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Abstract

Process Aware Information Systems (PAIS) are IT systems which support

business processes and generate event-logs as a result of execution of the

supported business processes. Fuzzy-Miner (FM) is a popular algorithm

within Process Mining which consists of discovering a process model from

the event-logs. In traditional FM algorithm, the extracted process model

consists of nodes and edges of equal value. However, in real-world applica-

tions, the actors, activities and transition between activities may not be of

equal value. In this paper, we propose a utility-based Fuzzy Miner (UBFM)

algorithm to efficiently mine a process model driven by a utility threshold.

The term utility can be measured in terms of profit, value, quantity or

other expressions of user’s preference. The focus of this paper is to take

into consideration the statistical (based on frequency) and semantic (based

on user’s objective) aspect into account. We conduct experiments on real-

world dataset and demonstrate the effectiveness of our approach.
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1

Research Motivation and Aim

Process Mining consists of analyzing event-logs generated by Process Aware Informa-

tion Systems (PAIS) for the purpose of discovering run-time process models, checking

conformance between design-time and run-time process maps, analyzing the process

from control flow and organizational perspective for the purpose of process improve-

ment and enhancement [2]. FM algorithm [3] is one of the fundamental algorithms in

Process Mining consisting of discovering a process model (reconstructing causality and

work flow between activities)from an event-log consisting of process instances or traces.

The amount of detail to be shown in the output of the traditional FM algorithm can be

adjusted using node and edge filters. Several real-world run-time process models can

be quite complex (spaghetti-like) due to the large number of variations and flexibility

in process flow allowed by the PAIS. Filters are used by the process analyst or owner to

focus on the important and interesting aspects of the process model and remove nodes

and edges which are not important. Node and edge filters in traditional process discov-

ery algorithms like FM are based on frequency of events and precedence relationships

(captured as one aspect under metric called as significance). Increasing the value of

node and edge filters removes events and relationships which have low significance and

low correlation. However, the output display behaviour and the abstraction level of the

process model in traditional process discovery algorithms are not driven by utility or

economic objectives or value.

The concept of economic utility of events, activities and relationships is not captured

in traditional FM algorithm. Utility-based data mining is an area that has attracted

several researchers attention dealing with cost-sensitive learning, economic factors and
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1.1 Process Mining: An Overview

utility considerations. A popular example in Utility-based Association Rule or Fre-

quent Pattern mining is of lipstick and perfume which falls into the class of high-utility

rare itemset rather than bread and butter which can be categorized as high-frequency

but low utility itemset. Utility based process mining is a relatively unexplored area

and the work presented in this paper is motivated by the need to investigate efficient

utility-based process mining (in particular process discovery which is the focus of this

paper) approaches which does not capture only statistical correlations but also semantic

significance of events, activities and relations.

1.1 Process Mining: An Overview

A Process-Aware Information System (PAIS) is a software system that manages and ex-

ecutes operational processes involving people, applications, and/or information sources

on the basis of process models [4]. Example PAIS’s are workflow management sys-

tems, case-handling systems, enterprise information systems, etc. PAIS log events and

activities during the execution of a process. Process Mining is a relatively young and

emerging discipline consisting of analyzing the event logs from such systems for extract-

ing knowledge such as the discovery of runtime process model (discovery), checking and

verification of the design time process model with the runtime process model (confor-

mance analysis) and improving the business process (recommendation and extension)

[5] [6]. Process mining uses data mining techniques in the context of business process

management and enables the application of innovative approaches for improving the

management of business processes. As it can be seen from Figure 1.1, there are three

types of process mining techniques:

1. Process Discovery - It takes input as event log and produces a process model.

2. Process Conformance - This technique takes an existing process model as a

reference and compares it with the given event log, to check if the given event log

conforms to the process model and vice-versa.

3. Process Enhancement - This technique extends or improves the existing pro-

cess model. It takes the existing process model as input and tries to extract new

information from it.
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1.1 Process Mining: An Overview

Figure 1.1: Types of Process Mining Techniques [1]

Process mining techniques attempt to extract non-trivial and useful information

from event logs. The event logs obtained can be analyzed in three different perspectives:

(1) the process perspective, it focuses on the control flow i.e. ordering of activities, (2)

the organizational perspective, it focuses on the actors performing activities and (3)

the case perspective, it focuses on the properties of cases [7]. The knowledge obtained

this way can increase understanding of the processes within an organization. The focus

of this thesis is to demonstrate the utility based control flow discovery from the event

logs.

1.1.1 Process Model

Figure 1.2, shows the process model. Process models are processes of the same nature

that are classified together into a model. It has a starting point and an ending point.

All the activities lie between these two points. In the event log, set of activities refer to

a particular process instance (cases). In all cases, there is an initial and a final activity.

All initial activities are connected to the starting point and all the final activities are

connected to the ending point. ”Open” is an initial activity and ”Closed” is a final

activity, as shown in Figure 1.2. Arrow shows transitions and rectangular box repre-

sents a state. Frequencies specified on arrows, represent transitions and activities inside

rectangular box represent a state. It basically shows how many times one state (ac-

3



1.2 Fuzzy-Miner

tivity) goes to another state (activity) like ”Open” activity goes 8501 times to ”Status

Change” activity.

Figure 1.2: Small Process Model

1.2 Fuzzy-Miner

The process mining algorithms prior to the FM produce “spaghetti models” for the less

structured processes. Such models produce correct and accurate results but they are

difficult to analyze and interpret by the business process analyst. To abstract meaning-

ful information from the spaghetti models FM came into existence. FM uses an analogy

of road map [3]. Activities in a process is compared with locations and precedence re-

lations with connections between those locations in a map. FM employs the concept

of filters to remove nodes and edges which are not important. Node and edge filter in

FM are based upon the two metrics: (1) significance and (2) correlation of events and

precedence relations [3]. Increasing the value of node and edge filter removes the events

and relationships which have low significance and low correlation. Significance uses the

concept of frequency and eliminates the exceptional cases. Correlation measures how

4



1.3 Introduction to Utility

two events following one another are closely related.

1.3 Introduction to Utility

The drawback of the FM is that it treats all the activities and edges with the same

importance and weights. Real life event logs often contain activities and precedence

relations which are:

1. Very frequent but of low utility to the organization.

2. Less frequent but of high utility to the organization.

Considering the above two cases frequency alone should not be the driving factor for

process simplification. Therefore, concept of utility of events and precedence relations

should also be taken into account while simplifying the process models. The term

utility can be measured in terms of profit, value, quantity or other expressions of user’s

preference. The focus of this thesis is to take into consideration the statistical (based

on frequency) and semantic (based on user’s objective) aspect into account.

1.3.1 Importance of Utility

We came up with the following 3 real life scenarios that demonstrates the importance

of utility based control flow discovery.

1.3.1.1 ITIL Service Change

Figure 1.3: Subset of Information Technology Infrastructure Library (ITIL) service

change flow

Figure 1.3 represents a small subset of activities and edges in ITIL service change.

The number above the edges represents the frequency and the thickness of the edge

5



1.3 Introduction to Utility

represents the utility of transition. In 7 cases, change is implemented without analyzing

its impact on the system. The transition from ‘Request for Change’ and ‘Change

Implemented’ is of high utility and low frequency (HULF). The change may lead to

implementation of an unfavourable modification. The FM process discovery may miss

this flow at high value of edge and node filter, but utility based process discovery will

detect the edge between the ‘Request for Change’ and ‘Change Implemented’ as high

utility.

1.3.1.2 Repair/Replacement Process

Figure 1.4: Subset of repair/replacement process flow

Figure 1.4 shows subset of return/replacement process flow. The number above the

edges represents the frequency and the thickness of the edge represents the utility of

transition. The edge from ‘D’ to ‘B’ represents out of 100 products which are returned

to the customer after repair/replacement, 5 are still damaged. The flow is of high

importance from the organizational perspective due to several reasons like defect in a

particular product, fraudulent dealer, etc. The flow comes under the category of high

utility and low frequency (HULF). Due to the low frequency this undesirable flow will

be pruned in FM at high value of edge and node filter.

1.3.1.3 Purchasing Process Example from SAP

The example dataset of SAP has been taken from link https://fluxicon.com/disco/.

6
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1.3 Introduction to Utility

Figure 1.5: Subset of process model build using purchasing example from SAP

Figure 1.6: Subset of process model build using purchasing example from SAP

7



1.3 Introduction to Utility

Figure 1.7: Subset of process model build using purchasing example from SAP

Figure 1.8: Subset of process model build using purchasing example from SAP

8



1.3 Introduction to Utility

1. Figure 1.5 shows the subset of process model constructed using DISCO tool1 at

activities resolution set to 50% and path resolution set to 50%. Low percentage

value of resolution in DISCO corresponds to the high value of edge and node

filter. Increase in the resolution value on slider in DISCO lowers the value of edge

and node filter. 100% resolution represents that all of the activities and paths are

included in the process model. The red oval depicts 10 transitions from activity

‘Send Invoice’ to activity ‘Authorize Supplier Invoice Payment’. Figure 1.6 depicts

that at activity resolution 30% and path resolution 20% these transitions which

are important from security perspective remains undetected.

2. Figure 1.7 shows that there are 64 transitions from ‘Analyze Purchase Requisition’

to ‘End’ activity which are detected at 100% resolution. The flow is of high

utility for the organization as it helps in detection of reasons for the termination

of purchase requests before even request for quotation is initiated. But, when the

activity and edge resolution is set to 30% these transitions get pruned as shown

in Figure 1.8 .

The above examples shows the high utility and low frequency (HULF) cases. Real

life event logs can contain the nodes and the edges which are of low utility to the

organization are highly frequent. The low utility and high frequency (LUHF) cases will

make the process model more complex and hard to analyze. For example, an activity

which is responsible for saving the process state after every five activities [3]. Therefore,

it is important to take into account both HULF and LUHF cases while simplifying the

process model. This motivated us to switch from FM to UBFM.

The research aim of the work presented in this thesis is the following:

1. To investigate and analyze the existing FM algorithm for creating process models.

2. To demonstrate the importance of utility based process model in process mining.

3. To incorporate the utility concept in traditional FM algorithm, so as to come up

with a new UBFM algorithm.

1https://fluxicon.com/disco/
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1.3 Introduction to Utility

4. To demonstrate the effectiveness of our proposed approach, we conduct experi-

ment on synthetic dataset and a large and real-world incident management data

of an enterprise.

10



2

Related Work and Research

Contributions

In this chapter we discuss previous work closely related to our research and list the

novel research contributions of our work in context to already existing work.

2.1 Related Work

We divide related work into following two lines of research:

2.1.1 Process Mining

The first papers on process mining appeared in 1995, when Cook et al. [8][9][10] started

to mine process models from event logs in the context of software engineering. They

called it process discovery. Process mining in the business sense was first introduced

1998 by Agrawal et al. [11]. They called it workflow mining. Since then, many groups

have focussed on mining process models.

Cook et al. [8][9][10] were the first ones to work on process mining. They aim at

retrieving a complete and correct model, but a model that express the most frequent

patterns in the log. Agrawal et al. [11] were the first ones to apply process discovery

(or process mining, as we name it) in a business setting. The algorithm does not handle

duplicate tasks and assumes that no task appears more than once in a process instance.

Van der Aalst et al. [6] prove that α-algorithm can learn an important class of work-

flow nets, called structured workflow nets, from complete event logs. The α-algorithm is

11



2.1 Related Work

sensitive to noise and incompleteness of event logs. Moreover, the original α-algorithm

was incapable of discovering short loops or non-local, non-free choice constructs. The

heuristic miner by Weijters et al. [12] can be seen as an extension of the α-algorithm

[6]. The heuristic miner can deal with noise and can be used to express the main be-

havior (i.e., not all the details and exceptions) registered in an event log. It supports

the mining of all common constructs in process models (i.e., sequence, choice, paralle-

lim, loops, invisible tasks and some kinds of non-freechoice), except for duplicate tasks.

Therefore, the heuristic miner is a more robust algorithm. Finally, Günther and Van

der Aalst [3] propose FM, an adaptive simplification and visualization technique based

on significance and correlation measures to visualize the behavior in event logs at var-

ious levels of abstraction. The main contribution of FM is that it can also be applied

to less structured, or unstructured processes of which the event logs cannot easily be

summarized in concise, structured process models.

2.1.2 High Utility Itemset Mining

Agrawal et al. [13] propose apriori algorithm, it is used to obtain frequent itemsets from

the database. This relies on the basic properties that all subsets of a frequent itemset

are frequent and that all supersets of an infrequent itemset are infrequent. Wang et

al. propose that items or transactions may be of varying importance to the user. For

example, the itemset (Perfume, Diamond) may suggest higher potential profits to a

sales manager than the itemset (Perfume, Lipstick) [14]. A pattern is of utility if its

use by a person contributes to reaching a goal. Different people may have divergent

goals concerning the knowledge that can be extracted from a dataset. For example,

one person may be interested in finding all sales with high profit in a transaction

dataset, while another may be interested in finding all transactions with large increases

in gross sales. This kind of interestingness is based on user-defined utility functions

in addition to the raw data [15]. Liu et al in [16] proposes a Two-phase algorithm for

finding high utility itemsets. In Phase I, only the combinations of high transaction

weighted utilization itemsets are added into the candidate set at each level during the

level-wise search. In phase II, only one extra database scan is performed to filter the

overestimated itemsets [17]. Shankar et al. [18] presents a novel algorithm Fast Utility

Mining (FUM) which finds all high utility itemsets within the given utility constraint

threshold. To generate different types of itemsets the authors also suggest a technique

12



2.2 Novel Research Contributions

such as Low Utility and High Frequency (LUHF) and Low Utility and Low Frequency

(LULF), High Utility and High Frequency (HUHF), High Utility and Low Frequency

(HULF) [17].

2.2 Novel Research Contributions

In context to existing work and to the best of our knowledge, the study presented in

this thesis makes the following novel contributions:

1. While there has been work done on creating process models, we are the first to

introduce the utility concept in process mining.

2. While the statistical aspect has been taken into account in FM, we transform

the spaghetti like process model to comprehensible process model taking into

account both the statistical (based on frequency) and semantic (based on user’s

goal) aspect into account.

3. An in-depth and focused empirical analysis on a real-world dataset (Rabobank

Group 1: Activity log for incidents) and synthetic dataset (Airport data 2) demon-

strating the effectiveness of the proposed approach.

1http://data.3tu.nl/repository/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
2https://dl.dropboxusercontent.com/u/48972351/AFDATASET.csv
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3

Research Framework and

Solution Approach

3.1 Fuzzy-Miner

FM is a popular process mining algorithm for event logs which are less structured. FM

provides high level view of process and hides undesired details.

Figure 3.1: Significance and correlation metrics used in FM

14



3.1 Fuzzy-Miner

FM uses following fundamental metrics [3] as shown in Figure 3.1.

1. Significance - It measures the relative importance of behaviour of activities

(events) and edges. Higher the frequency of events and edges, higher is their

significance.

2. Correlation - It measures how much two events following one another are closely

related.

FM uses following initial parameters [3]:

1. Preserve Threshold (λp) - It specifies how significant two conflicting relations

need to be in order to both be preserved. Two relations are said to be in con-

flict when two events in the process model are connected by the edges in both

directions.

2. Ratio Threshold (λr) - If set to a high value, conflicting relations will rather

be resolved by removing both relations from the graph. If set to a low value,

conflicting relations will rather be preserved by removing only the weaker relation.

3. Edge Filter (ef) - Higher the ef value, lesser edges will be included in the

process model.

4. Node Filter (nf) - All event classes with significance measure lower than nf

value will be subjected to filtering.

5. Utility Ratio (ur) - ur specifies the weightage given to significance and correla-

tion. ur value of 0.75 specifies that 75% significance and 25% correlation is taken

into account.

6. Attenuation (attenuation) - It ensures that longer distance relationship affect

the measurement less than the direct following relationship.

7. Maximum Distance (distance) - It measures the number of hops consid-

ered while detecting the edges within each trace. Each trace is ordered accord-

ing to increasing order of timestamp. For example, corresponding to TraceID

‘IM0000012’, the sequence of activities are ‘A;B;C;D;E;F;’. For distance equal to

15



3.1 Fuzzy-Miner

4, the pair of activities considered for calculating binary significance and corre-

lation are (A,B), (B,C), (A,C), (C,D), (B,D), (A,D), (D,E), (C,E), (B,E), (A,E),

(E,F), (D,F), (C,F) and (B,F).

The pseudocode for FM algorithm is shown in Algorithm 1. It consists of 3 phases:

Phase 1 involves calculation of unary significance for activities and binary significance

and correlation for precedence relations. Phase 2 involves edge removal and node ag-

gregation and abstraction. Phase 3 involves the construction of process model using the

GraphViz 1 API. The input to the algorithm is data comprising of Event Log, ef , nf ,

λp, λr, ur, attenuation and distance. The algorithm returns process model as output.

We choose λp = 0.6, λr = 0.7, ur = 0.75, attenuation = linear and distance = 4 for our

experiment. Functions calculateRoutingSignificance(), calculateDistanceSignificance(),

EdgeFiltering() and makeInitialClusters() are borrowed from ProM 2.

Steps 1-17 represent Phase 1. We calculate unaryFrequencySignificance, binaryFre-

quencySignificane and binaryCorrelation in Steps 4-8 for each trace within Event Log.

binaryCorrelation is sum of Proximity, Originator, Data Value, Data Type and End

Point correlations. We calculate routingSignificance and distanceSignificance by call-

ing the Functions calculateRoutingSignificance() and calculateDistanceSignificance() re-

spectively. Step 15 calculates binarySignificance metric as sum of binaryFrequencySig-

nificance metric and distanceSignificance metric. Step 17 calculates unarySignificance

metric as sum of unaryFrequencySignificance metric and routingSignificance metric.

Steps 18-31 represent Phase 2. Steps 19-22 perform conflict resolution for each

precedence relation. conflictResolution() calculates the relative importance of edge

in both the directions based on their binarySignificance values. If importance of both

edges are greater than λp then both the edges are categorized as length-2 loop and

signifies that both relations are important and thus need to be preserved, else they are

categorized as exception or concurrency based on λr. Step 24 calculates utility of each

edge using binarySignificance and binaryCorrelation based on ur. We identify nodes

for aggregation or abstraction by calling Function makeInitialClusters() in Step 25.

The nodes whose unarySignificance is less than nf are either aggregated or abstracted.

Nodes who are less significant but highly correlated are the candidates for clustering.

Edge filtering is done in Step 27 for each node. For every incoming edge to that node, we

1http://graphviz.org/
2https://svn.win.tue.nl/repos/prom/Packages/Fuzzy/
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3.1 Fuzzy-Miner

normalize edge util value. If the normalized util value of edge is greater than inLimit

then that precedence relation is preserved, else the relation is pruned. Same procedure

is repeated for every outgoing edge from that node. Node aggregation occurs in Step 28

by calling the function merge(). The function call merge() checks all the predecessors

of candidate cluster generated in Step 25. If all of the predecessors are clusters then

the candidate cluster is merged with the most correlated one. Similarly, we check for

all the successors. Node abstraction involves removal of isolated and singular clusters

in Steps 29-30. Significance of clusters is average of significance of nodes contained in

it.

Steps 32-35 represent Phase 3. We save the edges to be included in the process

model in ‘Graph.dot’ file. Then, we construct the process model using GraphViz API.

FM can construct different process model at distinct values of edge and node filter.

Business analyst can study the process model at desired level of abstraction.
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Algorithm 1: Fuzzy-Miner Algorithm(Event Log, ef , nf , λp, λr, ur,

attenuation, distance)

Data: Event Log

Result: A Process Model

1 create an empty 2-D arrayList binarySignificance, binaryCorrelation

2 create an empty 1-D arrayList unarySignificance

3 foreach Trace t in Event Log do

4 foreach Activity A in t do

5 unaryFrequencySignificance(A) += 1

6 foreach pair (A, B) where (A, B) ∈ Activity & noOfHops(A, B) <4 do

7 binaryFrequencySignificance(A, B) += 1*attenuation

8 binaryCorrelation(A,B) = Proximity(A,B) +

Endpoint(A,B)+Datavalue(A,B) + Datatype(A,B) + Originator(A,B)

9 Normalize the metrics unaryFrequencySignificance, binaryCorrelation,

binaryFrequencySignificance

10 foreach distinct Activity A in Event Log do

11 calculateRoutingSignificance(A, binaryFrequencySignificance,

binaryCorrelation)

12 foreach pair (A, B) where (A, B) ∈ Activity do

13 calculateDistanceSignificance(A, B, binaryFrequencySignificance,

unaryFrequencySignificance)

14 foreach pair (A,B) where (A, B) ∈ Activity do

15 binarySignificance(A, B) = binaryFrequencySignificance(A, B) +

DistanceSignificance(A, B)

16 foreach Activity A in Event Log do

17 unarySignificance(A) = unaryFrequencySignificance(A) +

routingSignificance(A)

18 foreach pair (A, B) where (A, B) ∈ Activity do

19 sigFwd = binarySignificance(A, B)

20 sigRwd = binarySignificance(B, A)

21 if sigFwd>0 & sigRwd>0 then

22 conflictResolution(A, B, λr, λp, binarySignificance, binaryCorrelation)

23 foreach pair (A,B) where (A, B) ∈ Activity do

24 util(A, B) = ur * binarySignificance(A, B) + (1-ur) *

binaryCorrelation(A,B)

25 clusters = makeIntialClusters(Node A, nf , unarySignificance, binaryCorrelation)

26 foreach Activity A in EventLog do

27 edgeFiltering(A, ef, binarySignificance, binaryCorrelation)

28 clusters = merge(clusters)

29 clusters = removeIsolatedClusters(clusters)

30 clusters = removeSingularClusters(clusters)

31 setSignificance(clusters)

32 Construct a “Graph.dot” file

33 foreach pair (A, B)where (A, B) ∈ Activity & normalizedBinarysignficance(A,

B) != 0 & normalizedBinaryCorrelation(A, B) != 0 do

34 Add the edge A → B in Dot file

35 Make process model from “Graph.dot” using the GraphViz API



3.1 Fuzzy-Miner

Function calculateRoutingSignificance(Activity i, binaryFrequencySignificance,

binaryCorrelation)

1 inValue = 0

2 outValue = 0

3 foreach Activity x in Event Log do

4 sig = binaryFrequencySignificance(x, i)

5 cor = binaryCorrelation(x, i)

6 inValue += sig*cor

7 sig = binaryFrequencySignificance(i, x)

8 cor = binaryCorrelation(i, x)

9 outValue += sig*cor

10 if invalue == 0 & outvalue == 0 then

11 quotient = 0

12 else

13 quotient =
inV alue− outV alue
inV alue+ outV alue

14 if quotient <0 then

15 quotient = -quotient

16 RoutingSignificance[i] = quotient

Function calculateDistanceSignificance(Activity x, Activity y, binaryFrequen-

cySignificance, unaryFrequencySignificance)

1 sigSource = unaryFrequencySignificance[x]
2 sigTarget = unaryFrequencySignificance[y]
3 sigLink = binaryFrequencySignificance[x][y]

4 distanceSignificance[x][y] = 1 -
(sigSource− sigLink) + (sigTarget− sigLink)

(sigSource+ sigTarget)
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3.1 Fuzzy-Miner

Function EdgeFiltering(Node A, float ef , binarySignificance, binaryCorrelation)

1 Normalize the util(B, A) for every incoming edge to A

2 if util(B, A) >ef then

3 preserve the link

4 else

5 remove the link

6 Repeat the same for every outgoing edge from A

Function makeInitialClusters(Node A, nf, unarySignificance, binaryCorrelation)

1 if unarySignificance(A) <nf then

2 Add node A to victims

3 neighbor = find most correlated neighbour

4 if neighbor ∈ clusterNode then

5 Add A to clusterNode

6 else

7 Create a new clusterNode

8 Add A to clusterNode

9 Add clusterNode to clusters

10 Remove A from the graph
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3.2 Utility Based Fuzzy-Miner

In traditional FM algorithm, the extracted process model consists of nodes and edges

of equal value. However, in real-world applications, the actors, activities and transition

between activities may not be of equal value. Therefore, we propose a UBFM algorithm

to efficiently mine a process model driven by utility threshold. The utility is introduced

in FM to mine for high utility process model by considering profit, value, quantity of

activities and nodes.

UBFM uses following additional parameters:

1. Node Utility (nu) - Business process analyst/expert provides external values

to activities in event log. The external value is given on the basis of benefit or

usefulness to the organization in terms of profit, time, cost, security, etc.

2. Edge Utility (eu) - Business process analyst/expert provides external values to

edges in event log. The value of a precedence relation signifies its importance in

the process flow within an organization.

UBFM along with Node Utility (nu) and Edge Utility (eu) uses same set of initial

parameters as traditional FM but with different semantic meaning. Node Filter (nf)

and Edge Filter (ef) remove activities and edges according to their utility values.

Higher the filter values, lesser activities and edges will be included in the process model.

We introduce two terminologies:

1. Utility value of a single activity - It is the product of frequency of activity

and its nu value.

2. Utility value of a single edge - It is the product of frequency of an edge and

its eu value.

The pseudocode for UBFM is shown in Algorithm 2. It consists of 3 phases: Phase

1 involves calculation of unary significance for activities and binary significance and

correlation for precedence relations taking into consideration the statistical (based on

frequency) and semantic (based on user’s objective) aspects. Phase 2 involves edge

removal and node aggregation and abstraction. Phase 3 involves the construction of

process model using the GraphViz API. The input to the algorithm is data comprising

of Event Log, ef , nf , eu, nu, λp, λr, ur, attenuation and distance. The algorithm
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3.2 Utility Based Fuzzy-Miner

returns process model as output. We choose λp = 0.6, λr = 0.7, ur = 0.75, attenuation

= linear and distance = 4 for our experiment.

Steps 1-17 represent Phase 1. We calculate unaryUtilitySignificance, binaryUtili-

tySignificane and binaryCorrelation in Steps 4-8 for each trace within Event Log. bina-

ryCorrelation is sum of Proximity, Originator, Data Value, Data Type and End Point

correlations. We calculate routingSignificance and distanceSignificance in Step 11 and

13. Step 15 calculates binarySignificance metric as sum of binaryUtilitySignificance

metric and distanceSignificance metric. Step 17 calculates unarySignificance metric as

sum of unaryUtilitySignificance metric and routingSignificance metric.

Steps 18-32 represent Phase 2. Steps 19-22 perform conflict resolution for each

precedence relation using λp and λr. Step 24 calculates utility of each edge using bina-

rySignificance and binaryCorrelation based on ur. We identify nodes for aggregation

or abstraction by calling Function findClusters in Step 25. edgefiltering(), merge(),

removeIsolatedClusters() and removeSingularClusters() work in similar manner as

in FM taking into account the utility values instead of frequency. We remove the low

utility clusters by calling the Function removeLowUtilityClusters in Step 31.

Steps 33-36 represent Phase 3. We save the edges to be included in the process

model in ‘Graph.dot’ file. Then, we construct the process model using GraphViz API.

The UBFM differs from traditional FM in following aspects:

1. UBFM uses two additional input parameters: a) node utility and b) edge utility.

2. UBFM uses the utility values of activities and edges instead of frequency to

calculate the metrics in Phase 1.

3. We add an additional function removeLowUtilityClusters() as shown in Func-

tion removeLowUtilityClusters. Low utility cluster means the cluster in which

the sum of significance of nodes present in cluster is less than the node filter.

removeLowUtilityClusters() removes low utility clusters from the process model

by making a connection between predecessors and successors. The low utility

clusters are highly correlated but unimportant from organizational perspective.

4. To reduce complexity of algorithm, we change the functionmakeInitialClusters()

in FM to findClusters() in UBFM. findClusters() will find nodes which are
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3.2 Utility Based Fuzzy-Miner

less significant but highly correlated. First, we generate candidate clusters dur-

ing Steps 1-10 in findClusters. Second, we calculate the sum of significance of all

nodes contained in all the candidate clusters. Third, if the sum is less than the

nf value then there is no need to perform the Steps 29-31 in Algorithm 2 . This

will reduce the computational overhead of UBFM.

5. UBFM will take into account the HULF and LUHF cases if the utility values

of edges and activities are above threshold values while constructing the process

model.
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Algorithm 2: Utility Based Fuzzy Miner Algorithm(Event Log, ef , nf , eu, nu,

λp, λr, ur, attenuation, distance)

Data: Event Log

Result: A Process Model

1 create an empty 2-D arrayList binarySignificance, binaryCorrelation

2 create an empty 1-D arrayList unarySignificance

3 foreach Trace t in Event Log do

4 foreach Activity A in t do

5 unaryUtilitySignificance(A) += nu[A]

6 foreach pair (A, B) where (A, B) ∈ Activity & noOfHops(A, B) <4 do

7 binaryUtilitySignificance(A, B) += eu[A][B] * attenuation

8 binaryCorrelation(A,B) = Proximity(A,B) +

Endpoint(A,B)+Datavalue(A,B) + Datatype(A,B) + Originator(A,B)

9 Normalize the metrics unaryUtilitySignificance, binaryCorrelation,

binaryUtilitySignificance

10 foreach distinct Activity A in Event Log do

11 calculateRoutingSignificance(A, binaryUtilitySignificance, binaryCorrelation)

12 foreach pair (A, B) where (A, B) ∈ Activity do

13 calculateDistanceSignificance(A, B, binaryUtilitySignificance,

unaryUtilitySignificance)

14 foreach pair (A,B) where (A, B) ∈ Activity do

15 binarySignificance(A, B) = binaryUtilitySignificance(A, B) +

DistanceSignificance(A, B)

16 foreach Activity A in Event Log do

17 unarySignificance(A) = unaryUtilitySignificance(A) ++

routingSignificance(A)

18 foreach pair (A, B) where (A, B) ∈ Activity do

19 sigFwd = binarySignificance(A, B)

20 sigRwd = binarySignificance(B, A)

21 if sigFwd>0 & sigRwd>0 then

22 conflictResolution(A, B, λr, λp, binarySignificance, binaryCorrelation)

23 foreach pair (A,B) where (A, B) ∈ Activity do

24 util(A, B) = ur * binarySignificance(A, B) + (1-ur) *

binaryCorrelation(A,B)

25 clusters = findClusters(Node A, nf , unarySignificance, binaryCorrelation)

26 foreach Activity A in EventLog do

27 edgeFiltering(A, ef, binarySignificance, binaryCorrelation)

28 clusters = merge(clusters)

29 clusters = removeIsolatedClusters(clusters)

30 clusters = removeSingularClusters(clusters)

31 clusters = removeLowUtiltyClusters(clusters)

32 setSignificance(clusters)

33 Construct a “Graph.dot” file

34 foreach pair (A, B)where (A, B) ∈ Activity & normalizedBinarysignficance(A,

B) != 0 & normalizedBinaryCorrelation(A, B) != 0 do

35 Add the edge A →Bin Dot file

36 Make process model from “Graph.dot” using the GraphViz API
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Function findClusters(Node A, nf, unarySignificance, binaryCorrelation)

1 if unarySignificance(A) <nf then

2 Add node A to victims

3 neighbor = find most correlated neighbour

4 if neighbor ∈ clusterNode then

5 Add A to clusterNode

6 else

7 Create a new clusterNode

8 Add A to clusterNode

9 Add clusterNode to clusters

10 Remove A from the graph

11 sum = 0

12 foreach clusterNode c in clusters do

13 foreach Node node in c do

14 sum = sum + node.significance

15 if sum <nf then

16 Remove all the clusters

Function calculateDistanceSignificance(Activity x, Activity y, binaryUtilitySig-

nificance, unaryUtilitySignificance)

1 sigSource = unaryUtilitySignificance[x]
2 sigTarget = unaryUtilitySignificance[y]
3 sigLink = binaryUtilitySignificance[x][y]

4 distanceSignificance[x][y] = 1 -
(sigSource− sigLink) + (sigTarget− sigLink)

(sigSource+ sigTarget)
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Function removeLowUtilityClusters(Node A, nf, unarySignificance, binaryCor-

relation)

1 foreach clusterNode c in clusters do

2 sum=0

3 foreach Node node in c do

4 sum = sum + node.significance

5 if sum <nf then

6 Remove cluster c from graph

Function calculateRoutingSignificance(Activity i, binaryUtilitySignificance, bi-

naryCorrelation)

1 inValue = 0

2 outValue = 0

3 foreach Activity x in Event Log do

4 sig = binaryUtilitySignificance(x, i)

5 cor = binaryCorrelation(x, i)

6 inValue += sig*cor

7 sig = binaryUtilitySignificance(i, x)

8 cor = binaryCorrelation(i, x)

9 outValue += sig*cor

10 if invalue == 0 & outvalue == 0 then

11 quotient = 0

12 else

13 quotient =
inV alue− outV alue
inV alue+ outV alue

14 if quotient <0 then

15 quotient = -quotient

16 RoutingSignificance[i] = quotient
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Function EdgeFiltering(Node A, float ef , binarySignificance, binaryCorrelation)

1 Normalize the util(B, A) for every incoming edge to A

2 if util(B, A) >ef then

3 preserve the link

4 else

5 remove the link

6 Repeat the same for every outgoing edge from A
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4

Experimental Analysis and

Results

4.1 Experimental Dataset

We conduct our experiment on 2 datasets:

(a) Large real world data from Business Process Intelligence 2014 (BPI 2014).

(b) Small synthetic Airport dataset depicting the behavior of passenger at air-

port.

4.1.1 BPI 2014 Dataset

BPI 2014 dataset consists of large real world data from Rabobank Group Informa-

tion and Communication Technology (ICT). The data is related to the Informa-

tion Technology Infrastructure Library (ITIL) process implemented in the Bank.

The dataset is provided in the CSV format. It contains the event logs from in-

teractions records, incidents records, incident activities and change records. The

provided dataset is of six month duration from January, 2013 - March, 2014. The

attributes of original .CSV files are converted to appropriate data types, such

as standardized timestamp formats for analysis. After loading the data on to

MySQL database, we build four tables: Interaction detail, Incident detail, Inci-

dent activity detail and Change detail. We analyze all the tables and amongst
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them we choose Incident activity detail table to build process models. The main

reason for choosing this table is because it has information regarding the type of

activities performed on a particular incident id and also the timestamp when this

incident activity type started.

Table 4.1: BPI 2014 Dataset Detail of Table Incident Activity Detail

Incident activity detail

Traces 46,606

Events 466,737

Start Timestamp 07.01.2013

End TimeStamp 02.04.2014

Incident Activity Type 39

Assignment Group 242

Table 4.1 indicates the statistics of Incident activity detail table. Each record

contains an TraceID with the activities performed on it. It also contains informa-

tion about the Assignment Group that is responsible for a particular activity. The

attribute IncidentActivity Type represents the type of activity performed on the

incident. There are 39 unique activities. Some of the examples are: Assignment

(ASG), Status Change (STC), Update (UPD), Referred (REF), Problem Closure

(PC), OOResponse (OOR), Dial-In (DI) and Contact Change (CC). Figure 4.1

represents the Pareto chart showing the distribution of activities and their cumu-

lative count. The Y-axis is in logarithmic scale. Figure 4.2 shows the distribution

of the case invariants. Figure 4.2 indicates that the dataset consists of a long of

small number of case invariants. For a particular incident we order the activities

according to increasing order of DateTime Stamp to make the event log more

structured. This is done for all the unique incidents in the Incident activity detail

table. Figure 4.3 shows the screenshot from MySql of activities performed during

one of the incidents ‘IM0000004’.
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Figure 4.1: Pareto chart showing the distribution of activities and their cumulative count.

Y-axis is in logarithmic scale

Figure 4.2: Histogram for case variants

4.1.2 Airport Dataset

We perform experiment on small synthetic dataset shown in Table 4.2 to illustrate

the working of UBFM. Table 4.3 shows the sequence of activities performed during

one of the traces ‘Trace3.0’.

Table 4.2: Airport Dataset Detail

Airport Dataset Detail

Traces 8

Events 47

Activity Type 7

# of Originators 7
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Figure 4.3: Activities ordered according to increasing order of datetime stamp for Inci-

dentId IM0000004

Table 4.3: Snapshot of Airport Dataset for Trace3.0

TraceID DateStamp ActivityName Originator

Trace3.0 04-06-2009 17:21:03 Show Identification Proof John

Trace3.0 04-06-2009 17:22:03 Luggage Check Peter

Trace3.0 04-06-2009 17:23:03 Collect Boarding Pass Katty

Trace3.0 04-06-2009 17:24:03 Security Check Radha

Trace3.0 04-06-2009 17:25:03 Wait Adolf

Trace3.0 04-06-2009 17:25:03 Board Flight Om
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4.2 Experimental Results

4.2.1 Airport Dataset Results

We perform experiment on Airport dataset to show working of UBFM. We assign

labels to activities in dataset as shown in Table 4.4. Two of the inputs to UBFM

is edge utility and node utility. We give default utility for all activities and

precedence relation between activities as 5. We assign external utility to some of

activities and relations as shown in Table 4.5.

Table 4.4: Labels Corresponding to Activity Name in Airport Dataset

Activity Name Label

Show Identification Proof 0

Luggage Check 1

Collect Boarding Pass 2

Security Check 3

Wait 4

Board Flight 5

Enquiry 6

Table 4.5: External Utility of Activties and Precendence Realtions

Activity / Precedence Relation Utility

Enquiry 20

Wait 0

Luggage Check ->Enquiry 20

Luggage Check ->Board Flight 19

Show Identification Proof ->Security Check 1

Collect Boarding Pass ->Board Flight 20

Phase 1 involves calculation of unarySignificance, binarySignificane and bina-

ryCorrelation as explained in Algorithm 2. First, we compute unaryUtilitySignif-

icance metric by using frequency and node utility. Figure 4.4 depicts normalized

unaryUtilitySignificance metric. Second, we calculate binaryUtilitySignificance

of a precedence relation. The utility of a precedence relation is equal to sum

of product of utility and attenuation factor. It takes into account frequency of
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Figure 4.4: Normalized unary utility significance for Airport dataset

a relation, utility of a relation and attenuation factor (so that longer distance

relations affect the measurement less than direct following relationships).

For e.g. :- For Luggage Check (1) ->Board Flight (5)

= 0.5*19 + 19 * 0.25 + 19 * 0.25 + 19 * 0.25 + 19 * 0.25 + 19 * 0.25

= 33.25

For e.g. :- Show Identification Proof (0) ->Collect Boarding Pass (2)

= 1*5 + 5*0.75 + 5*0.75 + 5*0.75 + 5*0.75 + 5*0.75 + 5*0.75 + 5*0.75

= 31.25

Table 4.6: Binary Utilty Significance Metric for Airport Dataset

0 1 2 3 4 5 6

0 0 35.0 31.25 3.75 11.25 2.5 1.25

1 0 0 35.0 22.5 17.5 33.25 10.0

2 0 0 0 35.0 30.0 80.0 3.75

3 0 0 0 0 33.75 25.0 5.0

4 0 0 0 0 0 40.0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 5.0 3.75 0
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Table 4.7: Binary Correlation Metric for Airport Dataset

0 1 2 3 4 5 6

0 0 0.11 0.353 0.926 0.749 0.235 0.176

1 0 0 0.701 0.631 0.11 0.113 3.5e-6

2 0 0 0 0.912 0.140 0.35 0.070

3 0 0 0 0 0.210 0.105 0.947

4 0 0 0 0 0 1.0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0.842 0.754 0

Similarly, we calculate binaryUtilitySignificance for other relations. The resul-

tant binaryUtilitySignificance metric as shown in Table 4.6. Third, we calculate

binaryCorrelation as the sum of Proximity, Endpoint, Data Value, Data Type

and Originator correlation. Table 4.7 shows normalized binaryCorrelation met-

ric. Fourth, we compute normalized unarySignificance and binarySignificance as

shown in Figure 4.5 and Figure 4.6 respectively.

Figure 4.5: Unary significance metric for Airport dataset
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Figure 4.6: Binary significance metric for Airport dataset

We create process models at distinct values of edge and node filter after applying

UBFM to the Airport dataset. The value inside the nodes represents the sig-

nificance and the value on edges represents the util value. Process models are

described as follows:

(a) Figure 4.7 depicts the process model at node filter = 0.0 and edge filter =

0.0. The process model includes all activities and relations of the event log.
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Figure 4.7: Process model created using UBFM at edge filter = 0.0 and node filter = 0.0

(b) Figure 4.8 shows the process model at node filter = 0.25 and edge filter =

0.25.
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Figure 4.8: Process model created using UBFM at edge filter = 0.25 and node filter =

0.25

(c) Figure 4.9 depicts the process model at node filter = 0.5 and edge filter =

0.5.

Figure 4.9: Process model created using UBFM at edge filter = 0.5 and node filter = 0.5

(d) Figure 4.10 shows the process model at node filter = 0.75 and edge filter =

0.75.
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Figure 4.10: Process model created using UBFM at edge filter = 0.75 and node filter =

0.75

The process model created by UBFM and traditional FM differs. Some of the

points are as follows:

(a) Node ‘Wait’ gets pruned in UBFM but it is there in FM at node filter =

0.25 and edge filter = 0.25 as shown in Figure 4.8 and 4.11 respectively. The

reason for removal of node is that ‘Wait’ is a LUHF node. Unary significance

of ‘Wait’ in UBFM is 0.11 whereas, its unary significance in FM is 0.61.

(b) Node ‘Enquiry’ gets pruned in FM at node filter = 0.25 and edge filter =

0.25 but it is present in UBFM as shown in Figure 4.8 and 4.11 respectively.

The reason is that ‘Enquiry’ is a HULF node,it occurs only 1 time in full

dataset. Unary significance of ‘Enquiry’ in UBFM is 0.32 whereas, its unary

significance in FM is 0.14.

(c) Edge ‘Luggage Check’ ->‘Board Flight’ gets pruned in FM at node filter

= 0.25 and edge filter = 0.25 as shown in Figure 4.8 and 4.11 respectively.

The distance from ‘Luggage Check’ to ‘Board Flight’ is high as compared

to other edges. Due to low attenuation its binary frequency significance is

less. Therefore, it is pruned by FM but it is present in UBFM due to its

high utility.
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(d) Edge ‘Show Identification Proof’ ->‘Security Check’ has utility value of 1.

The edge is present at edge filter = 0.25 and node filter = 0.25 but gets

pruned at edge filter = 0.75 and node filter = 0.75 in UBFM as shown in

Figure 4.8 and 4.10 respectively. Despite of having low utility, edge is still

present in the process model because of its very high utility value. It depicts

that the edge is of high importance to the organization. For example, utility

threshold is defined by vendor as Rs 40. A supermarket vendor sells 100

breads at a profit of Rs 1/bread. Utility value of bread or total profit to the

vendor by selling bread is Rs 100. Despite of having low per unit utility, it

is still categorized as a profitable item.

Figure 4.11: Process model created using FM at edge filter = 0.25 and node filter = 0.25

4.2.2 BPI 2014 Dataset Results

We perform experiment on large BPI 2014 dataset using UBFM and FM. We

choose λp = 0.6, λr = 0.7, ur = 0.75, attenuation = linear and distance = 4 for
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Table 4.8: External Utility Provided by Business Process Analyst

Activities / Precedence Relation Frequency Per-unit External Utility

Quality Indicator Fixed 7,791 25

Status Change 50,914 0.5

Update 35,969 0.5

Assignment ->Closed 8,082 1.0

our experiment. Two of the inputs to UBFM are edge utility (eu) and node utility

(nu). We provide default utility for all activities and relation between activities

as 5, to give them equal importance initially. We assign external utility to some

of activities and relations as shown in Table 4.8. We construct process models at

distinct values of edge and node filter after applying UBFM in Algorithm 2.

Figure 4.12: Process model derived from event-logs in BPI 2014 dataset discovered using

UBFM at edge filter = 0.0 and node filter = 0.0

The value inside the nodes represents the significance and the value on edges rep-

resents the sigCor value as depicted in Figure 4.13. UBFM discovers a complex

spaghetti like process model at node filter = 0.0 and edge filter = 0.0 as shown
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Figure 4.13: Process model derived from event-logs in BPI 2014 dataset discovered using

UBFM at edge filter = 0.5 and node filter = 0.25

in Figure 4.12. The process models in Figure 4.13 and 4.14 reveals that as we

increase node filter to 0.25 and edge filter to 0.5 in UBFM and FM respectively,

spaghetti like model transforms to a comprehensible model. Figure 4.13 and 4.14

differs in following perspectives:

(a) Activity ‘Quality Indicator Fixed’ (QIF) has relatively less frequency (1.39%

of activities present in event log) and high economic utility (HULF case) as

shown in Table 4.8. At nf = 0.25 and ef = 0.5, QIF is not present in Figure

4.14 but appears in process model discovered using UBFM in Figure 4.13.

(b) Activity ‘Status Change’ (SC) and ‘Update’ (UPD) has high frequency

(50, 914 and 35, 969 respectively), but low utility from business perspective

(LUHF case). Figure 4.13 reveals that SC and UPD disappears in in process

model discovered using UBFM. Here, process model simplification is driven

by utility threshold and objectives.

(c) There is a decrease in number of clusters from process model discovered

using FM in Figure 4.14 to the model discovered using UBFM in Figure
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4.2 Experimental Results

Figure 4.14: Snapshot of process model derived from event-logs in BPI 2014 dataset

discovered using FM at edge filter = 0.5 and node filter = 0.25

4.13. Function removeLowUtilityclusters() removes low utility clusters from

process model which further simplifies process model based on economic

utility in Figure 4.13.

The line chart in Figure 4.15 depicts number of edges present after different steps

in UBFM as values of edge and node filter increases. There are 952 distinct

precedence relations present in the event log within a distance of 4. We make

two important inferences from the graph in Figure 4.15. Firstly, we observe that

for a particular function how the number of edges present in process model varies

with increase in node and edge filter values. Secondly, we also notice that when

we build a process model corresponding to a node and edge filter value, how

the edges are pruned after each step. Removal of edges in conflictResolution() is

independent of node and edge filter values but dependent on λp and λr. Therefore,

a straight line is present for conflictResolution() in Figure 4.15.
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Figure 4.15: A line chart shows decrease in number of edges at different steps in UBFM

at increasing value of node and edge filter
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5

Limitations and Future Work

UBFM takes as input lots of initial parameters, so lot of time and effort goes in

finding the values for that parameters. Future work includes finding the default

settings.

We apply utility concept in control flow discovery. Future work includes applica-

tion of utility concept in organizational and data flow perspective.

UBFM can be made more efficient in terms of time and space complexity.

The Fuzzy miner algorithm requires several parameters such as λp, λr, utilityratio,

attenuation and distance. Currently we have taken default values λp = 0.6, λr

= 0.7, utilityratio = 0.75, attenuation = linear and distance = 4. One of the

limitations of the work is that we did not try for a large number of different

parameter values. In future we plan to conduct experiments to gain insights on

optimal parameter values for certain data characteristics.

Quantifying utility is non-trivial. In our current approach, we have not discussed

challenges and solutions associated with eliciting utility for activities and events.

In future we plan to propose practical solutions enabling a business or process

analyst to specify utility in different domains.

In our work we have used real world BPI challenge 2014 dataset which is not a

very large dataset, consisting of only 466737 records. Therefore, in future we plan

to validate our approach on bigger and other publicly available datasets. 1 2.

1http://www.win.tue.nl/bpi/2012/challenge
2http://www.win.tue.nl/bpi/2013/challenge
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6

Conclusion

The traditional FM simplifies spaghetti models based on frequency of activities

and precedence relationships. The amount of detail to be shown in the output

of the traditional FM algorithm can be adjusted using node and edge filters.

Increasing the value of node and edge filters removes activities and relationships

which have low significance and low correlation. In traditional FM algorithm,

the extracted process model consists of nodes and edges of equal value. However,

real life event logs often contain activities and precedence relations which are

HULF and LUHF. Therefore, the concept of utility of activities and precedence

relations should also be taken into account while simplifying process models. We

incorporate the utility concept in traditional FM algorithm, so as to come up with

a new UBFM algorithm. We perform experiment on Airport synthetic dataset

to show detailed working of UBFM. Also, we conduct a series of experiments on

real-world dataset to demonstrate that the proposed approach is effective. We

observe that UBFM mines successfully the high utility activities and precedence

relations within utility threshold.
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