Anvaya: An Algorithm and
Case-Study on Improving the
Goodness of Software Process
Models generated by Mining

Event-Log Data in Issue Tracking

Systems

Prerna Juneja
Computer Science

Indraprastha Institute of Information Technology, Delhi (IIIT-D), India

A Thesis Report submitted in partial fulfilment for the degree of
MTech Computer Science

9 March 2015

mailto:prerna1399@iiitd.ac.in
http://www.iiitd.ac.in/
http://www.iiitd.ac.in/

1.: Prof. Ashish Sureka (Thesis Adviser)

2. Prof. Vikram Goyal (Internal Examiner)

2. Prof. Y. Raghu Reddy (External Examiner)

Day of the defense: 9 March 2015

Signature from Post-Graduate Committee (PGC) Chair:

ii

Abstract

Issue Tracking Systems (ITS) such as Bugzilla can be viewed as Process
Aware Information Systems (PAIS) generating event-logs during the life-
cycle of a bug report. Process Mining consists of mining event logs generated
from PAIS for process model discovery, conformance and enhancement. We
apply process map discovery techniques to mine event trace data generated
from ITS of open source Firefox browser project to generate and study pro-
cess models. Bug life-cycle consists of diversity and variance. Therefore, the
process models generated from the event-logs are spaghetti-like with large
number of edges, inter-connections and nodes. Such models are complex
to analyse and difficult to comprehend by a process analyst. We improve
the Goodness (fitness and structural complexity) of the process models by
splitting the event-log into homogeneous subsets by clustering structurally
similar traces. We adapt the K-Medoid clustering algorithm with two differ-
ent distance metrics: Longest Common Sub sequence (LCS) and Dynamic
Time Warping (DTW). We evaluate the goodness of the process models
generated from the clusters using complexity and fitness metrics. Process
models generated after clustering have high degree of fitness and less struc-
tural complexity and thus are easier to comprehend compared with the
process model generated from the entire event-log. We study back-forth &
self-loops, bug reopening, and bottleneck in the clusters obtained and show
that clustering enables better analysis. We also propose an algorithm to
automate the clustering process -the algorithm takes as input the event log

and returns the best cluster set.

I dedicate my MTech Thesis to my father Sunil Kumar Juneja for his
never-ending love, support and encouragement. I am blessed to have a

father like him.

Acknowledgements

First and foremost I offer my deepest gratitude to my advisor, Dr. Ashish
Sureka, who has supported me throughout my thesis. His patience and
knowledge provided me the room to work in my own way. I attribute the
level of my Masters degree to his encouragement and effort without which
this thesis would not have been completed or written. One simply could

not wish for a better or friendlier advisor.

Besides my advisor, I would like to deeply thank my esteemed committee
members Prof. Y. Raghu Reddy and Prof. Vikram Goyal for agreeing to

evaluate my thesis.

My sincere thanks also goes to Divya Kundra for helping me and spending
her valuable time to review my thesis. I would also like to thank all my
friends at IIIT- Delhi for their encouragement and insightful comments.
Last but not the least, I would like to thank all my family members who

encouraged and kept me motivated throughout the thesis.

Declaration

This is to certify that the MTech Thesis Report titled Anvaya: An Al-
gorithm and Case-Study on Improving the Goodness of Software
Process Models generated by Mining Event-Log Data in Issue
Tracking Systems submitted by Prerna Juneja for the partial fulfill-
ment of the requirements for the degree of MTech in Computer Science is a
record of the bonafide work carried out by her under my guidance and su-
pervision at Indraprastha Institute of Information Technology, Delhi. This
work has not been submitted anywhere else for the reward of any other

degree.

Professor Ashish Sureka
Indraprastha Institute of Information Technology, New Delhi

Contents

List of Figures
List of Tables

1 Research Motivation and Aim
1.1 TIssue Tracking Systems o
1.2 Process Mining L
1.3 Problem Motivation, Definition and Aim

2 Related Work and Research Contributions
2.1 Related Work
2.1.1 Problem of Spaghetti Process Models
2.1.2 Trace Clustering
2.1.3 Conformance Measurement

2.2 Novel Research Contributions
3 Research Framework and Solution Approach
4 Experimental Dataset

5 Clustering
5.1 K Medoid Clustering
5.1.1 Longest Common Subsequence metric

5.1.2 Dynamic Time Warping metric

6 Evaluation
6.1 Complexity
6.2 Fitness

iv

CONTENTS

7 Experimental Results 36l
8 Analysis 42
8.1 Self-loop Analysis [42]
8.2 Back-Forth Analysis 46l
8.3 Event Analysis B4
8.4 Activity Frequency Analysis o oL ayd|
8.5 Reopen Analysis 531
8.6 Unique Traces. 5%
8.7 Bottleneck Identification 5%!
9 Automate Clustering to Determine the Best Cluster Solution 59
10 Limitations and Future Work
11 Conclusion
References 64

List of Figures

1.1

1.3
1.4
1.5

1.6

1.7

1.8

3.1

3.2

4.1
4.2
4.3

5.1
5.2

5.3
5.4

Software Development Life Cycle with the Maintenance Phase high-
lighted (Figure taken from|l),
Snapshot of Mozilla Bug History (Bug ID 239534
Bug Life Cycle in Bugzilla (Figure taken from|1)
Process Mining Types (a) discovery (b) conformance and (d) enhance-
ment (Figure taken from (I))

Snapshot of Disco after opening an Event Log in it. One can select the

column and mark it as CaselD, Activity, Timestamp, Resource or Other.

Process Discovery: Process Model generated from the given Event Log
using Disco Lo L

Problem of Spaghetti Model

Architecture Diagram and Data Processing Pipeline for Anvaya Frame-
work (Clustering-Based Approach for Improving the Goodness of Soft-
ware Process Models Derived from Event-Logs)

Data Transformation

Case Duration s
Number of Cases vs Case Variants

Mozilla Firefox Event Log Data

Clustering
Software Quality Assurance Manager using his Domain Knowledge to
Determine the value of K in an Iterative Process
Longest Common Subsequence

Dynamic Time Warping

vi

28
20

LIST OF FIGURES

7.1

7.2

8.1
8.2
8.3
8.4
8.5
8.6

Process model generated using Disco from the entire event log (a) and
event log of six clusters (b-g) obtained using LCS distance metric.
Process model generated using Disco from the entire event log (a) and

event log of six clusters (b-g) obtained using DTW distance metric. . . .

Self-Loop . . .« . o
Back-Forth
No. of Events per Case in each of the six Clusters.
Distribution of some Frequently Occurring Activities over the cases . . .
Reopen Analysis. L

Bottleneck Analysis. o

vii

40

List of Tables

3.1

4.1

7.1
7.2

7.3

8.1
8.2

8.3

9.1

Count and Description for some Activities.
Experimental Dataset Details (Mozilla Firefox Project)

Cluster Description
Complexity and Fitness Metric of the Spaghetti Model Generated from
the entire Event Log as well as the Six Clusters Generated by K-medoid
Algorithm using LCS as the Distance Metric
Complexity and Fitness Metric of the Spaghetti Model Generated from
the entire Event Log as well as the Six Clusters Generated by K-medoid
Algorithm using DTW as the Distance Metric

Self Loops and Back-Forth Analysis
Absolute Frequency (Abs) and Relative Frequency Percentage (Rel freq.)
for all Activities present in the Clusters.
Most Occurring Variants of Main Model and each of the Six Clusters

with their Frequency of Occurrence

Automated Clustering Algorithm Analysis

viii

Research Motivation and Aim

1.1 Issue Tracking Systems

Figure 1.1: Software Development Life Cycle with the Maintenance Phase highlighted
(Figure taken from

Software Development Life CycleEl model is a framework describing well defined
activities that are performed at each stage of software development project. The life

cycle (refer Figure begins from Project Planning where high level view of the

"http://en.wikipedia.org/wiki/Systems_development_life_cycle

1.1 Issue Tracking Systems

problem is established followed by Analysis phase where requirements, benefits, cost and
alternative solutions of the problem are proposed and discussed. Then comes the system
Design phase in which desired operations and features are defined elaborately. Following
it is the Implementation Phase where real source coding is done. The continued process
of improving the process performance is carried out in Maintenance phase (2). Software
Maintenanceﬂ is the process of improving a product’s quality after its delivery. It
is required as failures keep on occurring and need of improvement keeps on growing
throughout a product’s cycle (3). It can be of various typesm— Corrective where faults
are corrected in the hardware or software, Adaptive where software is made adaptable
to a new environment, Perfective where performance is improved by implementing new
features and requirements and Preventive, where problems are dealt before they occur
by increasing the software reliability. Preventive maintenance is mostly done through
refactoring in which software is changed in order to make it easier to comprehend and
inexpensive to alter without making any changes in its observed external behavior (4)).
Issue Tracking Systems (ITS) which are software applications to update, maintain and
resolve an issue, are a tool to guide the software maintenance process. Defect reporting
and tracking which is critical in maintenance of software is made simple and efficient
with the help of Issue Tracking Systems. Through an ITS, an issue is raised and
described by a user, is classified, its status and progress is can be tracked until it gets
resolved with the provision of commenting on error reports and feature requests. With
the help of an ITS without wasting any time, useful information can be viewed directly
like who is responsible for which issue, the current bug status, the priority with which
bug it is to be resolved, preventing important issues from getting lost or delayed. Due
to the usefulness of the services provided by an ITS, there are a lot of different I'TS
available in market for different projects. Bugzilld?} JiraP} Mantis [and Trac[[| are the
topmost I'TS which are most popularly used now a days.

Popular I'TS Bugzilla is a open source bug tracking system, which is used by Mozilla
project for keeping the records of its unfinished bugs effectively. Figure [I.2a] shows the

main page of Bugzilla providing the important utilities to file a bug, search it, open a

"http://agile.csc.ncsu.edu/SEMaterials/MaintenanceRefactoring.pdf
2https://bugzilla.mozilla.org/
Shttps://www.atlassian.com/software/jira
“https://www.mantisbt.org/

Shttp://trac.edgewall.org/

1.1 Issue Tracking Systems

New Account | Log In | Forgot Password mOZiua

W[he\p] Reports Product Dashboard version 4211+

Welcome to Bugzilla

Bugzilla@Mozilla

Home New Browse Search

/ ey N
_ y A4 i
Fs ppm— ag /_\‘
\® / £ ‘ A
Get Help File a Bug Search Opena New Account

Quick Search help

Bugzilla User's Guide | Release Notes | Bugzilla Etiquette | Bug Writing Guidelines

(a) Bugzilla Main Page
Bug 239534 - Image+text links' text should be used as default bookmark name when using Context > Bookmark This Link

Status: RESOLVED WONTFIX Reported: 2004-04-03 11:51 PST by Greg K Nicholson [:gkn]

Whiteboard: Modified: 2013-03-15 10:32 PDT| History]

Keywords: CCList: 2 users (show)

Product: Firefox (show info)

Component:
Version:
Platform:

Importance:

Bookmarks & History (show other bugs) (show info)
unspecified
%86 Windows XP

- minor (vate)

Target Milestone: -

Assigned To:
QA Contact:
Mentors:

URL:

Depends on:
Blocks:

Nobody; OK to take it and work on it

http:/ fwww.bbc.co.uk/radio/aod/radioZ..

Show dependency tree / graph

See Also:

Crash Signature:

QA Whiteboard:
Iteration: -
Points: -

Tracking Flags:

(b) Bug details in Bugzilla

1.1 Issue Tracking Systems

€« C' A |8 Mozilla Foundation [US] | https://bugzilla.mozilla.org/show_activity.cgiZid=239534

Bugzilla@Mozilla

Home New Browse Search m[helpl Reports Product Dashbo.

Back to-bug 230634

Who When l What ™ Removed || Added l-— Activity

mconnor || 2004-04-03 16:33:00 PST || 5tatus UNCONFIRMED || NEW
Ever confirmed (| 0 1

meconnor | 2006-08-27 05:57:25 PDT || QA Contact mconnor bookmarks

maki7 || 2009-03-24 04:59:05 {iasizme et ek Timestamp
cC maky7

faws (et ge e o o] e SRR Actor
Last Resolved 2013-03-15 10:32:42
Status NEW RESOLVED —— Event Log
cc WS

Backte-bug 230534

Figure 1.3: Snapshot of Mozilla Bug History (Bug ID 239534

new user account and get associated help about any product of Mozilla or report any
troubleshooting.

Figure[I.2b]shows the attributes of a reported bug. Various fields displays the impor-
tant information about the bug for instance, Status- its current resolution, Importance-
its priority, Assigned to- its assignee etc. The History link available (highlighted with
a red rectangle in Figure , takes user to all the changes that occurred during the
bug-fixing. Figure shows the aggregated bug’s history informing who created an
event, when it happened and what actions were performed. This archived data can be
mined to obtain useful results that can help in the improvement of the system.

In Bugzilla, a bug’s life cycle consists of various well defined stages through which
it goes as shown in Figure IH It either enters the system as Unconfirmed where
it requires confirmation of its existence or is already confirmed and enters as New
state. From New state control can go to Assigned state where the bug is assigned to
an appropriate person or the bug may directly be resolved and the status is set as

Resolved. The path after Resolved state may lead to Verified state where the fix is

"https://www.bugzilla.org/docs/2.18 /html/lifecycle.html

1.2 Process Mining

MNew bug from a
user with canconfirm
or a product without
UNCONFIRMED state

Bug is reopened,

Bug confirmed or was never confirmed

receives enough vobes

Developer b kes
prssEssion

Cwinership
is changed

Cevelopment is
finished with bug

Peesible resolutions:
FIXED
DUPLICATE

WONTFIX

WORKSFORME

INVALID

REMIND Development is

LATER finished with bug
Developer = kes

poeseszio Bug is clossd

QA not satisfied
with solution

Q& warifies
solution worked

CLOSED

Figure 1.4: Bug Life Cycle in Bugzilla (Figure taken from

expected to be validated by a Quality Assurance or if the verification is not performed
bug may directly be Closed. A reopening may occur from Resolved state- if the QA
is not satisfied with the solution, from a Verified or Closed state- if some additional
information appears later. After reopening, assignments of proper person to the bug
may happen if the resolution requires to be reviewed again or the resolution can be set

directly.

1.2 Process Mining

Process mining is extraction of insights, consumable results and actionable information
from event logs recorded by Process Aware Information Systems (PAIS). A PAIS is

a software system that manages and executes operational processes involving people,

1.2 Process Mining

supports)
controls
process-awanres
information
sysiem
"y - .
records
'/' reco k‘_-
- evenls, e.qg.
=) messages,
“specifies PR -
models A /,.r"" a F Pl ransactions,
o . configures ate
analyzes e N . . e
- implemsnis
-
- analyzes
discovery
process _— -
modeals conformance
-] |

extension

Figure 1.5: Process Mining Types (a) discovery (b) conformance and (d) enhancement
(Figure taken from ()

applications, and/or information sources on the basis of process models (5). WorkFlow
Management systems and Business Process Management systems are examples of PAIS.
An event log records all the developments of the process in execution. Event logs used
for mining valuable insights consists of Case Id (process instance for which events are
recorded), an activity (a distinct step in the process), an actor (an entity starting and
executing the activity) and timestamps (the starting time of the event). All events
belonging to a particular Case Id form a trace. From the data available in the event
log, a process model can be created which helps in analysis of the entire system. A
process model is a visual representation of the work flow of a business process that
has been reverse engineered from an event log. It is a directed graph consisting of
nodes and edges. Nodes represent the actions, known as activities that are performed
in the business process. Edges denoted by arrows represent the transitions between
these activities. If activity P occurs before activity Q in the given process, then there
will be a directed edge from P to Q. Several notations have been proposed to represent
a process model such as petri nets, casual nets, fuzzy models, UML activity diagrams
etc.

Some of the added advantagesﬂ of Process Mining includes finding bottlenecks- as

"http://www.bptrends.com/the-added-value-of-process-mining/

1.2 Process Mining

it equitably and automatically detects where the delays occur in the system, reducing
waste- actual behavior is clearly evident in process models as the hidden additional
activities which should not occur but are executing can be eliminated from the real
system, ensuring compliance- as the deviations from the expected real life model are
seen clearly in the process models, they can easily be measured, and promoting best
practices- by comparing and analysing how the same processes are carried differently
and selecting the best among them.

Process mining can be conducted to perform discovery, conformance or enhance-
ment (6). Discovery technique takes an event log as input and produces a process
model. Doing this helps in recovery of hidden and unknown facts that may help in the
improvement of overall process. Conformance checking is used to check if the actual
happenings of the system as recorded in the event log conforms to the process model
and vice versa. It is basically keeping a check on the current workflow of the system
by observing all the deviations that are observed in the process models. Enhancement
aims at improving the existing process models using information available in the event
logs as the process models generated may indicate the need for enhancing the current
standard of workflow of the system ((6]).

Different perspectives of process mining available are shown in Figure (7):

1. Process Perspective: Also known as control flow perspective, it focuses on ordering

of tasks aiming at generating process models from the event log (7).

2. Organizational Perspective: It aims at determining the Structure of the organ-
isation on basis of the people involved, their roles and their relations with each
other (7).

3. Case Perspective: It focuses on properties of process instances. Analysis is done

by looking at the element values of cases (7).

Process mining generates process models which carry visual and actionable insights
of the raw data. There are many software tools available to mine the event logs e.g.
Disco, PromE| etc. Disco automatically creates insightful process models providing a
lot of advanced features to make things simpler to understand by a process analyst.

The files that can be imported must be in CSV, XLS, MXML or XES format. Figure

"http://www.promtools.org/doku.php

1.2 Process Mining

: P CaselD
Column 1 P Activity
. [p Other
o column is used ' |
» Resource
» Timestamp
Actor /@ Column 3 |E2 Column 4 |
SkewerMZ@skewer100.cjib.net 2002-09-19 0236172 SUN
SkewerMZ@skewer100.cib.net 2002-09-19 0236172 COM
SkewerMZ@skewer100.cjib.net 2002-09-19 0236172 ASS Event i History
SkewerMZ@skewer100.cib.net 2002-09-19 0236172 e ——— P of Bug
SkewerMZ@skewer100.cjib.net 2002-09-19 0236172 ISC
SkewerMZ@skewer100.cib.net 2002-09-19 0237032 PLA
SkewerMZ@skewer100.cjib.net 2002-09-19 0237032 OPS
kmcclusk@formerly-netscape.com.tld 2002-11-19 01:22:032 FRI
kmcclusk@formerly-netscape.com.tid 2002-11-19 01:22:032 TAR
stanio@yahoo.com 2003-04-22 20:51:252 ccc
bugzilla@accessibleinter.net 2003-06-19 17:50:42Z cCcC
adam+bugs@becevello.ca 2003-06-19 17:56:192 CeC
glob@mozilla.com 2003-06-20 01:31:462 cCcC
hauser@acm.org 2003-07-02 15:35:102 CeC
florian@queze.net 2007-05-08 12:09:122 cCcC
jrudermani@gmail.com 2007-07-21 04:53:427 SUM
asa@mozilla.org 2008-12-29 15:00:042 cCcC

Figure 1.6: Snapshot of Disco after opening an Event Log in it. One can select the

column and mark it as CaselD, Activity, Timestamp, Resource or Other.

shows an event log being imported in Disco to form a process model. Column 1
indicates the case id of each event, Column 2 the actor, Column 3 the timestamp and
Column 4 the activity. Each column of the event log has to be selected and configured
either as the Case Id, Activity, Actor (Resource), or the Timestamp. Atleast Case Id
and Activity column has to be mentioned in the log without which the log would not be
acceptable for the import. The pattern of timestamp entered has to be selected from
the timestamps already available or it can be specified in Java’s Simple Date format.
In Disco, a zoom slider is provided that gives full control to the user to dig deeper into
the model. Due to complex and confusing nature of real life event logs, Disco shows
only the most important flows that is the most frequently occurring variants. Sliders
for adjusting the number of activities and number of paths that are to be presented in
the model are available. The process model has a starting (represented by a triangle
symbol) and an end node (represented by a stop symbol) with all the activities, whose
names are mentioned in the node itself, lying in between the two. Dashed arrows point
to activities that occur at the very beginning or very end of the processes. Absolute
Frequency of each transition is written over them. Nodes with more darker color
and thicker edges signify a higher frequency count. Figure [I.7] shows a process model

generated from an event log using Disco.

1.2 Process Mining

&)

1 CaselD Actor Timestamp Activity

2 100 John 1/1/20044:35 Complaint Verified

3| 100 Mery 3/17/2004 5:04 Complaint Rejected

4 | 200 Mery 4/3/20049:27 Complaint Filed

5 200 MNancy 1/9/20044:15 Complaint Closed

[300 Robert 1/17/2004 10:04 Complaint Rejected

7 | 300 John 3/3/2004 12:27 Complaint Verified

5 | 400 Nancy 1/17/2004 11:04 Complaint In-Progress
S | 400 Gary 3/3/20045:27 Complaint Closed

2
g
>
2
E

1/30/2004 1:04 Complaint Approved
500 Nisha 3/3/2004 12:27 Complaint Verified
600 Amit 3/25/2004 11:30 Complaint Verified
6/17/2005 4:14 Complaint Rejected
600 MNancy 7/3/20076:27 Complaint Closed

Complan Rejscted

oW
@
o
=]

Complant Closed
3

Figure 1.7: Process Discovery: Process Model generated from the given Event Log using
Disco

For business process design and business process implementation, Business Process
Modelling Notation-BPMN is used (8). BPMN process models comprises of two things-
Activity nodes denoting activities performed by humans or software and Control nodes
capturing the control flow between activities (9). Due to heterogeneity in the constructs
of BPMN by the use of inconsistent terminologies in its definition, they are motivated
to be converted into petri nets (9). Petri nets are a graphical as well as a mathematical
notation for stepwise execution of a process . They are chosen to represent flow of either
control, objects or information. They are composed of: Places and Transitions which
makes the visualization easy to understand. Places contain tokens that flow in the
system. Constraints that are enforced in petri nets are: having a distinguished source
and sink and directing every transition between that unique source and sink only.
There are several algorithms in literature, like alpha miner, flower miner, inductive
miner etc. which can be used to create a petri net. The process model shown in Figure
represents a fuzzy model discovered from an event log using Disco showing the
work-flow of a system.

Many real life event logs are unstructured, adhoc carrying a lot of diversity leading
to the generation of ’spaghetti models’. These models are cumbersome to comprehend

and only by zooming in one can get some level of understandability. For a process

1.2 Process Mining

138214 Sk S 2011 STa005
138274 Sk verhZEs 2003-05- 191comeo
158274 SkewerhZEs 20:-05-191assigre

1380 MZEs 2002-05-191gz_cor
181 MEEs 2002-05-191is oo’

1]
|
|

(b) Process Analyst studying the Process Models of Clusters

Figure 1.8: Problem of Spaghetti Model

10

1.3 Problem Motivation, Definition and Aim

analyst to understand either the unstructured big data logs or large spaghetti models
is a challenge (refer Figure . The solution to this can be dividing the spaghetti
model into several simpler models by means of clustering (refer Figure [1.8b]).

1.3 Problem Motivation, Definition and Aim

Software Process Intelligence (SPI) is an emerging and evolving discipline involving
mining and analysis of software processes. This is modeled on the lines of application
of Business Intelligence techniques to business processes (Business Process Intelligence
(BPI)), but with the focus on software processes and its applicability to Software Engi-
neering (SE) and Information Technology (IT) systems. Software Process Mining falls
at the intersection of Software Process & Mining, and Software & Process Mining. SPI
has diverse applications and is an area that has recently attracted several researcher’s
attention due to availability of vast data generated during software development. Some
of the business applications of process mining software repositories or SPI are: uncov-
ering runtime process models, discovering process inefficiencies and inconsistencies, ob-
serving project key indicators and computing correlation between product and process
metrics, extracting general visual process patterns for effort estimation and analyzing
problem resolution activities.

Several SE processes such as issue or defect resolution are flexible and consists of
several process variants and a wide spectrum of behavior. This results in a spaghetti
process model consisting of a large number of activity or task nodes as well as a large
number of relations (or directed edges) between these nodes. A spaghetti process model
is structurally complex and hard to comprehend for a process analyst. Trace clustering
is a technique which has been applied on business process logs to split a given event-log
into homogenous subsets from which process models are uncovered. Trace clustering
has shown to improve the comprehensibility of process models in environments which
allow process flexibility and large number of variants. The research motivation of the
study presented in this paper is to investigate the application of trace clustering in the
domain of SPI and process mining software repositories. The specific research aim of

the work presented in this paper are the following:

1. To study the problem of spaghetti process models in the domain of software defect

and issue resolution by conducting a case-study on open-source Firefox browser

11

1.3 Problem Motivation, Definition and Aim

project.

. To propose a trace clustering technique based on grouping sequential data and
apply it on issue tracking system dataset of a large, complex and log-lived open-
source project. To investigate the effectiveness of the proposed trace clustering
technique in reducing the structural complexity and enhancing the process model

comprehensibility for a process analyst.

. To study self-loops, back-and-forth, issue reopen, unique traces, event frequency,
activity frequency and bottlenecks on the discovered process models from the
homogeneous subset output of trace clustering and illustrate the benefits of trace

clustering in the domain of SPI using a real-life case-study.

12

Related Work and Research

Contributions

In this chapter we discuss previous work closely related to our study and list the novel

research contributions of our work in context to already existing work.

2.1 Related Work

The related work has been categorised into three lines of research.

2.1.1 Problem of Spaghetti Process Models

Real life event logs are diverse, unstructured and complex leading to formation of
"Spaghetti models’ which contain a lot of details without describing what is important
and what is not (I0). The problem of spaghetti process models has been discussed
in (II). The paper discusses how mining becomes tougher with large unstructured
data and also proposes the combined use of abstraction and clustering to make the
process models easy to comprehend. Veiga et al. in (12)) also examine the problem of
complex spaghetti models and present an approach for representing only the essential
information of these models by using sequential clustering in ProM. Authors in (L0])
suggests a mining approach that presents a simpler view of complex models so that

they can provide useful abstractions of real-life processes.

13

2.1 Related Work

2.1.2 Trace Clustering

Several techniques have been proposed in literature to cluster traces to deal with com-
plex process models. Bose et al. propose a context aware approach to cluster process
instances based on Levenshtein distance (13]). In the technique substitution, insertion
and deletion costs of symbols are derived for similarity. The authors evaluate the pro-
posed algorithm on the telephone repair process event log and show that the approach
is able to generate clusters with high degree of fitness and comprehensibility when com-
pared to other approaches (13). In (11)) Aalst et al. apply combination of abstraction
and clustering techniques to simplify spaghetti-like models discovered using process
mining techniques from unstructured and complicated processes (11)). They use sig-
nificance and correlation metrics to simplify the processes by clustering less significant
but highly correlated data and removing less significant and correlated data from the
simplified process model and implemented this technique as the Fuzzy Miner plugin for
ProM ([I1)). Ferreira et al. propose a sequence clustering approach where each cluster
is represented by a first-order Markov chain. (I4). The authors perform two different
experiments to illustrate the effectiveness of the algorithm. In the first experiment re-
current interaction patterns among team members were discovered from event log data
consisting of actions of a software development team while in the the second experiment
common routines were discovered from the traces stored in a banking database using the
proposed technique (14). Veiga et al. extended this work by using two dummy states
(input and output state) with the Markov chain model for depicting the probability for
an event to be the first or last in the sequence (12)). They also suggest several prepro-
cessing steps done before clustering to eliminate undesirable events from the event log
(12)). Weerdt et al. propose a new tecnique called ActiTraC (active trace clustering)
for trace clustering which uses elements of active learning in an unsupervised environ-
ment (15). The proposed algorithm lessens the divergence between the clustering bias
and the evaluation bias and improves the accuracy and complexity of process models
(I5). Song et al. In (16]) propose a technique that cluster traces using several perspec-
tives of traces such as performance, transition, case and event attributes organised as
a feature vector. Each trace is represented by a trace profiles each describing different
perspective. The authors use four different clustering techniques: K-means, Quality

Threshold, Agglomerative Hierarchical Clustering and SelfOrganizing Maps using the

14

2.2 Novel Research Contributions

concept of trace profiles validate the approach by performing a real life case study (16]).
Greco et al. use a greedy trace clustering approach where process models are iteratively
refined and each refinement leads to a more sound process model (I7). The authors
use a vector space model over the activities and their transitions for clustering traces
present in the event log. The proposed technique cannot deal with loops and non-free-
choice constructs (I7)). The trace clustering algorithm proposed by Medeiros et al. in
(I8)) improves the technique proposed in (17)) by overcoming several limitations. First
a process model is generated from the entire event log using Heuristics Miner. If the
model generated is optimal and does not suffer from over generalization stop otherwise
cluster the event log using K-means. The clusters obtained are further partitioned if

they are not optimal (I8)).

2.1.3 Conformance Measurement

Conformance is comparing the real behavior of the system with its expected behavior
(19). Conformance measurement in business processes with the help of process mining
has been shown in (19). The availability of event logs and control of users over some
processes are informed to be the requirements for analyzing business alignment (19).
The need of measuring conformance is not limited to only business sector, but is also
required in performing security audits (20)). Accorsi et al. have done a case study in
financial sector that uses process mining techniques like conformance for auditing of
security requirements (20). Rozinat et al. describe two metrics/dimensions of confor-
mance testing namely, fitness and structural appropriateness (2I). The authors show
that both of these dimensions are needed to completely quantify conformance (21)).
They have implemented a conformance checker in ProM using which one can verify
both of the metrics (21)). In (22) authors propose two algorithms. One to measure
fitness of a process model and another to find causes of inconsistencies between the

process model and event log.

2.2 Novel Research Contributions

In context to existing work, the study presented in this thesis makes the following novel

contributions:

15

2.2 Novel Research Contributions

. Improving the goodness of process models by splitting the event-log into homo-
geneous subsets by clustering structurally similar traces by adapting the the &

medoid algorithm.

. Use of Longest Common Subsequence (LCS) or Dynamic Time Warping (DTW)

distance metrics in the adaptation of K-medoid algorithm.

. HNlustrating the benefits of trace clustering in studying back-forth & self-loops,
bug reopening and identifying bottlenecks.

. An algorithm to automate clustering that returns the best cluster set for an event

log by determining the goodness of process models.

. An in-depth case study on the open source Firefox browser project to investigate

the effectiveness of the proposed approach.

16

3

Research Framework and

Solution Approach

Figure shows the architecture diagram and the data processing pipeline for the
Anvaya Framework. As shown in Figure the data processing pipeline consists of
5 steps labeled as A, B, C, D and FE respectively. Step A consists of extracting Is-
sue Tracking System (ITS) data for the FireFox project using the Bugzilla REST API
(an HTTP version of its XMLRPC and JSONRPC APIS)EI and saving it in a MySQL
Database. We extract the complete history (life-cycle) of all closed bugs [refer Algo-
rithm . The history consists of five fields: Who, When, What, Removed and Added.
Each event in the history of a bug-report consists of a timestamp. An event in an
event-log for a process model discovery algorithm requires a minimum of four fields:
Case ID (or the Trace ID for the process instance), Actor, Timestamp and Activity.
We map the ITS Issue ID as the Case ID, Who as Actor and a combination of What,
Added and Removed as Activity.

We convert the history into an Event-log table consisting of three columns [Actor,
Timestamp and Activity] where Activity column consists of the Activity-Id correspond-
ing to What, Added and Removed in the Activity-Definition table. For this we extract,
label and output all the unique activities from the Bugzilla history into an Activity-
Definition table. For labelling, we use a three letter code which reflects and indicates
the activities performed. Algorithm [2| shows the steps to create the Event Log and the
Activity-Definition Table. We identify 81 unique activities in our data set. Table

! https://wiki.mozilla.org/Bugzilla:REST_API

17

ACTIVITY-DEFINITION
(ACTMITY D, WHAT, FI

REMOVED, ADDED) i a
N b M
I I — Haafhhada
I I WAL T
BUGZILLA ISSUE ; = == _— Rl {
REST API | EVENT-LOG . AR § 1
LRACKINGSYSIEN - S (CASE-ID, ACTOR, TIME- LL) > £
STAMP, ACTIVITY) aceCc YIAACTSCO
bugzilla.mozilla.org MY SQL RDBMS | [[| SEQUENTIAL FORMAT
(CASE-ID, LIST OF
| | | | ACTIVITY IDs)

@

BACK-FORTH & -,

SELF-LOOPS (/b;ﬂ:D DISCOVERY

(PROCESS % @

EVENT& AcTvITY ity MODELS)

FREQUENCY i]

~] | anaLyTcs &] | bisco
1S SUE REOFENING QW\M! - ~
& UNIQUE TRACES f EVALUATION
e (FITNESS, oe
BOTTLENECK la‘i-i;‘q GOMPLEXITY)
IDENTIFICATION LR

CLUSTERING

® ® o

Figure 3.1: Architecture Diagram and Data Processing Pipeline for Anvaya Framework

(Clustering-Based Approach for Improving the Goodness of Software Process Models De-
rived from Event-Logs)

shows the count and description of 20 unique Activity-IDs identified. We then trans-
form this Event-log data into a sequential format [refer Algorithm [3] since clustering
techniques can only be applied on sequential data. The data is in increasing order of
Case IDs and activities within a case instance are in increasing order of timestamp.

This step marks the end of Step B i.e. Data Transformation (refer Figure .

For Step C, we adapt® the K-medoid algorithm to cluster the sequential data us-
ing two different distance metrics: Longest Common Sub sequence and Dynamic Time
Warping. Output of this step is a set of k clusters. The clustering algorithms are
explained in detail in Section

We now generate a single process model from the entire event-log data as well as
for each cluster obtained in Step C' using a commercially available tool DiSC(ﬂ that uses
the fuzzy miner algorithm (10). We choose Disco because of it’s ability to manage large

event logs and produce complex models. A node in the process model obtained from

'Disco is a process mining toolkit for which we obtained the academic license.

18

“field nam
"removed"

CaselD Actor Timestamp What Removed Added

~added” |

LS ieIeIRTT ez anden. Tu 852415 deletesol 2013-03-19 12 status UNCONFIRMED RESOLVED
s :352415 deletesol 2013-03-19 12 ¢¢ deletesoftwars
» > 852415 deletesol 2013-03-19 12 resolution DUFLICATE

852415 deletesol 2013-03-19 12 cf Jast_resolved 3/19/20135:47
History of Bug stored in My SQL

1

\.//

|CaselD Actor Timestamp Activity
852415 deletesof 2013-03-19 12:47:017 SUR
P :l
__852415 SUR CCC RED CFL < 852415 deletesof 2013-03-19 12:47:017 CCC

852415 deletesof 2013-03-19 12:47:017 RED
852415 deletesof 2013-03-19 12:47:017 CFL

Event Log

Sequential Format

Figure 3.2: Data Transformation

Disco represents an Activity while an edge represents transition from one activity to
another. We observe that the process model generated from the entire data is too com-
plicated, spaghetti like and hard to comprehend where as process models generated
by clustering structurally similar traces are simpler to understand and analyze. We
evaluate the goodness of these process models using cyclomatic complexity and fitness
metrics. The process models generated from the clusters are found to have high-degree
of fitness and low degree of structural complexity.

The last step of Anvaya framework is the Analytics Step where we study and mine use-
ful information from the process models generated from the clusters and show benefits
of trace clustering in analysis of back-forth & self loops, bug reopening, and bottle-
necks. Unique traces are discovered from the models and statistics for event & activity

transitions are analyzed.

19

Algorithm 1: Data Extraction

Data: Rest API to access Bugzilla public data
Result: History data for all Firefox bugs closed in year 2013.

initialize database

[uny

foreach bugid b; in Bugzilla do

extract all data d; for b;

read d;

if (d; Status field equals ” Verified” or ”Resolved”, Product field equals
"Firefox” and Last_modified field starts with "2013”) then

6 L go to history section of b;

[SLE NV R V]

download and write to database all events of b;

Algorithm 2: Event Log Creation

Data: History data for all Firefox bugs closed in year 2013.
Result: Event log of Firefox bugs closed in year 2013
1 foreach line /; in history data do
2 read and split /; on each column
3 generate activity id id; from values of column fields
”what”,”removed”,” added”

4 add id; to act_ids[]

5 write values of column fields ”"bugid”, ”who”,”when”, and id; to Event Log
file.
6 if id; € act_ids[] then
7 L write id;, and values of column fields ”what”,”removed”,” added” to
Activity-Definition Table

20

Algorithm 3: Sequential Data Creation

Data: Event log of Firefox bugs closed in year 2013.

Result: Event log in sequential data format.

[uny

set previous=null;

foreach line /; in event log do

read and split /; on each column.

if b; # previous then

L write b; and id; to sequential file

set previous= b;

S A wWN

else

~

8 L append id; to b;_1 in sequential data file

21

Table 3.1: Count and Description for some Activities.

Activity Acronym | Count Description

Alias ALI 36 Short name assigned to bug for referring it at other places in Bugzilla.

Assigned to ASS 4274 Bug is assigned to the proper person for setting its resolution.

Carbon Copy CCC 48387 | Users who are interested in the progress of the bug are included in the
mailing list.

Component COM 2765 Changing of the Component of the bug.

Depends On DEP 6099 The bugs listed here are the ones on which this bug depends, so they
must be resolved before this bug can be resolved.

Is Confirmed ISC 1106 Confirming that the issue raised is a bug.

Platform PLA 1312 Adding/removing the Platform of the bug.

Product PRO 402 Changing the Product Category of the bug.

Resolution Fixed REF 3876 A fix for the bug is determined and tested.

Resolution Invalid REI 2879 The issue raised is not a valid bug and resolution is thus set to 'Invalid’.

Status Assigned Resolved SAR 2344 The bug status changes from Assigned, where it was assigned to proper
person for setting its resolution to Resolved where resolution has been
performed and is awaiting verification by Quality Assurance.

Status Assigned Uncon-

SAU 3 The bug status changes from Assigned, where it was assigned to proper
firmed person for setting its resolution to Unconfirmed where it is validated
whether the bug is true or not.

Status New Resolved SNR 4492 The bug status changes from New, where it was processed and resolved
to Resolved where it is awaiting verification by Quality Assurance.

Status Reopened New SRN 41 The bug status changes from Reopened where the bug was reopened
as the resolution was later found to be incorrect to New where it is
assigned for processing.

Status Resolved Reopened SRR 702 The bug status changes from Resolved, where its resolution was set, to
Reopened where the bug is reopened as the resolution is found to be
incorrect.

Status Resolved Verified SRV 731 The bug status changes from Resolved where resolution has been per-
formed to Verified where Quality Assurance has looked at the bug and
its resolution and agrees that the appropriate resolution has been per-
formed.

Status Unconfirmed

SUA 76 The bug status changes from Unconfirmed where it is validated whether

Assigned
the bug is true to Assigned where it is assigned to the proper person
for processing.

Summary SUM 2362 The short sentences describing what the bug is about are
added /removed.

Status Unconfirmed

SUR 5334 The bug status changes from Unconfirmed where it is Validated whether

Hesolved the bug is true to Resolved where resolution has been performed and
it is awaiting verification by Quality Assurance.

Version VER 1663 Changing of the version of the software in which the bug was found.

22

4

Experimental Dataset

Table 4.1: Experimental Dataset Details (Mozilla Firefox Project)

Attribute Value
Project Firefox
First Issue Report Date 1 January 2013
Last Issue Report Date 31 December 2013
Data Extraction Date 16 October 2014
Number of Open Issues 3399
Number of Closed Issues Used 11804
Number of Activities in Closed Issues 81
Number of Events Reported for Closed Bugs | 178331

We conduced a case-study on one of the largest open-source bug tracking system
Bugzilla. We use closed bug report data for Firefox Browser because closed bugs have
completed their lifecycle. We do not analyse open bug report data because such bugs
are still in the pipeline, work is being done on them, and we don’t know what shape they
are going to take. We Extract bug report for data Firefox Browser having reporting
timestamp of closure from 1st January 2013 to 31st December 2013 (12 months data).
Table shows the experimental dataset details for the Mozilla Firefox project. We
conduct experiments on publicly available dataset so that our approach or results can

be replicated and used for benchmarking and comparison. We share our dataset and

23

Events 1 78,331

Cases 11,804
Acties 61
Median case durston 132 mths
Han case dursfon 13.3 mins

Stat 19.09.200202:36:17
Enc 31122013 16:48:52

Figure 4.2: Number of Cases vs Case Variants

associated files by creating a public repository on GitHublﬂ

There are 11804 closed issues/process instances and 178331 records/events in the
Event Log. We have identified 81 unique activities from this dataset. The bug history
dataset consists of five fields, namely Who, When, What, Removed and Added. Who
specifies the name of the Actor who performs an Activity at a particular time. When
field specifies the Timestamp when the particular activity was performed. Combination
of What, Removed and Added has been taken as the activity. In What field bug fields
are specified whose value can be added or removed. Some of the examples of bug fields

are Status, Component, Content, Comment Tag, Resolution, Keywords, OS, Priority

"https://github.com/ashishsureka/anvaya

24

CaselD Who When What Removed Added
168274 SkewerMZ@skewer100.cjb.net 2002-09-19 02:36:172 |status UNCONFIRMED ~ NEW
168274 SkewerMZ@skewerl00.cjb.net 2002-09-19 02:36:172 |component Browser-General HTML Form Controls
168274 SkewerMZ@skewer100.cjb.net 2002-09-19 02:36:17Z |assigned_to asa@mozilla.org Jkeiser@netscape.com
168274 SkewerMZ@skewerl00.cjb.net 2002-09-19 02:36:17Z |qa_contact asa@mozilla.org tpreston@netscape.com
168274 SkewerMZ@skewer100.cjb.net 2002-09-19 02:36:17Z |is_confirmed 1
168274 SkewerMZ@skewerl00.cjb.net 2002-09-19 02:37:03Z |platform PC All
168274 SkewerMZ@skewer100.cjb.net 2002-09-19 02:37:03Z |op_sys Linux All
168274 kmeclusk@formerly-netscape.com.tld 2002-11-1901:22:03Z |priority - P4
168274 kmeclusk@formerly-netscape.com.tld 2002-11-1901:22:03Z |target milestone --- Future

| 168274 stanio@yahoo.com 2003-04-22 20:51:257 |cc stanio@yahoo.com
168274 bugzilla@accessibleinter.net 2003-06-19 17:50:422 |cc based@free.fr
168274 adam+bugs@becevello.ca 2003-06-19 17:56:19Z |cc abecevello@sympatico.ca
168274 glob@mozilla.com 2003-06-20 01:31:46Z |cc bugzilla@glob.com.au

I

. .

1 &

4

W W

CaselD Actor Timestamp

Activity

Figure 4.3: Mozilla Firefox Event Log Data

etc[l] Figure shows the Event Log of the Experimental Dataset used.

We extract and store the dataset in MySQL database from where it can be extracted
as a CSV (Comma Separated Values) file format which can be opened in Disco where
it is mandatory to select columns as CaselD and Activity. We then select and configure
the columns that contain CaselD, Timestamp and Activity and obtain Figures and
from the Statistics View of the Disco tool. Statistics view provides the detailed
statistics information and performance metrics of our event log H Figure shows the
graph between Number of Cases and Case Duration. As seen from the figure, most of
the cases have short duration and there are extremely few cases with large duration.
The median case duration is 13.2 months while the mean case duration is 13.5 months.
Figure [£.2 shows the graph between Number of Cases and case Variants. Variants are
the unique traces present in the Event log. There are 8697 variants present in our
Experimental Dataset. Large number of variants show that bug life-cycle consists of

diversity and variance.

"https://bugzilla.mozilla.org/page.cgi?id=fields.html
2fluxicon.com/disco/files/Disco-User-Guide.pdf

25

Clustering

Y-axis
I

X-axis

Figure 5.1: Clustering

Clustering is grouping similar objects together. An object in a cluster is sim-
ilar to the rest of the objects of its group but dissimilar to objects belonging to
other groups. As can be seen from Figure objects having similar shape are
clustered together. Shape of objects in a cluster are different from shape of objects
in other clusters. Clustering is an unsupervised learning technique as unlike super-

vised learning, target class values or labels are not available a priori. It can be of

26

5.1 K Medoid Clustering

many typesH Connectivity based clustering (also known Hierarchical clustering)
builds a hierarchy of clusters. This clustering joins objects to form a cluster based
on the distance between them. It can be of two types: agglomerative (bottom-up
approach) and divisive (top-down approach). In centroid based clustering, a clus-
ter is represented by a central vector which may or may not be an element of the
dataset. The algorithm finds k£ centers and assigns each object to the nearest center.
Distribution based clustering is related to statistics and cluster objects belonging to
same distribution. In Density based clustering areas with higher density are defined
to be clusters and areas of sparser densities are taken to be noise. We have adapted
the k medoid algorithm, a medoid based clustering approach to cluster the sequential

traces.

5.1 K Medoid Clustering

K medoid clustering algorithm is a partitional clustering approach where each cluster
is represented by a medoid which is the most centrally located data point in a clus-
ter whose average similarity to all other data points in that cluster is maximal (23).
Medoids differ from centroids as they are always members of the given datasetﬂ making
this algorithm insensitive to outliers. This algorithm partitions the datasets into &
clusters such that distance between the data points assigned in a cluster and center of
that cluster is minimized H Determining the number of clusters (k) is out of scope of
this research work and we plan to study and implement it in future. We are assuming
that the software quality assurance manager, process analyst or any other user of An-
vaya Framework is qualified enough to have good insights about the data. He has the
intuition and hunch about the number of clusters that can be created from the dataset.
As seen from Figure the end user of Anvaya Framewok uses his domain knowledge
as well as gut feeling to determine k in an iterative process.

Algorithm [4] describes the steps to compute k clusters using our proposed technique.
Initially k traces are selected as initial medoids. For initial cluster assignment, we
compute the distance of each non medoid trace with all medoid traces. We propose the

use of two popular algorithms: Longest Common Subsequence (LCS Similarity) and

Yhttp://en.wikipedia.org/wiki/Cluster_analysis
2http://en.wikipedia.org/wiki/Medoid
3http://en.wikipedia.org/wiki/K-medoids

27

5.1 K Medoid Clustering

s — T

P -
o Domain)

4 Knowledge

x,ﬂ}ﬂ__/«\jj : QE

— Determines value
{) of K

I'. _.l
; p h_d_::“\
L\H_ - v
ANVAYA
Framework

” Obtain Clusters C%
Figure 5.2: Software Quality Assurance Manager using his Domain Knowledge to Deter-

mine the value of K in an Iterative Process

Dynamic Time Warping (DTW Similarity) as the distance metrics which calculate the
similarity score (lcs; or dtw;) between two traces. The former metric returns the length
of longest common subsequence while the latter returns the warping distance (higher
the warping distance, lesser is the similarity). So a non medoid trace is associated to
a medoid with highest lcs; or lowest dtw;. To select the best configuration each non
medoid trace is swapped with each medoid trace and total similarity score (cost) is
calculated. The configuration with the highest cost while using LCS Similarity and
lowest cost while using DTW Similarity is selected. The steps are repeated till there is

no change in the medoids.

5.1.1 Longest Common Subsequence metric

The first distance metric that can be used to compute the similarity between two traces
is the Longest Common Subsequence metric. Since each trace is nothing but a sequence
of characters, we use the popular LCS algorithm to determine the length of the longest
common sequence of characters which need not be consecutive but follow a left to right

ordering as illustrated in Figure LCS is a classic and popular problem which has

28

5.1 K Medoid Clustering

Algorithm 4: k£ Medoid Clustering

S A wWN

10
11

12

13

Data: Event log in sequential data format
Result: £ clusters
input the value of number of clusters to be formed k.
read the input event log
randomly select k traces as initial medoids.
foreach non medoid trace t; do
foreach medoid trace m; do
L calculate similarity score of ¢; and m; using LCS Similarity lcs; or DTW
Similarity dtw;

assign t; to m; with highest lcs; or lowest dtw;.

foreach medoid trace m do
foreach non medoid trace o do
swap m and o
compute the total similarity score (cost) of the configuration using either

les; or dtw;

select the configuration with the highest cost while using LCS Similarity and
lowest cost while using DTW Similarity.
Steps 4 to 12 are repeated till there is no change in the medoids

29

5.1 K Medoid Clustering

() (e)(e)(a)(a)(r)(7)

G (ciljﬁv (™ (z)

Figure 5.3: Longest Common Subsequence

been explored a lot in literature. Let Similarity[i,j] be the length of LCS of sequences
S1; and S2;. The algorithm uses the following recursive formula: (24)):-

o Similarityli — 1,5 — 1] +1 if S1[i] = 52[4]
Similarity[i,j] = { mazx{Similarity[i — 1, j], Similarityi,j — 1]} otherwise
Algorithm [5| gives the pseudocode of dynamic programming implementation of LCS
problem (24)). The algorithm takes two traces as input and returns their similarity

score.

Algorithm 5: LCS Similarity
Data: Trace sl and s2 from event log in sequential data format.

Result: Similarity score between the two input traces.
1 find the length n of sl .
2 find the length m of s2 .
3 for i+~ 0 ton do
a | Similarity[i[0]=0
5 for j< 0 to m do
6 | Similarity[0][j]=0

7 for i<~ 1 ton do

8 for j« 1 to m do

9 if s1[i-1] equals s2[j-1] then

10 | Similarity il [jl=Similarity[i-1][j-1] +1

11 else

12 L Similarity[i][j]= max(Similarity[i-1][j], Similarity[i][j-1])

13 return Similarity[n][m]

30

5.1 K Medoid Clustering

R

-._--.--d;; A A "/" .\:-\- s

,.{{, ./, /J,-f \ "
Ft K ' A "
1 1 R R R

Figure 5.4: Dynamic Time Warping

5.1.2 Dynamic Time Warping metric

Dynamic Time Warping is a popular algorithm used in speech recognition, text min-
ing, video retrieval and many other applications to find similarity between temporal
sequences, having same or different lengths, that are non-linearly warped in time di-
mension i.e. they are structurally similar but are on a different timescale [[]P]

Let two sequences be S1 and S2. Warping path consists of index pairs (i,j) if
DTW associates S1[i] with S2[j]. It has certain restrictions, namely Monotonicity that
says that the warping path cannot go backwards in time, Continuity that says that
every character of each sequence is included in the warping path and the indices can
increase by 0 or 1 and Boundary condition which states that the warping path begins
at (1,1) and ends at (n,m) where n and m is the length of the first and second sequence
respectively (25). Out of the many warping paths, an optimal warping path is the one
that minimizes the total cost (25). Warping distance is the summation of element wise
distance between S1[i] and S2[j] over all pairs of (i,j) in the optimal warping pathT,
We assign a cost (distance) 0 if S1[i|=S2[j], otherwise 1 is assigned. Let S1=ABA and
S2=AABAAP, then the optimal warping path consists of indices (1,1) (1,2) (2,3) (3,4)
(3,5) (3,6) and warping distance will be 1.

Algorithm [6] gives the pseudocode of the dynamic programming implementation
of DTW algorithm. The algorithm returns the similarity score which is the warping

distance. Lower the warping distance, more similar are the traces.

"http://cs.bc.edu/alvarez/Algorithms/Notes/dtw.html
2http://en.wikipedia.org/wiki/Dynamic_time_warping

31

5.1 K Medoid Clustering

Algorithm 6: DTW Similarity

10
11
12

13

14

15

16

Data: Sequences sl and s2 from event log in sequential data format.
Result: Similarity value between the two input sequences
find the length n of sl .
find the length m of s2 .
cost=0 .
for i < 1 to n do
| DTWIi][0]=00
for j + 1 to m do
| DTW[o][jl=oc
DTW]/0][0]=0
for i+~ 1 to n do
for j+ 1 to m do
if s1[i-1] equals s2[j-1] then
L cost=0
else
L cost=1

| DTWIij[j]=cost+minimum of(DTWI[i-1][j, DTWi}[j-1], DTW[i-1][j-1])

return DTW/n|[m]

32

6

Evaluation

We evaluate two aspects of the process models, namely complexity and fitness. Process
models generated from the clusters should exhibit low degree of structural complexity

and high-degree of fitness.

6.1 Complexity

Complexity can have unwanted effects on understandability, comprehensibility and cor-
rectness of process models (26). Many complexity metrics have been proposed in liter-
ature (27) (28) which tells whether the process model is compact, has appropriate size,
is easy to comprehend and understand. We use McCabe’s cyclomatic number which
determines the number of linearly independent paths in the process model (29). It
represents complexity in a single number and represents the magnitude of all possible
independent paths that can be followed in the model. The pseudocode to determine
the cyclomatic number of process models obtained from Disco is given in Algorithm
[l The Xml format input of the process model is needed as it carries all the relevant
information namely, the number of edges, nodes along with the adjacency matrix which
is required for calculating the complexity. The higher the complexity value returned
by this algorithm, higher will be number of independent paths and thus more complex

will be the model.

33

6.2 Fitness

Algorithm 7: Complexity
Data: Xml format input of the process model

Result: Complexity of the process model
1 read number of edges e
2 read number of nodes n

3 complexity=e-n+2

6.2 Fitness

One of the major applications of Process Mining is to determine the gaps between the
real world as recorded in the event log and the mode][ﬂ It helps in detecting whether
there is problem with the real world execution of the system or if the existing model
requires any updates. The Fitness metric is used to determine the conformance between
an event log and a process model generated from that log. In a completely fit model
each and every trace present in the event log is replicated in the process model. High
fitness indicates that the process model majorly captures the behaviour of all traces in
the event log. The pseudocode to determine the fitness of the process model at event
level is given in Algorithm |8 (22). The fitness value of a process model can take any
values between 0 and 1. Fitness value 1 indicates that the process model has a perfect
one to one mapping with the event log while value 0 indicates that none of the traces

present in the even log are shown in the process model.

"http://www.processmining.org/online/conformance_checker

34

6.2 Fitness

Algorithm 8: Fitness

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16

17
18

19
20
21

22

Data: Xml format input of the process model and Event log in sequential

format.
Result: Fitness of the process model.

read Xml format input file.

foreach transition between a source n; and target node n; do

L adjacency matrix an, n; =1

read the input event log
foreach bug id b; do

add each activity to trace t;
if t; is unique then

L add it to uiquetrace]|

Count its frequency F; in the event log

foreach entry t¢; in uniquetraces|] do
Valid;=1
j=1
while j<length of t; do
if Q5,4 [+1] 75 1 then
Valid;=0
break

else
| i+

foreach entry t; in uniquetraces||] do
FreqValidProduct=FreqValidProduct+F;*V alid;
FreqSum=FreqSum+F;

Fitness=FreqValidProduct/FreqSum

35

7

Experimental Results

To validate the clustering, £ medoid algorithm using LCS and DTW similarity metrics
was applied on 1615 process-instances and 6 clusters were obtained.

Fig shows the process models generated using Disco at 100% activity and 12.2%
path resolution from the entire event log (referred as the main model throughout the
paper) and event log of the six clusters obtained after applying k£ medoid with LCS
distance metric. Table contains the complexity and fitness values of main model
and all the six clusters. The complexity has been reduced by 40% on an average in a
cluster clearly showing that clusters are now much easier to comprehend and analyse.
Process models of 66% clusters have a better one to one mapping with the event log
and thus show a better fitness value. Table [T.1] characterizes the domain of the six
clusters obtained using LCS distance metric.

Fig[7.2 shows the process models generated using Disco at 100% activity and 12.2%
path resolution from the entire event log and event log of the six clusters obtained after
applying k£ medoid with DTW distance metric. The complexity and fitness of main
model and all the six clusters is shown in Table The complexity has been reduced
by 40.98% on an average in a cluster while process models of 83.33% clusters have
better fitness values as compared to the main model.

Throughout our work in further sections, we have used LCS distance metric for

analysis.

36

Table 7.1: Cluster Description

Description

Cluster 1

100 bugs are reported in all OS, 42 in Windows XP and 33 in Mac OS and
Windows 7. Most of them are reported in platform x86 with severity field
Normal and current resolution Worksforme or Wontfix. The status of bugs is
first modified from Unconfirmed to New (SUN) and it is then confirmed to be
true (ISC). For most of the bugs the status then changes from New to Resolved
where it is awaiting verification by Quality Assurance (SNR) while for some
the status changes directly from Unconfirmed to Resolved (SUR). Resolution
of the bugs is then set to either Wontfix (REX) or Worksforme (REW) before
the last resolved stage (CFL). Bugs are reopened after the resolution is set as
Fixed.

Cluster 2

94 of the bugs are reported in all OS, 52 in Windows 7 and 46 in Windows
XP. Most of them are reported in platform x86 with severity field Normal
and current resolution Worksforme or Wontfix. In most of the bugs status is
first modified from Unconfirmed to Resolved after which their resolution either
changes to Wontfix (REX) or Worksforme (REW) before the last resolved stage
(CFL). While for some bugs, version of the software the bug was found in (VER)
is added, various flags (FLA) are set, tags and status information is added in
text entry box of bug (WHI), and blocks (BLO) field is added, status is changed
from New to Resolved (SNR) after which the resolution either becomes Wontfix
or Worksforme.

Cluster 3

Almost all bugs are independent of OS and platform. Most of them are reported
with severity field Normal and current resolution Fixed. The bugs are assigned
to the proper person (ASS). Summary of bugs (SUM), keywords (KEY), flags
(mostly attachment flags), blocks (BLO) field and Target Milestone (TAR)
field is added. Properties of attachments (ATT) are added/removed. Bugs
are identified and listed in Depends on field (DEP). Bugs listed here must be
resolved before the bug can be resolved. Status changes from New to Resolved.
For most of the bugs resolution becomes Fixed (REF) and for others it becomes
either Wontfix (REX) or Worksforme (REW) before the last resolved stage
(CFL).

37

Cluster 4

121 bugs are reported in all OS, 68 in Windows XP and 37 in Linux. Most of
them are reported in all or x86 platform with severity field Normal or Enhance-
ment. Current resolution of 101 bugs is Wontfix and 102 bugs is Worksforme.
Status of bugs changes from New to Assigned (SNA) and it is then confirmed
to be true (ISC). Component (COM) field belonging to the product and per-
son responsible for confirming if bug is unconfirmed, and for verifying the fix
is added and the bugs are assigned to the proper person (ASS). For most of
the bugs the status then changes from New to Resolved (SNR) while for some
the status changes directly from Unconfirmed to Resolved (SUR). Resolution
of the bugs is then set to either Wontfix (REX) or Worksforme (REW) before
the last resolved stage (CFL).

Cluster 5

161 bugs are reported in all OS, 38 in Windows 7 and 25 in Mac OS and
Windows XP. Most of them are reported in all platforms with severity field
Normal and current resolution Fixed. The bugs are assigned to the proper per-
son (ASS). Several flags (FLA), keywords (KEY) to easily identify and group
the bugs are added and tags & status information is added in text entry box
of bug (WHI). Properties of attachments (ATT) are added/removed. Bugs are
identified and listed in Depends on field (DEP). Status either changes from As-
signed to Resoved (SAR) or New to Resolved (SNR), Target Milestone (TAR)
field is defined and Resolution becomes fixed (REF) before the last resolved
stage (CFL).

Cluster 6

75 bugs are reported in Windows 7 and 54 in Linux . Most of them are reported
with platform x86 and severity field Normal or Major. Current resolution of
108 bugs is Incomplete and 73 bugs is Worksforme. Version of the software the
bug was found in (VER) is added, various flags are set and tags & status
information is added in text entry box of bug (WHI). The status changes
directly from Unconfirmed to Resolved (SUR) after which resolution either
becomes Worksforme (REW) or Incomplete (REI) before the last resolved stage
(CFL).

38

Table 7.2: Complexity and Fitness Metric of the Spaghetti Model Generated from the
entire Event Log as well as the Six Clusters Generated by K-medoid Algorithm using LCS

as the Distance Metric

Cyclomatic
Complexity
(%age decrease Fitness
in complexity

of clusters)

Main Model 143 (-) 0.017
Cluster 1 75 (47.5 %) 0.178
Cluster 2 82 (42.6 %) 0.085
Cluster 3 106 (25.8 %) 0.004
Cluster 4 96 (32.8 %) 0.070
Cluster 5 83 (41.9 %) 0.015
Cluster 6 72 (49.6 %) 0.208

Table 7.3: Complexity and Fitness Metric of the Spaghetti Model Generated from the
entire Event Log as well as the Six Clusters Generated by K-medoid Algorithm using DTW
as the Distance Metric

Cyclomatic
Complexity
(%age decrease Fitness
in complexity

of clusters)

Main Model 143 (-) 0.017
Cluster 1 89 (37.7 %) 0.004
Cluster 2 93 (134.9 %) 0.059
Cluster 3 63 (55.9 %) 0.328
Cluster 4 97 (32.1 %) 0.063
Cluster 5 78 (45.49 %) 0.052
Cluster 6 86 (39.8 %) 0.078

39

w7 X T 2

I |

I
y

M \|
A

_/',
= 5

Eay
,, 4
Al .dlﬂ'_h z

iy 1 9)
1y N m_"!‘“

)
25

T

T
L

il

(f) Cluster 5 (g) Cluster 6

Figure 7.1: Process model generated using Disco from the entire event log (a) and event

log of six clusters (b-g) obtained using LCS distance metric.

40

—

e
NN,

X
N
/]

(]

\ "'ag_v = St

—

(b) Cluster 1 (c) Cluster 2

P
L ’(‘i@ "'-:;-;7—<- 1k })

(f) Cluster 5 (g) Cluster 6

Figure 7.2: Process model generated using Disco from the entire event log (a) and event

log of six clusters (b-g) obtained using DTW distance metric.

41

8
Analysis

For all the 6 clusters obtained using LCS distance metric, we analyse and study self-
loops, back-and-forth, issue reopen, unique traces, event frequency, activity frequency
and bottlenecks to show how clustering facilitates a better understanding. Consumable
results, actionable information and valuable insights are extracted from the clusters

showing that separating structurally similar traces makes the analysis easier.

8.1 Self-loop Analysis

Figure 8.1: Self-Loop

Study of self-loops is important since such loops indicate intensive problems (30).
These problems are often difficult to detect because it may seem that at each stage
some useful work is being done though actually no progress is being made and the
bug is just getting transferred (30). In a process model, a self-loop can be defined as
the transition A—A i.e. a transition that begins and ends at the same activity (refer
Figure . Self-loops are undesirable and cause redundancy in the bug’s trace. Just

looking at the count of self-loops of an activity in the event log of spaghetti model is

42

8.1 Self-loop Analysis

not enough since it might happen that most of these self-loops are occurring in traces
of two or three bugs in which case we cannot generalize and say that this particular
activity causes majority of self-loops. Doing self-loop analysis after clustering similar
traces helps us to discover if self-loop of an activity appears only in certain kinds of
bugs or if it appears in majority in all the clusters. First entry in each cell of Table
denotes the frequency of self-loop of the activity specified in the first cell of the same

row.

1. Self-loop frequency of activity CCC is high in all the six clusters with the count
being as high as 3119 in cluster 3. This indicates that many people including
users who have no direct role to play in the bug are added in the mailing list. It’s
an unhealthy practise to repeatedly add/remove people from the mailing list and
should be avoided by adding only a few people who are interested in receiving

notifications about the bug’s progress.

2. Activities ASS and COM has less number of self-loops in all the clusters indicating
that most of the time bug is assigned to the right person and correct component

type is selected in one go.

3. Many self-loops of activity ATT in clusters 3, 4 & 5 indicates that several prop-
erties of attachment file associated with a bug like content-type, description, file-
name, isobsolete, flags etc keep on changing and attribute fields are not correctly

entered by the user while raising an issue.

4. Many recurrent loops of Activity FLA (Flags) occurs in all clusters except 6.
Flags can be of two types: attachment flags and bug flags E Loop involving
the former flag indicates that developer has asked other developers to review the
code implying that peer code review practice is followed for quite a lot of bugs,
while loop involving the latter type indicates that status information of the bug
is repeatedly required e.g needinfo flag is set many times sequentially implying

that the developer requires more information about the issue raised.

5. High Self-Loop frequency of activity Blocks (BLO) in cluster 3 indicates that
several bugs are repeatedly added in the Blocks field which means a lot of bugs

"http:/ /www.bugzilla.org/docs/2.22/html/flags-overview.html

43

8.1 Self-loop Analysis

are discovered sequentially which depends upon the current bug. Bugs in this
cluster needs to be resolved on a priority basis as several other bugs are dependent

on them.

. Self-loop frequency of activity Depends on (DEP) is extremely high in cluster 3
indicating that several bugs are identified many a time on which the current bug
is dependent. It is interesting to note that self-loop frequency of BLO was also
high in this cluster indicating that bugs in these clusters are either dependents

or dependees.

. There are 44 self-loops of KEY in cluster 5 indicating that keywords keep on
getting updated to identify and group bugs easily.

. There are 32 self-loops of WHI in cluster 5 indicating that information like tags
and status fields of the bugs are entered in the text entry box of the bug repeatedly.

44

8.1 Self-loop Analysis

01/00D ‘s | &1/DDDee ¢/THM ¥ 91/D0D ‘1¢ ¢/D00'F /00D ‘¢ 67/00D ‘1L IHM
¢/D0D ‘¢ -1 1/04d*- g/00D ‘T €/000D - e 01/D0D ‘9 HIA
T/SSV ‘- /00D v ¢/V1d ‘1 ¢/D00 ‘Tl /00D ¥ /00D - 9/000D ‘Tt VL
I/SSV ‘¥ €/00D ‘T /000 ‘¢ /000D ‘¢ e/00D ‘1 L/DDD ‘ST NS
/sy - ¢/da4d ‘- e/say'- €/d444 ‘- /449 - 9/44Y ‘- HYS
-1 -1 -1 ¢ HAS
1/0n4s - /ny4s ‘- -1 o/ngs ‘1 SHY
-1 V/SSV ‘¢ T/SSV ‘1 I/INOD *- 1/SSV ‘¢ L/SSV ‘6 ovD
-z T/INOD ‘- -1 T/INOD ‘¢ 04d
- -1 ¢/avl - /00D - ¢/uVL ‘€ ™Md
¢/vid ‘- =T 1/v1d - ¢/V1d ‘1 SdO
¢/0DD ¥ 01/D0D ¥¥ I/9dA ‘€ €/V1d ‘61 T/THM ‘9 7/000D ‘02 81/00DD ‘96 A
/vas ‘- I/NQS ‘T I/NNS ‘- T/ANS ‘T DSI
CI/LIV ‘61 | 98T/LLV ‘L8¢ | S¥/LIV ‘8¢ | 89T/LLV %19 | S¢/LLV ‘€6 | ¢&/0DD ‘10T | ¥9%/LLV ‘2191 V14
/140 ° LT/DDD ‘LS 9/00D ‘1% €8/000 ‘9.8 | €/DDD ‘T G/HNS ‘6 0T1/DDD ‘F0L dda
/000 - 1/0VD ‘1 I/0VD ‘1 1/0VD - e/OVD ‘¢ INOD
01/D0D ‘6 -1 ¢/00D ‘- /000 - ¢/SdD ‘8 S1/00D ‘8¢ LAD
-7 8/ LD ‘99 1/A9S F1 -F 9/LdD ‘99 VI/LAD ‘161 SdD
-1 -1 DD
7 €/000 v 9/00D ‘11 9/000D ‘9 /000 ‘1 91/000D ‘9% q440
€6/dNS ‘Tv | 09/VTd ‘1.8 | TST/UNS ‘SPel | TH1/dAd ‘61T¢ | L&/IHM ‘GL8 | 09/UNS ¥2¢ | 062/VTd ‘9LL9 00D
g/000D - I1/000 ‘8¢ ¥/000 ‘0¢ 8T/ddd ‘Tl ¥/000 ‘81 €/000 ‘¥ 6€/000 ‘TSl 01d
e/VT1d ‘¢ 7/ V14 ‘0L QT/VTId ‘8 0%/VT1d ‘20T 9/V1d ‘0% 9/V14d Vo 9TT/V'1d ‘992 LLV
L/DDD ‘¢ €/OV0D ‘8 9/000 ‘8 /000D ‘g T/LIV ‘G S1/00D ‘8T SSV

9 123sN[D g 199sN[) ¥ 103N g 138D g 193sn[D T 103sn[D) | [OPOIN UIRIN | ANAIPY

SISATeuy 0 -yorg pue sdooT JjPg :1°8 9[qelL

45

8.2 Back-Forth Analysis

8.2 Back-Forth Analysis

Figure 8.2: Back-Forth

A back-forth loop, also known as ping pong pattern, can be defined as a transition
A—B—A ie. a transition which begins at activity A, goes to activity B and again
ends at A (refer Figure . Second entry in each cell of Table contains the activity
with which the activity specified in the first cell of the same row is forming a back-forth
loop maximum number of times and also the frequency of that loop. An activity A can
be in a back-forth loop with multiple activities e.g. A—B—A with frequency f; and
A—C—A with frequency fo with fo > f1. Activity C is specified as the second entry
in each cell of Table [8.1]

1. Table clearly shows that some activities going in back-forth loop with a very
high frequency in main model are also depicting the same behavior in all the
clusters e.g. ATT looping 116 times with FLA is presenting the exact same

pattern in all the clusters.

2. Ping pong patterns that include activity Status Resolved Reopened (SRR) are
present in small numbers but are of major interest. The resolve-reopen loop is a
problematic pattern. In clusters 1, 3 and 5 SRR is looping with RFF which means
that a fixed bug is reopened and again fixed. It can happen when some people who
are working to resolve the bug think that the bug has not been properly resolved.
Such loops are undesirable because the average time to resolve a re-opened bug

can be twice as long as the time to resolve a non re-opened bug (31).

3. Activity DEP forms a back-forth loop with CCC 83 times and CCC forms a loop
with DEP 141 times in cluster 3 which might be happening because the team

solving other bugs (mentioned in Depends on field) needs to be informed about

46

8.3 Event Analysis

the bug’s progress so that they can be included in the decision making process of

the current bug.

4. CCC is involved in back-forth loop with many activities like SNR, WHI, SUR
etc. with high frequency which indicates that more people are involved in the
decision making process of confirming the bug’s status at every step in the bug’s

life cycle.

5. Important attributes of the bug like component (COM), assigned (ASS), version
(VER), operating system (OPS), summary (SUM) and target milestone (TAR)
though are involved in less number in the ping pong patterns but indicates that

it takes time to conclude about the values of these fields.

8.3 Event Analysis

A bug life cycle is very diverse consisting of various events ranging from a minimum
value of 4 to a maximum of 338. While the main model has a total of 37710 events, on
an average 6286 events occur in a cluster. Figure [8.3| shows number of events per case
in each of the six clusters. Most of the bugs in Cluster 1 and Cluster 2 have number
of events in the range 1-20 as even the main model has most of the cases belonging to
this span. Bugs in Cluster 3 have events of varying magnitude in their life-cycle. While
almost 20% of bugs have events in range 1-30, there are also 10% of bugs with event
length between 101-200. The fewer count of bugs having high event span not easily
visible in the main model can be seen in the clusters. Cluster 4 and Cluster 5 have a
good percentage of bugs (almost 80-90%) with event cycle length of 1-40, even the main
model has very low percentage of bugs above this event span. More than 75% bugs in
Cluster 6 have events in the range 1-10 in their life-cycle indicating categorization of

bugs of uniform length in the cluster.

8.4 Activity Frequency Analysis

Table contains Relative frequency percentage and absolute frequency of all activities
present in the clusters. Figure shows percentage of cases having some frequently
occurring activities in their trace. The high percentage of CFL and CCC (= 100%)

in all the clusters shows that these activities are present in the trace of almost every

47

8.4 Activity Frequency Analysis

-~ o0
= =

o
=]

e
=

w
=)

Percentage of cases
.
=

(]
=

=
=

110

Events per case

Il main model
Il cluster 1
[cluster 2
[lcluster 3
[eluster 4
B cluster 5
Il cluster 6

1120 2130 3140 4150 51-60 61-70 71-80 8190 914400 104-200 >200

Figure 8.3: No. of Events per Case in each of the six Clusters.

closed bug. We can conclude from the figure that the status of most of the bugs was

changed to Resolved from either New (SNR) or Unconfirmed (SUR) status without

having multiple assignments (ASS), therefore, less percentage of cases contain ASS.

Equal percentages of activities ISC and SUN indicates that bugs that were initially
Unconfirmed are Confirmed (ISC) later and set to New state (SUN). Resolution is

mostly set to Fixed, Worksforme and Wontfix. Presence of activity BLO in all clusters

shows that high dependencies exists among the bugs. Existence of Target Milestone

(TAR) in all the clusters in substantial amount depicts that most of the bugs have a

predetermined soft deadline upto which it is expected to be fixed.

Table 8.2: Absolute Frequency (Abs) and Relative Frequency Percentage (Rel freq.) for

all Activities present in the Clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Activity | Rel freq. Rel freq. Rel freq. Rel freq. Rel freq. Rel freq.
(Abs) (Abs) (Abs) (Abs) (Abs) (Abs)

CCcC 1245 (33.95) | 1867 (40.53) | 5235 (42.24) | 2684 (39.03) | 2158 (27.74) | 588 (24.58)

FLA 293 (7.99) | 280 (6.08) | 1564 (12.62) | 625 (9.15) | 1498 (19.25) | 121 (5.06)

48

8.4 Activity Frequency Analysis

CFL 277 (7.55) | 287 (6.23) | 317 (2.56) | 319 (4.64) | 293 (3.77) [286 (11.96)
SNR 170 (4.64) 138 (3) 150 (1.21) | 254 (3.69) | 108 (1.39) | 38 (1.59)
REW 155 (4.23) 79 (1.71) 51 (0.41) 113 (1.64) 16 (0.21) 75 (3.14)
CFS 141 (3.85) 11 (0.24) 42 (0.34) 2 (0.03) 224 (2.88) 4(0.17)
ASS 106 (2.89) 88 (1.91) 290 (2.34) | 373 (5.42) 257 (3.3) 18 (0.75)
KEY 106 (2.89) | 119 (2.58) | 214 (1.73) 74 (1.08) 245 (3.15) | 39 (1.63)
WHI 104 (2.84) | 202 (4.38) | 281 (2.27) | 109 (1.59) 311 (4) | 280 (1L.71)
VER 84 (2.29) 124 (2.69) | 119 (0.96) 71 (1.03) 67 (0.86) | 184 (7.69)
ATT 79 (2.15) 90 (1.95) 594 (4.79) | 202 (2.94) | 487 (6.26) | 21 (0.88)
SUR 78 (2.13) 129 (2.8) 47 (0.38) 45 (0.65) 32 (0.41) | 234 (9.78)
ISC 76 (2.07) 52 (1.13) 82 (0.66) 139 (2.02) 34 (0.44) 16 (0.67)
SUN 72 (1.96) 46 (1) 71 (0.57) 133 (1.93) 25 (0.32) 11 (0.46)
TAR 57 (1.55) 63 (1.37) 209 (1.69) 95 (1.38) 213 (2.74) 24 (1)
SUM 57 (1.55) 86 (1.87) 156 (1.26) | 150 (2.18) 72 (0.93) 24 (1)
BLO 52 (1.42) 138 (3) 488 (3.94) 124 (1.8) 281 (3.61) | 18 (0.75)
REF 51 (1.39) 31 (0.67) 136 (1.1) 25 (0.36) 224 (2.88) | 26 (109)
DEP 48 (1.31) 111 (241) | 1128 (9.1) | 175 (2.55) | 236 (3.03) 6 (0.25)
QAC 44 (1.2) 55 (1.19) 105 (0.85) | 299 (4.35) 60 (0.77) 13 (0.54)
REE - 4 (0.09) - 2 (0.03) 2 (0.03) 2 (0.08)
COM 38 (1.04) 62 (1.35) 93 (0.75) 109 (1.59) 62 (0.8) 21 (0.88)
REI 18 (0.49) 37 (0.8) 16 (0.13) 9 (0.13) 4 (0.05) 113 (4.72)
CFT 37 (1.01) 3 (0.07) 14 (0.11) 2 (0.03) 127 (1.63) -
RED 33 (0.9) 40 (0.87) 28 (0.23) 33 (0.48) 20 (0.26) 23 (0.96)
OPS 29 (0.79) 43 (0.93) 85 (0.69) 82 (1.19) 56 (0.72) 7 (0.29)
SAR 28 (0.76) 17 (0.37) 89 (0.72) 14 (0.2) 136 (1.75) 9 (0.38)
SNA 23 (0.63) 17 (0.37) 104 (0.84) 41 (0.6) 125 (1.61) 3 (0.13)
PLA 22 (0.6) 37 (0.8) 79 (0.64) 70 (1.02) 56 (0.72) 8 (0.33)
CFB 14 (0.38) 85 (1.85) 154 (1.24) - 91 (1.17) 6 (0.25)
SRV 14 (0.38) 21 (0.46) 42 (0.34) 27 (0.39) 88 (1.13) 4(0.17)
SNE 10 (0.27) 6 (0.13) 11 (0.09) 24 (0.35) 2 (0.03) 3 (0.13)
PRI 10 (0.27) 32 (0.69) 41 (0.33) 46 (0.67) 12 (0.15) 15 (0.63)
RES 9 (0.25) 26 (0.56) 30 (0.24) 48 (0.7) 5 (0.06) 21 (0.88)
SNM 6 (0.16) 2 (0.04) 8 (0.06) 12 (0.17) 3 (0.04) 2 (0.08)
PRO 6 (0.16) 12 (0.26) 22 (0.18) 26 (0.38) 15 (0.19) 1 (0.04)
SRR 6 (0.16) 8 (0.17)) 65 (0.52) 27 (0.39) 37 (0.48) 12 (0.5)
SRU 5 (0.14) 12 (0.26) 12 (0.1) 22 (0.32) 1(0.01) 10 (0.42)
SCM 5 (0.14) 4 (0.09) 1 (0.01) 2 (0.03) - 3 (0.13)
SEE 5 (0.14) 5 (0.11) 10 (0.08) 6 (0.09) 9 (0.12) 3 (0.13)
URL 4 (0.11) 3 (0.07) 28 (0.23) 17 (0.25) 3 (0.04) 12 (0.5)
CFC 4 (0.11) 2 (0.04) 1 (0.01) 1 (0.01) - -
RFF 4 (0.11) 2 (0.04) 23 (0.19) 8 (0.12) 18 (0.23) 2 (0.08)

49

8.4 Activity Frequency Analysis

RFW - 3 (0.07) 4 (0.03) - 1 (0.01) 1 (0.04)
GRO 3 (0.08) 8 (0.17) 4 (0.03) 4 (0.06) - 9 (0.38)
SNU 3 (0.08) 3 (0.07) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.04)
SEN 2 (0.05) 1 (0.02) 2 (0.02) 5 (0.07) 1 (0.0 2 (0.08)
STE 2 (0.05) - 2 (0.02) 1 (0.01) - 1 (0.04)
SMN 2 (0.05) 3 (0.07) 1 (0.01) 5 (0.07) - 1 (0.04)
SNT 2 (0.05) - 2 (0.02) 3 (0.04) 2 (0.03) -
RFD - - - - 1(0.01)

SAN 2 (0.05) 2 (0.04) 34 (0.27) 29 (0.42) 15 (0.19) -
SCN - 2 (0.04) - 1 (0.01) - 8 (0.33)
SBM 1 (0.02) - - -
SEM 1 (0.02) (0.01) 3 (0.04) -
SME 1 (0.02) - 7 (0.1) (0.04)
SMM - 1 (0.02) (o 01) - -
SMC 1 (0.03) 1 (0.02) - 1 (0.01) -
SNC 1 (0.03) 4 (0.09) 2 (0.02) (0 01) - 3 (0.13)
SUA 1 (0.03) 1(0.02) 5 (0.04) 1 (0.01) 5 (0.06) 2 (0.08)
SVU - 1 (0.02) - 6 (0.09) - 1 (0.04)
SRN 1 (0.03) 2 (0.04) 1 (0.01) 15 (0.22) 4 (0.05) 2 (0.08)
SNB 1 (0.03) - - - 1 (0.01) -
SRA 1 (0.03) 4 (0.03) 1 (0.01) 2 (0.03) -
ALI - 4 (0.03) 4 (0.06) - (0.08)
SVR 3 (0.02) 3 (0.04) 2 (0.03) -
RFI 2 (0.02) - 1 (0.01) -
STM 1 (0.01) 1(0.01) 1(0.01) 1 (0.04)
STN - 2 (0.03) - -
SET 1 (0.01) - -
SBN 1 (0.01) 1 (0.01 2 (0.08)
SMT - 2 (0.0 -
SCE - 1 (0.04)
SME - - - - 1 (0.04)
REX 67 (1.83) 70 (1.52) 63 (0.51 107 (1.56) 12 (0.15) 19 (0.79)
REN 20 (0.55) 26 (0.56) 23 (0.19) 30 (0.44) 14 (28 (1.17)
SEC - - - - 1 (0.04)

50

8.5 Reopen Analysis

e

RE'? [Jcluster 3

REX] [Jeluster 4
F |

— Rt

REF: ;

TARr : B

ISCF] b

BLO : w -

SUR% 7

ASS= =]

SNR :

FLA : w .

ccc

Activity

| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Percentage of cases having activity in their trace in the event log

Figure 8.4: Distribution of some Frequently Occurring Activities over the cases

8.5 Reopen Analysis

Bug reopening is equally important in open source systems like Bugzilla as it is in closed
source or commercial systems (32)). It increases the costs of maintaining the software,
lessens the user-perceived quality of the system and leads to extra and needless rework
by already loaded developers (31). Reopening of a substantial number of fixed bugs can
indicate instability in the system (32)). Analysis of factors leading to bug reopening will
help in improving the quality of bug fixing process and countering all these problems.

We are taking into account the following factors (22) (3I) (32)) that contribute in

reopening of bugs:

1. Verified: A bug verified by a Quality Assurance agent may get reopened if some
useful information about the bug becomes available that demands to have it

reviewed again.

2. Fixed: A fixed bug may have its reopening if the fix proposed seems to have faults

and is not complete and entirely correct solution.

51

8.5 Reopen Analysis

T

H Main Model
B Cluster 1

7L [Cluster 2 Ll
[IcCluster 3
[IcCluster 4
I Cluster 5
6 I Cluster 6 N

Percentage of Reopen cases

f, il e el 1

Verified Fi;ed Worksforme Wontfix Invalid Incomplete Duplicate
Activities

Figure 8.5: Reopen Analysis.

3. Duplicate: If the bug is not studied deeply and few of its symptoms match with

some already existing bug, it is incorrectly assumed to be the case of duplicacy.

4. Wontfix/Invalid /Incomplete/ Worksforme: There are high chances of re-openings
if earlier the bug was not been able to fix (Wontfix), it was not categorized as a
bug (Invalid), it was reported with incomplete information (Incomplete) or if it

was not successfully reproduced (Worksforme).

Clustering helps in analysing whether the reopening due to an activity is happening

globally throughout the main model or in a certain set of similar bugs.

1. Percentage of re-openings due to Verified (SRV) and Invalid (REN) resolutions
is nearly same in main model, still reopening after bug verification (SRV) is
supported by 3 clusters while REN appears in 4 clusters suggesting that former
appears in similar characteristic bugs while the latter can appear in all kinds of
bugs. Also less percentage of SRV is supported by the fact that they are verified
by a Quality Assurance agent (QAC) who confirms that a proper fix has been

achieved.

52

8.5 Reopen Analysis

2. In almost all clusters a good amount of re-openings occur after resolution of bug
was set as Fixed (REF) signifying that resolution set as Fixed before the reopening
is uniformly distributed across all the bugs in good amount thus appearing in all
clusters. It also indicates bad understanding and management in fixing the bugs
at first, leading to loss of time in analysing and correcting the same bug again.
Reopening after resolution was set to Worksforme (REW) is half in percentage
than REF in the main model, still 5 out of 6 clusters contain reopening after
REW indicating that this resolution is not limited to some closely related bugs

but rather appears at random.

3. Reopening due to the activity Worksforme (REW) is also contributed by 5 out of
6 clusters suggesting that bugs entering into the system are initially difficult to
reproduce, thus are left for future references/information using which they will

be reopened again.

4. Wontfix, Invalid, Duplicate factors cause reopening in 4 clusters. Invalid reopen-
ing is half in percentage than duplicate reopening in the main model and their
presence in equal numbers in clusters signifies that invalid label could not be
categorized under a category of clusters having certain common properties and is

spread randomly in the data.

The description of the clusters mentioned in Table also support the kind of activities

leading to the reopening in various clusters.

1. Cluster 1 contributes only to reopening after bug is Fixed (REF) which can also
be seen from the description of this cluster. Most of the bugs in this cluster are
as described confirmed to be true, resolved and await for the verification instead

of being verified and thus are later reopened.

2. In Cluster 2 and Cluster 6 the maximum percentage of reopening is due to factor
Worksforme (REW) informing that the bugs are unable to be reproduced and
hence in the cluster description we see various flags, attachments and dependen-

cies being added to the bugs to make its definition clear.

3. In Cluster 3 and Cluster 5 reopening after REF is hugely dominant as for most
of the bugs resolution was set as Fixed, but later we see clusters containing vari-

ous assignments, attachments, dependencies, keywords, summaries being defined

53

8.6 Unique Traces

indicating that the fix was not absolute and it requires reopening and looking

again.

4. Cluster 4 has most of the cases of the bugs being marked duplicate incidentally
and reopened thereafter. In this cluster we see a lot of unconfirmed bugs being
changed to Resolved State (SUR) indicating that the bugs are not properly ex-
amined before their resolution is set. The reason for not confirming the identity

of the bug is that they are considered as duplicates of existing bugs.

8.6 Unique Traces

A trace is a sequence of activities appearing in chronological order of occurrence. For
analysis we consider unique traces and their frequency of occurrence in data set. The
main model consists of 1513 variants (unique sequences of activities). For looking at
the distribution of similar traces in the clusters, a few topmost occurring variants are
considered. Since clustering groups similar objects together, similar traces should go
in the same cluster. The experimental results show that cases that follow the same
variant appear in the same cluster. As can be seen from Table the top 4 variants

5th

of main model goes in Cluster 6 while the one lies in Cluster 1.

8.7 Bottleneck Identification

Bottleneck refers to those components of process model that consume comparatively
more time than the rest of the system causing the entire process to slow down. Iden-
tification of principal factors constraining the process speed can help a process analyst
in working upon the causes that deter the performance of a process. We compute the
mean time taken for every transition between two activities in both the main model as
well as in all the clusters to conclude as to how clustering helps in analysis of bottle-
necks in a better manner. For analysis, we consider the transitions taking the maximum

amount of time i.e. discovering the largest bottlenecks present in the models.

1. The percentage of bottlenecks taking mean time more than 500 and 1000 days
in all the models is shown in Figure From the Figure we can observe that

54

8.7 Bottleneck Identification

Table 8.3: Most Occurring Variants of Main Model and each of the Six Clusters with

their Frequency of Occurrence

Variant
Cluster Freq. Trace
(Yoage)
12 (0.74) | VER — CCC — SUR — CCC — REW — CFL
. 11 (0.68) | VER — WHI — SUR — CCC — REI — WHI — CFL
Main Model
7 (0.43) | SUR - RED — CCC — CFL — CCC
7(0.43) | VER — CCC — SUR — CCC — REI — CFL
5(0.31) | VER — CCC — CCC — SUR, — CCC — REW — CFL
5(1.85) | VER — CCC — CCC — SUR — CCC — REW — CFL
3 (1.11) | SUR — CCC —- REW — CFL
Cluster 1
3 (1.11) | SNR — CCC — REW — CFL
2 (0.74) | CCC — CCC — SNR — REW — CFL
2 (0.74) | CCC — CCC — VER — CCC — CCC — SUR — REW — CFL
2 (0.74) | CCC — SNR — RED — CFL — CCC
Cluster 2
2 (0.74) | SUR — RED — CFL — CCC
2 (0.74) | WHI — SUR — REI — CFL — CCC — CCC
2 (0.74) | VER — CCC — CCC — FLA — SUR — REN — FLA — CFL
SUM — SUR — REX — CFL — SRU — RES — SUR —
Cluster 3 L (0.37) REX — CFL — CCC — CCC — QAC — CCC — CCC
1(0.37) | CCC —» FLA — FLA — SUR — REW — CFL
1 (0.37) SUM — PLA — OPS — CCC — CCC — CCC — CCC —
SNR. — CCC — REX — CFL
1(0.37) | SUM — ASS — SNR — CCC — REW — CFL — SUM — PLA
Cluster 4 1(0.37) | SUR - REW — CFL — QAC — CCC — SUM — SUN
1(0.37) | SUM — SUR — REX — CFL — CCC — SRV — CCC
1(0.37) | CCC - REW — CFL — CCC — CCC
2 (0.74) | SUR — REN — CCC — CFL — SRV — CCC
Cluster 5 2 (0.74) | CCC —» CCC — SUR — REN — CCC — CFL — CCC
2 (0.74) | SNR — RED — CFL — CCC
1(0.37) | QAC — ASS — SUR — REW — CCC — CFL — CCC
12 (4.46) | VER — CCC — SUR — CCC —» REW — CFL
Cluster 6 11 (4.09) | VER — WHI — SUR — CCC — REI — WHI — CFL
7 (2.6) | SUR - RED — CCC — CFL — CCC
7 (2.6) | VER — CCC — SUR — CCC — REI — CFL

95

8.7 Bottleneck Identification

w

Il Days > 500
IDays > 1000

o
T

Percentage of Bottinecks Identified
N L] - 122 o e |
T T T T T T

—
T

Main Model Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
Models

Figure 8.6: Bottleneck Analysis.

percentage of bottlenecks with period more than 500 days (mean value) is greater

in 4 clusters as compared to the main model.

While for duration greater than 1000 days (mean value) each cluster has strictly
higher percentage count than in the main model. Rather one cannot identify any
bottleneck transitions that take more than 1000 days in the main model. It is
due to absolute count of transitions which is less in cluster than in main model
producing greater mean value for the clusters. Thus bottlenecks that are not

quite evident in the main model are clearly visible in the clusters.

. Set of transactions taking mean time greater than 1000 days found in both the

main model as well as clusters are:

(a) SRV — CFB , SRV — QAC implying that after a bug is verified (SRV),
there is a large gap before any other actions like contacting another Quality
Assurence agent (QAC), making any custom extension field changes (CFB)
in Bugzilla are done. This indicates that a once a bug is verified it is not

acted upon much.

56

8.7 Bottleneck Identification

(b)

ISC — SNR, suggesting huge delay between the time a bug is confirmed to be
true (ISC) to the time appropriate actions are taken to resolve it (SNR). It
indicates that in some cases it takes a lot of time to understand and confirm

that the issue raised is actually a bug.

CFL — SEE informing that over 1000 days can be taken for bugs that are yet
not verified from their last resolved stage (CFL) (probably due to resolution
found to be Invalid, Incomplete, Duplicate, Wontfix or Worksforme) to the
time another bug is found in some other installation related to it and is thus

linked with for reference (SEE).

3. The bottlenecks found in clusters (not observed in main model) taking mean time

greater than 1000 days are:

(a)

Some of the activities performed before setting the Resolution from New
state (SNR) like ASS — SNR, ATT — SNR, CFB — SNR, TAR — SNR
span over 1200 days suggesting it takes years of time to finally resolve a
bug even after it is properly assigned (ASS), has its associated attachments
(ATT) for references, custom extension fields are specified in Bugzilla (CFB)

or even if target milestone is set.

Transitions QAC — SUN, QAC — SUR, QAC — SNR take more than
3 years to execute indicating that it can take years for a bug to change
its status to New or Resolved even after contacting the Quality Assurance
(QAQ).

CCC — REF, CCC - REW, CCC — REX. It takes more than 3 years to
come to the decision of setting the resolution of bug to Fixed (REF), Works-
forme (REW) or Wontfix (REX). It shows that deciding the appropriate res-
olution of the bug takes years of time even after appropriate users/developers

are involved and informed about the bug progress.

Changing the status of bug directly to Resolved from Unconfirmed without
assigning it the status of New may require a period of 4 years (transitions
SUM — SUR, OPS — SUR) even after the important attributes of bug like
summary (SUM) and operating system (OPS) are properly defined.

o7

8.7 Bottleneck Identification

(e) QAC — SNR takes more than 3 years to execute indicating that it can take
years for a bug to change its status to New or Resolved even after contacting

the Quality Assurance (QAC) who verifies that the issue raised is a bug.

58

9

Automate Clustering to
Determine the Best Cluster

Solution

Clustering can give many different solutions depending upon the algorithm used, initial
cluster centers/medoids chosen, number of iterations and number of clusters specified.
Out of the many possible solutions, we should select the one where clusters have low
complexity and high fitness value for enabling better analysis. In this section we pro-
pose an algorithm that automatically computes the goodness of process models and
returns the best cluster set for analysis. The algorithm takes as input an event log
and returns a set of clusters that maximizes the objective function which is to reduce
complexity and increase fitness. We compute the goodness ratio (G_Ratio) by dividing
the weighted average of fitness values (F_score) by the weighted average of complex-
ity values (C_score) of all clusters present in the given solution set and returns the
set having maximum G_Ratio. A weighted average of a cluster is the average taken
with respect to number of traces present in the cluster. Since clustering distributes the
traces non uniformly in clusters, fitness and complexity contribution by each cluster
has to be taken with respect to the absolute count of cases present in that cluster. The
minimum value of G_Ratio is 0 (when each cluster has fitness 0 making F_score = 0).
To validate the automated clustering algorithm, the experimental dataset described in
Table was spit into four equal sub datasets and each subset was experimented with
the proposed algorithm using LCS similarity metric. Algorithm [J] runs the clustering

59

algorithm multiple times over the input event log to select the best cluster set. So if
a process analyst wants to compare the goodness of two or more clustering solutions,
he can use our proposed approach. For the given dataset we have run the cluster-
ing algorithm thrice. The motivation behind running the algorithm thrice over same
Event-Log is to determine how much does the goodness of a process model varies with
respect to initial random selection of the medoids in the k£ medoid clustering algorithm.
Thus, clustering was repeated thrice by the automated clustering algorithm to get an
estimation as to how much the deviations of fitness and complexity occur with each
new clustering run. Table gives the G_Ratio of all the three iterations performed
on all four sub datasets as well as the iteration whose solution set is determined to be

the best by our proposed algorithm.

Table 9.1: Automated Clustering Algorithm Analysis

. Weighted R
Dataset Iteration Weighted X
No. No. Corflplex- Fitness G_Ratio Result
ity

1 1 90.98 0.190 2.08 x 10793 -
1 2 92.38 0.158 1.71 x 10793 -
1 3 90.91 0.227 2.49 x 1079 | Selected
2 1 99.43 0.275 2.08 x 10793 -
2 2 100.99 0.205 2.7 x 10793 Selected
2 3 105.8 0.213 2.01 x 10793 -
3 1 92.05 0.125 1.35 x 10793 -
3 2 91.39 0.106 1.15 x 10793 -
3 3 93.47 0.218 2.33 x 1079 | Selected
4 1 81.36 0.394 4.84 x 1079 | Selected
4 2 85.57 0.270 3.15 x 10793 -
4 3 85.40 0.211 2.47 x 10703 -

60

Algorithm 9: Automate Clustering

Data: History data of bugs
Result: Best cluster set
1 Event Log Creation(History data of bugs)
2 Sequential Data Creation(Event Log of Bugs)
3 generate 3 cluster sets S1, So and S3 by calling
k Medoid Clustering(Event log in sequential data format) that uses LCS and
DTW similarity for input k& value
4 foreach cluster set .S; consisting of m clusters do

5 for j«— 1 to m do

6 L discover process model P;
7
m . .
Complexity(Xml format input of P;) *t;
C_score; = Z p y(f 14 f J) j
: t
j=1
Fitness(Xml format input of Pj, Event
m . .
log in sequential format of cluster C;) * t;
F_score; = Z g ¢ ! ! J) J
j=1 ti

G_Ratio; = F_score/C _score

| where t; is total traces in event log of cluster C;

8 return the cluster set S; with the maximum G_Ratio.

61

10

Limitations and Future Work

The experimental dataset is small and the clustering has been done on Event Logs
consisting of less process instances. We plan to validate our approach on larger datasets.

The experimental dataset has been taken from a single Issue tracking System. The
presented work can be applied on larger and diverse datasets. Future work includes
application of our proposed technique on various other real-life datasets.

We have adapted the basic version of £ medoid algorithm. Not much focus was
given on complexity and running time of the algorithm. As a part of future work, we
would focus on these two aspects of the algorithms.

K medoid algorithm is known to be sensitive to initial cluster center assignment.
We plan to work on an algorithm that can select the traces which can be the best
candidates for initial medoid assignment.

In our proposed technique the analyst has to provide number of clusters (k) as
input. Selecting the value of k is a popular research problem for which lot of work has
been done and continues to be done.

We plan to experiment our proposed distance metrics with other clustering algo-
rithms and compare their performances. We also plan to compare the performance of

our two proposed distance metrics and to find out which metric works best and when.

62

11

Conclusion

Analysing the results of mining real world unstructured event logs that show adhoc
behavior is difficult due to production of complex spaghetti- like process models. Our
work is a contribution towards simplifying these complex models by means of clustering
so that they can be easily understood by the process analyst. Fitness and structural
complexity of the process models is improved by forming groups of structurally similar
traces which makes the model easier to comprehend. K medoid algorithm has been
adapted using two different distance metrics- LCS and DTW to obtain clusters having
good intra-class similarity. K medoid is an efficient clustering algorithm which is not
sensitive to outliers and noisy data. We have demonstrated the effectiveness of our
proposed technique by performing a real life case study on Firefox browser project.
We have successfully shown that clustering enables better analysis, making it easier to
identify bottlenecks, study reopening of bugs, self & back forth loops. An algorithm
has been proposed to automate the clustering process which has been tested on four
different datasets. It returns the cluster set with highest goodness ratio from the various

cluster sets obtained.

63

References

WIL VAN DER AALST. Process Mining: Overview and Opportunities. ACM
Trans. Manage. Inf. Syst., 3(2):7:1-7:17, July 2012. [vi [§]

ALAIN APRIL AND ALAIN ABRAN. Software Maintenance Management: Fvalua-

tion and Continuous Improvement (Practitioners). Wiley-IEEE Computer Society
Pr, 2008.

THOMAS M. P1GOSKI. Practical Software Maintenance: Best Practices for Man-
aging Your Software Investment. John Wiley & Sons, Inc., New York, NY, USA,
1996.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

WIL M. AALST. Transactions on Petri Nets and Other Models of Concur-
rency II. chapter Process-Aware Information Systems: Lessons to Be Learned

from Process Mining, pages 1-26. Springer-Verlag, Berlin, Heidelberg, 2009. [6]

WIL VAN DER AALST. |[Process Mining: Making Knowledge Discovery
Process Centric. SIGKDD Explor. Newsl., 13(2):45-49, May 2012.

W. M. P. vaN DER AALST, H. A. REUJERS, A. J. M. M. WELJTERS, B. F. vAN
DoNGEN, A. K. ALVES DE MEDEIROS, M. SONG, AND H. M. W. VERBEEK.
Business Process Mining: An Industrial Application. Inf. Syst., 32(5):713—
732, July 2007.

S.A. WHITE AND D. MIERS. BPMN Modeling and Reference Guide: Understand-
ing and Using BPMN. Future Strategies Incorporated, 2008. [9]

64

http://doi.acm.org/10.1145/2229156.2229157
http://dx.doi.org/10.1007/978-3-642-00899-3_1
http://dx.doi.org/10.1007/978-3-642-00899-3_1
http://doi.acm.org/10.1145/2207243.2207251
http://doi.acm.org/10.1145/2207243.2207251
http://dx.doi.org/10.1016/j.is.2006.05.003
https://books.google.co.in/books?id=0Z2Td3bCYW8C
https://books.google.co.in/books?id=0Z2Td3bCYW8C

REFERENCES

[9]

[11]

[13]

REMCO M. DIJKMAN, MARLON DUMAS, AND CHUN OUYANG. Semantics and
Analysis of Business Process Models in BPMN. Inf. Softw. Technol.,
50(12):1281-1294, November 2008. [9]

CHRISTIAN W. GUNTHER AND WIL M. P. VAN DER AALST. Fuzzy Mining:
Adaptive Process Simplification Based on Multi-perspective Metrics. In

Proceedings of the 5th International Conference on Business Process Management,
BPM’07, pages 328-343, Berlin, Heidelberg, 2007. Springer-Verlag.

WIiL M. P. VAN DER AALST AND CHRISTIAN W. GUNTHER. Finding Structure
in Unstructured Processes: The Case for Process Mining. In Seventh
International Conference on Application of Concurrency to System Design (ACSD
2007), 10-13 July 2007, Bratislava, Slovak Republic, pages 3-12, 2007.

GABRIEL M. VEIGA AND Di10GO R. FERREIRA. Understanding Spaghetti
Models with Sequence Clustering for ProM. In Business Process Manage-
ment Workshops, BPM 2009 International Workshops, Ulm, Germany, September
7, 2009. Revised Papers, 43 of Lecture Notes in Business Information Processing,
pages 92-103. Springer, 2010. [I3] [I4]

R. P. JAGADEESH CHANDRA BOSE AND WIL M. P. VAN DER AALST. Context
Aware Trace Clustering: Towards Improving Process Mining Results.
In Proceedings of the SIAM International Conference on Data Mining, SDM 2009,
April 30 - May 2, 2009, Sparks, Nevada, USA, pages 401-412, 2009.

D1oGo FERREIRA, MARIELBA ZACARIAS, MIGUEL MALHEIROS, AND PEDRO
FERREIRA. |Approaching Process Mining with Sequence Clustering: Ex-
periments and Findings. In Proceedings of the 5th International Conference on

Business Process Management, BPM’07, pages 360-374, Berlin, Heidelberg, 2007.
Springer-Verlag.

JOCHEN DE WEERDT, SEPPE K. L. M. VANDEN BROUCKE, JAN VANTHIENEN,
AND BART BAESENS. Active Trace Clustering for Improved Process Dis-
covery. [EEFE Trans. Knowl. Data Eng., 25(12):2708-2720, 2013.

65

http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dl.acm.org/citation.cfm?id=1793114.1793145
http://dl.acm.org/citation.cfm?id=1793114.1793145
http://doi.ieeecomputersociety.org/10.1109/ACSD.2007.50
http://doi.ieeecomputersociety.org/10.1109/ACSD.2007.50
http://dx.doi.org/10.1137/1.9781611972795.35
http://dx.doi.org/10.1137/1.9781611972795.35
http://dl.acm.org/citation.cfm?id=1793114.1793147
http://dl.acm.org/citation.cfm?id=1793114.1793147
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.64
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.64

REFERENCES

[16]

[19]

[20]

MINSEOK SONG, CHRISTIAN W. GUNTHER, AND WIL M. P. VAN DER AALST.
Trace Clustering in Process Mining. In Business Process Management Work-
shops, BPM 2008 International Workshops, Milano, Italy, September 1-4, 2008.
Revised Papers, pages 109-120, 2008.

GIANLUIGI GRECO, ANTONELLA GUZZO, LuUIGl PONTIERI, AND DOMENICO
Sacc? Discovering Expressive Process Models by Clustering Log Traces.
IEEE Transactions on Knowledge and Data Engineering, 18(8):1010-1027, 2006.
5]

ANA KARLA ALVES DE MEDEIROS, ANTONELLA GUzzO, GIANLUIGI GRECO,
WiL M. P. VAN DER AALST, A. J. M. M. WELJTERS, BOUDEWLIN F. VAN
DONGEN, AND DOMENICO SACCA. [Process Mining Based on Clustering: A
Quest for Precision. In Business Process Management Workshops, BPM 2007
International Workshops, BPI, BPD, CBP, ProHealth, RefMod, semanticsjws,
Brisbane, Australia, September 24, 2007, Revised Selected Papers, pages 1729,
2007.

W.M.P.VANDER AALST. Business alignment: using process mining as a
tool for Delta analysis and conformance testing. Requirements Engineering,
10(3):198-211, 2005.

RAFAEL ACCORSI AND THOMAS STOCKER. On the Exploitation of Process
Mining for Security Audits: The Conformance Checking Case. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC 12,
pages 1709-1716, New York, NY, USA, 2012. ACM.

A. ROzZINAT AND W.M.P. vAN DER AALST. Conformance Testing: Mea-
suring the Fit and Appropriateness of Event Logs and Process Models.
In M. CASTELLANOS AND T. WELITERS, editors, First International Workshop

on Business Process Intelligence (BPI'05), pages 1-12, Nancy, France, September
2005.

MONIKA GUPTA AND ASHISH SUREKA. Nirikshan: Mining Bug Report His-

tory for Discovering Process Maps, Inefficiencies and Inconsistencies.

66

http://dx.doi.org/10.1007/978-3-642-00328-8_11
http://dx.doi.org/10.1007/978-3-540-78238-4_4
http://dx.doi.org/10.1007/978-3-540-78238-4_4
http://dx.doi.org/10.1007/s00766-005-0001-x
http://dx.doi.org/10.1007/s00766-005-0001-x
http://doi.acm.org/10.1145/2245276.2232051
http://doi.acm.org/10.1145/2245276.2232051
http://doi.acm.org/10.1145/2590748.2590749
http://doi.acm.org/10.1145/2590748.2590749

REFERENCES

[28]

[29]

[30]

[31]

In Proceedings of the 7th India Software Engineering Conference, ISEC ’14, pages
1:1-1:10, New York, NY, USA, 2014. ACM.

L. KAUFMAN AND P. J. ROUSSEEUW. Finding groups in data: an introduction
to cluster analysis. John Wiley and Sons, New York, 1990.

ROBERT A. WAGNER AND MICHAEL J. FISCHER. The String-to-String Cor-
rection Problem. J. ACM, 21(1):168-173, January 1974.

GUOoJUN GAN, CHAOQUN MA, AND JIANHONG WU. Data clustering - theory,
algorithms, and applications. STAM, 2007.

J. CARDOSO, J. MENDLING, G. NEUMANN, AND H. A. REIJERS. A Discourse
on Complexity of Process Models. In Proceedings of the 2006 International
Conference on Business Process Management Workshops, BPM’06, pages 117128,
Berlin, Heidelberg, 2006. Springer-Verlag.

VOLKER GRUHN AND RALF LAUE. Complexity metrics for business process
models. In in: W. Abramowicz, H.C. Mayr (Eds.), 9th International Conference
on Business Information Systems (BIS 2006), Lecture Notes in Informatics, pages
1-12.

ANTTI LATVA-KOI1VISTO. Finding a Complexity Measure for Business Pro-
cess Models, 2001.

THOMAS J. MCCABE. /A Complexity Measure. In Proceedings of the 2Nd Inter-

national Conference on Software Engineering, ICSE 76, pages 407—, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press. [33]

CHRISTINE A. HALVERSON, JASON B. ELLIS, CATALINA DANIS, AND WENDY A.
KELLOGG. Designing Task Visualizations to Support the Coordination of
Work in Software Development. In Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work, CSCW ’06, pages 3948,
New York, NY, USA, 2006. ACM.

EMAD SHIHAB, AKINORI IHARA, YASUTAKA KAMEI, WALID M. IBRAHIM,

MasAao OHIRA, BRAM ADAMS, AHMED E. HASSAN, AND KEN 1CHI MATSUMOTO.

67

http://doi.acm.org/10.1145/321796.321811
http://doi.acm.org/10.1145/321796.321811
http://dx.doi.org/10.1007/11837862_13
http://dx.doi.org/10.1007/11837862_13
http://dl.acm.org/citation.cfm?id=800253.807712
http://doi.acm.org/10.1145/1180875.1180883
http://doi.acm.org/10.1145/1180875.1180883

REFERENCES

[33]

Studying Re-opened Bugs in Open Source Software. 18, pages 1005-1042.
Springer, 2013.

THOMAS ZIMMERMANN, NACHIAPPAN NAGAPPAN, PHILIP J. GUO, AND BREN-
DAN MURPHY. |Characterizing and Predicting Which Bugs Get Re-
opened. In Proceedings of the 34th International Conference on Software En-
gineering (ICSE 2012 SEIP Track). IEEE, June 2012.

B. F. vaN DONGEN, A. K. A. DE MEDEIROS, H. M. W. VERBEEK, A. J. M. M.
WELITERS, AND W. M. P. vaAN DER AALST. The Prom Framework: A New
Era in Process Mining Tool Support. In Proceedings of the 26th International
Conference on Applications and Theory of Petri Nets, ICATPN’05, pages 444—454,
Berlin, Heidelberg, 2005. Springer-Verlag.

68

http://research.microsoft.com/apps/pubs/default.aspx?id=159352
http://research.microsoft.com/apps/pubs/default.aspx?id=159352
http://dx.doi.org/10.1007/11494744_25
http://dx.doi.org/10.1007/11494744_25

	List of Figures
	List of Tables
	1 Research Motivation and Aim
	1.1 Issue Tracking Systems
	1.2 Process Mining
	1.3 Problem Motivation, Definition and Aim

	2 Related Work and Research Contributions
	2.1 Related Work
	2.1.1 Problem of Spaghetti Process Models
	2.1.2 Trace Clustering
	2.1.3 Conformance Measurement

	2.2 Novel Research Contributions

	3 Research Framework and Solution Approach
	4 Experimental Dataset
	5 Clustering
	5.1 K Medoid Clustering
	5.1.1 Longest Common Subsequence metric
	5.1.2 Dynamic Time Warping metric

	6 Evaluation
	6.1 Complexity
	6.2 Fitness

	7 Experimental Results
	8 Analysis
	8.1 Self-loop Analysis
	8.2 Back-Forth Analysis
	8.3 Event Analysis
	8.4 Activity Frequency Analysis
	8.5 Reopen Analysis
	8.6 Unique Traces
	8.7 Bottleneck Identification

	9 Automate Clustering to Determine the Best Cluster Solution
	10 Limitations and Future Work
	11 Conclusion
	References

