
A Distributed Strategy for
Human-in-the-loop Task Servicing using
Multiple Robots with Stationary Base

Station Connectivity Constraint

Student Name: Parikshit Maini

IIIT-D-MTech-CS-12-014

August 17, 2014

Indraprastha Institute of Information Technology

New Delhi

Thesis Committee

Dr. P. B. Sujit (Advisor)

Dr. Rahul Purandare (Internal)

Dr. Mangal Kothari (External)

Submitted in partial fulfillment of the requirements

for the Degree of M.Tech. in Computer Science

c© 2014 Parikshit Maini

All rights reserved

Keywords: multi-robot systems, multi-agent systems, connectivity constraint, network

connectivity, task allocation, base connected, networked robotics, human-in-the-loop, sta-

tionary base station

Certificate

This is to certify that the thesis titled “A Distributed Strategy for Human-in-

the-loop Task Servicing using Multiple Robots with Stationary Base Station

Connectivity Constraint” submitted by Parikshit Maini for partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science & Engineering

is a record of the bonafide work carried out by him under my guidance and supervision

at Indraprastha Institute of Information Technology, Delhi. This work has not been

submitted anywhere else for the reward of any other degree.

Dr. P. B. Sujit

Indraprastha Institute of Information Technology, Delhi

Abstract

Mobile robots are increasingly being used for tasks like remote surveillance, sensing and

maintenance. Some of these tasks are critical and require intelligent decision making for

successful completion. It is not always possible to rely exclusively on robot level intelli-

gence to make high impact decisions and hence human supervision is needed during task

execution. To facilitate human-in-the-loop task servicing, the task executing robot is re-

quired to remain connected to a remotely located human operator.

However, robot communication range is typically limited and hence multiple mobile robots

might be deployed to perform the tasks. These robots must coordinate with each other

to dynamically form and maintain a communication link such that network connectivity

exists between the robot servicing the task and the human operator positioned at a sta-

tionary base station.

The development of connectivity aware coordination algorithms is complex due to limited

communication range and presence of obstacles in the search region. In this thesis, we

present a distributed multi-robot algorithm for task servicing with human-in-the-loop con-

straint. Robot control and mission execution is independent of the human operator and

is fully autonomous. The algorithm facilitates indirect collaboration amongst the robotic

agents and uses a combination of graph theoretic and gradient descent based approaches

for path planning. Robots exercise independent decision making on task and role assign-

ment by following a self allocation strategy. This allows dynamic task reassignments and

role exchanges amongst the agents based on increased situational awareness. Our solution

successfully implements obstacle avoidance and deadlock resolution while being scalable

and robust to network and robot failures. To substantiate the claims, we present results

from extensive simulations.

Acknowledgments

This work would not have been possible without support from a number of people. Fore-

most, I would like to extend my deepest gratitude to Dr. P. B. Sujit for his expert

guidance and for the extremely productive brainstorming sessions I had with him. I am

grateful to my friends and lab colleagues who time and again offered fresh perspectives

on my research. I am also thankful to IIIT-Delhi for providing excellent infrastructure

and support. Last but never the least, I am immensely grateful to my parents, family

members and close friends, for their invaluable support and unconditional love.

Parikshit Maini

1

Dedicated to,

mummy and papa

2

Contents

1 Introduction 8

2 Related Work 11

3 Problem Formulation 14

4 System Details 16

4.1 Environment Model . 16

4.2 Robot Model . 18

4.3 Communication Model . 19

5 Strategy 20

5.1 Environment Sensing . 20

5.2 Information Exchange . 23

5.3 Service Agent Selection . 24

5.4 Relay Node Allocation . 25

5.5 Self Role Allocation and Target Computation 26

5.6 Move! . 27

3

5.6.1 Static Environment Model . 29

5.6.2 Dynamic Environment Model . 30

5.6.3 Recovery Behavior . 30

6 Results and Analysis 31

6.1 Simulation Setup . 31

6.2 Results and Analysis . 32

6.3 Discussions . 36

7 Conclusion and Future Directions 38

4

List of Figures

1.1 A sample scenario . 9

4.1 Potential Gradient Field . 17

4.2 Snapshot of the dynamic ad-hoc network 19

5.1 Robot level control flow diagram: Strategy Planner 21

5.2 Robot level control flow diagram: Motion Planner 28

6.1 Simulation results for obstacle-free environment 33

6.2 Simulation results for obstacle-rich environment 34

5

List of Tables

5.1 Robot exchange vectors . 24

6.1 Simulation Parameters . 32

6

7

Chapter 1

Introduction

Robots have come of age! From industrial automation to house cleaning, war site recon-

naissance to medical surgeries; robotic systems find application in various domains. In

recent times, multiple robots are used in outdoor environments to collaboratively execute

tasks like radiation sensing, surveillance and search and rescue. In these applications,

it is not possible to rely exclusively on robot level intelligence as crucial decisions with

potentially high impact are involved. Hence, a human operator overseeing the operation

is necessary to make these decisions. The robot servicing the task (also called service

robot/agent) must have a continuous connection to the base station to enable human

supervision of the task. In such scenarios the human operator typically administers the

mission from a remotely situated base station. Hence the problem of human-in-the-loop

task servicing is interpreted as the requirement of a communication link between the ser-

vice robot and the base station. The human operator is not involved in mission planing

or robot control. Her role is limited to overseeing and/or using robot sensors/actuators

during task execution, which is not the subject of this work.

Communication between the service agent and the base station can be established using

8

Base station

Tasks

T

Service agent

Relay agents

Figure 1.1: A sample scenario

radio or Wi-Fi, but the range is limited. Also the presence of obstacles pose line-of-sight

issues. Satellite communication using iridium can be used but it is expensive and has

limited bandwidth. Thus, multiple robots with limited communication range must be de-

ployed to collaboratively service the task. The robots would need to coordinate with each

other to act as communication relays (also called relay agents) for ensuring connectivity

between the service agent and the base station.

We consider an application scenario where tasks appear randomly in a bounded region

(as shown in Figure 1.1) which need to be executed by the robots under human opera-

tor supervision. Deployment of a static network is not feasible in many remote regions

and hence a multi-hop network must be formed by the robots to ensure the operator is

connected to the task servicing robot. The topology of the robot network changes dy-

namically as more tasks are executed and when new tasks appear. The robots have to

shuffle between the roles of service agent and relay agent or sometimes assume both the

roles. The environment is inherently unknown in these missions and hence pre-planning

and feeding way-points to the robots is not an option.

9

The multi-robot task servicing problem can be modeled as a variation of the multi-robot

routing problem (known to be NP-hard [1]) with base station network connectivity im-

posed as a constraint. However, for this virtual targets must be determined for robots

to make the communication links which is complex and computationally intensive and

requires a planner with global situation awareness.

In this thesis we present a distributed multi-robot algorithm based on graph-theoretic and

gradient potential based approaches. The developed algorithm has the following novelties:

• The agents implicitly coordinate with each other to assign roles and tasks. There is

no explicit coordination amongst agents for task and role assignment or switching.

• The developed algorithm allows Robots to perform self allocation of tasks and roles

with dynamic switching of service agent and relay agent roles to create a network

connecting the base station and the service agent. The concept of self allocation is

inspired from natural swarms [2] and allows the robots to resolve deadlocks such as

a head-on engagement between two robots.

• A Robot is able to exchange and transfer tasks to its neighbours to share the burden

or improve performance when the neighbour has a lower cost to service the task.

• There are no leaders at local or global level and every agent performs its role without

knowledge about the state of another robot.

• The system is robust to faults as the network does not depend explicitly on some

agents.

10

Chapter 2

Related Work

Network connected multi-robot control is an active field of research traditionally. Explo-

ration and target tracking have been the mainstay of multi-robot research. Most of the

current literature in network connected mission planning for multiple robots is also concen-

trated in these domains [3] [4] [5] [6] [7]. Vazquez and Malcolm [3] for instance, developed

a behavior based scheme for multi-robot exploration under connectivity constraints, to

maintain an ad-hoc network between the robots during exploration. Their work does

not consider the effect of obstacles in the environment on communication range. Ulam

and Arkin [4] developed a suite of high level reactive behaviors to recover from commu-

nication failures during environment exploration. Pandey et al. [5] have also performed

multi-robot planning with communication constraint in space exploration context. They

have addressed the issue of connectivity to a mobile base station, where one of the agents

is assigned as the base station. To ensure connectivity to the mobile base station, their

work involves generating robot positions upfront and the robots then move synchronously

to these locations. It is not always possible to have perfect synchronization between the

robots, which could lead to network failures under this scheme. Network Connectivity

in target tracking applications has been analysed by [6] and [7]. Hollinger and Singh [6]

11

developed a scheme for cooperative target tracking with periodic connectivity between

the tracking vehicles. Gans et al. [7] developed a feedback guidance law to ensure connec-

tivity in a multi-UAV system for cooperative target tracking. Reich et al. [8] designed a

scalable algorithm for iRobot nodes for area coverage. Their algorithm aims at physical

layer connectivity and the robots freeze at their locations when risk of further movement

endangers the connectivity. Michael et al. [9] experimentally demonstrated several net-

work constrained control laws for robots. These works consider connectivity issues within

the group of robots to allow sharing of information for situational awareness and/or for

formation control. However, they do not impose a stationary base station connectivity

constraint on robot motion planning.

There are few research contributions related directly to the problem of connectivity to a

stationary base station. Pei et al. [10] modeled the base station connected exploration

problem as a variant of the Steiner Minimum Tree problem to determine the nodes that

will provide relay for a multi-robot system. They use a centralized planner that optimizes

on the total system cost for change in the position configuration of the robot team. To

ensure base station network connectivity in multi-robot systems in a task servicing con-

text [11] and [12] have also used centralized planners. Robot locations are precomputed

to form a Minimum Spanning Tree (MST) to the task location(s) in these schemes. Maini

and Sujit [13] developed a dynamic team building strategy to maintain robot connectivity

in a task servicing setting. They perform dynamic role assignment to form service teams.

While robot trajectories are generated individually by the robots, role allocation is done

by a central planner. Strategies with centralized planners that precompute robot path do

not capture the dynamicity of the environment and increase network traffic to propagate

situational awareness to the central controller. Also the central entity acts as a single

point of failure for the entire system.

12

Recursive auction based algorithms such as S + T by Viguria et al. [14] have also been

used to solve the multirobot task allocation problem for surveillance tasks. Ponda et

al. [15] used CBBA [16] for distributed planning in multi-robot missions to ensure net-

work connectivity. Their strategy utilizes free agents as relays by generating relay tasks.

However to create the relay tasks, a central planner needs to be actively involved in the

task servicing mechanism. Team based schemes such as [15] and [13] lack the capability to

dynamically restructure team sizes. When servicing multiple simultaneous tasks increased

situational awareness may create the need to reassign robot teams, to reassign roles, to

add robots in the middle of a network chain and to exchange tasks between the robot

teams. These tasks increase the complexity of the coordination algorithm many fold and

make it computationally intensive. Hence a strategy that allows dynamic team building

with flexibility to add/remove members, reassign tasks and roles is desirable.

In this thesis, we present a fully distributed online multi-robot control mechanism to

facilitate network connected task servicing. We present a formal problem definition in

Chapter 3. We have used a combination of graph theoretic and gradient based approach

to determine robot motion, as described in Chapter 4. Chapter 4 also gives a description

of the robot model and the communication model used. Each robot uses its local envi-

ronment perception, sensed and one-hop communication, to make a self role allocation as

described in Chapter 5. Also, by switching to steepestDescent behavior in case of lost

connectivity, the mechanism is robust to network failures and allows robots to reestablish

connectivity. Chapter 6 describes the simulation model, results and analysis. Chapter 7

concludes the work and also gives possible future extensions.

13

Chapter 3

Problem Formulation

Assume that n robots are deployed in a region as shown in Figure 1.1. The base station

shown here at the boundary is only for representation and can be located anywhere within

the operational region. As shown several tasks are present and need to be carried out

remotely using multiple robots, each having a limited communication range (shown as a

circle around the robot). Since a single robot cannot communicate the task information

to the base station, several robots have to form a networked link that the service agent

can use to send data to the base station. A sample link is shown for task T in the figure,

where a set of agents form a chain. To form a communication network, some robots need

to act as relay nodes while others service the task(s). Considering every robot has the

same capabilities, the role assignment should be dynamic such that on-the-fly exchange

of roles amongst robots is possible.

The problem can be formulated as an optimization problem, where robots incur a non-

negative cost costMovek1k2 to move from location k1 to k2. We have considered costMovek1k2

to be a linear function of the length of the least weighing path from k1 to k2. The compu-

tation of path weights is described in the next chapter. Depending on context and needs

14

of the mission, optimization criterion can vary as given and such others:

1. MinSum1 : minimize the sum of the total cost incurred by every robot over the

entire mission duration.

min
numRobot∑

i=1

Ji (3.1)

2. MinSum2 : minimize the sum of time taken (latency) to service all the tasks.

min
numTask∑

j=1

latencyj (3.2)

3. MiniMax : minimize the maximum total cost incurred by a robot over the entire

mission duration.

min max Ji (3.3)

where, Ji is the total cost incurred by robot Ri over the entire mission duration and

latencyj is the time taken to service task Tj.

The problem is formulated as:

Optimize objective function as defined above

such that : ∀j, ∃ t s.t. Gt(Ri, B) = 1 (3.4)

and ||Pi(t)− Lj|| = 0 (3.5)

where, B is the base station, Gt(Ri, B) = 1 if there exists a communication link between

Ri and B at time t, || · || is the Euclidean distance, Pi(t) is the position of robot Ri at

time t and Lj is the location of task Tj.

15

Chapter 4

System Details

The proposed approach comprises of two design principles (i) robot with the least cost to

service a task should be the service agent for the task and (ii) role allocation to a robot

aims to minimize the total individual cost incurred by the robot over the entire mission

duration. The principle (i) ensures that the time to execute the task is minimized as the

nearest agent to the task is allocated. While (ii) ensures the agents make independent

decisions to be a relay agent or service agent based on their cost. A control strategy that

maintains a balance of the two principles is essential for an effective solution.

4.1 Environment Model

The environment is bounded and represented as a grid. Assuming a cell based decompo-

sition of the configuration space such that the union of all cells is the entire configuration

space is a well established decomposition methodology [17] [18]. We have decomposed the

environment into a grid of rectangular cells. Cells in the grid are of length l and width

w. Center of a cell is referred to as the cell center. Robots can take position only at the

cell centers and a cell is fully occupied if a robot is present in the cell.

16

BASE

 Potential

 Infinite

 Potential

 Zero

Figure 4.1: Potential Gradient Field

The environment grid is assumed to be a potential gradient field. World boundaries are

considered at infinite potential and base station at zero potential as shown in Figure 4.1.

The potential is constant over a single cell. The potential at a cell is computed as given

in Eqn. 4.1. The cost of moving to a cell is directly proportional to the potential at the

destination cell. A move to a higher potential cell costs more, while a move to a lower

potential cell costs less than a move between cells at equal potential.

pot(k) = floor(dist(x, y)) (4.1)

where, (x, y) represent the coordinates of the center of cell k, pot(k) is the potential at cell

k, dist(x, y) gives the Euclidean distance of the coordinates from base and floor(fraction)

returns the largest integer smaller than fraction.

17

Further, the environment is represented as a weighted directed graph, referred to as

envMap, with grid cells as nodes and edges representing valid transitions between nodes.

Edge weight corresponds to the potential at the destination cell. Cells that are occupied

by obstacles or the base station are referred to as obstructed cells and are not reachable by

the robots. We assume that the obstacles occupy complete cells. Even if a cell is partially

occupied we mark the cell as unreachable. A LOS communication model is used. Thus

communication between the robots is not possible if the LOS is obstructed. A collision

is said to have occurred if more than one robot is present on a cell or a robot enters an

obstructed cell.

4.2 Robot Model

Our robot model considers real world discretization restrictions on movement. Translation

range or step size (rt) is the maximum distance a robot can travel in a given direction in

unit time. Robots can only move from one cell (center) to another cell (center). Commu-

nication range (rc) is defined as the distance within which bidirectional communication

between two robots is possible. Sensing range (rs) is the maximum distance up to which

a robot can sense its environment for obstructed cells and other robots. A generic en-

vironment perception model with omni directional sensing ability within a limited range

(r-disc), is considered. The three robot ranges are related as follows:

rc > rs > rt ≥ max(l, w)

All ranges are considered as distances in a 2D Euclidean environment.

18

4.3 Communication Model

We assume r-disc model for communication range. If ||Pi(t)− Pi′ (t)|| ≤ rc we say that

robot Ri and Ri′ are in communication range. A network connectivity graph of the robots,

where nodes represent robots and each edge represents a bidirectional communication link

between two robots, is shown in Figure 4.2. We further assume that if Ri and Ri′ are not

in LoS (Line of Sight) then they cannot communicate i.e. two robots cannot communicate

if there is an obstacle between them.

 1

 2

 3

4

5

 6

 7

8

Base Station

Figure 4.2: Snapshot of the dynamic ad-hoc network

19

Chapter 5

Strategy

Our system uses agent level rationale to model intelligent group behavior. The underlying

idea is to make distributed decisions based on simple rules, using locally sensed informa-

tion. Every robot is assumed to be an autonomous entity and follows the pipeline shown

in Figure 5.1. We will explain the various stages of the pipeline for a single robot and

refer to it as the host robot.

5.1 Environment Sensing

Robots can discover other robots within rc (Eqn. 5.1) and check for one hop connectivity

to the base station. Also a robot can detect occlusions and other robots within its sensing

range along the Line Of Sight (LOS). Since rs < rc, it can also communicate with the

robots detected within rs. This information is collated to differentiate between robot

occupied cells and obstructed cells. We differentiate between obstructed cells and robot

occupied cells as hard (or stationary) obstacles and soft (or mobile) obstacles, respectively.

20

Figure 5.1: Robot level control flow diagram: Strategy Planner

21

agentsInRangei′(t) = {Ri : ||Pi(t)− Pi′(t)|| ≤ rc} (5.1)

Each robot maintains a local copy of the envMap and updates it with it’s sensory per-

ception of the environment. Robots can detect obstacles, hard and soft, within rs. A

hard obstacle detection sets the potential of the corresponding cell to infinity (Eqn. 5.2)

and also modifies the cost computation for transition to and from those cells. This may

be implemented by permanently removing all edges to and from the obstructed cell in

envMap (Eqns. 5.3 and 5.4).

poti′(k) =∞,∀k ∈ {hardObsi′(t)} (5.2)

costi′{:, k} = 0, ∀k ∈ {hardObsi′(t)} (5.3)

costi′{k, :} = 0, ∀k ∈ {hardObsi′(t)} (5.4)

where, poti′(k) is the potential at cell k in agents i’s local copy of envMap.

Communicating robots share their current location Pi(t) and next feasible locations vector

nextLocsi(t) as defined in Table 5.1. Robot Ri′ for instance, checks which of its neighbours

nextLocsi(t) locations overlap with nextLocsi′(t), and could lead to a possible collision.

If a neighboring robot lies in nextLocsi′(t), it is detected as a soft obstacle (Eqns. 5.1

and 5.5). Also locations common to nextLocsi′(t) and nextLocsi(t) of a neighboring robot

could lead to a possible collision and hence are also considered as potential obstacles (Eqn.

5.7). A relevant change in the cost computation of a direct move to obstacle locations is

desirable. It may be implemented by appropriately changing the weight of the directed

22

edge from the robot’s current location to the obstacle cell (Eqns. 5.6 and 5.8).

softObsi′(t) = {Pi(t) ∩ nextLocsi′(t), Ri ∈ agentsinRangei′(t)} (5.5)

costi′{Pi′(t), k} =∞,∀k ∈ {softObsi′(t)} (5.6)

collAvoidCellsi′(t) = {nextLocsi(t) ∩ nextLocsi′(t),∀Ri ∈ agentsInRangei′(t)}(5.7)

costi′{Pi′(t), k} = costi′{Pi′(t), k}+ w,∀k ∈ {collAvoidCellsi′(t)} (5.8)

where, w is the penalty term. The value of w depends on rt and should be chosen in a

way such that the least costing path to any other cell from Pi′(t) does not include k.

Soft obstacle and collision avoidance related cost computation changes are temporary and

rolled back when the corresponding cells are detected as empty. As environment sensing

(and obstacle detection) is along the LOS, there also occur blind spots around obstacles.

These are rare occurrences and can lead to collision between robots.

5.2 Information Exchange

The Information exchange stage involves communication within the one hop network

around the robot. Communicating robots exchange vectors as given in Table 5.1. When

in one hop base connectivity the robots share the following vectors with the base station:

task statusi′(t) and Pi′(t). The base station also shares the task statusi(t) and Pi(t) of

the other one hop connected robots.

23

hardObsi′(t) an array of hard obstacle cell indices

cost vectori′(t) robot’s service cost to currently active
tasks (1 x numTask)

task statusi′(t) possible task states: {inactive, active,
serviced} (1 x numTask)

Pi′(t) robot’s current location

nextLocsi′(t) robot’s next feasible locations

baseConnectioni′(t) shortest connectivity link to the base
station

Table 5.1: Robot exchange vectors

5.3 Service Agent Selection

Each robot individually computes the service robot for all currently active tasks.

task costsi′ (numRobot x numTask) is the robot-task cost matrix where,

task costsi′(i, j) = Cij (5.9)

where, Cij is the cost for robot Ri to service task Tj.

For robots not in rc, the cost to service a task is ∞,

task costs(r, :) =∞,∀r /∈ {agentsInRange} (5.10)

The robot with the lowest cost to service a task is selected as the service robot for the

24

task.

serviceRobot(j) = argmin
i
{task costs(i, j)},∀j, i = 1...numRobots (5.11)

In case of a tie, the lexicographical ordering of the robots is used to break the tie. The rea-

son for using lexicographical ordering is to make sure all robots in the same neighborhood

select the same service robot.

5.4 Relay Node Allocation

A robot can be a relay node to a robot that has a lower cost to service a task. We define

the cost to service a task as the length of the least costing path to the task location in

the robot’s local world graph: envMap. Amongst the robots within rc, the ones with cost

to service a task less than that of the host robot form the set of candidates to which the

host node can follow as relay node (Eqn. 5.12). If the number of candidates is higher

than a threshold the host robot backs off from the task and does not select any leader

for the task. This behavior avoids clustering amongst robots and also aides in servicing

multiple tasks simultaneously. We use a threshold of 3 in simulations. From the set of

leader candidates to a task for a robot, the one with highest service cost is selected as the

leader (Eqn. 5.13).

∀j candidateSeti′,j = {i : task costsi′(i, j) < cost vectori′(j)} (5.12)

∀j leaderi′(j) = argmax
i
{task costsi′(i, j)}, i ∈ candidateSeti′,j (5.13)

25

Since cost is defined in terms of shortest distance to the task location, the selected leader

for a task is the candidate physically nearest to the robot. This selection procedure

enforces a hierarchy in the set of robots that are involved in the service of a task. The

one with immediate higher cost assumes the relay node role for a robot. Robot with

the highest cost is closest to the base station or last in the service chain and robots

with successively lower costs are farther away from the base station. The relay node

assignment stage culminates by computing cost to be a relay node for each of the active

tasks. costToRelayi′ vector is of length numTask and costToRelayi′(j) is the cost for

robot Ri′ to be a relay robot for task Tj to robot Rleader(j) and is equal to the length of

the least cost path fromPi′ to Pleader(j). The costToRelayi′(j) for an inactive task is ∞.

5.5 Self Role Allocation and Target Computation

A robot can perform multiple roles at the same time. The maximum number of parallel

roles a robot can assume is a system parameter that must be set a priori. numRoles is

the maximum number of roles a robot can perform simultaneously. If a robot finds itself

to be selected as the service agent for a task(s), it assumes the role of service agent for

the task with minimum service cost (Eqn. 5.14). A robot can assume the role of service

agent for atmost one task.

serviceTaski′ = argmin
j
{cost vectori′(j) : leaderi′(j) = i′} (5.14)

Amongst all tasks the one for which costToRelayi′(j) is minimum is then selected as a

relay task. This process is repeated until the total number of roles assigned to a robot

equal numRoles. The process stops midway if more roles are not available, either because

26

numRoles > number of active tasks or within rc the robot has the smallest cost to service

all the active tasks. Each role corresponds to a target location. In case of service agent

role, target is the task location, while in case of relay node assignment it is the location

of the leader being followed. Target computation is performed as given in Algorithm 1.

Algorithm 1 computeTargets (Ri′ .info, numRoles, task status, numTask)

if isempty(serviceTaski′) then
start = 1

else
targetsi′(1) = serviceTaski′ .location
start = 2

end if
taskIndex = 1
for i = start:1:numRoles do

if taskIndex > numTask then
break

end if
relayTask(taskIndex) = argmin

j
{costToRelayi′(j) : task status(j) = “active”}

costToRelayi′(relayTask(taskIndex)) = ∞
targetsi′(i) = leaderi′(relayTask).location
taskIndex += 1

end for

5.6 Move!

This is the motion planning stage of the pipeline and is shown schematically in Figure 5.2.

The first step towards calculating the next move is to find a path to each of the target

locations computed in the previous step. We run Dijkstra’s algorithm [19] on the potential

gradient environment map envMap, to compute the shortest (least costing) path to each

target. A path is a vector of cell indices the robot must visit to reach the target location.

Next, we find the weighing parameter associated with each target. It is a function of the

27

Figure 5.2: Robot level control flow diagram: Motion Planner

length of the shortest (least costing) path to the target location and role that the robot

assumes corresponding to the target. The first move along the highest weighted path is

then selected as the next move.

The move is validated to satisfy network connectivity constraints to ensure the robot is

connected to the base station at the new location. There must exist either a one hop link

or a relay node, that provides connectivity at the next location. The procedure to ensure

the connectivity requirements is described next.

The host robot can detect the existence of a direct connectivity link to the base station.

If such a link is not present, the next location must be within the communication range

of a robot that is connected to base. We now present strategies based on two different

28

models of the environment dynamics.

5.6.1 Static Environment Model

In this approach the environment is modeled as a static world and makes the following

assumption: all obstacles, hard and soft, are static and only one robot can move at a time.

Under the model, robots currently within communicable distance of the host robot and

connected to the base station form the candidate set for relay agent at the next loca-

tion. Robots within one-hop communication range of base station are also included in

the candidate set. Robots connected to the base station through the host robot must not

be included in the candidate set as this could lead to a network loop disconnecting both

the robots from the base station. A robot that consists of the host robot as a hop on

the connectivity link to base would have link length at least equal to host robot’s link

length + 1. Further if both the robots have equal link length, the first hop in both the

links could be same. This could lead to situations, where both robots move assuming

the other would provide connectivity and get disconnected. Hence to ensure connectivity,

neighboring robots with a link to the base station of length at most equal to the host

robot’s link length - 1 are considered.

If the new location is within communication range of any of the robots in the candidate

set the host robot is allowed to move. This provides connectivity at the new location

under static world assumption.

29

5.6.2 Dynamic Environment Model

We now extend network connectivity checks to a dynamic environment. The Environ-

ment is modeled as a dynamic world and makes the following assumption: all robots/soft

obstacles can move simultaneously.

To ascertain connectivity in this scenario, non favorable movement of neighboring robots

must also be accounted for. This is done by assuming worst possible direction of move-

ment of all candidate robots. To realize this we use (rc - rt) as the communication range

of robots instead of rc. If the new location is within (rc - rt) distance away from any of

the candidate robots connectivity can always be guaranteed at the new location. Once

the connectivity check is satisfied, the robot moves to the new location while remaining

connected to the base station.

5.6.3 Recovery Behavior

The robots could still get disconnected due to a relay node going astray or other unfore-

seen circumstances such as link failures. Hence, it is imperative that the system is robust

to such failures and is able to recover. We define here behavior which the robot must

follow in a state when it has lost connectivity to base. We name it as steepestDescent

behavior. The disconnected robot computes the direction of steepest descent of potential

gradient in its local neighborhood and starts moving towards it. It would then be moving

towards the base station. Also since a relay node, to which it might have lost connectiv-

ity, is typically in a lower potential band, this increases the probability of reconnecting.

Robots switch to the same behavior, to return to base station once all tasks are serviced.

30

Chapter 6

Results and Analysis

6.1 Simulation Setup

A simulation framework was built in Matlab for validating the strategies. The simulations

were done in a discretized environment of size 20 units × 20 units space. The base station

of size 2 units × 2 units was placed at the center. Obstructed space was varied from 0% to

16% (hard and soft). We have used 20 randomly generated environments for simulations

where tasks were generated at random locations dynamically during mission execution.

A sample environment is shown in Figure 4.1. Upto two tasks appeared simultaneously

at any given point in time. Simulations were carried out for various combinations of the

parameters. Table 6.1 summarizes the parameters used and the corresponding values

varied for the simulations. A total of 1000 simulations were carried out to evaluate the

performance of the algorithm.

Typically, the the time taken for one information exchange cycle amongst one-hop con-

nected robots is less than the time consumed in a robot move. We capture this aspect in

31

Number of Agents { 8, 12, 16, 20, 24 }
Number of Tasks { 2, 4, 6, 8, 10 }
Obstructed Cells (%) { 0,20 }

Table 6.1: Simulation Parameters

simulation by using a ratio of 4:1, i.e. for every four communication cycles there is one

movement cycle.

The number of factors affecting algorithm performance is very large. We provide a careful

analysis of the various factors involved and their interplay that leads to resultant system

behavior. To establish the ground truth, we conducted 500 simulations in an obstacle-

free environment. 25 different mission scenarios were designed and 20 different starting

configurations were generated for each scenario. The extensive simulations lead to some

interesting observations on system performance. We present the same here.

6.2 Results and Analysis

The algorithm has high rate of convergence for the number of tasks serviced successfully.

As is clearly observable from Figure 6.1a, of the 25 different simulation scenarios, the

median for the percentage of tasks completed in 20 different configurations is 100% in

20 scenarios i.e. in 80% of the total scenarios. In the other 5 cases the value fluctuates

between 81%-98%. This is because in these 5 scenarios the tasks per agent ratio was high.

The smallest median value for the percentage of tasks completed in a mission is 81% (8

Agents, 6 Tasks). This also shows that the algorithm does not get held up due to deadlock

situations. The self role allocation allows for dynamic role reassignment amongst agents,

32

2 4 6 8 10

0

20

40

60

80

100

No. of Tasks

%
 o

f T
as

ks
 S

er
vi

ce
d

8 Agents

2 4 6 8 10
No. of Tasks

12 Agents

2 4 6 8 10
No. of Tasks

16 Agents

2 4 6 8 10
No. of Tasks

20 Agents

2 4 6 8 10
No. of Tasks

24 Agents

(a) Percentage of Tasks Serviced vs Number of Tasks for an obstacle-free environment. The
definite increase in median value shows that higher number of robots successfully reduce the
average service time per task.

8 12 16 20 24
0

20

40

60

80

100

120

Number of Agents

A
vg

.
S

e
rv

ic
e
 T

im
e
 p

e
r

T
a
sk

2 Tasks
4 Tasks
6 Tasks
8 Tasks
10 Tasks

(b) Average service time vs number of agents
for obstacle-free environments

2 4 6 8 10
0

20

40

60

80

100

120

Number of Tasks

A
vg

.
S

e
rv

ic
e
 T

im
e
 p

e
r

T
a
sk

8 Agents
12 Agents
16 Agents
20 Agents
24 Agents

(c) Average service time vs number of tasks for
obstacle-free environments

Figure 6.1: Simulation results for obstacle-free environment

thus avoiding deadlocks.

As the number of agents increases the mission completion rate increases. Further, stan-

dard deviation shows a consistent decline as the agents per task ratio increases. The

average time to service a task also shows a uniform drop in magnitude with more number

of agents. Figures 6.1b and 6.2b capture this behavior. Figures 6.1c and 6.2c present the

variation in average service time per task with increase in number of agents for various

number of tasks. A steady improvement in service times is observed for missions of vari-

ous sizes. Thus the algorithm is scalable and is successfully able to utilize extra number

of available agents.

33

2 4 6 8 10
0

20

40

60

80

100

No. of Tasks

8 Agents
%

 o
f T

as
ks

 S
er

vi
ce

d

2 4 6 8 10
No. of Tasks

12 Agents

2 4 6 8 10
No. of Tasks

16 Agents

2 4 6 8 10
No. of Tasks

20 Agents

2 4 6 8 10
No. of Tasks

24 Agents

(a) Percentage of Tasks Serviced vs Number of Tasks for an obstacle-rich (10% static) environ-
ment.

8 12 16 20 24
0

20

40

60

80

100

120

Number of Agents

A
vg

.
S

e
rv

ic
e
 T

im
e
 p

e
r

T
a
sk

2 Tasks
4 Tasks
6 Tasks
8 Tasks
10 Tasks

(b) Average service time vs number of agents
for obstacle-rich environments (10% static)

2 4 6 8 10
0

20

40

60

80

100

120

Number of Tasks

A
vg

.
S

e
rv

ic
e
 T

im
e
 p

e
r

T
a
sk

8 Agents
12 Agents
16 Agents
20 Agents
24 Agents

(c) Average service time vs number of tasks for
obstacle-rich environments (10% static)

Figure 6.2: Simulation results for obstacle-rich environment

In Figure 6.1a, the plot for 8 agents shows the algorithm performing badly with relatively

low mission completion rates and high standard deviation. Standard deviation is also

high for missions with large number of tasks and decreases only gradually with increase

in the number of agents. In Figures 6.1b and 6.2b also, the average time taken to service

a task is very high for 8 agents. This is because the agents per task ratio decreases to

very low values, even <1 at times, in these missions. Even though all tasks do not appear

at the same instant, by virtue of random generation, tasks could appear far and wide in

the world and the number of available agents falls short to adequately service all tasks.

To study the performance of the algorithm in real world environments we also conducted

500 simulations in obstacle-rich environments. The same scenarios and initial configura-

34

tions as obstacle-free environments were used. We envisioned the resulting plots to have

a similar pattern as in the case of obstacle-free environments with a modest decrease in

performance. As was expected, the mission completion rate increases with increase in

the number of agents available. However after a certain value the performance starts to

deteriorate with further increase in the number of agents. The presence of static obstacles

in the environment constrains the movement space and inflates the effect of soft obsta-

cles, read other agents, as the number of agents keeps increasing. These mobile obstacles

have a major impact on performance. Large number of mobile obstacles severely affects

performance metrics and even jeopardize mission completion as seen in Figure 6.2a. The

mission completion rates show improvement with increase in agents from 8 to 16; there-

after with further increase in the number of agents the performance starts to decline.

The soft obstacles cover as much as 6% (in addition to the 10% static obstacles) of the

configuration space in case of 24 agent teams. The increase in the number of outliers with

large team size observed in Figure 6.1a is also attributed to the same reasoning. It is

argued that for a given environment size there is an upper limit on the maximum number

of agents up to which the performance improves. With anymore increase in number of

agents there is a decline in performance. These results are consistent with the existing

literature ([3] and the references therein).

Figures 6.1b, 6.1c, 6.2b and 6.2c consider only those tasks which were successfully serviced

to compute the average time taken to service a task. While the improvement in average

service time with larger number of agents is homogeneous (Figure 6.2b), the variation in

service time with more number of tasks in a mission has an interesting pattern. All team

sizes (number of agents) show a decline in performance initially. The peaks after which

the change in behavior is observed is different for different team sizes. The peak for 8

agents occurs at 6 task missions. For 12 and 20 agent teams it occurs at 8 task missions

35

and appears early at 4 tasks for 16 agent teams. A peak observed at 6 task missions for

24 agents is only a local maxima. The global peak is not captured in these simulations

and would require missions with higher number of tasks. Agents need to be sufficiently

well spread out in the world to be able to service new tasks that may appear at random

locations. Missions with more tasks allow the agents to cover more area in time, which

reduces the service time for tasks that appear later as also the average service time. As

agents move away from each other and cover a larger fraction of the environment, the

effect of soft obstacles also diminishes. This explains the distinctive pattern observed in

Figure 6.2b and on a smaller scale in Figure 6.1b.

6.3 Discussions

Potential Gradient Mapping: Reasons for using potential gradient based environment

mapping, with base station at zero potential and a linear increase in potential with dis-

tance from the base station, are twofold. Firstly, it gives a bias to path selection using

Dijkstra. Of the multiple equal costing paths (if available), Dijkstra always selects the

one that has maximum proximity to the base station. Biasing the path selection in this

manner results in a major reduction in the total number of relay nodes required to service

a task. Secondly, the steepestDescent behavior for the robots is also modeled using poten-

tial gradient. The direction of local steepest descent in a robot’s neighborhood is always

in the direction of the base station. When a robot gets disconnected it starts to move in

the direction of steepest local descent. Nearly always the relay node for a robot would

be at a lower potential than the robot itself, hence when connectivity is lost, moving in

the direction of local steepest descent increases the probability of retrieving the lost link

and in the worst case allows the robot to move within direct communication range of the

36

base station. The same behavior is used to make robots return to base on task completion.

Network Connectivity: The network connectivity checks applied on robot motion as dis-

cussed in Section 5.6 ensure robot connectivity during task service. These checks allow

the robot team to form networked chains to service tasks specially those that appear at

a greater distance away from the base station. The possible points of losing connectivity

during network formation are when a robot takes a turn around an obstacle (blind spots)

or a relay node changes its self allocation. Such scenarios are taken care of using the

disconnected behavior as define in Section 5.6.

One Hop Communication Only one hop robot communication is used amongst the robots

for information sharing. This allows for a modular design and reduces the network load

relative to multi hop information sharing.

Collision and Obstacle Avoidance: By classifying obstacle detections as hard and soft ob-

stacles and performing corresponding action sequences as mentioned in Section 5.1 robots

are able to successfully prevent collisions with obstacles and other robots.

37

Chapter 7

Conclusion and Future Directions

We have developed a distributed online multi-robot mechanism for mission planning. This

work provides strategies to facilitate network connected task servicing. We have shown

it to be scalable to large number of agents and having a high convergence rate. Potential

gradient mapping and graph theoretic approach has allowed us to port well established

principles to our application. Only one-hop communication is used and also there is no

negotiation or explicit cooperation amongst agents for task and role allocation. The idea of

self role allocation is inspired from natural swarms and allows dynamic role reassignment

and role exchange amongst robots. This plays a very crucial role in avoiding deadlocks

which have been widely reported in multi-robotics literature. steepestDescent behavior

allows robots to regain connectivity in case of disconnections. This adds robustness to

the algorithm to network failures.

The algorithm is extensible to other applications like target tracking and cooperative

localization. Extension to cooperative localization would in turn help relaxing the perfect

localization assumed in the text. Stricter network considerations involving network traffic

and link bandwidth are possible extensions to this work. Also analyses of the algorithm

in a continuous environment could provide interesting insights.

38

Bibliography

[1] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. J. Kleywegt, S. Koenig,

C. A. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-robot routing.” in

Robotics: Science and Systems, vol. 5, 2005.

[2] P. Miller, Smart swarm. Collins London, UK, 2010.

[3] J. Vazquez and C. Malcolm, “Distributed multirobot exploration maintaining a mo-

bile network,” in Intelligent Systems, 2004. Proceedings. 2004 2nd International

IEEE Conference, vol. 3, June 2004, pp. 113–118 Vol.3.

[4] P. Ulam and R. Arkin, “When good communication go bad: communications recovery

for multi-robot teams,” in Robotics and Automation, 2004. Proceedings. ICRA ’04.

2004 IEEE International Conference on, vol. 4, April 2004, pp. 3727–3734 Vol.4.

[5] R. Pandey, A. K. Singh, and K. M. Krishna, “Multi-robot exploration with communi-

cation requirement to a moving base station,” in Automation Science and Engineering

(CASE), 2012 IEEE International Conference on. IEEE, 2012, pp. 823–828.

[6] G. Hollinger and S. Singh, “Multi-robot coordination with periodic connectivity,”

in Robotics and Automation (ICRA), IEEE International Conference on, 2010, pp.

4457–4462.

39

[7] N. Gans, J. Shea, P. Barooah, and W. Dixon, “Ensuring network connectivity of

uav’s performing video reconnaissance,” in Military Communications Conference,

2008. MILCOM 2008. IEEE, Nov 2008, pp. 1–7.

[8] J. Reich, V. Misra, D. Rubenstein, and G. Zussman, “Connectivity maintenance in

mobile wireless networks via constrained mobility,” Selected Areas in Communica-

tions, IEEE Journal on, vol. 30, no. 5, pp. 935–950, 2012.

[9] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Maintaining connectivity

in mobile robot networks,” in Experimental Robotics. Springer, 2009, pp. 117–126.

[10] Y. Pei, M. W. Mutka, and N. Xi, “Coordinated multi-robot real-time exploration

with connectivity and bandwidth awareness,” in Robotics and Automation (ICRA),

2010 IEEE International Conference on. IEEE, 2010, pp. 5460–5465.

[11] A. Mosteo, L. Montano, and M. Lagoudakis, “Guaranteed-performance multi-robot

routing under limited communication range,” in Distributed Autonomous Robotic

Systems 8. Springer Berlin Heidelberg, 2009, pp. 491–502.

[12] B. Brggemann, M. Brunner, and D. Schulz, “Spatially constrained coordinated nav-

igation for a multi-robot system,” Ad Hoc Networks, vol. 11, no. 7, pp. 1919 – 1930,

2013.

[13] P. Maini and P. B. Sujit, “Multi-robot base connectivity constrained task servicing,”

in Intelligent Unmanned Systems (ICIUS), 2013 International Conference on, 2013.

[14] A. Viguria, I. Maza, and A. Ollero, “S+t: An algorithm for distributed multirobot

task allocation based on services for improving robot cooperation,” in Robotics and

Automation, 2008. ICRA 2008. IEEE International Conference on, May 2008, pp.

3163–3168.

40

[15] S. S. Ponda, L. B. Johnson, A. N. Kopeikin, H. Choi, and J. P. How, “Dis-

tributed planning strategies to ensure network connectivity for dynamic heteroge-

neous teams,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 5,

pp. 861 –869, June 2012.

[16] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auctions for

robust task allocation,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 912–926,

August 2009.

[17] H. Choset, “Coverage for robotics–a survey of recent results,” Annals of mathematics

and artificial intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

[18] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, “Maintaining network connec-

tivity and performance in robot teams,” Journal of Field Robotics, vol. 25, no. 1-2,

pp. 111–131, 2008.

[19] E. W. Dijkstra, “A note on two problems in connexion with graphs,” vol. 1, pp.

269–271, 1959.

41

	Introduction
	Related Work
	Problem Formulation
	System Details
	Environment Model
	Robot Model
	Communication Model

	Strategy
	Environment Sensing
	Information Exchange
	Service Agent Selection
	Relay Node Allocation
	Self Role Allocation and Target Computation
	Move!
	Static Environment Model
	Dynamic Environment Model
	Recovery Behavior

	Results and Analysis
	Simulation Setup
	Results and Analysis
	Discussions

	Conclusion and Future Directions

