
A Static Technique for Bug Localization Using Character N-Gram

Based Information Retrieval Model

by

Sangeeta

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Technology

in

Computer Science

in the

Graduate Division

of the

Indraprastha Institute of Information Technology, Delhi

Committee in charge:

Dr. Ashish Sureka, Chair

Dr. Anjaneyulu Pasala

Dr. Srikanta Bedathur

September 2011

The dissertation of Sangeeta, titled A Static Technique for Bug Localization

Using Character N-Gram Based Information Retrieval Model, is approved:

Chair Date

Date

Date

Date

Indraprastha Institute of Information Technology, Delhi

i

c© Indraprastha Institute of Information Technology, Delhi, 2011.

All Rights Reserved.

Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Ashish for his guidance

and support. His extreme energy, creativity and excellent coding skills have always been a

constant source of motivation for me. The perfection that he brings to each and every piece

of work that he does always inspired me to do things right at first time. He is a great person

and one of the best mentors, I always be thankful to him.

I would also like to thank Amit for devoting his time in discussing ideas with me and

giving his invaluable feedback. I would like to thank all PhD scholars in IIITD for making

our lab such a great place to work. Thanks to Lucky and Ramjot for teaching me lots of

system related things. Special thanks to Kevan and Rex from apache project who helped

me in pointing to correct links related to apache project.

I would like to dedicate this thesis to my amazingly loving and supportive parents who

have always been with me, no matter where I am.

ii

Abstract

Bug or Fault localization is a process of identifying the specific location(s) or region(s) of

source code (at various granularity levels such as the directory path, file, method or state-

ment) that is faulty and needs to be modified to repair the defect. Bug localization is a

routine task in software maintenance (corrective maintenance). Due to the increasing size

and complexity of current software applications, automated solutions for bug localization

can significantly reduce human effort and software maintenance cost.

We presented a technique (which falls into the class of static techniques for bug localiza-

tion) for bug localization using a character N-gram based Information Retrieval (IR) model.

We framed the problem of bug localization as a relevant document(s) search task for a given

query and investigated the application of character-level N-gram based textual features de-

rived from bug reports and source-code file attributes. We implemented the proposed IR

model and evaluated its performance on dataset downloaded from two popular open-source

projects (JBOSS and Apache).

We conducted a series of experiments to validate our hypothesis and presented evidences

to demonstrate that the proposed approach is effective. The accuracy of the proposed ap-

proach is measured in terms of the standard and commonly used SCORE and MAP (Mean

Average Precision) metrics for the task of bug localization. Experimental results reveal that

the median value for the SCORE metric for JBOSS and Apache dataset is 99.03% and 93.70%

respectively. We observed that for 16.16% of the bug reports in the JBOSS dataset and for

10.67% of the bug reports in the Apache dataset, the average precision value (computed at

all recall levels) is between 0.9 and 1.0.

Keywords- Bug Localization, Mining Software repositories (MSR), Information Retrieval

(IR), Automated Software engineering (ASE)

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 4
2.1 Bug Life Cycle . 4
2.2 Information Retrieval Model for Bug Localization 5

3 Character N-gram Model 8

4 Solution Approach 14
4.1 Feature extraction . 15
4.2 Similarity Function . 15
4.3 Rank Generation . 16

5 Performance and Evaluation Metrics 17
5.1 SCORE . 17
5.2 MAP . 18

6 Experimental Dataset 19

7 Experimental Results 22
7.1 Predictive Power of Each Predictor Variable 22
7.2 Effectiveness of Character N-gram Model . 25
7.3 Normalization Effect . 27
7.4 Scatter Plots . 29

8 Related Work 30

9 Conclusions 33

iv

CONTENTS v

A Dataset Version details 34
A.1 Selected Source-code Versions and Distribution of Issue Reports among them. 34

A.1.1 JBOSS Dataset . 34
A.1.2 Apache(Geronimo Project) Dataset . 35

References 36

List of Figures

2.1 A typical bug report from JBOSS issue tracker system 5
2.2 Bug life cycle . 6
2.3 General IR model for bug localization . 7

3.1 Example showing title and description containing N-grams of file name and
file path modified by bug report . 9

4.1 High-level solution architecture depicting the text processing pipeline, various
modules and their connections . 14

6.1 Features of JIRA Issue Tracking System . 20
6.2 Distribution of the number of files modified in JBOSS and Apache dataset . . 21

7.1 A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR
model with five different tuning parameters (similarity function is not normal-
ized) to study the predictive power of each of the four feature combinations
(T-F, T-P, D-F and D-P)[JBOSS Dataset] . 23

7.2 A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR
model with five different tuning parameters (similarity function is not normal-
ized) to study the predictive power of each of the four feature combinations
(T-F, T-P, D-F and D-P)[APACHE Dataset] 24

7.3 A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR
with equal weights given to each tuning parameter (similarity function is not
normalized) [JBOSS and APACHE Dataset] 26

7.4 Distribution of average precision values for the set of bug reports in the JBOSS
and APACHE evaluation dataset. The average precision value is computed
at all recall levels (ranks at which each relevant document is retrieved). . . . 26

7.5 Percentage of bug reports in the JBOSS and APACHE dataset in which at-
least one of the modified file(s) is retrieved as Rank 1-5 27

7.6 Precision-Recall Curve (average precision at various average recall values) for
the normalized as well as not-normalized setting 28

vi

LIST OF FIGURES vii

7.7 Scatter plot displaying the precision and recall value for each bug report (fixed
and pre-defined values of Nr=10 and Nr=100) 29

7.8 Scatter plot displaying the precision and recall value for each bug report (fixed
and pre-defined values of Nr=10,25,50,100,250) 29

Chapter 1

Introduction

“Let he who has a bug free software cast the first stone” -by Assaad Chalhoub.

This is another way of saying that no matter how much time and effort goes into software

testing it is hard to build a bug free software [15]. Software organizations spend huge amount

of resources in software testing, Bill Gates 1 (chairman Microsoft) once said (in 1995):

“We have as many testers as we have developers. And developers spend half their time

testing. We’re more of a testing organization than we’re a software organization.”

Software testing is one of the most resource consuming task in software development life-cycle

[24]. This resource consumption increases with software size and complexity. Even though

software organizations do rigorous software testing it is practically infeasible for them to

do exhaustive testing of software (testing for each possible input). Hence every large soft-

ware have a maintenance phase after software delivered to end user. Corrective maintenance

which involves bug fixing (reported by end-users) is a part of overall software maintenance

process. It is estimated that corrective maintenance can consume upto 21% of all software

maintenance resources, this amount can be huge for large software systems [16].

Large software projects receive huge number of bugs every day, for example in year 2005

Mozilla project2 received on an average 300 bug per-day, and total of 51,154 bugs during

2002-2006. In Eclipse3 nearly 13,016 bugs were reported in span of one year (jun-2004-

jun-2005), having average of 37 reports per day, with a maximum of 220 reports in a single

day[17]. Fixing such huge number of bugs will take considerable human effort and time. Bug

1http://www.microsoft.com/presspass/exec/billg/
2http://www.mozilla.org/projects/
3http://www.eclipse.org/eclipse/

1

http://www.microsoft.com/presspass/exec/billg/
http://www.mozilla.org/projects/
http://www.eclipse.org/eclipse/

CHAPTER 1. INTRODUCTION 2

fixing is a complex task as it requires understanding of bug and source code. In large and

complex software systems software aging, poor-documentation and developer mobility makes

software projects hard to understand for software developers[2]. This may slow down soft-

ware project progress and may increase overall software maintenance cost. In order to bring

down the overall resource consumption of corrective software maintenance it is required to

empower software developers with tools and techniques that can facilitate them in bug fixing.

Bug fixing task consists of various sub-task such as understanding the bug, locating the

cause of bug and finally fixing it. In most of the bug fixing cases locating cause of bug (bug

localization) consumes most of the developer’s time [25]. Bug localization is an important

task in bug fixing process and can be formally defined as:

“Bug localization is a process of identifying the specific location(s) or region(s) of source

code (at various granularity levels such as the directory path, file, method or statement) that

is faulty and needs to be modified to repair the defect”[4, 3, 2].

Automated bug localization techniques take information about software system (source

code and bug reports) as an input and produces a ranked list of documents (classes, files,

or methods) that might require modification to fix the bug [2]. Automated bug localiza-

tion domain have attracted considerable attention from the software engineering research

community and various techniques for bug localization have been proposed in the litera-

ture [4, 2, 13, 1]. These techniques can be categorized as: Dynamic and Static. Dynamic

bug localization techniques uses execution information of software to locate the bug[18, 19].

These techniques compare passing execution traces with erroneous execution traces to iden-

tify faulty program location. Dynamic bug localization approaches may not be appropriate

for real world software project because of unavailability of execution information with the

reported bug. In contrast static bug localization techniques use software source code (or

other documents related with software) information to locate the bug. For example Hove-

meyer et al. proposed a static technique for bug localization in which they used to evaluate

classes against set of predefined rules to predict the bug. Static bug localization techniques

have following advantages over dynamic bug localization techniques [2]:

• Static techniques do not require execution information of software.

• Static techniques can be applied at any stage of software development.

Some recent static techniques of bug localization have attempted to apply concepts from tra-

ditional Information Retrieval (IR) models such as LSI, LDA for bug localization. IR models

frame bug localization as a search problem: retrieve relevant documents in a document col-

lection for a given query. In this study we will keep our focus on IR based static techniques

CHAPTER 1. INTRODUCTION 3

for bug localization, we will discuss in detail about IR based bug localization model in back-

ground (chapter 2) and detailed literature of IR based bug localization techniques in related

work (chapter 8).

The aim of the research study presented in this thesis is to investigate novel text min-

ing based approaches to analyze bug databases and version archives to uncover interesting

patterns and knowledge which can be used to support developers in bug localization. We

proposed an IR based approach to compute the semantic and lexical similarity between

title and description in bug reports with file-name and path-name of source-code files by

performing a low-level character N-gram based analysis.

Character N-gram based analysis techniques are found to be useful in the domain of infor-

mation retrieval, text clustering, text classification etc. But the performance of character-

level representation of bug reports and source code for the task of bug localization is an

open research question, as all the earlier IR based techniques proposed in the literature (see

Related Work 8) for bug localization are word based. We hypothesized that the inherent

advantages of character-level analysis (language independence, robust towards noisy data

etc.) is suitable for the task of automated bug localization as some of the key linguistic

features present in bug report attributes and source-code attributes can be better captured

using character N-grams in contrast to word-level analysis. The study presented in this the-

sis attempts to advance the state-of-the-art on IR based bug localization techniques and in

context to the related work makes the following unique contributions:

1. A novel method for automated bug localization (based on the information contained

in bug title and description expressed in free-form text and source code file-name

and path-name) using a character-level N-gram model for textual similarity matching.

While the method presented in this paper is not the first approach on IR based bug

localization, this study is the first to investigate the performance of character-level

N-gram language models for the bug localization problem. This study is the first

to investigate sub-word features (slices of N characters within a word) and a bag-

of-characters document representation model (rather than the bag-of-words model in

previous approaches) for the task of static analysis and IR based bug localization.

2. An empirical evaluation of the proposed approach on real-world and publicly avail-

able dataset from two popular open-source projects (JBOSS and Apache). We experi-

mented with different configuration parameters (such as weights for title-filename, title-

pathname, description-filename and description-pathname comparisons and length nor-

malization) and presented results throwing light on the performance of the approach as

well as insights on the predictive power of different variables (present in the proposed

textual similarity function).

Chapter 2

Background

This chapter provides background information about defect tracking system and IR mod-

els. We discuss bug report format (fields), life cycle of a bug, and structure of IR model

for bug localization. In real world software projects software developers are expected to

fix bug by understanding the problem from a given bug report. Hence it is necessary to

understand bug report format (various fields present in the bug report) in detail in order

to understand formation of automated bug localization tools using information present in

bug report. Figure 2.1 displays a snapshot of a bug report taken from JBOSS issue tracking

system. This consists of various different fields such as title, description, version, reporter,

assignee, platform and many other fields which helps software developer in understanding

the bug. Bug reporters can give snapshots, patches or stack traces related to the bug oc-

curred which helps in further improving software developer’s understanding about the bug.

In addition to these traditional fields JIRA issue tracking system provides fields like similar

issues and SVN commits. Similar issues fields can be useful in pruning the search space for

current bug locations using locations of similar bugs locations. SVN commits provide the

ground truth for bug report, which are helpful in identifying effectiveness of the automated

bug localization system. This shows that bug reports consists of enormous amount of in-

formation. Automated bug localization techniques attempt to leverage this information for

predicting bug locations. Next, we discuss bug life cycle and IR model for bug localization.

2.1 Bug Life Cycle

A bug report passes through various phases before it is declared as fixed (or closed). Figure

2.2 shows simplified picture of bug life cycle.1 A bug can be found by tester or user who can

report this bug to defect/issue tracking system. When a new bugs comes into the system

1http://www.bugzilla.org/docs/2.18/html/lifecycle.html

4

http://www.bugzilla.org/docs/2.18/html/lifecycle.html

CHAPTER 2. BACKGROUND 5

Figure 2.1: A typical bug report from JBOSS issue tracker system

it has to pass through various quality checks before it is actually considered as a valid bug

(bug that needs fixing). Quality check process identifies duplicate bugs, bug which does

not consists of enough information, bug which are invalid etc. After a bug is found to be

valid it is triaged to some expert who is expected to have knowledge to fix the bug, this

expert is known as “Assignee” of bug. Now assignee’s job is to fix the bug and commit its

related changes to version control system. These changes get reviewed and verified by quality

assurance team before final release. After final verification by quality assurance team a bug

can be declared as closed. Although bug life cycle is shown to be sequential (for simplicity)

in Figure 2.2 in reality it have pointers to previous stages. For example a closed bug can be

reopened or assignee of the bug report can be changed (current assignee can assign bug to

other expert). Complete detail for bug life cycle can be found in [21, 22].

2.2 Information Retrieval Model for Bug Localization

Information retrieval (IR) can be defined as: “Retrieving relevant documents (or documents

that satisfy user information need) from large and unstructured collection of documents” [23].

Information retrieval is an art and science of searching (or retrieving) relevant documents

CHAPTER 2. BACKGROUND 6

Figure 2.2: Bug life cycle

from the large collection of documents2, for example:

• Searching for articles on image processing.

• Retrieving web pages relevant to endangered species.

• Retrieving advertisement on latest laptops brands present in the market.

All these are real world examples that we encounter in our daily life. Web search engines

such as Google, Yahoo, Bing etc. are the biggest applications of IR system. These search

engines indexes millions of documents (unstructured or semi-structured nature) which are

used for IR model building. When a user input’s a query this IR model is used to provide

user ranked list of document which are ordered according to their relevance to the given

query.

IR models are gaining popularity in bug localization domain mainly because of two rea-

sons: 1) scalability, and 2) language independence [3]. These features of IR model allow

automated bug localization tools to remain applicable as software grows in size and com-

plexity. Figure 2.3 is showing general IR system for bug localization problem. This system

consists of four parts: 1) IR model formation, 2) document collection formation, 3) query

2http://www.dsoergel.com/NewPublications/HCIEncyclopediaIRShortEForDS.pdf

http://www.dsoergel.com/NewPublications/HCIEncyclopediaIRShortEForDS.pdf

CHAPTER 2. BACKGROUND 7

formation and 4) query execution. For bug localization problem IR models are build using

software source code information. In addition to source code other information present with

the software system such as software documentation, software specification or previous bug

locations can be used for IR model formation. Document collection represents at which

level of granularity bug localization system need to locate the bug, it can be at statement,

method, class, or package level. Document collection is formed from source code by breaking

it into desired level of granularity. Any new bug report is considered as a query for the

system for which relevant documents need to be retrieved. New bug report are converted to

query using query formation module. All this information (IR model, document collection,

query) is used by query engine module to produce ranked list of documents from document

collection. Documents are ranked in order of their relevance with respect to current query.

These ranked documents can used by software developers to predict bug location during bug

fixing. Various IR based techniques for bug localization have been proposed in the literature,

some of these techniques we will discuss in related work (see chapter 8).

Figure 2.3: General IR model for bug localization

Chapter 3

Character N-gram Model

N-gram means “a subsequence of N contiguous items within a sequence of items”. Word

N-grams represent a subsequence of words and character N-grams represent a subsequence

of characters. For example, various word-level bi-grams (N=2) and tri-grams (N=3) in the

phrase “Mining Software Repositories Research” are: Mining Software, Software Reposi-

tories, Repositories Research, Mining Software Repositories and Software Repositories Re-

search. Similarly, various character-level bi-grams and tri-grams in the word “Software” are:

So, of, ft, tw, wa, ar, re, Sof, oft, ftw, twa, war and are respectively.

In contrast to word level N-gram textual features, character level N-gram feature extrac-

tion provides some unique advantages in context of information retrieval, which aligns with

the task of bug localization. For example consider Figure 3.1, which is showing a snapshot

of a bug report with name(s)/path(s) of file modified by this bug. This example is showing

that there exists considerable overlap between character N-grams present in name(s)/path(s)

of file modified by bug and character N-grams present in bug report text, such as deploy,

suffix, Bean etc. Character N-gram based approaches can match these textual features be-

tween bug report and source code without requiring much preprocessing of text present in

bug reports/source code. In contrast word level feature matching techniques will need pre-

processing tools such as parser, stemmers to match concepts such as (deployment, deployer)

or (suffixOrderHelper, suffixOrderHelper.addSuffix()).

Following are some of the advantages that character N-gram based approaches provides

for the task of bug localization. Each advantage is supported by real world examples taken

from JBOSS and Apache bug reports demonstrating effectiveness of proposed solution in

bug localization domain:

1. Ability to Match Concepts Present in Source Code: Bug reports frequently consists

of source code segments and system error messages which are not natural language

text. Consider BugID JBAS-4649 which modifies the file “JRMPInvokerProxyHA”.

8

CHAPTER 3. CHARACTER N-GRAM MODEL 9

Figure 3.1: Example showing title and description containing N-grams of file name and file
path modified by bug report

Bug report contains terms “invoker HA proxies”. Character N-gram based approach

performs matching at character sequence level and concepts embedded in file names

are matched with concepts present in bug reports. Although there are some lexical dif-

ference in these two terms they share several character N-grams which can be leveraged

by character level matching techniques. In contrast a word level matching technique

can not match concept present in these two strings (pre-processing of camel case terms

is required).

2. Match Term Variation to Common Root: For example, BugID JBAS-1862 contains

the term “Interceptors” and modifies a file with filename containing the term “Inter-

ceptor”. Terms interceptor, interceptors, interception are morphological variations of

the term intercept. World level string matching algorithm will require a stemmer func-

tion to map all these morphological variation to common root for producing desired

result. Character level analysis can detect concept match without a stemmer. Some

more examples derived from the dataset: (Call,Caller,Calling), (Manage, Manager,

Managed), (Suffix, Suffixes), (Transaction, Transactions), (Proxy, Proxies), (Excep-

tion, Exceptions), (Enum, Enums), (Marshel,UnMarshel), (Unit, Units), (Connection,

Connections, Connector), (Timer, Timers), (Authenticated, Unauthenticated), (Load,

Loads, Loader), (Wrapper, Wrapped), (Starting, Startup), (Cluster, Clustering), (Pool,

CHAPTER 3. CHARACTER N-GRAM MODEL 10

Pooling), (resend, resent), (Invoke, Invoker).

3. Ability to Match Misspelled Words: Consider BugID JBAS-1552 which consists of a

misspelled word “Managment”. This bug modifies several files present in the “Man-

agement” directory. These two words share several character N-grams such as “Man”,

“ana” , “nag” , “men”, “ent” , “Mana”, “anag”, “ment”, “Manag” etc and hence a

character N-gram based algorithm will be able to give a good similarity score between

these two words. Few examples derived from the dataset: (behaiviour, behavior), (co-

sist, consist), (releated, related), (Releation, Relation), (chekc, check), (posible, possi-

ble), (Becouse, Because), (Managment, Management), (Princpal, Principal), (Periode,

Period).

4. Ability to Match Words and their Short-Forms: Bug Reporters frequently use short

forms and abbreviation in the bug reports such as spec for specification, app for ap-

plication etc. Character-level approaches are robust against use of such short forms,

because a short-form shares several character N-grams with their expanded form. We

found various such examples in our dataset such as: (Config, Configuration), (Auth,

Authentication), (repl, replication), (impl, implementing), (Spec, Specs, Specification),

(Attr, Attribute), (Enum, Enumeration), (Sub, Subject).

5. Ability to Match Words Joined Using Special Characters: Terms in bug reports are

sometimes joined using various special characters. These special characters are used

by bug reporters in different context, such as putting emphasis “ScopedSet...”, [Timer-

Impl], or joining compound words such as “module-option”. Word-level matching re-

quires knowledge of such facts and will require a domain specific tokenization (text

pre-processing) tool. In contrast, character level analysis techniques are able to detect

concept matching because of partial matching.

6. Ability to Match Substring Permutations: A words based approach which is able to

get substrings (or splitting using camel case) of a string, generally can not detect ori-

entation difference in the words. For example consider the file names “JMSManaged-

Connection” and “JMSConnectionManager”. After splitting followed by stemming

of these two strings, a word level approach will get substrings “jms”, “connection”,

“manager” for both the strings. As word based approaches are generally represented

as “bag-of-words” they do not have any ordering information. Hence a word level ap-

proach can not detect simple permutations of substring present in the word and hence

may not be able to produce the desired result. While a character level algorithms do

not require such hard-word splitting, they can easily detect such permutation. Strings

having same order of characters will get higher score in character N-gram based ap-

proach and algorithms will be able to produce the desired result. Table 3.1 lists the

CHAPTER 3. CHARACTER N-GRAM MODEL 11

advantages of the character N-gram based analysis over word-based analysis.

S.

No.

File/Directory

Name

Title/Description Description

1 local,HALocalMan-

agedConnectionFac-

tory

<-local-tx-

datasource>

Word based technique will require pars-

ing of “<-local-” and camel case break

to match file “HALocalMangedConnection-

Factory” and directory “local”.

2. cmp cmp2 To match “cmp”(desired directory) with

“cmp2”, a word based technique will re-

quire to remove digit from “cmp2”.

3. EjbModule EjbModule. addIn-

terceptor

“EjbModule.addInterceptor” is a source

code fragment which is giving informa-

tion about file method that need to be

fixed, but to match it with desired file

(EjbModule) a word level analysis tech-

nique will require to split it on dot(.) to

separate method (addInterceptor) from file

name(EjbModule).

4. JDBCEJBQLCom-

piler

EJBQLToSQL92Co-

mpiler

These two strings consists of so many

matching character N-grams, but still its

difficult for a word based technique to

match these words, as most of the stem-

ming or parsing algorithm wont be able to

extract individual concepts.

5. ScopedSetAttribute

TestCase

“ScopedSet...” Unit

tests

There exists considerable overlap between

these two strings but still a word based

technique will require careful parsing of the

word “ScopedSet” and also need to apply

camel casing break on string “ScopedSetAt-

tributeTestCase” followed by stemming of

word “Tests”, to match these two strings.

6. TimerImpl [TimerImpl] To match these two strings word based

technique require knowledge of “[”, “]” and

to do the parsing accordingly.

CHAPTER 3. CHARACTER N-GRAM MODEL 12

7. ModuleOptionCont-

ainer

<jaas:module-

option name =

“unauthenticatedI-

dentity” > guest

</jaas:module-

option>

Column 3 is showing fragment of config-

uration file present in one of the bug re-

ports. Configuration files requires a dif-

ferent parsing mechanism, in this case

will require removal of “:”, “-” and other

words concatenated with “module-option”,

to match the similar concept present in

source code file and bug report.

8. class-loading class loader Word based technique will require to re-

move hyphem(“-”) from file name and

also need to perform stemming on loader

and loading, to match file name (“class-

loading”) and string (“class”, “loader”).

9. UsernamePassword

LoginModule

Password/User In this case word based technique not only

require to perform tokenization based on

“/” but also need to match “User” and

“Username”.

10. InvokeCommand ’invoke’ Intelligent parsing and camel case break

is required for word based technique to

match these two strings.

11. cmp, jdbc2, JDBC-

StoreManager2

/cmp/jdbc2/JDBCSt-

oreManager2

Complete path for file that need to mod-

ified is given in a bug report(see column

3), but still it can not be matched unless

a word based technique perform tokeniza-

tion based on “/”.

12. JDBCFindByPrimary-

KeyQuery

Bean2Home.findByPr-

imaryKey(pk)

Column 3 is containing source code frag-

ment which requires parsing of “function

calls” to match concept present in source

code file(column 2) with concept in bug re-

port(column 3).

13. JaasSecurityManag-

erService

(“jboss.security:servi-

ce= JaasSecurity-

Manager”)

Source code fragment in bug report which

requires removal of ‘=’,‘ ” ’, etc. to match

both the strings

14. WebPermissionMap-

ping

“WebPermissionMap-

ping”

Even though complete file

name“WebPermissionMapping” is present

int the bug report a word based tech-

niques can not match two string without

removing double quotes(”).

CHAPTER 3. CHARACTER N-GRAM MODEL 13

15. AbstractDeployment-

Scanner

(jboss.deployment.sca-

nner.AbstractDeploy-

mentScan-

ner$Scanner Thread)

Fragment of bug report containing stack

trace, which needs parsing of dots(.) and

character ($). In general word based tech-

nique require smart parsing of stack traces

present in bug reports to match them with

source code.

Table 3.1: Illustrative examples of concepts present in bug reports and file-name and path-

name (derived by examining the experimental dataset) demonstrating the advantages of the

character N-gram based analysis over word-based analysis

Chapter 4

Solution Approach

In this chapter we will describe our system architecture and its various building blocks. Fig-

ure 4.1 presents the high level architecture of the proposed solution. This system consists of

three components: (1) Character N-gram based feature extractor (2) Similarity computation

module and (3) Rank generator, detailed description of each module is as follows:

BUG REPORT
TEXTUAL FEATURE EXTRACTION [TITLE + DESCRIPTION]

Bag of Character
N-Grams

[TITL] + [DESC]

TEXTUAL FEATURE EXTRACTION [PATH + FILE NAME]

Bag of Character
N-Grams

[PATH] + [FNAME]

SOURCE CODE

TITL

DESC

PATH

FNAME

Similarity
Function

SIMILARITY
COMPUTATION

RANK FILE
NAME SCORE

1

2

3

TOP K SEARCH RESULTS

Figure 4.1: High-level solution architecture depicting the text processing pipeline, various
modules and their connections

14

CHAPTER 4. SOLUTION APPROACH 15

4.1 Feature extraction

Bug reports and source code files are structured documents consisting of various attributes

such as title, description, reporter, version (for bug report) and file name, file path, method

name (for source code). Feature extraction module extracts desired attributes from bug

report (title and description) and source code (file name and file path). This module then pre-

process (removes stop words and converts them into lowercase) these features and converts

them into bag-of-character N-grams (of length 3 to 10) document representation. This

module returns four bag-of-character (or vectors) N-grams, one for each feature which further

used by other modules.

4.2 Similarity Function

We define a similarity function for computing the textual similarity or relatedness between

a bug report (query represented as a bag-of-character N-grams) and a source-code file (doc-

ument in a document collection represented as a bag of character N-gram). Equation 4.1

presents the formula for computing the similarity between two documents in the proposed

character N-gram based IR model. Let U and V represent a vector of character N-grams.

For example, U can be a bag-of-character N-gram derived from the title of the bug report

and V can be a bag of character N-gram derived from the source code file-name. Similarly,

character N-grams from bug report description and directory path can be assigned as U and

V respectively.

SIM(U, V) =

∑
uεU

∑
vεV

Match(u, v)× Length(u)

|U | × |V |
(4.1)

Match(u, v) =

{
1 if : u = v

0 Otherwise
(4.2)

|U | = 2

√
f2
u1

+ f2
u2

+ .. + f2
un

(4.3)

The numerator of SIM(U, V) first compares every element in U with every element in V

and measures the number of matches. The value of n is added to the cumulative sum in case

of a match (character N-grams being exactly equal). The higher the number of matches, the

higher is the similarity score. Matches containing longer strings contributes more towards

CHAPTER 4. SOLUTION APPROACH 16

the sum (as the length of the string is added) in contrast to strings which are shorter.

The denominator of SIM(U, V) is the length normalizing factor. The normalization factor

in the denominator is used to remove biases related to the length of the title and description

in bug reports as well as the file-name and path-name for source-code files. We perform

experiments with and without normalization to study the influence of length normalization

on the overall accuracy of the retrieval model. Variable fui
represents the frequency of an

n-gram (ui) in the bag of character N-grams in equation 4.3 .

4.3 Rank Generation

Equation 4.1 is used to calculate individual similarity score between feature pairs, T-F (title

and file name), T-P (title and path), D-F (description and file name) and D-P (description

and path). These individual similarity scores can be combined in several ways to compute

final similarity score between source code file and bug report. As shown in Equation 4.4,

the overall similarity is computed as a weighted average of these four individual scores,

represented by SIMSCORE(BR,F). Rank of a file for a bug report is calculated using its

SIMSCORE value, high value of SIMSCORE represents high similarity and hence better

rank. This function consists of several tuning parameters (W1,W2,W3,W4) as a result of

which multiple implementations of the similarity function are possible. We experimented

with different values of the configuration parameters to learn the impact of various variables

used for computing textual similarity and also to identify configuration which gives best

results. We will discuss results obtained in chapter 7.

SIMSCORE(BR,F) = W1 ∗ SIM(T − F) + W2 ∗ SIM(T − P) + W3 ∗ SIM(D − F)+

W4 ∗ SIM(D − P)

(4.4)

Chapter 5

Performance and Evaluation

Metrics

We measured the performance (predictive accuracy) of the proposed approach using two

evaluation metrics: SCORE and MAP (Mean Average Precision). SCORE and MAP metric

are employed as evaluation metric by previous studies on bug localization using Information

retrieval based techniques [6][4][7].

5.1 SCORE

SCORE metric denotes the percentage of documents in the repository (search space) that

need not be investigated by the bug-fixer for the task of bug localization. Accuracy and

SCORE are directly proportional, higher SCORE value means higher accuracy. Assume

file level granularity and consider a situation where the size of the search space is equal to

1000 files. A SCORE of 80% (or 0.80) means that the bug resides in top 20% (200 files in

a search space of 1000 files) of the document (file) collection. For example consider a bug

for which three files need to be fixed, let these file given rank 12, 40, and 60 respectively

by some technique ‘X’. If there are 200 files in the search space, SCORE value for this bug

report (using technique X) is: (200-60)/200 =70%. Mathematical formulation of SCORE

metric is presented in equation 5.1, where ‘m’ is number of files that a bug modifies, ‘N’ is

the total number of files present in the search space, and fiRank is the rank assigned to ith

file. SCORE is a standard and common evaluation metrics for measuring the effectiveness

of bug-localization approaches [6][4][7].

17

CHAPTER 5. PERFORMANCE AND EVALUATION METRICS 18

SCORE =

(
1− max(f1Rank,f2Rank,...,fmRank)

N

)
× 100 (5.1)

5.2 MAP

Mean average precision (computed for a set of queries i.e., for the set of bug reports in the

evaluation dataset) is equal to the mean of the Average Precision (AP) scores for each query

in the experimental dataset. The proposed IR model computes the similarity score between

the query and each of the file in the document collection and returns a ranked list of files

based on the computed numeric score. AP consists of computing the precision of the system

at the rank of every relevant document retrieved. MAP is a well know metric to measure

retrieval performance for IR systems [3][8].

Equation 5.2 presents the general formula for AP wherein Pi denotes the precision at

ith relevant file retrieved and M denotes the total number of relevant file for a bug. For

example, consider a bug report (query) which modifies three files (number of relevant files

is equal to three). Assume the system assign ranks 2, 4 and 7. In this example, the AP is

calculated as shown in equation 5.3. MAP is calculated by taking the mean of AP values

for all the bug reports in the dataset(see Equation 5.4 where N is total number of bugs in

database).

AP =
(P1 + P2 + ... + PM)

M
(5.2)

AP =
1
2 + 2

4 + 3
7

3
(5.3)

MAP =
(AP1 + AP2 + ... + APN)

N
(5.4)

Chapter 6

Experimental Dataset

In order to validate our hypothesis (character N-gram based technique is effective in bug

localization), we performed an empirical evaluation on dataset downloaded from the issue

tracking system of two popular open source projects: JBOSS1 and APACHE GERONIMO2.

The dataset is publicly available as a result of which the experiments performed in this work

can be replicated in future for improving this technique and for comparing it with other

techniques. We conducted experiments on dataset belonging to two open source projects

to remove any project-specific bias and to investigate the generalization power of proposed

solution. We implemented a crawler using JIRA API3 and downloaded the relevant data

(bug report metadata, title description, modified files etc).

Table 6.1 displays details regarding the experimental dataset downloaded from JBOSS and

Apache open source projects. We extracted 569 bug reports from the JBOSS project and

637 bug reports from the Apache project satisfying certain conditions. As shown in the

Table 6.1, one of the conditions is that the issue report should be CLOSED/RESOLVED

and FIXED/DONE. Furthermore we extracted bug reports which are of type BUG (as

the focus of the work is bug localization) and not other types of issues such as feature

requests, task or sub-task. In JIRA issue tracking system, the issue tracker and the SVN

commits are integrated and hence the ground-truth (all the files modified for a bug report) is

available. The ground-truth (actual value) is compared with the predicted value to compute

the effectiveness of the proposed IR model. JIRA issue tracking system provides information

about TYPE of issue and provides implicit link between issues and its SVN commit, as

shown in figure 6.1. Hence it is not required to explicitly identify type of issue or traceability

link between bug report and its respective SVN commit.

1 https://issues.jboss.org
2 https://issues.apache.org/jira/browse/GERONIMO
3http://docs.atlassian.com/software/jira/docs/api/latest/

19

https://issues.jboss.org
https://issues.apache.org/jira/browse/GERONIMO
http://docs.atlassian.com/software/jira/docs/api/latest/

CHAPTER 6. EXPERIMENTAL DATASET 20

Label JBOSS APACHE
A Start Issue ID 1 (JBAS-1) 1 (GERONIMO-

1)

B Last Issue ID 8879 (JBAS-
8879)

6143
(GERONIMO-
6143)

C Reporting Date Start Issue 2004-11-7 2003-08-20

D Reporting Date Last Issue 2011-2-16 2011-09-06

E Number of Issue Reports Downloaded 8072 4092

F Number of Issue Reports Unable to Download 807 2051

G Number of Issue Reports (Status =
CLOSED/RESOLVED, Resolution = DONE and
containing SVN commit)

2433 1915

H Number of Issue Reports of Type = BUG AND in SET
G

1114 1269

I Number of Issue Reports in SET H AND containing at-
least one modified Java file

1090 939

J Number of Issue Reports in SET I AND a specific version 576 (VER-
SION =
4.x)

736 (VERSION
= 1.x, 2.x, 3.x)

K Number of Issue Reports in SET J AND for which MOD-
IFIED file Found in specified version

569 637

Table 6.1: Details regarding the experimental dataset from JBOSS and Apache projects

(a) Implicit Link between Bug Report and Re-
lated SVN Commit

(b) Implicit Distinction between Issue Types

Figure 6.1: Features of JIRA Issue Tracking System

CHAPTER 6. EXPERIMENTAL DATASET 21

 0

 10

 20

 30

 40

 50

 60

 70

(1) (2) (3) (4) (5) (6) (>=7)

P
e

rc
e

n
ta

g
e

 o
f

B
u

g
 R

e
p

o
rt

s

Number of Files Modified

 Distribution of Bug Reports Across Number of Files Modified

Percentage of Bug Report

(a) JBOSS Dataset

 0

 10

 20

 30

 40

 50

 60

 70

(1) (2) (3) (4) (5) (6) (>=7)

P
e

rc
e

n
ta

g
e

 o
f

B
u

g
 R

e
p

o
rt

s

Number of Files Modified

 Distribution of Bug Reports Across Number of Files Modified

Percentage of Bug Report

(b) Apache Dataset

Figure 6.2: Distribution of the number of files modified in JBOSS and Apache dataset

Bug reports have a field called as “affected version” in which the bug reporter specifies

the version number of the application that caused the failure. We downloaded bug reports

belonging to specific versions (for which sufficient bug reports were available for experimental

proposes) for JBOSS and Apache (refer to Table 6.1 for details). We download the source

code for various versions mentioned in the dataset as the bug localization is performed on

the specific version on which the bug was reported. For example JBOSS dataset consists of a

total of 20 versions (see appendix A for more details). In our case, the size of the search space

is equal to the number of Java files in the software. For the 20 versions in JBOSS dataset, the

minimum value for the number of files (size of the search space) is: 6212, maximum is: 9202

and average is: 7947.7. For the Apache dataset 28 versions(see appendix A) are downloaded

(minimum size of search space is 1428, maximum size is 3182 and the average value is 2305).

Figure 6.2 is showing distribution of bug reports depending on number of files they modified,

for example 58% bug reports in JBOSS and 46% bug reports in Apache modified only one

source code file. This distribution is calculated to understand dataset characteristics.

Chapter 7

Experimental Results
Multiple experiments are done to measure effectiveness of proposed solution for bug local-

ization task and to get more insights. Proposed solution used to rank each source code file

present in the system (version specified in the bug report) according to final score obtained by

them (see equation 4.4). These ranked files are then compared with ground-truth (available

through JIRA issue tracker system) to evaluate system effectiveness. Apart from measuring

effectiveness of the proposed solution we did experiments to identify which one of the four

features is most effective for bug localization and to identify effect of length normalization on

bug localization accuracy. In the following sections we will discuss details of our experiments

and results obtained.

7.1 Predictive Power of Each Predictor Variable

We experimented with five tuning parameters (SIM-EQ, SIM-TF, SIM-TP, SIM-DF and

SIM-DP as described in Table 7.1) to throw light on the predictive power of the four pre-

dictor variables (title and description in bug report with filename and path in version control

system). Weights W(T-F), W(T-P), W(D-F) and W(D-P) present in table 7.1 denotes the

weights W1,W2,W3 and W4 present in equation 4.4 respectively. Figure 7.1 and 7.2 are

displaying descriptive statistics using a box-plot (five-number summary: minimum value,

lower-quartile (Q1), median (Q2), upper quartile (Q3) and maximum value) of SCORE

values (under five different tuning parameters) for the JBOSS and APACHE experimental

dataset respectively. In addition to the 25th, 50th and 75th percentile, Figure 7.1 and 7.2

also reveals the degree of dispersion or spread in the SCORE values. We found that SIM-

EQ (the weight for all the four predictor variables being equal or 0.25 each) configuration

outperforms all other configuration.

The box-and-whisker diagram of figure 7.1 reveals that the textual similarity between

the bug report description and the file-name (JBOSS dataset) is relatively better predictor

(Q1:70.38%, Q2:97.03%, Q3:99.92%) in contrast to the other three predictors. Figure 7.1

and 7.2 are showing that bug report description is a better predictor than bug report title.

22

CHAPTER 7. EXPERIMENTAL RESULTS 23

Label Norm. W(T-F) W(T-P) W(D-F) W(D-P)

1 SIM-EQ N 0.25 0.25 0.25 0.25

2 SIM-TF N 1 0 0 0

3 SIM-TP N 0 1 0 0

4 SIM-DF N 0 0 1 0

5 SIM-DP N 0 0 0 1

Table 7.1: Five different configurations of weights (for each of the four comparisons: T-F, T-P,
D-F and D-P) to study the predictive power and influence of each of the four possible comparisons
between bug report attributes and source-code file attributes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

All Weight Equal=0.25 W(T-F)=1 W(T-P)=1 W(D-F)=1 W(D-P)=1

S
C

O
R

E
 (

0
-1

0
0
%

)

Similarity function (not normalized) with different weights across four combinations: T-F, T-P, D-F, D-P

Performance evaluation data using SCORE metrics for the proposed model with different tuning parameters

Min: 0.08

Q1: 90.24

Median:99.03

Q3: 99.93

Max: 99.98

Min: 0.33

Q1: 43.80

Median:94.77

Q3: 99.96
Max: 99.98

Min: 0

Q1: 46.46

Median:85.56

Q3: 98.25

Max: 99.98

Min: 0.33

Q1: 70.38

Median:97.03

Q3: 99.92

Max: 99.98

Min: 0.20

Q1: 60.36

Median:94.08
Q3: 99.23

Max: 99.98
Quartiles

Median

Figure 7.1: A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR model with five
different tuning parameters (similarity function is not normalized) to study the predictive
power of each of the four feature combinations (T-F, T-P, D-F and D-P)[JBOSS Dataset]

CHAPTER 7. EXPERIMENTAL RESULTS 24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

All Weight Equal=0.25 W(T-F)=1 W(T-P)=1 W(D-F)=1 W(D-P)=1

S
C

O
R

E
 (

0
-1

0
0

%
)

Similarity function (not normalized) with different weights across four combinations: T-F, T-P, D-F, D-P

Performance evaluation data using SCORE metrics for the proposed model with different tuning parameters

Min: 0.43

Q1: 61.30

Median:93.70

Q3: 99.32

Max: 99.97

Min: 0.16

Q1: 24.83

Median:74.36

Q3: 98.61
Max: 99.97

Min: 0.22

Q1: 32.31

Median:78.92

Q3: 96.37

Max: 99.96

Min: 0.057

Q1: 32.07

Median:82.81

Q3: 98.77

Max: 99.97

Min: 0

Q1: 38.74

Median:83.90

Q3: 96.82

Max: 99.96
Quartiles

Median

Figure 7.2: A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR model with five
different tuning parameters (similarity function is not normalized) to study the predictive
power of each of the four feature combinations (T-F, T-P, D-F and D-P)[APACHE Dataset]

CHAPTER 7. EXPERIMENTAL RESULTS 25

7.2 Effectiveness of Character N-gram Model

We measured effectiveness of our approach using multiple metrics to provide different per-

spectives as explained below. In rest of the experiments we will use SIM-EQ configuration,

as it was found to be best in above experiments. Figure 7.3 is showing box-plot (described

above) for SCORE values obtained by each bug report (using SIM-EQ configuration) for

both JBOSS and Apache dataset. This figure is showing that for the SIM-EQ (the weight

for all the four predictor variables being equal or 0.25 each) experimental setting, the median

value for the SCORE metric is 99.03% for the JBOSS dataset (refer to Figure 7.3). This

indicates that for 50% of the bug reports in the JBOSS dataset, the proposed solution was

able to prune the 99.03% search space (which means that the bug fixer needs to investigate

about 1% of the source files to localize the bug). The median value for the SCORE metric

(SIM-EQ experimental setting) is 93.70% for the APACHE GERONIMO project.

We used Average Precision as another metric to evaluate effectiveness of our system.

The histograms in Figure 7.4a and 7.4b are displaying the distribution of average precision

values for the set of bug reports in the JBOSS and APACHE evaluation dataset respectively.

The average precision value is computed at all recall levels (rank at which each relevant

document is retrieved). Consider a situation where a bug report modifies three files. Assume

that the search result rank for each of the files are: 5, 10 and 30 respectively. The average

precision (at each recall point) in this case will be: [1/5 + 2/10 + 3/30]/3 = 0.167. We

have used non-normalized similarity function and SIM-EQ configuration to calculate average

precision in figure 7.4a and 7.4b . The X-axis in figure 7.4a and 7.4b denotes the range (0.3

means from 0.2 to 0.3). Figure 7.4a reveals that for 16.16% of the bug reports in the JBOSS

dataset, the average precision value is between 0.9 to 1.0. Figure 7.4b shows that for 10.67%

of the bug reports in the APACHE dataset, the average precision value is between 0.9 to 1.0.

Figure 7.5 presents another complementary perspective to examine the effectiveness of

the proposed bug localization method. Figure 7.5 displays a histogram in which the X-axis

represents document rank 1 to 5 (in the search results) and the Y-axis represents percentage

of bug reports in the JBOSS and APACHE dataset. We observed that the percentage of

bug reports in the JBOSS and APACHE dataset in which at-least one of the modified file(s)

is retrieved as rank 1 is 40% and 26% respectively. This shows that there is a significant

(above 25%) percentage of bug reports for which the solution was able to retrieve at-least

one of the files in the impact-set as the first search result (rank 1).

CHAPTER 7. EXPERIMENTAL RESULTS 26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

JBOSS DataSet APACHE DataSet

S
C

O
R

E
 (

0
-1

0
0
%

)

Similarity Function (not normalized) with Weights=0.25 for each Pair [W(T-F), W(T-P), W(D-F), W(D-P)]

Performance evaluation data using SCORE metrics for the proposed model for JBOSS and APACHE dataset

Min: 0.08

Q1: 90.24

Median:99.03

Q3: 99.93

Max: 99.98

Min: 0.43

Q1: 61.30

Median:93.70

Q3: 99.32

Max: 99.97
Quartiles

Median

Figure 7.3: A box-and-whisker diagram displaying minimum, lower quartile (Q1), median
(Q2), upper quartile (Q3), and maximum SCORE values for the proposed IR with equal
weights given to each tuning parameter (similarity function is not normalized) [JBOSS and
APACHE Dataset]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

.025 .05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
e
rc

e
n
ta

g
e
 o

f
R

e
p
o
rt

s

MAP Range

37.60

10.19

6.50 7.73

4.74 3.86

0.70

10.19

1.75
0.17 0.35

16.16

MAP Distribution

(a) JBOSS Dataset

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

.025 .05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
e
rc

e
n
ta

g
e
 o

f
R

e
p
o
rt

s

MAP Range

42.38

8.47
10.51

9.57

5.33
4.23 3.61 3.45

0.94 0.47 0.31

10.67

MAP Distribution

(b) Apache Dataset

Figure 7.4: Distribution of average precision values for the set of bug reports in the JBOSS
and APACHE evaluation dataset. The average precision value is computed at all recall levels
(ranks at which each relevant document is retrieved).

CHAPTER 7. EXPERIMENTAL RESULTS 27

 0

 10

 20

 30

 40

 50

 60

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

P
e

rc
e
n

ta
g
e

 o
f

R
e
p

o
rt

s

[Jboss]
[Apache]

Figure 7.5: Percentage of bug reports in the JBOSS and APACHE dataset in which at-least
one of the modified file(s) is retrieved as Rank 1-5

7.3 Normalization Effect

Normalization is considered as an important pre-processing step in most of the information

retrieval applications. Fry et. al mentioned in their work that normalization in bug local-

ization task may result in loss of precision, and hence not required. In our work we tried

to throw light on this thought by comparing precision achieved by normalized and non-

normalized settings. Figure 7.6a and 7.6b shows the precision-recall curve (for predefined

values of Nr or Top K rank) for the JBOSS and Apache dataset respectively. The precision

values in Figure 7.4a and 7.4b is computed at each recall point (the average precision value

is reported) whereas in Figure 7.6a and 7.6b the precision and recall values are computed for

pre-defined values of Top K (where K = 10, 25, 50, 100 and 250). For example, if 2 out of

5 relevant documents (impacted source code files) are retrieved amongst the Top 50 search

results (Nr=50), then the precision at Nr=50 is 2/50 = 0.04 and the recall is 2/5 = 0.4.

We calculated the precision and recall value for each bug report at all the five pre-defined

Nr values (for both JBOSS and Apache dataset, normalized and not-normalized setting)

and then computed the average precision and recall for various Nr values (SIM-EQ setting).

As illustrated in Figure 7.6a and 7.6b, the observed trend is that the recall value increases

as Nr increases and the average precision declines. Figure 7.6a and 7.6b reveals that the

effectiveness of the system (in terms of precision and recall) is more in length normalized

settings as compared to non-normalized settings.

CHAPTER 7. EXPERIMENTAL RESULTS 28

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

re
c
is

io
n

Average Recall

(0.387, 0.060)

(0.467, 0.030)

(0.550, 0.018)

(0.626, 0.011)

(0.728, 0.005)

(0.482, 0.076)

(0.549, 0.036)

(0.606, 0.021)

(0.670, 0.012)

(0.758, 0.005)

Precision Recall Curve [Not Normalized]
Precision Recall Curve [Normalized]

(a) JBOSS Dataset

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e
ra

g
e

 P
re

c
is

io
n

Average Recall

(0.286,0.066)

(0.391,0.040)

(0.473,0.026)

(0.560,0.017)

(0.695, 0.010)

(0.340, 0.076)

(0.448, 0.045)

(0.525, 0.029)

(0.627, 0.019)

(0.754, 0.010)

Precision Recall Curve [Not Normalized]
Precision Recall Curve [Normalized]

(b) Apache Dataset

Figure 7.6: Precision-Recall Curve (average precision at various average recall values) for
the normalized as well as not-normalized setting

CHAPTER 7. EXPERIMENTAL RESULTS 29

7.4 Scatter Plots

Figure 7.6a and 7.6b are plots of the average values of precision and recall for entire bug

dataset whereas figure 7.7 and 7.8 are scatter plots in which each point is representing

precision and recall value for a bug report. Precision and recall values are calculated for

fixed Nr values for normalized and SIM-EQ configuration. Figure 7.7 and 7.8 are plotted for

Nr=(10,100) and Nr=(10,25,50,100,250) respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Precision and Recall Correlation

(Nr=10)
(Nr=100)

(a) JBOSS Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Precision and Recall Correlation

(Nr=10)
(Nr=100)

(b) Apache Dataset

Figure 7.7: Scatter plot displaying the precision and recall value for each bug report (fixed
and pre-defined values of Nr=10 and Nr=100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Precision and Recall Correlation

(Nr=10)
(Nr=25)
(Nr=50)

(Nr=100)
(Nr=250)

(a) JBOSS Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Precision and Recall Correlation

(Nr=10)
(Nr=25)
(Nr=50)

(Nr=100)
(Nr=250)

(b) Apache Dataset

Figure 7.8: Scatter plot displaying the precision and recall value for each bug report (fixed
and pre-defined values of Nr=10,25,50,100,250)

Chapter 8

Related Work

Automated solutions for the software engineering task of bug localization using information

retrieval models (static analysis based technique in contrast to dynamic analysis which re-

quires program execution) is an area that has attracted several researcher’s attention. Rao

et al. performed a survey and comparison of few IR based models for bug localization. In

their study they found that simple text models such as Unigram Model (UM) and Vector

Space Model (VSM) were found to be more effective compared to more complex models

such as LDA. We reviewed traditional techniques and presented some of the main points

relevant to this work in Table 8.1. As displayed in Table 8.1, we arranged previous work

in a chronological order and mentioned the key features of previous methods. We studied

previous methods for IR based bug localization in terms of the IR model, granularity level,

experimental dataset (case study) and the bug reports and source code elements used for

comparisons. For example, Antoniol et al. performed experiments on LEDA C++ Class

library and work at Class level granularity whereas Lukins et al. performed experiments on

Rhino, Eclipse and Mozilla dataset and worked at Method level granularity (refer to Table

8.1). Table 8.1 is also presenting some work on concept location (or feature location), which

is closely related to bug localization task. For rest of the section we focused our discussion

only on bug localization techniques.

Table 8.2 is showing comparison of some bug localization techniques([1, 2, 4, 13]) which

are closely related to proposed solution. Chen et al. proposed a social network based

technique between co-cited bug locations to predict faults. They used PageRank1 to calculate

rank of bug locations. Location of a new bug is predicted using similar bug reports and

their fixed locations. This model is able to evolve over a period of time using self-learning

mechanism (using new bug reports and their bug locations). They reported accuracy

1http://www.google.com/about/corporate/company/tech.html

30

http://www.google.com/about/corporate/company/tech.html

CHAPTER 8. RELATED WORK 31

Study Bug Reports Source Code Granula-
rity

IR Model Case Study

1 Antoniol’
2000 [9]

Maintenance re-
quests (excerpt
from the change log
files)

source code or
higher level doc-
uments

Class
level

vector space
model and
stochastic
language
model

LEDA C++
Class library

2 Canfora’
2005 [10]

Title & description
of new and past
change requests

Revision com-
ments

File Level Probabilistic
model de-
scribed in
[Jones, 2000]

Mozilla Fire-
fox and KDE
(kcalc, kpdf,
kspread, kof-
fice)

3 Marcus’
2005 [11]

Specific keywords
in change requests

Source code Class
level

latent se-
mantic
indexing,
dependency
search

AOI 3D
modeling
studio,
Doxygen

4 Poshyva-
nyk’ 2006
[14]

Bug Description Source code ele-
ments

Class
Level and
Method
Level

SBP Rank-
ing and LSI
Based

Mozilla SBP
Ranking and
LSI Based

5 Chen’2008
[1]

Meta Information
and Description

Bug report and
source file links

—– PageRank,
Vector Space
Model

SVN,
AgroUML

6 Lukins’
2008 [2]

Manual extraction
of keywords from
Title and Descrip-
tion

Comments,
Identifiers and
String-Literals

Method
Level

LDA Based Rhino,
Eclipse and
Mozilla

7 Fry’ 2010
[4]

Title, Description,
Stack Trace, Oper-
ating System

Class Name,
Method Names,
Method Bodies,
Comments,
Literals

File Level Word-based
cosine simi-
larity vector
comparison

Eclipse,
Mozilla,
OpenOffice

8 Moin’
2010 [13]

Title & description Source File Hi-
erarchy

Revision
Path
Level

SVM Classi-
fier

’UI’ compo-
nent Eclipse
Project

9 Nichols’
2010 [12]

Bug description of
old and new bugs

Identifier
names, string
literals

Method
Level

LSI Based Rhino

Table 8.1: Previous approaches for bug localization using static analysis and information
retrieval models. These papers are listed in a chronological order and the traditional methods
are classified into various dimensions.

CHAPTER 8. RELATED WORK 32

of 40.9% and 15-20% on SVN and AgroUML projects respectively. Fry et al. proposed a

bug localization technique which leverages similarity between textual features of bug report

and source code. They did comprehensive analysis of 28 feature pairs between bug report

and source code and identified 12 most suited pairs for bug localization task, using ANOVA

technique.2 Bug report title and method bodies (in source files) was found to be most

effective pair for bug localization. Experiments on three projects showed that their technique

is effective and able to prune nearly 88% of search space. Lukins et al.experiment showed

that LDA outperforms LSI based bug localization tecnique. In their work comments, string

literals and other source code elements was used to build LDA module. Manual queries were

generated from bug report which were given as an input to LDA model to generate ranked

files as output. Moin et al. proposed a bug localization technique based on Support Vector

Machine (SVM) classifier. Their model used title and description of bug report as feature

and path of the file modified as class label for classifier training. First time they used file

path level granularity to localize bug which can be useful in some applications such as bug

triage [13]. Their system was able to achieve 98% accuracy(precision and recall). All these

techniques are based on textual similarity between bug report and source code files, which

shows that textual features are useful in bug localization.

Study Metric Used Project Dataset Size
(No. of Bug
Reports)

Performance

1 Chen’2008 [1] Hit accuracy
SVN 211 40.9%
AgroUML 1024 15%-20%

2 Lukins’2008 [2] Rank of re-
trieved files

Rhino 35 77%

3 Fry’2010 [4] SCORE
OpenOffice 1040 67.91%
Eclipse 1272 86.9%
Mozilla 3033 92.15%

4 Moin’2010 [13] Accuracy ’UI’ com-
ponent of
Eclipse
project

2000(approx.) 98.51%

Table 8.2: Performance of some closely related bug localization techniques.

2http://www.experiment-resources.com/anova-test.html

http://www.experiment-resources.com/anova-test.html

Chapter 9

Conclusions

We conclude that degree of textual similarity between title and description of bug reports

with source code file-names and directory paths can be used for the task of bug localization.

Experimental evidences demonstrate that low-level character N-gram based textual features

are effective and have some unique advantages (robustness towards noisy text, natural lan-

guage independence, ability to match concepts present in programming languages and string

literals) in comparison to world-level features.

We performed experiments on publicly available real-world dataset from two popular

open-source projects (JBOSS and Apache) and investigated the overall effectiveness of the

proposed model. In addition we investigated impact of length normalization and effectiveness

of each of the four predictor variables (title-filename, description-filename, title-path, and

description-path). Empirical evidences revealed that length normalization improves average

precision and recall and description has more predictor power than title. The results (mea-

sured in terms of SCORE and MAP metrics) of static analysis technique for the problem of

fault localization using character N-gram based information retrieval model are encouraging.

Experimental results revealed that the median value for the SCORE metric for JBOSS and

Apache dataset is 99.03% and 93.70% respectively. We observed that for 16.16% of the bug

reports in the JBOSS dataset and for 10.67% of the bug reports in the Apache dataset, the

average precision value (computed at all recall levels) is between 0.9 and 1.0. We observed

that the percentage of bug reports in the JBOSS and APACHE dataset in which at-least

one of the modified file(s) is retrieved as rank 1 is 40% and 26% respectively.

33

Appendix A

Dataset Version details

A.1 Selected Source-code Versions and Distribution of

Issue Reports among them.

A.1.1 JBOSS Dataset

S.No. Version No.of Java

Files

No. of Issues Reported(Out of

576)

1 JBossAS-4.0.2RC1 6212 10

2 JBossAS-4.0.3RC1 7977 6

3 JBossAS-4.0.3RC2 8080 8

4 JBossAS-4.0.0 Final 6398 27

5 JBossAS-4.0.1 Final 6729 72

6 JBossAS-4.0.1 SP1 6755 27

7 JBossAS-4.0.2 Final 6307 53

8 JBossAS-4.0.3 Final 7996 24

9 JBossAS-4.0.3 SP1 7999 69

10 JBossAS-4.0.4.CR2 9042 12

11 JBossAS-4.0.4.GA 9202 65

12 JBossAS-4.0.4RC1 8597 19

13 JBossAS-4.0.5.CR1 8490 12

14 JBossAS-4.0.5.GA 8730 48

15 JBossAS-4.2.0.CR1 8201 5

16 JBossAS-4.2.0.CR2 8315 6

17 JBossAS-4.2.0.GA 8322 17

18 JBossAS-4.2.1.GA 8366 16

34

APPENDIX A. DATASET VERSION DETAILS 35

19 JBossAS-4.2.2.GA 8524 42

20 JBossAS-4.2.3.GA 8712 38

A.1.2 Apache(Geronimo Project) Dataset

S.No. Version No.of Java

Files

No. of Issues Reported(Out of

736)

1 1.0 1911 51

2 1.0-M1 1428 4

3 1.0-M2 1730 19

4 1.0-M3 1877 54

5 1.0-M4 1850 31

6 1.0-M5 2318 54

7 1.1 1711 81

8 1.1.1 1718 13

9 1.2 1923 58

10 2.0 2487 25

11 2.0-M1 2486 7

12 2.0-M2 2492 8

13 2.0-M3 1985 17

14 2.0-M5 2187 37

15 2.0-M6 2472 25

16 2.0.1 2486 16

17 2.0.2 2552 24

18 2.1 2563 48

19 2.1.1 2576 20

20 2.1.2 2598 5

21 2.1.3 2630 11

22 2.1.4 2616 24

23 2.1.5 2641 8

24 2.1.6 2641 5

25 2.1.7 2655 2

26 2.2 3149 68

27 2.2.1 3182 10

28 3.0-M1 2598 11

References

[1] Ing-Xiang Chen, Cheng-Zen Yang, Ting-Kun Lu, and Hojun Jaygarl. Implicit Social

Network Model for Predicting and Tracking the Location of Faults. 32nd Annual IEEE

International Computer Software and Applications Conference (COMPSAC 2008): 136-

143,Turku, Finland, Jul. 28 -Aug. 1, 2008.

[2] Lukins Stacy K., Kraft Nicholas A., and Etzkorn Letha H. Source Code Retrieval for Bug

Localization Using Latent Dirichlet Allocation. Proceedings of the 2008 15th Working

Conference on Reverse Engineering, 155–164, 2008.

[3] Shivani Rao and Avinash Kak. Retrieval from Software Libraries for Bug Localization:

A Comparative Study of Generic and Composite Text Models. 8th working conference

on Mining software repositories (MSR), 2011.

[4] Fry Zachary P. Fault Localization Using Textual Similarities. MCS Thesis, University

of Virginia, 2012.

[5] Adrian Bachmann and Abraham Bernstein. Data Retrieval, Processing and Linking for

Software Process Data Analysis. Technical report, University of Zurich, Department of

Informatics, 2009.

[6] Cleve Holger, Andreas Zeller. Locating causes of program failures. Proceedings of the

27th international conference on Software engineering(ICSE ’05), 342–351, 2005.

[7] Jones James A., Mary Jean Harrold., Empirical evaluation of the tarantula automatic

fault-localization technique. Proceedings of the 20th IEEE/ACM international Confer-

ence on Automated software engineering(ASE ’05), 273–282, 2005.

[8] Voorhees Ellen M., Variations in relevance judgments and the measurement of re-

trieval effectiveness. Proceedings of the 21st annual international ACM SIGIR con-

ference on Research and development in information retrieval(SIGIR ’98), Melbourne,

Australia,315–323, 1998.

36

REFERENCES 37

[9] Antoniol G., Canfora G., Casazza G., de Lucia A. Identifying the Starting Impact Set

of a Maintenance Request: A Case Study, Proceedings of the Conference on Software

Maintenance and Reengineering(CSMR ’00), 227, 2000.

[10] Canfora Gerardo and Cerulo Luigi. Impact Analysis by Mining Software and Change

Request Repositories, Proceedings of the 11th IEEE International Software Metrics

Symposium, 29, 2005.

[11] Marcus Andrian, Rajlich Vaclav, Buchta Joseph, Petrenko Maksym, and Sergeyev An-

drey. Static Techniques for Concept Location in Object-Oriented Code, Proceedings of

the 13th International Workshop on Program Comprehension, 33–42, 2005.

[12] Nichols Brent D., Augmented bug localization using past bug information. Proceedings

of the 48th Annual Southeast Regional Conference(ACM SE ’10), 61:1–61:6, 2010.

[13] Moin Amir and Khansari Mohammad. Bug Localization Using Revision Log Analysis

and Open Bug Repository Text Categorization. Open Source Software: New Hori-

zons,IFIP Advances in Information and Communication Technology, Agerfalk Par,

Boldyreff Cornelia, Gonzalez-Barahona, Jesus, Madey Gregory, Noll John, Springer

Boston, 188-199,319, 2010.

[14] Poshyvanyk Denys, Marcus Andrian, Rajlich Vaclav, Gueheneuc Yann-Gael, Antoniol,

Giuliano. Combining Probabilistic Ranking and Latent Semantic Indexing for Feature

Identification. Proceedings of the 14th IEEE International Conference on Program Com-

prehension, 137–148, 2006.

[15] Pankaj Jalote. An Integrated Approach to Software Engineering. Third Edition, Narosa

Publishing House, 2005.

[16] Bennat P. Lientz AND E. Buton Swanson. Software Maintenance Management: A Study

of the Maintenance of Computer Application Software in 487 Data Processing Organi-

zations. Addison-Wesley, Reading, MA, 1980.

[17] Anvik John. Automating bug report assignment. Proceedings of the 28th international

conference on Software engineering (ICSE ’06), Shanghai, China, 937–940, 2006.

[18] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight bug localization

with AMPLE. Proceedings of the sixth international symposium on Automated analysis-

driven debugging (AADEBUG’05), Monterey, California, USA, 99–104, 2005.

[19] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault Localization

using Execution Slices and Dataflow Tests. Proceedings Sixth International Symposium

on Software Reliability Engineering, Toulouse, France, 143–151, 1995.

REFERENCES 38

[20] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39:92–106,

New York, NY, USA, 2004.

[21] Bug Life Cycle & Guidelines, http://www.exforsys.com/tutorials/testing/bug-life-cycle-

guidelines.html.

[22] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? Proceedings

of the 28th international conference on Software engineering (ICSE ’06), Shanghai,

China, 361–370, 2006.

[23] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schtze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[24] Joachim Wegener, Klaus Grimm, Matthias Grochtmann, Harmen Sthamer, and Bryan

Jones, Systematic testing of real-time systems. In Proceedings of the 4th European

Conference on Software Testing, Analysis and Review (EuroSTAR 1996), Amsterdam,

Netherlands, 1996.

[25] Kai-hui Chang, V. Bertacco, and I. L. Markov. Simulation-based bug trace minimiza-

tion with BMC-based refinement. Proceedings of the 2005 IEEE/ACM International

conference on Computer-aided design (ICCAD ’05), San Jose, CA, 1045–1051, 2005.

	Acknowledgements
	Abstract
	Introduction
	Background
	Bug Life Cycle
	Information Retrieval Model for Bug Localization

	Character N-gram Model
	Solution Approach
	Feature extraction
	Similarity Function
	Rank Generation

	Performance and Evaluation Metrics
	SCORE
	MAP

	Experimental Dataset
	Experimental Results
	Predictive Power of Each Predictor Variable
	Effectiveness of Character N-gram Model
	Normalization Effect
	Scatter Plots

	Related Work
	Conclusions
	Dataset Version details
	Selected Source-code Versions and Distribution of Issue Reports among them.
	JBOSS Dataset
	Apache(Geronimo Project) Dataset

	References

