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Abstract

Issue Tracking Systems (ITS) such as Bugzilla can be viewed as Process

Aware Information Systems (PAIS) generating event-logs during the life-

cycle of a bug report. Process Mining consists of mining event logs generated

from PAIS for process model discovery, conformance and enhancement. We

apply process map discovery techniques to mine event trace data generated

from ITS of open source Firefox browser project to generate and study pro-

cess models. Bug life-cycle consists of diversity and variance. Therefore, the

process models generated from the event-logs are spaghetti-like with large

number of edges, inter-connections and nodes. Such models are complex

to analyse and difficult to comprehend by a process analyst. We improve

the Goodness (fitness and structural complexity) of the process models by

splitting the event-log into homogeneous subsets by clustering structurally

similar traces. We adapt the K-Medoid clustering algorithm with two differ-

ent distance metrics: Longest Common Sub sequence (LCS) and Dynamic

Time Warping (DTW). We evaluate the goodness of the process models

generated from the clusters using complexity and fitness metrics. Process

models generated after clustering have high degree of fitness and less struc-

tural complexity and thus are easier to comprehend compared with the

process model generated from the entire event-log. We study back-forth &

self-loops, bug reopening, and bottleneck in the clusters obtained and show

that clustering enables better analysis. We also propose an algorithm to

automate the clustering process -the algorithm takes as input the event log

and returns the best cluster set.
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1

Research Motivation and Aim

1.1 Issue Tracking Systems

Figure 1.1: Software Development Life Cycle with the Maintenance Phase highlighted

(Figure taken from 1)

Software Development Life Cycle1 model is a framework describing well defined

activities that are performed at each stage of software development project. The life

cycle (refer Figure 1.1) begins from Project Planning where high level view of the

1http://en.wikipedia.org/wiki/Systems development life cycle

1



1.1 Issue Tracking Systems

problem is established followed by Analysis phase where requirements, benefits, cost and

alternative solutions of the problem are proposed and discussed. Then comes the system

Design phase in which desired operations and features are defined elaborately. Following

it is the Implementation Phase where real source coding is done. The continued process

of improving the process performance is carried out in Maintenance phase (2). Software

Maintenance1 is the process of improving a product’s quality after its delivery. It

is required as failures keep on occurring and need of improvement keeps on growing

throughout a product’s cycle (3). It can be of various types1- Corrective where faults

are corrected in the hardware or software, Adaptive where software is made adaptable

to a new environment, Perfective where performance is improved by implementing new

features and requirements and Preventive, where problems are dealt before they occur

by increasing the software reliability. Preventive maintenance is mostly done through

refactoring in which software is changed in order to make it easier to comprehend and

inexpensive to alter without making any changes in its observed external behavior (4).

Issue Tracking Systems (ITS) which are software applications to update, maintain and

resolve an issue, are a tool to guide the software maintenance process. Defect reporting

and tracking which is critical in maintenance of software is made simple and efficient

with the help of Issue Tracking Systems. Through an ITS, an issue is raised and

described by a user, is classified, its status and progress is can be tracked until it gets

resolved with the provision of commenting on error reports and feature requests. With

the help of an ITS without wasting any time, useful information can be viewed directly

like who is responsible for which issue, the current bug status, the priority with which

bug it is to be resolved, preventing important issues from getting lost or delayed. Due

to the usefulness of the services provided by an ITS, there are a lot of different ITS

available in market for different projects. Bugzilla2, Jira3, Mantis 4 and Trac 5 are the

topmost ITS which are most popularly used now a days.

Popular ITS Bugzilla is a open source bug tracking system, which is used by Mozilla

project for keeping the records of its unfinished bugs effectively. Figure 1.2a shows the

main page of Bugzilla providing the important utilities to file a bug, search it, open a

1http://agile.csc.ncsu.edu/SEMaterials/MaintenanceRefactoring.pdf
2https://bugzilla.mozilla.org/
3https://www.atlassian.com/software/jira
4https://www.mantisbt.org/
5http://trac.edgewall.org/

2



1.1 Issue Tracking Systems

(a) Bugzilla Main Page

(b) Bug details in Bugzilla

3



1.1 Issue Tracking Systems

Figure 1.3: Snapshot of Mozilla Bug History (Bug ID 239534

new user account and get associated help about any product of Mozilla or report any

troubleshooting.

Figure 1.2b shows the attributes of a reported bug. Various fields displays the impor-

tant information about the bug for instance, Status- its current resolution, Importance-

its priority, Assigned to- its assignee etc. The History link available (highlighted with

a red rectangle in Figure 1.2b), takes user to all the changes that occurred during the

bug-fixing. Figure 1.3 shows the aggregated bug’s history informing who created an

event, when it happened and what actions were performed. This archived data can be

mined to obtain useful results that can help in the improvement of the system.

In Bugzilla, a bug’s life cycle consists of various well defined stages through which

it goes as shown in Figure 1.4 1. It either enters the system as Unconfirmed where

it requires confirmation of its existence or is already confirmed and enters as New

state. From New state control can go to Assigned state where the bug is assigned to

an appropriate person or the bug may directly be resolved and the status is set as

Resolved. The path after Resolved state may lead to Verified state where the fix is

1https://www.bugzilla.org/docs/2.18/html/lifecycle.html
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1.2 Process Mining

Figure 1.4: Bug Life Cycle in Bugzilla (Figure taken from 1)

expected to be validated by a Quality Assurance or if the verification is not performed

bug may directly be Closed. A reopening may occur from Resolved state- if the QA

is not satisfied with the solution, from a Verified or Closed state- if some additional

information appears later. After reopening, assignments of proper person to the bug

may happen if the resolution requires to be reviewed again or the resolution can be set

directly.

1.2 Process Mining

Process mining is extraction of insights, consumable results and actionable information

from event logs recorded by Process Aware Information Systems (PAIS). A PAIS is

a software system that manages and executes operational processes involving people,

5



1.2 Process Mining

Figure 1.5: Process Mining Types (a) discovery (b) conformance and (d) enhancement

(Figure taken from (1))

applications, and/or information sources on the basis of process models (5). WorkFlow

Management systems and Business Process Management systems are examples of PAIS.

An event log records all the developments of the process in execution. Event logs used

for mining valuable insights consists of Case Id (process instance for which events are

recorded), an activity (a distinct step in the process), an actor (an entity starting and

executing the activity) and timestamps (the starting time of the event). All events

belonging to a particular Case Id form a trace. From the data available in the event

log, a process model can be created which helps in analysis of the entire system. A

process model is a visual representation of the work flow of a business process that

has been reverse engineered from an event log. It is a directed graph consisting of

nodes and edges. Nodes represent the actions, known as activities that are performed

in the business process. Edges denoted by arrows represent the transitions between

these activities. If activity P occurs before activity Q in the given process, then there

will be a directed edge from P to Q. Several notations have been proposed to represent

a process model such as petri nets, casual nets, fuzzy models, UML activity diagrams

etc.

Some of the added advantages1 of Process Mining includes finding bottlenecks- as

1http://www.bptrends.com/the-added-value-of-process-mining/

6



1.2 Process Mining

it equitably and automatically detects where the delays occur in the system, reducing

waste- actual behavior is clearly evident in process models as the hidden additional

activities which should not occur but are executing can be eliminated from the real

system, ensuring compliance- as the deviations from the expected real life model are

seen clearly in the process models, they can easily be measured, and promoting best

practices- by comparing and analysing how the same processes are carried differently

and selecting the best among them.

Process mining can be conducted to perform discovery, conformance or enhance-

ment (6). Discovery technique takes an event log as input and produces a process

model. Doing this helps in recovery of hidden and unknown facts that may help in the

improvement of overall process. Conformance checking is used to check if the actual

happenings of the system as recorded in the event log conforms to the process model

and vice versa. It is basically keeping a check on the current workflow of the system

by observing all the deviations that are observed in the process models. Enhancement

aims at improving the existing process models using information available in the event

logs as the process models generated may indicate the need for enhancing the current

standard of workflow of the system (6).

Different perspectives of process mining available are shown in Figure 1.5, (7):

1. Process Perspective: Also known as control flow perspective, it focuses on ordering

of tasks aiming at generating process models from the event log (7).

2. Organizational Perspective: It aims at determining the Structure of the organ-

isation on basis of the people involved, their roles and their relations with each

other (7).

3. Case Perspective: It focuses on properties of process instances. Analysis is done

by looking at the element values of cases (7).

Process mining generates process models which carry visual and actionable insights

of the raw data. There are many software tools available to mine the event logs e.g.

Disco, Prom1 etc. Disco automatically creates insightful process models providing a

lot of advanced features to make things simpler to understand by a process analyst.

The files that can be imported must be in CSV, XLS, MXML or XES format. Figure

1http://www.promtools.org/doku.php

7



1.2 Process Mining

Figure 1.6: Snapshot of Disco after opening an Event Log in it. One can select the

column and mark it as CaseID, Activity, Timestamp, Resource or Other.

1.6 shows an event log being imported in Disco to form a process model. Column 1

indicates the case id of each event, Column 2 the actor, Column 3 the timestamp and

Column 4 the activity. Each column of the event log has to be selected and configured

either as the Case Id, Activity, Actor (Resource), or the Timestamp. Atleast Case Id

and Activity column has to be mentioned in the log without which the log would not be

acceptable for the import. The pattern of timestamp entered has to be selected from

the timestamps already available or it can be specified in Java’s Simple Date format.

In Disco, a zoom slider is provided that gives full control to the user to dig deeper into

the model. Due to complex and confusing nature of real life event logs, Disco shows

only the most important flows that is the most frequently occurring variants. Sliders

for adjusting the number of activities and number of paths that are to be presented in

the model are available. The process model has a starting (represented by a triangle

symbol) and an end node (represented by a stop symbol) with all the activities, whose

names are mentioned in the node itself, lying in between the two. Dashed arrows point

to activities that occur at the very beginning or very end of the processes. Absolute

Frequency of each transition is written over them. Nodes with more darker color

and thicker edges signify a higher frequency count. Figure 1.7 shows a process model

generated from an event log using Disco.

8



1.2 Process Mining

Figure 1.7: Process Discovery: Process Model generated from the given Event Log using

Disco

For business process design and business process implementation, Business Process

Modelling Notation-BPMN is used (8). BPMN process models comprises of two things-

Activity nodes denoting activities performed by humans or software and Control nodes

capturing the control flow between activities (9). Due to heterogeneity in the constructs

of BPMN by the use of inconsistent terminologies in its definition, they are motivated

to be converted into petri nets (9). Petri nets are a graphical as well as a mathematical

notation for stepwise execution of a process . They are chosen to represent flow of either

control, objects or information. They are composed of: Places and Transitions which

makes the visualization easy to understand. Places contain tokens that flow in the

system. Constraints that are enforced in petri nets are: having a distinguished source

and sink and directing every transition between that unique source and sink only.

There are several algorithms in literature, like alpha miner, flower miner, inductive

miner etc. which can be used to create a petri net. The process model shown in Figure

1.7 represents a fuzzy model discovered from an event log using Disco showing the

work-flow of a system.

Many real life event logs are unstructured, adhoc carrying a lot of diversity leading

to the generation of ’spaghetti models’. These models are cumbersome to comprehend

and only by zooming in one can get some level of understandability. For a process

9



1.2 Process Mining

(a) Process Analyst trying to analyse a Spaghetti Model

(b) Process Analyst studying the Process Models of Clusters

Figure 1.8: Problem of Spaghetti Model

10



1.3 Problem Motivation, Definition and Aim

analyst to understand either the unstructured big data logs or large spaghetti models

is a challenge (refer Figure 1.8a). The solution to this can be dividing the spaghetti

model into several simpler models by means of clustering (refer Figure 1.8b).

1.3 Problem Motivation, Definition and Aim

Software Process Intelligence (SPI) is an emerging and evolving discipline involving

mining and analysis of software processes. This is modeled on the lines of application

of Business Intelligence techniques to business processes (Business Process Intelligence

(BPI)), but with the focus on software processes and its applicability to Software Engi-

neering (SE) and Information Technology (IT) systems. Software Process Mining falls

at the intersection of Software Process & Mining, and Software & Process Mining. SPI

has diverse applications and is an area that has recently attracted several researcher’s

attention due to availability of vast data generated during software development. Some

of the business applications of process mining software repositories or SPI are: uncov-

ering runtime process models, discovering process inefficiencies and inconsistencies, ob-

serving project key indicators and computing correlation between product and process

metrics, extracting general visual process patterns for effort estimation and analyzing

problem resolution activities.

Several SE processes such as issue or defect resolution are flexible and consists of

several process variants and a wide spectrum of behavior. This results in a spaghetti

process model consisting of a large number of activity or task nodes as well as a large

number of relations (or directed edges) between these nodes. A spaghetti process model

is structurally complex and hard to comprehend for a process analyst. Trace clustering

is a technique which has been applied on business process logs to split a given event-log

into homogenous subsets from which process models are uncovered. Trace clustering

has shown to improve the comprehensibility of process models in environments which

allow process flexibility and large number of variants. The research motivation of the

study presented in this paper is to investigate the application of trace clustering in the

domain of SPI and process mining software repositories. The specific research aim of

the work presented in this paper are the following:

1. To study the problem of spaghetti process models in the domain of software defect

and issue resolution by conducting a case-study on open-source Firefox browser

11



1.3 Problem Motivation, Definition and Aim

project.

2. To propose a trace clustering technique based on grouping sequential data and

apply it on issue tracking system dataset of a large, complex and log-lived open-

source project. To investigate the effectiveness of the proposed trace clustering

technique in reducing the structural complexity and enhancing the process model

comprehensibility for a process analyst.

3. To study self-loops, back-and-forth, issue reopen, unique traces, event frequency,

activity frequency and bottlenecks on the discovered process models from the

homogeneous subset output of trace clustering and illustrate the benefits of trace

clustering in the domain of SPI using a real-life case-study.

12



2

Related Work and Research

Contributions

In this chapter we discuss previous work closely related to our study and list the novel

research contributions of our work in context to already existing work.

2.1 Related Work

The related work has been categorised into three lines of research.

2.1.1 Problem of Spaghetti Process Models

Real life event logs are diverse, unstructured and complex leading to formation of

’Spaghetti models’ which contain a lot of details without describing what is important

and what is not (10). The problem of spaghetti process models has been discussed

in (11). The paper discusses how mining becomes tougher with large unstructured

data and also proposes the combined use of abstraction and clustering to make the

process models easy to comprehend. Veiga et al. in (12) also examine the problem of

complex spaghetti models and present an approach for representing only the essential

information of these models by using sequential clustering in ProM. Authors in (10)

suggests a mining approach that presents a simpler view of complex models so that

they can provide useful abstractions of real-life processes.

13



2.1 Related Work

2.1.2 Trace Clustering

Several techniques have been proposed in literature to cluster traces to deal with com-

plex process models. Bose et al. propose a context aware approach to cluster process

instances based on Levenshtein distance (13). In the technique substitution, insertion

and deletion costs of symbols are derived for similarity. The authors evaluate the pro-

posed algorithm on the telephone repair process event log and show that the approach

is able to generate clusters with high degree of fitness and comprehensibility when com-

pared to other approaches (13). In (11) Aalst et al. apply combination of abstraction

and clustering techniques to simplify spaghetti-like models discovered using process

mining techniques from unstructured and complicated processes (11). They use sig-

nificance and correlation metrics to simplify the processes by clustering less significant

but highly correlated data and removing less significant and correlated data from the

simplified process model and implemented this technique as the Fuzzy Miner plugin for

ProM (11). Ferreira et al. propose a sequence clustering approach where each cluster

is represented by a first-order Markov chain. (14). The authors perform two different

experiments to illustrate the effectiveness of the algorithm. In the first experiment re-

current interaction patterns among team members were discovered from event log data

consisting of actions of a software development team while in the the second experiment

common routines were discovered from the traces stored in a banking database using the

proposed technique (14). Veiga et al. extended this work by using two dummy states

(input and output state) with the Markov chain model for depicting the probability for

an event to be the first or last in the sequence (12). They also suggest several prepro-

cessing steps done before clustering to eliminate undesirable events from the event log

(12). Weerdt et al. propose a new tecnique called ActiTraC (active trace clustering)

for trace clustering which uses elements of active learning in an unsupervised environ-

ment (15). The proposed algorithm lessens the divergence between the clustering bias

and the evaluation bias and improves the accuracy and complexity of process models

(15). Song et al. In (16) propose a technique that cluster traces using several perspec-

tives of traces such as performance, transition, case and event attributes organised as

a feature vector. Each trace is represented by a trace profiles each describing different

perspective. The authors use four different clustering techniques: K-means, Quality

Threshold, Agglomerative Hierarchical Clustering and SelfOrganizing Maps using the

14



2.2 Novel Research Contributions

concept of trace profiles validate the approach by performing a real life case study (16).

Greco et al. use a greedy trace clustering approach where process models are iteratively

refined and each refinement leads to a more sound process model (17). The authors

use a vector space model over the activities and their transitions for clustering traces

present in the event log. The proposed technique cannot deal with loops and non-free-

choice constructs (17). The trace clustering algorithm proposed by Medeiros et al. in

(18) improves the technique proposed in (17) by overcoming several limitations. First

a process model is generated from the entire event log using Heuristics Miner. If the

model generated is optimal and does not suffer from over generalization stop otherwise

cluster the event log using K-means. The clusters obtained are further partitioned if

they are not optimal (18).

2.1.3 Conformance Measurement

Conformance is comparing the real behavior of the system with its expected behavior

(19). Conformance measurement in business processes with the help of process mining

has been shown in (19). The availability of event logs and control of users over some

processes are informed to be the requirements for analyzing business alignment (19).

The need of measuring conformance is not limited to only business sector, but is also

required in performing security audits (20). Accorsi et al. have done a case study in

financial sector that uses process mining techniques like conformance for auditing of

security requirements (20). Rozinat et al. describe two metrics/dimensions of confor-

mance testing namely, fitness and structural appropriateness (21). The authors show

that both of these dimensions are needed to completely quantify conformance (21).

They have implemented a conformance checker in ProM using which one can verify

both of the metrics (21). In (22) authors propose two algorithms. One to measure

fitness of a process model and another to find causes of inconsistencies between the

process model and event log.

2.2 Novel Research Contributions

In context to existing work, the study presented in this thesis makes the following novel

contributions:
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2.2 Novel Research Contributions

1. Improving the goodness of process models by splitting the event-log into homo-

geneous subsets by clustering structurally similar traces by adapting the the k

medoid algorithm.

2. Use of Longest Common Subsequence (LCS) or Dynamic Time Warping (DTW)

distance metrics in the adaptation of K-medoid algorithm.

3. Illustrating the benefits of trace clustering in studying back-forth & self-loops,

bug reopening and identifying bottlenecks.

4. An algorithm to automate clustering that returns the best cluster set for an event

log by determining the goodness of process models.

5. An in-depth case study on the open source Firefox browser project to investigate

the effectiveness of the proposed approach.
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3

Research Framework and

Solution Approach

Figure 3.1 shows the architecture diagram and the data processing pipeline for the

Anvaya Framework. As shown in Figure 3.1, the data processing pipeline consists of

5 steps labeled as A, B, C, D and E respectively. Step A consists of extracting Is-

sue Tracking System (ITS) data for the FireFox project using the Bugzilla REST API

(an HTTP version of its XMLRPC and JSONRPC APIs)1 and saving it in a MySQL

Database. We extract the complete history (life-cycle) of all closed bugs [refer Algo-

rithm 1]. The history consists of five fields: Who, When, What, Removed and Added.

Each event in the history of a bug-report consists of a timestamp. An event in an

event-log for a process model discovery algorithm requires a minimum of four fields:

Case ID (or the Trace ID for the process instance), Actor, Timestamp and Activity.

We map the ITS Issue ID as the Case ID, Who as Actor and a combination of What,

Added and Removed as Activity.

We convert the history into an Event-log table consisting of three columns [Actor,

Timestamp and Activity] where Activity column consists of the Activity-Id correspond-

ing to What, Added and Removed in the Activity-Definition table. For this we extract,

label and output all the unique activities from the Bugzilla history into an Activity-

Definition table. For labelling, we use a three letter code which reflects and indicates

the activities performed. Algorithm 2 shows the steps to create the Event Log and the

Activity-Definition Table. We identify 81 unique activities in our data set. Table 3.1

1 https://wiki.mozilla.org/Bugzilla:REST API
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Figure 3.1: Architecture Diagram and Data Processing Pipeline for Anvaya Framework

(Clustering-Based Approach for Improving the Goodness of Software Process Models De-

rived from Event-Logs)

shows the count and description of 20 unique Activity-IDs identified. We then trans-

form this Event-log data into a sequential format [refer Algorithm 3] since clustering

techniques can only be applied on sequential data. The data is in increasing order of

Case IDs and activities within a case instance are in increasing order of timestamp.

This step marks the end of Step B i.e. Data Transformation (refer Figure 3.2).

For Step C, we adapt‘ the K-medoid algorithm to cluster the sequential data us-

ing two different distance metrics: Longest Common Sub sequence and Dynamic Time

Warping. Output of this step is a set of k clusters. The clustering algorithms are

explained in detail in Section 5.

We now generate a single process model from the entire event-log data as well as

for each cluster obtained in Step C using a commercially available tool Disco1 that uses

the fuzzy miner algorithm (10). We choose Disco because of it’s ability to manage large

event logs and produce complex models. A node in the process model obtained from

1Disco is a process mining toolkit for which we obtained the academic license.

18



Figure 3.2: Data Transformation

Disco represents an Activity while an edge represents transition from one activity to

another. We observe that the process model generated from the entire data is too com-

plicated, spaghetti like and hard to comprehend where as process models generated

by clustering structurally similar traces are simpler to understand and analyze. We

evaluate the goodness of these process models using cyclomatic complexity and fitness

metrics. The process models generated from the clusters are found to have high-degree

of fitness and low degree of structural complexity.

The last step of Anvaya framework is the Analytics Step where we study and mine use-

ful information from the process models generated from the clusters and show benefits

of trace clustering in analysis of back-forth & self loops, bug reopening, and bottle-

necks. Unique traces are discovered from the models and statistics for event & activity

transitions are analyzed.
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Algorithm 1: Data Extraction

Data: Rest API to access Bugzilla public data

Result: History data for all Firefox bugs closed in year 2013.

1 initialize database

2 foreach bugid bi in Bugzilla do

3 extract all data di for bi

4 read di

5 if (di Status field equals ”Verified” or ”Resolved”, Product field equals

”Firefox” and Last modified field starts with ”2013”) then

6 go to history section of bi

7 download and write to database all events of bi

Algorithm 2: Event Log Creation

Data: History data for all Firefox bugs closed in year 2013.

Result: Event log of Firefox bugs closed in year 2013

1 foreach line li in history data do

2 read and split li on each column

3 generate activity id idi from values of column fields

”what”,”removed”,”added”

4 add idi to act ids[]

5 write values of column fields ”bugid”, ”who”,”when”, and idi to Event Log

file.

6 if idi 6∈ act ids[] then

7 write idi, and values of column fields ”what”,”removed”,”added” to

Activity-Definition Table
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Algorithm 3: Sequential Data Creation

Data: Event log of Firefox bugs closed in year 2013.

Result: Event log in sequential data format.

1 set previous=null;

2 foreach line li in event log do

3 read and split li on each column.

4 if bi 6= previous then

5 write bi and idi to sequential file

6 set previous= bi

7 else

8 append idi to bi−1 in sequential data file
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Table 3.1: Count and Description for some Activities.

Activity Acronym Count Description

Alias ALI 36 Short name assigned to bug for referring it at other places in Bugzilla.

Assigned to ASS 4274 Bug is assigned to the proper person for setting its resolution.

Carbon Copy CCC 48387 Users who are interested in the progress of the bug are included in the

mailing list.

Component COM 2765 Changing of the Component of the bug.

Depends On DEP 6099 The bugs listed here are the ones on which this bug depends, so they

must be resolved before this bug can be resolved.

Is Confirmed ISC 1106 Confirming that the issue raised is a bug.

Platform PLA 1312 Adding/removing the Platform of the bug.

Product PRO 402 Changing the Product Category of the bug.

Resolution Fixed REF 3876 A fix for the bug is determined and tested.

Resolution Invalid REI 2879 The issue raised is not a valid bug and resolution is thus set to ’Invalid’.

Status Assigned Resolved SAR 2344 The bug status changes from Assigned, where it was assigned to proper

person for setting its resolution to Resolved where resolution has been

performed and is awaiting verification by Quality Assurance.

Status Assigned Uncon-

firmed
SAU 3 The bug status changes from Assigned, where it was assigned to proper

person for setting its resolution to Unconfirmed where it is validated

whether the bug is true or not.

Status New Resolved SNR 4492 The bug status changes from New, where it was processed and resolved

to Resolved where it is awaiting verification by Quality Assurance.

Status Reopened New SRN 41 The bug status changes from Reopened where the bug was reopened

as the resolution was later found to be incorrect to New where it is

assigned for processing.

Status Resolved Reopened SRR 702 The bug status changes from Resolved, where its resolution was set, to

Reopened where the bug is reopened as the resolution is found to be

incorrect.

Status Resolved Verified SRV 731 The bug status changes from Resolved where resolution has been per-

formed to Verified where Quality Assurance has looked at the bug and

its resolution and agrees that the appropriate resolution has been per-

formed.

Status Unconfirmed

Assigned
SUA 76 The bug status changes from Unconfirmed where it is validated whether

the bug is true to Assigned where it is assigned to the proper person

for processing.

Summary SUM 2362 The short sentences describing what the bug is about are

added/removed.

Status Unconfirmed

Resolved
SUR 5334 The bug status changes from Unconfirmed where it is Validated whether

the bug is true to Resolved where resolution has been performed and

it is awaiting verification by Quality Assurance.

Version VER 1663 Changing of the version of the software in which the bug was found.
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4

Experimental Dataset

Table 4.1: Experimental Dataset Details (Mozilla Firefox Project)

Attribute Value

Project Firefox

First Issue Report Date 1 January 2013

Last Issue Report Date 31 December 2013

Data Extraction Date 16 October 2014

Number of Open Issues 3399

Number of Closed Issues Used 11804

Number of Activities in Closed Issues 81

Number of Events Reported for Closed Bugs 178331

We conduced a case-study on one of the largest open-source bug tracking system

Bugzilla. We use closed bug report data for Firefox Browser because closed bugs have

completed their lifecycle. We do not analyse open bug report data because such bugs

are still in the pipeline, work is being done on them, and we don’t know what shape they

are going to take. We Extract bug report for data Firefox Browser having reporting

timestamp of closure from 1st January 2013 to 31st December 2013 (12 months data).

Table 4.1 shows the experimental dataset details for the Mozilla Firefox project. We

conduct experiments on publicly available dataset so that our approach or results can

be replicated and used for benchmarking and comparison. We share our dataset and
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Figure 4.1: Case Duration

Figure 4.2: Number of Cases vs Case Variants

associated files by creating a public repository on GitHub1.

There are 11804 closed issues/process instances and 178331 records/events in the

Event Log. We have identified 81 unique activities from this dataset. The bug history

dataset consists of five fields, namely Who, When, What, Removed and Added. Who

specifies the name of the Actor who performs an Activity at a particular time. When

field specifies the Timestamp when the particular activity was performed. Combination

of What, Removed and Added has been taken as the activity. In What field bug fields

are specified whose value can be added or removed. Some of the examples of bug fields

are Status, Component, Content, Comment Tag, Resolution, Keywords, OS, Priority

1https://github.com/ashishsureka/anvaya
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Figure 4.3: Mozilla Firefox Event Log Data

etc 1. Figure 4.3 shows the Event Log of the Experimental Dataset used.

We extract and store the dataset in MySQL database from where it can be extracted

as a CSV (Comma Separated Values) file format which can be opened in Disco where

it is mandatory to select columns as CaseID and Activity. We then select and configure

the columns that contain CaseID, Timestamp and Activity and obtain Figures 4.1 and

4.2 from the Statistics View of the Disco tool. Statistics view provides the detailed

statistics information and performance metrics of our event log 2. Figure 4.1 shows the

graph between Number of Cases and Case Duration. As seen from the figure, most of

the cases have short duration and there are extremely few cases with large duration.

The median case duration is 13.2 months while the mean case duration is 13.5 months.

Figure 4.2 shows the graph between Number of Cases and case Variants. Variants are

the unique traces present in the Event log. There are 8697 variants present in our

Experimental Dataset. Large number of variants show that bug life-cycle consists of

diversity and variance.

1https://bugzilla.mozilla.org/page.cgi?id=fields.html
2fluxicon.com/disco/files/Disco-User-Guide.pdf
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5

Clustering

Figure 5.1: Clustering

Clustering is grouping similar objects together. An object in a cluster is sim-

ilar to the rest of the objects of its group but dissimilar to objects belonging to

other groups. As can be seen from Figure 5.1, objects having similar shape are

clustered together. Shape of objects in a cluster are different from shape of objects

in other clusters. Clustering is an unsupervised learning technique as unlike super-

vised learning, target class values or labels are not available a priori. It can be of
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5.1 K Medoid Clustering

many types.1 Connectivity based clustering (also known Hierarchical clustering)

builds a hierarchy of clusters. This clustering joins objects to form a cluster based

on the distance between them. It can be of two types: agglomerative (bottom-up

approach) and divisive (top-down approach). In centroid based clustering, a clus-

ter is represented by a central vector which may or may not be an element of the

dataset. The algorithm finds k centers and assigns each object to the nearest center.

Distribution based clustering is related to statistics and cluster objects belonging to

same distribution. In Density based clustering areas with higher density are defined

to be clusters and areas of sparser densities are taken to be noise. We have adapted

the k medoid algorithm, a medoid based clustering approach to cluster the sequential

traces.

5.1 K Medoid Clustering

K medoid clustering algorithm is a partitional clustering approach where each cluster

is represented by a medoid which is the most centrally located data point in a clus-

ter whose average similarity to all other data points in that cluster is maximal (23).

Medoids differ from centroids as they are always members of the given dataset2 making

this algorithm insensitive to outliers. This algorithm partitions the datasets into k

clusters such that distance between the data points assigned in a cluster and center of

that cluster is minimized 3. Determining the number of clusters (k) is out of scope of

this research work and we plan to study and implement it in future. We are assuming

that the software quality assurance manager, process analyst or any other user of An-

vaya Framework is qualified enough to have good insights about the data. He has the

intuition and hunch about the number of clusters that can be created from the dataset.

As seen from Figure 5.2, the end user of Anvaya Framewok uses his domain knowledge

as well as gut feeling to determine k in an iterative process.

Algorithm 4 describes the steps to compute k clusters using our proposed technique.

Initially k traces are selected as initial medoids. For initial cluster assignment, we

compute the distance of each non medoid trace with all medoid traces. We propose the

use of two popular algorithms: Longest Common Subsequence (LCS Similarity) and

1http://en.wikipedia.org/wiki/Cluster analysis
2http://en.wikipedia.org/wiki/Medoid
3http://en.wikipedia.org/wiki/K-medoids
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5.1 K Medoid Clustering

Figure 5.2: Software Quality Assurance Manager using his Domain Knowledge to Deter-

mine the value of K in an Iterative Process

Dynamic Time Warping (DTW Similarity) as the distance metrics which calculate the

similarity score (lcsi or dtwi) between two traces. The former metric returns the length

of longest common subsequence while the latter returns the warping distance (higher

the warping distance, lesser is the similarity). So a non medoid trace is associated to

a medoid with highest lcsi or lowest dtwi. To select the best configuration each non

medoid trace is swapped with each medoid trace and total similarity score (cost) is

calculated. The configuration with the highest cost while using LCS Similarity and

lowest cost while using DTW Similarity is selected. The steps are repeated till there is

no change in the medoids.

5.1.1 Longest Common Subsequence metric

The first distance metric that can be used to compute the similarity between two traces

is the Longest Common Subsequence metric. Since each trace is nothing but a sequence

of characters, we use the popular LCS algorithm to determine the length of the longest

common sequence of characters which need not be consecutive but follow a left to right

ordering as illustrated in Figure 5.3. LCS is a classic and popular problem which has

28



5.1 K Medoid Clustering

Algorithm 4: k Medoid Clustering

Data: Event log in sequential data format

Result: k clusters

1 input the value of number of clusters to be formed k.

2 read the input event log

3 randomly select k traces as initial medoids.

4 foreach non medoid trace ti do

5 foreach medoid trace mi do

6 calculate similarity score of ti and mi using LCS Similarity lcsi or DTW

Similarity dtwi

7 assign ti to mi with highest lcsi or lowest dtwi.

8 foreach medoid trace m do

9 foreach non medoid trace o do

10 swap m and o

11 compute the total similarity score (cost) of the configuration using either

lcsi or dtwi

12 select the configuration with the highest cost while using LCS Similarity and

lowest cost while using DTW Similarity.

13 Steps 4 to 12 are repeated till there is no change in the medoids
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5.1 K Medoid Clustering

Figure 5.3: Longest Common Subsequence

been explored a lot in literature. Let Similarity[i,j] be the length of LCS of sequences

S1i and S2j . The algorithm uses the following recursive formula: (24):-

Similarity[i,j] =

{
Similarity[i− 1, j − 1] + 1 if S1[i] = S2[j]
max{Similarity[i− 1, j], Similarity[i, j − 1]} otherwise

Algorithm 5 gives the pseudocode of dynamic programming implementation of LCS

problem (24). The algorithm takes two traces as input and returns their similarity

score.

Algorithm 5: LCS Similarity

Data: Trace s1 and s2 from event log in sequential data format.

Result: Similarity score between the two input traces.

1 find the length n of s1 .

2 find the length m of s2 .

3 for i← 0 to n do

4 Similarity[i][0]=0

5 for j← 0 to m do

6 Similarity[0][j]=0

7 for i← 1 to n do

8 for j← 1 to m do

9 if s1[i-1] equals s2[j-1] then

10 Similarity[i][j]=Similarity[i-1][j-1] +1

11 else

12 Similarity[i][j]= max(Similarity[i-1][j], Similarity[i][j-1])

13 return Similarity[n][m]
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5.1 K Medoid Clustering

Figure 5.4: Dynamic Time Warping

5.1.2 Dynamic Time Warping metric

Dynamic Time Warping is a popular algorithm used in speech recognition, text min-

ing, video retrieval and many other applications to find similarity between temporal

sequences, having same or different lengths, that are non-linearly warped in time di-

mension i.e. they are structurally similar but are on a different timescale 1 2.

Let two sequences be S1 and S2. Warping path consists of index pairs (i,j) if

DTW associates S1[i] with S2[j]. It has certain restrictions, namely Monotonicity that

says that the warping path cannot go backwards in time, Continuity that says that

every character of each sequence is included in the warping path and the indices can

increase by 0 or 1 and Boundary condition which states that the warping path begins

at (1,1) and ends at (n,m) where n and m is the length of the first and second sequence

respectively (25). Out of the many warping paths, an optimal warping path is the one

that minimizes the total cost (25). Warping distance is the summation of element wise

distance between S1[i] and S2[j] over all pairs of (i,j) in the optimal warping path1.

We assign a cost (distance) 0 if S1[i]=S2[j], otherwise 1 is assigned. Let S1=ABA and

S2=AABAAP, then the optimal warping path consists of indices (1,1) (1,2) (2,3) (3,4)

(3,5) (3,6) and warping distance will be 1.

Algorithm 6 gives the pseudocode of the dynamic programming implementation

of DTW algorithm. The algorithm returns the similarity score which is the warping

distance. Lower the warping distance, more similar are the traces.

1http://cs.bc.edu/ãlvarez/Algorithms/Notes/dtw.html
2http://en.wikipedia.org/wiki/Dynamic time warping
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5.1 K Medoid Clustering

Algorithm 6: DTW Similarity

Data: Sequences s1 and s2 from event log in sequential data format.

Result: Similarity value between the two input sequences

1 find the length n of s1 .

2 find the length m of s2 .

3 cost=0 .

4 for i← 1 to n do

5 DTW[i][0]=∞

6 for j ← 1 to m do

7 DTW[0][j]=∞

8 DTW[0][0]=0

9 for i← 1 to n do

10 for j← 1 to m do

11 if s1[i-1] equals s2[j-1] then

12 cost=0

13 else

14 cost=1

15 DTW[i][j]=cost+minimum of(DTW[i-1][j],DTW[i][j-1],DTW[i-1][j-1])

16 return DTW[n][m]
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6

Evaluation

We evaluate two aspects of the process models, namely complexity and fitness. Process

models generated from the clusters should exhibit low degree of structural complexity

and high-degree of fitness.

6.1 Complexity

Complexity can have unwanted effects on understandability, comprehensibility and cor-

rectness of process models (26). Many complexity metrics have been proposed in liter-

ature (27) (28) which tells whether the process model is compact, has appropriate size,

is easy to comprehend and understand. We use McCabe’s cyclomatic number which

determines the number of linearly independent paths in the process model (29). It

represents complexity in a single number and represents the magnitude of all possible

independent paths that can be followed in the model. The pseudocode to determine

the cyclomatic number of process models obtained from Disco is given in Algorithm

7. The Xml format input of the process model is needed as it carries all the relevant

information namely, the number of edges, nodes along with the adjacency matrix which

is required for calculating the complexity. The higher the complexity value returned

by this algorithm, higher will be number of independent paths and thus more complex

will be the model.
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6.2 Fitness

Algorithm 7: Complexity

Data: Xml format input of the process model

Result: Complexity of the process model

1 read number of edges e

2 read number of nodes n

3 complexity=e-n+2

6.2 Fitness

One of the major applications of Process Mining is to determine the gaps between the

real world as recorded in the event log and the model1. It helps in detecting whether

there is problem with the real world execution of the system or if the existing model

requires any updates. The Fitness metric is used to determine the conformance between

an event log and a process model generated from that log. In a completely fit model

each and every trace present in the event log is replicated in the process model. High

fitness indicates that the process model majorly captures the behaviour of all traces in

the event log. The pseudocode to determine the fitness of the process model at event

level is given in Algorithm 8 (22). The fitness value of a process model can take any

values between 0 and 1. Fitness value 1 indicates that the process model has a perfect

one to one mapping with the event log while value 0 indicates that none of the traces

present in the even log are shown in the process model.

1http://www.processmining.org/online/conformance checker
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6.2 Fitness

Algorithm 8: Fitness

Data: Xml format input of the process model and Event log in sequential

format.

Result: Fitness of the process model.

1 read Xml format input file.

2 foreach transition between a source ni and target node nj do

3 adjacency matrix ani,nj =1

4 read the input event log

5 foreach bug id bi do

6 add each activity to trace ti

7 if ti is unique then

8 add it to uiquetrace[]

9 Count its frequency Fi in the event log

10 foreach entry ti in uniquetraces[] do

11 V alidi=1

12 j=1

13 while j<length of ti do

14 if ati[j],ti[j+1] 6= 1 then

15 V alidi=0

16 break

17 else

18 j + +

19 foreach entry ti in uniquetraces[] do

20 FreqValidProduct=FreqValidProduct+Fi*V alidi

21 FreqSum=FreqSum+Fi

22 Fitness=FreqValidProduct/FreqSum

35



7

Experimental Results

To validate the clustering, k medoid algorithm using LCS and DTW similarity metrics

was applied on 1615 process-instances and 6 clusters were obtained.

Fig 7.1 shows the process models generated using Disco at 100% activity and 12.2%

path resolution from the entire event log (referred as the main model throughout the

paper) and event log of the six clusters obtained after applying k medoid with LCS

distance metric. Table 7.2 contains the complexity and fitness values of main model

and all the six clusters. The complexity has been reduced by 40% on an average in a

cluster clearly showing that clusters are now much easier to comprehend and analyse.

Process models of 66% clusters have a better one to one mapping with the event log

and thus show a better fitness value. Table 7.1 characterizes the domain of the six

clusters obtained using LCS distance metric.

Fig 7.2 shows the process models generated using Disco at 100% activity and 12.2%

path resolution from the entire event log and event log of the six clusters obtained after

applying k medoid with DTW distance metric. The complexity and fitness of main

model and all the six clusters is shown in Table 7.3. The complexity has been reduced

by 40.98% on an average in a cluster while process models of 83.33% clusters have

better fitness values as compared to the main model.

Throughout our work in further sections, we have used LCS distance metric for

analysis.
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Table 7.1: Cluster Description

Description

Cluster 1

100 bugs are reported in all OS, 42 in Windows XP and 33 in Mac OS and

Windows 7. Most of them are reported in platform x86 with severity field

Normal and current resolution Worksforme or Wontfix. The status of bugs is

first modified from Unconfirmed to New (SUN) and it is then confirmed to be

true (ISC). For most of the bugs the status then changes from New to Resolved

where it is awaiting verification by Quality Assurance (SNR) while for some

the status changes directly from Unconfirmed to Resolved (SUR). Resolution

of the bugs is then set to either Wontfix (REX) or Worksforme (REW) before

the last resolved stage (CFL). Bugs are reopened after the resolution is set as

Fixed.

Cluster 2

94 of the bugs are reported in all OS, 52 in Windows 7 and 46 in Windows

XP. Most of them are reported in platform x86 with severity field Normal

and current resolution Worksforme or Wontfix. In most of the bugs status is

first modified from Unconfirmed to Resolved after which their resolution either

changes to Wontfix (REX) or Worksforme (REW) before the last resolved stage

(CFL). While for some bugs, version of the software the bug was found in (VER)

is added, various flags (FLA) are set, tags and status information is added in

text entry box of bug (WHI), and blocks (BLO) field is added, status is changed

from New to Resolved (SNR) after which the resolution either becomes Wontfix

or Worksforme.

Cluster 3

Almost all bugs are independent of OS and platform. Most of them are reported

with severity field Normal and current resolution Fixed. The bugs are assigned

to the proper person (ASS). Summary of bugs (SUM), keywords (KEY), flags

(mostly attachment flags), blocks (BLO) field and Target Milestone (TAR)

field is added. Properties of attachments (ATT) are added/removed. Bugs

are identified and listed in Depends on field (DEP). Bugs listed here must be

resolved before the bug can be resolved. Status changes from New to Resolved.

For most of the bugs resolution becomes Fixed (REF) and for others it becomes

either Wontfix (REX) or Worksforme (REW) before the last resolved stage

(CFL).
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Cluster 4

121 bugs are reported in all OS, 68 in Windows XP and 37 in Linux. Most of

them are reported in all or x86 platform with severity field Normal or Enhance-

ment. Current resolution of 101 bugs is Wontfix and 102 bugs is Worksforme.

Status of bugs changes from New to Assigned (SNA) and it is then confirmed

to be true (ISC). Component (COM) field belonging to the product and per-

son responsible for confirming if bug is unconfirmed, and for verifying the fix

is added and the bugs are assigned to the proper person (ASS). For most of

the bugs the status then changes from New to Resolved (SNR) while for some

the status changes directly from Unconfirmed to Resolved (SUR). Resolution

of the bugs is then set to either Wontfix (REX) or Worksforme (REW) before

the last resolved stage (CFL).

Cluster 5

161 bugs are reported in all OS, 38 in Windows 7 and 25 in Mac OS and

Windows XP. Most of them are reported in all platforms with severity field

Normal and current resolution Fixed. The bugs are assigned to the proper per-

son (ASS). Several flags (FLA), keywords (KEY) to easily identify and group

the bugs are added and tags & status information is added in text entry box

of bug (WHI). Properties of attachments (ATT) are added/removed. Bugs are

identified and listed in Depends on field (DEP). Status either changes from As-

signed to Resoved (SAR) or New to Resolved (SNR), Target Milestone (TAR)

field is defined and Resolution becomes fixed (REF) before the last resolved

stage (CFL).

Cluster 6

75 bugs are reported in Windows 7 and 54 in Linux . Most of them are reported

with platform x86 and severity field Normal or Major. Current resolution of

108 bugs is Incomplete and 73 bugs is Worksforme. Version of the software the

bug was found in (VER) is added, various flags are set and tags & status

information is added in text entry box of bug (WHI). The status changes

directly from Unconfirmed to Resolved (SUR) after which resolution either

becomes Worksforme (REW) or Incomplete (REI) before the last resolved stage

(CFL).
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Table 7.2: Complexity and Fitness Metric of the Spaghetti Model Generated from the

entire Event Log as well as the Six Clusters Generated by K-medoid Algorithm using LCS

as the Distance Metric

Cyclomatic

Complexity

(%age decrease

in complexity

of clusters)

Fitness

Main Model 143 (-) 0.017

Cluster 1 75 (47.5 %) 0.178

Cluster 2 82 (42.6 %) 0.085

Cluster 3 106 (25.8 %) 0.004

Cluster 4 96 (32.8 %) 0.070

Cluster 5 83 (41.9 %) 0.015

Cluster 6 72 (49.6 %) 0.208

Table 7.3: Complexity and Fitness Metric of the Spaghetti Model Generated from the

entire Event Log as well as the Six Clusters Generated by K-medoid Algorithm using DTW

as the Distance Metric

Cyclomatic

Complexity

(%age decrease

in complexity

of clusters)

Fitness

Main Model 143 (-) 0.017

Cluster 1 89 ( 37.7 %) 0.004

Cluster 2 93 ( 34.9 %) 0.059

Cluster 3 63 ( 55.9 %) 0.328

Cluster 4 97 (32.1 %) 0.063

Cluster 5 78 (45.49 %) 0.052

Cluster 6 86 (39.8 %) 0.078
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Figure 7.1: Process model generated using Disco from the entire event log (a) and event

log of six clusters (b-g) obtained using LCS distance metric.
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Figure 7.2: Process model generated using Disco from the entire event log (a) and event

log of six clusters (b-g) obtained using DTW distance metric.
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8

Analysis

For all the 6 clusters obtained using LCS distance metric, we analyse and study self-

loops, back-and-forth, issue reopen, unique traces, event frequency, activity frequency

and bottlenecks to show how clustering facilitates a better understanding. Consumable

results, actionable information and valuable insights are extracted from the clusters

showing that separating structurally similar traces makes the analysis easier.

8.1 Self-loop Analysis

Figure 8.1: Self-Loop

Study of self-loops is important since such loops indicate intensive problems (30).

These problems are often difficult to detect because it may seem that at each stage

some useful work is being done though actually no progress is being made and the

bug is just getting transferred (30). In a process model, a self-loop can be defined as

the transition A→A i.e. a transition that begins and ends at the same activity (refer

Figure 8.1). Self-loops are undesirable and cause redundancy in the bug’s trace. Just

looking at the count of self-loops of an activity in the event log of spaghetti model is
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8.1 Self-loop Analysis

not enough since it might happen that most of these self-loops are occurring in traces

of two or three bugs in which case we cannot generalize and say that this particular

activity causes majority of self-loops. Doing self-loop analysis after clustering similar

traces helps us to discover if self-loop of an activity appears only in certain kinds of

bugs or if it appears in majority in all the clusters. First entry in each cell of Table 8.1

denotes the frequency of self-loop of the activity specified in the first cell of the same

row.

1. Self-loop frequency of activity CCC is high in all the six clusters with the count

being as high as 3119 in cluster 3. This indicates that many people including

users who have no direct role to play in the bug are added in the mailing list. It’s

an unhealthy practise to repeatedly add/remove people from the mailing list and

should be avoided by adding only a few people who are interested in receiving

notifications about the bug’s progress.

2. Activities ASS and COM has less number of self-loops in all the clusters indicating

that most of the time bug is assigned to the right person and correct component

type is selected in one go.

3. Many self-loops of activity ATT in clusters 3, 4 & 5 indicates that several prop-

erties of attachment file associated with a bug like content-type, description, file-

name, isobsolete, flags etc keep on changing and attribute fields are not correctly

entered by the user while raising an issue.

4. Many recurrent loops of Activity FLA (Flags) occurs in all clusters except 6.

Flags can be of two types: attachment flags and bug flags 1. Loop involving

the former flag indicates that developer has asked other developers to review the

code implying that peer code review practice is followed for quite a lot of bugs,

while loop involving the latter type indicates that status information of the bug

is repeatedly required e.g needinfo flag is set many times sequentially implying

that the developer requires more information about the issue raised.

5. High Self-Loop frequency of activity Blocks (BLO) in cluster 3 indicates that

several bugs are repeatedly added in the Blocks field which means a lot of bugs

1http://www.bugzilla.org/docs/2.22/html/flags-overview.html
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8.1 Self-loop Analysis

are discovered sequentially which depends upon the current bug. Bugs in this

cluster needs to be resolved on a priority basis as several other bugs are dependent

on them.

6. Self-loop frequency of activity Depends on (DEP) is extremely high in cluster 3

indicating that several bugs are identified many a time on which the current bug

is dependent. It is interesting to note that self-loop frequency of BLO was also

high in this cluster indicating that bugs in these clusters are either dependents

or dependees.

7. There are 44 self-loops of KEY in cluster 5 indicating that keywords keep on

getting updated to identify and group bugs easily.

8. There are 32 self-loops of WHI in cluster 5 indicating that information like tags

and status fields of the bugs are entered in the text entry box of the bug repeatedly.
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8.1 Self-loop Analysis
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8.2 Back-Forth Analysis

8.2 Back-Forth Analysis

Figure 8.2: Back-Forth

A back-forth loop, also known as ping pong pattern, can be defined as a transition

A→B→A i.e. a transition which begins at activity A, goes to activity B and again

ends at A (refer Figure 8.2). Second entry in each cell of Table 8.1 contains the activity

with which the activity specified in the first cell of the same row is forming a back-forth

loop maximum number of times and also the frequency of that loop. An activity A can

be in a back-forth loop with multiple activities e.g. A→B→A with frequency f1 and

A→C→A with frequency f2 with f2 > f1. Activity C is specified as the second entry

in each cell of Table 8.1.

1. Table 8.1 clearly shows that some activities going in back-forth loop with a very

high frequency in main model are also depicting the same behavior in all the

clusters e.g. ATT looping 116 times with FLA is presenting the exact same

pattern in all the clusters.

2. Ping pong patterns that include activity Status Resolved Reopened (SRR) are

present in small numbers but are of major interest. The resolve-reopen loop is a

problematic pattern. In clusters 1, 3 and 5 SRR is looping with RFF which means

that a fixed bug is reopened and again fixed. It can happen when some people who

are working to resolve the bug think that the bug has not been properly resolved.

Such loops are undesirable because the average time to resolve a re-opened bug

can be twice as long as the time to resolve a non re-opened bug (31).

3. Activity DEP forms a back-forth loop with CCC 83 times and CCC forms a loop

with DEP 141 times in cluster 3 which might be happening because the team

solving other bugs (mentioned in Depends on field) needs to be informed about
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8.3 Event Analysis

the bug’s progress so that they can be included in the decision making process of

the current bug.

4. CCC is involved in back-forth loop with many activities like SNR, WHI, SUR

etc. with high frequency which indicates that more people are involved in the

decision making process of confirming the bug’s status at every step in the bug’s

life cycle.

5. Important attributes of the bug like component (COM), assigned (ASS), version

(VER), operating system (OPS), summary (SUM) and target milestone (TAR)

though are involved in less number in the ping pong patterns but indicates that

it takes time to conclude about the values of these fields.

8.3 Event Analysis

A bug life cycle is very diverse consisting of various events ranging from a minimum

value of 4 to a maximum of 338. While the main model has a total of 37710 events, on

an average 6286 events occur in a cluster. Figure 8.3 shows number of events per case

in each of the six clusters. Most of the bugs in Cluster 1 and Cluster 2 have number

of events in the range 1-20 as even the main model has most of the cases belonging to

this span. Bugs in Cluster 3 have events of varying magnitude in their life-cycle. While

almost 20% of bugs have events in range 1-30, there are also 10% of bugs with event

length between 101-200. The fewer count of bugs having high event span not easily

visible in the main model can be seen in the clusters. Cluster 4 and Cluster 5 have a

good percentage of bugs (almost 80-90%) with event cycle length of 1-40, even the main

model has very low percentage of bugs above this event span. More than 75% bugs in

Cluster 6 have events in the range 1-10 in their life-cycle indicating categorization of

bugs of uniform length in the cluster.

8.4 Activity Frequency Analysis

Table 8.2 contains Relative frequency percentage and absolute frequency of all activities

present in the clusters. Figure 8.4 shows percentage of cases having some frequently

occurring activities in their trace. The high percentage of CFL and CCC (≈ 100%)

in all the clusters shows that these activities are present in the trace of almost every
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8.4 Activity Frequency Analysis

Figure 8.3: No. of Events per Case in each of the six Clusters.

closed bug. We can conclude from the figure that the status of most of the bugs was

changed to Resolved from either New (SNR) or Unconfirmed (SUR) status without

having multiple assignments (ASS), therefore, less percentage of cases contain ASS.

Equal percentages of activities ISC and SUN indicates that bugs that were initially

Unconfirmed are Confirmed (ISC) later and set to New state (SUN). Resolution is

mostly set to Fixed, Worksforme and Wontfix. Presence of activity BLO in all clusters

shows that high dependencies exists among the bugs. Existence of Target Milestone

(TAR) in all the clusters in substantial amount depicts that most of the bugs have a

predetermined soft deadline upto which it is expected to be fixed.

Table 8.2: Absolute Frequency (Abs) and Relative Frequency Percentage (Rel freq.) for

all Activities present in the Clusters.

Activity

Cluster 1

Rel freq.

(Abs)

Cluster 2

Rel freq.

(Abs)

Cluster 3

Rel freq.

(Abs)

Cluster 4

Rel freq.

(Abs)

Cluster 5

Rel freq.

(Abs)

Cluster 6

Rel freq.

(Abs)

CCC 1245 (33.95) 1867 (40.53) 5235 (42.24) 2684 (39.03) 2158 (27.74) 588 (24.58)

FLA 293 (7.99) 280 (6.08) 1564 (12.62) 625 (9.15) 1498 (19.25) 121 (5.06)
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CFL 277 (7.55) 287 (6.23) 317 (2.56) 319 (4.64) 293 (3.77) 286 (11.96)

SNR 170 (4.64) 138 (3) 150 (1.21) 254 (3.69) 108 (1.39) 38 (1.59)

REW 155 (4.23) 79 (1.71) 51 (0.41) 113 (1.64) 16 (0.21) 75 (3.14)

CFS 141 (3.85) 11 (0.24) 42 (0.34) 2 (0.03) 224 (2.88) 4 (0.17)

ASS 106 (2.89) 88 (1.91) 290 (2.34) 373 (5.42) 257 (3.3) 18 (0.75)

KEY 106 (2.89) 119 (2.58) 214 (1.73) 74 (1.08) 245 (3.15) 39 (1.63)

WHI 104 (2.84) 202 (4.38) 281 (2.27) 109 (1.59) 311 (4) 280 (11.71)

VER 84 (2.29) 124 (2.69) 119 (0.96) 71 (1.03) 67 (0.86) 184 (7.69)

ATT 79 (2.15) 90 (1.95) 594 (4.79) 202 (2.94) 487 (6.26) 21 (0.88)

SUR 78 (2.13) 129 (2.8) 47 (0.38) 45 (0.65) 32 (0.41) 234 (9.78)

ISC 76 (2.07) 52 (1.13) 82 (0.66) 139 (2.02) 34 (0.44) 16 (0.67)

SUN 72 (1.96) 46 (1) 71 (0.57) 133 (1.93) 25 (0.32) 11 (0.46)

TAR 57 (1.55) 63 (1.37) 209 (1.69) 95 (1.38) 213 (2.74) 24 (1)

SUM 57 (1.55) 86 (1.87) 156 (1.26) 150 (2.18) 72 (0.93) 24 (1)

BLO 52 (1.42) 138 (3) 488 (3.94) 124 (1.8) 281 (3.61) 18 (0.75)

REF 51 (1.39) 31 (0.67) 136 (1.1) 25 (0.36) 224 (2.88) 26 (109)

DEP 48 (1.31) 111 (2.41) 1128 (9.1) 175 (2.55) 236 (3.03) 6 (0.25)

QAC 44 (1.2) 55 (1.19) 105 (0.85) 299 (4.35) 60 (0.77) 13 (0.54)

REE - 4 (0.09) - 2 (0.03) 2 (0.03) 2 (0.08)

COM 38 (1.04) 62 (1.35) 93 (0.75) 109 (1.59) 62 (0.8) 21 (0.88)

REI 18 (0.49) 37 (0.8) 16 (0.13) 9 (0.13) 4 (0.05) 113 (4.72)

CFT 37 (1.01) 3 (0.07) 14 (0.11) 2 (0.03) 127 (1.63) -

RED 33 (0.9) 40 (0.87) 28 (0.23) 33 (0.48) 20 (0.26) 23 (0.96)

OPS 29 (0.79) 43 (0.93) 85 (0.69) 82 (1.19) 56 (0.72) 7 (0.29)

SAR 28 (0.76) 17 (0.37) 89 (0.72) 14 (0.2) 136 (1.75) 9 (0.38)

SNA 23 (0.63) 17 (0.37) 104 (0.84) 41 (0.6) 125 (1.61) 3 (0.13)

PLA 22 (0.6) 37 (0.8) 79 (0.64) 70 (1.02) 56 (0.72) 8 (0.33)

CFB 14 (0.38) 85 (1.85) 154 (1.24) - 91 (1.17) 6 (0.25)

SRV 14 (0.38) 21 (0.46) 42 (0.34) 27 (0.39) 88 (1.13) 4 (0.17)

SNE 10 (0.27) 6 (0.13) 11 (0.09) 24 (0.35) 2 (0.03) 3 (0.13)

PRI 10 (0.27) 32 (0.69) 41 (0.33) 46 (0.67) 12 (0.15) 15 (0.63)

RES 9 (0.25) 26 (0.56) 30 (0.24) 48 (0.7) 5 (0.06) 21 (0.88)

SNM 6 (0.16) 2 (0.04) 8 (0.06) 12 (0.17) 3 (0.04) 2 (0.08)

PRO 6 (0.16) 12 (0.26) 22 (0.18) 26 (0.38) 15 (0.19) 1 (0.04)

SRR 6 (0.16) 8 (0.17)) 65 (0.52) 27 (0.39) 37 (0.48) 12 (0.5)

SRU 5 (0.14) 12 (0.26) 12 (0.1) 22 (0.32) 1 (0.01) 10 (0.42)

SCM 5 (0.14) 4 (0.09) 1 (0.01) 2 (0.03) - 3 (0.13)

SEE 5 (0.14) 5 (0.11) 10 (0.08) 6 (0.09) 9 (0.12) 3 (0.13)

URL 4 (0.11) 3 (0.07) 28 (0.23) 17 (0.25) 3 (0.04) 12 (0.5)

CFC 4 (0.11) 2 (0.04) 1 (0.01) 1 (0.01) - -

RFF 4 (0.11) 2 (0.04) 23 (0.19) 8 (0.12) 18 (0.23) 2 (0.08)
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RFW - 3 (0.07) 4 (0.03) - 1 (0.01) 1 (0.04)

GRO 3 (0.08) 8 (0.17) 4 (0.03) 4 (0.06) - 9 (0.38)

SNU 3 (0.08) 3 (0.07) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.04)

SEN 2 (0.05) 1 (0.02) 2 (0.02) 5 (0.07) 1 (0.01) 2 (0.08)

STE 2 (0.05) - 2 (0.02) 1 (0.01) - 1 (0.04)

SMN 2 (0.05) 3 (0.07) 1 (0.01) 5 (0.07) - 1 (0.04)

SNT 2 (0.05) - 2 (0.02) 3 (0.04) 2 (0.03) -

RFD - - - - 1 (0.01) -

SAN 2 (0.05) 2 (0.04) 34 (0.27) 29 (0.42) 15 (0.19) -

SCN - 2 (0.04) - 1 (0.01) - 8 (0.33)

SBM - 1 (0.02) - - - -

SEM - 1 (0.02) 1 (0.01) 3 (0.04) - -

SME - 1 (0.02) - 7 (0.1) - 1 (0.04)

SMM - 1 (0.02) - 1 (0.01) - -

SMC 1 (0.03) 1 (0.02) - - 1 (0.01) -

SNC 1 (0.03) 4 (0.09) 2 (0.02) 1 (0.01) - 3 (0.13)

SUA 1 (0.03) 1 (0.02) 5 (0.04) 1 (0.01) 5 (0.06) 2 (0.08)

SVU - 1 (0.02) - 6 (0.09) - 1 (0.04)

SRN 1 (0.03) 2 (0.04) 1 (0.01) 15 (0.22) 4 (0.05) 2 (0.08)

SNB 1 (0.03) - - - 1 (0.01) -

SRA 1 (0.03) - 4 (0.03) 1 (0.01) 2 (0.03) -

ALI - - 4 (0.03) 4 (0.06) - 2 (0.08)

SVR - - 3 (0.02) 3 (0.04) 2 (0.03) -

RFI - - 2 (0.02) - 1 (0.01) -

STM - - 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.04)

STN - - - 2 (0.03) - -

SET - - - 1 (0.01) - -

SBN - - - 1 (0.01) 1 (0.01) 2 (0.08)

SMT - - - - 2 (0.03) -

SCE - - - - - 1 (0.04)

SME - - - - - 1 (0.04)

REX 67 (1.83) 70 (1.52) 63 (0.51) 107 (1.56) 12 (0.15) 19 (0.79)

REN 20 (0.55) 26 (0.56) 23 (0.19) 30 (0.44) 14 (0.18) 28 (1.17)

SEC - - - - - 1 (0.04)
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Figure 8.4: Distribution of some Frequently Occurring Activities over the cases

8.5 Reopen Analysis

Bug reopening is equally important in open source systems like Bugzilla as it is in closed

source or commercial systems (32). It increases the costs of maintaining the software,

lessens the user-perceived quality of the system and leads to extra and needless rework

by already loaded developers (31). Reopening of a substantial number of fixed bugs can

indicate instability in the system (32). Analysis of factors leading to bug reopening will

help in improving the quality of bug fixing process and countering all these problems.

We are taking into account the following factors (22) (31) (32) that contribute in

reopening of bugs:

1. Verified: A bug verified by a Quality Assurance agent may get reopened if some

useful information about the bug becomes available that demands to have it

reviewed again.

2. Fixed: A fixed bug may have its reopening if the fix proposed seems to have faults

and is not complete and entirely correct solution.
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8.5 Reopen Analysis

Figure 8.5: Reopen Analysis.

3. Duplicate: If the bug is not studied deeply and few of its symptoms match with

some already existing bug, it is incorrectly assumed to be the case of duplicacy.

4. Wontfix/Invalid/Incomplete/Worksforme: There are high chances of re-openings

if earlier the bug was not been able to fix (Wontfix), it was not categorized as a

bug (Invalid), it was reported with incomplete information (Incomplete) or if it

was not successfully reproduced (Worksforme).

Clustering helps in analysing whether the reopening due to an activity is happening

globally throughout the main model or in a certain set of similar bugs.

1. Percentage of re-openings due to Verified (SRV) and Invalid (REN) resolutions

is nearly same in main model, still reopening after bug verification (SRV) is

supported by 3 clusters while REN appears in 4 clusters suggesting that former

appears in similar characteristic bugs while the latter can appear in all kinds of

bugs. Also less percentage of SRV is supported by the fact that they are verified

by a Quality Assurance agent (QAC) who confirms that a proper fix has been

achieved.
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8.5 Reopen Analysis

2. In almost all clusters a good amount of re-openings occur after resolution of bug

was set as Fixed (REF) signifying that resolution set as Fixed before the reopening

is uniformly distributed across all the bugs in good amount thus appearing in all

clusters. It also indicates bad understanding and management in fixing the bugs

at first, leading to loss of time in analysing and correcting the same bug again.

Reopening after resolution was set to Worksforme (REW) is half in percentage

than REF in the main model, still 5 out of 6 clusters contain reopening after

REW indicating that this resolution is not limited to some closely related bugs

but rather appears at random.

3. Reopening due to the activity Worksforme (REW) is also contributed by 5 out of

6 clusters suggesting that bugs entering into the system are initially difficult to

reproduce, thus are left for future references/information using which they will

be reopened again.

4. Wontfix, Invalid, Duplicate factors cause reopening in 4 clusters. Invalid reopen-

ing is half in percentage than duplicate reopening in the main model and their

presence in equal numbers in clusters signifies that invalid label could not be

categorized under a category of clusters having certain common properties and is

spread randomly in the data.

The description of the clusters mentioned in Table 7.1 also support the kind of activities

leading to the reopening in various clusters.

1. Cluster 1 contributes only to reopening after bug is Fixed (REF) which can also

be seen from the description of this cluster. Most of the bugs in this cluster are

as described confirmed to be true, resolved and await for the verification instead

of being verified and thus are later reopened.

2. In Cluster 2 and Cluster 6 the maximum percentage of reopening is due to factor

Worksforme (REW) informing that the bugs are unable to be reproduced and

hence in the cluster description we see various flags, attachments and dependen-

cies being added to the bugs to make its definition clear.

3. In Cluster 3 and Cluster 5 reopening after REF is hugely dominant as for most

of the bugs resolution was set as Fixed, but later we see clusters containing vari-

ous assignments, attachments, dependencies, keywords, summaries being defined
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indicating that the fix was not absolute and it requires reopening and looking

again.

4. Cluster 4 has most of the cases of the bugs being marked duplicate incidentally

and reopened thereafter. In this cluster we see a lot of unconfirmed bugs being

changed to Resolved State (SUR) indicating that the bugs are not properly ex-

amined before their resolution is set. The reason for not confirming the identity

of the bug is that they are considered as duplicates of existing bugs.

8.6 Unique Traces

A trace is a sequence of activities appearing in chronological order of occurrence. For

analysis we consider unique traces and their frequency of occurrence in data set. The

main model consists of 1513 variants (unique sequences of activities). For looking at

the distribution of similar traces in the clusters, a few topmost occurring variants are

considered. Since clustering groups similar objects together, similar traces should go

in the same cluster. The experimental results show that cases that follow the same

variant appear in the same cluster. As can be seen from Table 8.3, the top 4 variants

of main model goes in Cluster 6 while the 5th one lies in Cluster 1.

8.7 Bottleneck Identification

Bottleneck refers to those components of process model that consume comparatively

more time than the rest of the system causing the entire process to slow down. Iden-

tification of principal factors constraining the process speed can help a process analyst

in working upon the causes that deter the performance of a process. We compute the

mean time taken for every transition between two activities in both the main model as

well as in all the clusters to conclude as to how clustering helps in analysis of bottle-

necks in a better manner. For analysis, we consider the transitions taking the maximum

amount of time i.e. discovering the largest bottlenecks present in the models.

1. The percentage of bottlenecks taking mean time more than 500 and 1000 days

in all the models is shown in Figure 8.6. From the Figure we can observe that
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Table 8.3: Most Occurring Variants of Main Model and each of the Six Clusters with

their Frequency of Occurrence

Cluster

Variant

Freq.

(%age)

Trace

Main Model

12 (0.74) VER → CCC → SUR → CCC → REW → CFL

11 (0.68) VER → WHI → SUR → CCC → REI → WHI → CFL

7 (0.43) SUR → RED → CCC → CFL → CCC

7 (0.43) VER → CCC → SUR → CCC → REI → CFL

5 (0.31) VER → CCC → CCC → SUR → CCC → REW → CFL

Cluster 1

5 (1.85) VER → CCC → CCC → SUR → CCC → REW → CFL

3 (1.11) SUR → CCC → REW → CFL

3 (1.11) SNR → CCC → REW → CFL

2 (0.74) CCC → CCC → SNR → REW → CFL

Cluster 2

2 (0.74) CCC → CCC → VER → CCC → CCC → SUR → REW → CFL

2 (0.74) CCC → SNR → RED → CFL → CCC

2 (0.74) SUR → RED → CFL → CCC

2 (0.74) WHI → SUR → REI → CFL → CCC → CCC

Cluster 3

2 (0.74) VER → CCC → CCC → FLA → SUR → REN → FLA → CFL

1 (0.37)
SUM → SUR → REX → CFL → SRU → RES → SUR →
REX → CFL → CCC → CCC → QAC → CCC → CCC

1 (0.37) CCC → FLA → FLA → SUR → REW → CFL

1 (0.37)
SUM → PLA → OPS → CCC → CCC → CCC → CCC →
SNR → CCC → REX → CFL

Cluster 4

1 (0.37) SUM → ASS → SNR → CCC → REW → CFL → SUM → PLA

1 (0.37) SUR → REW → CFL → QAC → CCC → SUM → SUN

1 (0.37) SUM → SUR → REX → CFL → CCC → SRV → CCC

1 (0.37) CCC → REW → CFL → CCC → CCC

Cluster 5

2 (0.74) SUR → REN → CCC → CFL → SRV → CCC

2 (0.74) CCC → CCC → SUR → REN → CCC → CFL → CCC

2 (0.74) SNR → RED → CFL → CCC

1 (0.37) QAC → ASS → SUR → REW → CCC → CFL → CCC

Cluster 6

12 (4.46) VER → CCC → SUR → CCC → REW → CFL

11 (4.09) VER → WHI → SUR → CCC → REI → WHI → CFL

7 (2.6) SUR → RED → CCC → CFL → CCC

7 (2.6) VER → CCC → SUR → CCC → REI → CFL

55



8.7 Bottleneck Identification

Figure 8.6: Bottleneck Analysis.

percentage of bottlenecks with period more than 500 days (mean value) is greater

in 4 clusters as compared to the main model.

While for duration greater than 1000 days (mean value) each cluster has strictly

higher percentage count than in the main model. Rather one cannot identify any

bottleneck transitions that take more than 1000 days in the main model. It is

due to absolute count of transitions which is less in cluster than in main model

producing greater mean value for the clusters. Thus bottlenecks that are not

quite evident in the main model are clearly visible in the clusters.

2. Set of transactions taking mean time greater than 1000 days found in both the

main model as well as clusters are:

(a) SRV → CFB , SRV → QAC implying that after a bug is verified (SRV),

there is a large gap before any other actions like contacting another Quality

Assurence agent (QAC), making any custom extension field changes (CFB)

in Bugzilla are done. This indicates that a once a bug is verified it is not

acted upon much.
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8.7 Bottleneck Identification

(b) ISC→ SNR, suggesting huge delay between the time a bug is confirmed to be

true (ISC) to the time appropriate actions are taken to resolve it (SNR). It

indicates that in some cases it takes a lot of time to understand and confirm

that the issue raised is actually a bug.

(c) CFL→ SEE informing that over 1000 days can be taken for bugs that are yet

not verified from their last resolved stage (CFL) (probably due to resolution

found to be Invalid, Incomplete, Duplicate, Wontfix or Worksforme) to the

time another bug is found in some other installation related to it and is thus

linked with for reference (SEE).

3. The bottlenecks found in clusters (not observed in main model) taking mean time

greater than 1000 days are:

(a) Some of the activities performed before setting the Resolution from New

state (SNR) like ASS → SNR, ATT → SNR, CFB → SNR, TAR → SNR

span over 1200 days suggesting it takes years of time to finally resolve a

bug even after it is properly assigned (ASS), has its associated attachments

(ATT) for references, custom extension fields are specified in Bugzilla (CFB)

or even if target milestone is set.

(b) Transitions QAC → SUN, QAC → SUR, QAC → SNR take more than

3 years to execute indicating that it can take years for a bug to change

its status to New or Resolved even after contacting the Quality Assurance

(QAC).

(c) CCC → REF, CCC → REW, CCC → REX. It takes more than 3 years to

come to the decision of setting the resolution of bug to Fixed (REF), Works-

forme (REW) or Wontfix (REX). It shows that deciding the appropriate res-

olution of the bug takes years of time even after appropriate users/developers

are involved and informed about the bug progress.

(d) Changing the status of bug directly to Resolved from Unconfirmed without

assigning it the status of New may require a period of 4 years (transitions

SUM → SUR, OPS → SUR) even after the important attributes of bug like

summary (SUM) and operating system (OPS) are properly defined.

57



8.7 Bottleneck Identification

(e) QAC → SNR takes more than 3 years to execute indicating that it can take

years for a bug to change its status to New or Resolved even after contacting

the Quality Assurance (QAC) who verifies that the issue raised is a bug.
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9

Automate Clustering to

Determine the Best Cluster

Solution

Clustering can give many different solutions depending upon the algorithm used, initial

cluster centers/medoids chosen, number of iterations and number of clusters specified.

Out of the many possible solutions, we should select the one where clusters have low

complexity and high fitness value for enabling better analysis. In this section we pro-

pose an algorithm that automatically computes the goodness of process models and

returns the best cluster set for analysis. The algorithm takes as input an event log

and returns a set of clusters that maximizes the objective function which is to reduce

complexity and increase fitness. We compute the goodness ratio (G Ratio) by dividing

the weighted average of fitness values (F score) by the weighted average of complex-

ity values (C score) of all clusters present in the given solution set and returns the

set having maximum G Ratio. A weighted average of a cluster is the average taken

with respect to number of traces present in the cluster. Since clustering distributes the

traces non uniformly in clusters, fitness and complexity contribution by each cluster

has to be taken with respect to the absolute count of cases present in that cluster. The

minimum value of G Ratio is 0 (when each cluster has fitness 0 making F score = 0).

To validate the automated clustering algorithm, the experimental dataset described in

Table 4.1 was spit into four equal sub datasets and each subset was experimented with

the proposed algorithm using LCS similarity metric. Algorithm 9 runs the clustering
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algorithm multiple times over the input event log to select the best cluster set. So if

a process analyst wants to compare the goodness of two or more clustering solutions,

he can use our proposed approach. For the given dataset we have run the cluster-

ing algorithm thrice. The motivation behind running the algorithm thrice over same

Event-Log is to determine how much does the goodness of a process model varies with

respect to initial random selection of the medoids in the k medoid clustering algorithm.

Thus, clustering was repeated thrice by the automated clustering algorithm to get an

estimation as to how much the deviations of fitness and complexity occur with each

new clustering run. Table 9.1 gives the G Ratio of all the three iterations performed

on all four sub datasets as well as the iteration whose solution set is determined to be

the best by our proposed algorithm.

Table 9.1: Automated Clustering Algorithm Analysis

Dataset

No.

Iteration

No.

Weighted

Complex-

ity

Weighted

Fitness
G Ratio Result

1 1 90.98 0.190 2.08× 10−03 -

1 2 92.38 0.158 1.71× 10−03 -

1 3 90.91 0.227 2.49× 10−03 Selected

2 1 99.43 0.275 2.08× 10−03 -

2 2 100.99 0.205 2.7× 10−03 Selected

2 3 105.8 0.213 2.01× 10−03 -

3 1 92.05 0.125 1.35× 10−03 -

3 2 91.39 0.106 1.15× 10−03 -

3 3 93.47 0.218 2.33× 10−03 Selected

4 1 81.36 0.394 4.84× 10−03 Selected

4 2 85.57 0.270 3.15× 10−03 -

4 3 85.40 0.211 2.47× 10−03 -
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Algorithm 9: Automate Clustering

Data: History data of bugs

Result: Best cluster set

1 Event Log Creation(History data of bugs)

2 Sequential Data Creation(Event Log of Bugs)

3 generate 3 cluster sets S1, S2 and S3 by calling

k Medoid Clustering(Event log in sequential data format) that uses LCS and

DTW similarity for input k value

4 foreach cluster set Si consisting of m clusters do

5 for j← 1 to m do

6 discover process model Pj

7

C scorei =

m∑
j=1

Complexity(Xml format input of Pj) ∗ tj
tj

F scorei =
m∑
j=1

Fitness(Xml format input of Pj , Event

log in sequential format of cluster Cj) ∗ tj
tj

G Ratioi = F score/C score

where tj is total traces in event log of cluster Cj

8 return the cluster set Si with the maximum G Ratio.
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10

Limitations and Future Work

The experimental dataset is small and the clustering has been done on Event Logs

consisting of less process instances. We plan to validate our approach on larger datasets.

The experimental dataset has been taken from a single Issue tracking System. The

presented work can be applied on larger and diverse datasets. Future work includes

application of our proposed technique on various other real-life datasets.

We have adapted the basic version of k medoid algorithm. Not much focus was

given on complexity and running time of the algorithm. As a part of future work, we

would focus on these two aspects of the algorithms.

K medoid algorithm is known to be sensitive to initial cluster center assignment.

We plan to work on an algorithm that can select the traces which can be the best

candidates for initial medoid assignment.

In our proposed technique the analyst has to provide number of clusters (k) as

input. Selecting the value of k is a popular research problem for which lot of work has

been done and continues to be done.

We plan to experiment our proposed distance metrics with other clustering algo-

rithms and compare their performances. We also plan to compare the performance of

our two proposed distance metrics and to find out which metric works best and when.
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11

Conclusion

Analysing the results of mining real world unstructured event logs that show adhoc

behavior is difficult due to production of complex spaghetti- like process models. Our

work is a contribution towards simplifying these complex models by means of clustering

so that they can be easily understood by the process analyst. Fitness and structural

complexity of the process models is improved by forming groups of structurally similar

traces which makes the model easier to comprehend. K medoid algorithm has been

adapted using two different distance metrics- LCS and DTW to obtain clusters having

good intra-class similarity. K medoid is an efficient clustering algorithm which is not

sensitive to outliers and noisy data. We have demonstrated the effectiveness of our

proposed technique by performing a real life case study on Firefox browser project.

We have successfully shown that clustering enables better analysis, making it easier to

identify bottlenecks, study reopening of bugs, self & back forth loops. An algorithm

has been proposed to automate the clustering process which has been tested on four

different datasets. It returns the cluster set with highest goodness ratio from the various

cluster sets obtained.
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