
WattShare : Detailed Energy Apportionment in

Shared Living Spaces within Commercial Buildings

Student Name: Shailja Thakur

IIIT-D-MTech-CS-MUC-12-075

July 28, 2014

Indraprastha Institute of Information Technology

New Delhi

Thesis Committee

Dr.Amarjeet Singh (Chair)

Dr.Pushpendra Singh

Zainul Charbiwala

Submitted in partial fulfillment of the requirements

for the Degree of M.Tech. in Computer Science,

with specialization in Mobile and Ubiquitous Computing

c©2014 Indraprastha Institute of Information Technology, New Delhi

All rights reserved

This research was partially funded by Energy Group, IIIT Delhi.



Keywords: personal energy apportionment, smartphones, smart meters, energy disaggregation,

shared space, eucledian transient



Certificate

This is to certify that the thesis titled “WattShare: Detailed Energy Apportionment in

Shared Living Spaces within Commercial Buildings” submitted by Shailja Thakur for

the partial fulfillment of the requirements for the degree of Master of Technology in Computer

Science & Engineering is a record of the bonafide work carried out by her / him under my /

our guidance and supervision in the Mobile and Ubiquitous group at Indraprastha Institute of

Information Technology, Delhi. This work has not been submitted anywhere else for the reward

of any other degree.

Dr. Amarjeet Singh

Indraprastha Institute of Information Technology, New Delhi



Abstract

Increasing energy consumption of commercial buildings has motivated numerous energy tracking

and monitoring systems in the recent years. A particular area that is less explored in this domain

is that of energy apportionment whereby total energy usage of a shared space such as a building

is disaggregated to attribute it to an individual occupant. This particular scenario of individual

apportionment is important for increased transparency in the actual energy consumption of

shared living spaces in commercial buildings e.g. hotels, student dormitories and hospitals

amongst others. Accurate energy accounting is a difficult problem to solve using only a single

smart meter. In this paper, we present a novel, scalable and a low cost energy apportionment

system called WattShare that builds upon our EnergyLens architecture, where data from a

common electricity meter and smartphones (carried by the occupants) is fused, and then used

for detailed energy disaggregation. This information is then used to measure the room-level

energy consumption. We evaluate WattShare using a week long deployment conducted in a

student dormitory in a campus in India. We show that WattShare is able to disaggregate the

total energy usage from a single smart meter to individual rooms with an average precision

of 96.42% and average recall of 94.96%. WattShare achieves 86.42% energy apportionment

accuracy which increases to 94.57% when an outlier room is removed.
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Chapter 1

Introduction

Increasing electricity consumption has been an ever-growing concern for the past several decades.

Buildings, specifically commercial buildings, account for a significant proportion of the overall

energy use globally. Within commercial buildings, shared living spaces e.g. dormitories, hotels

and hospitals have a peculiar feature. Occupants in these shared living spaces typically occupy

their own room but are not billed for their actual energy consumption, resulting in higher energy

wastage. Even if the property owner would want to do separate billing for each room, complex

electrical infrastructure together with high metering costs makes it prohibitive. Techniques

for disaggregating meter level data into appliance level consumption, also referred to as Non-

Intrusive Load Monitoring (NILM), have been studied [4,9,12,20]. However, any such approach

by itself, is likely to fail in the scenario of shared living spaces due to multiple appliances,

typically of the same type, being simultaneously operated across different rooms. Recently,

personal energy apportionment i.e. moving from disaggregation at the appliance level to the

user level, has gained some traction [5, 10, 13, 17]. In this problem, the primary goal is to

distribute the total energy consumption to the individuals based on their personal usage.

Measuring the energy usage of an individual, within a multi-occupant home, is non-trivial as

it requires monitoring at a much fine grained level e.g. having the information about what the

user is doing, when is he doing it, where is he doing it and so on. Shared living spaces are

a special case, whereby the problem of personal energy apportionment is relaxed to an extent

that the personnel typically occupy different rooms and hence room-level energy apportionment

is sufficient to achieve the desired results. Such room level energy apportionment will also
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then allow for billing each occupant for their own energy consumption, thus motivating energy

conservation behavior.

The usual layout in these shared living spaces are a cluster of rooms (collectively referred to

as a wing in this paper) laid out in a sequential order. Total power consumption at the wing

level can be easily monitored as it is typically fed through a separate electrical panel. Smart

electricity meters, allowing for sampling up to 1 Hz, are now becoming common and affordable.

Concurrently, smartphones have also become hugely popular over the past decade. We take the

advantage of wide availability and affordability of smart meters and smartphones to propose

WattShare - a system that apportions the aggregate power consumption, measured at the wing

level using a smart meter, to individual rooms of the wing, taking advantage of the sensory

information provided by the smartphones carried by the room occupants.

WattShare utilizes signal strength values from WiFi scans and audio signals from the microphone

as input data sources from the smartphone, per phase power consumption from the 3–phase

smart meter and some metadata that can be easily collected (e.g. type of appliances in each

room and distribution of the three electrical phases across different rooms) to achieve room level

energy apportionment. We use WiFi signal strength to estimate the room occupancy while the

audio data is used to differentiate between the events occurring across different rooms.

WattShare system design, uses a similar system architecture as EnergyLens [17] that was pro-

posed for personal energy apportionment in residential settings. However, the set of inference

algorithms used to process and combine the multi-modal sensory information from both the

phone and the meter are largely different. By combining the different sensor inputs, each being

processed using simple techniques, WattShare is able to accurately measure per room energy

usage, accounting for even the events caused by low power consuming appliances such as lights

and fans which are otherwise hard to detect with other NILM techniques.
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Chapter 2

Related Work

Researchers have proposed several techniques for energy disaggregation for monitoring energy us-

age, analyzing consumption patterns and, motivating users to reduce their consumption through

regular feedback. In this section, we specifically focus only on the studies in the area of energy

apportionment and discuss systems that have been designed to target this problem since it is

the closest problem to the one we are trying to solve with WattShare.

Apportionment of energy to individuals is a challenging task. Hay [10] investigated the problem

of apportionment in a shared office environment, illustrating policies that might work and the

role of sensor systems for apportionment. A recent paper [8] that conducted two studies showed

that providing information to users about their personal energy consumption does help raise

people’s awareness, change their perception about energy consumption and eventually has an

impact on their usage behavior. They specify that factors such as lack of appropriate information

and low cost of utility bills, leads to careless attitude towards energy usage. Even though the

study was done at a small scale (12 participants in the first lab study and 4 shared households

with a total 21 participants in the second two week field study), the results are encouraging and

warrant the need to develop a better understanding of this problem.

Smartphones with its vast sensing modalities have been used for building plethora of new context

aware applications. Amongst the sensors available on smartphones today WIFI and microphone

are the most ubiquitous and powerful sensors capable of making sophisticated inferences about

human activity, location.
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Several frameworks have been buid to develop context aware applications using acoustic as sens-

ing modality. Some of them are SoundSense [23] a framework to classify both general sound

types (e.g., music, voice) and discover novel sound events specific to individual users, Speak-

erSense [24] automatically identifying the person you are talking to by continious background

sensing and training speaker model based on one-to-one model, Jigsaw [26] for inferring human

activity, iSleep [29], a sleep quality monitor by extracting acoustic features and applying decision

tree based classifier, Crowd++ [30]for estimating the number of people involved in conservation

in a certain place – with an average error distance of 1.5 speakers – through unsupervised ma-

chine learning analysis on audio segments captured by the smartphones, Auditeur [25], a general

purpose acoustic event detection platform for smartphones was proposed that enable applica-

tions to register for receiving notifications for the desired audio events as classified within their

framework.

Several techniques have been proposed which uses WIFI modalities for indoor localization and

user tracking. Some of them include ARIEL [11], a room localization system that automatically

learns room fingerprints based on occupants indoor movements, LifeMap [27] and ParkSense [28]

amongst others.

Very few systems exist in the field of personal energy monitoring. An interesting variation on

the NIALM approach was proposed by Patel [20]. They use a plug-in sensor to detect electrical

events within a home. ViridiScope [19] uses several kinds of sensors to tell the on-off states

of appliances (assuming all appliances have binary states). These sensors include light sensors,

sound sensors and magnetometers. With the knowledge of the states of all appliances and

the aggregated power readings over time, we can calibrate how much power each appliance

use by linear programming. Froehlich [21] report disaggregation techniques which measure the

very high frequency (10s or 100s of kHz) noise produced by many appliances. Some devices

produce a specific noise signature at start up and some devices produce noise signatures during

a continuous run (see 2.1). Devices like computer power supplies and TVs produce an especially

large amount of electrical noise on the power line due, at least in part, to their “switch-mode”

power supplies. See [21] for a review of other “noise-based” disaggregation techniques.

Personalized Energy Auditor [13] is a system that estimates personal energy usage by track-

ing the user’s movements (using Wifi scans from his/her smartphone and the doorway sensors
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Figure 2.1: Taken from Froehlich et al [21]. (left) Transient voltage noise signatures of a light switch
being turned on. Colors indicate amplitude at each frequency. (right) Steady state continuous voltage
noise signatures of various devices during various periods of operation.

installed in the house) and correlating it with appliance usage that is monitored by the home

electricity meter. Another similar system is our prior work on EnergyLens [17] that combines

data from smartphone sensors (WiFi signal strength and audio) and the smart electricity meters,

to provide fine grained apportionment information for each occupant in a home. It identifies

four main pieces of information required for energy apportionment i.e. “who” did the activity,

“what” was the activity, “where” was it done and “when” did it occur. Both of these systems

were designed for residential settings. WattShare extends the EnergyLens system architecture to

a commercial setting and provides room level energy usage from the common electricity meter.

To the best of our knowledge, WattShare is the first energy apportionment system designed for

commercial buildings, specifically the shared living spaces.
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Chapter 3

Research Contribution

In summary, the primary contributions of this work are outlined below:

• We introduce WattShare - an energy disaggregation and apportionment system that pro-

vides room-level energy usage together with the disaggregated appliance usage within the

room i.e. identifying and measuring the contribution of each appliance that contributed

towards the room’s energy usage.

• We demonstrate our system’s effectiveness with a week long deployment of our prototype

system in a student dormitory building in IIIT-Delhi, India.
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Chapter 4

System Architecture

We now describe the design of our proposed WattShare system that fuses sensory information

from smartphones, appliance metadata, with energy usage from a central smart meter for energy

apportionment to individual rooms and occupants. We first describe the individual components

of WattShare (4.1), how they connect to each other, as well as how they translate to different

stages in our apportionment algorithm.

Electrical Event 
Detection1

2

3

User 
Association

Room Set 
Generation

Edge to Room 
Mapping

Room - Edge Association
Occupancy 
Detection

Activity Detection and 
Energy Apportionment

Figure 4.1: WattShare Algorithm Stages
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4.0.1 WattShare Input Sources

Electricity Meter Data

We start by describing the different sensor sources that we use for WattShare. The first sensor

source is the total power consumption data of the entire shared space using standard networked

three phase energy meters, collected at the rate of 1Hz. Our algorithm uses an edge detection

strategy developed in our previous work [17] to detect rising and falling edges, which correspond

to changes in power levels as appliances turn ON/OFF.

Smartphone Sensors

Our WattShare smartphone application, running on an occupant’s smartphone, collects two

additional sensor data streams periodically and sends them to our analysis server. The first

stream is a periodic scan of visible WiFi APs (BSSIDs) and their Received Signal Strength

(RSS) alongwith a time stamp. This data is used by our localization algorithm to detect the

occupants’ location within the building.

The second sensor stream captured from the occupant’s smartphone is the raw Pulse Code Mod-

ulated (PCM) signal (sampled at 8 KHz) from the microphone which is processed by an audio

processing pipeline. It involves 1) pre-processing the raw signals and 2) generating consequent

audio features from them. For the first step, audio signal is sampled with a duty cycle of 50%

and divided into 500 ms frames. Next, a Hamming window function is applied onto each frame.

Finally, 13 MFCC (Mel Frequency Cepstral Coefficient) [6] features are calculated from the pro-

cessed audio samples. The raw PCM data is discarded (ensuring the privacy of the user) and

only the extracted features are sent to the server at regular intervals. We use these features to

differentiate between electrical events in our WattShare algorithm.

Metadata

In addition to the sensory input from smart phones and electricity meter, the third input to

the system is a set of static information about the shared environment called Metadata. This

information is collected at the training phase and is currently done manually. As we envision our

system to be used in commercial buildings, the facilities department and the occupants would
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ideally collect this data using our app itself. We collect two kinds of static information about

the appliances present in the shared area. They are:

• Appliance–Phase–Location Mapping : It contains the list of appliances tagged with their

corresponding room. They are tagged with the electrical phase they are on using the

building electrical layouts.

• Appliance–Power Mapping : It contains the mapping of each appliance with its power

consumption.

Illustration of Appliance–Phase–Location Mapping (Metadata - I ) and Appliance–Power Map-

ping(Metadata - II ) are shown in 4.1 and 4.2. In modern buildings, multiple electrical phases

are pretty typical, which are often uniformly distributed to provide some load balancing. In fact

at both UCSD and IIIT-Delhi, the rooms had multiple phases, in case one of the phases goes

down (e.g. in India) or to balance loads (e.g. in the US, each phase is on a 15A/20A circuit

breaker). Such a distribution makes the overall room level disaggregation complex. Appliance–

Phase mapping, even though complex, is appropriately used by the WattShare algorithm, as

explained in 4.0.3.

Phase Room1 Room2 Room3 Room4 Room5 Room6

Phase 1 Light, Fan, Plug Light, Fan, Plug - - - -

Phase 2 - - Fan, Plug Fan, Plug Fan, Plug Fan, Plug

Phase 3 - - - - - -

Phase 1* - - - - - -

Phase 2* Plug, AC Plug, AC Light Light Plug, AC Plug, AC

Phase 3* - - Plug, AC Plug, AC Light Light

Table 4.1: MetaData - I : Appliance–Phase–Location Mapping. Two 3–phase meters, separately moni-
toring the light and the power loads, were installed at the wing level. Phase 1–3 belong to Meter-1 and
Phase 1*–3* belong to Meter-2.

Appliance Magnitude
(Watts)

Light 35

Fan 35

Laptop 60

AC 630

Table 4.2: MetaData - II : Appliance–Power Mapping. Appliances across all the rooms are same in terms
of number as well as their make and model.
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4.0.2 Training Stage

During the training stage, we collect the Metadata (as explained in the previous section) and

calculate a set of thresholds required by the WattShare algorithm, from the WiFi and audio

data streams. We use WiFi signal strength for localizing the user within his/her room. For

each room, we observe the range of signal strength values received from the visible APs for

5 minutes (see 4.2). Therefore, if there are k visible APs in a room, then there would be k

sets of signal strength values associated with the room. For each of these AP range sets, the

values that lie within the 25th and 75th percentile of the range set is defined as a threshold

range. The k threshold ranges associated with the room are then used for localizing a user to

his/her room (usage described in Occupancy Detection step of 4.0.3). Note that other WiFi

based algorithms [3, 11] and more advanced indoor localization techniques [14, 18] can also be

used in case of more complicated building layouts, although we found our simple technique to

work well in practice for our testbed.

Audio information is used to differentiate between events occurring across different rooms. In

order to do so, we assign each room a set of threshold values corresponding to events such as

switching ON/OFF an appliance (e.g. fan, light, plug loads and AC) and locking/unlocking the

room door while turning ON/OFF the same appliances. We calculate the threshold values by

taking two windows of 60 seconds each, one before (wpre) and one after (wpost) the event time.

For all the frames in each window, we extract MFCC feature vectors and take the Euclidean

distance between the two [15]. The calculated distance is termed as the event threshold. This is

repeated for each event and for each room. At the end of the process, we have a threshold set

containing values corresponding to the events specified above for each room. We now explain

the various stages involved in the WattShare algorithm.

4.0.3 WattShare Algorithm

The central component to our WattShare system is the apportionment algorithm, which com-

prises of three stages as shown in 4.1 at a high level: (1) Electrical Event Detection (2) User

Association (3) Activity Detection and Energy Apportionment. 4.3 describes each of the algo-

rithm stages in further detail.
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Figure 4.2: Range of signal strength values observed in each room from one access point. This figure
shows the plot of 5 minutes worth of WiFi data collected in each room.

Electrical Event Detection

The first stage, Electrical Event Detection, consists of detecting all electrical events or edges

(rising and falling) from the raw power trace using the basic edge detection algorithm. Before

performing the edge detection process, we remove noise that is observed on each of the electrical

phases. Periodic spikes with the magnitude similar to that of the appliances on that phase (as

shown in 4.4) were observed and filtered out. Once all such noise spikes are removed, we run

our edge detection algorithm. Each detected edge is marked as a tuple ei = (ti,mi, pi) where ti

is the time at which the event occurred, mi is the power magnitude of the edge (in Watts) and

pi is the electrical phase on which the event is observed. For more details on the edge detection

algorithm, please refer to [17].

User Association

In the second stage, User Association, we associate the detected electrical events with the

respective rooms. This is the most important stage of the WattShare algorithm that involves

three steps, namely, Occupancy Detection followed by Room Set Generation and Edge to Room

Mapping. The last two steps are together termed as ‘Room–Edge Association’.
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WiFi data

⋮ ⋮ ⋮

𝐸 = 𝑒𝑖 = (𝑡𝑖 , 𝑚𝑖 , 𝑝𝑖) 𝑖 ∈ Ν}

Rooms Time Intervals Edges

Room Set Generation

{𝑡1, 𝑡2}

{𝑡𝑠, 𝑡𝑒}

⋮

{𝑡3, 𝑡4}

𝑟1

𝑟2

𝑟𝑝

⋮

𝑒1

𝑒2

𝑒𝑞

⋮

Room level 
occupancy

RoomsEdges

𝑟1

𝑟2

𝑟𝑝

⋮

𝑒1

𝑒2

𝑒𝑞

⋮

Edge to Room Mapping
(for each overlap room set)

User 
Association

Overlap
Room Sets

Activity Detection
and

Energy Apportionment

Room – Edge Association 
(for overlap room set)

Metadata - II

Metadata – I
+

Metadata – II

Room – level Energy Data

Room 1 1148 Wh

Room 2 415 Wh

Room 3 3026 Wh

Room 4 1067 Wh

Room 5 785 Wh

Room 6 2735 Wh

Audio data

Non - Overlap
Room Sets

Figure 4.3: WattShare Algorithm Flow. In this illustration, the three main stages are (1) Electrical Event
Detection (2) User Association (3) Activity Detection and Energy Apportionment. The inputs for the
algorithm are real power trace from the electricity meter, WiFi and audio data from the smartphone and
two types of Metadata (explained in 4.0.1). The output of the algorithm is the room-level energy data.

Figure 4.4: (1) Power Trace with noise (Left) (2) Filtered Power Trace(Right)

Occupancy Detection In this step, the WiFi data stream from the phone is first summarized

by taking the mean of signal strength samples (received from visible access points) for a window

of 20 seconds. Each record in the WiFi data stream is of the form < time, rss1, rss2, ..., rssk >
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Figure 4.5: Occupancy Detection. This figure illustrates the outcome of this step. It shows the pres-
ence/absence in the room for each user.

where rss1 · · · rssk represent the signal strength values received from each of the k access points.

Room level occupancy is detected by comparing the observed signal strength from the visible

access points with corresponding threshold ranges for each AP. If the RSS value lies within a

room’s threshold range, occupancy status is set to “present” or else is marked as “absent”. 4.5

illustrates the outcome of this process. With this location information, we now have the time

intervals when the occupants were present in their respective rooms. It is important to note that

other systems, e.g. a keycard based access control system in a hotel, or a hybrid room occupancy

system [2], can also provide this occupancy status in a shared setting. In such scenarios, WiFi

RSSI can be used as an additional sensor input to validate that the occupant is present.

Room Set Generation After determining room level occupancy, in this step, we identify the

overlapping and the non-overlapping time intervals and associate them with a set of rooms and

edges. Here, an overlapping time interval refers to the time period when multiple occupants are

present in their respective rooms simultaneously. Thus, the corresponding set of rooms in this

interval is called as a ‘overlap room set ’. Conversely, the interval when only one occupant is

present in the wing is termed as a non-overlapping time interval and the corresponding set of

14



rooms in this interval is called as a ‘non-overlap room set ’.

We identify these room sets based on the occupancy information we obtain from the previous

step. We then associate all the detected edges that lie within each of these intervals to these room

sets by comparing the event time te that is associated with each edge. The intuition behind this

step is that room sets, when separated into the two categories, make room to edge association

easier as multiple edges (contained in non-overlap room sets) are automatically associated with

the corresponding rooms. This idea is further elaborated below.

4.6 shows an illustration of this step. The room sets are shown in curly braces over the

overlapping/non-overlapping time intervals. The overlap room set can be formalized as <

(tstart, tend) → ({roomi, roomj , roomk}, {e1, . . . , en}) > where, (tstart, tend) is the overlapping

time interval when rooms {roomi, roomj , roomk} are occupied and the events (their associated

edges) that occurred within this interval are {e1, . . . , en}. Similarly, the non-overlap room set

can be represented as < (tstart, tend)→ ({rooma}, {e1, . . . , em} >. Note, here only a single room

is occupied during (tstart, tend). Thus, all edges are automatically associated to rooma.

Filtering room sets using Metadata : Before moving to the next stage, we filter the room

sets to contain only those edges/rooms that match with the stored Metadata (see 4.0.1). In case

of edges in non-overlap room sets, the edge attributes i.e. its power magnitude and the phase

it is on, are matched against the stored room metadata (using Metadata - I and Metadata -

II ). If the metadata matches, the edge-room association is retained or else this association is

discarded. Similarly, for edges in overlap room sets, metadata for each room in the overlap room

set is matched against the attributes of the edges contained in that set. In case of a match, the

room is retained in the overlap room set, else it is discarded. This is repeated for all the rooms

in each overlap set. This helps in converting some overlap room sets into non-overlap room sets

wherein the number of rooms is reduced to 1 and consequently, room–edge association is done

at this step. The intuition behind this filtering stage is that since the RSS based occupancy

detection may not be very accurate, some rooms may get incorrectly associated with certain

time intervals. This filtering step will remove some of these incorrect room associations.

Edge to Room Mapping From the previous step, we have already associated some edges

(from the non-overlap room sets) with the respective rooms that generated them. In this step,
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Figure 4.6: Room Set Generation. Identified overlap and non-overlap room sets are marked within curly
braces over the time intervals. Additionally, the edges associated with those time intervals are shown
with hexagon shaped dots.

we match the remaining edges that are in the overlap room sets with the corresponding rooms

using MFCC features obtained from the occupant’s smartphones (see 4.0.1).

For the process of room–edge association in overlap room sets, we use the MFCC features to

differentiate between the rooms that generated those edges by calculating the Euclidean distance

for the event time using the same technique used for calculating event threshold (see 4.0.2). The

calculated value is then matched with the threshold values generated for all the events for every

room. If there is a unique match with one of the event threshold, then the corresponding room

is associated with the edge. If there is a non-unique match, then the edge is associated with all

the matched rooms. If no match is found, then the edge is discarded.

The intuition behind this procedure is that a considerable change in the audio signals is expected

when these events, that generate some noise, occur. 4.7 clearly shows, for some of the events

mentioned above, a notable change observed in sound frequency. This change is reflected when

the Eucledian distance is calculated between the pre- and the post-event windows. ?? shows the

change observed by calculating eucledian distane for various events that generates sound. We

observe notable change in threshold vaues across phones. Similar results are obtained on com-
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paring the threshold values across rooms, thus motivating us to use the results for differentiating

events across rooms.

At the end of this stage, the detected edges are either associated with unique rooms or have been

discarded. The outcome can be represented as < roomi → {e1, . . . , en} > where i represents the

rooms from (1, . . . , k). With the room associated edges, we can now generate event time slices

for the process of activity detection.

Figure 4.7: Change in sound frequency during the events of Light ON/OFF, Fan ON/OFF and AC
ON/OFF

Activity Detection and Energy Apportionment

In this stage, we generate event time slices for the edges associated with each room using a

simple power magnitude based edge matching algorithm. For each of these time slices, we then

identify the appliance that generated those events in the room. A time slice annotated with

the corresponding appliance label is referred to as an activity. Finally, we calculate the energy

consumed by each of these activities to determine the total energy consumption of the room.

Refer 3 for the flow of algorithm used in WattShare .

Before generating time slices, we identify all the edges corresponding to potential fan related

events in the edge set for each room. This reduces the error during the edge matching process
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Figure 4.8: Eucledian Distance taken over MFCC values during events of Light ON/OFF, Fan ON/OFF
and AC ON/OFF across five phone models

for similar events (in terms of their power magnitude) like those generated by lights and fans.

We use the Euclidean distance based technique (described previously) to identify fan events.

The same approach can be extended to other common electrical appliances that have a specific

audio signature. After filtering out the fan edges, we then run the edge matching algorithm

(described in [17]) on the remaining edges. The algorithm matches rising and falling edges

based on similar power magnitude range. For each rising/falling edge pair, a time slice ts =

(tr, tf ,magt, roomi, phasej) is generated where, tr is the start time , tf is the end time, magt is

the power consumption of the event, roomi is the associated room and phasej is the phase on

which the event occurred.

For all the generated time slices, we annotate them with the appliance that generated the

corresponding event. For appliance identification, we match power magnitude of each time slice

with the stored values in Metadata-II. Note, we require appliance metadata to be accurate in

order to perform energy apportionment. As a result, if an occupant brings in a new appliance

and does not update the metadata our algorithm will be inaccurate. One potential solution to

this is to detect when events are caused by an unknown appliance, localize it to a room, and use

that to notify the occupant to update their appliance inventory. We associate the appliance with
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a time slice if the power magnitude falls within p% of the value stored in the metadata for that

appliance, where the value p is an empirically calculated. The value p depends on the appliance

in question. For example, we observed that lights varied by 5% of the stored value of 35 Watts

(in Metadata -II ). Similarly, we determine the value of p for other appliances. At the end of

this step, we have the time slices annotated with the usage duration, identity of the appliance

and identified room, thus, generating the list of activities (and hence the energy consumption)

apportioned to each room.

Algorithm 1 NoiseFilter(Power, Light)

1: Power ← TimeseriesDataStreamfromPowerMeter
2: Timestamps← Power(TimeSeries)
3: for all ti ∈ Timestamps do
4: prevWindow ← e(t i− 3, t i− 1).magnitude
5: nextWindow ← e(t i + 1, t i + 3).magnitude
6: prev ← e(t i).magnitude
7: next← e(t i + 1).magnitude
8: if prevWindow.magnitude == nextWindow.magnitude then
9: if prev − next ≤ 0 then

10: current← average(prevWindow, nextWindow)
11: end if
12: end if
13: end for
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Algorithm 2 DetectAudioForOverlapEdges(Overlap Edge Set)

1: for all overlapi ∈ Overlapping do
2: for all Room ∈ overlap.Rooms do
3: user ← Room
4: MFCC ← GetUsersMFCCFeatures(user)
5: prevWindow ←MFCC(ti − 60, ti)
6: nextWIndow ←MFCC(ti, ti + 60)
7: euc distance← CalculateEuclediaDistance(prevWindow, nextWindow)
8: if euc distance ≥ ROOM THRESHOLD then
9: return(Room, e)

10: else
11: Discard e
12: end if
13: end for
14: end for

Algorithm 3 Overall System Algorithm

1: Power ← PowerMeter Data Stream
2: Light← LightMeter Data Stream
3: Filtered EdgeSet← NoiseF ilter(Power, Light)
4: E ← EdgeDetection(Filtered EdgeSet)
5: RoomSets← GenerateRoomSets(Users)
6: Location← DetectLocation(Users)
7: for all e ∈ E do
8: for all start time, end time ∈ RoomSets.Duration do
9: if start time ≤ te ≤ end time then

10: if length(RoomSet) ≥ 1 for RoomSet ∈ RoomSets then
11: for all Room ∈ RoomSet do
12: MatchCount[]←MatchRoomsMetaDataAndEdgeInfo(RoomMetadata, e)
13: end for
14: if length(MatchCount) == 1 then
15: NonOverlapEdgeSet← (Room, e)
16: else
17: OverlapEdgeSet← (Rooms, e)
18: end if
19: else
20: Discard e
21: end if
22: end if
23: end for
24: end for
25: Resolved Overlap Edge Set← DetectAudioForOverlapEdges(Overlap Edge Set)
26: Room,Edge Set←Merge(NonOverlap Edge Set,Resolved Overlap EdgeSet)
27: UsageDuration← GenerateT imeSlice(Room,Edge Set)
28: CalculateEnergyUsage(UsageDuration)
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Chapter 5

Evaluation

5.1 Experimental Setup

In this section, we describe the setup used to validate our system. The experiments were

conducted in a student dormitory building in the IIIT Delhi campus in India. Each floor in

the building is divided into 3 wings with six rooms each, that are monitored by two 3–phase

electricity meters. The layout of the wing, where we conducted our week long study, is shown in

5.3. Each room has a fan, light, two plug points and an AC. The 2 sets of 3 phases (from the two

electricity meters) are distributed in such a way that each room is served by at least 2 phases,

from across both the meters (see 4.1 for more details). Further, each wing has one wireless

access point. The presence of multiple WiFi APs that it is typical in the US and other places

will only improve the location accuracy given multiple visible APs at each location providing

higher fidelity.

Sensors We use Schneider Electric’s EM6400 3–phase electricity meters to monitor and collect

energy usage information at 1Hz, and store it on a local installation of sMAP [7]. We used power

consumption from each of the three phases as an input to the WattShare algorithm instead

of the aggregate power consumption of all phases 5.1. Smartphones carried by the occupants

include: Samsung Google Nexus S, Samsung Galaxy Chat and Samsung Galaxy Star. Hardware

specifications are listed in 5.1. All the phones had WattShare data collection mobile app running

in the background. The app sampled data from the Wifi radio and the microphone after every 20
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Figure 5.1: Example Aggregate data recorded on three phase of the Smartmeter

seconds interval. Audio data was captured for 10 seconds in every interval and MFCC features

were computed over the collected data (more details see 4.0.1). Both WiFi data and the audio

features were periodically uploaded to the server every 5 minutes and the raw audio data was

discarded from the phone.

Model OS CPU RAM

Nexus S Android OS, 4.1.2 (Jelly Bean) 1 GHz Cortex-A8 512MB

Galaxy Chat B5330 Android OS, v4.0 (Ice Cream Sandwich) 850 MHz 512MB

Galaxy Star S5280 Android OS, v4.1.2 (Jelly Bean) 1 GHz Cortex-A5 512 MB

Table 5.1: Smartphones Used

Ground truth For collecting the ground truth on occupancy and appliance usage, we deployed

a sensor mote in every room shown in figure 5.2. Each mote had a PIR Sensor (for capturing

motion), Light Sensor (for light events) and Temperature Sensor (for fan events) shown in 5.2.

We also asked the occupants to manually log the ON/OFF times for the activities performed in

their respective rooms.

Data Collection Process The data collection was conducted for a week during the winter

semester in the month of February. During this time interval, electrical activity that occurred
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Table 5.2: PIR, Light and Temperature Sensor

Figure 5.2: Ethernet Flyport

Figure 5.3: Wing layout in the student dormitory building

in the dorm rooms were mostly from lights and plug loads. Very few AC and fan activities were

observed. Users were asked to carry the phone throughout the experiment week. Plug events

usually included charging laptops and phones. We have considered only the laptop charging

events as charging a phone was a very low power consuming activity. For encouraging the

occupants to carry their phones and to log events, they were offered food coupons at the end of

the week as an incentive.

5.2 Evaluation

We evaluate our system’s accuracy by analyzing two critical stages of the algorithm namely,

User Association and Activity Detection. Finally, we report the energy apportionment accuracy

by comparing the apportioned energy usage with the actual usage for each of the rooms.
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For reporting accuracy, we use the standard measures of precision and recall. Precision is the

ratio of correctly identified activities to the total number of detected activities. Recall is the

ratio of correctly identified activities to the total number of activities performed by an occupant.

5.2.1 User Association Accuracy

In this section, we evaluate the accuracy of the User Association stage where the detected elec-

trical events (from the first stage) are assigned to the room that generated them, and therefore,

consequently associating it with its corresponding occupant. At the algorithm level, the user

association accuracy depends on the performance of the Room–Edge Association steps (refer

4.0.3) where event edges lying in the overlap and non-overlap room sets are associated with the

corresponding rooms.

Figure 5.4: User Association Accuracy. The red bubbles represent the precision/recall values (associated
with each room) for each day of the experiment week. The box plots show the maximum, minimum and
the average accuracy values across all the days.

5.4 shows the precision and recall values for associating all the detected events to the corre-

sponding rooms during the experiment week. The events are classified into two types: events

occuring in overlap room sets (shown as ‘Overlap Events’) and non-overlap room sets (shown

as ‘Non–Overlap Events’). We present the association accuracy values for each of these event

types. The average precision and recall of WattShare for the non-overlap events is found to be
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Figure 5.5: Activity Detection Accuracy. Here, the red bubbles represent the accuracy in terms of
precision and recall observed for each day.

98.62% and 99.27% respectively. The overlap events included same appliances being used simul-

taneously across one or more rooms that shared the same phase (e.g. lights on the same phase

being used by both the occupants at the same time) or different appliances on the same phase

with similar power magnitude (e.g. AC with the internal fan turned ON and laptop adapter

having similar power consumption) being used simultaneously. Even with these complex set of

activities, our algorithm is able to differentiate and associate the events with 94.22% average

precision and 90.65% recall.

5.2.2 Activity Detection Accuracy

5.5 shows the accuracy for activity detection of each room. The red bubbles represent the

accuracy obtained on each day of the experiment week. WattShare is able to accurately detect

activities with 93.7% average precision and 91.3% average recall taken across all the rooms.

Activity detection accuracy depends on the performance of the user association component. The

main factors that influence its performance are inaccurate differentiation between events using

the audio based technique described in 4.0.3 and the inability of the current implementation

of WattShare to handle complex multi-state behavior exhibited when charging laptops (see 6).
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Other causes of inaccuracy include the occupant leaving his/her phone behind and hence, events

occurring during this interval by some other room occupant getting mismatched. The lowest

accuracy is observed when most of the event edges lie in the overlap room set. This is due to

inaccurate event edge association to a room when multiple occupants are present in the wing at

the same time and events overlap with respect to time, phase and power consumption. Inspite

of these inherent limitations of the algorithm components, we are able to achieve a minimum

average (across all the rooms) of 85% precision and recall for detecting activities.

5.2.3 Energy Apportionment Accuracy

We now show the accuracy with which the energy is apportioned to each room. We compare

the apportioned energy with the actual energy consumption (obtained from ground truth data)

and calculate the estimation error percentage. We calculate the energy consumption by taking

the product of the power associated with each activity and the usage duration of the activity.

We then calculate the estimation error with the following formula:

Error(%) =
PredictedEnergy(Wh)−ActualEnergy(Wh)

ActualEnergy(Wh)
∗ 100 (5.1)

5.3 shows the energy consumption and estimation error(%) for each room separately. We observe

that the estimated error for Room 4 is the highest and is the outlier in this set. The reason

for such high error percentage is due to laptop’s variable power consuming behavior (see 6.1)

– the falling edge with the same power magnitude was not found for the corresponding rising

edge when the laptop was put on charge. Due to this, necessary edges were missing in the

edge set to perform the edge matching process. This resulted in missing many laptop charging

events causing the accuracy to drop (see 6 for more details). 5.6 also illustrates the drop in

accuracy for Room 4. To further validate that the accuracy drop was due to the laptop events,

we calculated Room 4’s accuracy after removing the laptop events. We found that the error

reduced from -54.338% to -2.941%, thus, confirming our hypothesis. When taking Room 4’s

actual accuracy into account, WattShare’s energy apportionment component attributes energy

usage with 86.42% accuracy on an average. The accuracy after removing the outlier becomes

94.57%.

26



Room# Predicted (Wh) True (Wh) Error (%)

1 1148.40 1150.95 -0.221

2 415.70 413.68 0.488

3 3026.35 2843.18 6.442

4 1067.03 2336.34 -54.328

5 785.16 888.49 -11.629

6 2735.68 2983.69 -8.312

Table 5.3: Comparison of the estimated and actual energy consumption for every room

Figure 5.6: Energy Apportionment Accuracy (for lights and laptop charging events). Usage of fans and
ACs were negligible during the experiment week.

5.6 shows the estimated and true power consumption for the heavily used appliances during the

experiment week i.e. light and laptop adapters. ACs and fans weren’t used extensively and

consisted of less than 3% of all the events and therefore, has not been shown. We found that

the energy consumption estimates for appliances like lights, fans and ACs is comparable with

the actual consumption. However, in case of laptop charging, the estimated consumption varies

with large error margin due to the reasons explained above and in the previous section.

5.7 shows the distribution of the total energy consumed amongst the wing occupants. From the

pie chart, we find that occupant 3 consumed the maximum energy and occupant 2 consumed

the least. WattShare allowed us to obtain some behavioral insights from the apportioned energy

data such as which occupants stayed most in their rooms, how often did they use appliances

such as fans or lights, did they keep their lights turned ON when they left their room and so
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Figure 5.7: Energy usage distribution in the student wing

on. Such insights can be useful in settings such as offices in commercial buildings where HVAC

schedules can then be adjusted based on the energy usage behavior of the occupants in these

buildings.
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Chapter 6

Discussion and Limitations

In the previous sections, we saw the design of our WattShare algorithm and its potential in

accurately disaggregating and attributing the total energy usage to individual rooms and con-

sequently, to the occupants of those rooms. We now describe some limitations, along with

suggestions on how to address them, in the current design of our system that might prohibit its

wide scale deployment.

The proposed WattShare approach works well for all the appliances that have a stable power

consumption profile such as lights, fans and ACs. However, it fails to determine the usage du-

ration for events caused by appliances with multiple states and dynamic power signature such

as charging of laptops. 6.1 illustrates the laptop power profile as seen in our deployment. When

the laptop is put on charge, it draws maximum power reaching its peak consumption of 60 ±

20 Watts until it is fully charged. Once charged, there is a gradual fall in power consumption

(t2 to t3 and t7 to t8) till the laptop is either suspended (seen as a sharp drop at t3), or the

charger plugged out (observed at t8). This results in edges (rising/falling) with unequal power

magnitudes. Laptop usage events such as between t5 – t6 are detected accurately by our edge

matching algorithm. However, since it is crucial to have edges with similar power magnitudes

for generating event time slices, we miss some laptop events with variable power draw. Iden-

tifying and disaggregating multi-state appliances with variable power draw, including plasma

televisions, is a known problem in the NILM community as well. Better NILM algorithms com-

bined with smartphone sensors, using the proposed WattShare system can potentially address

this limitation.
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Figure 6.1: Power Consumption Profile of a Laptop. Most of the errors were caused due to the system’s
limitation in handling such complex multi-state behavior in appliances. Here, events at t1, t4, t9 and t10
are not caused by the laptop.

Another challenge that is of prime importance is dealing with complex real world scenarios

when associating electrical events with rooms. Some examples of such scenarios include - an

event taking place in a room when occupants from other rooms are present there; an occupant

using an appliance in a different room while the room’s occupant is absent and so on. With the

current design of the User Association stage (responsible for associating events to rooms), some

of these scenarios are not appropriately handled. Many such scenarios will arise in large scale

real world deployments. We need additional sensors from the smartphone as input sources (or

information from additional ambient sensors from the room such as motion or light sensors) to

improve WattShare to handle such complex scenarios.

Lastly, the experiments were conducted in settings where only a limited number of appliances

were present. We would like to extend and evaluate the efficiency of WattShare for identifying

and disaggregating appliances such as TV, microwave and refrigerator that are likely to be

present in the shared living spaces.
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Chapter 7

Conclusion

In this paper, we present a novel energy apportionment algorithm (WattShare) that leverages

the most commonly available sensors on modern smartphones and the increasingly common

smart meter. We demonstrate a low cost and scalable system that can be deployed for shared

living spaces in commercial buildings such as hotels, dormitories, hospitals, offices and others,

wherein a set of rooms are monitored by a single meter. WattShare fuses the context information

such as location and audio from the smartphone with the aggregate power from the smart meter

to identify electrical events and measure a room’s energy consumption. We show that simple

localization and audio based event differentiation techniques can achieve highly accurate disag-

gregation results. Even with the inherent limitations of the algorithm’s individual components,

WattShare achieves an accuracy of 86.42% for energy apportionment and increases to 94.57%

when an outlier room is removed. WattShare attributes the total energy usage to individual

rooms with an average precision of 96.42% and average recall of 94.96%.
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