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Abstract. In this work, we revisit the security analysis of AES-128 instantiated hash modes. We use
biclique cryptanalysis technique as our basis for the attack. The traditional biclique approach used
for key recovery in AES (and preimage search in AES based compression function) cannot be applied
directly to hash function settings due to restrictions imposed on message input due to padding. Under
this criteria, we show how to translate biclique technique to hash domain and demonstrate preimage
and second preimage attack on all 12 PGV modes. Our preimage attack complexity for all PGV modes
stands at 2127.4. The second preimage attack complexities differ based on the PGV construction chosen -
the lowest being 2126.3 and the highest being 2126.67 complexity. We also show how to model our attacks
under different settings, e.g., when message is padded/ not padded, when chaining variable is known/not
known, when full message or key space is available/ not available to the attacker etc. Our attacks require
only 2 message blocks with padding included and works on full 10 rounds of AES-128 for all 12 PGV
modes. In our attacks, the IV is assumed to be a known constant which is a practical assumption but
knowledge of other chaining variables is not required for the attacker. Considering these, our results
can be termed as the best so far in literature. Though our attack results do not significantly decrease
the attack complexity factor as compared to brute force but they highlight the actual security margin
provided by these constructions.
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1 Introduction

Block ciphers have been favored as cryptographic primitives for constructing hash functions for a long
time. In [1], Preneel et al. proposed 64 basic ways to construct a n-bit compression function from
a n-bit block cipher (under a n-bit key). Black et al. [2] analyzed the security of such constructions
and showed 12 of them to be provably secure. These modes are commonly termed as PGV hash
modes. The three most popularly used modes are Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO)
and Miyaguchi-Preneel (MP) modes.

AES (Advanced Encryption Standard), standardized by the US NIST in October 2000 and widely
accepted thereafter has been considered a suitable candidate for block cipher based hash functions
in the cryptographic community. ISO standardized Whirlpool [3] is a popular example of the same.
Infact, in the recently concluded SHA-3 competition also, several AES based hash functions were
submitted, e.g., LANE [4], ECHO [5], GRøSTL [6] etc. A significant progress has been made in the
field of block cipher based hash function security. Spearheaded by rebound attacks alongwith other
cryptanalytic techniques, several AES as well as other block cipher based dedicated hash functions
have been reviewed and cryptanalyzed [7,8,9,10,11,12,13]. But all of the analysis that has been done
has been performed on round-reduced versions of block ciphers. Specifically, if we refer to the previous
best result on AES-128 based hash modes performed by Sasaki [7], the maximum number of rounds
attacked is 7. The reason behind this restriction was the fact that AES-128 itself was resistant to
full 10 rounds attack for a considerable period of time since its advent. Until recently, there was
no single key model attack known which could break full AES-128 better than brute force attack.
In Asiacrypt’11, Bogdanov et al. [14] proposed a novel idea called biclique attack which allowed
an attacker to recover AES secret key up to 3-5 times faster than exhaustive search. Since then
the technique has garnered considerable interest amongst cryptographic community. This approach,
which is a variant of meet-in-the-middle attack, was first introduced by Khovratovich et al. in [15]



for preimage attacks on hash functions Skein and SHA-2. The concept was taken over by Bogdanov
et al. to successfully cryptanalyze full round AES and has been subsequently adopted to break many
other block ciphers [16,17,18,19,20]. As block cipher and block cipher based hash function security
are inter-related, it is imperative to analyse hash function security against biclique technique.

Motivation. In [14], Bogadanov et al. have mentioned that with a computational complexity of
2125.83, biclique key recovery attack on AES-128 can be converted to preimage attack on AES-128
based compression function in MP mode. However, this biclique attack on compression function
cannot be directly extended to block cipher based hash functions primarily for two reasons:

– Firstly, under hash function settings message padding norms are exercised, i.e., often message
inputs are padded in order to make them conform to a certain length (as shown in Fig. 1).
Once a message is padded, its padding bits are fixed and cannot change. The biclique attack on
compression function in [14] does not consider this restriction and allows modification of padding
bits, i.e., the preimage so generated need not fulfill the padding criteria.

– Secondly, the biclique attack methodology in [14] warrants utilization of full key space to work
successfully, i.e., if the block cipher uses a k-bit key then the attack requires availability of all
2k keys to the attacker. However, under hash function settings this might not be possible in all
cases especially when the key input to underlying block cipher acts as message input for the hash
function so built (as seen in Fig. 1). Here, since the length of padding bits are fixed, the attacker
does not have control on all key bits, i.e., if r bits are fixed for padding, then attacker has only
(k − r) degrees of freedom and can work with only 2k−r keys.

m0 m1 || pad

E E h2

h1
IV

Fig. 1. Here, m1 has been padded to satisfy the message
length requirements. m0 and m1||pad which are message
inputs to the hash functions are infact key inputs to the
underlying block cipher E.

Fig. 2. AES-128 instantiated compression function in
DM mode. This figure is used in § 4

Under such scenarios, in our work, we demonstrate how biclique cryptanalysis can still be utilised
to successfully launch preimage and second preimage attacks on AES-128 based hash functions and
show that the biclique structure which yields best results in compression function cryptanalysis do
not deliver the best results under the corresponding hash function settings. Moreover, in our attack
we assume IV to be a public constant but all other chaining variables if involved are unknown to
the attacker. The previous best result [7] works only under known key settings where IV and all the
chaining variables are known to the attacker. As a consequence, their preimage attack and second
preimage attacks can target only specific PGV constructions and most of them require long messages
(message block ≥ 3). Our attacks, don’t have such restrictions. Principally, we suggest a framework
for biclique cryptanalysis on hash functions and show how it can be applied to attack PGV modes
under different conditions.

Our contribution: The contributions of this paper are as follows:

– We propose preimage and second preimage attacks on full 10 rounds of AES-128 based hash
modes. The attacks work on all 12 PGV hash function constructions.

– The preimage attack complexities for all the three frequently used modes, i.e., DM, MMO and
MP modes is 2127.38, 2127.45 and 2127.45 respectively.

– The second preimage attack complexity similarly differs based on PGV construction chosen. For
MP and MMO mode it is 2126.3 whereas for DM mode it is 2126.67.



– All the above attacks are performed on 2 block messages (with pad) and can be easily extended
to messages of length ≥ 3 with the same attack complexities.

– We also show how our attacks can be modelled under all possible scenarios, e.g., when message is
padded/not padded, when chaining variable is known/not known, when full message/key space
is available/not available to the attacker etc.

The results of cryptanalytic attacks on all 12 PGV based modes is given in Table 1.

S.No. Hash Function Modes Preimage Second Preimage
Complexity Complexity

1 Eh(m)⊕m - MMO 2127.45 2126.3

2 Eh(m)⊕ w - MP 2127.45 2126.3

3 Em(h)⊕ h - DM 2127.38 2126.67

4 Eh(w)⊕ w 2127.45 2126.3

5 Eh(w)⊕m - similar to Constr.4 2127.45 2126.3

6 Em(h)⊕ w - similar to DM 2127.38 2126.67

7 Em(w)⊕ h - similar to DM 2127.38 2126.67

8 Em(w)⊕ w - similar to DM 2127.38 2126.67

9 Ew(h)⊕ h 2127.56 2126.67

10 Ew(h)⊕m - similar to Constr.9 2127.56 2126.67

11 Ew(m)⊕ h - similar to MP 2127.45 2126.3

12 Ew(m)⊕m - similar to MMO 2127.45 2126.3

Table 1. Summary of the results obtained. In this table, we assume hash function to be instantiated with block cipher
E, h is the chaining variable, m is the message inpuut and h⊕m = w

2 Preliminaries

In this section we give a brief overview of the key concepts used in our cryptanalysis technique to
facilitate better understanding.

2.1 AES-128

AES-128 is a block cipher with 128-bit internal state and 128-bit key K. The internal state and the
key is represented by a 4 × 4 matrix. The plaintext is xor’ed with the key, and then undergoes a
sequence of 10 rounds. Each round consists of four transformations: nonlinear bytewise SubBytes,
the byte permutation ShiftRows, linear transformation MixColumns, and the addition with a subkey
AddRoundKey. MixColumns is omitted in the last round.

For the sake of clarity, we will follow the same notation used for description of AES-128 as used
in [14]. We address two internal states in each round as follows: #1 is the state before SubBytes in
round 1, #2 is the state after MixColumns in round 1, #3 is the state before SubBytes in round
2, . . ., #19 is the state before SubBytes in round 10, #20 is the state after ShiftRows in round 10.
The key K is expanded to a sequence of keys K0,K1,K2, . . . ,K10, which form a 4× 44 byte array.
Then the 128-bit subkeys $0, $1, $2, . . . , $10 come out of the sliding window with a 4-column step.
We refer the reader to [21] for a detailed description of AES.

2.2 Biclique Key Recovery Attack

In this section, we briefly discuss the independent biclique key recovery attack for AES-128. For
a more detailed description of bicliques, one can refer to [14]. In this attack, the entire key space
of AES-128 is first divided into non-overlapping group of keys. Then, a subcipher f that maps an



internal state S to a ciphertext C under a key K, i.e. fK(S) = C is chosen. Suppose f connects 2d
intermediate states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}. The 3-tuple of sets [{Sj},
{Ci}, {K[i, j]}] is called a d-dimensional biclique, if: ∀i, j ∈ {0, ......., 2d − 1} : Ci = fK[i,j](Sj).

Each key in a group can be represented relative to the base key of the group, i.e., K[0, 0] and
two key differences ∆k

i and ∇kj such that: K[i, j] = K[0, 0] ⊕ ∆k
i ⊕ ∇kj . For each group we choose

a base computation i.e., S0
K[0,0]−−−−→
f

C0. Then Ci and Sj are obtained using 2d forward differentials

∆i, i.e., S0
K[0,0]⊕∆k

i−−−−−−−→
f

Ci and 2d backward differentials ∇j , i.e., Sj
K[0,0]⊕∇k

j←−−−−−−−
f−1

C0. If the above two

differentials do not share active nonlinear components for all i and j, then the following relation:

S0 ⊕∇j
K[0,0]⊕∆k

i⊕∇
k
j−−−−−−−−−−→

f
C0 ⊕∆i is satisfied [14]:

Once a biclique is constructed for an arbitrary part of the cipher, meet-in-the middle (MITM)
attack is used for the remaining part to recover the key. During the MITM phase, a partial interme-
diate state is chosen as the matching state v. The adversary then precomputes and stores in memory
2d+1 times full computations upto a matching state v: ∀i, Pi

K[i,0]−−−→ −→v and ∀j,←−v K[0,j]←−−−− Sj .
Here, plaintext Pi is obtained from ciphertexts Ci through the decryption oracle 1. If a key in a

group satisfies the following relation: Pi
K[i,j]−−−→
h

−→v =←−v K[i,j]←−−−
g−1

Sj , then she proposes a key candidate.

If a right key is not found in the chosen group then another group is chosen and the whole process
is repeated. The full complexity of independent biclique attacks is calculated as:

Cfull = 2k−2d(Cbiclique + Cprecompute + Crecompute + Cfalsepos),

where, Cprecompute is the cost complexity for calculating v for 2d+1, Crecompute is the cost complexity of
recomputing v for 22d times and Cfalsepos is the complexity to eliminate false positives. As mentioned
in [14], the full key recovery complexity is dominated by 2k−2d × Crecomp. 2

3 Notations

To facilitate better understanding, we use the following notations in the rest of the paper.
CV: Chaining Variable
IV: Initialization Vector
(CV,message): Input tuple to hash function/ compression function
(key,plaintext): Input tuple to underlying block cipher
n: Input message/key size (in bits)
Ab: Base State
mb: Base Plaintext
Kb: Base Key
K[i, j]: Keys generated by ∆i and ∇j modifications
M[i, j]: Messages generated by ∆i and ∇j modifications
Nbr: Number of AES rounds called
Eenc/dec: One Round of AES encryption/decryption
E(x,y): Full AES encryption under y-bit key and x-bit message
E−1(x,y): Full AES decryption under y-bit key and x-bit message

1 Under hash function settings decryption oracle is replaced by feed-forward operation
2 Crecomp in turn is measured as: 2128 (#S-boxes recomputed in MITM phase/ #Total S-boxes required in one full
AES encryption) =⇒ 2128 (#S-boxes recomputed in MITM phase/200)



4 Biclique Modus Operandi for Preimage Attack on Hash Function

In this section, we examine how biclique technique discussed in Subec 2.2 can be applied on hash
functions. Let us consider an AES-128 based compression function(as shown in Fig. 2). To find a
preimage h, the attacker needs to find a valid (CV, message) pair which generates h. In terms of
underlying block cipher E which is instantiated with AES-128, this problem translates to finding
a valid (key, plaintext) pair where both key and plaintext are of 128 bits size. To guarantee the
existence of a preimage for h (with probability 0.632), the attacker needs to test 2128 distinct (key,
plaintext) pairs precisely.

When biclique methodology is applied on AES-128 to recover the secret key [14], full key space,
i.e., 2128 keys are divided into 2112 groups of 216 size each and tested. 3 These 2112 groups are
generated from 2112 base key values where each base value defines one group. However, the same
biclique approach when extended to hash functions warrants the need of testing 2128 (key, plaintext)
pairs. These 2128 (key, plaintext) pairs will be generated from 2112 (key, plaintext) base states.
Hence, under hash function settings, alongwith the base key we introduce the term "base message".
Let Kb denote the base key value and Ab denote the base message value. If we apply the original
biclique approach [14] on compression function, then 2128 (key, plaintext) pairs are generated from
a combination of 2112(Kb, Ab) as shown in (Fig. 3). Here, a single Ab is chosen and repeated across

(K
(1)

b
, Ab) −→ 216 (key, message) pairs

(K
(2)

b
, Ab) −→ 216 (key, message) pairs

.

.

.
(K

(2112)

b
, Ab) −→ 216 (key, message) pairs

(K
(3)

b
, Ab) −→ 216 (key, message) pairs

Fig. 3. Generation of groups in original attack [14]

Algorithm 1 :
Fix a base state Ab

for each 2112 base keys (K′bs) and the fixed chosen Ab

do
for 216 (∆k

i , ∇
k
j ) combinations do

Generate K[i,j]
Construct biclique structure
Generate M[i,j] (where M[i,j] = Nbr
Eenc/dec(K[i,j], Ab) )
Perform meet-in-the-middle attack

Fig. 4. Steps in the original biclique attack in [14]

all the groups whereas 2112 different K ′bs are used. The biclique algorithm for the attack is shown in
Fig.4. In Algorithm1, the specific (i,j) tuple for which a match is found gives us the corresponding
K[i, j] andM [i, j] as the desired inputs for compression function. The complexity of this attack when
applied for searching preimages in AES-128 instantiated compression function is 2125.83 [14].
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Fig. 5. Generation of groups under hash function settings

Algorithm 2 :
for each 2x base keys (K′bs) do

for each 2y base messages (Ab) do
for 216 (∆k

i , ∇
k
j ) combinations do

Generate K[i,j]
Construct biclique structure
Generate M[i,j] (where M[i,j] = Nbr
Eenc/dec(K[i,j], Ab) )
Perform meet-in-the-middle attack

Fig. 6. Steps of the modified biclique attack under hash
function settings

3 Here, bicliques of dimension d = 8 are constructed. In our attacks, we also construct bicliques of dimension 8.



However as discussed in § 1, cases may arise where an attacker does not have the freedom to use
all 2128 keys. Let us suppose, due to message padding, the attacker has only 2r keys with her (where
r<128). Let us further assume that these 2r keys are generated from 2x base key values, i.e., 2r−16

= 2x base keys. If the attacker fixes a base message Ab of her own choice and only varies Kb, then
she can generate only 2x (Kb, Ab) pairs (where x<112). In such scenarios, to reach her threshold of
2112 base states, the attacker will then choose 2y base messages (Ab’s) such that 2x× 2y = 2112. Now
the 2112(Kb, Ab) base value pairs will be generated as shown in Fig. 5. The corresponding modified
biclique algorithm is shown in Fig. 6. The attack complexity is now calculated as : 2x+y(216×Crecomp).

In § 1, it was also discussed that preimage search for hash functions using biclique technique is
favorable when message inputs obey padding rules. In the subsequent sections, we will show how
this constraint is handled depending on the hash mode considered and apply the modified algorithm
(shown in Fig. 6) to launch successful attacks.

5 Preimage Attack on Hash Functions

In this section, we examine the feasability of extending the biclique attack on AES-128 instantiated
hash functions under all 12 PGV modes and discuss how bicliques can be applied when padding
of messages is involved. We adopt the standard padding convention for all messages, i.e., append
to a message m (represented in bits) a single 1-bit followed by zero or more 0-bits. A length field
of 64 bits is appended at last to specify the bit-length of the original message. To give maximum
freedom to the attacker, we omit the intermediate 0-bits in padding and directly append the length
field after ’1’ bit, i.e., 65 bits are fixed for padding. We discuss 4 specific PGV models, rest 8
follow the same attack procedure as applied to above four. The attacks are demonstrated on 2-block
messages (m0||(m1||pad)) and in all the cases final hash value and initialization vector(IV) which is
a public constant are known to the attacker. In our attack demonstration, since 2-block messages are
considered and padding requires 65 bits, the attacker will always try to generate a 191-bit messages
(128+128-65 = 128+63) i.e., the messages will be of the form -

message(m0||m1||pad) = m0︸︷︷︸
128-bit

|| m1︸︷︷︸
63-bit

|| 1||
binary representation of 191 in 64 bits︷ ︸︸ ︷

00000....00010111111︸ ︷︷ ︸
65-bit pad

5.1 PGV Construction 1 - Matyas-Meyer-Oseas (MMO) Mode: Eh(m)⊕ m

In the MMO based hash function (as shown in Fig. 7), the (chaining variable, message block) tuple
m0 m1 || pad

E E h2

h1
IV

Fig. 7. Hash function based on MMO mode

act as the (key, plaintext) inputs respectively to block cipher E. For better understanding we divide
the hash function into 2 compression functions - each function being governed by its (key, plaintext)
pair, i.e., EIV (m0) and Eh1(m1||pad). We look at both cases separately and then merge them to-
gether to attack the hash function as a whole.

Case A. h2 := Eh1(m1||pad) - Under this scenario, attacker knows h2 and her aim is to find a
valid (h1, m1||pad) pair. The key h1 is unknown to her. The attack steps are as follows:

1. The attacker chooses a 128-bit base message Ab such that its last 65 bits follow the padding rule
(i.e., the value of last 65 bits is fixed).



2. Choice of biclique structure. The attacker has to choose a biclique structure such that ∆K
i and

∇Kj trails do not modify the last 65 padding bits of the base message. Hence, he strives to choose
a structure which not only has the lowest search complexities but also allow non-alteration of
padding bits. The biclique structure satisfying the above two requirements is as follows (Fig. 8(a)):

3. The biclique covers the first round. ∆i trail activates bytes 0 and 4 of $0 sub key whereas ∇j
trail activates byte 2 of $0 subkey. $0 is taken as the base key (Kb) and #0 is taken as the base
state (Ab).
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Fig. 8. Biclique structure for MMO mode when padding in message is necessary.

4. The attacker then performs meet-in-the-middle attack on the rest of the 9 rounds. In the MITM
phase, partial matching is done in byte 12 of state #11. In the forward propagation (starting
from round 2), 7+16+4 = 27 S-boxes and in the backward propagation (starting from round 10),
9+16+16+4+1 = 46 S-boxes need to be recomputed (in Figs. 8(b), 8(c)). Thus, a total of 73
S-boxes are involved in recomputation process. As each group has 216 keys, therefore, for each
group Crecomp = 216 × 73

200 = 214.54. Since we match on 1 byte, i.e., 8 bits in v, we have 28 false
positives on an average. Similarly, Cbiclique = 25.67 ≈ 29 × 1

10 and Cprecomp = 27.68. Hence, Cfull
= 2112 × (25.67 + 27.68 + 214.54 + 28) = 2126.54. The biclique algorithm followed is same as shown
in Fig. 4.

5. For the specific (i,j) value which produces a match in the middle, the corresponding xoring of
mi, mj and Ab (as shown in Fig. 8(a)) yields the message input (m1||pad) for the compression
function and K[i, j] - the desired h1. Thus with a time complexity of 2126.54, the attacker is able
to find a (h1, m1||pad ) pair which produces hash value h2.

Case B. h1 := EIV(m0) - In this case, the attacker has already obtained the value of h1 from the
above mentioned attack. Public constant IV is known to her. Her aim is now to find a preimage m0
which produces h1 under the given value of IV. The attack steps are as followed:
1. The attacker fixes IV as the key input to the block cipher & chooses a 128-bit base message Ab.
2. Choice of biclique structure. Here, the key input to the block cipher (i.e., IV) is fixed. The attacker

has to choose a biclique structure such that the ∆i and ∇j trails only modify the message
states and not the key states plus the biclique attack should have lowest search complexity. We
represent the ∆ and ∇ trails as ∆m

i and ∇mj respectively.The biclique structure satisfying the
above requirements is as shown in Fig. 9(a).

3. For the above biclique, she divides the 128-bit message space into 2112 groups each having 216

messages with respect to intermediate state #3 as shown in Fig. 9(a). The base messages are
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Fig. 9. Biclique structure for MMO mode when key/IV is known

all 16-byte values with two bytes (i.e., bytes 0 and 4) fixed to 0 whereas the remaining 14-bytes
taking all possible values (shown in Fig. 10). The messages in each group (M[i,j]) are enumerated
with respect to the base message by applying difference as shown in Fig. 11. The proof for the
claim that this base message (with the corresponding ∆i and ∇j differences) uniquely divides the
message space into non-overlapping groups is given in Appendix A.1

0 0

Fig. 10. Base Message

i j1

j2

j3

j4

Fig. 11. ∆i and ∇j differences

Algorithm 3:
Fix a base state Ab

for each 2112 base keys (A′bs) and key as IV do
for 216 (∆m

i , ∇m
j ) combinations do

(a) Generate M[i,j]
(b) Construct biclique structure
(c) Perform meet-in-the-middle attack

Fig. 12. Steps of the modified biclique attack

4. The biclique covers 1.5 rounds (round 2 and round 3 upto Shift Rows operation). ∆m
i trail

activates byte 0 ∇mj trail activates bytes 3,4,9 and 14 of #3 state.
5. Meet-in-the-middle attack is performed on the rest 8.5 rounds. In the MITM phase, partial

matching is done in byte 0 of state #13. In the forward propagation (starting from round 4),
4+16+4 = 24 S-boxes and in the backward propagation (starting from round 1), 4+16+16+4+1=
41 S-boxes are recomputed (in Figs. 9(b), 9(c)). Thus, a total of 65 S-boxes are involved in
recomputation process. Hence Cfull ≈ 2126.37.

6. For the specific (i, j) value which produces a match in the middle, the corresponding M[i,j] i.e.,
xoring of #3 states in base computation, ∆i and ∇j trails (in Fig. 9(a)) yields the plaintext m0
for the block cipher E (Fig. 7). The biclique algorithm, i.e., Algorithm 3 is shown in Fig. 12.

When the above mentioned two attacks are merged together (i.e., case A followed by case B)
the total attack complexity is - 2126.54 + 2126.37 = 2127.45. Thus, with a complexity of 2127.45, the
attacker is able to successfully launch preimage attack on MMO based hash function.

PGV Construction 2 - Miyaguchi-Preneel Mode (MP) Mode: Eh(m)⊕m⊕ h - The MP
mode is an extended version of MMO mode. The only difference between the two constructions is the
fact that output of block cipher is xor’ed both with the plaintext input as well the chaining variable
input. However, this does not demands any extra attack requirements and the attack on MP mode
is exactly same as that described on MMO mode.



5.2 PGV Construction 3 Davies-Meyer (DM) Mode: Em(h)⊕ h

In the DM based hash function (as shown in Fig. 13), the (chaining variable, message block) tuple
act as the (plaintext, key) inputs respectively to block cipher E. We again inspect the hash function
as concatenation of two compression functions - Em0(IV ) and Em1||pad(h1).

m0 m1 || pad

E E h2

h1
IV

Fig. 13. Hash function based on DM mode

CaseA. h2 := Em1||pad(h1) - Here, the attacker knows h2 and his aim is to find valid (m1||pad, h1)
pair. Here h1 (plaintext input) and m1 (key input) both are unknown to the attacker. The attack
steps are as follows:

1. The attacker chooses and fixes a 128-bit base message Ab.
2. She is interested in those keys for which the last 65 bits follow the padding rule, hence total

number of such keys are 2128−65 = 263 i.e., the attacker has limited number of key choices.
3. Choice of biclique structure. Under the given attack scenario, the attacker has to choose a biclique

structure such that the ∆i and ∇j trails do not modify the last 65 padding bits of the base key.
Secondly, she has to consider the $0 subkey (i.e., the master key) as her base key to ensure the
integrity of the padding bits. Thirdly, the biclique attack should have minimal complexity. The
biclique structure satisfying the above requirements is as shown in (Fig. 14(a)). The resulting
biclique structure covers first 3 rounds of AES-128.
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Fig. 14. Biclique structure for DM mode when padding in key is necessary



4. For constructing this biclique, $0 subkey is chosen to be the base key (Kb) as shown in Fig. 15.The
keys (K[i,j]) in each group are enumerated by applying difference as shown in Figs. 16 and 17 4

∆i trail activates byte 1 and 5 of $0 subkey whereas ∇j trail activates bytes 0,1 and 4 of $0
subkey. As per the biclique attack rule, the keys in one group should not overlap with each other
as well as with keys of all other groups. To ensure the non-overlapping property of keys, the
attacker only generates 231 K ′bs seen in Fig. 18 (as against 263−16 = 247 base keys). In Fig. 18,
the 31 bits marked in green generate the 231 K ′bs which define the 231 groups respectively.

5. For the attacker to find atleast one preimage with success probability 0.632, she should have 2112

(Kb, Ab) pair inputs. At present, the attacker can generate only 231 (Kb, Ab) pairs with 231K ′bs.
Hence, to fulfill her threshold of 2112 pairs, she considers 281 base messages Ab (as shown in
Fig. 18). The proof for the claim that 2128 (key, plaintext) pairs so generated (shown in Fig. 19)
are distinct and non-overlapping is given in Appendix A.2.

6. In the MITM phase, partial matching is done in byte 12 of state #15. In the forward propa-
gation, 2+8+16+4 = 30 S-boxes and in the backward propagation, 16+4+1= 21 S-boxes are
required to be recomputed (in Figs. 14(b), 14(c)). Thus a total of 51 S-boxes are involved in the
recomputation process. Hence Cfull ≈ 2126.02.

0 0

Fig. 15. Base Key

i
⊕ j i

kk

Fig. 16. ∆i and ∇j differences

k k

j

$ 0

= 2 KS−1
j

$ 2

j
where,

Fig. 17. Influence of ∇j difference injected in $2 on base key $0

7. Thus with a time complexity of 2126.02, the attacker is able to find a (m1||pad, h1) pair which
produces hash value h2. For the specific (i,j) value which produces a match in the middle, the key
K[i,j] forms m1||pad and the corresponding M[i,j] forms h1 for the block cipher E (see Fig. 13).
The biclique algorithm, i.e., Algorithm 4 is shown in Fig. 20.

i
⊕ j

i
kk

- - -- - -- - - -
- - -- - -- -

- - -- - --

- - -- - -

Fig. 18. Base keys are defined based on bits
marked in green

231K′
b
s × 281A′

b
s −→ 2112 (Kb , Ab) pairs

1(Kb,Ab) pair −→ 216 (K[i,j], M[i,j]) pairs

2112(Kb,Ab) pairs −→ 2128 (K[i,j], M[i,j]) pairs

Fig. 19. Generation of Kb, Ab pairs

Algorithm 4 :
for each 231 base keys (K′bs) do

for each 281 base messages (A′bs) do
Generate mb = 3Edec(Kb,Ab)
for 216 (∆k

i , ∇
k
j ) combinations do

1. Generate K[i,j]
2. Construct biclique structure
3. Generate M[i,j] (where M[i,j] = mb⊕mi⊕

mj )
4. Perform meet-in-the-middle attack

Fig. 20. Steps of the modified biclique attack

Case B. h1 := Em0(IV) - Here, the attacker knows the value of h1. Public constant IV is already
known to her. Her aim is now to find a preimage m0 which produces the chaining variable h1 under
the given value of IV. The attack steps are as follows:

1. The attacker fixes the IV as the plaintext input to the block cipher.
2. Choice of biclique structure. Under the given attack scenario, since the message input, i.e., IV is

fixed, the attacker has to choose a biclique structure such that the ∆i and ∇j trails do not modify
4 Here KS−1 represents inverse key schedule algorithm of AES-128.



the plaintext state and the biclique attack has lowest search complexity. The biclique structure
satisfying the above requirements is given in 21(a).

3. The biclique covers the first round. ∆i trail activates byte 0 of $0 sub key whereas ∇j trail
activates byte 1 of $ 0 subkey. The biclique algorithm, i.e., Algorithm 6 is given in Appendix B.

4. The attacker then performs meet-in-the-middle attack on the rest of the 9 rounds. In the MITM
phase, partial matching is done in byte 12 of state #11. In the forward propagation (starting
from round 2), 2+16+16+4 = 38 S-boxes and in the backward propagation (starting from round
10), 5+16+16+4+1 = 42 S-boxes need to be recomputed (as shown in Figs. 21(b) and 21(c)).
Thus a total of 80 S-boxes are involved in recomputation process. Thus, Cfull ≈ 2126.67.

5. For the specific (i, j) value which produces a match in the middle, the corresponding K[i,j] forms
the key (m0) for the block cipher E. Thus with a time complexity of 2126.67, the attacker is able
to find a (IV, m0) pair which produces hash value h1.

MC

SB
SR

$1

$0

K
ey

Sc
he

du
le

#1

#2

#3

MC

SB
SR

K
ey

Sc
he

du
le

#1

#2

#3

MC

SB
SR

$1

$0

K
ey

Sc
he

du
le

#1

#2

#3

$0

$1

mb mi mj

Base Computation ∆i Computation ∇j Computation

∆K
i

∇K
j

(a) Biclique over first round

M
C

SRSB

#5 #6 #7

A
K

#3 #4

recomputed

A
K

SR M
C

SB

#8

A
K

#9

SR M
C

SB

#10

A
K

#11
matching byte

St
ar M

C
SRSB

(b) Forward Recomputations

M
C

SR SB

#17 #16 #15#19

A
K

SRM
C

SB

#18

recomputed

A
K

SRM
C

SB

#14

A
K

#13

SRM
C

SB

#12 #11
matching byte

A
K

SR SB

#20#21

A
K

$10 $9

Fe
ed

Fo
rw

ar
d

H
⊕

pl
ai

nt
ex

t

(c) Backward Recomputations

Fig. 21. Biclique structure for DM mode when IV/message input is known to the attacker

When the above mentioned two attacks are merged together (i.e., case A followed by case B)
the total attack complexity is - 2126.02 + 2126.67 = 2127.38. Thus, with a complexity of 2127.38, the
attacker is able to successfully launch preimage attack on DM based hash function.

5.3 PGV Construction 4 - Eh(w) ⊕ w, where w = h ⊕ m

In the PGV construction 4 based compression function (as shown in Fig. 22), the chaining variable
acts as the key input to the block cipher E. The xor’ed output of chaining variable and message i.e.,
(x/y) goes as as plaintext input to E. The output ciphertext is xored with x/y to produce the next
hash value. Here also the attacker is given h2 and IV value is known to him. We again inspect the
hash function as concatenation of two compression functions - EIV (x) and Eh1(y).

m0 m1 || pad

E E h2

h1

IV

x y

Fig. 22. Hash function based on PGV construc-
tion 4 mode

Algorithm 5 :
for each 2112 base keys (K′bs) do

for 216 (∆k
i , ∇

k
j ) combinations do

1. Generate K[i,j]
2. Choose Ab such that (Ab)64......128 ⊕ (Kb)64.......128 = pad
3. Construct biclique structure
4. Generate M[i,j] (where M[i,j] = Ab ⊕mi )
5. Perform meet-in-the-middle attack

Fig. 23. Steps of the modified biclique attack



Case A. h2 := Eh1(y) - Under this setting, the attacker knows h2 and his aim is to find valid (y, h1)
pair. Here y (plaintext input) and h1 (key input) both are unknown to the attacker. The y message
so found will then be xor’ed with h1 to generate m1||pad. The attack steps are as followed:

1. Choice of biclique structure.Under this scenario, the attacker has to choose h1 and y such that
when h1 and y are xor’ed, the last 65 bits of the xor’ed output follow the padding convention
(since xor’ed output is m1||pad). Let us suppose the attacker utilizes all 2128 keys. Then based
on each of the 2128 keys i.e., K[i,j], corresponding y’s i.e., M[i,j] will be computed such that
K[i, j]64.....128 ⊕M [i, j]64.......128 = pad. The attacker has to choose a biclique structure such that
∆K
i and ∇Kj trails do not affect the the last 65 bits of h1 and y (since their xoring produces the

actual pad that attacker is interested in). The attacker also has to choose $0 subkey as the base
Kb to ensure non-alteration of last 65 bits of h1. Lastly, attacker will try to choose a biclique
structure that yields minimal complexities. The biclique structure satisfying all the requirements
is same as shown in Fig. 8(a). The biclique algorithm is as shown in Fig. 23, Algorithm 5.

2. The complexity of this attack is 2126.54. The y (i.e., M [i, j]) so found will be xor’ed with h1 to
get the actual m1||pad.

Case B. h1 := EIV(x) - The attack procedure to find x when IV and h1 are known to the attacker
is exactly the same as discussed in § 5.1, Case B. Hence attack complexity is 2126.3.

When the above mentioned two attacks are merged together (i.e., case A followed by case B) the
total attack complexity is - 2126.54 + 2126.3 = 2127.45. Thus, with a complexity of 2127.45, the attacker
is able to successfully launch preimage attack on PGV construction 4 based hash function.

The attack procedure on two block message for other constructions is similar to those discussed
in § 5.1-§ 5.3. Their results are given in Table 2.

S.No. Compression Case A Case B Complexity
Function

1 Eh(m)⊕m - MMO 2126.54 2126.3 2127.45

2 Eh(m)⊕ w - MP 2126.54 2126.3 2127.45

3 Em(h)⊕ h - DM 2126.02 2126.67 2127.38

4 Eh(w)⊕ w 2126.54 2126.3 2127.45

5 Eh(w)⊕m - similar to Constr.4 2126.54 2126.3 2127.45

6 Em(h)⊕ w - similar to DM 2126.02 2126.67 2127.38

7 Em(w)⊕ h - similar to DM 2126.02 2126.67 2127.38

8 Em(w)⊕ w - similar to DM 2126.02 2126.67 2127.38

9

Ew(h)⊕ h 2127.59

Case A - similar to Constr.4, case A 2126.54

Case B - similar to DM, case B 2126.67

10 Ew(h)⊕m - similar to Constr.9 2126.54 2126.67 2127.59

11 Ew(m)⊕ h - similar to MP 2126.54 2126.3 2127.45

12 Ew(m)⊕m - similar to MMO 2126.54 2126.3 2127.45

Table 2. Results of preimage attack (case-wise) on all PGV
modes of hash functions

E

0 m1

E
h2h1

IV E

m2 || pad

h3

Fig. 24. MMO base hash function with |m|=3
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0 m1 ||pad

E h2
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IV

Fig. 25. Second Preimage Attack

6 Other Attacks
Preimage attack on hash functions extended to messages with message length ≥ 3. The
preimage attack discussed in above sections can be extended to messages of any length > 2 with
same complexity as obtained for 2-block messages. To demonstrate the same, consider a MMO-based



hash function with 3-block message as shown in Fig. 24. In this case the attacker knows IV and the
compression function E. She’ll choose any m0 of her own choice, e.g., let m0 = 0, and then calculate
h1 = EIV (0). Once she knows h1 the setting is reduced to the case discussed in § 5.1, i.e., preimage
(0||m1||m2||pad) can be found with complexity 2127.45. Similarly, the attack can be applied on other
long messages under different PGV modes.

Second Preimage Attack on Hash Functions. Consider again MMO based hash function in
Fig. 25. In this case the attacker is given m = (m0||m1||pad) and h2. Her aim is to find another
different message, m’ that will produce the same h2. To achieve so the attacker can consider m’ as
- (m′0||m1||pad) where the second half of m’=m while for the first half, the attacker has to carry a
biclique attack. Since attacker knows IV and h1, she can find m′0 with a search complexity of 2126.3

(similar to case B in MMO mode in Section 6.1). Thus , overall a second preimage m’ for MMO can
be found with a complexity of 2126.3. The second preimage attack results for other PGV constructions
are given in Table 1.

7 Conclusion

In this paper, we discuss the challenges in applying the traditional biclique technique on block
cipher based hash functions when message padding is involved and suggest solutions to overcome
them. Specifically, we examine preimage and second preimage attacks on all 12 PGV modes when
instantiated with AES-128 and show that best biclique attack for key recovery attack in AES-128
doesn’t translate to best attack for preimage search under AES-128 based hash function settings.
A natural research extension to this work would be to apply the ideas discussed in this paper to
hash functions instantiated with other block ciphers. Another research direction can be to extend
the methodology to carry out collision attacks on hash functions.
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A Proofs

In this section, we will prove how the base structure which we chose for bicliques in §. 5.1, Case B
and § 5.2, Case A produce non-overlapping keys/messages within a same group and between groups.

A.1 Biclique Structure when IV is known and acts as the message input to block
cipher E

For the base message (shown in Fig. 10) that is used for the biclique structure in Fig. 8(a), our aim
is to prove that when ∆i and ∇j differences are injected in this base message (as shown in Fig. 26),
we are able to partition the message space into 2112 groups with 216 messages in each and the inter
and intra group messages generated are non-overlapping. The ∇j1, ∇j2, ∇j3 and ∇j4 are differences
produced from ∇j as shown in Fig. 27.

i j1

j2

j3

j4

Fig. 26. ∆i and ∇j differences in
base message

 b01 ⊕ j1
b12 ⊕ j2
b23 ⊕ j3
b30 ⊕ j4

 = ISB, ISR, IMC

 c01 ⊕ j
c12
c23
c30


Fig. 27. Relation between
∇j,∇j1,∇j2,∇j3,∇j4
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b30 b31 b32 b33

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

SB, SR, MC

# B # C

Fig. 28. Relation between #B and
#C states

Here, bi,j and ci,j (0 ≤ i,j ≤ 3) represent the base values of corresponding bytes in the intermediate
states #B and #C respectively as shown in Fig. 28. #B and #C are #3 and #4 states in Fig. 8(a).

Aim: Given any two base messages B, B′, any two ∆i differences i, i′, any two ∇j differences j, j′
(0 ≤ i,j ≤ 28), we want to prove that B[i,j] 6= B[i’,j’] i.e., messages generated are non-overlapping. We
will prove this statement case-by-case. Cases (1-4) cover inter group messages whereas Cases (5-7)
cover within group messages. For all the proofs discussed below, we’ll refer to Fig. 29, 30, 31 for
better understanding.
Case 1. Given B 6= B’, i=i’, j=j’, b00=b10=b′00=b′10=0, to show: B[i,j] 6= B’[i’,j’]
Proof : We will prove this setting by ’proof by contraposition’, i.e., if B[i,j] = B’[i’,j’], i=i’, j=j’,
b00=b10=b′00=b′10=0, =⇒ B = B’

In Fig. 31, if B[i,j] = B’[i’,j’] =⇒ C[i,j] = C’[i’,j’] =⇒ c0,2 = c′0,2, c0,3 = c′0,3, c1,1 = c′1,1, c1,2 =
c′1,2, c1,3 = c′1,3, c2,1 = c′2,1, c2,2 = c′2,2, c2,3 = c′2,3, c3,1 = c′3,1, c3,2 = c′3,2 and c3,3 = c′3,3. Since C[i,j]
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= C’[i’,j’] =⇒ c0,1 ⊕ j = c′0,1 ⊕ j′. As j = j’ =⇒ c0,1 = c′0,1. Hence, 12 bytes in state C and
corresponding bytes in state C’ share equal values. This relation automatically transcends to related
byte positions in B and B’ after application of InvMixColumns, InvShiftRows and InvSubBytes(as
shown in Fig. 29), i.e., b0,1 = b′0,1, b0,2 = b′0,2, b0,3 = b′0,3, b1,0 = b′1,0, b1,2 = b′1,2, b1,3 = b′1,3, b2,0 = b′2,0,
b2,1 = b′2,1, b2,3 = b′2,3, b3,0 = b′3,0, b3,1 = b′3,1 and b3,2 = b′3,2, 12 bytes in B and B’ respectively also
have same base values). As we have have assumed B[i,j] = B’[i’,j’] =⇒ b1,1 = b′1,1, b2,2 = b′2,2 and
b3,3 = b′3,3 as these base values are not affected by ∆i and ∇j differences (as seen in Fig. 31). Since
in states B and B’, b0,0 = b′0,0 = 0, hence all 16 byte positions in B and corresponding byte positions
in B’ share same base values. Hence B = B’. This proves that our initial proposition is correct.

Case 2. Given B 6= B’, i=i’, j 6=j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : We will prove this setting by ’proof by contradiction’, i.e., let us assume if B 6= B’, i=i’, j=j’,
b00=b10=b′00=b′10=0, =⇒ B[i,j] = B’[i’,j’]

In Fig. 31, if B[i,j] = B’[i’,j’] =⇒ C[i,j] = C’[i’,j’] =⇒ c0,1⊕j = c′0,1⊕j′. Since j 6= j’ =⇒ c0,1 6= c′0,1.
As a result after applying InvMixColumns and InvSubBytes on them the bytes generated i.e., b0,1
and b′0,1 should also satisfy the relation - b0,1 6= b′0,1. But b0,1 = b′0,1 = 0 (as seen in Fig. 28). Hence,
a contradiction arises implying our assumed proposition is wrong. Therefore, our initial proposition
is correct.

Case 3. Given B 6= B’, i 6=i’, j = j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : In this setting since i 6= i’, hence B[i,j] 6= B’[i’,j’] always as they will always differ at zeroth
byte position ( Fig. 31).

Case 4. Given B 6= B’, i 6=i’, j 6=j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : Proof similar to as discussed in Case 3.

Case 5. Given B = B’, i 6=i’, j 6=j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : Proof similar to as discussed in Case 3.

Case 6. Given B = B’, i 6=i’, j = j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : Proof similar to as discussed in Case 3.



Case 7. Given B = B’, i = i’, j 6= j’, b00=b01=b′00=b′01=0, to show: B[i,j] 6= B’[i’,j’]
Proof : Since B = B’ =⇒ C = C’ =⇒ c0,1 = c′0,1. As j 6= j’ =⇒ c0,1 ⊕ j 6= c′0,1 ⊕ j′ =⇒
C[i,j] 6= C’[i’,j’] always as they will everytime differ at fourth byte position ( Fig. 31). As a result
B[i,j] 6= B’[i’,j’] always due to bijection relation between states B and C.

Hence we proved that in all cases M[i,j]’s so generated are non-overlapping.

A.2 Biclique Structure when (message,chaining variable) tuple acts as (key, plaintext)
input to block cipher E

In Fig. 14(a), for the biclique structure we had chosen, the base key K was given as shown in Fig. 32.
We had then shown that when∆i and∇j differences are injected in the base key (as shown in Fig. 33),
we were able to generate only 231 base key values. However to find a preimage with high probability
2128 (key, plaintext pairs) are needed. To achieve the same we had chosen 281 base messages and then
generated 2112 groups each defined by 2112 (base key, base message) pairs which ultimately produced
2128 (key, plaintext pairs). Our goal is to prove that the 2128 tuples so produced are distinct and
non-overlapping. Let Ab and Kb denote the base message and base key values respectively. Let M[i,j]
= 3Edec(K[0,j], Ab) ⊕∆K

i (see Fig. 14(a)).

0 0

Fig. 32. Base Message

i
⊕ j i

kk

Fig. 33. ∆i and ∇j differences

Aim: Given any two base keys Kb, K ′b, any two base messages Ab, A′b, any two ∆K
i differences i,

i′, any two∇Kj differences j, j′ (0≤ i,j≤ 28), we want to prove that (K[i,j], M[i,j]) 6= (K’[i’,j’], M’[i’,j’]).

Case1. Given Kb 6= K ′b, to prove (K[i,j], M[i,j]) 6= (K’[i’,j’], M’[i’,j’])
Proof. Since Kb 6= K ′b =⇒ K[i, j] 6= K ′[i′, j′] =⇒ (K[i, j],M [i, j]) 6= (K’[i’,j’], M’[i’,j’]) always.

Case2. Given Kb = K ′b, Ab 6= A′b, i=i’, j=j’, to prove (K[i,j], M[i,j]) 6= (K[i’,j’], M’[i’,j’])
Proof. Since i = i’, j = j’ =⇒ key part in any two pairs is same, i.e., tuples are of the form [(K[i,j],
M[i,j]), (K[i,j], M’[i’,j’])]. Now, M [i, j] = 3Edec(K[0, j], Ab)⊕∆K

i (1)
M ′[i′, j′] = 3Edec(K[0, j], A′b)⊕∆K

i (2)
Since Ab 6= A′b, from equations (1) and (2) =⇒ M[i,j] 6= M’[i’,j’] (since L.H.S of both equations are
same except base message part).

Case3. Given Kb = K ′b, Ab 6= A′b, i 6=i’, j=j’, to prove (K[i,j], M[i,j]) 6= (K[i’,j’], M’[i’,j’])
Proof. Since i 6=i’ and Kb = K ′b =⇒ K[i, j] 6= K[i′, j] =⇒ (K[i, j],M [i, j]) 6= (K[i’,j’], M’[i’,j’])

Case4. Given Kb = K ′b, Ab 6= A′b, j 6=j’, i=i’, to prove (K[i,j], M[i,j]) 6= (K[i’,j’], M’[i’,j’])
Proof. Since j 6=j’ and Kb = K ′b =⇒ K[i, j] 6= K[i, j′] =⇒ (K[i, j],M [i, j]) 6= (K[i’,j’], M’[i’,j’])

Case5. Given Kb = K ′b, Ab 6= A′b, j 6=j’, i 6=i’, to prove (K[i,j], M[i,j]) 6= (K[i’,j’], M’[i’,j’])
Proof. Since i 6=i’, j 6=j’ and Kb = K ′b =⇒ K[i, j] 6= K[i′, j′] =⇒ (K[i, j],M [i, j]) 6= (K[i’,j’], M’[i’,j’])

Hence we proved that in all cases tuples (K[i,j], M[i,j]) so generated are non-overlapping.

B Biclique Algorithm for DM mode when IV/message is known

In this section, we describe the biclique attack algorithm for finding preimage when IV and hash
output are known to the attacker under DM mode.



Algorithm 6 :
for each 2112 base keys (K′bs) and the fixed chosen IV do

for 216 (∆k
i , ∇

k
j ) combinations do

1. Generate K[i,j]
2. Construct biclique structure
3. Perform meet-in-the-middle attack

Fig. 34. Steps of the biclique attack when message input is fixed
and known to the attacker under DM mode
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