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ABSTRACT

Federated learning (FL) is a privacy-preserving machine learning approach that enables

the training of models across multiple decentralized edge devices without exchanging

raw data. However, local models trained only on local data often fail to generalize well

to unseen samples. Moreover, in the context of an end-to-end ML model at scale, it is

not feasible to repeatedly train from scratch whenever new data arrives. Therefore, it

is essential to employ continual learning to update models on the fly instead of retrain-

ing them from scratch. Continual Federated Learning enhances the efficiency, privacy,

and scalability of federated learning systems by learning new tasks while preventing

catastrophic forgetting of previous tasks. The primary challenge of Continual Feder-

ated Learning is global catastrophic forgetting, where the accuracy of the global model

trained on new tasks declines on the old tasks.

In this work, we propose a novel strategy, Bayesian Gradient Descent in Continual

Federated Learning(CFL-BGD) to overcome catastrophic forgetting. We derive new

local optimization problems, based on Bayesian continual learning and FL principles.

We conduct extensive experiments on Permuted MNIST and Split MNIST without task

boundaries, demonstrating the effectiveness of our method in handling non-IID data

distributions with varying levels of heterogeneity, and in mitigating global catastrophic

forgetting. Unlike other continual learning methods like EWC, which take some core

action based on task boundaries, our approach does not require any knowledge of task

boundaries, making it more versatile and practical. The results show that our method

significantly improves the performance and robustness of the global model across var-

ious tasks, highlighting the potential of our strategy in real-world federated learning

applications.
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NOTATION

α Dirichlet distribution parameter defines degree of hetereogenity

θ Parameters of the model

Dn Dataset at the n-th task

Ex Expectation taken with respect to x

φ Parameters of the parametric distribution

φ∗ Optimal parameters of the parametric distribution

Ct Set of iterations at which model aggregation occurs

µk,t(m) Mean parameter of client k’s local model in round t

σk,t(m) Standard deviation parameter of client k’s local model in round t

η Learning rate, controlling the step size in parameter updates

Ln
k,t(θ) Loss function of client k on n th task, dependent on model parameters θ

ǫk,t(m) Noise term specific to client k in round t

µn−1
w,t (m) Aggregated mean of global model parameters at round t

σn−1
w,t (m) Aggregated variance of global model parameters at round t

K Total number of clients participating in the federated learning process

p(D, θ) Joint probability distribution of dataset D and parameters θ

p(D|θ) Likelihood function of the dataset D given parameters θ

p(θ) Prior distribution of the parameters θ

p(θ|D) Posterior distribution of the parameters θ given dataset D

Q(θ|φ) Parametric distribution used in variational Bayes

N (µ, σ) Gaussian distribution with mean µ and standard deviation σ
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

General neural networks have the ability to learn the task at hand Mittal et al. (2021);

however, when the same model is trained on new tasks, it tends to override the earlier

ones, a problem known as catastrophic forgetting. Addressing this issue is important

for enabling models to adapt to real-world scenarios. Continual learning, inspired by

the human learning process, allows models to train on sequentially arriving tasks, miti-

gating catastrophic forgetting Yoon et al. (2021).

With the advent of technology, vast amounts of data are being generated by millions

of devices, creating rich sources for training models in areas such as image, language,

and speech processing. However, storing this data and ensuring its availability for train-

ing poses significant challenges, including privacy concerns for users. Federated Learn-

ing (FL) was introduced to address these issues by enabling end devices to train on their

data without sharing it with a central server, thus simultaneously solving data privacy

and storage challenges McMahan et al. (2023)

Continual Federated Learning combines the principles of continual learning and

federated learning to address the unique challenges posed by both domains. It enables

decentralized models to learn from sequentially arriving tasks across multiple edge

devices without exchanging raw data, thereby preserving user privacy and improving

model adaptability. This approach not only prevents catastrophic forgetting but also

enhances the scalability and efficiency of the learning process.

In this work, we propose CFL_BGD, which refers to Continual federated learning

using Bayesian gradient descent in a task-agnostic scenario.

• Addressing the challenge of catastrophic forgetting in Task-Agnostic Continual

Federated Learning, where client-side adaptation occurs without explicit task

boundaries.

• Using Online Variational Bayes to come up with an update rule for client models

and global model.



1.2 Federated Learning

Federated learning trains machine learning models in a decentralized manner, where

many clients each have their own data. The global model, shared by the server among

clients, is sent to K clients for remote training using their local data, with each client

having its own nk samples. After training, the clients update their weights according

to their local data. These updated weights are then sent back to the global server. The

server aggregates all the models to update the global model. This method ensures data

protection on the client side, as only model updates are shared, not the raw data. Unlike

centralized training, where all data must be sent to a single location for training, fed-

erated learning maintains data privacy by keeping it decentralized. There is no direct

communication between clients; they only communicate with the server. This approach

leverages diverse datasets while ensuring data integrity and confidentiality, making it

particularly useful in privacy-sensitive applications like healthcare, finance, and mobile

devices.

Figure 1.1: Federated learning process

The following are the detailed steps of federated learning in one communication

round:

• Step 1: According to the use case, select a global model.
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• Step 2: Send the global model among K clients.

• Step 3: Train the local model at each client on their respective local data.

• Step 4: After local training, send the updates to the server.

• Step 5: Aggregate all local model updates at the server.

1.2.1 Benefits of Federated Learning

• Enhance Privacy and Security: Federated learning allows machine learning

models to be trained without sending raw data from local devices to a central

server. By ensuring that critical data stays on the user’s device, this decentralized

approach lowers the possibility of data breaches and protects user privacy

• Reduce Data Transfer Costs Federated learning reduces the quantity of data that

must be transferred over networks by processing data locally on devices and only

communicating model updates to a central server. This reduction in data transfer

can lead to lower bandwidth usage and cost savings, particularly important in

environments with limited connectivity.

• Improved Data Diversity: Models trained in federated learning use data from

many different contexts and sources. In contrast to models trained on centralized

data, which might not capture all conceivable changes, this diversified data might

assist in constructing more robust and generalizable models that function well

across numerous circumstances.

• Compliance with Regulations: Many industries, such as healthcare and finance,

are subject to strict regulations regarding data privacy and protection. Federated

learning helps organizations comply with these regulations by ensuring that sen-

sitive data never leaves the local devices, making it easier to adhere to legal and

regulatory requirements while still leveraging the power of machine learning.

1.2.2 Challenges in Federated Learning :

• Statistical heterogeneity: As federated learning is a decentralized framework,

it may have local devices in many different geographical locations, and the data

at the different clients may have different distributions; because of this non-IID

nature in the data, the global model faces challenges, we have calculated global

fisher in order to reduce the effect of this problem.

• Communication Efficiency: In the federated learning framework, communica-

tion between server and client is challenging; we expect the global model to con-

verge faster in a few rounds so that communication between server and clients

decreases.

• Scalability: There are significant challenges with an increase in the number of

clients in federated learning, such as communication overhead and latency in

communication, and resource management is also important when the number of

clients is increased.
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1.3 Continual Learning

Continual learning addresses the challenge of training machine learning models on new

data without needing to retrain from scratch. We have situations where we train a model

and right after the training new data comes in, now if we want to train the same model

we need to add this new data to the old dataset and we need to train the model from

scratch which is a cumbersome task to do because we know training deep learning

models is highly computational expensive hence Incrementally training our model on

continuously arriving new data, we can update models sequentially on the stream of

tasks.

In a typical scenario, we might have a neural network that is trained on Task A data,

the weights in the network are trained such that it performs well on Task A, and when

new data Task B arrives the same model which is trained on Task A data is now trained

on Task B data the then the weight of the network which are crucial in performing Task

A are now changed to perform Task B, this phenomenon is called as Catastrophic forget-

ting, Kirkpatrick et al. (2017). Continual learning methods help to reduce Catastrophic

forgetting.

Figure 1.2: In this figure, we can see that model Mt is getting updated with continuous

streams of data

1.3.1 Benefits of Continual Learning

• Adaptability : Federated learning allows machine learning models to be trained

without sending raw data from local devices to a central server. By ensuring that

critical data stays on the user’s device, this decentralized approach lowers the

possibility of data breaches and protects user privacy

• Scalability :It allows for the efficient use of computational resources by updating

4



models incrementally rather than retraining from scratch, making it scalable for

large datasets and complex tasks.

• Resource Efficiency: Continual learning can reduce the need for extensive data

storage and repeated training cycles, optimizing memory and processing power

usage.

1.3.2 Challenges in Continual Learning :

Catastrophic Forgetting: One of the most significant challenges is catastrophic for-

getting, training on new tasks causes the model to forget previously learned tasks. This

happens because the model’s weights are modified for the new task.

Balancing Stability and Plasticity: In the federated learning framework, communi-

cation between server and client is challenging; we expect the global model to converge

faster in a few rounds so that communication between server and clients decreases.

Incremental learning can be more promising in modern machine learning; instead of

training the model from scratch, we can use incremental learning to update the model on

continuously evolving tasks. That way, we can make machine learning models adapt-

able and scalable. If we consider some real-world examples, it can be used in Au-

tonomous vehicles where the model observes different contexts(for example, different

new obstacles and lanes) from the fleets, sends the data to its servers, and updates the

model with the new data. If we consider Language modeling as an example using in-

cremental learning helps in learning different patterns in the data.

1.4 Contributions

We are incorporating incremental learning in the federated setup to leverage the incre-

mental learning benefits, we have client models that have new data coming in continu-

ously here comes the problem as we discussed earlier is Catastrophic forgetting as the

client model trains on a new set of tasks it tends to forget the old tasks, in this work

we ensure the client model continuously learn the evolving tasks with the decrease in

forgetting previously learned tasks without knowing the task boundaries also combine

these incrementally trained client models in federated setting, we develop a new method

5



where combined global model performs well on previously trained tasks which reduce

catastrophic forgetting at the global level over the communication rounds.

1.4.1 Notations

Small letters denote scalars, boldface small letters denote vectors. I denotes an identity

matrix whose size is as per context. The ℓ2-norm of a vector x is denoted as ||x||. P

represents sets and |P| represents size of the set.

6



CHAPTER 2

RELATED WORKS

In this chapter, we discuss papers in literature that are related to the proposed frame-

work. Essentially, we first review well-known approaches in federated learning and

discuss how none of these address the challenges in continual learning. Then, we re-

view ***

2.1 Federated Learning

Federated algorithms have widespread applications such as predicting credit risk Xu

et al. (2023) where the data is distributed across different banks, healthcare applica-

tions Joshi et al. (2022) for classifying medical images, applied in object recognition

tasks Hegiste et al. (2023) where the data is distributed across multiple devices, robotics

applications for training models to control robotic systems, smart home applications

Zhang et al. (2022a) for predicting energy consumption, predicting stock prices, au-

tonomous vehicle applications Chellapandi et al. (2023) for predicting road conditions,

and several privacy preserving scenarios. The first technique that came about was Fe-

dAvg, proposed by McMahan et al. (2023), which is a simple and efficient federated

learning algorithm that uses a weighted average of the local model updates from partici-

pating clients (not all clients are active all the time) to update the global model. Despite

its simplicity, FedAvg has achieved good performance in various applications.

FedProx, proposed by Li et al. (2020), introduces a proximal term to the FedAvg al-

gorithm to account for the heterogeneity in client data and improve the performance

of the federated learning system. The proximal term encourages the clients to update

their models towards a proximal solution of the global model, which helps to mitigate

the effect of non-IID data distribution. FedBN Li et al. (2021) is a federated learning

technique to address the problem of non-IID data distribution in the context of batch

normalization (BN) layers in deep neural networks. When using BN layers in federated

learning, clients with non-IID data distributions may have different means and variances



of their input data, which might lead to problems. FedBN solves this issue by enabling

the clients to update the BN parameters locally, which are combined to produce the

global BN parameters. As a result, clients with varied data distributions can employ

various BN parameters, which enhances the model’s performance when applied to lo-

cal data. Among Bayesian methods, pFedBayes, proposed by Zhang et al. (2022b), is

a federated learning algorithm designed to address the challenges posed by heterogene-

ity in client data. Unlike traditional federated learning algorithms that primarily focus

on aggregating models, pFedBayes leverages Bayesian learning principles (Variational

Inference) to personalize the learning process for each client. Although these methods

effectively address privacy-preserving machine learning, they do not address challenges

posed by continual learning.

2.2 Continual Learning

As a general notion in human learning, if one is exposed to new information, he/she

tends to forget the old concepts. However, in humans, the old concept manifests in

various ways, particularly in the context of memory and learning. It is expected that

a similar phenomenon occurs with machine learning models, where, if it is trained on

old samples, the model needs to remember some concepts and learning even when ex-

posed to new information. However, machines do not have any intrinsic mechanism to

preserve learning in previous tasks, and this is aspect is technically termed as “Catas-

trophic forgetting”. Ideally, we would prefer that the model remembers old concepts,

and hence, several methods to mitigate catastrophic forgetting have been proposed.

To solve this problem of catastrophic forgetting, literature consists of rehearsal-

based methods which incorporates a fixed set of memory called memory buffer the

samples from the old task are stored. While training samples from this memory buffer

are included, i.e., we pass a few old samples along with new samples and hence, it

becomes an active recall for the models and hence this avoids catastrophic forgetting

Masana et al. (2020). Another class of methods include regularization-based methods

in which we introduce new terms in the loss function along with normal cross-entropy

loss, now we minimize the combined loss function classification loss on old samples

and distillation loss for old and new samples; this process is done by using knowledge

8



distillation specifically self-distillation any deep learning architecture can adopt this

incremental learning only requirement is to modify the loss function with incremental

loss. We also delve into Bayesian methods for continual learning.

2.2.1 Rehearsal Based Methods

To address the challenge of catastrophic forgetting, rehearsal-based methods have evolved

as promising approaches. These methods utilize memory buffers, also known as exem-

plar sets, to store the previous samples of data, which are used in training to rehearse

previously learned experiences to consolidate learning and also help in performing bet-

ter on previous tasks. One of the well-known contributions in this field is GEM Lopez-

Paz and Ranzato (2022), where memory buffers are maintained to store the past data

samples, and during the training of new tasks GEM constraints the updates by pro-

jecting the gradients onto subspace spanned by past gradients stored in the memory

buffer. This helps the model to learn the new tasks while retaining the knowledge learnt

in previous training. Instead of storing the previous data samples directly and using

them in training the current model, authors in Shin et al. (2017) propose a novel tech-

nique which is the combination of exemplar memory and generative modeling to avoid

the catastrophic forgetting problem. Here, synthetic data is generated using generative

modeling and these generated synthetic data is used in training deep learning models so

as they serve as good as exemplar memory.

In class incremental learning problem setting, there are per-class fixed-size sets used

in training the model Mittal et al. (2021). Class-incremental learning aims to develop

a unified classifier from sequentially arriving data of different classes. Data is received

incrementally in batches, each containing images from specific classes. Each batch is

considered a task, and with each incremental step, new task data containing samples

of new classes is introduced. At each step, only the complete data for the new classes

is available, while a small amount of exemplar data from previous classes is retained

in a limited-size memory buffer. The model is then expected to classify all the classes

encountered so far, additionally Mittal et al. (2021) uses knowledge distillation.

9



2.2.2 Regularization Based Methods

Regularization-based methods introduce new terms in the loss function in addition to

the standard cross-entropy loss. The combined loss function minimizes both classifica-

tion loss on old samples and distillation loss for both old and new samples. This process

is achieved through knowledge distillation, specifically self-distillation, where any deep

learning architecture can adopt incremental learning by modifying its loss function to

include an incremental loss.

As the storing data from the previous task has memory limitations so as to avoid

storing data, In Dhar et al. (2019), the authors propose a method for reducing mem-

orization in machine learning models. The collection of previous data is also not ad-

visable as edge devices have limited memory. The novel approach here is the idea of

preserving base class information without storing the samples, which is incorporated

using the Attention distillation loss. It introduces the student-teacher model where the

teacher is trained using base class, and the student incrementally trains when new data

arrives and also ensures it performs well on the base task. In Rosasco and Villa (2015),

the authors introduce a scheme where the regularization parameters are updated incre-

mentally. This algorithm focuses on improving learning by optimizing added regular-

ization term to the loss function. They also discuss the importance of early stopping in

incremental updates to reduce the empirical risk. For Class Incremental Learning, the

authors in Yan et al. (2021) propose a new method for representation learning which is

a two-stage learning approach that uses dynamically expanded representation to enable

incremental idea modeling to be more successful. Existing incremental learning tech-

niques have a stability-plasticity problem; in simpler terms, high stability means not

learning new concepts, while high plasticity means performance decreases while learn-

ing new concepts, referred to as catastrophic forgetting. In this framework, the authors

introduce a method of representing data that essentially retains previous knowledge,

and when new data arrives, the old ones are frozen, and it adapts to new class features

as it maintains feature extractors of different sizes.

In general, continual learning literature has several approaches based on repre-

sentation learning, and these can be categorized into three main categories namely

regularization-based Zhao et al. (2024), distillation-based Li et al. (2024), and structure-

based methods Kumar et al. (2020); after regularization, it is important to take care of

10



class imbalance issues; different approaches are used to avoid class imbalance Kim et al.

(2020). Similarly, Elastic weight Consolidation (EWC) is inspired by synaptic intelli-

gence; EWC mimics the behavior of the brain by restricting network parameters that

are important for achieving previous tasks to stay close to their old values. In the con-

text of DNNs, Learning, this translates to adjusting the weights and biases to optimize

performance. This importance given to weights is calculated using the Fisher Infor-

mation matrix, which adds weightage to the loss function of each parameter according

to their significance in previous tasks. EWC adeptly balances stability (retaining old

knowledge) and plasticity (learning new knowledge), enabling models to acquire new

information without substantially forgetting prior knowledge Kirkpatrick et al. (2017)

Aich (2021).

2.2.3 Bayesian Methods

In continual learning, data arrives sequentially. In Bayesian methods, the idea is to

provide a solution to the continual learning problem using Baye’s rule. Essentially, the

posterior distribution is updated as and when new data comes in, using the posterior

for the previous task as prior for the current task. In Nguyen et al. (2018), the authors

combine online variational inference and Monte Carlo VI for neural networks and use

Bayes by backprop. In Blundell et al. (2015), authors use mean-field approximation

assumption where the weight distributions are independent. In the Bayesian Incremen-

tal learning approach Kochurov et al. (2018), a Bayesian approach is used to update

posterior on sequential tasks. Specifically, it uses several approximations to calculate

posterior such as fully factorized Gaussian approximation, channel factorized Gaussian

approximation, and multiplicative normalizing flow approximations. These algorithms

are designed such that an appropriate action will be taken based on the task switch.

2.3 Federated Continual Learning

Federated learning has been a promising method for privacy-preserving machine learn-

ing where clients train on their local data, while sharing only the parameters with the

server. Further, a global model is obtained at the server, and this global model is shared

with the clients. In real-world scenarios, the data at the client is not constant and it varies

11



according to the time, and the global model now does not remember the previous tasks

on which it trained, which constitutes catastrophic forgetting in FL. Since centralised

methods cannot be directly used, the authors in CFeD proposed Ma et al. (2022) where

they discuss i) Client division mechanism where the tasks are divided as reviewing old

tasks and learning new tasks so the clients will be assigned with one of these tasks. ii)

Knowledge distillation on surrogate Data, it uses surrogate dataset for each client and it

distills the knowledge from old tasks to a new task, thus it tries to mitigate the problem

of catastrophic forgetting and combining these two methods client division mechanism

and knowledge distillation.

Among existing continual federated learning methods, Yoon et al. (2021) proposes

the decomposition of model parameters into dense global parameters and sparse task-

specific parameters to retain knowledge from past tasks. To tackle catastrophic forget-

ting, Dong et al. (2022) uses global and local level loss compensations to tackle local as

well as global forgetting. On the other hand, Bakman et al. (2023) projects the global

updates of new tasks into orthogonal subspace of previous tasks. Dupuy et al. (2023b)

proposes a way to quantify catastrophic forgetting and alleviate it using replay memory.

Federated continual learning poses new challenges in terms of learning as the different

clients are involved and there are problems such as inter-client interference. Clients

learn on continuously arriving tasks sequence but the task order of tasks is unknown,

and making this learning happen effectively without interference is important, also in

the federated setting we always need to see the communication cost for the transferring

parameters between clients and server and this will be crucial when it has the large num-

ber of tasks to train. To tackle catastrophic forgetting, Dong et al. (2023) uses global

and local level loss compensations to tackle local as well as global forgetting. On the

other hand, Bakman et al. (2023) projects the global updates of new tasks into the or-

thogonal subspace of previous tasks. Dupuy et al. (2023a) proposes a way to quantify

catastrophic forgetting and alleviate it using replay memory.

Despite several recent advances in this area, current literature lacks task-boundary

agnostic methods for Continual Federated Learning (CFL) algorithms that effectively

alleviate catastrophic forgetting.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

Continual learning allows models to learn from a sequence of tasks over time, miti-

gating the issue of catastrophic forgetting where learning new tasks can interfere with

previously learned ones. In task-boundary agnostic scenarios, traditional methods of

continual learning are often unsuitable because they depend on detecting task switches.

Since the number of tasks is unknown, identifying task switches becomes challenging.

3.1.1 Continual Learning and Task Boundaries

Task boundaries are explicit demarcations between different tasks during training. Task-

boundary aware methods such as EWC and online EWC are designed to preserve

knowledge from previous tasks by selectively slowing down the learning on certain

weights that are important for previous tasks Kirkpatrick et al. (2017). Techniques like

LwF leverages knowledge distillation, where the model is trained on new tasks while

using predictions from the model trained on previous tasks to ensure it retains knowl-

edge of the old tasks Li and Hoiem (2017).These task-boundary aware approaches helps

maintain performance on old tasks while learning new ones.

In contrast, task-boundary agnostic methods like the Online Variational Bayes do

not require explicit task boundaries Zeno et al. (2021). Instead, they adapt continu-

ously without knowing when tasks switch. This is beneficial in real-world scenarios

where task boundaries may not be clearly defined or available, enabling a more fluid

and adaptable learning process.

The proposed Task-Agnostic Continuous Federated Learning distinguishes itself by

utilizing online variational Bayes, which allows for continual adaptation in a federated

learning environment where data arrives in a non-stationary and task-agnostic manner.



This approach aims to reduce catastrophic forgetting and improve scalability and adapt-

ability without relying on explicit task boundaries.

3.2 Mathematical Preliminaries

3.2.1 Federated Learning

In a typical Federated Learning (FL) setting, N edge devices periodically communicate

the parameters θ (or incremental updates) to a central server to solve the following

finite-sum unconstrained optimization problem:

min
θ∈Rd

f(θ) = min
θ∈Rd

N
∑

i=1

pifi(θ),

where fi(θ) is the local loss function at the i-th client and f(θ) is the global loss func-

tion. Each client independently computes gradients on its local static data and subse-

quently transmits these gradients to the central server. The central server receives these

updates from all clients and aggregates them using some predefined strategy, such as

averaging the parameter updates.

3.2.2 Continual Learning using a Bayesian Framework

The process of Bayesian inference fundamentally revolves around creating a robust

probability model that characterizes the uncertainty about both the dataset and the

model parameters. Central to this process is the joint probability distribution, which

integrates these aspects into a cohesive framework. This joint probability distribution

can be expressed as the product of two distributions:

p(D,θ) = p(D|θ)p(θ), (3.1)

where p(D|θ) denotes the likelihood function of the dataset D, and p(θ) represents the

prior distribution of the parameters θ. The posterior distribution is calculated using

Baye’s rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (3.2)
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where p(D) is obtained using the sum rule.

In Continual learning, data arrives sequentially (D1,D2, . . . ,Dn) and the posterior

distribution is updated each time new data comes in. At each step, the previous posterior

distribution is used as the new prior distribution for the current task. Thus, according to

Bayes’ theorem, the posterior probability distribution at time n is given by:

p(θ|Dn) =
p(Dn|θ)p(θ|Dn−1)

p(Dn)
. (3.3)

However, calculating the posterior distribution is often intractable for practical proba-

bility models. Therefore, we approximate the true posterior using variational methods.

3.2.3 Variational Bayes

Variational Bayes, as proposed in Graves (2011), is used to approximate the posterior

distribution p(θ|D) using a parametric distribution q(θ|φ), for practical neural network

models, where θ are model parameters and φ are the variational parameters. The ob-

jective is to minimize the Kullback-Leibler (KL) divergence between the approximate

distribution and the true posterior distribution, written as:

KL(q(θ|φ)‖p(θ|D) = Eq(θ|φ) [log q(θ|φ)− log p(θ|D)] (3.4)

We find the best approximation of q(θ|φ) such that the KL divergence is minimized.

Therefore, we need those parameters φ of the distribution q(θ|φ) which minimize the

KL divergence. The optimization problem can be stated as:

ϕ∗ = argmin
φ

KL(Q(θ|φ)‖P (θ|D)) (3.5)

3.3 Proposed Formulation

In the context of Federated Learning (FL), we consider a scenario where there are K

clients and n tasks arriving sequentially at each client. The goal is to update the poste-

rior distribution at each client based on the received data.
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For the n-th task at the k-th client, we have

pk(θk|D
n
k ) =

pk(D
n
k |θk)pk(θk|D

n−1
k )

pk(Dn
k )

. (3.6)

Using the variational Bayes framework:

φ∗
k = argmin

φk

∫

qnk (θk|φk) log
qnk (θk|φk)

pk(θk|Dn
k )
dθk

= argmin
φk

∫

qnk (θk|φk) log
qnk (θk|φk)

pk(Dn
k |θk)pk(θk)

dθk

= argmin
φk

∫

qnk (θk|φk) log
qnk (θk|φk)

pk(θk)
dθk − Eθk∼qn

k
(θk|φk)[log p(D

n
k |θk)].

(3.7)

We assume that (according to BGD) pk(θk) = qn−1
k (θk|D

n−1
k ), that is prior is set to

the approximate posterior of the previous task.

φ∗
k = argmin

φk

∫

qnk (θk|φk) log
qnk (θk|φk)

qn−1
k (θk|D

n−1
k )

dθk − Eθk∼qn
k
(θk|φk)[log p(D

n
k |θk)].

(3.8)

In addition, (according to pfedbayes) at the end of the previous task, the posterior is

set to the global posterior distribution, i.e., qn−1
k (θk|D

n−1
k ) = wn−1(θk|D

n−1
k ). Hence,

the above equation can be rewritten as

φ∗
k = argmin

φk

Eθk∼qn
k
(θk|φk)

[

log qnk (θk|φk)− logwn−1(θk|D
n−1
k )− log p(Dn

k |θk)
]

.

(3.9)

Essentially, we need to optimize for the parameters of qnk (θk|φk) at each client,

under the assumption that log p(Dn
k |θk) is available at each client as the log-likelihood,

and pk(θk|D
n−1
k ) is available from the previous task. We assume that wn−1

k (θk|D
n−1
k )

is Gaussian whose mean and variance at round t can be computed as

µn−1
w (m) =

1

K

K
∑

k=1

µn−1
k (m), (3.10)
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(σn−1
w (m))2 =

1

K

K
∑

k=1

[

(σn−1
k (m))2 + (µn−1

k (m))2 − (µn−1
w (m))2

]

. (3.11)

These updates of the parameters happen at the server. At the k-th client, the param-

eters are continuously updated based on the previous task. The update equations are

given as

µk(m) = µk(m)− ησ2
k(m)Eǫ

[

∂Ln
k(θ)

∂θk

]

, (3.12)

σk(m) = σk(m)

√

1 +

(

1

2
σk(m)Eǫ

[

∂Ln
k(θ)

∂θk

ǫk(m)

])2

−
1

2
σ2
k(m)Eǫ

[

∂Ln
k(θ)

∂θk

ǫk(m)

]

,

(3.13)

where ǫk(m) ∼ N (0, 1) and Ln
k(θ) = − log p(Dn

k |θk).

The expectations are estimated using Monte Carlo method, with θ
(t)
k = µk(m) +

ǫ
(t)
k (m)σk(m) :

Eǫ

[

∂Ln
k(θ)

∂θk

]

≈
1

K

K
∑

t=1

∂Ln
k(θ

(t))

∂θk

, (3.14)

Eǫ

[

∂Lk(θ)

∂θk

ǫk(m)

]

≈
1

K

K
∑

t=1

∂Ln
k(θ

(t))

∂θk

ǫ
(t)
k (m). (3.15)

3.3.1 Algorithm

The following steps summarize the proposed scheme:
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Algorithm 1 Proposed CFL-BGD Scheme

1: for each round of communication t ∈ [Ct] do

2: Initialize client models with the Server model

3: for each client k do

4: Compute local gradients and update local model parameters on every

iteration(mini-batch):

µk,t(m) = µk,t(m)− ησ2
k,t(m)Eǫ

[

∂Ln
k(θ)

∂θk

]

, (3.16)

σk,t(m) = σk,t(m)

√

1 +

(

1

2
σk,t(m)Eǫ

[

∂Ln
k(θ)

∂θk

ǫk,t(m)

])2

−
1

2
σ2
k,t(m)Eǫ

[

∂Ln
k(θ)

∂θk

ǫk(m)

]

(3.17)

5: Transmit updated parameters to the server.

6: end for

7: Server aggregates the received parameters:

µn−1
w,t+1(m) =

1

K

K
∑

k=1

µn−1
k,t (m), (3.18)

(σn−1
w,t+1(m))2 =

1

K

K
∑

k=1

[

(σn−1
k,t (m))2 + (µn−1

k,t (m))2 − (µn−1
w,t (m))2

]

, (3.19)

8: Server transmits the global parameters to the clients.

9: end for
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CHAPTER 4

EXPERIMENTAL SETUP & RESULTS

In this section, we demonstrate the performance of the proposed FCL-BGD framework

on standard datasets used in continual and federated learning. The novelty also lies

in the data partitioning, where data is partitioned in a task-boundary agnostic manner,

with tasks transitioning gradually over time. This task-based dataset is later distributed

in an IID and non-IID manner to the clients, hence simulating diverse task and data

distributions across federated nodes.

4.1 Dataset and Partitioning

We have used two variants of MNIST dataset namely

• Permuted-MNIST: This variant of MNIST involves randomly permuting the

pixels of each image. Every task uses a different permutation of the pixels from

the previous task. For example, if we consider N tasks, we have N − 1 permuta-

tions and 1 task as the original MNIST.

• Split-MNIST: This set of tasks is constructed by pairing digits from the MNIST

dataset. For instance, the first task involves classifying digits 0 and 1, the second

task involves classifying digits 2 and 3, and so on. This approach results in a total

of five tasks.

4.1.1 IID and Non-IID Partitioning

In our experiments, we employed the Dirichlet partitioning technique to distribute the

data among the participating clients. This method allows us to regulate the data hetero-

geneity in Federated Learning using the Dirichlet parameter α. When α → 0, the data

distribution becomes highly heterogeneous (Non-IID), reflecting the real-world sce-

nario where clients have distinct data distributions. Conversely, when α → ∞, the data

distribution among clients becomes homogeneous (IID), simulating a scenario where

all clients have similar data.



For our method CFL_BGD, we used three values of α to generate Non-IID and IID

data distributions: α = 0.1, α = 0.01 and α = 105. The value α = 0.1 was chosen

to create a non-IID setting, introducing moderate heterogeneity among the clients’ data

distributions, and value α = 0.01 was chosen to create a non-IID setting it mimics real-

world data heterogeneity, providing a challenging scenario for evaluating our method.

On the other hand, α = 105 was used to create an IID setting, ensuring that all clients

have nearly identical data distributions. This helps in comparing the performance of our

method under both homogeneous and heterogeneous data conditions.

4.1.2 Continuous Task- Agnostic Scenario

Tasks arrive continuously over the training phase, and transitions between tasks occur

gradually over time rather than suddenly. As a result, task boundaries are not known

during training. The output heads are shared among all tasks. In continuous task-

agnostic learning, the concept of an epoch does not exist since we cannot define ’passing

over the whole dataset’. Instead, we define "iterations per virtual epoch" to indicate how

many iterations constitute a single epoch. The figure below illustrates the proposed

transition of tasks that occurs over the training phase Zeno et al. (2021).

Figure 4.1: Evolving tasks over the training phase. This example considers 5 tasks, with

T iterations (T = iterations_per_virtual_epoch × max_epochs).

This scenario is achieved by dynamically generating task probabilities at each iter-

ation. For n tasks, a task probability vector of dimension T × n is calculated, where
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T is the total number of iterations and n represents the number of tasks. Thus, at each

iteration, a probability vector of dimension 1× n is obtained, containing the probabili-

ties of selecting each task for that specific iteration. For instance, the probability vector

for the i-th iteration can be represented as [pi1, pi2, ..., pin], where pij denotes the proba-

bility of selecting task j at iteration i. This approach introduces tasks sequentially with

overlapping boundaries. Figure 4.1 illustrates this concept by dividing the process into

three regions: (i) start to peak start, where the task’s probability gradually increases;

(ii) peak period, where the task’s probability reaches its maximum; and (iii) peak end

to end, where the task’s probability decreases to zero. Data is distributed among clients

using Dirichlet distribution, and then for every client, their corresponding data is made

available for them in an agnostic manner as described above.

4.2 Implementation Details and Baseline

The implementation of CFL_BGD is carried out using the PyTorch framework and

utilizes an NVIDIA Quadro RTX 6000 GPU. During training, K clients are simulated,

enabling efficient communication between clients and the server through the PyTorch

back-end. In our experiments, we used K = 5 number of clients, number of tasks T = 5

and the number of local epochs to E = 30, and the number of communication rounds to

C = 5 over the training phase, unless stated otherwise. For all experiments, the batch

size is B = 128. The model used for training is a fully connected linear network with

two hidden layers each of width 200, trained with mean_eta = 1 for CFL_BGD and

CFL_BGD with a learning rate of η = 0.01. We have a total of T iterations in the entire

training phase. From these iterations, we compute a set of aggregation points, denoted

as Ct. Each element c in Ct represents the iteration at which a task is fully processed

divided by the number of aggregations (set to 1). The total number of aggregations

is equal to the number of tasks times number of aggregations. The server model is

aggregated every c iterations. Clients continuously update their models using data up to

the c-th iteration before transmitting updates to the server. The server combines these

client updates to create a new server model.

Due to the inapplicability of previous algorithms in task agnostic scenario, we chose

FedAvg aggregation with SGD as the optimizer in a continual task-agnostic scenario
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as our baseline for comparison, referring to it as CFL_SGD.

4.3 Metrics

For T as the total number of tasks, we define Accuracy and Forgetting as follows :

Average Accuracy (Acc): This metric measures the average performance of the

global model across all tasks at the end of the final task in the continuous federated

learning (CFL) process. It provides an overall accuracy score for how well the model

has performed on all tasks. It is mathematically computed as follows:

Acc =
1

T

T
∑

i=1

AT,i (4.1)

where AT,i is the accuracy of the global model on task i at the end of the final task T .

Forgetting: This metric measures the extent to which the model forgets previously

learned tasks as it learns new ones. A lower value of forgetting indicates that the model

retains its performance on old tasks even after being trained on new tasks.

It is mathematically computed as follows:

Forget =
1

T − 1

T−1
∑

i=1

(Ai,i − AT,i) (4.2)

where Ai,i is the accuracy on ith task right after training on task i, and AT,i is the

accuracy on task i at the end of the final task T .

4.4 Results and Discussion

Table 4.1: Performance metrics on P-MNIST dataset for IID and Non-IID (α = 0.1)

and Non-IID (α = 0.01) settings.

P-MNIST

IID Non-IID Non-IID

Acc Forget Acc Forget Acc Forget

CFL_SGD 51.91 56.62 38.35 40.65 22.41 11.78

CFL_BGD 85.83 13.55 66.24 18.46 36.72 9.12

22



Table 4.2: Performance metrics on S-MNIST dataset for IID and Non-IID (α = 0.1)

and Non-IID (α = 0.01) settings.

Split-MNIST

IID Non-IID Non-IID

Acc Forget Acc Forget Acc Forget

CFL_SGD 60.12 48.38 60.9 46.66 60.95 46.66

CFL_BGD 67.14 40.01 69.27 37.47 68.91 37.71

Table 4.1 and Table 4.2 present the average accuracy across tasks (Acc) and average

forgetting of all tasks (Forget) for the Permuted-MNIST and Split-MNIST datasets,

respectively, under different settings: IID (α = 105), mild Non-IID (α = 0.1), and

highly Non-IID (α = 0.01). These metrics are used to compare the proposed method,

CFL_BGD, with the baseline CFL_SGD.

• The results indicate that CFL_BGD (proposed) consistently outperforms CFL_SGD

(baseline) in both accuracy and forgetting across all data distribution settings (IID

and Non-IID).

• In the permuted MNIST case, we can see the proposed method is performing

significantly higher accuracy lower forgetting than the baseline, which supports

our analysis that the method significantly alleviates catastrophic forgetting.

• In the case of Split MNIST, we could see that consistently the proposed method

outperforms the baseline, but the difference margin is less compared to permuted

MNIST.

• Even in highly Non-IID cases, CFL_BGD demonstrates better performance com-

pared to baseline.

To analyse the performance of CFLBGD, and to compare with baseline. We have

cinsidered two types of plots:

• Average Global Accuracy plot: This plot visualizes the mean accuracy across

all tasks up to a specific task ID. The x-axis represents the task ID, and the y-axis

represents the average accuracy.

• Task-Wise Accuracies Over Rounds plot: This plot illustrates the accuracy of

a particular task as it progresses through multiple rounds. The x-axis represents

the round number, and the y-axis represents the accuracy.

4.4.1 IID (α = 105)

Under IID conditions, the proposed CFL_BGD method significantly outperforms the

baseline CFL_SGD in both average and task-wise accuracies. As depicted in Figures
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(a) P-MNIST average accuracy (iid) (b) Split-MNIST Average Accuracy (iid)

Figure 4.2: Average accuracy across tasks

(a) P-MNIST task-wise accuracy (iid) (b) Split-MNIST task-wise accuracy (iid)

Figure 4.3: Task wise accuracy across Rounds

4.2 and 4.3, CFL_BGD demonstrates superior performance by maintaining a more sta-

ble accuracy level across tasks and rounds, while CFL_SGD exhibits a rapid decline.

Although both methods encounter challenges on the Split-MNIST dataset, CFL_BGD’s

resilience is more evident, indicating its effectiveness in preserving task-specific knowl-

edge.

4.4.2 Non-IID (α = 0.1)

(a) P-MNIST average accuracy (non-iid

(α = 0.1)

(b) Split-MNIST average accuracy (non-iid

(α = 0.1)

Figure 4.4: Average accuracy across tasks
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(a) P-MNIST task wise accuracy (non-iid

(α = 0.1)

(b) Split-MNIST task wise accuracy (non-iid

(α = 0.1)

Figure 4.5: Task wise accuracy across Rounds

The introduction of mild Non-IID conditions (α = 0.1) intensifies the catastrophic for-

getting problem for both CFL_BGD and CFL_SGD. However, Figures 4.4 and 4.5 re-

veal that CFL_BGD continues to outperform CFL_SGD by maintaining a more gradual

decline in accuracy. While the Split-MNIST dataset remains challenging under these

conditions, CFL_BGD demonstrates better adaptability to data heterogeneity.

4.4.3 Non-IID (α = 0.01)

(a) P-MNIST average accuracy (non-iid

(α = 0.01)

(b) Split-MNIST average accuracy (non-iid

(α = 0.01)

Figure 4.6: Average accuracy across tasks
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(a) P-MNIST task wise accuracy (non-iid

(α = 0.01)

(b) Split-MNIST task wise accuracy (non-iid

(α = 0.01

Figure 4.7: Task wise accuracy across Rounds

As data distribution shifts to highly Non-IID conditions (α = 0.01), the perfor-

mance of both CFL_BGD and CFL_SGD deteriorates significantly. Figures 4.6 and

4.7 illustrate a pronounced decline in task-wise accuracy for both methods. Despite the

challenging environment, CFL_BGD maintains a performance advantage over CFL_SGD,

although the gap narrows compared to previous settings. This suggests that while

CFL_BGD is more robust to data heterogeneity, extreme Non-IID conditions pose sig-

nificant challenges for both algorithms.
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CHAPTER 5

CONCLUSION

In this work we have explored the challenges and advancements in Continual Federated

Learning (CFL). By developing and analyzing a novel strategy using Online Variational

Bayes, we have addressed the critical issue of catastrophic forgetting in federated learn-

ing systems. This approach provides a robust solution for updating models continuously

without the need for retraining from scratch, thus enhancing the efficiency, privacy, and

scalability of these systems. The results of our experiments, which include compar-

isons of Average accuracy and task-wise accuracies and average forgetting across var-

ious levels of data heterogeneity, demonstrate the effectiveness of our method. This

work not only contributes to the theoretical understanding of CFL but also offers prac-

tical insights for its implementation in real-world applications. These findings provide

a strong foundation for future research and development, paving the way for more ad-

vanced and resilient federated learning models capable of handling the dynamic nature

of real-world data.
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