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Abstract

Each Android application (app) runs in its own virtual machine (VM), with every VM allocated

a limited heap size for creating new objects. The heap size is scarce and device dependent. The

more heap space an app uses, the more work the garbage collector (GC) would have; the more

work the GC has, the bigger is the pause time for collection of un-referenced objects. To avoid

frequent garbage collection, the objects should be allocated wisely. In this work, we propose

a tool called SOS to help the developers to control and reuse memory allocated to objects on

the heap. In this work, we target objects allocated in loops and identify them by leveraging

static program analysis techniques. With the intention to reuse the heap space allocated to these

objects, we further perform program transformation. As a case study, we take Android apps and

manifest the benefits that SOS can provide in terms of reduction in pause times and reduction in

heap space used. We show the trends in pause times, number of GC invocations and heap space

freed, as a function of number of temporary objects.
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Chapter 1

Introduction

1.1 Background

A key feature of modern smartphone platforms is the availability of centralized app stores like

Google Play, Apple’s App Store and Windows Phone Store, which provide the consumers the

convenience of downloading any app at any time from anywhere. Google Play alone stocked about

1.3 million applications by the end of September, 2014 [6]. Undoubtedly, over time, Android has

emerged as the most pervasive platform.

Android apps acquire coarse permissions to access user’s sensitive data or to get control of various

phone components, such as GPS, SD card, camera, etc. These permissions restrict the app to

use only a limited number of resources on the phone. This gives the user a sense of assurance

that only those resources that are requested will be used. But amidst all these permissions, the

permission to access the Random Access Memory (RAM) of the device is granted by default.

Even though every app has a quota of heap allocated to it, there is nothing that prevents an app

from using this allotted quota inefficiently, and just like work expands to fill the available time

(Parkinson’s Law), programs expand to fill the available memory.

A vital component of the Android software stack is the Dalvik VM (DVM), which is a process

virtual machine that provides platform-independent programming environment for apps. When

a system boots, the boot loader loads the linux kernel into the memory. The kernel runs the
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init program which is the parent process of all the processes. The init process in turn starts

the Zygote process other daemon processes. The Zygote creates a parent Dalvik process which

spawns DVM instances, one for every app that wants to start. The Zygote also initializes a BSD

read socket for listening to DVM instance requests. Figure 1.1 shows this process. The solid

lines denote the flow and the dashed lines denote the system calls.

Figure 1.1: Android Bootup

The RAM is a precious resource for any computing device, and it becomes invaluable when one

considers resource constrained devices like mobile phones. Although, there is a Dalvik garbage

collector to collect the objects that are no more referenced, the developers should be careful

of not introducing memory leaks so that the collector can collect these objects. To maintain a

functional multi-tasking environment, Android sets a hard limit on the heap size for each app.

The exact heap size limit varies among devices based on the overall availability of RAM. If the

app reaches the heap capacity and is unable to reclaim memory allocated to objects, it will throw

an OutOfMemoryError [15].

Android does not offer swap space. Any memory that is modified remains in the RAM and is not

swapped out. Thus, the only way to release memory is to release references to the objects, so that

all unreachable objects can then be collected by the GC. The GC’s execution, however, comes

with the cost of pausing the app to collect objects. Although the introduction of Concurrent

Garbage Collection [4] has reduced the stoppage time, jitters are still prevelant among apps.
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Humans are acutely sensitive to jitters and can even notice the smallest of them. Moreover, the

more often the GC is invoked, the more battery it will drain. Hence, one should be cautious while

allocating objects in the first place and reduce dependence on Dalvik GC to replenish memory.

In addition, the Dalvik heap does not defragment memory to remove the holes. It shrinks only

when there is unused space at the end of the heap. The physical memory used by the heap can

shrink but only after GC has occured and the unused pages are returned by Dalvik using the

madvise system call. This makes reclaiming memory from small allocations inefficient because

the pages used by small allocations may still be shared with other allocations that have not yet

been freed.

Allocating more than what is required has another drawback. When the user switches between

apps, Android keeps the processes that are not in the foreground in an LRU (Least Recently

Used) cache. If the cached process retains its allocated memory, it restrains the performance of

the system by holding on to valuable memory which could have been used by the foreground

processes. Hence, in a situation where the apps in the foreground require more space, a process

on the LRU gets killed based on the least recently used policy and the amount of memory the

object was holding is freed. Thus, in order to avoid an app from getting picked for termination

one should pay heed to smart object allocation.

1.2 Android Activity Lifecycle

Activities are the most frequently used component in Android applications. An Activity represents

a single screen with a user interface. Since we target Android applications in this work for

performing optimizations, it becomes imperative to know about the lifecycle of Android activities.

Unlike Java, where applications have a main() method, Android sports callback methods that

move an activity from one state to another in its lifecycle. When a user navigates in to, out of

or back to an app, the Activity instance of the app transitions between different states. These

states are depicted in Figure 1.2.

The different states can be shown as a step-pyramid where each state of the activity lifecycle

is a separate step on the pyramid. As the activity gets initiated the system calls a sequence
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Figure 1.2: Activity Lifecycle Pyramid

of callback methods to move the activity one step towards the top of the pyramid. When an

activity is at the top, it is said to be in the foreground and the user can interact with it.

As the user starts to leave the activity, the system calls a sequence of callback methods that

bring the activity down the pyramid. The activity does not need to come down to the lowest

level of the pyramid to start again. It can move back to the ‘resumed’ state from a ‘paused’ or a

‘stopped’ state. When the activity is in the ‘stopped’ state it is completely hidden from the user

and the user cannot interact with it in any way. The activity instance and all its information is

stored in a Bundle and retained, however, the app cannot execute any code at this point of time.

In the ‘paused’ state, the activity is obscured by another activity. The other activity might be

semi-transparent or it might cover a part of the screen. The paused activity can neither execute

any code nor get a user input at this point in its lifetime. The other states shown in the Figure

are transient and the activity quickly moves through them by calling the callback methods.

Apart from Activities, there are three other components, namely, Services, Content Providers

and Broadcast Receivers. A service is component that works in the background to perform long

running tasks. Services also have callbacks which move a service from one state to another.

However, unlike Activites, they do not have a user interface. Content Providers are used to store

and share app data. They provide the functionality of a database. Finally, broadcast receivers

respond to system-wide broadcast messages and can act on them by triggering some tasks. Apps

can even initiate own broadcast messages.
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A unique feature of Android apps is that a component of one app can start a component of

another app. Therefore unlike other apps, Android apps have multiple entry points.

1.3 Android Best Practices

Google has listed a number of best practices for managing memory on their website [14]. Some

of them are as follows.

(a) Services should be used sparingly and should be stopped when its work is complete. The

process of a service is retained on the RAM and thus reduces the number of processes that

can be kept on the LRU cache, this impacts the app switching time and could even cause

thrashing.

(b) They also recommend freeing resources held by an app when it goes in the background. To

save heap space, the bitmaps loaded in memory should be scaled down to an appropriate

resolution that the device supports.

(c) Android discourages excessive use of code abstraction as it requires more code to be mapped

to the memory.

(d) They also disapprove use of dependency injection frameworks which again burdens the RAM

by scanning the code for annotations [21].

Even if one follows the aforementioned best practices there is still a chance that the developers

can introduce memory bugs or memory leaks. A developer must be wary of the allocations made

by the app and must take steps to minimize the memory used. Google has mentioned some

useful performance tips at [13]. These tips are based on the following two principles: 1) Avoid

doing work that you do not need to do, and 2) Do not allocate memory if it can be avoided. We

enumerate some of the tips next.

(a) Prefer use of static methods over virtual. This makes invocation 15% to 20% faster.
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(b) Use of static final for constants avoids a field lookup and uses a relatively inexpensive “string

constant” instruction for accessing Strings and can access integer variables directly from the

static field initializers of the dex file.

(c) Avoiding use of getters and setters saves the overhead incurred in making virtual method

calls, instead one should directly access fields.

(d) Use enhanced for loops whenever possible.

(e) Avoid use of floating point variables as they are 2 times slower than ints.

(f) Finally, avoid creating unnecessary objects, for instance, use StringBuffer to avoid creation

of intermediate String objects which are immutable; and slice multi-dimensional arrays into

parallel one dimensional arrays.

In the current discourse, we extend the last guideline by allowing the objects to be reused.

1.4 Our Contribution

Most of the time, garbage collection gets enforced due to the creation of tons of small and

short lived objects. Neither Dalvik garbage collector nor Dalvik virtual machine is capable of

optimizing such repetitive allocations by itself. The creation of such objects in performance

critical paths of an app can cause severe bottlenecks. This is because firstly, such objects could

be holding onto heap space even though these objects are not needed anymore, i.e. they are

waiting to be collected, and secondly, they increase the overhead on the GC.

In general, the Object Oriented Programming (OOP) paradigm encourages programmers to create

objects without having apprehensions about the cost that is incurred. However, such a practice

can be devastating for Android apps and can degrade the performance and scalability. Android

apps, in contrast to other OOP language based apps, advocate creating objects only when it is

inevitable. Therefore, in this work, we assist the developers and the app users to transform the

memory intensive code to a light-weight version.
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We leverage the power of a static Java bytecode analysis framework called Soot [3] to perform

a Summary based Interprocedural Escape Analysis, [1] which identifies objects allocated inside

loops that never escape the scope of the loop. A “summary” is an abstract element associated

with each method that models the effect of calling the method. In a summary-based analysis,

the summary of a method can be computed using the summary of all the methods it calls. A

summary does not depend upon the context in which a method is called.

The inter-procedural analysis interacts with an intra-procedural analysis that is able to compute

the summary of one method, given the summary of all the method it calls, thus, the inter-

procedural analysis calls the intra-procedural analysis in a reverse topological order of method

dependencies. The intra-procedural analysis works by maintaining an abstract value that

represents the ‘effect of the method’ from its entry point up to the current point. At the entry

point, this value is empty. The summary of the method is then the merge of the abstract values

at all its return points.

After identification of hoistable sites using the summary based interprocedural analysis, we

transform the code to move the allocation statements out of the loop, and hence facilitate

reuse of space allocated to the objects. Ofcourse, the objects would have to be re-initialized

appropriately before entering the loop in the subsequent iterations. We use customized reset

methods, instrumented in the application; these act like constructors for the subsequent iterations

of the loop.

As a case study, we take one third party and one custom made Android app and show a detailed

evaluation of the benefits that SOS can provide in terms of reduction in pause time and reduction

in heap space utilized by the target objects. We also show the trends in the pause time, number

of GC invocations and heap space freed due to GC as the number of objects created increases.

SOS shows promising early set of results on these apps. In a nutshell, the contributions of our

work are:

1. Identification of object allocation sites that can be hoisted using a context sensitive, flow

sensitive, summary based interprocedural escape analysis.
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2. Automated transformation of code to hoist identified allocation statements outside the

loop and reset class fields appropriately for reuse.

3. Evaluation on one third party and one custom Android app to validate our claim that such

transformations can yield dramatic reductions in heap space usage and pause times.

4. Showing trends in the number of GC invocations, pause times and memory freed as a

function of the number of objects created.

The purpose of our work is not to hack the app; the modified APK would need to be re-signed

before installation anyway. The work is also not aimed to gain monetary benefits, rather it is

targeted to show that such optimizations are possible by leveraging static analysis and code

instrumentation, without the need for source code. There has been a lot of work on optimizing

memory utilization for Java apps. However, there has been none for automatically optimizing

code of Android apps for efficient memory utilization. In this context, our work elicits a novel

approach to detect and deal with memory related issues and equips the developers with a tool

that can assist in developing memory efficient apps.

In Chapter 2, we discuss the related works that served as a motivation for pursuing this work.

Chapter 3 describes the architecture of SOS. We explain our technique for optimizing memory

usage in Chapter 4. In Chapter 5, we evaluate SOS on two Android apps and highlight its

benefits. We also show the trends in the garbage collection as the number of objects allocated

increases. Then we discuss the strengths and weaknesses of our tool in Chapter 6 and mention

the ongoing work in Chapter 7.
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Chapter 2

Related Work

2.1 Related Work

In our previous work [5], we optimized apps for mitigating various performance issues related to

energy consumption, data consumption and cost to the users. We leveraged static analysis and

instrumentation techniques to equip the ‘consumers’ of an app with the power of controlling the

way in which the app could use the granted permissions. Similar to our previous work, we target

another performance issue here - optimal use of heap space. However, in contrast to it, this work

depends heavily on data flow analysis and can act as a support system for the developers too.

Java objects are created and stored on the heap. On the other hand, local variables of a method

are added on the stack after encapsulation in a stack frame. Memory allocation and deallocation

on the stack is cheaper and easier, however, a developer cannot decide which objects to allocate

on the stack. In the seminal work, Escape Analysis for Java [9], the authors propose and

implement an algorithm for Escape analysis to infer whether an object can be allocated on the

stack. Nowadays, this analysis is performed by the JVM as a standard practice.

In their work [22], Sălcianu and Rinard present a purity and side-effect analysis by leveraging

pointer analysis [23] and escape analysis [1]. A ‘Pure function’ is that which does not modify the

state of the program when it is executed. Our analysis is similar to a Purity analysis, however,
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here we are concerned only about leveraging Escape analysis to target loops rather than entire

methods.

Xu et al. [24] try to detect loop invariant data structures using Soot. They focus on data models

and try to identify logical data structures that can be hoisted out of the loop. In contrast to our

work, they do not transform the code, instead they restrict themselves to report the hoistability of

a data structure based on a dependence-based hoistability metric. Our analysis, on the other hand,

tracks object creation sites, data flows, and assignments to locals and fields. This information

enables our analysis to identify objects allocated within a loop that do not escape its scope and

hence allow their allocated memory to be re-initialised and reused. We go a step ahead and

perform the transformation to reuse object space.

Bhattacharya et al. [8] target Java applications to reuse temporary objects inside loops. They

perform source to source transformations and leverage dynamic analysis to prioritize sites that

are exercised more than the others. We, in contrast, are targetting Android apps and their

inherent multiple entry point and event driven nature renders the dynamic analysis meaningless

because user behavior can vary widely from one user to another. Thus, if the apps are lengthy

and there arises a need to prioritize optimizable sites, we leverage static analysis and use certain

heuristics to prioritize the hoistable sites. In contrast to their work, the transformations we make

are at the bytecode level, this becomes important because source code may not be available

all the time. Moreover, mobile apps run in a constrained environment on phones with limited

resources and providing a smooth UI experience becomes a challenge in itself. This puts more

pressure on the GC_CONCURRENT and GC_FOR_ALLOC. In this context, optimizing

Android apps for efficient memory usage has been and will remain an elusive problem.
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Chapter 3

SOS Architecture

3.1 Architecture

Figure 3.1: SOS Architecture

The architecture of SOS is shown in Figure 3.1. The developer or the user places a request (Step

1) by sending an APK to the server. The sent APK is then unpacked (Step 2) by SOS running

on the server into Dalvik bytecode (dex). The Dalvik bytecode is converted (Step 3) to Jimple

using Soot. SOS, then performs an interprocedural escape analysis in the ‘Transformation phase’

of Soot (Step 4). After the Transformation phase identifies the target constructs that can be

optimized, instrumentation is done to the Jimple code (Step 4). Finally, the Jimple code is

converted back to Dalvik bytecode (Step 5) and the dex file is packed along with other resources
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of the app into an APK. This optimized APK is re-signed and zipaligned [18] (Step 6) before

sending to the developer in Step 7.

SOS can accept both an APK (Application Package) or source code as input. One usage scenario

of SOS is to equip the developers so that they can use it to optimize their code. Other scenario

is that SOS can be used by app users. In the latter case, only the APK would be available. SOS

has been designed so that all the required information for the analysis can be collected in a single

pass over the code. This helps to speed up the analysis. Moreover, the instrumentation is done

carefully so that no side effects are introduced.

3.2 Why not AspectJ?

Soot [3] was used, vis-a-vis AspectJ, as the framework of choice. This design decision was taken

based on the following weaknesses of AspectJ:

(a) With AspectJ it is not possible to intercept assignment statements. This renders custom-

developed analysis infeasible.

(b) Using AspectJ, one can only go “around” a piece of code but cannot remove it from the

app’s binary permanently.

(c) Addition of an object allocation statement in the app’s binary would not be possible with

AspectJ.

These limitations of AspectJ diverted our attention to Soot. The work horse of SOS is Soot’s [3]

modification known as Dexpler [7], which takes an APK as input, unpacks it, finds the Dalvik

bytecode and converts it directly into Jimple. Jimple is an internal three address representation

of the code used by Soot and has many advantages. Unlike Dalvik bytecode, it has only fifteen

different kinds of statements. Unlike Java bytecode, it is not stack oriented, instead, it uses

variables and is closer to a high level language. Furthermore, it is free from the nested structures

that are usualy observed in a high level language. This makes Jimple a convenient representation

of the code to work with.
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Chapter 4

Our Approach

4.1 Overview

After extracting the Dalvik bytecode and converting it to Jimple, Soot’s Transformation phase

kicks in. In this phase, the application’s Jimple code is analyzed by our interprocedural summary

based escape analysis to detect target constructs of interest (i.e. object allocations inside loops

that do not escape the scope of the loop). In other words, this step identifies those object

allocation sites which can be hoisted out of a loop. The identification step is followed by a

suitable bytecode instrumentation to move the relevant Jimple statements out of the loop, and

at the same time, it ensures that no side-effects result. The instrumentation also adds code

to invoke constructor-like reset methods to re-initialize object fields. Next, the Optimization

phase optimizes the code and finally the Annotation phase performs Soot’s built-in analysis. The

resultant Jimple code is optimized for heap usage. This eventually leads to a better memory

management scheme that advocates reuse of objects.

The overall process comprises of three modules, namely Interprocedural Escape Analysis Module,

Hoistable Sites Identifier Module, and Bytecode Instrumentation Module. To illustrate the working

of the three modules we consider the following code snippet from our custom made app known

as SlideShow. The app is available at [2] for reference.
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Application Description

This app presents a slide show of 9 images by picking the images one at a time and displaying

them in an ImageView [16] based on the iterations of the loop. If the number of iterations is

greater than 9, then we take a modulo 9 to stay in the range of available images. We could have

added more images to avoid repetition but the aim here is to illustrate reuse of objects and a few

images were enough for the purpose. For every new image, a new class A object is created and

the image is encapsulated inside it in the img field. arr_i and arr_f are instance fields that

make class A objects heavier. The code excerpt given below has a few methods omitted from the

“MainActivity” class, so as to emphasize on the relevant portions of the app only.

1 class A{

2 int arr_i[] = new int[100000];

3 float arr_f[] = new float[100000];

4 int num; Bitmap img;

5 public A(){

6 num=10;

7 }

8 public String printNum(){

9 return ""+num;

10 }

11 }

12 class B{

13 private A a;

14 public String doSomething(A a, A aa){

15 this.a = a;

16 System.out.println(aa.num);

17 return a.printNum();

18 }

19 }

20 public class MainActivity extends Activity{

21 TextView tv ; ImageView iv;

22 protected void onCreate(Bundle savedInstanceState){

23 super.onCreate(savedInstanceState);
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24 setContentView(R.layout.activity_main);

25 iv = (ImageView) findViewById(R.id.imageView1);

26 tv = (TextView) findViewById(R.id.textView1);

27 final Button button = (Button) findViewById(R.id.btn_heap);

28 button.setOnClickListener(new View.OnClickListener(){

29 public void onClick(View v){

30 createObjects();

31 }

32 });

33 }

34 public void createObjects(){

35 A aObj;

36 B bObj = new B();

37 TypedArray imgs = getResources().obtainTypedArray( R.array.image_ids);

38 int i = 0;

39 while(i<10){

40 aObj = new A();

41 A aa = new A();

42 int resid = imgs.getResourceId(i%9, -1);

43 aa.img = decodeSampledBitmapFromResource( getResources(), resid, 100,100);

44 tv.setText(bObj.doSomething(aObj, aa));

45 new UpdateImages().execute(aa.img);

46 i++;}

47 }

48 //Remaining method/inner class definitions

49 }

Listing 4.1: Code snippet from SlideShow app

4.2 Modules

A detailed description about the functions of each of these modules is as follows:
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4.2.1 Interprocedural Escape Analysis Module (IEAM)

The process kicks off by generating a precise call graph of the target Android app by leveraging

the capabilities of FlowDroid [11]. FlowDroid models the complete lifecycle of Android and its

callback methods very precisely. Since Android apps do not have a single entry point (and focus

more on callbacks), FlowDroid generates a special dummy main method which emulates all the

possible flows and thus acts as an entry point for an app’s call graph.

Figure 4.1 shows a part (relevant for further discussion) of the generated call graph overlaid on a

CFG for SlideShow app. The dotted arrows represent the inter-procedural method invocations,

while the solid ones mark the order of execution within a method. The numbers mentioned

at the right end of each rectangular enclosure denote the order in which the corresponding

statement is encountered in the control flow. The dummyMainMethod() (not shown) generated

by FlowDroid calls the onCreate() method (not shown) of MainActivity which in turn invokes

the createObjects() method of the same class when the user clicks on the button having ID

btn_heap. The method createObject(), as evident from the figure, makes an interprocedural call

to doSomething() method of class B which further calls printNum() method of class A.

After the call graph generation, we perform a Summary-based Inter-procedural Escape Analysis

(SIEA) in order to identify those objects that escape the scope of a method. An object is said

to “escape” a method if the lifetime of that object is not restricted to the method in which

it is defined. In other words, if that object can be accessed from other methods within the

application, then it is said to have “escaped” the method where it is defined. SIEA is implemented

by extending the abstract class AbstractInterProceduralAnalysis defined in Soot API [3]. The

analysis requires that every method in a call graph be associated with a “summary”. A summary,

in our context, refers to a set of objects that escape the scope of a given method.

The key feature of our analysis is that the summary of a method can be computed using the

summaries of the callee methods. The Intra-procedural Escape Analysis (IEA) is responsible for

computing the summary of a particular method, given the summary of all the methods invoked

by it. Thus it becomes mandatory for the SIEA to call the IEA in a reverse topological order of
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Figure 4.1: Call graph overlaid on a CFG and Escape Analysis for SlideShow app

method dependencies so that the summaries of callee methods is known at the time of performing

IEA for the concerned method.

IEA itself is implemented as a backward flow analysis [19] which marks an object as “escaped”

if it is assigned to a static or an instance field of any class. The variables that are directly or

transitively assigned to already deemed escaped variables are also considered as to have escaped.

For every method call encountered during analysis, we fetch the summary for the callee method.

The formal arguments that escape from the callee method are mapped to the corresponding
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actual arguments. The identified arguments thus form the set of escaped variables and are added

to the In set for the call site. For each program point inside a method, IEA determines the

variables that must have escaped on some path from that point. We describe the set of escaped

variables at entry and exit of every statement Si in a method as a pair denoted by Ini and

Outi respectively. These sets are initialized and then propagated through the unit graph [3] in a

backward manner until a fixed point [19] is reached.

The flow functions for IEA are expressed as

Outi =

 φ if Si is exit node in CFG⋃
{Inj | Sj∈ succs(Si) otherwise

Ini = Outi ∪ Esci; where

Esci =



{y} | Si: x = y if x is static/instance field

{y} | Si: x = y if x has already escaped

{y} | Si: x.func(y) if x ∈ java.util.Collection is (alias of) field

{pi} | Si: x = f(p1,pi) if pi∈ summaryf

Here, Esci corresponds to the set of variables that have escaped due to the presence of code

statement Si in a method. If f is a method, then “summaryf” denotes the summary of method

f. The summary of a method will be the In set of the first statement of that method, i.e. the

escaping variables of that method. Figure 4.1 shows the corresponding Ini and Outi sets for

each statement Si in the call graph where i is the number at the extreme right of the rectangular

enclosures. Please note that our escape analysis framework also marks all those objects as

’escaped’ which are added/assigned to any field reference of type belonging to java.util.Collection

package such as Set, List, Map, Vector etc. The method func() used in the definiton of Esci

thus may refer to any java library specific method pertaining to the java.util.Collection package

which is responsible for adding an object to a collection object. Examples of such library methods

include add(), addAll(), put(), putAll(), etc.
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After computing the summary of a particular method by using the above flow functions, we use

the Soot Pointer Analysis Research Kit (SPARK) framework for assuring that all the aliases of

reference variables in the summary are also contained in the summary of the method in concern.

SPARK is an accurate flow-insensitive and context-sensitive points-to analysis framework which is

shipped with Soot. The flow-insensitive nature of the tool thus renders our approach conservative.

4.2.2 Hoistable Sites Identifier Module (HSIM)

This module runs in parallel with the IEAM. At the time of identifying the set of escaped objects

for a method; we also detect the presence of loop constructs, if any, in that method. LoopFinder

of Soot API [3] was used to detect loops and extract the loop body. After identification of loop

constructs in the method, we find those objects which are allocated memory using new operator

within the loops. All these newly allocated objects are then checked for containment in the In

set of the method’s first statement. The absence of the object in the In set indicates that it does

not escape the scope of that method and hence the corresponding memory allocation statements

can be safely hoisted out of the loop.

Please note that the objects escaping the method will be a superset of the objects escaping any

loop in that method. Hence, instead of checking containment in the loop’s first statement’s In

set, it suffices to check for containment in the In set of the first statement of the method. We

mark all such identified object allocation sites as “hoistable” and refer to such sites as “hoistable

sites”.

The createObjects() method in Figure 4.1 contains a while loop within which two objects of

class A, namely, aObj and aa are allocated memory. The set of objects that escape from this

method, as revealed by SIEA, contains aObj but not aa because aObj gets assigned to a field in

doSomething() method and hence escapes, however, aa does not. Thus, only the object allocation

A aa = new A() is marked as fit to be hoisted out of this while loop.
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Tracking objects that escape the scope of the loop via local variables of the method

Please note that an object allocated inside a loop can also escape the scope of the loop via a local

variable. This might happen if inside the loop, the object gets assigned to a reference variable of

Collection type that is declared outside the loop, for instance, objects allocated in a loop can be

collected in a Collection declared outside the loop. Such a Collection may either be an instance

of array or the classes belonging to java.util.Collection package of Java library. We track such

cases in our analysis and deem them as “non-hoistable”. One such case is manifested in the

code given below, where the ClassB object escapes the scope of the loop via the local reference

variable hisObj.

1 private void callme() {

2 Set<ClassB> hisObj = new HashSet<ClassB>();

3 for(int i=0;i<10;i++)

4 {

5 ClassB myObj = new ClassB();

6 hisObj.add(myObj);

7 }

8 System.out.println(hisObj);

9 }

Listing 4.2: Code snippet: Object escaping the loop’s scope via a local variable of the method

At the first look, detecting such a situation might seem quite straight forward. One might think

of it as separating the variables declared inside loops from those declared outside the loops and

then tracking asssignments (of objects created inside loops) to the variables declared outside

the loops. However, this is trivializing a bigger problem. This is because Jimple declares all

variables at the beginning of a method even if the variables were declared inside loops in the

original source code.

In order to track objects that escape the scope of the loop via a local variable, we use the fact

that any object that does not escape the scope of the loop will not be used after the loop ends.

Contrapositively, if a reference variable, that refers to an object created inside a loop, is used

outside the loop, specially after the end of loop’s life, then the object can be said to have escaped.
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We examine the loop statements to detect if any object which is allocated memory inside the

loop or its alias, say ’obj’ gets added to any Collection object via put(), putAll(), add(), addAll(),

or an assignment statement in case of the Collection object being an array. Next we check if

that Collection object or any of its alias is used in any of the statements that follow the loop

construct in execution flow.

If the Collection object or its alias is used outside the loop in the method then the newly allocated

object inside the loop ie ’obj’ is said to escape the scope of the loop. Thus, such an object

allocation site cannot be optimized.

4.2.3 Bytecode Instrumentation Module (BIM)

Once all the hoistable sites are identified, SOS performs automatic code injection to move all

identified sites out of their respective loops. Soot [3] facilitates code injection at the bytecode

level by converting Java source code to Jimple and allowing modifications to the Jimple code.

Loop hoisting causes the object to be allocated memory only once in its lifetime, i.e. before

the control enters the loop, and hence the object loses the chance for re-initialization inside the

loop. In order to ensure safe reuse of objects, we propose that a new reset method be invoked on

them before their reuse inside the loop. This reset method basically simulates the constructor to

restore the state of the object back to the one that it had just after memory allocation.

Let us call the constructor invoked at the hoistable object allocation site as Constructor C

which has a corresponding <init>() method I in the equivalent Jimple code. The reset method

has exactly the same method signature as that of the Constructor C, with a difference that

the method name is different. It is named automatically as reset_i where i is the number of

arguments the Constructor C takes as input. Some essential features of our reset method’s

implementation are as follows:

(a) It contains all the statements of method I except the special invoke statement for <init>()

method of java.lang.Object class, which is responsible for actual memory allocation for any

object. This avoids allocation of space to objects in the subsequent iterations of the loop.
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(b) Our implementation for the reset method also ensures that all those fields which are primitive

and have not been assigned any value in the Constructor C are assigned a default value in

accordance with the Java compiler.

(c) We do not reset static and final instance fields. Moreover, we initialize with null those fields

which are not initialized in the constructor and are of a type defined by the user.

(d) In case the constructor initializes a field of user-defined type with a new statement, we call

the reset method corresponding to that object’s class instead of the new statement.

(e) If the constructor initializes a field of array type, we restore the state of such fields to the

Java default state using Arrays.fill() method.

(f) We also handle the cases where fields are of type belonging to java.util.Collection package and

java.util.StringBuilder class. The objects of Collection are restored back to their original state

by invoking the library method clear() on the object. Similarly, the field of StringBuilder

type can be emptied by invoking delete() method on the object which is again provided by

Java library. The fields of all other Java/Android library specific type with a new statement,

we retain the same initialization of such an object in the reset method also. This means

that even while resetting the fields of such types, new memory is allocated and thus ensures

partial reuse.

(g) We also initialize variables that are inherited from a super class which is one level higher

in the inheritance hierarchy. We do not initialize other reference variables derived from

the super class because if the super class is a class belonging to the Android library, then

its implementation is not present in the android.jar, rather the methods/constructors are

only defined as stubs. Hence, we try to synthesize reset() method on a best effort basis

since a precise resetting of the fields of an object would require availability of the Android

API implementation, which currently resides on the devices only and is not a part of the

android.jar.

Thus, our technique presents a precise, conservative but unsound model to automatically generate

the reset() method functionality based on the implementation of the constructor.
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Figure 4.2: Resulting Jimple code for class A after instrumentation

Figure 4.2 and 4.3 present snapshots of the Jimple code for class A and MainActivity respectively

which are generated after instrumentation.

In Figure 4.3, the loop is identified by label1. After the analysis, $r2 was declared as hoistable

from the loop. Note that $r2 is the temporary variable generated corresponding to the object aa

of type A during the automatic conversion from source code to Jimple. The original memory

allocation site for $r2 inside label2 of createObjects() now invokes reset_0() on $r2 instead of

<init>(). Further, <init>() along with new statement for $r2 is invoked just before the control

enters label1.

Figure 4.2 shows a newly added method with signature public void reset_0() which is a

partial replica of public void <init>(). This method, in contrast to <init>(), does not

contain statement for specialinvoke to <init>() of java.lang.Object on $r0.
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Figure 4.3: Resulting Jimple code for createObjects() of MainActivity class after instrumentation

The modified APKs generated as a result of the instrumentation need to be re-signed by a

certificate created using a private key before its deployment, otherwise the new app will not get

installed. The optimized APK should also preferably be zipaligned. This causes all uncompressed

data like images or raw files to be aligned on 4-byte boundaries.
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4.3 Heuristics

For large apps, the number of hoistable sites can reach a large number. Hence, if we are to remain

within a given time budget or wish to perform the optimizations to only a few high impact sites,

we would have to find out the top contributors to object allocations that are optimizable.

In [8], the authors resort to dynamic analysis techniques, however, the cost of dynamic analysis

is an overkill and in the context of Android apps could even be useless because different people

have different behaviors when it comes to using apps. Hence, we rely on the following heuristics

for prioritizing hoistable sites statically:

(a) New allocations can occur indirectly inside loops. A method that allocates objects can be

called from within a loop. In such a case detecting the correct instrumentation point becomes

non-trivial. In this work, we do not ignore such cases (we propose a technique to detect

them) because they form a strong candidate for optimization, however we leave the detection

of correct instrumentation point for future work.

The technique for detecting such a case is as follows. We maintain a set of methods that

have new allocation statements directly (not in a loop) in them. We also maintain a set

of methods that call another method from within a loop. Now we perform a reachability

test between every combination in the two sets. If the two methods in consideration are

reachable then there is scope for optimization.

(b) Betweenness Centrality: We calculate betweenness centrality for every method in the call

graph generated by FlowDroid. Betweenness centrality of a node (in a graph) quantifies the

number of times that particular node appears as a bridge along the shortest path between

other two nodes. While calculating betweenness centrality, we also include paths which have

the node in question as their terminal or initial node. Methods which get high betweenness

scores should be given priority when selecting a subset of the hoistable sites for optimization.

We leave the instrumentation point detection as future scope.
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Chapter 5

Evaluation

5.1 Evaluation Overview

In this chapter we validate our hypothesis that SOS is helpful in reducing the memory consumption

and reducing garbage collector invocations, thereby reducing the pause times. We manifest the

empirical study conducted on two Android apps, one of which is our own custom developed app

and the other a third party application. The details about the testbed and the methodology of

collecting results are presented first. Then we present the results from the two Android apps

and show the improvements that SOS can yield. Finally, we take one of the apps and show the

trends in the pause times due to garbage collector invocations, the memory freed as a result, and

the number GC invocations as a function of the number of loop’s iterations.

5.2 Testbed

5.2.1 Application Description

We used a tailor made app - SlideShow available at [2], and a third party app - Custom

ListView [10]. We will call them SS and CLV respectively. The SS app displays a slide show in

which the images displayed in an ImageView [16] keep changing. This app stores each image

encapsulated in its own new class A object and optimize the app to reuse the first allocated
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object to store the subsequent images and display them. This app rescales images so as to avoid

excess memory consumption by Bitmaps. If this is not done, loading images would cause even

more GC and increase pause times even more. We go a step further and use this app to highlight

the trends of garbage collection as the number of iterations (slides) are increased. As mentioned

earlier, if the number of iterations of the loop is more than 9, then we perform a modulo 9 to the

integer iterator variable and display the image with the resultant Resource ID.

The CLV app is a tutorial that illustrates how to make apps that use ListView class [16]. The

app contains three classes described as follows:

(a) CustomListViewAndroidExample class - which creates an ArrayList of 11 items and sends it

to the CustomAdapter class

(b) CustomAdapter class - which build the view holder for these 11 items and displays them

(c) ListModel class that represents a list item

We tweak this app to create three such ArrayLists of ListItem so that we could elicit reuse of

the ListView items. A point to note here is that since all the 11 items appear on screen at once,

we cannot reuse one item to create another item in the same list. This is because the earlier 10

objects will end up having the same instance values as that of the 11th one. However, we can

reuse one entire ArrayList of items to create another one.

5.2.2 Phone Specifications

We performed our experiments with these two apps on two Android smartphones - a) Sony

Xperia P LT22i (dual-core, 1 GHz Cortex-A9 processor, 1 GB RAM, Android version 4.1.2),

b) Moto G (quad-core, 1.2 GHz Cortex-A7, 1 GB RAM, Android version 4.4.4). The heap size

allowed for the apps was 64 MB on Xperia P and 96 MB on Moto G. However, Android starts

off every app with a lower heap limit and grows the heap whenever more space is required.
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Table 5.1: Evaluation Results

App Device Metric U-OPT OPT Saving Saving in %

Slide

Show

XperiaP
Savg (KB) 15625 8594 7031 45

Tavg(ms) 138.7 50.2 88.5 63.8

MotoG
Savg (KB) 15625 8594 7031 45

Tavg(ms) 67 23.8 43.2 64.48

Custom

ListView

XperiaP

Savg (KB) 42970 4297 38673 90

Tavg(ms) 169 0 169 100

MotoG
Savg (KB) 42970 4297 38673 90

Tavg(ms) 83.8 0 83.8 100

Here:

U-OPT : Un-optimized

OPT : Optimized

Savg : Average heap space consumed by the target objects in KB where the average is over 10 readings

Tavg : Average pause times for GC in ms where the average is over 10 readings

Saving in % = (Saving/U-OPT)*100

5.3 Methodology of Collecting Data and Results

We ran two versions (unoptimized and optimized) of each app on the phones and measured the

Pause times due to GC and Memory consumption due to allocation of the target objects, where

the ‘target objects’ are those objects that can be hoisted out of the loop. The optimized (OPT)

and unoptimized (U-OPT) versions of the apps were ran 10 times each and the results were

averaged over the readings.

The logs from the logcat [12] were used for measuring the total pause times. We built a small

parser to accumulate results from the logs automatically. The DDMS, packaged with Android

SDK, [17] features an Allocation Tracker [12] which we used to measure the space allocated to

the target objects on the heap.

Table 5.1 tabulates the time and space measurements obtained from both the phones for both

the apps and highlights the savings that SOS yields. These readings were taken for 10 iterations

of the loops in both the SS and the CLV app. The GC pause times mentioned in the table are a

sum of the pause times for GC_FOR_ALLOC and GC_CONCURRENT types [12]. Other

types of GCs were not encountered in the apps we profiled.
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Figure 5.1: Pause Time v/s Iterations of Loop

Figure 5.2: Freed Memory v/s Iterations of Loop

We also monitored the trends in a) Pause times due to GC, b) Memory freed due to GC and c)

Number of GC invocations, for the SS app as the number of iterations of the loops are increased.

Figures 5.1, 5.2, and 5.3 show these trends. The X axis denotes the iterations. The Y axis

denotes Pause Times, Memory freed and Number of Invocations respectively. The solid lines

represent readings from the un-optimized version of the app and the dashed lines denote readings

from the optimized versions. The red lines depict readings from Moto G and the blue ones depict

readings from Xperia P.

29



Figure 5.3: GC Invocations v/s Iterations of Loop

It can be observed from Figure 5.1 that the pause times for Moto G were relatively more than

those for Xperia P; which means that the likelihood of jitters is more in Moto G. Not explicitly

shown is the point at which the apps run out of memory and display an OutOfMemory error.

This happens when the apps spend 98% of their time in collecting garbage and less than 2% of

heap is reclaimed [20]. In Xperia P, the heap available for the apps was 64 MB and as a result

the SS app went out of memory earlier as compared to Moto G, which had a heap size of 96

MB available. The point at which the lines discontinue is the point after which the app started

showing an OutOfMemory error. This is beyond 300 iterations for Xperia P and beyond 500

iterations for Moto G. All the three line graphs show a linear characteristic emphasizing that the

GC overhead (of pause times, invocations and freed memory) increases linearly as the objects

increase.
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Chapter 6

Discussion

6.1 Strengths

The strengths of our approach are as follows:

(a) We have been careful in making SOS conservative but at the same time not making it overly

conservative.

(b) SOS expands the horizon of analysis beyond a method due to its summary based approach.

(c) It provides a generic framework to optimize memory and several other optimizations can be

simply incorporated without the need for another pass over the code.

(d) SOS completely relies on static analysis and avoids the overhead of dynamic analysis.

(e) The use of Dexpler avoids an intermediate conversion to Java Bytecode thereby speeding up

the overall process and the use of Soot makes our approach scalable to large code bases.

(f) SOS has been designed so that all the required information for the analysis can be collected in

a single pass over the code. This helps to speed up the analysis. Moreover, the instrumentation

is done carefully so that no side effects are introduced.
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6.2 Weaknesses

Despite of its benefits, SOS suffers from a few limitations which are as follows:

(a) We do not claim that the tool covers each and every case of optimization as it is still in a

prototype phase and there is plenty of scope for improvement. For instance, SOS cannot

reuse objects created in a callee method that has its call site in a loop inside a caller method.

In such a case the instrumentation would happen in the caller method because of a site in

the callee method. In this work we have proposed and implemented a technique to detect

such cases, however, we leave the detection of correct instrumentation point as future work.

(b) The modified APKs need to be re-signed before they can be deployed on smartphone. Hence,

preferably the developer would have to resign the APK. In case they are signed by us, the

app updates will stop coming. Moreover, the users would have to trust the changes made by

us.

(c) Soot and FlowDroid can be slow sometimes, and could need a lot of memory; which is why

we offload the analysis to a server.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

From the inception of Object Oriented Programming, programmers have been creating objects for

even the smallest and simplest of tasks without paying attention to the cost incurred. They take

for granted that the system will optimize all inefficiencies. However, neither the Just-In-Time

compiler nor the Dalvik garbage collector can by itself completely optimize object allocations.

Creating such short lived objects profligately could cause the performance and the end user

experience to degrade severely.

In this work we presented a tool that optimizes allocation of objects by reusing heap space

allocated to objects inside loops. If these objects do not escape the scope of the loop, then we

hoist their respective allocation statements outside the loop so that the heap memory is allocated

only once and reused in the subsequent iterations. For the subsequent iterations, the class fields

have to be re-initialised appropriately using the body of the constructors already present in the

app or using our own constructors for providing default values.

We also showed results from our experiments conducted over two Android apps and highlighted

the benefits that SOS can provide.
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7.2 Future Work

A few memory issues that we are working on and would like to take up next are as follows:

1. We would like to extend our analysis to reuse objects between multiple apps. This would

necessitate a provision of an object pool to keep certain objects in memory for reuse later.

Though, there is a tradeoff involved - at one end we are keeping valuable memory reserved

and at the other we are reusing these objects in the pool to avoid unncessary allocations in

the hope that it will reduce jitters and the number of times GC gets invoked.

2. Detecting memory leaks statically so that the developer is warned before actually executing

the app about their presence.

3. Reducing creation of intermediate temporary String objects which could reduce the burden

on GC.

4. Loops can also be present in a separate caller method and the allocation might happen in

the callee method called from within the loop. Currently, we are in the process of adding

support for such cases.

5. While resetting the fields of a class, the non-primitive fields inherited from a parent Android

library classes are left alone because their constructors are defined as stubs in the android.jar.

We would appreciate if their implementation is shared by Google as then we will be able to

initialize such fields also.

With the existing features and those that will be added in future, we hope that SOS helps users

and developers to utilize heap space efficiently.

34



Bibliography

[1] Escape Analysis. http://en.wikipedia.org/wiki/Escape_analysis.

[2] Link to SlideShow App. https://www.dropbox.com/s/8jtsjzhgfh4h1vy/ToyExample.

rar?dl=0.

[3] Soot: a Java Optimization Framework. http://www.sable.mcgill.ca/soot/.

[4] Alois Reitbauer, e. a. Reducing Garbage-Collection Pause Time. http://javabook.

compuware.com/content/memory/reduce-garbage-collection-pause-time.aspx.

[5] Anwer, S., Aggarwal, A., Purandare, R., and Naik, V. Chiromancer: A tool for

boosting android application performance. In Proceedings of the 1st International Conference

on Mobile Software Engineering and Systems (New York, NY, USA, 2014), MOBILESoft

2014, ACM, pp. 62–65.

[6] AppBrain. Number of available Android applications - AppBrain. http://www.appbrain.

com/stats/number-of-android-apps.

[7] Bartel, A., Klein, J., Monperrus, M., and Le Traon, Y. Dexpler: Converting

Android Dalvik Bytecode to Jimple for Static Analysis with Soot. In Proceedings of the

International Workshop on the State Of the Art in Java Program Analysis (SOAP’2012)

(2012).

[8] Bhattacharya, S., Nanda, M. G., Gopinath, K., and Gupta, M. Reuse, recycle

to de-bloat software. In Proceedings of the 25th European Conference on Object-oriented

Programming (Berlin, Heidelberg, 2011), ECOOP’11, Springer-Verlag, pp. 408–432.

35

http://en.wikipedia.org/wiki/Escape_analysis
https://www.dropbox.com/s/8jtsjzhgfh4h1vy/ToyExample.rar?dl=0
https://www.dropbox.com/s/8jtsjzhgfh4h1vy/ToyExample.rar?dl=0
http://www.sable.mcgill.ca/soot/
http://javabook.compuware.com/content/memory/reduce-garbage-collection-pause-time.aspx
http://javabook.compuware.com/content/memory/reduce-garbage-collection-pause-time.aspx
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps


[9] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C., and Midkiff, S. Escape

analysis for java. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications (New York, NY, USA, 1999), OOPSLA

’99, ACM, pp. 1–19.

[10] Example, A. How To Create A Custom Listview - Android Example.

http://androidexample.com/How_To_Create_A_Custom_Listview_-_Android_

Example/index.php?view=article_discription&aid=67&aaid=9.

[11] Fritz, C. Flowdroid: A Precise and Scalable Data Flow Analysis for Android. In EC

SPRIDE (2013).

[12] Google. Investigating Your RAM Usage. http://developer.android.com/tools/

debugging/debugging-memory.html#ViewingAllocations.

[13] Google. Location Performance Tips. http://developer.android.com/training/

articles/perf-tips.html.

[14] Google. Managing Your App’s Memory. https://developer.android.com/training/

articles/memory.html.

[15] Google. Out Of Memory Error. http://developer.android.com/reference/java/

lang/OutOfMemoryError.html.

[16] Google. Package Index. http://developer.android.com/reference/packages.html.

[17] Google. Using DDMS. http://developer.android.com/tools/debugging/ddms.html.

[18] Google. zipalign. https://developer.android.com/tool/help/zipalign.html.

[19] Johspaeth. Implementing an intra procedural data flow analysis in Soot.

https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-

flow-analysis-in-Soot.

[20] Oracle. Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tun-

ing. http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#

available_collectors.selecting.

36

http://androidexample.com/How_To_Create_A_Custom_Listview_-_Android_Example/index.php?view=article_discription&aid=67&aaid=9
http://androidexample.com/How_To_Create_A_Custom_Listview_-_Android_Example/index.php?view=article_discription&aid=67&aaid=9
http://developer.android.com/tools/debugging/debugging-memory.html#ViewingAllocations
http://developer.android.com/tools/debugging/debugging-memory.html#ViewingAllocations
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
http://developer.android.com/reference/java/lang/OutOfMemoryError.html
http://developer.android.com/reference/java/lang/OutOfMemoryError.html
http://developer.android.com/reference/packages.html
http://developer.android.com/tools/debugging/ddms.html
https://developer.android.com/tool/help/zipalign.html
https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot
https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#available_collectors.selecting
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#available_collectors.selecting


[21] Oracle. Lesson: Annotations. http://docs.oracle.com/javase/tutorial/java/

annotations/.

[22] Sălcianu, A., and Rinard, M. Purity and Side Effect Analysis for Java Programs.

In Proceedings of the 6th International Conference on Verification, Model Checking, and

Abstract Interpretation (Berlin, Heidelberg, 2005), VMCAI’05, Springer-Verlag, pp. 199–215.

[23] Wikipedia. Pointer Analysis. http://en.wikipedia.org/wiki/Pointer_analysis.

[24] Xu, G., Yan, D., and Rountev, A. Static detection of loop-invariant data structures. In

ECOOP 2012 – Object-Oriented Programming, J. Noble, Ed., vol. 7313 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2012, pp. 738–763.

37

http://docs.oracle.com/javase/tutorial/java/annotations/
http://docs.oracle.com/javase/tutorial/java/annotations/
http://en.wikipedia.org/wiki/Pointer_analysis

	Introduction
	Background
	Android Activity Lifecycle
	Android Best Practices
	Our Contribution

	Related Work
	Related Work

	SOS Architecture
	Architecture
	Why not AspectJ?

	Our Approach
	Overview
	Modules
	 Interprocedural Escape Analysis Module (IEAM)
	Hoistable Sites Identifier Module (HSIM)
	Bytecode Instrumentation Module (BIM)

	Heuristics

	Evaluation
	Evaluation Overview
	Testbed
	Application Description
	Phone Specifications

	Methodology of Collecting Data and Results

	Discussion
	Strengths
	Weaknesses

	Conclusion and Future Work
	Conclusion
	Future Work


