parameters - informativeness, relevance, coherence,
and fluency. For the evaluation, we randomly sampled 300 videos from the test sets of How2 and
AVIATE. Table 5.9 shows the average human evaluation scores for 4 text-only, 1 video-only and 3

12We employed five annotators who are experts in NLP, and their age ranges between 24-35 years.
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Figure 5.5: Example of AVIATE dataset with three different modalities. To obtain the text
transcripts from the acoustic modality, we apply Deep Speech [1], a pre-trained end-to-end automatic
speech recognition (ASR) system. We extract the text shown in the slides in the presentation
videos using Google OCR Vision API. We use the abstracts of corresponding research papers as
the ground-truth summaries.

multimodal models. In general, we observe that PG has difficulty in summarizing articles with
repetitive information and tends to assign a lower priority to less occurring important keywords.

75



Table 5.9: Scores for human evaluated metrics - Informativeness (INF), Relevance (REL), Coherence
(COH), Fluency (FLU) over text based extractive systems (KLSumm and TextRank), abstractive
systems (PG and CopyTransformer), video based abstractive systems (Action features with RNN)
and multimodel systems (FMT Encoder Decoder, MulT Language Model and FLORAL ) on How2
and AVIATE datasets.

Modality Model
How2 AVIATE

INF REL COH FLU INF REL COH FLU

Extractive Systems
(Text only)

KLSumm 2.82 2.54 2.98 3.14 1.91 1.56 2.14 2.13
TextRank 2.92 2.73 2.82 3.12 2.1 1.83 2.13 2.12

Abstractive
Systems (Text only)

PG 3.45 3.17 3.12 3.32 3.49 3.38 3.41 3.62
CopyTrans. 3.46 3.18 3.18 3.36 3.54 3.39 3.48 3.56

Abstractive
Systems (Video only)

Action
Ft.+RNN

3.54 3.20 3.21 3.40 3.52 3.27 3.31 3.41

Multimodel
Systems
(Video+Audio+Text)

FMT En-De 3.61 3.39 3.37 3.67 3.64 3.32 3.37 3.49
MulT LM 3.57 3.38 3.34 3.68 3.67 3.39 3.38 3.45
FLORAL 3.62 3.38 3.41 3.71 3.89 3.41 3.41 3.41

(a) Density curve on How2 dataset. (b) Density curve on AVIATE dataset.

Figure 5.6: Word distribution of machine-generated summaries in comparison with the ground-truth
summaries for different unimodal and multimodal systems on How2 and AVIATE datasets.

The extractive summarization systems sometimes pick sentences extraneous to the summary. For
example, we notice some summaries generated by KLSumm starting with “Good afternoon everyone,
I am ·”, which is the very first line of the transcript. In contrast, the multimodal summarization
models generate summaries with greater relevance and informativeness. Our proposed FLORAL

model obtains high scores on informativeness, relevance, and coherence on AVIATE, but sometimes
seems to generate less fluent summaries. This fluency problem mostly stems from errors in ASR
and OCR generated text. Some of these phenomena are illustrated with instances from AVIATE in
Table 5.10.

We also analyze the word distributions of the ground-truth summaries and different system-
generated summaries. The density curves in Figure 5.6 shows that for both How2 and AVIATE, the
abstractive unimodal and multimodal summarization models generate summaries shorter than the
ground-truth summary. The average length of summaries is highest for CopyTransformer. Interest-
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Table 5.10: Comparison of ground-truth summary and outputs of 7 different unimodal and
multimodel abstractive text summarization systems - FLORAL, MultT LM, MultT Encoder-Decoder,
CopyTransformer, multimodal hierarchical attention (HA), Pointer Generator (PG) and Pointer
Generator with MMR (PG-MMR) - arranged in the order of best to worst ROUGE-L scores in this
table. Red highlighted text indicates a positive correlation of context w.r.t. ground-truth summary
while blue color represents a negative correlation with ground-truth summary.

Model R-L Output

Ground-truth - We study the problem of semi-supervised question answering—utilizing unlabeled text to boost the performance
of question answering models. We propose a novel training framework, the Generative Domain-Adaptive Nets.
In this framework, we train a generative model to generate questions based on the unlabeled text, and combine
model-generated questions with human-generated questions for training question answering models. We develop novel
domain adaptation algorithms, based on to learn richer context-aware model on the insight and the human-generated
data distribution. Experiments show that our proposed framework obtains substantial improvement from unlabeled
text.

FLORAL (ours) 31.47 We study the problem of semi-supervised concepts unlabeled text to boost the performance of without without
models. We propose a novel training framework, the Generative Domain-Adaptive Nets. In this framework, we train
a database model and generate concepts based on procedure on how partitioning in the levels between t, and combine
model-generated attention with human-generated types for training associations directed-generation models. We
develop novel algorithms, based on model, to understand the discrepancy between the generated data results and the
human-generated data distribution. Experiments show model obtains improvement from text.

MultT LM 28.73 In learn paper are neural paper, we propose a new model and the paper, we study demonstrated the character score
We investigate the problem answering utilizing unlabeled text to understand trained models. we train a understanding
model to generate understanding based on the text, and combine trained understanding with human generated
understanding to training data trained we assume like, on a public unsupervised Subsequently, prediction trained
to learn richer context-aware model on the insight In trained facilitates smaller annotations previously reported
understanding understanding on approach and questions along five perform two then performance The the semantic
best dataset and the proposed

MultT En-De 27.2 We present the problem of supervised new utilizing text of new new models. We propose a problem model review a
new model In this paper, we propose a simple model Experimental resultsprove the standard model achieves method
to then the proposed among review model to also performance based on the proposed CoNLL-2012 dataset. In this
we train a new model to generate a model and combine model. of machine morphology into more prediction on
the drawback of the system classes. using error-correcting codes collection. We evaluate investigation of NMT and
induced Experiments errors. shed light affect vs. scores on a word its dataset with the proposed based

CopyTrans. 27.06 We propose a novel method for novel method for state-of-the-art question answering we show that the method
achieves state-of-the-art performance on the state-of-the-art performance of the proposed method on the systems over
sequential text tasks or as independent, parallel tasks. In this framework model generate text trained benefits of the
new semantic high a image and at them as

HA 26.12 We propose the novel model has the paper, we propose a generative model In both learning can can the benchmark
model To capable to also performance of existing the pipelined of the model-generated model: distribution for the
human-generated data distribution. Experiments show that our proposed framework to the consistency of the art
data distribution and event feedforward network. The an unsupervised dependency framework performance and the
human data distruction .

PG 23.81 In this paper we consider the problem of learning a deep neural network, we propose a novel neural network architecture
based on novel neural network architecture that is trained end-to-end trainable convolutional neural network (CNN)
architecture is able to train a convolutional neural network architecture that is capable of achieving state-of-the-art
performance compared to state-of-the-art performance on three benchmark datasets.

PG-MMR 22.63 We propose a novel method for object detection based on a novel object detection method that uses a novel model
based on the posterior distribution of the posterior distribution over the parameters of the number of claims and
We show that models can be used as well as compared to In this paper, we study the a algorithm that the proposed
method can outperforms the state-of-the-art methods on a large number of
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ingly, FLORAL and PG generated summaries are similar in length. However, FLORAL outperforms
PG by a large margin, which illustrates that for improvements in ROUGE scores, an informative
summary is more crucial than a lengthier summary.

5.6 Limitations

While our method demonstrates the capability to integrate guidance from multiple modalities
such as audio, video, and text to produce high-quality summaries, there are several limitations to
consider.

First, the model employs a regressive approach for generation, meaning it generates one token
at a time in an iterative manner. This approach requires the model to make 250-350 passes to
produce a single summary, making it computationally intensive. Each pass involves processing the
entire model, leading to significant compute resource consumption.

Second, the iterative nature of our model, which is akin to an entailment style, poses challenges
for generating short summaries. The model requires generating at least 30-50 tokens to properly
understand the context and produce coherent and relevant summaries. As a result, very short
summaries may not capture the intended meaning or key information effectively. This limitation
suggests that while our model excels in producing detailed and contextually rich summaries, it may
struggle with tasks that demand extremely concise outputs.

Third, the model performs optimally when all three modalities (audio, video, and text) are
available. Its performance significantly drops when only one or two modalities are used. In contrast,
the method proposed in the later chapter shows better performance even with a combination of two
modalities, highlighting its robustness and versatility in scenarios where not all three modalities
are available.

These limitations underscore the need for continued refinement and adaptation of our approach
to ensure its practicality and efficiency across various summarization tasks and resource constraints.

5.7 Conclusion

In this chapter, we explore the role of multimodality in abstractive text summarization. All the
previous studies in this direction have used either images or short videos as the visual modality
and generate one or two lines long summary, and thus, fail to perform on longer videos. Moreover,
there exists no benchmark dataset for abstractive text summarization of medium and long videos.
In this work, we introduce AVIATE, the first large-scale dataset for abstractive text summarization
with videos of diverse duration, compiled from paper presentation videos in renowned academic
conferences. We then propose FLORAL, a Factorized Multimodal Transformer based decoder-
only Language Model, which uses an increasing number of self-attentions to inherently capture
inter-modal and intra-modal dynamics within the asynchronous multimodal sequences, without
encountering difficulties during training even on relatively low-resource setups. To evaluate FLORAL,
we perform extensive experiments on How2 and AVIATE datasets and compare them against
several unimodal and multimodal baselines. Overall, FLORAL achieves superior performance over
previously proposed models across two datasets.
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Chapter 6

Abstractive Extreme Text
Summarization using Multimodal Signals

The realm of scientific text summarization has experienced remarkable progress due to the availability
of annotated brief summaries and ample data. However, the utilization of multiple input modalities,
such as videos and audio, has yet to be thoroughly explored. At present, scientific multimodal-
input-based text summarization systems tend to employ longer target summaries like abstracts,
leading to an underwhelming performance in the task of text summarization.

In this chapter, we address the novel task of extreme abstractive text summarization (aka TL;DR
generation) by leveraging multiple input modalities. To this end, we introduce mTLDR, a first-of-
its-kind dataset for the aforementioned task, comprising videos, audio, and text, along with both
author-composed summaries and expert-annotated summaries. The mTLDR dataset accompanies
a total of 4, 182 instances collected from various academic conference proceedings, such as ICLR,
ACL, and CVPR.

Subsequently, we present mTLDRgen, an encoder-decoder-based model that employs a novel dual-
fused hyper-complex Transformer combined with a Wasserstein Riemannian Encoder Transformer,
to dexterously capture the intricacies between different modalities in a hyper-complex latent
geometric space. The hyper-complex Transformer captures the intrinsic properties between the
modalities, while the Wasserstein Riemannian Encoder Transformer captures the latent structure
of the modalities in the latent space geometry, thereby enabling the model to produce diverse
sentences. mTLDRgen outperforms 20 baselines on mTLDR as well as another non-scientific dataset
(How2) across three Rouge-based evaluation measures.

However, while FLORAL, a Factorized Multimodal Transformer based decoder-only Language
Model, shows superior performance for general summaries and excels in handling long videos by
effectively capturing inter-modal and intra-modal dynamics, it falls short in the task of extreme ab-
stractive text summarization. Our experiments demonstrate that FLORAL struggles with generating
concise TL;DR summaries, highlighting the necessity for models specifically tailored for extreme
summarization tasks.

Furthermore, based on qualitative metrics such as BERTScore and FEQA, and human evalua-
tions, we demonstrate that the summaries generated by mTLDRgen are fluent and congruent to the
original source material.
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TLDR: We propose a joint classifier/detector training scheme with 
provable performance guarantees against adversarial perturbations.

Abstract: Adversarial attacks 
against deep networks can be 
defended against either by 
building robust classifiers or, 
by creating classifiers that can 
detect the presence of 
adversarial perturbations.  
Although  [...]
Introduction: Despite 
popularity and success of 
deep neural networks in many 
applications [...]
Background: Let us consider 
an L-layer feed-forward neural 
network, trained for a K-class 
classification task. [...]

Video Frame Sequence Source PDF

Acoustic input

Figure 6.1: A sample of mTLDR dataset with video, text and audio modalities along with the target
TLDR. The feature representations for video frames are obtained by ResNext, audio features are
extracted using Kaldi, and the text is extracted from the pdf of the article.

6.1 Introduction

With the emergence of deep learning architectures like LSTM, Attention, and Transformer, the
literature in the scientific community has skyrocketed. It is extremely hard to keep up with the
current literature by going through every piece of text in a research article. The abstract of a
paper often serves as a bird’s eye view of the paper, highlighting the problem statement, datasets,
proposed methodology, analysis, etc. Recent studies [23] re-purpose abstracts to generate summaries
of scientific articles. However, it is cumbersome to go through the abstract of each paper. The
abstracts are nearly 300 tokens long, and reading the complete abstract of every paper to figure out
the mutual alignment is tedious. The task of TL;DR (aka, tl;dr, too long; didn’t read) [67, 5] was
introduced to generate an extremely concise summary from the text-only article highlighting just
the high-level contributions of the work. Later, [68] introduced the CiteSum dataset for generating
text-only extreme summaries. However, the text alone can not comprehend the entire gist of the
research article. The multimodal information, including the video of the presentation and audio,
often provide crucial signals for extreme text summary generation.

Problem statement: In this work, we propose a new task of multimodal-input-based TL;DR
generation for scientific contents which aims to generate an extremely-concise and informative text
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summary. We incorporate the visual modality to capture the visual elements, the audio modality to
capture the tonal-specific details of the presenter, and the text modality to help the model align all
three modalities. We also show the generalizability of the proposed model on another non-academic
dataset (How2).

State-of-the-art and limitations: The pursuit of multimodal-input-based abstractive text
summarization can be related to various other fields, such as image and video captioning [166, 167,
168, 169, 170], video story generation [171], video title generation [172], and multimodal sentence
summarization [173]. However, these works generally produce summaries based on either images or
short videos, and the target summaries are easier to predict due to the limited vocabulary diversity.
On the other hand, scientific documents have a complex and structured vocabulary, which the
existing methods [17] of generating short summaries are not equipped to handle. Recently, [23]
proposed as a novel dataset for the multimodal text summarization of scientific presentations;
however, it uses the abstract as the target summary, which falls short in producing coherent
summaries for the extreme multimodal summarization (TL;DR) task.

In summary, this chapter offers the following contributions:

• Novel problem: We propose the task of extreme abstractive text summarization for scientific
contents, by utilizing videos, audio and research articles as inputs.

• Novel dataset: The development and curation of the first large-scale dataset mTLDR for
extreme multimodal-input-based text summarization of scientific contents. Figure 6.1 shows
an excerpt from the mTLDR dataset. This dataset has been meticulously compiled from five
distinct public websites and comprises articles and videos obtained from renowned international
conferences in Computer Science. The target summaries are a fusion of manually-annotated
summaries and summaries written by the authors/presenters of the papers.

• Novel model: We propose mTLDRgen, a novel encoder-decoder-based model designed to
effectively capture the dynamic interplay between various modalities. The model is imple-
mented with a dual-fused hyper-complex Transformer and a Wasserstein Riemannian Encoder
Transformer. The hyper-complex Transformer projects the modalities into a four-dimensional
space consisting of one real component and three imaginary components, thereby capturing
the intrinsic properties of individual modalities and their relationships with one another.
Additionally, the Wasserstein Riemannian Encoder Transformer is employed to apprehend
the latent structure of the modalities in the geometry of the latent space.

• Evaluation: We benchmark mTLDR over six extractive (text-only), eight abstractive (text-
only), two video-based and four multimodal summarization baselines, demonstrating the
effectiveness of incorporating multimodal signals in providing more context and generating
more fluent and informative summaries. We evaluate the benchmark results over the quanti-
tative (Rouge-1/2/L) and qualitative (BERTScore and FEQA) metrics. Our proposed modal,
mTLDRgen, beats the best-performing baseline by +5.24 Rouge-1 and +3.35 Rouge-L points.
We also show the generalizability of mTLDRgen on another non-scientific dataset (How2).

81



Table 6.1: Statistics of the used datasets (mTLDR and How2) – the number of samples (#source),
average token length of source documents (avg source len), average tokens in the target summaries
(avg target len), and abstractness percentage (Abs) of datasets.

Dataset #source avg source len avg target len %Abs

How2 73993 291 33 14.2
mTLDR 4182 5K 18 15.9

6.2 Related Work

6.3 Proposed Dataset

To explore the efficacy of multimodal signals and enable enriched abstractive summaries aided by
various modalities, we introduce mTLDR, the first large-scale multimodal-input based abstractive
summarization (TL;DR) dataset with diverse lengths of videos. mTLDR is collected from various
well-known academic conferences like ACL, ICLR, CVPR, etc. The only comparable dataset
to mTLDR is the How2 dataset, which comprises short instructional videos from various topics
like gardening, yoga, sports, etc. Compared to How2, mTLDR contains structured and complex
vocabulary, which requires attention to diverse information while generating summaries.

Our compilation encompasses video recordings from openreview.net and videolecture.net, in
addition to the accompanying source pdf and metadata information, including the details of the
authors, title, and keywords. The collected dataset comprises a total of 4, 182 video recordings,
spanning a duration of over 1, 300 hours. Of these, we designated 2, 927 instances as the training
set, 418 for validation, and 837 for testing. The average length of the videos is 14 minutes, and the
TLDR summary has an average of 19 tokens. The target summaries for the data are a combination
of human-annotated and author-generated summaries. In terms of abstractness, mTLDR contains
15.9% novel n-grams. Each data instance includes a video, audio extracted from the video, an
article pdf, and a target summary. We opted not to annotate or retain multiple summaries for a
single instance to ensure efficient training and testing processes. We assert that a single extreme
summary is sufficient to convey the essence of the paper. The target summaries for papers obtained
from the ACL anthology were annotated as they lacked any author-generated summaries. Of the
4, 182 videos, a total of 1, 128 summaries were manually annotated by 25 annotators. During the
annotation process, the annotators were instructed to thoroughly read the abstract, introduction,
and conclusion and to have a general understanding of the remaining content. Each summary was
then verified by another to confirm that it accurately represents the paper’s major contributions.

In contrast, the How2 dataset [21] consists of 73, 993 training, 2, 965 validation, and 2, 156 test
instances. The average token length for the source documents is 291, while for the target summary,
it is 33. Compared to the source document, the target summaries contains 14.2% novel n-grams.
The transcripts for videos and the target summary are human-annotated. Table 6.1 shows brief
statistics of the How2 and mTLDR datasets.
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6.4 Proposed Methodology

This section presents our proposed system, mTLDRgen, a multimodal-input-based extreme abstractive
text summary (TL;DR) generator. Figure 6.2 shows a schematic diagram. During an academic
conference presentation, there are typically three major modalities present – visual, audio, and text,
each of which complements the others, and when combined, contributes to a rich and expressive
feature space, leading to the generation of coherent and fluent summaries. mTLDRgen initially extracts
features from the independent modalities and then feeds them to the dual-fused hyper-complex
Transformer (DFHC) and the Wasserstein Riemannian Encoder Transformer (WRET) blocks.
Cross-modal attention is used to fuse the visual and audio features with the text representations.
Finally, the fused representation is fed to a pre-trained BART [161] decoder block to produce the
final summary. The rest of this section delves into the individual components of mTLDRgen.

6.4.1 Video Feature Extraction

The video modality in an academic presentation often comprises variations in frames and kinesthetic
signals, highlighting key phrases or concepts during a presentation. To capture visual and kinesthetic
aspects, we utilise the ResNeXt-152-3D [175] model as it is pre-trained on the Kinetics dataset for
recognition of 400 human actions. Four frames per second are extracted from the video, cropped
to 112 × 112 pixels and normalized, and a 2048-dimensional feature vector is extracted from the
ResNeXt-152-3D model for every 12 non-overlapping frames. The 2048-dimensional vector is then
fed to the mean pooling layer to obtain a global representation of the video modality. Later, a
feed-forward layer is applied to map the 2048-dimensional vector to a 512-dimensional vector.

6.4.2 Speech Feature Extraction

To capture the variations in the speaker’s voice amplitudes, which are considered to signify the
importance of specific topics or phrases [176], we extract audio features from the conference video.
This is accomplished by extracting audio from the video using the FFMPEG package1, resampling
it to a mono channel, processing it to a 16K Hz audio sample, and dividing it into overlapping
windows of 30 milliseconds. The extracted audio is then processed to obtain 512-dimensional Mel
Frequency Cepstral Coefficients (MFCC) features. The final representation is obtained by applying
a log Mel frequency filter bank and discrete cosine transformation, and the feature sequence is
padded or clipped to a fixed length.

6.4.3 Textual Feature Extraction

In order to extract the feature representations for the article text, the pdf content is obtained through
the Semantic Scholar Open Research pipeline (SSORP) [187]. SSORP uses the SCIENCEPARSE2

and GROBID3 APIs for text extraction from pdf. For the How2 dataset, the video transcriptions

1https://ffmpeg.org/
2https://github.com/allenai/science-parse
3https://github.com/kermitt2/grobid

83



Feed Forward

Multi-Head Self
Attention

Add & Norm

Cross Modal
Attention

Layer Norm

WQ WK WV

MHA

QU
KU VU

MHA

Feed Forward

Layer Norm

WQ WK WV

MHA

MHA

Feed Forward

Weight Share

KSQS VS

HCL Layer

Positional
Encoding

. . . 

Wasserstein Riemannian VAE

Wasserstein Riemannian VAE

Multi-Head Self
Attention

HCL Layer

Multi-Head Self
Attention

Add & Norm
Add & Norm

Cross Modal
Attention

rin xin yin zin

rout xout yout zout

rin xin yin zin

rout xout yout zout

wr

wr

wx

wx wy wz

wy wz

. . . 

Video Frames Sequence

pre-trained ResNeXt
Mel Frequency

Cepstral Coefficient

Audio Frames Sequence

. . . 

Hyper Complex Layer

W
as

se
rs

te
in

 R
ie

m
an

ni
an

 E
nc

od
er

 T
ra

ns
fo

rm
er

D
ua

l F
us

ed
 H

yp
er

 C
om

pl
ex

 T
ra

ns
fo

rm
er

Multi-Head Self
Attention

Add & Norm

Positional

Multi-Head Cross
Modal Attention

Add & Norm

. . . 

Encoding

Feed Forward

Add & Norm

Feed Forward

Softmax

Output Probabilites

Input Text Output Text

B
A

R
T 

D
ec

od
er

Cross Modal Attention

Figure 6.2: An overview of the proposed model – mTLDRgen. It houses two parallel encoders, one
with a hyper-complex layer fused with the video embeddings using cross-model attention and
the other with Wasserstein Riemannian Encoder Transformer with audio embeddings fused with
cross-model attention. The individual encoder representations are later fused with the multi-head
attention of the pre-trained BART decoder to generate the final summary.

are manually annotated and transformed into a text feature set for training. In contrast, the
acoustic features for mTLDRgen are not transformed into the text as they are characterized by a
variety of non-native English accents and a high error rate for speech-to-text models. Both the
textual representations are tokenized using the vanilla BART tokenizer and transformed to word
vectors using standard Transformer positional encoding embeddings.

6.4.4 Dual-fused Hyper-complex Transformer

We propose a dual-fused hyper-complex Transformer (DFHC) for the task of multimodal text
summarization. Compared to multi-head attention, the hyper-complex layer allows mTLDRgen to

84



efficiently capture the intricacies between different modalities and learn better representations [188]
in the hyper-complex space. For the block DFHC, we represent the text as X and pass it through
the hyper-complex layer to extract the (Q) Query, (K) Key and (V) Value transformations as
follows: Q,K, V = Φ(HCL(X)), where HCL(X) = Hx+ b. Here H ∈ Rm×n is constructed by a
sum of Kronecker products and is given by H =

∑n
i=1 Pi ⊗Qi. The Pi and Qi are the parameter

matrices, and ⊗ represents the Kronecker product.
The final attention score A is obtained as:

A = softmax(
QKT

√
dk

)

Here Q represents the query value, K represents the key value, and dk represents the key
dimension.

The HCL layers share attention weights among the multi-head attention heads. The multi-head
attention weights are concatenated and represented as

X = HCL([H1 + ...+HNumh
])

Here Numh represents the attention head. The final output obtained from the HCL layer is
represented as:

Y = HCL(ReLU(HCL(X))),

The transformation Y is passed through a multi-head attention block and is fused with the visual
embeddings using the cross-model attention as discussed in Section 6.4.6.

6.4.5 Wasserstein Riemannian Encoder Transformer

We base our idea from [189] to repurpose the Wasserstein Riemannian Autoencoder to Wasserstein
Riemannian Encoder Transformer (WRET) in the summarization setting.

For an input X and a manifold M , the Riemannian manifold is represented as (M,G), where G
represents the Riemannian tensor unit. For two vectors u and v in the tangent space TzM , the
inner product is computed using ⟨u, v⟩G = uTG(z)v. The Wasserstein block acts as a Variational
Autoencoder. However, we extract the feature dimension from the last layer and feed it to the
attention block.

The Wasserstein Autoencoder optimizes the cost between the target data distribution Ax(x)
and the predicted data distribution Bx(x) using:

Dist(AX , BG) = inf
Q(Z|X)∈Q

EPX
EQ(Z|X)[c(X,G(Z))]

+ λMMD(QZ , PZ)

where G is the generator function, λ is a learnable metric, c is the optimal cost, and Dz is
approximated between BG and QZ(z) =

∫
q(z|x)p(x)dx using the Maximum Mean Discrepancy

(MMD) [190]. The MMD is computed using
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MMDk(PZ , QZ) = ||
∫
Z
k(z, ·)dPZ −

∫
Z
k(z, ·)dQZ ||

We formulate a RNF function F = fK . . . f1, and optimize the following RNF-Wasserstein function,

Dist(AX , BG) = inf
Q(Z|X)∈Q

PXQ(Z|X)[c(X,G(Z ′))]

+ λMMD(QZ′ , PZ′)

+ α(KLD(q(z|x)||p(z)) −
∑

log |det∂f
′

∂z
|)

where Z ′ = F (Z), KLD is KL [191] divergence, and p(z) represents the posterior probability
distribution. The MMD term is approximated using the Gaussian kernel k(z, z′) = e−||z−z′||2 . The
term G(Z ′) represents the reconstructed feature set, which is then passed to a feed-forward layer.
The attention weights are computed for G(Z ′) and fused with the audio feature using cross-modal
attention as discussed in Section 6.4.6.

6.4.6 Cross-model Attention

We fuse the text-video and text-audio features using cross-modal attention to align the attention
distribution obtained from the last layer. The text feature set projects the Query (Q) value,
while the video and audio features project the key (K) and value (V ), respectively. The obtained
Q, K, and V representations are passed through cross-modal attention, and the final encoder
representation Es is obtained.

Q = ZtWq; K = ZvWk; V = ZvWv

Es = softmax

(
XαWQαW

⊤
Kβ
X⊤

β√
dk

)
XβWVβ

The amalgamated representation, represented as Es, is subsequently integrated with the multi-
head attention mechanism of the BART decoder to yield the final summary.

To the best of our knowledge, the application of hyper-complex Transformer and Wasserstein
Riemannian flow for abstractive text summarization has not been explored yet.

6.5 Experiments

We perform extensive ablations to evaluate the efficacy of the proposed modules of mTLDRgen and
individual modalities. We explore how text, visual and acoustic features perform separately and
jointly over mTLDR and How2.
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Table 6.2: Performance benchmark over six text-only Extractive (Extr) baselines (Lead-2, Lexrank,
TextRank, MMR, ICSISumm, and BERTExtractive), eight text-only Abstrative (Abst) baselines
(Seq2Seq, Pointer Generator (PG), CopyTransformer, Longformer, BERT, BART, T5, and Pegasus),
two video-only baselines (Action feature, and Action feature with RNN), and four Multimodal
baselines (HA, FLORAL, MFFG, and ICAF) over the datasets – mTLDRgen and How2. The
benchmarks are evaluated over the Quantitative metric – Rouge (Rouge-1 (R1), Rouge-2 (R2), and
Rouge-L (RL)), and Qualitative metric – BERTScore (BERTSc.) and FEQA.

Type System
mTLDR How2

R1 R2 RL BERTSc. FEQA R1 R2 RL BERTSc. FEQA

Extr-text

Lead-2 22.82 4.61 15.47 61.27 32.45 43.96 13.31 39.28 71.56 32.28
LexRank 27.18 6.82 17.22 63.23 34.21 27.93 12.88 16.93 64.52 31.89
TextRank 27.43 6.86 17.41 63.34 34.29 27.49 12.61 16.71 64.55 31.92
MMR 29.54 8.19 18.84 64.59 35.67 28.24 13.12 17.86 64.87 31.98
ICSISumm 31.57 9.52 19.42 65.84 36.14 28.53 13.44 17.93 65.14 32.16
BERTExtractive 31.52 9.49 19.31 65.83 36.13 27.18 12.47 15.38 63.47 31.67

Abst-text

Seq2Seq 23.54 5.61 15.48 62.47 31.57 55.37 23.08 53.86 76.15 36.48
PG 23.59 5.78 16.21 62.71 31.84 51.68 22.63 50.29 73.47 35.37
CopyTransformer 25.63 7.82 18.54 63.11 37.86 52.94 23.25 50.26 73.58 35.43
Longformer 21.37 6.47 15.12 61.05 32.14 49.24 21.39 47.41 72.39 35.28
BERT 24.87 8.85 18.33 62.91 31.89 53.74 23.86 48.06 73.45 35.62
BART 26.13 9.69 19.62 64.24 38.64 53.81 23.89 48.15 73.51 35.68
T5 25.87 9.24 18.63 64.13 38.45 53.21 22.51 47.48 73.42 35.65
Pegasus 26.66 9.83 19.26 64.85 36.98 53.87 23.91 48.17 73.61 35.70

Video only
Act. feat. 26.38 6.47 15.37 62.48 30.41 45.24 24.42 38.47 69.74 31.28
RNN (Act. feat.) 26.73 6.51 15.75 63.14 31.35 48.27 27.74 46.37 72.32 35.11

Multimodal

HA 29.32 11.84 26.18 67.24 39.37 55.82 38.31 54.96 77.15 38.55
FLORAL 31.69 13.54 31.55 69.56 41.19 56.84 39.86 56.93 79.84 39.14
MFFG 33.19 18.88 33.28 71.54 43.13 61.49 44.61 57.21 80.16 41.59
ICAF 36.38 20.54 34.52 73.94 45.63 63.84 44.78 58.24 82.39 42.86
mTLDRgen 41.62 22.69 37.87 78.39 48.46 67.33 48.71 61.83 84.11 44.82

∆mTLDRgen BEST ↑ 5.24 ↑ 2.15 ↑ 3.35 ↑ 4.45 ↑ 2.83 ↑ 3.49 ↑ 3.93 ↑ 3.59 ↑ 1.72 ↑ 1.96

Table 6.3: Ablation study to show the efficacy of each module of mTLDRgen.

System
mTLDR How2

Rouge-1 Rouge-2 Rouge-L BERTScore Rouge-1 Rouge-2 Rouge-L BERTScore

Transformer 25.63 7.82 18.54 63.11 52.94 23.25 50.26 73.58
+ DFHC 29.37 11.78 23.19 67.81 57.34 28.71 56.02 77.31
+ WRET 34.52 14.82 26.54 72.06 61.12 36.89 58.1 81.44
+ DFHC & WRET 37.34 18.32 32.49 74.58 64.23 42.61 59.02 82.45

mTLDRgen 41.62 22.69 37.87 78.39 67.33 48.71 61.83 84.11

Evaluation measures: We evaluate the performance of mTLDRgen using both quantitative
metrics - Rouge-1, Rouge-2, and Rouge-L and qualitative metrics – BERTScore and FEQA. Rouge
measures the recall of unigrams (Rouge-1), bigrams (Rouge-2), and n-grams (Rouge-L) between
the generated and target summaries. BERTScore assesses the similarity between the generated and
target summaries in the embedding space through the cosine similarity of the BERT embeddings.
FEQA, a question-answer generation metric, evaluates the quality of the generated summaries by
determining the number of answers mapped to questions generated from the target summaries.

We further perform human evaluations4 In the evaluations, we benchmark the summaries over

4The human evaluations were performed by 15 individuals with sufficient background in NLP, machine learning
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the following parameters — Informativeness, Fluency, Coherence and Relevance. We randomly
sample 40 instances from the test set and evaluate them against the target summaries. We
perform human evaluations for BART (text-only), T5 (text-only), MFFG (multimodal), FLORAL
(multimodal) and mTLDRgen (multimodal).

6.5.1 Training

The implementation of the mTLDRgen model was carried out by utilizing the Pytorch 1.8.1 framework
on an NVIDIA A6000 GPU equipped with 46 GB of dedicated memory and CUDA-11 and cuDNN-7
libraries. The model was initialized with pre-trained BART LM weights for the encoder and decoder
and fine-tuned on the summarization dataset. In the implementation, the loss computation was
only performed over the target sequence in adherence to the encoder-decoder paradigm.

Table 6.4: Comparison of target summary with six models – Extractive (ICSISumm), Abstractive
(Pointer Generator (PG), BART, Pegasus) and multimodal (ICAF and mTLDRgen) models.

Model Output

Target In this paper, we propose an adversarial multi-task learning framework, where the shared and private latent
feature spaces donot interfere with each other. This task is achieved by introducing orthogonality constraints.

ICSISumm To prevent the shared and private latent feature spaces from interfering with each other, we introduce two
strategies: adversarial training and orthogonality constraints.

PG propose multi-task learning for the generative , propose latent feature for multi task learning where the shared
knowledge regarded as off the self knowledge and trasferred to new task.

BART In this paper, we conduct experiment on 16 tasks demonstrate the benefits and propose multi-task learning
framework, The dataset are shared and latent feature spaces. the dataset is prone.

Pegasus In this paper, we propose an multitask learning framework, where we conduct experiments on 16 text classification
tasks. our model is off the shelf and donot interfere with each other.

ICAF we propose an adversarial multi-task framework, where we conduct experiments demostrating private feature
space do not interefere with eachother. The model is regarded as off the shelf and transferred to new task.

mTLDRgen In this paper, we propose an multi-task framework, the shared and private latent feature spaces not interfere
with each other. We conduct experiments on 16 text classification tasks.

6.5.2 Quantitative Analysis

Table 6.2 compares the performance of mTLDRgen with that of its baselines across the How2 and
mTLDR datasets. Our results demonstrate that mTLDRgen outperforms the best baseline, ICAF,
with a Rouge-1 score of 41.62 and a Rouge-L score of 37.87, an improvement of +5.24 and +3.35,
respectively. When benchmarked against the How2 dataset, mTLDRgen exhibits superior results,
obtaining Rouge-1 of 67.33 and Rouge-L of 61.83, outperforming the best baseline (ICAF) by +3.49
and +3.59 points, respectively. With respect to the best text-only abstractive baseline, Pegasus
(Rouge-1 and Rouge-2) and BART (Rouge-L), mTLDRgen shows an improvement of +14.96 Rouge-1,
+12.86 Rouge-2, and +18.25 Rouge-L. Similarly, mTLDRgen surpasses ICSISumm, the best extractive

and deep learning. The participants were aged between 22-28 years.
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baseline, with an improvement of +10.05, +13.17, and +18.45 on Rouge-1, Rouge-2 and Rouge-L,
respectively.

We also perform ablations to study the efficacy of individual modalities and modules of mTLDRgen.
Table 6.5 demonstrates the performance improvements obtained when all three modalities are fused,
while Table 6.3 showcases the contribution of individual modules of mTLDRgen. These results serve
to affirm our hypothesis that models specifically designed for longer summarization sequences are
inadequate in extreme summarization tasks and that the integration of multiple modalities with
text modality enhances the quality of the generated summary.

Congruency of multi-modalities The performance of various unimodal and multimodal text
summarization systems is shown in Table 6.2. The results demonstrate that for unimodal variants,
the lead2, which was reported to be a strong baseline for datasets like CNN/Dailymail [20] and
MultiNews [12], fails to perform effectively, indicating that the latent structure of the scientific text
is distinct, and the information has a heterogeneous distribution throughout the document. In a
similar vein, the text-only abstractive baselines perform inadequately over both the How2 and mTLDR

datasets. On the other hand, the extractive baselines, which are able to identify the prominent
sentences that start with “we propose” or “we introduce”, perform better than the text-only
abstractive baselines yet still provide only a limited context of the whole article. Meanwhile, the
two video-only baselines display performance that is comparable to the best abstractive baselines,
signifying that multimodal features do indeed contribute to generating more informative and
coherent summaries. No baselines using audio-only features were run as audio captures only the
amplitude shift and intonations, which do not constitute a sufficient feature set in the vector
space. As indicated in Table 6.2, the multimodal baselines outperform the text-only and video-only
baselines. The HA model outperforms the best abstractive baseline by +2.66 Rouge-1 and +6.92
Rouge-L, demonstrating the significance of combining multimodal signals with text-only modalities.
The fusion of video with text helps the model attain better context in the vector space, even the
audio features aid in the mutual alignment of modalities leading to more diverse and coherent
summaries. Evidently, all the remaining multimodal baselines show a remarkable improvement in
performance over all the text-only extractive, text-only abstractive, and video-based baselines.

Table 6.5: Performance benchmark for each modality of mTLDRgen.

Modality Rouge-1 Rouge-2 Rouge-L

Text +Audio 27.46 7.47 19.62
Audio +Video 27.62 7.53 20.11
Text +Video 28.05 7.83 24.49
Text +Audio +Video 41.62 22.69 37.87

6.5.3 Qualitative Analysis

We also conduct a qualitative evaluation of the generated summaries utilizing BERTScore and
FEQA (c.f. Table 6.2). Both metrics use the text modality from the source and target to assess the
quality. On the mTLDR data, mTLDRgen achieves 78.39 BERTScore and 48.46 FEQA, surpassing the
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Table 6.6: Human evaluation scores over the metrics – Informativeness (Infor.), Fluency, Coherence,
and Relevance for the text-based baselines (BART and T5), multimodal baselines (MFFG, FLORAL,
and mTLDRgen) on the mTLDRgen and How datasets.

Modality System
mTLDR How2

Infor. Fluency Coherence Relevance Infor. Fluency Coherence Relevance

Abstractive-text BART 2.81 2.51 2.94 2.85 2.34 2.37 2.46 2.54
Abstractive-text T5 2.78 2.49 2.81 2.74 2.33 2.28 2.43 2.54
Multimodal FLORAL 3.2 3.03 3.02 3.11 3.13 3.14 3.08 3.13
Multimodal MFFG 3.21 3.05 3.09 3.11 3.17 3.21 3.04 3.11
Multimodal mTLDRgen 3.46 3.32 3.27 3.29 3.34 3.27 3.21 3.18

best baseline (ICAF) by +4.45 and +2.83 points, respectively. For the How2 dataset, mTLDRgen
obtains 84.11 BERTScore and 44.82 FEQA, outperforming the best baseline (ICAF) by +1.72
and +1.96 points, respectively. Similar to the quantitative benchmarks, the multimodal baselines
outperform the text-only extractive, abstractive, and video-only baselines by a substantial margin.

6.5.4 Human Evaluation

The quantitative enhancements are further reinforced by human assessments. As shown in Table 6.6,
mTLDRgen scores highest over the datasets – mTLDR and How2, demonstrating that the generated
summaries are highly faithful, pertinent, and coherent in comparison to the other baselines. Although
mTLDRgen demonstrates some deficiencies in the coherence criterion in the human evaluations, it
still performs significantly better than the other baselines. A manual examination of the generated
summaries and an analysis of the findings are presented in Section 8.7.

6.5.5 Error Analysis

The limitations of extractive and abstractive baselines in generating extreme summaries are evident.
Extractive systems rely on direct copying of phrases from the source document, often resulting in a
single-line summary containing limited information diversity. This is reflected in their performance
compared to abstractive text-only and a few multimodal (HA and FLORAL) baselines, as seen in
Table 6.4 and Table 6.6. The text-only abstractive baselines like Seq2Seq and PG fail to extract
the paper’s main contributions, while Transformer based methods like Longformer, BERT, etc.,
struggle to summarize the contributions in very few lines.

However, mTLDRgen stands out as it is able to condense the three key contributions of the
source article into a single sentence, demonstrating superiority over the other baselines. A manual
inspection of instances where mTLDRgen failed to generate a good summary reveals that the cause
was often due to noisy text modality extracted from the article pdf, leading to non-coherent
connections between phrases. Further, the data noise in the video and audio modalities arising due
to different aspect ratios of presentation and speaker and non-native English accent speakers adds
to the perplexity of modality alignment.
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6.6 Conclusion

We introduced a novel task of extreme abstractive text summarization using multimodal inputs.
we curated mTLDR, a unique large-scale dataset for extreme abstractive text summarization that en-
compasses videos, audio, and text, as well as both author-written and expert-annotated summaries.
Subsequently, we introduced mTLDRgen, a novel model that employs a dual fused hyper-complex
Transformer and a Wasserstein Riemannian Encoder Transformer to efficiently capture the re-
lationships between different modalities in a hyper-complex and latent geometric space. The
hyper-complex Transformer captures the intrinsic properties between the modalities, while the
Wasserstein Riemannian Encoder Transformer captures the latent structures of the modalities in the
latent space geometry, enabling the model to generate diverse sentences. To assess the mTLDRgen,
we conducted thorough experiments on mTLDR and How2 datasets and compared their performance
with 20 baselines. Overall, mTLDRgen demonstrated superior performance both qualitatively and
quantitatively.

91



Chapter 7

Fingerprinting Corpus Bias and its
Effects on Systems

Multi-document summarization (MDS) aims to condense key points from diverse documents into a
concise text paragraph, facilitating aggregation of news, tweets, and product reviews from various
sources. However, the absence of a standard definition for MDS leads to datasets with varying
overlap and conflict among documents, complicating evaluation. Moreover, the lack of standard
criteria for defining summary information further adds to the challenge. New systems often report
results on specific datasets, potentially lacking correlation with their performance on other datasets.
In this work, we address these challenges by studying the heterogeneous nature of MDS using
widely-used datasets and state-of-the-art models. We quantify the quality of summarization corpora
and provide guidelines for creating new MDS datasets. Additionally, we analyze reasons for the
absence of an MDS system achieving superior performance across all datasets. We also assess the
quality of training samples and evaluate the effectiveness of data sampling by benchmarking various
language models.

7.1 Introduction

Multi-document summarization (MDS) deals with compressing more than one document into
a textual summary. It has a wide range of applications – gaining insights from tweets related
to similar hashtags, understanding product features amongst e-commerce reviews, summarizing
live blogs related to an ongoing match, etc. Most studies on MDS were performed during the
DUC1 and TAC2 challenges starting in the early 2000s. Each version of the challenges released
a new dataset. Most of the MDS systems submitted to these challenges were unsupervised and
extractive in nature. Gradually, the data released in these challenges became the de facto for MDS.
These datasets were manually curated and had less than a hundred instances each. The recent
development of deep neural architecture has led to a significant increase in the number of supervised
document summarization systems. Large labeled datasets which are mostly crowd-sourced have

1https://duc.nist.gov/
2http://tac.nist.gov
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been introduced to meet the training requirements of the supervised systems. However, the crowd-
sourced datasets widely differ in quality based on factors like genre, size of the community, presence
of moderation in the community, etc. This is further aggravated by the complexity of the task,
the hardness of accumulating labeled data, or more so in the definition of what constitutes a
multi-document summary.

Recently, several large datasets for multi-document summarization (MDS) have been introduced
[12, 192]. However, there has been a lack of studies measuring the relative complexity or quality
of samples within these datasets. We observe notable variations in the behavior of existing MDS
systems across different datasets, with systems achieving state-of-the-art performance on one corpus
often failing to perform adequately on another. Although ROUGE scores of MDS systems are on
the rise, manual inspection reveals an increasing presence of bias in generated summaries. Moreover,
new systems are introduced and evaluated on a limited number of datasets, making it challenging
to discern whether bias originates from the system itself or is inherent in the training corpus.
Additionally, limited research exists on identifying the importance of individual training samples
within the corpus. The target summary plays a crucial role in effectively training deep learning
systems to accurately extract and map essential sections. Unlike tasks such as machine translation
or dialogue generation, where systems often focus on local context windows, summarization systems
require a broader context, both within and across documents. Therefore, to facilitate diverse
information learning, summarization systems must portray information spread in the vector space,
showcasing deep learning systems’ ability to learn various representations without fixating on local
context windows or disregarding the input document’s central theme.

We divide our investigation into two main components:

1. Evaluating the quality of datasets and their impact on systems.

2. Examining representation bias and analyzing the implications of training dynamics on dataset
samples.

Initially, we focus on addressing the first task by thoroughly investigating the quality of datasets
and their implications on system performance in Section 7.2. Subsequently, in Section 7.4, we delve
into the second task, which involves an in-depth discussion on representation bias and an analysis
of the effects of training dynamics on dataset samples.

7.2 Evaluating Dataset Quality and their Impact on Sys-

tems.

To evaluate the datasets and systems, we examine five MDS datasets – DUC [193], TAC [194],
Opinosis [195], Multinews [12], and CQASumm [13]. We consider eight popular summarization
systems – LexRank [117], TextRank [118], MMR [142], ICSISumm [143], PG [38], PG-MMR [40],
Hi-Map [12], and CopyTransformer [15].

Our major contributions for this section are four-fold:
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• We propose a suite of metrics to model the quality of an MDS corpus in terms of – Abstractness,
Inter Document Similarity (IDS), Redundancy, Pyramid Score, Layout Bias and Inverse-Pyramid
Score.
• We develop an interactive web portal for imminent datasets to be uploaded and evaluated based
on our proposed metrics.
• We explore different biases that the MDS systems exhibit over different datasets and provide insight
into properties that a universal MDS system should display to achieve reasonable performance on
all types of dataset.
• We look into metrics to capture bias shown by MDS systems and explore the extent to which
corpus properties influence them.

7.3 Related Work

7.3.1 Background and Proposed Metrics

Throughout this chapter, we use the term candidate documents for the documents participating
in summarization, and the term reference to indicate the ground-truth summary.
Oracle summary is the extractive set of sentences selected from the candidate documents,
exhibiting maximum ROUGE-N score w.r.t. the reference summary. It is an NP-hard problem
[196], and approximate solutions can be found greedily or using ILP solvers.

Here, we briefly introduce a suite of corpus and system metrics proposed by us to better
understand the MDS task.

Corpus Metrics

• Abstractness: It is defined as the percentage of non-overlapping higher order n-grams between
the reference summary and candidate documents. A high score highlights the presence of more
distinctive phrases in reference summary. The intuition behind quantifying the number of new
words is to sync with the basic human nature of paraphrasing while summarizing.
• Inter Document Similarity (IDS): It is an indicator of the degree of overlap between candidate
documents. Inspired by the theoretical model of relevance [6], we calculate IDS of a set of documents
as follows:

IDS(Di) =

∑
Dj∈S Relevance(Dj , Di)

|S|
(7.1)

where Di is the ith candidate document, and S is the set of all documents other than Di. Here,
Relevance(.,.) is defined as:

Relevance(A,B) =
∑
ωi

PA(ωi). log(PB(ωi)) (7.2)

where PA(ωi) represents the probability distribution of the ith semantic unit3 in document A. The
further this score is from 0, the lesser inter document overlap there is in terms of semantic unit

3An atomic piece of information
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distribution. As shown in Equation 7.1, the numerator calculates relevance which can be interpreted
as the average surprise of observing one distribution while expecting another. This score is small if
the distributions are similar i.e., PA ≈ PB from Equation 7.2.

• Pyramid Score: We propose the metric Corpus Pyramid score to measure how well important
information across documents is represented in the ground truth. As introduced by [197], Pyramid
score is a metric to evaluate system summaries w.r.t. the pool of ground-truth summaries. We
instead use this metric to quantitatively analyze the ground-truth summary w.r.t. candidate
documents. The entire information set is split into Summarization Content Units (SCUs4), and
each SCU is assigned a weight based on the number of times it occurs in the text. A pyramid of
SCUs is constructed with an SCU’s weight, denoting its level, and a score is assigned to a text,
based on the number of SCUs it contains. Pyramid score is defined as the ratio of a reference
summary score and an optimal summary score. Higher values indicate that the reference summary
covers the SCUs at the top of the pyramid better. SCUs present at the top are the ones occurring
in most articles and thus can be deemed as important.
• Redundancy: The amount of information in a text can be measured as the negative of Shannon’s
entropy (H) [6].

H(D) = −
∑
ωi

PD(ωi). log(PD(ωi)) (7.3)

where PD represents the probability distribution of documents D, and ωi represents the ith semantic
unit3 in the distribution. H(D) would be maximized for a uniform probability distribution when
each semantic unit is present only once. The farther this score is from 0, the better a document is
distributed over its semantic units in the distribution, hence lesser the redundancy. As evident from
Equation 7.5, redundancy is maximized if all semantics units have equal distribution i.e., P (ωi)
= P (ωj). The idea behind using redundancy is to quantify how well individual documents cover
sub-topics, which might not be the core content but important nonetheless. Thus

Redundancy(D) = Hmax −H(D) (7.4)

Since Hmax is constant, we obtain

Redundancy(D) =
∑
ωi

PD(ωi). log(PD(ωi)) (7.5)

• Layout Bias: We define Layout Bias across a document as the degree of change in importance
w.r.t. the ground-truth over the course of candidate documents. We divide the document into k
segments, calculate the importance of each segment w.r.t. the ground-truth by a similarity score,
and average over the sentences in the segment. Positional importance of Dj , the jth sentence in the
document is denoted by:

PositionalImportance(Dj) = max
1≤i≤n

sim(
−→
Dj ,

−→
Ri) (7.6)

where,
−→
Ri is the vector representation of the ith sentence in the reference, sim is a similarity metric

between two sentences, and n is the total number of sentences in the reference summary.

4They are subsentential units based on semantic meaning
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Figure 7.1: Heatmap depicting the corpus metric: Inter document similarity. We explain with a
single instance of (a) DUC-2004, (b) DUC-2003, (c) TAC-2008, and (d) CQASumm, and highlight
inter-document overlap.

Figure 7.2: (a) Layout Bias across datasets, highlighting cumulative cosine similarity (importance)
values (y-axis) between segments (first, second and third) of candidate documents and the reference
summary. (b) Change in layout importance across systems over source segments when divided in
three uniform segments. (c) Change in layout importance across systems when candidate documents
are internally shuffled and divided into three uniform segments.

A lower shift indicates that while generating reference summaries, all segments have been given
similar importance within any 3-fold segmented article.
• Inverse-Pyramid Score (Inv Pyr): We propose Inverse-Pyramid score to quantify the bias
that a reference summary exhibits w.r.t. its set of candidate documents. It measures the importance
given to each document in the candidate set by the reference summary as:

InvPyr(D,S) = V arj
(
Dj ∩ Su

)
(7.7)

Here, D and S are the set of candidate documents for MDS and their summary respectively, V ar
is the variance, Dj and Su are the sets of SCUs4 in the jth document of the candidate set and the
reference summary respectively.

Higher Inv Pyr scores suggest the difference in importance given to each document while
generating the summary is higher. As evident from Equation 7.7, Variance across the similarities is
high if the similarity scores across the document-summary pairs are uneven.

System Metrics

• ROUGE: is a metric which computes the n-gram overlap recall value for the generated summary
w.r.t. the reference summary.
• F1 Score with Oracle Summaries: Oracle summaries reflect the extractive selection of
sentences that achieve the highest ROUGE score over the candidate documents given a reference
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summary. Similar to ROUGE-1, this metric also combines both precision and recall between the
oracle and system summaries to calculate F1 Score. It is a better indicator of the presence of
non-essential n-grams than ROUGE as it also takes precision into account.
• System Abstractness: Analogous to corpus abstractness, we compute the percentage of
novel higher order n-grams in the generated summary w.r.t. the candidate documents. System
abstractness is calculated using

Coverage(D,S) =

∑
i∈1..n(D ∩ Si)

Cn(S)

where D represents the set of n-grams in the candidate document, and S represents the set of
n-grams in the ith system summary.
The denominator denotes the total count of n-grams in a system summary. Finally, the values of
all articles is normalized to get the score for the system
• Layout Bias: We propose this metric to capture which sections of the candidate documents
comprise a majority of the information in the generated summary. For neural abstractive systems,
we concatenate candidate documents to form one large document and feed it to the neural model.
We study two variations of this metric – The first variation involves segmenting this large document
into k parts and then computing the similarity of n-gram tokens of system summaries w.r.t. the
candidate document segment. The second variation includes shuffling the candidate documents
before concatenating and then computing the n-gram similarity with the generated summary.
• Inter Document Distribution (IDD): We propose this metric to quantify the extent of
contribution of each candidate document to form the generated summary. The relevance for system
summaries is calculated by,

Relevance(A,B) =
∑
ωi

PA(ωi). log(PB(ωi))

where PA represents the probability distribution of system summary S, and ωi represents the ith

semantic unit in the distribution.

IDD(Di) =

∑
Dj∈S Relevance(Dj, Di)

Cardinality(S)

•Redundancy: It measures the degree to which system summaries can cover the distribution across
semantic units generated from the candidate documents. Redundancy for candidate documents is
given by Eq.,

Redundancy(D) =
∑
ωi

SD(ωi). log(SD(ωi))

where SD represents the probability distribution of a system summary D. ωi represents the ith

semantic unit in the distribution.
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7.3.2 Experimental Setup

MDS Datasets

• DUC [193] is a news dataset built using newswire/paper documents. The 2003 (DUC-2003)
and 2004 (DUC-2004) versions comprise 30 and 50 topics respectively with each topic having 4
manually curated reference summaries.
• TAC [194] is built from the AQUIANT-2 collection of newswire articles where NIST assessors
select 48 and 44 topics for the 2008 and 2010 versions, respectively. Each topic consists of 4
summaries.
• Opinosis [195] is an accumulation of user reviews collected from various sources like TripAdvisor,
Edmunds.com and Amazon. There are 51 topics, with each topic having approximately 4 human-
written summaries.
• CQASumm [13] is a community question answering dataset, consisting of 100, 000 threads from
the Yahoo! Answers L6 dataset. It treats each answer under a thread as a separate document and
the best answer as a reference summary.
• Multinews [12] is a news dataset comprising news articles and human-written summaries from
newser.com. It has 56, 216 topics, with summaries of 260 words on average written by professional
editors.

MDS Systems

To identify bias in system-generated summaries, we study a few non-neural extractive and neural
abstractive summarization systems, which are extensively used for multi-document summarization.
• LexRank [117] is a graph based algorithm that computes the importance of a sentence using the
concept of eigen vector centrality in a graphical representation of text.
• TextRank [118] runs a modified version of PageRank [145] on a weighted graph, consisting of
nodes as sentences and edges as similarities between sentences.
• Maximal Marginal Relevance (MMR) [142] is an extractive summarization system that
ranks sentences based on higher relevance while considering the novelty of the sentence to reduce
redundancy.
• ICSISumm [143] optimizes the summary coverage by adopting a linear optimization framework.
It finds a globally optimal summary using the most important concepts covered in the document.
• Pointer Generator (PG) network [38] is a sequence-to-sequence summarization model which
allows both copying words from the source by pointing or generating words from a fixed vocabulary.
• Pointer Generator-MMR: PG-MMR [40] uses MMR along with PG for better coverage and
redundancy mitigation.
• Hi-Map: Hierarchical MMR-Attention PG model [12] extends the work of PG and MMR. MMR
scores are calculated at word level and incorporated in the attention weights for a better summary
generation.
• Bottom-up Abstractive Summarization (CopyTransformer) [15] uses transformer param-
eters proposed by [45]; but one of the attention heads chosen randomly acts as a copy distribution.

98



Dataset
Metric

Abstractness
Red IDS Pyr Inv

1-gram 2-gram 3-gram
DUC 11.5 54.66 79.29 -0.21 -6.6 0.35 2.64
Opinosis 11.5 50.36 76.31 -0.02 -5.53 0.26 2.8
Multinews 32.28 67.53 80.45 -0.8 -1.03 0.4 3.8
CQASumm 41.41 80.72 88.79 -0.22 -9.16 0.05 5.2
TAC 9.91 50.26 76.17 -0.19 -4.43 0.32 2.9

Table 7.1: Values of corpus metrics: Abstractness, Redundancy (Red), Inter Document Similarity
(IDS), Pyramid Score (Pyr) and Inverse-Pyramid Score (Inv).

7.3.3 Inferences from Corpus Metrics

• News derived datasets show a strong layout bias where significant reference information is
contained in the introductory sentences of the candidate documents (Fig. 7.2).
• Different MDS datasets vary in compression factors with DUC at 56.55, TAC at 54.68, Multinews
at 8.18 and CQASumm at 5.65. A high compression score indicates an attempt to pack candidate
documents to a shorter reference summary.
• There has been a shift in the size and abstractness of reference summaries in MDS datasets over
time – while DUC and TAC were small in size and mostly extractive (11% novel unigrams); crowd-
sourced datasets like CQASumm are large enough to train neural models and highly abstractive
(41.4% novel unigrams).
• Candidate documents in Opinosis, TAC and DUC feature a high degree of redundant information
as compared to Opinosis and CQASumm, with instances of the former revolving around a single
key entity while that of the latter tending to show more topical versatility.
• MDS datasets present a variation in inter-document content overlap as well: while Multinews
shows the highest degree of overlap, CQASumm shows the least and the rest of the datasets show
moderate overlap (see Fig. 7.1).
• Pyramid Score, the metric which evaluates if the important and redundant SCUs4 from the
candidate documents have been elected to be part of the reference summary, shows considerably
positive values for DUC, TAC and Multinews as compared to crowdsourced datasets like CQASumm
(Fig. 7.3.b).
• Inverse-Pyramid Score, the metric which evaluates how well SCUs4 of the reference summary are
distributed amongst candidate documents, also shows better performance on human-annotated
datasets compared to crowd-sourced ones (Fig. 7.3(b)).
• A comparison amongst corpus metrics presents a strong positive correlation between IDS and
Pyramid Score (Pearson’s ρ = 0.8296) and a strong negative correlation between the metrics of
Redundancy and IDS (Pearson’s ρ = -0.8454).

7.3.4 Inferences from System Metrics

• MDS systems under consideration are ranked differently in terms of ROUGE on different datasets;
leading to a dilemma whether to declare a system superior to others without testing on all types of
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System Metric
Dataset

DUC TAC Opinosis Multinews CQASumm

LexRank

R1 35.56 33.1 33.41 38.27 32.22
R2 7.87 7.5 9.61 12.7 5.84
F1 31.34 31.51 31.05 41.01 49.71
Red. -0.136 -0.104 -0.278 -0.29 -0.364
IDD -3.377 -1.87 -3.526 -2.53 -2.17
IDDV 0.239 1.62 0.221 0.242 1.232

TextRank

R1 33.16 44.98 26.97 38.44 28.94
R2 6.13 9.28 6.99 13.1 5.65
F1 40.8 29.69 31 38.44 46.3
Red. -0.25 -1.553 -0.342 -0.208 -0.247
IDD -0.196 -5.97 -2.745 -1.879 -2.137
IDDV 0.799 1.48 0.025 0.146 0.744

MMR

R1 30.14 30.54 30.24 38.77 29.33
R2 4.55 4.04 7.67 11.98 4.99
F1 30.57 28.3 31.8 42.07 45.48
Red. -0.266 -0.068 -0.255 -0.17 -0.288
IDD -2.689 -2.135 -3.213 -1.83 -2.059
IDDV 1.873 0.231 0.222 0.157 0.126

ICSI
-Summ

R1 37.31 28.09 27.63 37.2 28.99
R2 9.36 3.78 5.32 13.5 4.24
F1 24.27 27.82 29.83 44.71 50.98
Red. -0.327 -0.283 -0.328 -0.31 -0.269
IDD -3.357 -1.903 -3.244 -3.14 -2.466
IDDV 0.694 0.403 1.134 0.239 0.242

PG

R1 31.43 31.44 19.65 41.85 31.09
R2 6.03 6.4 1.29 12.91 5.52
F1 23.08 26.32 16.08 43.89 21.85
Abs. 0.017 0.01 0.04 0.28 0.065
Red. -0.16 -0.2542 -0.188 -0.28 -0.12
IDD -2.1 -1.93 -2.1 -2.103 -0.5
IDDV 0.248 0.398 0.168 0.391 0.391

PG-MMR

R1 36.42 40.44 19.8 40.55 36.54
R2 9.36 14.93 1.34 12.36 6.67
F1 24.3 26.9 16.39 43.93 21.72
Abs. 0.019 0.02 0.04 0.275 0.069
Red. -0.17 -0.26 -0.172 -0.29 -0.142
IDD -2.4 -1.87 -1.9 -1.98 -0.72
IDDV 0.441 0.274 0.192 0.249 0.318

Transformer

R1 28.54 31.54 20.46 43.57 30.12
R2 6.38 5.9 1.41 14.03 4.36
F1 15.72 17.82 16.38 44.54 21.35
Red. -0.1771 -0.17 -0.189 -0.18 -0.273
Abs. 0.09 0.09 0.049 0.319 0.092
IDD -1.9148 -1.8677 -1.589 -1.89 -2.239
IDDV 0.138 0.172 0.249 0.126 1.184

Hi-Map

R1 35.78 29.31 18.02 43.47 31.41
R2 8.9 4.61 1.46 14.89 4.69
F1 25.89 24.3 20.36 42.55 19.84
Abs. 0.14 0.147 0.08 0.267 0.07
Red. -0.1722 -0.2002 -0.16 -0.23 -0.26
IDD -1.6201 -1.652 -1.8 -1.788 -2.223
IDDV 0.185 0.155 0.209 0.209 0.448

Highest
R1 94.01 94.07 44.53 79.94 64.45
R2 49.85 50.17 5.73 42.41 18.38

Table 7.2: Various metrics (Met) showing ROUGE Scores (ROUGE-1, ROUGE-2), F1 Score (F1)
between candidate documents and oracle summaries, Abstractness (Abs.) of abstractive systems,
Redundancy (Red.) in system generated summaries, Inter Document Distribution (IDD) and Inter
Document Distribution Variance (IDDV) of system summaries in dataset DUC, TAC, Opinosis,
Multinews and CQASumm.
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Figure 7.3: (a) Abstractness across datasets. (b) Redundancy, Pyramid Score and Inverse-Pyramid
Score (Inv Pyr scaled down by a factor of 10 for better visualization with other metrics) across
datasets. (c) Inter Document Similarity (IDS) across datasets.

Figure 7.4: (a) Level of abstractness of systems w.r.t. candidate documents and the system
generated summaries. (b) F1 Score of various systems between oracle summaries and system-
generated summaries. (c) ROUGE scores of various system summaries on the left axis and maximum
ROUGE score over a dataset on the right axis.

Figure 7.5: Redundancy of various systems across DUC, TAC, Opinosis, Multinews and CQASumm.

datasets (Fig. 7.4(c)) and Table 7.2).
• MDS systems under consideration outperform abstractive summarization systems by up to 10%
on ROUGE-1 and up to 30% on F1 Scores, showing contradictory behavior in comparison to
single-document summarization systems where state-of-the-art abstractive systems are known to
outperform the former (Figs. 7.4(b)-(c)).
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• The best summarization system on each corpus obtains a score 39.6%, 47.8%, 75.02%, 54.5%, 49.9%
of the oracle upper bound on DUC, TAC, Opinosis, Multinews and CQASumm respectively,
indicating that summarization on Opinosis and Multinews is a partially solved problem, while
DUC, TAC and CQASumm exhibit considerable scope for improvement (Fig. 7.4(c)).
• Hi-Map and CopyTransformer generate more abstract summaries (17.5% and 16% novel unigrams
respectively) in comparison to PG and PG-MMR (Fig. 7.4(a)).
• Averaging over systems and comparing datasets, we notice that Multinews and CQASumm
achieve the highest abstractness (27% and 7% respectively), which might be a result of these two
datasets having the most abstract reference summaries (Fig. 7.4(a) and (Table 7.2)).
• Abstractive systems exhibit a 55% shift in importance between the first and the second segments
of generated summaries, whereas extractive systems show an average shift of only 40%, implying
that abstractive systems have a stronger tendency to display layout bias (Fig. 7.2(b) and Fig.
7.2(c)).
• While DUC, TAC and Opinosis summaries generated from PG trained models exhibit lower novel
unigrams formation, the same for CopyTransformer and Hi-Map on DUC, TAC and Opinosis shows
a higher unigram formation on average (Fig. 7.4(a)).
• In terms of Inter Document Distribution, LexRank summary for TAC and CQASumm shows
more variance across documents compared to DUC, Opinosis and Multinews. TextRank summary
on DUC, TAC and CQASumm, MMR summary on DUC, and Hi-Map summary on CQASumm
show higher variances as well. Systems such as PG, PG-MMR and CopyTransformer show minimal
deviation in the document participation across datasets (Table 7.2).
• In terms of Topic Coverage, extractive systems show better coverage than abstractive systems
(Table 7.2), which might be a result of extractive systems being based on sentence similarity
algorithms which find important sentences, reduce redundancy and increase the spread of information
from different segments of the candidate document. (Fig. 7.5).

7.3.5 Discussion

Q1. How should one model the quality of an MDS corpus as a function of its
intrinsic metrics? What guidelines should be followed to propose MDS corpora for
enabling a fair comparison with existing datasets? The quality of an MDS corpus is a
function of two independent variables: the quality of the candidate documents and the quality of
the reference summary. Our findings suggest that a framework for future MDS datasets should
provide scores measuring their standing w.r.t. both the above factors. The former is usually
crowd-source dependent, while the latter is usually annotator dependent. While Inter Document
Similarity, Redundancy, Layout Bias and Inverse-Pyramid Score are indicators of the properties
of the candidate document, metrics such as Abstractness of the reference summary and Pyramid
Score are ground-truth properties. We divide the above metrics into two categories: objective and
subjective. While all these metrics should be reported by imminent corpora proposers to enable
comparisons with existing datasets and systems, we feel that the objective metrics average Pyramid
Score and Inverse-Pyramid Score must be reported as they are strong indicators of generic corpus
quality. Other subjective metrics such as IDS, Redundancy, Abstractness etc. can be modeled to
optimize task-based requirements.
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Metric
Layout correlationSystem

Abs. corr R-1 corr
First Second Third

LexRank - 0.08 0.88 0.06 0.96
TextRank - -0.24 0.91 0.76 0.97
MMR - 0.32 0.86 0.09 0.97
ICSISumm - 0.11 0.39 0.53 0.72
PG 0.57 0.65 0.80 -0.80 -0.98
PG-MMR 0.57 0.33 0.84 -0.69 -0.91
CopyTrans. 0.47 0.50 0.84 -0.31 -0.79
Hi - Map 0.11 0.45 0.74 -0.11 -0.46

Table 7.3: Pearson correlation between corpus and system with column 4 (First) between Abstract-
ness of corpora and system, column 5 (Second) between Abstractness of corpora and ROUGE-1
score of systems across datasets and column 6 (Third) showing Layout Bias correlation between
system and corpora.

Q2. Why do the ROUGE-based ranks of different MDS systems differ across
datasets? How should an MDS system which is to achieve reasonably good ROUGE
score on all corpora look like? From Table 7.2 within studied systems, in terms of ROUGE-1,
ICSISumm achieves the best score on DUC, TextRank on TAC, LexRank on Opinosis, CopyTrans-
former on Multinews and LexRank on CQASumm. Hence as of today, no summarization system
strictly outperforms others on every corpus. We also see that CopyTransformer which achieves
state-of-the-art performance on Multinews achieves 10 points less than the best system on DUC.
Similarly, LexRank, the state-of-the-art performer on CQASumm, achieves almost 12 points less
than the best system on TAC. Therefore, a system that performs reasonably well across all datasets,
is also missing. This is because different corpora are high on various bias metrics, and summa-
rization systems designed for a particular corpus take advantage and even aggravate these biases.
For example, summarization systems proposed on news based corpora are known to feed only the
first few hundred tokens to neural models, thus taking advantage of the layout bias. Feeding entire
documents to these networks have shown relatively lower performance. Systems such as LexRank are
known to perform well on candidate documents with high inter-document similarity (e.g., Opinosis).
Solving the summarization problem for an unbiased corpus is a harder problem, and for a system
to be able to perform reasonably well on any test set, it should be optimized to work on such corpora.

Q3. Why do systems show bias on different metrics, and which other system and
corpus attributes are the reason behind it? We begin by studying how abstractness of
generated summaries is related to the abstractness of corpora the system is trained on. For this,
we calculate the Pearson correlation coefficient between the abstractness of generated summaries
and references across different datasets. From Table 7.3, we infer that PG, PG-MMR and Copy-
Transformer show a positive correlation which implies that they are likely to generate more abstract
summaries if the datasets on which they are trained have more abstract references. Lastly, we
infer how Layout Bias in system-generated summaries is dependent on the layout bias of reference
summaries. The last three highlighted columns of Table 7.3 infer that the abstractive systems
such as PG, PG-MMR, Hi-Map and CopyTransformer show a high negative correlation for the end
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segments while maintaining a strongly positive one with the starting segment. On the other hand,
extractive systems such as LexRank, TextRank, MMR and ICSISumm maintain a strongly positive
correlation throughout the segments. On shuffling the source segments internally, we observe that
extractive systems tend to retain their correlation with corpora while abstractive systems show
no correlation at all (Fig. 7.2), proving that in supervised systems, the layout bias in system
summaries propagates from the layout bias present in corpora.

Q4. Is the task of MDS almost solved, or there is still plenty of scope remaining
for improvement? In the previous sections, we computed the oracle extractive upper bound
summary using greedy approaches to find the summary that obtains the highest ROUGE score
given the candidate documents and references. We observe that the best summarization system on
each corpus today obtains a score which is 39.6% of the extractive oracle upper bound on DUC,
47.8% on TAC, 75.02% on Opinosis, 54.5% on Multinews and 49.9% on CQASumm. This shows
that there is enough scope for MDS systems to achieve double the ROUGE scores obtained by the
best system to date on each corpus except Opinosis. Therefore, we believe that the task of MDS is
only partially solved and considerable efforts need to be devoted to improving the systems.

7.4 Representation Bias in Summarization systems

In this section, we discuss how the representation bias is characterized, quantified and exploited for
quantitative and qualitative performance.

7.4.1 What is Representation Bias?

A set of samples in a dataset represents the variation of the population. Any form of data which
lacks the consideration of outliers, uneven data points, diversity and anomaly factors give rise to
representation bias. For example, the paucity of varying geographical presence in the Imagenet
[198] dataset formulates a representation bias towards the white population. Similarly, in case
of abstractive summarization, the scarcity of data points portraying as outliers, uneven themes
and non-templatic target summaries lead to representation bias towards a specific set of data
samples leading to degraded performance. This also abstains deep learning based systems from
generalizing across all genres of datasets. We study this representation bias for the task of abstractive
summarization and exploit it to gain improvements with qualitative data points.

7.4.2 Characterizing and Modeling Bias in Training Dynamics

Inspired by the study of biases [199, 200, 7] portraying that the current deep learning based
summarization systems show qualitative issues like repetitions, unfaithfulness and non-coherence,
we dive deep into the reasoning behind the same.

Given a source document and the corresponding target summary, we train an end-to-end deep
abstractive summarization system keeping the batch size as 1. The corresponding embeddings and
the encoder outputs learned at each time step are saved. We save weights at every epoch to have
the representation of the trained embeddings and the encoder representation learned. After the
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Figure 7.6: Visualizations of (a) Elbow and Davies Bouldin score for LSTM models, (b) Elbow and
Davies Bouldin score for Transformer models, (c) LSTM embedding vector visualization using PCA,
(d) LSTM encoder vector visualization using PCA, (e) Transformer embedding vector visualization
using PCA, (f) Transformer encoder vector visualization using PCA.

convergence of the system, we cluster the embedding representations and the encoder weights. The
intuition behind clustering is to understand the distance or the diversity of the data points in the
vector space. The idea is that the data points should be spread far apart to represent the diversity
of varied examples in the training sample.

For clustering of embedding and encoder weights, we use the KNN+ algorithm. We consider
the Elbow [201] method and the Davies Bouldin [202] method to find the optimum number of the
clusters for both the embedding and the encoder weights. For the LSTM-based systems, the optimal
number of clusters for the embeddings by elbow method as well as the Davies Bouldin method
came out to be 9, as shown in Fig. 7.6(a). We visualize the formulated clusters for embeddings by
reducing the dimensions using Principal Component Analysis (PCA) in Fig. 7.6(c).

We also follow the same steps for the encoder weights. The optimal number of clusters for
encoder weights is also 9 using both the Elbow and the Davies Bouldin methods. Fig. 7.6(d)
shows the encoder representation by reducing the dimension size using PCA. The visualization of
encoder weights shows the reduced data points when the number of clusters is set to 9. From the
visualizations, we infer that the vector space representation of both the embedding and the encoder
outputs is not diverse in the space and is heavily saturated. Comparatively, encoder weights show a
more diverse spread on the embedding space than the embeddings; yet the data points look heavily
saturated for both the representations.

Similarly, for the Transformer-based systems, we again use the KNN+ algorithm to perform
clustering of embeddings and the encoder weights. To find the most optimal number of clusters, we
use the Elbow and the Davies Bouldin methods. From both the methods, the most optimum number
of clusters came out to be 5. Keeping 5 as the cluster parameter, we visualize the embedding data
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Figure 7.7: Visualizations showing the mapping of clusters for LSTM-based systems from embedding-
to-encoder (array to upper cluster cloud) and encoder-to-embedding (array to lower cluster cloud).

points. However, the visualizations obtained came out to be heavily clustered and saturated at a
single point. The points that are at the farthest position are three times the average Euclidean
distance, making them outliers. We take the second best optimal cluster count as 14 and visualize
the corresponding embedding points.

We visualize the corresponding data points using PCA in Figs. 7.6(e) and 7.6(f), inferring that
the Transformer-based systems show a more diverse representation of data points at the encoder
side than any LSTM-based systems.

To better understand the delineation between the embeddings and the encoder representation,
we map the data points originating from the embedding clusters and falling in the encoder clusters
for the LSTM-based models shown in Fig. 7.7. For embedding-to-encoder map, we see that most
of the data points fall into three major encoder clusters, namely #0, #6 and #1. For cluster #0 in
the encoder, data points map to clusters #0 at 71%, and cluster #7 at 21%, while the rest of the
embedding majority is the same. For the encoder-to-embedding mapping, most data points from
the encoder cluster #3 fall in embedding clusters #4, #2, and #8 except for the encoder cluster #0,
where #2 is the majority cluster. Similarly, for the Transformer-based systems, a similar pattern is
observed (Fig. 7.8) in the embedding-to-encoder and the encoder-to-embedding mappings. For
embedding-to-encoder, the majority of the data points fall in clusters #3, #4, and #6 with minor
variations. Similarly, for the encoder-to-embedding mapping, the majority falls to clusters #13, #7,
and #5 with minor variability across classes. This taxonomy of cluster data point mapping between
the embedding weights and the encoder weights shows that the deep learning based systems learn
a similar representation irrespective of the training style or the architecture. This saturation of
weights forming limited clusters thwarts the performance and makes the model learn a fixed-type
of output template that is repeated in the generated summary irrespective of the input document.

7.4.3 Exploiting Bias for Performance

As the number of clusters and the representations are dense and saturated for both the embedding
and encoder weights, we sample the data points from each cluster to obtain diverse representations
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Figure 7.8: Visualizations showing the mapping of clusters for Transformer-based systems from
embedding-to-encoder (array to upper cluster cloud) and encoder-to-Embedding (array to lower
cluster cloud).

to make the systems more generalizable, easier to train, and perform better across the dataset. The
subsampling helps in the data distillation as to use only the essential data points during training.

For subsampling of the data points, we extend the study of [203] to filter the data points. For
every data point in the training set, we use the cosine similarity based KNN+ algorithm. The
cluster Ci is formulated using

Ci = κ(fi, F, k) (7.8)

where F = feat(X) is the feature matrix, and k is the nearest neighbour. Now, for the cluster Ci,
we define another sub-cluster Si,

Si = γ(Ci) (7.9)

with fi as the centre of cluster Ci and fj forming as the neighbor of fi. The similarity of all the
points is computed with respect to the centre as a vector {Si,j}kj=1. The data points in Si are sorted
concerning the similarity function as shown in Fig. 7.9. The subsamples based on the upper limit
are extracted uniformly from each Si.

The training data points obtained from the sorted clustered samples are benchmarked by
finetuning them over the BART [204] language model. We finetune BART over the complete
CNN/Dailymail, Multinews and CQASumm dataset, and obtain the overall benchmark results. We
then perform the subsampling to obtain 10K subsamples for the CNN/Dailymail data, Multinews
and CQASumm. We finetune BART on the 10K subsampled data and compare the performances
with the complete data (Table 7.4).

We observe that for CNN/Dailymail data, the 10K subsampled instances attain a 39.49 R1
and 36.38 RL, an improvement of +4.92 R1 and +5.04 RL over the Random 10K and only 0.64
R1 and 0.46 RL lower than the performance on the complete dataset. Similarly, FEQA and the
Pyramid score gain an improvement of +3.73 and +0.06, respectively against the random 10K
samples showing that the qualitative performance can be achieved with just 10% of data without
compromising on the quantitative performance. Similarly, when 40k subsampled data is finetuned,
the performance gain is only 0.17 R1 and 0.26 RL lower than the complete dataset. For Multinews,
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Dataset No. of samples Rouge-1 Rouge-2 Rouge-L F1 Rouge-L BERTScore FEQA Pyramid

CNN/Dailymail

Random 10K 34.57 14.83 31.34 30.29 22.63 12.79 0.28

10K 39.49 17.84 36.38 36.31 26.47 16.52 0.34

40K 39.96 17.66 36.58 36.59 26.44 16.48 0.34

100K 40.18 17.74 36.67 36.73 26.49 16.49 0.35

Complete 40.13 17.76 36.84 36.79 26.57 16.57 0.36

Multinews

Random 10K 34.1 10.24 13.64 13.4 21.54 9.33 0.23

10K 42.76 13.86 17.07 17.02 33.88 13.24 0.27

20K 42.89 13.94 17.09 16.95 33.89 13.24 0.26

40K 43.41 13.91 17.13 17.08 33.83 13.25 0.27

Complete 43.49 14.02 17.21 17.16 34.21 13.27 0.28

CQASumm

Random 10K 22.41 3.12 14.62 14.52 18.41 7.02 0.13

10K 29.67 4.87 19.64 19.44 22.12 9.64 0.21

30K 29.41 4.86 19.77 19.67 22.04 9.65 0.19

50K 29.38 4.91 20.17 19.92 22.06 9.68 0.22

Complete 31.47 5.02 20.28 20.24 22.16 9.71 0.24

Table 7.4: Benchmarking scores over various subsampled data on the metrics – Rouge-1, Rouge-2,
Rouge-L, Rouge-L F1, BERTScore, FEQA, and Pyramid score for the datasets – CNN/Dailymail,
Multinews and CQASumm.

the subsampled 10K data produces 42.76 R1 and 43.49 RL, a reduction of just 0.73 R1 and 0.14
RL while giving an improvement of +0.4 FEQA and +0.01 Pyramid score. We notice similar trend
for the CQASumm dataset on which the gain is +0.04 FEQA and +0.02 Pyramid score (Table 7.4).

Figure 7.9: A cluster showing the samples with respect to the distance from the center. The
datapoints are rearranged according to the distance from minimum to maximum.

7.5 Analysis

In the previous section, we assess the diversity of the embedding weights and the encoder weights
in the vector space learned during the model training. Our intuition is that the deep learning based
models should learn a diverse representation so as to handle variable source input. We analyze these
characteristics for both types of the summarization systems – LSTM-based and Transformer-based.
Our study indicates that both types of models often learn similar weight matrices across the
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embedding as well as in the encoder vector space shunning the variable input representation. Even
though the embeddings can represent the variation in the vector space but the summarization
system, during its training, maps these data points to a saturated point at the encoder side. From
Fig. 7.7(c), we observe that the embeddings show large variability; however, the encoder space
shows the points getting saturated. In case of Transformers, the embedding weights are saturated;
however, Fig. 7.8(f) shows that the embedding points are again mapped to a saturated continuous
sequence of clusters. This indicates that the current systems, irrespective of the deviation in the
input source, try to learn similar weights at the encoder side, giving a templatic and repetitive
output in the generated summaries. After the analysis, we filter out the data points using the
hierarchical clustering algorithm discussed in the previous Section and finetune them over the
BART [204] language model. When compared with the performance of the systems trained on the
complete data, the subsampled 10K finetuned systems stand comparable while the performance is
at par against those finetuned on the randomly-sampled data. This shows that an uncontrolled urge
to extract more data for the models is not the right way; limited qualitatively labelled data can
provide the model with sufficient information to make it learn diverse representations, generalize
across datasets and easier to train.

7.6 Discussion

We discuss some of the insights obtained from the analysis performed over the biases characterized.
Does deep learning model favour generalization? Deep learning models, in general,

exploit the biases to learn the representations between the source data and the target data. The
relations obtained act as weights to map the contextual relationship for providing inference on the
unseen data. However, the exploitation does not always lead to better benchmark scores. For a
given problem, the datasets are often collected from a crowdsourced platform that may affect the
quality of the dataset due to various reasons such as absence of moderation, limited themes, and
more engagement over the trending topics. These limitations make the data less robust and limited
to be usable over a particular genre or a problem. Often the proposed models are benchmarked on
limited datasets as they fail to perpetuate the performance across similar problems.

Does diversity in training samples help in generalizing the systems? Deep learning
based systems require a massive amount of data for training. The available training data is an
example of the representation that the system should accept during inference for generating output.
The system learns the deviations in the individual train instance to adjust its parameters in order
to handle variability and diversity during inference. The diversity in the training data helps the
system learn these variations. However, the degree of these variations poses a question of whether
to treat the sample as a variation or an outlier. If treated as a variation, the outlier sample may
inflate the error metric, causing the system diverge from its intended goal. The threshold of what
a system should treat as an outlier and a regular sample acts as a foundation of diversity in the
training dataset. Since most of the training examples lie very close to each other due to similar
topics or themes, the threshold of a system to consider a data instance as an outlier decreases,
making the model treat the diverse training examples as outliers and learn a limited representation
as to the actual mapping.
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Can the biases be exploited for performance? Biases in summarization systems have
been exploited to favour performance. [199] exploited the lead bias in the news datasets to attain
high quantitative benchmarks. News datasets contain a majority of the vital information in the
first few paragraphs, and the systems can attain this really well, leading to high performance. [54]
used data upsampling and transfer of weights from a language model to make models perform with
a few shot transfer learning. For a dataset, each model exploits characteristics which may or may
not be known to the researchers to visualize and tweak. Our work focuses heavily on the aspect
that the biases obtained during the training phase can be exploited to attain similar performance
as obtained when a model is trained on the complete dataset.

Can the biases be rectified for datasets? What actually constitutes a bias? The definition
of bias is subjective and can not be defined as a function of either a dataset or a model. For some,
a bias can be towards gender-imbalanced inferences, and for others, a bias can be a generation of
templatic output for different source inputs. Each type of bias requires a specific solution and a
prescription either in the data or the model. As discussed by [54], a single system can not rectify
all errors. Hence, a study is needed to find the forms of biases that either help in terms of required
improvements or limit the performance of the model qualitatively or quantitatively. In addition,
biases can also be a result of internal factors like data shuffling, overfitting or external factors like a
biased opinion of a crowdsourced platform. However, in this study, we mainly focus on the biases
that thwart the performance of the model qualitatively. We study the system’s training dynamics
and the representations learned by the system at the embedding and encoder levels. Later, we
exploit these biases to gain improvements over the current summarization datasets in terms of
faithfulness and qualitative inference.

7.7 Biases in Multimodal Datasets and Systems

It is crucial to note that, to date, there have been limited datasets available [21] for multimodal
summarization, hindering comprehensive studies on biases in multimodal data. Recognizing this
gap, we have taken a proactive step by introducing two new multimodal datasets [22, 23] as part of
our research initiatives. As we continue to advocate for fairness and accuracy in summarization,
the introduction of these datasets stands as a pivotal contribution towards fostering unbiased
representation in multimodal data and systems.

7.8 Conclusion

In this chapter, we have undertaken a comprehensive exploration of the challenges inherent in
multi-document summarization (MDS) and deep learning-based models. Our aim was to study the
heterogeneous task of MDS, analyzing interactions between widely used corpora and state-of-the-art
systems to derive key conclusions. We defined MDS as a mapping from a set of non-independent
candidate documents to a synopsis covering important and redundant content in the source.
Proposing intrinsic metrics to evaluate MDS corpus quality and a framework for future corpus
creation, we laid the groundwork for further research in the field.
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Furthermore, we delved into the characterization of representation bias propagating from the
dataset into the model. We discussed the limitations hindering the performance of deep learning
models across varied datasets, highlighting the skewed representation of data in embeddings
and models in the encoder space. Utilizing hierarchical clustering, we demonstrated the efficacy
of subsampling data to achieve comparable performance against complete datasets. Leveraging
representation bias, we showcased performance improvements on subsampled datasets across various
metrics. Additionally, we provided insights into why current datasets and summarization systems
struggle to generalize across data.

111



Chapter 8

Bringing Fairness in Summarization

Multi-document Summarization (MDS) characterizes compressing information from multiple source
documents to its succinct summary. An ideal summary should encompass all topics and accurately
model cross-document relations expounded upon in the source documents. However, existing systems
either impose constraints on the length of tokens during the encoding or falter in capturing the
intricate cross-document relationships. These limitations impel the systems to produce summaries
that are non-factual and unfaithful, thereby imparting an unfair comprehension of the topic to
the readers. To counter these limitations and promote the information equivalence between the
source document and generated summary, we propose FABRIC, a novel encoder-decoder model that
uses pre-trained BART to comprehensively analyze linguistic nuances, simplicial complex layer
to apprehend inherent properties that transcend pairwise associations and sheaf graph attention
to effectively capture the heterophilic properties. We benchmark FABRIC with eleven baselines
over four widely-used MDS datasets – Multinews, CQASumm, DUC and Opinosis, and show that
FABRIC achieves consistent performance improvement across all the evaluation metrics (syntactical,
semantical and faithfulness). We corroborate these improvements further through qualitative
human evaluation.

8.1 Introduction

Multi-document summarization (MDS) aims to formulate a summary that captures the essence and
main points of multiple documents on a specific topic. In contrast to single document summarization
(SDS) that focuses on generating summaries from a single source, MDS faces additional challenges
such as dealing with a larger search space, redundant documents, and conflicting opinions. These
challenges pose difficulties for deep learning models, often resulting in the generation of summaries
that are the results of hallucination and they often lack faithfulness [205]. The development of
Large Language Models (LLMs) such as BERT [51], BART [204], and T5 [53] has significantly
advanced the field of text summarization. However, generating factually accurate and faithful
summaries remains a persistent challenge [206].

Recent studies have focused on enhancing the faithfulness and factuality of summarization
models, which is broadly categorized into three types – (i) post editing models for correcting
generated summaries [103, 100], (ii) using multi-task problems like question-answering [66, 147],
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entailment [115, 63] etc., and (iii) using external knowledge [113, 207, 208, 207, 112] to support the
model during summary generation. In contrast to these methods, we propose a novel approach
that promotes topic coherence and inter-document connections, all without the need for additional
parameters, post-editing, external knowledge, or auxiliary tasks.

Additionally, capturing semantic connections and multi-level representation can further aid
the model in discerning the redundant and pivotal information in multiple documents. Graph
neural networks [209] are constrained in terms of subpar performance in heterophilic settings1 and
oversmoothing [210] when utilized with multi-layer neural networks. To mitigate these concerns,
we propose FABRIC2 in which we introduce simplicial complex [211] layer and sheaf graph [212]
attention for multi-document summarization. Simplicial complexes are employed to apprehend the
interconnections among diverse elements of the text, encompassing words, phrases, or sentences.
By representing these associations as simplices (geometric shapes formed by combining vertices,
edges, and higher-dimensional counterparts), a simplicial complex furnishes a structure to examine
the connectivity and coherence within the text. On the other hand, sheaf graphs facilitate the
assimilation of diverse node types and attributes within the graph structure. Each node can
symbolize a specific element, such as a word or a phrase, and convey its own attributes or features.
By considering these heterogeneous characteristics, sheaf graphs can apprehend and model the
relationships among distinct types of nodes. This empowers FABRIC to comprehend various elements
and their relationships, enabling the generation of faithful and accurate summaries.

Moreover, when dealing with MDS, a critical challenge that neural networks often encounter
is processing large documents. Many recent studies have attempted to concatenate multiple
documents into a flat sequence and train SDS models on them [12]. However, this approach fails
to consider the inter-document relationship and the presence of redundant long input vectors.
Even very large language models like Long-T5 [136] and BART-4096 [204], which are capable of
handling input vectors beyond 2000 tokens, face practical limitations due to the quadratic growth of
input memory space. Furthermore, such extensive global attention may exhibit lower performance
compared to alternative methods. To address this issue, we propose a novel approach, called
topic-assisted document segmentation. It involves using a segment of the document as a context
vector, compressing it into an oracle summary while covering major topics, and appending it to the
next segment to generate the subsequent context vector. By employing this method, summarization
models can learn the representation of the document from a compressed form, overcoming the
challenges associated with processing large documents.

In short, our contributions are as follows.
1. We propose a novel topic assisted document segmentation method, which allows any language

model to generate contextual vectors for any input length input.
2. We propose FABRIC, a novel encoder-decoder model that uses pre-trained BART to comprehen-

sively analyze linguistic nuances, Simplicial Complex layer to apprehend inherent properties
that transcend pairwise associations and sheaf graph attention to more effectively apprehend
the heterophilic properties.

3. We evaluate FABRIC using four standard metrics – ROUGE [133], BARTScore [213], FactCC [214],

1In a heterophilic setting, diverse node and edge types can complicate the message-passing process of GNN,
therefore affecting its performance.

2FABRIC: FAirness using BaRt, sImplicial Complex and sheaf
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Figure 8.1: A schematic architecture of FABRIC. We adept the BART encoder and introduce
simplicial complex layer and sheaf graph attention and fuse them with multi-head attention of
BART. The fused representation is passed to the BART decoder to generate candidate summaries.

and SummaC [106], to assess the quantitative, and qualitative performances and faithfulness.
We showcase that FABRIC fares well against eleven widely-popular abstractive baselines. FABRIC
beats the best baseline, PRIMER [215] by +0.34 ROUGE-L on Multinews, +4.90 Rouge-L
on CQASumm, +2.94 on DUC and +2.28 Rouge-L on the Opinosis dataset. Our qualitative
analyses on semantic similarity by BARTScore and faithfulness by FactCC and SummaC also
show considerable gains compared to the baseline-generated summaries. We further perform an
exhaustive human evaluations and comparison with ChatGPT3 to compare the quality of the
system-generated summaries.

8.2 Proposed Methodology

We present FABRIC, a novel multi-encoder-decoder model for multi-document abstractive text
summarization. Our approach harnesses the power of topic assisted document segments and
leverages higher order topological spaces to adeptly extract essential information. Figure 8.1 shows
a schematic diagram of FABRIC. This section explains each component of FABRIC in detail.

8.2.1 Topic Assisted Document Segments

Transforming the entire document to a contextual vector is very expensive pertaining to the
quadratic growth of memory and computations in Transformer-based models. LMs like Longformer
[49] are able to process documents in a linear complexity. However, they fail to efficiently capture

3https://openai.com/blog/chatgpt/
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the context of the whole document. To address this limitation, we propose a new data modelling
strategy, called Topic Assisted Document Segmentation with Oracle proxies. At first, the source
document D is split into segments D1, D2, D3, . . . , Dn based on major topics identified. We use
BERTopic [216] for topical identification. Next, we formulate oracle summaries for segment D1

using an Integer Linear Programming (ILP) solver [217] and penalize it with BERTopic [216] to
aid the module in generating oracle summaries and to cover all major topics of the document. We
append the oracle summary obtained O1 to the next segment O1 +D1 and formulate the next oracle
summary using only O1 +D1. Each segment generated is limited to 768 tokens for BART to process
the input vector effectively. LM to process. Each segment, therefore, obtains an independent
encoder representation of the document, which when fused with the other modules, is fed to the
BART decoder to generate the final summary.

8.2.2 Simplician Complex Layer

Summarizing documents does not always entail information in pairwise connections. Consequently,
methods based on single-dimensional graphs fall short in capturing the comprehensive context
and its intricate relationships. Conversely, the utilization of a simplicial complex layer enables the
incorporation of higher-order graphs, where the inclusion of simplices (vertices within a single-order
graph) empowers the modeling of information that extends beyond pairwise associations. This
approach formulates an exceedingly diverse and extensive feature set, facilitating the model’s ability
to comprehend inter-document relations in a more comprehensive and nuanced manner.

We use the simplicial complex (SC) layer in the self-attention setting similar to [211]. Mathe-
matically, we define the input to SC layer as SCi and learnable weights as Wsc. The transformations
are applied to the lower irrotational filter H i, and upper solenoidal filter Hs. The transformations
are represented by H i = [SCi]iW

(i)
sc ∈ RFl+1 , and Hs = [SCi]iW

(i)
sc ∈ RFl+1 . The representation

H i and Hs are combined for each iteration, and self-attention is computed using the following
equations,
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l are learnable parameters, while the order J

(d)
l and J
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l of the filters, the number Fl+1

of output signals, and the non-linearity σl(·) are hyperparameters to be chosen at each layer. The
final representation is passed through a feed-forward layer.
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8.2.3 Sheaf Graph Attention

Similar to graph neural networks (GNNs) [209] and graph attention networks (GATs) [218], the
contextual representation of simplicial complex (SC) layer encounters limitations in performance,
particularly in heterophilic settings and over-smoothing. Moreover, relying on a single module to
capture the inter-document relationship may introduce biases in representing factual knowledge.
To overcome this limitation, we introduce a new module, called sheaf graph attention in the MDS
setting, taking inspiration from the prior sheaf attention networks [212]. Mathematically, we define
the input vector as Xs and introduce the learnable weight matrices Wa and Wb. The identity matrix
is denoted by I, and the sheaf Laplacian is represented as ψ. We perform a Kronecker product
between I and Wa. The sheaf Laplacian ψ is defined as a vector in an undirected graph Gu, where
vertices are defined by v and edges by e. Mathematically, it can be expressed as follows:

Sheaf(X) = relu((I − ψ)(I ⊗Wa)XWb (8.1)

Here, X is the data transformation block, and ⊗ is Kronecker product.

8.2.4 Encoder Setting

The first module introduces a document segments via topic guidance, which enables FABRIC to
generate multiple target sequence vectors with segmented source documents aided with oracle
proxies. The sequence vectors are learned using the BART encoder model. These feature vectors
helps the model to understand the linguistic properties and retain multiple context vectors. The
second module introduces the simplician complex layer, helping the model to understand the inter-
document relations and aiding the weights of the vectors to promote the factualiy and faithfulness.
As the feature vector from the SC layer are not same as attention input, the output is passed
through a feed-forward layer and fused with the multi-head attention module of BART. Finally, the
vectors from the sheaf graph attention model also undergo normalization via a feed-forward layer
for feature vector normalization, followed by fusion with the heads of the multi-head attention in
the BART encoder. The SC layer and sheaf graph contribute to the model’s understanding of inter
and intra-document relationships and the weighting of contexts, thereby promoting factual and
faithful representations for the decoder generator model.

8.2.5 Decoder Setting

The amalgamated representation derived from the encoder module of FABRIC, consisting of the
BART encoder, SC layer, and sheaf graph attention, is forwarded to the BART decoder module.
In this configuration, the BART decoder generates summaries utilizing the encoder representation
and the pointing mechanism. Much like a pointer generator, the pointing mechanism enables the
model to directly copy text from the source document.
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8.3 Dataset

We benchmark our study on four widely popular datasets. (i) Multinews [12] comprises news
articles as source documents and human-written summaries as target summaries. (ii) CQASumm
dataset consists of question-answer pairs, where the accepted answer is used as the target summary
and the remaining answers form the source document. (iii) DUC [193] includes news articles as
source documents, with target summaries manually annotated by editors. (iv) Opinosis [195]
combines user reviews from various platforms, where individual opinions serve as the source
document, while the target summaries are human-annotated.

8.4 Abstractive Baselines

(i) The Pointer Generator (PG) approach [38] combines attention, and pointing mechanism to
apprehend inter-document relationships. (ii) Himap [12] amalgamates MMR sentence weights in
the PG network to emphasize pivotal information in the summary. (iii) Bottom-up Transformers
[15] employ the Transformer architecture [45] with one random attention head functioning as the
copy pointer. (iv) BERT [51] is an encoder-only language model trained using token masking
techniques. (v) BART [204] employs an encoder-decoder model trained on the text span masking
technique. (vi) T5 [53], akin to BART, is an encoder-decoder-based model that treats all downstream
tasks as text-to-text problems during training. (vii) LongT5 [136] scales the T5 architecture
and utilizes sentence masking during pretraining to enrich language generation. (viii) Pegasus
[36] adopts an innovative sentence masking technique in the language model to capture sentence-
level representations. (ix) Longformer [49] incorporates a Transformer with sparse attention to
handle elongated sequences.(x) BRIO [219] employs a stochastic approach, rather than maximum
likelihood, to train the network.(xi) PRIMERA [215] extends the Longformer architecture [49] by
pretraining it on the downstream task.

8.5 Evaluation Setup

We benchmark FABRIC on the quantitative metrics – Rouge-1 (R1), Rouge-2 (R2) and Rouge-L
(RL) [133], to evaluate the lexical overlap, as well as on qualitative metrics – BARTScore [213] to
compute the semantic overlap, and FactCC [214], and SummaC [106] for faithfulness assessment.

8.5.1 Evaluation Metrics

To compare the quality of the summaries, we employ the following evaluation metrics. (i) Rouge
computes the lexical overlap between the target and the generated summary. (ii) BARTScore
computes the semantic overlap between target and the generated summary using the pre-trained
BART [204] LM. (iii) SummaC evaluates the consistency of summary sentences w.r.t the source
article, taking into account any inconsistencies that may occur throughout the source text. (iv)
FactCC leverages a model trained to assess the consistency between a text/summary and its
source article using synthetic data generated through various transformations.
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System
Multinews CQASumm DUC Opinosis

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PG 41.85 12.91 20.79 31.09 5.52 21.85 31.43 6.03 23.08 19.65 1.29 20.08
HiMAP 44.17 16.05 24.38 27.13 4.48 19.87 31.44 6.11 23.17 18.02 1.46 19.84
Transfor. 44.32 15.11 28.07 27.52 4.53 21.0 32.14 6.24 23.34 20.46 1.41 21.35
BERT 44.27 16.23 31.41 27.32 4.55 21.14 34.64 6.39 24.18 20.41 4.62 21.84
BART 48.47 18.41 33.21 27.84 4.65 21.74 35.41 6.48 24.67 19.8 6.82 26.87
T5 44.08 16.39 37.68 28.11 3.74 21.45 34.13 6.32 24.13 27.41 6.97 27.41
LongT5 48.17 19.43 38.94 28.74 4.84 22.12 34.58 6.37 24.32 29.46 7.04 28.64
Pegasus 41.79 16.58 39.72 28.24 4.87 22.41 34.61 6.41 24.71 31.28 7.15 29.39
Longfor. 46.89 18.50 41.83 28.01 5.05 23.86 36.31 6.76 27.11 33.32 8.63 30.49
BRIO 47.24 19.34 44.57 29.13 5.12 24.17 37.18 7.02 29.37 31.15 8.52 29.64
PRIMER 49.90 21.11 46.23 31.54 5.58 26.57 37.84 7.21 31.18 34.64 9.12 33.20

FABRIC 50.68 21.26 46.57 35.81 6.91 31.47 39.64 8.75 34.12 39.21 11.42 35.48

∆ - bsln ↑ 0.78 ↑ 0.11 ↑ 0.34 ↑ 4.27 ↑ 1.33 ↑ 4.90 ↑ 1.80 ↑ 1.54 ↑ 2.94 ↑ 4.57 ↑ 2.30 ↑ 2.28

+SD & SC 48.24 20.54 44.87 33.24 6.14 29.14 36.21 8.29 32.71 38.54 10.84 34.29
+SC 45.58 19.12 42.35 31.85 6.07 27.65 35.78 8.11 31.63 37.68 10.51 32.18
+SD 42.18 18.74 41.42 29.18 5.89 26.19 33.19 8.02 30.12 36.84 10.18 31.73

Table 8.1: Comparative analysis on four datasets – Multinews, CQASumm, DUC and Opinosis.
We report ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) for eleven baselines. Our
model FABRIC beats all the competing baselines.We also perform ablations over FABRIC. Addition
of simplicial complex layer (SC) and Sheaf graph attention (SD) further improves the performance.

8.5.2 Human Evaluation Setup

We conducted a human evaluation to assess the qualitative aspects of the summaries generated
by FABRIC. The evaluation focused on five parameters – Informativeness (Inf), Relevance (Rel),
Coherence (Coh), Fluency (Flu), and Topic coherence (Topic). To ensure a representative evaluation,
we randomly selected 50 test samples from the system-generated summaries and engaged 30
annotators4 with expertise in the evaluation process. To minimize bias, each sample was annotated
by at least two annotators, and annotations with a divergence of more than two degrees were
excluded to maintain consistency. The assigned scores by the annotators were then averaged for
each sample.

8.6 Experimental Results

We perform quantitative and qualitative evaluation on the four datasets. We benchmark the
datasets over eleven baselines and present quantitative and qualitative results.

4The annotators were linguistics/subject experts and their age ranged between 25-35.
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System
Multinews CQASumm DUC Opinosis

BS (↓) FC (↑) Sa (↑) BS (↓) FC (↑) Sa (↑) BS (↓) FC (↑) Sa (↑) BS (↓) FC (↑) Sa (↑)

PG -1.71 62.4 70.4 -2.61 48.3 47.6 -3.57 45.1 70.5 -3.77 55.4 56.1
HiMAP -1.73 65.8 71.4 -2.62 48.5 47.7 -3.58 45.2 71.4 -3.86 56.1 57.6
Transf. -1.85 67.8 73.8 -2.68 49.8 48.1 -3.60 47.1 72.1 -3.97 58.4 59.6
BERT -1.89 73.1 79.8 -2.73 51.7 49.7 -3.71 49.6 74.2 -4.02 60.1 62.8
BART -2.14 76.8 81.2 -2.82 53.9 51.8 -3.95 51.8 75.6 -4.25 62.7 64.1
T5 -1.92 74.2 81.4 -2.86 51.8 50.1 -3.87 50.1 74.2 -4.13 61.2 62.8
LongT5 -2.34 75.4 83.4 -3.02 54.2 50.4 -4.31 50.8 73.5 -4.18 62.1 63.4
Pegasus -2.51 76.2 84.2 -3.08 55.1 51.1 -4.34 51.4 76.2 -4.21 62.4 64.7
Longf. -2.66 76.8 86.7 -3.13 56.2 52.9 -4.37 52.9 77.8 -4.28 62.7 65.8
BRIO -2.43 75.4 85.2 -3.11 55.4 51.2 -4.21 52.5 76.4 -4.02 61.2 62.8
PRIMER -2.73 77.3 87.1 -3.17 57.1 53.8 -4.68 53.6 78.7 -4.33 63.4 66.5

FABRIC -2.81 78.1 88.2 -3.21 57.6 54.2 -4.74 54.9 79.1 -4.37 64.8 68.3

Table 8.2: Performance of the competing method in terms of BARTScore (BS), FactCC (FC), and
SummaC (Sa). Lower BS indicates better performance.

System
Multinews CQASumm

Inf Coh Rel Flu Topic BERTopic Inf Coh Rel Flu Topic BERTopic

BART 3.13 2.84 2.17 2.37 2.31 2.31 2.28 1.92 2.35 2.14 2.52 1.47
Longformer 3.02 2.92 2.12 2.29 2.43 2.34 2.19 1.93 2.37 2.15 2.51 1.49
PRIMER 3.27 3.12 2.94 2.48 2.47 2.37 2.24 2.33 1.97 2.17 2.53 1.50

FABRIC 3.25 3.16 2.94 2.49 2.49 2.39 2.32 2.35 2.02 2.17 2.59 1.53

Table 8.3: Scores for five human evaluation metrics - Informativeness (Inf), Relevance (Rel),
Coherence (Coh), Fluency (Flu) and Topic Coherence (Topic) and one automatic metric - BERTopic
over three baselines and our proposed model, FABRIC.

8.6.1 Quantitative Evaluation

Table 8.1 presents the lexical overlap between the various generated summaries and the reference
summaries. Our results demonstrate that FABRIC attains 50.68 R1 and 46.57 RL, beating the
best baseline (PRIMER) by +0.78 R1 and +0.34 RL points. For CQASumm, FABRIC attains
35.81 R1 and 31.47 RL beating PRIMER by +4.27 R1 and +4.90 RL points. Similarly, for DUC
and Opinosis, FABRIC attains 39.64 R1 and 34.12 RL, respectively and 34.12 R1 and 35.48 RL
respectively, beating PRIMER by +1.80 R1, +4.57 R1, +2.94 RL, and +2.28 RL respectively.

To demonstrate the effectiveness of each module in FABRIC, we conduct an ablation study. The
results of each ablation are presented in Table 8.1. Our base model, augmented with the simplicial
complex (SC) layer, enhances the R1 and RL scores compared to the multinews baseline by +2.89
R1 and +9.14 RL points, respectively. Furthermore, the integration of sheaf graph attention
contributes to additional improvements, boosting the performance by +2.66 R1 points and +2.52
RL points. These findings corroborate our hypothesis that language models alone are insufficient
to capture inter-document relationships. However, when combined with context captured on higher
dimension, they significantly enhance the model’s ability to achieve high performance.
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8.6.2 Qualitative Evaluation

We also conducted a human evaluation to assess the performance of FABRIC. Table 8.2 presents
the results, demonstrating that our model generates high-quality summaries that are redundant,
faithful, and easily comprehensible to humans. In addition to the human evaluation, we employed
the BARTScore [213], FactCC [214], and SummaC [106] metrics to evaluate the semantic overlap
and faithfulness between the system-generated summaries and the reference summaries.

Table 8.2 provides an assessment of the semantic overlap, faithfulness, and factuality of the
generated summaries. The results demonstrate a significant improvement in all three qualitative
metrics. In terms of semantic overlap, FABRIC achieves a score of −2.81 compared to multinews,
exhibiting an improvement of +0.08 over the best baseline, PRIMER. Similarly, for the FactCC and
SummaC metrics, FABRIC shows improvements of +0.8 and +1.1, respectively. For the CQASumm
dataset, FABRIC achieves a semantic overlap of −3.21, a FactCC score of 57.6, and a SummaC
score of 54.2, surpassing the best baseline, PRIMER, by +0.04, +0.6, and +0.4 points, respectively.
Table 8.2 summarizes the improvements across all baselines on four datasets. These findings confirm
our hypothesis that language models alone are insufficient to comprehend the relationships between
multiple entities, necessitating the incorporation of additional modules to ensure the accuracy and
coherence of the generated summaries.

Model Output

Target-1 A teenage would-be bank robber in Detroit found himself imprisoned—and presumably
regretting one or two life choices—within seconds of being handed money at a bank on
Monday, police say. A police spokesman tells the Detroit Free Press that the 15-year-old
gave a teller a note claiming he had a bomb and demanding money. [...]

FABRIC A bank teller in Detroit managed to stop a would-be bank robber before he could make it to
the sidewalk. Police say a 16-year-old boy walked into a Chase Bank on the cityś east side
Monday afternoon and told the teller he was strapped with a bomb and to give him all the
money, reports the Detroit Free Press. The teller did, and the teen set off for the doorway,
”likely exhilarated by the scent of escaping with his new wealth,” reports.[...]

ChatGPT Kelly Preston, in an interview with Natalie Morales on ’Today,’ discusses the ”silent birth”
technique commonly practiced by Scientologists. This technique involves refraining from
spoken words during childbirth to create a peaceful environment. Preston credits this
technique for the calm and peaceful demeanor of her children. [...]

Target-2 A preservationist in New York City thinks heś found the site of a 1750s tavern [...] Adam
Woodward says he found what he believes to be hand-hewn and hand-planed joists and
foundation walls in the basement.

FABRIC So he searched the basement, and ”found myself in what I am pretty certain is the 1750s
historic tavern,” he says. Specifically, he found what he thinks are hand-hewn and hand-
planed joists and foundation walls from Colonial.

ChatGPT Adam Woodward believes he has found evidence that a building in Manhattan could be
the former site of the Bull’s Head Tavern, a famous 18th-century tavern where George
Washington is believed to have visited during the American Revolution.

Table 8.4: Comparison of target summary with the summary generated by FABRIC and ChatGPT.
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The quantitative improvements achieved by our model are further supported by human as-
sessments. Table 8.3 presents the results of these assessments, revealing FABRIC’s consistent
performance across all datasets. With the exception of informativeness on the multinews dataset
compared to the PRIMER baseline, FABRIC achieves the highest scores in all metrics on multinews
and CQAsumm. This indicates that the generated summaries are highly faithful, relevant, and
coherent when compared to the other baselines. Although FABRIC exhibits some shortcomings in
terms of informativeness according to the human evaluations, it still outperforms other baselines by
a significant margin. A detailed examination of the generated summaries and an analysis of the
findings can be found in Section 8.7.

8.7 Error Analysis

As indicated in Table 8.3, significant improvements are observed across all four metrics of human
evaluation. The generated summaries successfully capture the essence of the source documents
and cover the major topics discussed. For instance, in sample #1 in Table 8.4, the generated
summary not only comprehensively conveys the main incident but also provides additional relevant
information. This additional information is captured by the simplicial complex layer and the sheaf
graph attention, which pass it on to the decoder for inclusion in the final summary. However, in
the case of sample #2, the source document presents the information about the year 1750 as a
hypothesis, while another document presents it as a quotation. This discrepancy leads FABRIC to
treat this information as definitive and present it as a quoted fact in the summary. This highlights
the challenge of properly handling such cases and emphasizes the notion that target summaries
and quantitative metrics alone may not suffice as the true performance measure [164] for the task
of abstractive summarization.

8.8 FABRIC vs ChatGPT

We conducted a comparison between the summaries generated by FABRIC and ChatGPT as shown
in Table 8.4. We randomly generated 50 summaries from the multinews test set for this analysis.
When comparing the two, we found that the summaries generated by ChatGPT are often overly
general, lacking relevance and informativeness in relation to the source documents. For instance, in
sample #1, ChatGPT discusses a general topic that deviates from the main focus by expanding
on its own knowledge graph. Although it showcases linguistic capabilities, it fails to align the
generated summary with the specific factual information from the source document. Similarly, in
sample #2, ChatGPT provides a summary that captures the main idea of the source but neglects
to mention important factual details such as the year or any correlations with specific locations.
This comparison highlights that general purpose LLMs like ChatGPT have a tendency to focus on
linguistic aspects but struggle to ensure fidelity to the factual information and alignment with the
original source. As a result, they can be considered unfaithful as they deviate from the source and
expand the generated output based on their own knowledge.
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8.9 Fairness in Multimodal Systems

To address the limitations in the availability of diverse and well-annotated datasets, this research
has introduced two novel datasets – AVIATE [23], and mTLDR [22], meticulously labeled through
a combination of automated and manual processes. AVIATE, the first large-scale dataset for
abstractive text summarization with videos of varying durations, is sourced from presentations
in renowned academic conferences like NDSS, ICML, NeurIPS, and others. Comprising diverse
modalities, including videos, audio, and text, AVIATE is complemented by reference summaries
derived from corresponding research paper abstracts, ensuring both quality and uniformity. On the
other hand, mTLDR, designed for extreme abstractive text summarization with multimodal inputs,
stands as a first-of-its-kind dataset. With instances gathered from academic conference proceedings
such as ICLR, ACL, and CVPR, mTLDR includes videos, audio, and text, accompanied by both
author-composed and expert-annotated summaries. These datasets serve as invaluable resources
for advancing research in abstractive multimodal text summarization, offering diverse challenges
and insights that contribute to the ongoing evolution of summarization methodologies. Further
details and analyses are presented in Chapter 5.

Simultaneously, the research presents two innovative summarization systems— FLORAL [23]
and mTLDRgen [22] — meticulously designed to cater to the challenges of biased content and
fidelity issues in generated summaries. In the case of mTLDRgen, designed for extreme abstractive
text summarization with multimodal inputs, the model leverages a dual-fused hyper-complex
Transformer and Wasserstein Riemannian Encoder Transformer. This architecture is adept at
capturing intricate relationships between different modalities in a hyper-complex latent geometric
space, allowing mTLDRgen to produce diverse and contextually rich summaries. On the other
hand, FLORAL, dedicated to multimodal abstractive text summarization, adopts a factorized
multi-modal Transformer-based decoder-only approach. FLORAL employs an increasing number
of self-attentions to capture both intra-modal and inter-modal dynamics within diverse input
modalities, showcasing its prowess in generating nuanced and accurate textual summaries. Both
FLORAL and mTLDRgen thus represent robust approaches that push the boundaries of multimodal
summarization, demonstrating superior performance over existing baselines in their respective
domains. Further discussion and contributions are discussed in Chapter 5.

8.10 Conclusion

In this study, we presented FABRIC, a encoder-decoder model designed to enhance topic coherence
and inter-document relations for multi-document abstractive summarization. The key components
of FABRIC include BART for capturing linguistic aspects and implicial complex Layer and sheaf
graph attention for capturing inter-document relationships. We compared FABRIC with eleven
baselines on four widely popular MDS datasets. The results consistently demonstrated that FABRIC
surpasses existing systems and achieves significant improvements across both quantitative and
qualitative measures. These findings were further backed by human evaluation, validating the
effectiveness of FABRIC in generating more accurate and faithful summaries that better represent
the content of the source documents.
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Chapter 9

Conclusion and Future Works

This comprehensive research work has introduced a diverse set of novel models and datasets, each
addressing distinct challenges in the evolving landscape of text summarization. First, REISA has
significantly advanced the field by introducing a reinforced attention calibration-based model. This
model constrains the encoder to attend to a fixed number of tokens at each step and recalibrates
attention scores, resulting in substantial improvements in both ROUGE and BERTScore metrics
on Multinews and CQASumm datasets. Furthermore, its faithfulness to generated summaries
is highlighted through the QAEval metric and human evaluations, positioning it as a robust
solution for abstractive summarization tasks. Looking ahead, the plan to extend its application
to low-resource summarization tasks and diverse domains showcases its potential for real-world
applications.

In a parallel effort, ExGrapf2, an informative extreme summarization model, leverages Fast
Fourier Transform (FFT), fractality, Graph Convolutional Networks (GCN), and contrastive loss.
This model has demonstrated superior performance quantitatively and qualitatively, surpassing
fifteen state-of-the-art models. Human evaluations underscore its prowess in generating highly
faithful, coherent, and fluent extreme summaries, solidifying its contribution to the realm of extreme
abstractive text summarization.

Addressing the challenge of multimodal abstractive text summarization, FLORAL and AVIATE
emerge as pivotal contributions. AVIATE, the first large-scale dataset for abstractive text summa-
rization with videos of diverse durations, enriches the resources available for training and evaluating
models in multimodal scenarios. FLORAL, a Factorized Multimodal Transformer-based decoder-only
Language Model, showcases superior performance over various baselines on How2 and AVIATE
datasets. This work provides a robust foundation for the exploration of multimodal summarization,
a critical aspect in the evolving landscape of NLP.

Taking a step further into the domain of extreme abstractive text summarization with multimodal
inputs, mTLDRgen and mTLDR make significant strides. The curated mTLDR dataset, comprising videos,
audio, and text, addresses the lack of benchmark datasets for extreme abstractive text summarization
of scientific videos. mTLDRgen, utilizing a dual fused hyper-complex Transformer and Wasserstein
Riemannian Encoder Transformer, exhibits superior performance qualitatively and quantitatively.
These contributions expand the capabilities of summarization models to handle diverse modalities
and extreme summarization tasks, contributing to the broader applicability of NLP technologies.
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Further, a dedicated investigation into heterogeneous multi-document summarization illuminates
the intricate challenge of summarizing non-independent candidate documents. This study proposes
intrinsic metrics for evaluating corpus quality and offers insights into system behavior across diverse
corpora. Establishing a foundational understanding of biases in system predictions, this research
paves the way for future endeavors in comprehending and mitigating biases. The envisioned
future work entails a causal analysis of corpus bias and its impact on model predictions, promising
measures to de-bias NLP algorithms both with and without de-biasing the corpora.

In parallel, our study introduced FABRIC, an encoder-decoder model tailored for multi-document
abstractive summarization, with a focus on enhancing topic coherence and inter-document relations.
Comprising BART for linguistic aspects and simplicial complex layers with sheaf graph attention for
inter-document relationships, FABRIC underwent rigorous evaluation against eleven baselines on four
widely used MDS datasets. The consistently superior performance of FABRIC across quantitative
metrics, qualitative assessments, and human evaluations reaffirms its effectiveness in generating
more accurate and faithful summaries that authentically represent the content of source documents.

In the area of future work, several promising avenues emerge from the current research landscape,
offering opportunities to enhance and extend the capabilities of text summarization models.
One potential trajectory involves a dedicated exploration of bias in multimodal summarization.
Understanding and mitigating biases in system predictions, particularly when handling diverse
modalities, is crucial for ensuring fair and equitable summarization outputs. Future work in
this area could involve a comprehensive causal analysis of corpus bias and its impact on model
predictions. Additionally, measures to de-bias NLP algorithms, both with and without de-biasing
the corpora, present promising directions for advancing the fairness and reliability of multimodal
summarization systems. Moreover, incorporating interactive and controlled generation mechanisms
into multimodal summarization models could empower users to tailor summaries according to their
preferences and specific information needs, opening new avenues for user-centric summarization
experiences.

Another noteworthy future direction is the proposal and development of more fair multimodal
summarization systems. Addressing issues related to bias and fairness, this line of work could
involve the incorporation of fairness-aware algorithms, explicitly designed to mitigate biases and
ensure equitable representations in generated summaries. By introducing fairness as a key criterion
in the evaluation and design of multimodal summarization models, future research can contribute
to more ethically grounded and inclusive NLP technologies. Furthermore, a novel and intriguing
prospect lies in the exploration of proposing multimodal summaries. Going beyond unimodal text
summaries, the development of methodologies to generate coherent and informative summaries
that seamlessly integrate information from diverse modalities, such as text, image, audio, and
video, represents an exciting avenue for future investigation. This research direction could open
new possibilities for creating more comprehensive and contextually rich summarization outputs,
catering to the evolving demands of multimodal content in various real-world applications.

In the quest for explainable AI, future work could focus on making summarization systems more
transparent and interpretable. Exploring methodologies to provide clear insights into how models
arrive at specific summarization decisions can enhance user trust and understanding. Developing
interpretable summarization models will not only contribute to the responsible deployment of
NLP technologies but also facilitate effective collaboration between AI systems and human users.
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Moreover, a compelling challenge for future research involves the development of a unified model
capable of handling both text-only and multimodal inputs seamlessly. Creating a versatile model
that can effectively process and generate summaries for diverse types of input data, ranging from
traditional text to complex multimodal content, holds immense potential. Such a model would
be instrumental in addressing the growing need for versatile summarization systems capable of
handling the evolving nature of information across various modalities and sources.

Real-time summarization is another exciting direction, where models capable of performing real-
time summarization for live events or streaming content are developed. This requires highly efficient
algorithms that can process and summarize content on-the-fly without significant delays, valuable
for applications in news broadcasting, live sports events, and virtual conferences. Personalized
summarization, focusing on tailored summaries based on user preferences and specific information
needs, is also promising. This could involve user profiles, interests, and past behavior to deliver
more relevant and engaging summaries, potentially integrating recommendation system techniques.
Cross-lingual summarization, where input and output languages differ, is another area worth
exploring, beneficial for multilingual societies and global information dissemination.

Enhancing robustness to noisy or imperfect data is crucial for real-world applications. Future
work could explore techniques to improve model performance with incomplete, ambiguous, or
erroneous inputs, including error detection and correction methods. Developing new evaluation
metrics that better capture summary quality, going beyond current metrics like ROUGE and BLEU,
is also important. These new metrics should assess aspects such as fluency, factual correctness,
coherence, and relevance. Human-in-the-loop systems, incorporating human feedback into the
summarization process, can significantly improve model performance and user satisfaction by
refining summaries to better meet user expectations.

Domain adaptation and transfer learning techniques to improve summarization models across
various domains is another valuable direction. Models trained in one domain often struggle when
applied to different domains with distinct characteristics. Developing methods to transfer knowledge
and adapt models to new domains with minimal additional training would enhance versatility.
Addressing ethical considerations and bias mitigation remains critical, ensuring summarization
models do not propagate harmful biases or generate discriminatory content. Future work could
involve developing frameworks to identify and mitigate biases, ensuring fair and unbiased summaries
across different demographics and content types.

Creating interactive summarization tools that allow users to customize and refine summaries
based on their specific needs, such as highlighting important sections, asking for more details on
specific topics, or adjusting summary length and focus dynamically, can greatly enhance usability.
Integrating summarization models with knowledge graphs to improve the extraction and presentation
of key information is another area of interest. Knowledge graphs provide contextual information
and relationships between entities, enhancing the accuracy and coherence of summaries, opening
new possibilities for creating more comprehensive and contextually rich summarization outputs,
catering to the evolving demands of multimodal content in various real-world applications.
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Morency. Multimodal sentiment analysis with word-level fusion and reinforcement learning.
In Proceedings of the 19th ACM International Conference on Multimodal Interaction, pages
163–171, 2017.

[19] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency,
and Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language
sequences. In Proceedings of the conference. ACL. Meeting, volume 2019, page 6558. NIH
Public Access, 2019.
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In Seiichi Uchida, Elisa Barney, and Véronique Eglin, editors, Document Analysis Systems,
pages 688–701, Cham, 2022. Springer International Publishing.

[77] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with
performers. In International Conference on Learning Representations, 2021.

[78] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks:
a comprehensive review. Computational Social Networks, 6(1):1–23, 2019.

[79] Peng Cui, Le Hu, and Yuanchao Liu. Enhancing extractive text summarization with topic-
aware graph neural networks. In Proceedings of the 28th International Conference on Computa-
tional Linguistics, pages 5360–5371, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics.

[80] Chen An, Ming Zhong, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang.
Enhanccing scientific papers summarization with citation graph. In AAAI Conference on
Artificial Intelligence, 2021.

[81] Jingqiang Chen, Chaoxiang Cai, Xiaorui Jiang, and Kejia Chen. Comparative graph-based
summarization of scientific papers guided by comparative citations. In Proceedings of the
29th International Conference on Computational Linguistics, pages 5978–5988, Gyeongju,
Republic of Korea, October 2022. International Committee on Computational Linguistics.

[82] Sajad Sotudeh and Nazli Goharian. GUIR @ MuP 2022: Towards generating topic-aware
multi-perspective summaries for scientific documents. In Proceedings of the Third Workshop
on Scholarly Document Processing, pages 273–278, Gyeongju, Republic of Korea, October
2022. Association for Computational Linguistics.

[83] Arman Cohan, Guy Feigenblat, Tirthankar Ghosal, and Michal Shmueli-Scheuer. Overview
of the first shared task on multi perspective scientific document summarization (mup). In
SDP, 2022.

132



[84] Haoran Li, Junnan Zhu, Cong Ma, Jiajun Zhang, and Chengqing Zong. Multi-modal
summarization for asynchronous collection of text, image, audio and video. In Proceedings of
the 2017 Conference on EMNLP, pages 1092–1102, 2017.

[85] Haoran Li, Junnan Zhu, Cong Ma, Jiajun Zhang, and Chengqing Zong. Read, watch, listen,
and summarize: Multi-modal summarization for asynchronous text, image, audio and video.
IEEE Transactions on Knowledge and Data Engineering, 31(5):996–1009, 2018.

[86] Marco Baroni. Grounding distributional semantics in the visual world. Language and
Linguistics Compass, 10(1):3–13, 2016.

[87] Douwe Kiela. Deep embodiment: grounding semantics in perceptual modalities. Technical
report, University of Cambridge, Computer Laboratory, 2017.

[88] Shraman Pramanick, Md Shad Akhtar, and Tanmoy Chakraborty. Exercise? i thought you
said’extra fries’: Leveraging sentence demarcations and multi-hop attention for meme affect
analysis. In Proceedings of the International AAAI Conference on Web and Social Media,
volume 15, pages 513–524, 2021.

[89] Shraman Pramanick, Dimitar Dimitrov, Rituparna Mukherjee, Shivam Sharma, Md. Shad
Akhtar, Preslav Nakov, and Tanmoy Chakraborty. Detecting harmful memes and their targets.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages
2783–2796, Online, August 2021. Association for Computational Linguistics.

[90] Jingqiang Chen and Hai Zhuge. Abstractive text-image summarization using multi-modal
attentional hierarchical rnn. In Proceedings of the 2018 Conference on EMNLP, pages
4046–4056, 2018.

[91] Zechao Li, Jinhui Tang, Xueming Wang, Jing Liu, and Hanqing Lu. Multimedia news
summarization in search. ACM Transactions on Intelligent Systems and Technology (TIST),
7(3):1–20, 2016.

[92] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of procedures
from web instructional videos. In AAAI Conference on Artificial Intelligence, pages 7590–7598,
2018.

[93] Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou, Jiajun Zhang, and Chengqing Zong.
MSMO: Multimodal summarization with multimodal output. In Proceedings of the 2018
Conference on EMNLP, pages 4154–4164, Brussels, Belgium, October-November 2018. ACL.

[94] Tsutomu Hirao, Takahiro Fukusima, Manabu Okumura, Chikashi Nobata, and Hidetsugu
Nanba. Corpus and evaluation measures for multiple document summarization with multiple
sources. In ICCL, COLING ’04, page 535–es. ACL, 2004.

[95] Darina Benikova, Margot Mieskes, Christian M. Meyer, and Iryna Gurevych. Bridging the
gap between extractive and abstractive summaries: Creation and evaluation of coherent
extracts from heterogeneous sources. In COLING, pages 1039–1050, December 2016.

133



[96] Taehee Jung, Dongyeop Kang, Lucas Mentch, and Eduard Hovy. Earlier isn’t always better:
Sub-aspect analysis on corpus and system biases in summarization. In EMNLP-IJCNLP,
pages 3324–3335, November 2019.

[97] Wojciech Kryscinski, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard
Socher. Neural text summarization: A critical evaluation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 540–551, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[98] Maxime Peyrard. Studying summarization evaluation metrics in the appropriate scoring
range. In ACL, pages 5093–5100, 2019.

[99] Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million summaries
with diverse extractive strategies. In NAACL, pages 708–719, June 2018.

[100] Vidhisha Balachandran, Hannaneh Hajishirzi, William Cohen, and Yulia Tsvetkov. Correcting
diverse factual errors in abstractive summarization via post-editing and language model
infilling. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 9818–9830, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics.
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Matthieu Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, Nikola Momchev, Sabela
Ramos, Piotr Stanczyk, Nino Vieillard, Olivier Bachem, Gal Elidan, Avinatan Hassidim,
Olivier Pietquin, and Idan Szpektor. Factually consistent summarization via reinforcement
learning with textual entailment feedback, 2023.

[116] Mengli Zhang, Gang Zhou, Wanting Yu, and Wenfen Liu. Far-ass: Fact-aware reinforced
abstractive sentence summarization. Information Processing Management, 58(3):102478,
2021.
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Mihalcea, and Soujanya Poria. Towards multimodal sarcasm detection (an obviously perfect
paper). pages 4619–4629, 01 2019.

[178] Brian McFee, Matt McVicar, Stefan Balke, Carl Thomé, Vincent Lostanlen, Colin Raffel,
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