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Abstract

In applications arising in massive on-line social networks, biological networks, and knowledge
graphs it is often required to find shortest length path between two given nodes. Recent results
have addressed the problem of computing either exact or good approximate shortest path dis-
tances efficiently. Some of these techniques also return the path corresponding to the estimated
shortest path distance fast.

Many of the real-world graphs are edge-labeled graphs, i.e., each edge has a label that denotes
the relationship between the two vertices connected by the edge. However, none of the techniques
for estimating shortest paths work very well when we have additional constraints on the labels
associated with edges that constitute the path.

In this work, we define the problem of retrieving shortest length path between two given nodes
which also satisfies user-provided constraints on the set of edge labels involved in the path. We
have developed SkIt index structure, which supports a wide range of label constraints on paths,
and returns an accurate estimation of the shortest path that satisfies the constraints. We have
conducted experiments over graphs such as social networks, and knowledge graphs that contain
millions of nodes/edges, and show that SkIt index is fast, accurate in the estimated distance and
has a high recall for paths that satisfy the constraints.
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Chapter 1

Introduction

1.1 Motivation

Finding shortest paths between two given nodes in a graph is a problem of fundamental impor-
tance in computer science. It has a variety of applications ranging from network-routing [11] to
its use as a data mining primitive [7]. Computing shortest paths in an on-line manner for each
query pair over massive graphs is common in domains such as road networks, social networks,
the World Wide Web, knowledge networks etc., and is computationally challenging. This has
given rise to recent research in efficiently estimating and computing the shortest path distances
by pre-processing the graph. Some of these methods can be extended to generate corresponding
shortest paths themselves efficiently.

As the modeling of networks gets richer, we have graphs that have certain properties associated
with nodes and edges in the form of labels. For instance, in a large knowledge graph such as
Yago[26], the relationship between two entities has one of many possible canonicalized relation-
ship identifiers, and entity nodes themselves are typed (i.e., an entity “Albert Einstein” has
types “Physicist”, “Vegetarian”, “German”, etc.). Even in social networks, it has become com-
mon to have edge-labels such as “Friend”, “Colleague”, “Family”, and so on, to distinguish the
nature of relationship between people. Further, if we consider general RDF(Resource Descrip-
tion Framework) databases that form the substrate for Semantic Web efforts, all relationships
are named – i.e., contain labels.

As a natural consequence, many modern practical uses of shortest path computation demand
certain constraints to be placed on the labels of edges/nodes that are involved in the path. For
instance, many queries in social networks seek to discover how one person A relates to another
person B. Similarly, while reasoning over large knowledge networks, one would be interested in
finding connections between two entities. The commonly used shortest-path metric can return
seemingly nonsense paths as we lack a way to avoid using certain edges/paths while searching
paths. Consider, the shortest path between two entities Albert Einstein and India in Yago database
returned by Dijkstra’s:

This is an arbitrary path with path length: 4, and it may mislead the reader as Albert Einstein
was against violence and war. Now, consider the following path between same entities as above:
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3 Chapter 1. Introduction

Clearly, this path is more informative than the shortest path between Albert Einstein and India.
Here, the path length is 5 which is more than the shortest path but certainly it tells us about
how MK Gandhi’s non-violence movement influenced Albert Einstein.

In a large knowledge database like Yago1, a practical application would be to search for rela-
tionship, common ancestry or acquaintance, between two entities. The relation types usually
consist of rather different concepts; meta-data on one hand, statistical facts and family relations
on the other hand which most probably are not desired to be intermingled among each other on
the shortest path.

In [2] authors have claimed that edge-label setting is useful in biological network such as graph
database of KEGG2 metabolic pathways. They have shown this using the following example:

Example 1. Consider, a metabolic path between two compounds (C00267, alpha-D-Glucose and
C00074, Phosphoenolpyruvate) which is invoked by a chain of reactions in presence of enzymes
(edge-labels in a graph database). In [2] Atre et al are interested in finding out (1) if there exists
path way between these two compounds for some other animal (2) and check if there exist a path
between these two compounds for dog such that enzymes on the returned path way follows the
regular expression of enzymes given in the query.

The above example is a reachability query i.e. they only check for existence of a path, and do
not return the path. In this work, we are interested in processing queries to allow or disallow
certain edge-labels on the returned path. This will help us in finding informative and insightful
paths between two entities. The purpose of this work is to develop an indexing framework and
an on-line algorithm, to determine shortest length path between two given nodes which also
satisfy the user-given constraints on the edge labels involved in the path.

1.2 Terms and Definitions

We use edge-labeled directed as well as edge-labeled undirected graphs, i.e. a graph G is tuple
G = (V,E,Σ), where V is a finite set of nodes, E is finite set of edges, and Σ is finite set of
edge-labels. An edge is represented as :

e ∈ (V × Σ× V )

Here, the components are from-node, edge-label and to-node respectively. The vertices are called
vi where i ∈ 1, ..., |V | and the edge-labels are called σi where i ∈ 1, ..., |Σ|.

A path p from vertex u to v is an sequence of (distinct) vertices, p = (u, v1, ..., vi−1, vi, ..., v),
and an edge between vi and vi+1 is denoted as ei,i+1.

Definition 1. Shortest Path: Given a labeled-graph G = (V,E,Σ) directed or undirected,
for a source vertex s ∈ V and a target vertex t ∈ V , the shortest path from s to t is the path

1http://www.mpi-inf.mpg.de/yago-naga/yago/
2Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/
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4 Chapter 1. Introduction

p = (v1, ...vn) (where, v1 = s and vn = t) that over all possible n minimizes the sum
n−1∑
i=1

f(ei,i+1),

where f : E → {1} i.e. each edge in the graph has unit weight or, this is equivalent to finding
the path with fewest edges.

Definition 2. Label Constrained Reachability(LCR): Given labeled-directed or undirected
graph G = (V,E,Σ), two vertices u and v and a label set C, where u, v ∈ V and C ⊆ Σ, if there
exists a path p from vertex u to v whose path labels L(p) is a subset of C, i.e., L(p) ⊆ C, then

we say u can reach v with label-constraint C, denoted as u
C−→ v , or simply v is C-reachable

from u. We also refer to path p as a C-path from u to v. Given two vertices u and v, and a
label set C, the LCR query asks if v is C-reachable from u.

1.3 Problem Statement

In this work, we consider how to answer Label Constrained Shortest Path queries efficiently. In
particular, we have two forms of constraints on the edge-labels:

Positive label restrictions: The set of edge-labels on the qualifying paths should be a subset
of the specified set of edge-labels.
Negative label restrictions: As opposed to above, user specifies the set of labels that must
not appear on the qualifying paths.

Label Constrained Shortest Path(LCSP) problem over G is defined as follows:

Definition 3. Label Constrained Shortest Path(LCSP): Given an edge-labeled directed/undirected
graph, G = (V,E,Σ), a source vertex s, a target vertex t and an edge-label constraint set C ⊆ Σ,
a Label Constrained Shortest Path, LCSP (s, t, C) is given by the shortest path p between s
and t such that path labels L(p) ⊆ C in case of positive label restriction or L(p) ⊆ C̄ in case of
negative label restriction.

From the definition above, it is clear that the edge-label positive-restriction and negative-
restriction can be treated uniformly. It is also quite straightforward to see that, in practice, the
value of |C| is smaller in case of positive-restriction than in the edge-label negative-restriction
setting.

1.4 Problem Difficulty

It seems quite straightforward to incorporate such label constraints over an on-line shortest
path algorithm such as the Dijkstra’s algorithm. These algorithms, with some carefully de-
signed optimizations such as A∗-search [7, 11], find favor in answering similar queries that are
encountered in road networks for route planning. But social networks and knowledge networks
that we consider in our work, are quite different from road networks – they lack near-planarity,
hierarchical structure, and low-degree nodes that are critical for the efficiency of algorithms over
road networks.

A∗-search explores the graph by expanding the most promising node according to some specified
rules. In social networks there are no hierarchies and edge-labels are also treated uniformly, so no
rules are specified. Thus, A∗-search will become similar to constrained Dijkstra’s algorithm(i.e.
only over allowed edges) for these networks. In other words, A∗-search has to examine all allowed

4



5 Chapter 1. Introduction

edges in the worst case. Although, introduction of label-constraints to Dijkstra’s algorithm,
favours in terms of computational complexity because less number of nodes are required to
be processed now, since the edges that do not satisfy the label conditions are simply ignored.
Thus, only a sub-graph is processed that contains edges which satisfies the label condition. But
considering the size of graph we have considered in our experiments, this will still be large in
number. Note that, the overhead of checking label condition can be safely ignored.

1.4.1 Precomputing Label-Constrained Shortest Paths

Let us consider the problem of computing shortest paths for each and every pair of nodes and
with all possible label constraint combination, this corresponds to generalized transitive closure.
The pre-computation of all-pair shortest paths using Floyd-Warshall algorithm on unlabeled
graph can be materialized in O(|V |2) space. In case of edge-labeled graph for different possible
constraint set i.e. for each possible subset of |Σ|, we require O(2|Σ| ∗|V |2) space. This would also
mean that the complexity of running time would increase by a factor of 2|Σ| because in worst
case for each C ⊆ Σ the shortest path between s and t will be different that respects C.

1.4.2 Label Constrained Reachability vs Label Constrained Shortest Path

In this section, we discuss that the pre-processing required to answer LCR efficiently is not
sufficient to answer constrained shortest path efficiently. Jin et al in [19] introduced the Label
Constrained Reachability (LCR) problem, which states that a node v is reachable from another
node u with edge labels on the path, are a subset of user provided constraint set. In [19]
authors use generalized transitive closure and approximate maximal spanning tree (DAG) to
store the edge label information and at the time of query processing they use interval labeling
and kd-trees(range search trees)[9] to answer the query.

Atre et al in [2] have gone a step ahead and have introduced Labeled Order Constrained Reach-
ability problem i.e. they not only consider the containment but also the order in which the
edge-labels occur on the path between u and v. In [2] authors first transform the graph into
DAG by collapsing the strongly connected components(SCC) and then perform DFS over DAG
to create BitPath indexes. The BitPath indexes can also be considered as equivalent to interval
labeling containing information of successors, predecessors and edge label information of all the
nodes with respect to root node of DAG.

With the above two approaches, we will loose path information either by creating approximate
maximal spanning tree as stated in [19] or by collapsing the SCC components into a graph as
stated in [2]. In order to answer LCSP queries using reachability approach, one way is to check
if a node should be expanded using the index before expanding it in Dijkstra’s. This will have
worst case complexity of O(|V |+ |E|).

1.4.3 Conclusion

Clearly, storing all-pair shortest path for all possible combinations of constraints will be expen-
sive computationally as well as storage-wise and reachability index does not help in answering
path queries because these are generally light-weight indices and for answering path queries will
require look up in original graph that will have high computational cost as discussed in previous
section. To answer path queries efficiently commonly used methods are graph based embedding
techniques[10, 23]. The embedding technique used here is selection of few nodes as reference
nodes or landmarks out of all the nodes and computing offline the distances from each node
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6 Chapter 1. Introduction

in the graph to those landmarks. At run time, when the distance between a pair of nodes is
required, it can be estimated quickly by combining the precomputed distances. This basic idea
is further improved to also generate some paths corresponding to the estimated shortest distance
[17]. Thus, in this work we extend the landmark-based path-sketches with label information to
answer LCSP queries efficiently.

1.5 Contributions

In this work, we consider how to answer LCSP queries efficiently by augmenting the landmark-
based path-sketches [17].

1. We have proposed and developed SkIt(Sketch augmented with inverted indices), that en-
ables us with an efficient estimation algorithm for edge-label constrained shortest paths
between two given nodes of an entirely disk-resident graph. A powerful feature of the
proposed solution is its ability to handle arbitrary label constraints on the edge-labels. In
particular, we show how SkIt can efficiently support the following forms of constraints on
the edge-labels:

Label white-listing: The set of edge-labels on the qualifying paths should be a subset
of the specified white-list of edge-labels.
Label black-listing: As opposed to above, user specifies the set of labels that must not
appear on the qualifying paths.

2. In order to empirically establish the efficiency of SkIt, we implement it within the same
framework that was used in path-sketches [17] against which we compare the performance
of our index. Specifically, we implement label-augmented landmark-based sketches within
the RDF3x database[22], and maintain the inverted index that is used to filter out the
partial exploration required by the TreeSketch algorithm [17]. We compare the performance
of SkIt against standard TreeSketch that approximately enumerates the paths in increasing
order of their distance, and also against the path query performance in Neo4J[1] – a
high-performance, industry-standard graph data management system. As a baseline, we
also implement the standard Dijkstra’s algorithm which can trivially support all forms
of label constraints as it explores the graph. Our evaluation using multiple large-scale
labeled graphs show that the use of SkIt makes complex Label-Constrained Shortest Path
discovery highly scalable.

3. As an extension of our work:

(a) We have defined different classes of queries that SkIt can support and have tested on
label counting based constraints i.e. with each edge-label in constraint set C we also
mention a count k such that this edge-label should not occur more than k times in
the path.

(b) We have also tested ranking extension of constraint satisfying shortest paths, based
on the number of constraints they satisfy. We look at a weight function W : l → w
which maps a label l to a positive real weight w, and rank paths based on the weights
induced by this weight function. Currently, we rank all the paths computed by our
on-line algorithm.
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7 Chapter 1. Introduction

1.6 Outline

The remainder of the thesis is structured as follows. In Chapter 2, we discuss related work done
and some important ideas used in the thesis. In Chapter 3 we explore and propose different
indexing framework and analyse their applicability for answering LCSP queries efficiently. We
also discuss in detail how path-sketches are augmented with edge-labels to result in SkIt struc-
ture. In chapter 4 we first define different classes of queries that SkIt can support, then we
describe the constrained tree sketch algorithm(extended from tree-sketch algorithm in [17]) that
encompasses the developed SkIt structure to answer LCSP queries. Following this, in Chapter
5 we describe our experimental setup including data sets and queries, and present the results.
Finally, we conclude in Chapter 6.

7



Chapter 2

Related Work

In this thesis, we focus on answering LCSP queries efficiently. There is a significant amount of
work done in areas such as shortest path queries, regular path queries and constrained reachabil-
ity. In this chapter we first introduce some of the well-known shortest path algorithms in section
2.1. We then give an outline of current state-of-the-art algorithms to solve or approximate the
point-to-point shortest path queries, constraint reachability queries, constrained shortest path
queries and regular path queries in section 2.2 and 2.3.

2.1 Single Source Shortest Path Algorithms

2.1.1 On-line Computation

These are among the most important classical shortest path algorithms. In this section V
denotes the number of vertices and E the number of edges in a graph. The vertices are called
vi where i ∈ 1, ..., V .

• Dijkstra’s algorithm [9] is the classical solution to compute single-source shortest paths
on arbitrary graphs (non-negative edge weights provided). It computes a shortest path
tree by visiting nodes in ascending order of their distance from the source node, relaxing
all of its outgoing edges. Once a node is being visited, its distance from the source is
known to be minimal. Thus the algorithm terminates if the target node is being visited.
By saving the predecessor of each visited node (and updating it when relaxing an edge)
the algorithm outputs not only the distances but also the shortest paths itself. Its worst
case running time is O(E + V logV ).

• A∗-search [18] uses a best-first search and finds a least-cost path from a given initial node
to one goal node (out of one or more possible goals). As A∗ traverses the graph, it follows
a path of the lowest expected total cost or distance, keeping a sorted priority queue of
alternate path segments along the way.

• ALT are based on A∗-search, landmarks and the triangle inequality. Goldberg et al in
[15] proposed this first and have shown that this outperforms previous algorithms, in
particular A∗-search with Euclidean bounds, by a wide margin on road networks and on
some synthetic problem families.

8



9 Chapter 2. Related Work

2.1.2 Precomputed

• Floyd Warshall algorithm [9] computes all-pairs shortest paths and stores distances
(and optionally also path information) between any two nodes in O(V 3) time and O(V 2)
space. It uses dynamic programming to save all-pairs distances considering only paths via
vertices v1, ..., vk and increasing k step-wise from 1 to V .

• The Bellman Ford algorithm [9] The algorithm by Bellman and Ford computes single-
source shortest paths by initially setting all distances except for the source nodes to infinity
and then repeatedly relaxing all edges. It does this V −1 times which guarantees optimality
as in the absence of negative cycles a shortest path can visit each node only once. Its
running time is O(V E) in the worst case.

Although there exist exact algorithms for computing shortest paths, these algorithms cannot be
adopted for real world massive graphs, especially in on-line applications where query response
time must be in few milliseconds. This calls for approximation algorithms. In next section we
discuss about approximate algorithms used for computing shortest paths in large graphs.

2.2 Single Source Shortest Path Estimation

The problem of answering shortest path distance queries approximately on large undirected
graphs has been studied theoretically in [6, 8, 13, 5, 29]. Thorup and Zwick in [29] introduced a
distance oracle that answers such a query in approximately O(k) time with a theoretical upper
bound on the approximation ratio of 2k-1.

There have been methods[23, 10, 17, 24] for estimating shortest path distances between two ver-
tices using graph based embedding techniques. The embedding technique used here is selection
of few nodes as reference nodes out of all the nodes and projecting distances from these nodes
to all other nodes.

Potamias et al in [23] has performed empirical studies on the approximation quality of landmark-
based shortest path algorithms on several real-world social network databases. They focus on
the efficiency of different landmark selection methods.

Das Sarma et al in [10] have shown that using randomly sampled set of landmarks; as such,
works very well on complex graphs such as the web graph. In offline computation they sample
a set of seed nodes, and store the closest seed from every node along with its distance and have
termed it as sketch algorithm, then do simple computation to estimate the distance. They have
tested their algorithm on a partial crawl of the web graph, both directed as well as undirected.

Gubichev et al in [17] have extended the sketch algorithm above to return not only an approx-
imate distance but also estimate the paths. Moreover they use the path information in the
sketch to improve upon the distances. The extended sketch algorithm to compute path-sketches
is described in more detail in Chapter 3.

Recently, [24] Qiao et al have proposed coverage-based landmark selection approach to answer
shortest path queries with error bounds. They have used graph partitioning based heuristics
to reduce the offline computational complexity and have compared their results with centrality
based reference node selection approach proposed in [23] by Potamias et al, but the approxima-
tion quality factor of returned paths using centrality based approach is better than partitioning
based approach. Although, they have shown that without graph partitioning they achieve better
path quality but pre-processing becomes computationally expensive.

9



10 Chapter 2. Related Work

2.3 Constrained Reachability and Single Source Shortest Path

2.3.1 Reachability

Jin et al.[19] devised an algorithm that precomputes a spanning tree of the graph and a large
index that accounts for all essential non-tree paths to allow fast reachability queries with label
constraints on runtime. They have tested their algorithm on some synthetic and real-world
social network graphs with maximum of 100,000 nodes and 150,000 edges.

In [30] Xu et al have extended the work by Jin et al in [19] and have theoretically proposed opti-
mization for path-label transitive-closure computation. They have also addressed the scalability
issue, but have considered maximum of 200k nodes which is still small in number as compared
to what we have considered for our experiments.

Atre et al [2] have proposed a light-weight indexes on graphs using compressed bit-vectors and
divide-and-conquer algorithm along with greedy-pruning strategy to answer Label-Constrained
ordered queries. They have evaluated their method over a subset of large real data set graphs,
which is created by collapsing strongly connected components. They do not consider the whole
graph in their work.

2.3.2 Shortest Path

Barrett et al in [3, 4] have considered several more general forms of the constrained shortest
path problem, e.g. the language-constrained shortest path problem that accepts a path only if
the edge labels along it belong to a regular language. They studied the problem of linear regular
expression (LRE) constrained shortest path problem [3] which imposes the order in which labels
may appear along a path. The algorithms for the latter two have been tested on several road
and railway networks.

Rice et al.[25] extended the contraction hierarchies introduced in [14] to support dynamic label
constraints and were able to show an improvement of query speed of 3 orders of magnitude
compared to Dijkstras algorithm on the North American road network.

A recent work [20] by Kirchler et al have proposed an algorithm SDALT (State Dependent
uniALT) adaptation of the speed-up technique uniALT in order to accelerate generalization of
Dijkstra’s algorithm to solve regular language constrained shortest path problem. They have
shown an improvement of factor 2 to 20 with respect to Dijkstra’s algorithm over road and
public transportation network of the French region.

2.3.3 Regular Path Acceleration

Fan et al [12] have addressed the problem of adding regular expressions and patterns to the
reachability queries. They have evaluated their algorithm on the graphs of up to 1 million nodes
and 4 million edges (synthetic).

Gubichev et al [16] have implemented a technique of evaluating path queries over RDF graphs
using purely database style indexing and efficient join processing techniques. Although they
have shown experiments on very large RDF graphs, their queries use more join-like expressions
than rich path-patterns.

M. Zhou et al [31] have proposed a Constrained Acyclic Path(CAP) problem. To express CAP
search queries they have proposed cSPARQL an extension of SPARQL. They have basically

10



11 Chapter 2. Related Work

addressed search queries problems that are used to express complex patterns that satisfy con-
straints on nodes and edges.

Koschmieder et al in [21] have addressed the problem of answering regular path queries on large
graphs. Their main idea is based on the fact: to structure a graph traversal along those labels
from a query that are infrequent in the graph. They use these labels in parallel to process the
query and then merge the results to obtain the paths. They have shown that this considerably
improves scalability with regard to the size of graph. Although their entire optimization depends
on this assumption that these rare-labels are guaranteed to occur in matching path.

Conclusion: All the previously done work, to the best of our knowledge do not address the
problem of answering constrained shortest path queries on large social and knowledge networks.
Barrett et al in [3, 4] and Rice et al in [25] have considered answering constrained shortest path
but on road networks which provides them to exploit hierarchical features absent in social and
knowledge graphs.

Since, real world graphs are generally edge labeled these days, and shortest path problem is a
fundamental problem to be addressed on such graphs. To answer such queries and considering
the size of graphs, this calls for algorithms with moderate precomputation cost and index size,
yet still fast query time.

11



Chapter 3

Index Framework

In this chapter we discuss about two indexing framework in section 3.1.1 and 3.2 that were
proposed and proved to be in-optimal for large graphs. In between the above mentioned section
we give brief introduction about path-sketches and TreeSketch algorithm in section 3.1.2 and
3.1.3, respectively. In section 3.3 we propose and discuss in detail the construction of SkIt which
we have used to answer LCSP queries efficiently.

3.1 Background

3.1.1 PCA based Landmarks

In this section, we propose an approach adapted from [27] and [28]. The Virtual Landmarks
method [27] is based on two ideas: First, it uses a Lipschitz embedding [6] of nodes into a high
dimensional space. In a Lipschitz embedding, the distances to a set of landmarks are taken
as the coordinates of the given node. Second, it uses dimensionality reduction via Principal
Component Analysis(PCA) to reduce the higher-dimensional space of Lipshitz embedding to
a lower-dimensional space. However, [27] did not address the question of landmark selection
explicitly. In [28] authors have explored different landmark selection techniques over geometrical
setting.

Here, we have proposed an indexing scheme which utilizes PCA to reduce higher dimensional
distance matrix and k-means based landmark selection approach proposed in [28] to select the
landmarks.

• First, we construct distance matrices for all combinations of labels(distribution over edges)
as shown in figure 3.1.

• We compress each distance matrix using PCA(Prinicipal Component Analysis). By ap-
plying PCA to above matrices, we can do dimensionality reduction, while approximately
preserving the distances.

• After this we plot, top 2-principal components along X-axis and Y-axis in a geometric
plane and perform k-means algorithm to select landmarks.

• Once landmarks are obtained we can build path-sketches(discussed in next section) using
them.

12



13 Chapter 3. Index Framework

(a) sample graph (b)Distance matrices for C = {a} and C = {a,b}

Figure 3.1: Distance matrices for different constraint sets

Complexity of PCA is O(nD2), where n is the input data and D is the number of dimensions.
For a distance matrix since D is same as n, thus the computational complexity becomes O(n3)
in our setting. Hence, this exhaustive approach is not practical for large-graphs with number of
nodes and edge labels.

3.1.2 Path-sketches

One of the most popular shortest path estimation techniques over directed, unweighted graphs
(such as those we consider here), is the landmark-based shortest distance oracles [29]. Although
there are many different variants, the underlying idea is as follows: We first select a set of special
nodes, L, which we call landmarks, and compute shortest path distances to/from each of the
landmarks to all other nodes in the graph. We associate a vector of these distances along with
the corresponding landmark with every node, and call this a shortest-path distance sketch of the
graph. After this pre-computation, we can estimate the shortest path between any two nodes u
and v using triangle inequality as follows:

δ̂(u, v) = min
l∈L

δ(u, l) + δ(l, v),

where δ(x, y) denotes the directed shortest distance between x and y. One variant of this
method [10], proposed to use set-based landmark selection, where we sample landmark sets of
exponentially increasing sizes S1, . . . , Sr with r = log(n). For each such set, every vertex v
maintains two sketch entries: the distance to the closest landmark node in the set, and the
distance from a landmark node from which v is at shortest distance. Formally, the two entries
are

(fi, δ(v, fi)) where fi = arg min
x∈Si

δ(v, x)

(bi, δ(bi, v)) where bi = arg min
x∈Si

δ(x, v)

The sketch for a vertex v is:

sf (v) = {(fi, δ (v, fi)) | i = 1 . . . r}
bf (v) = {(bi, δ (bi, v)) | i = 1 . . . r}

as the two sketch entries corresponding to the forward path from the node to a landmark set
and the backward path from a landmark to the node respectively. Denoting the landmark nodes
that appear in the forward and backward sketches of a node v as Lf (v) and Lb(v), respectively,
we can write the shortest path distance estimator between two nodes u and v as,

δ̂(u, v) = min
x∈Lf (u)∩Lb(w)

δ(u, x) + δ(x, v).

13



14 Chapter 3. Index Framework

Note that these distance sketches maintain only the shortest distance between landmark nodes
and regular nodes in the graph. Therefore, in order to reconstruct the actual path that corre-
sponds to the estimated distance between the two nodes, additional accesses to the graph are
required. This requirement is lifted by path-sketches [17] where the sketch also contains the
shortest path between the landmark node and a regular node. That is, the path-sketch entries
are of the form

sf (v) = {(fi, δ (v, fi) , p (v, fi)) | i = 1 . . . r}
bf (v) = {(bi, δ (bi, v) , p (bi, v)) | i = 1 . . . r}

More significantly, based on this additional information, it is possible to improve the accuracy of
the shortest path distance estimation significantly through the use of a series of improvements
culminating in a bounded path computation algorithm called TreeSketch over the tree resulting
from the union of paths stored in the sketches. In next section we briefly describe TreeSketch
algorithm used for obtaining the actual path.

3.1.3 TreeSketch Algorithm

Forward and backward sketches are loaded from disk to construct trees rooted at source node and
target node, respectively. Trees are constructed by doing union of the paths in their sketches.
After that, for every node in the tree, TreeSketch performs a k-hop BFS (typically k = 1) to see
if it possible to reach the target with a shorter distance. Although TreeSketch requires additional
accesses to the underlying graph, it has been shown to be relatively inexpensive even when the
graph is entirely disk-resident [17], and can generate almost accurate distance estimates.

3.2 Adapting Minimal Sufficient Path Label Set

In this framework, we augment path-sketches proposed in [17] with Minimal Sufficient Path
Label Set with each path. Lets understand first Minimal Sufficient Path Label Set.

3.2.1 Minimal Sufficient Path Label Set

Definition 4. Sufficient Path-Label Set: Let S be a set of path labels from vertex u to v.
Then, we say S is a Sufficient Path Label set if for any label-constraint set C, u C−→ v, the LCR
query returns true iff there is a path-label s ∈ S, such that s ⊆ C.

Let M(u, v) denote minimal sufficient path label set of paths from u to v and Mk(u, v) denote
the minimal sufficient path-label set of those paths from u to v whose intermediate vertices are
in v1,..., vk. The minimal sufficient path-label sets of the paths from each vertex u to v with
intermediate vertices up to vk+1, i.e., Mk+1(u, v) is computed as follows:

Mk+1(u, v) = Prune(Mk(u, v) ∪ (Mk(u, k)�Mk(k, v)));

M0(u, v) =

{
∅ if (u, v) ∈ E
λ((u, v)) if(u, v) ∈ E

(3.1)

Here, Prune is a function which simply drops all the path labels that are supersets of other
path-labels in the input set. The � operator joins two sets of sets, such as { s1, s2 } � { s

′
1, s

′
2,

s
′
3 } = { s1 ∪ s

′
1, s1 ∪ s

′
2, ... , s2 ∪ s

′
3 }, where si and s

′
j are sets of labels.

14



15 Chapter 3. Index Framework

To answer LCSP queries we need to maintain label information with path-sketches. Thus we
came up with the solution that, ∀ v ∈ V and 2rk landmarks, M(v, l) can be computed using
generalized transitive closure, where l ∈ 2rk landmarks. Moreover, as demonstrated in [19],
in case of reachability, the number of constraints that need to be saved can be reduced by
considering the minimal sufficient path-label set which is based on the following observation.

Theorem 1. If a target node is reachable under constraint set C1 ⊂ Σ, then it is reachable
under each constraint set C2 such that C1 ⊂ C2 ⊂ Σ.

This helps in saving space but it does not improve the running time as paths using the superset
may be discovered before discovering the path using the subset. As an example consider the
path (0 → 2 → 4) in the unweighted graph in figure 3.1(a), for constraint set : {a, b} it is
discovered before the path (0→ 1→ 2→ 4) that uses constraint set : {b} which is a subset of
the former. It turns out that Theorem 1 does not extend to the shortest path problem: Given a
path using a constraint set C1 there may be a shorter path using a constraint set C2 ⊃ C1 . The
same holds for the path (0→ 2→ 3→ 4) that uses constraint set : {a}. In total we have 2|Σ|-
1 = 3 paths that we would need to maintain for node 4 if the source is node 0. In particular
we observe that for any possible constraint there is a different shortest path from 0 to 4. This
implies the following.

Theorem 2. Given graph G = (V,E,Σ) and vertices s and t, in the worst case for each
constraint C ⊂ Σ there is a different shortest path from s to t that respects C.

The above result suggests that computing the shortest paths for all constraints basically requires
computing shortest paths for each constraint individually. This would mean that the complexity
of running time would increase by a factor of 2|Σ| as compared to the underlying shortest path
algorithm. For a single-source, Dijkstra’s like in this example would result in a running time of
O((V logV + E)2|Σ|). Moreover it follows directly from the theorem that the storage space to
save shortest paths for all constraints increases by the same factor of 2|Σ| in the worst case.

3.3 The SkIt Index

Here, we present a framework that integrates the sketch index and the inverted index into a
new index, that we call the Sketch Inverted Index (SkIt). The sketch index here is the path-
sketches proposed in [17], that are augmented with the edge label information. Further, in order
to construct the actual path during on-line execution we utilize the inverted list structure. We
have discussed them as separate parts in following two sections:

3.3.1 Label Path Sketches

As a first step towards extending path-sketches to support the edge-label constraints on the
paths, we augment the path information with the edge-label information. We do not incur any
extra computation cost to construct labeled-path-sketches. Although, the increase in size of
index is by a factor of 1.2 to 2.3 after incorporating the label information with path. This fairly
straightforward extension is illustrated using the example graph in Figure 3.2, along with the
associated sketch. Consider node v in this figure, it is at shortest distance from node s1 and
s2 in forward and backward direction respectively. Thus, s1 and s2 are landmarks for node v.
Note that, in labeled-path-sketches index the labels are stored in sequence, therefore this index
scheme can be used for answering edge labeled ordered queries/ regular expression queries as
mentioned in chapter 4.1.
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16 Chapter 3. Index Framework

(a) Vertex v and seed set S = {s1, s2, s3} (b) Resulting entries in Labeled-Sketch(v)

Figure 3.2: Labeled-path-sketch construction

node Label with posting

s1 a3 : v1

s2 a1 : v6

s3 a2 : v6

v1 a2 : v
v2 a3 : v4

v3 a2 : v
v4 a1 : s3, s1 a3 : v3

v5 a1 : s2

v6 a3 : v4

v a1 : v2 a2 : v5

node Label with posting

s1 a1 : v4

s2 a1 : v5

s3 a1 : v4

v1 a3 : s1

v2 a1 : v
v3 a3 : v4

v4 a3 : v2, v6

v5 a2 : v
v6 a1 : s2 a2 : s3

v a2 : v1, v3

(a) Forward Inverted Index (b) Backward Inverted Index

Table 3.1: Inverted Indices

3.3.2 Label Inverted Index

During the on-line execution, for every node we perform a k-hop exploration of the graph in
order to find a shorter connection between the forward and backward sketch trees (discussed in
detail in chapter 4). However, this may lead to many wasted accesses to the graph since they
may violate label constraints.

We utilize a compact inverted list structure that, for each node, maintains the list of nodes
directly reachable, as well as the list of nodes of that reach the current node, via an edge-label.
In other words, each node will have a forward edge-label and a backward edge-label inverted list.
This can be seen as an effective organization of the edge-labeled adjacency list of the graph so as
to efficiently decide if a specific node can be expanded or not. We have illustrated the inverted
list structure using following example for a sample graph in figure 3.2.

Example 2. Table 3.1 (a) captures the information of successors for a node and table 3.1 (b)
captures the information of predecessors for a node. Consider node v4 in figure 3.2(a) it has
successors s1, s3 and v3 associated with edge label a1 and a3, respectively and predecessors v2, v6

associated with a3.

16



Chapter 4

Query Processing

In this chapter we first discuss in section 4.1 the classes of queries SkIt can support. Then, we
proceed with the discussion of on-line algorithm: Constrained Tree Sketch algorithm in detail
in section4.2, which makes use of our proposed index SkIt to answer LCSP queries efficiently.
The proposed algorithm is an extension of TreeSketch algorithm proposed in [17].

4.1 Classes of queries

The goal of our work is to extend sketch algorithms that estimate the shortest paths between two
nodes with different kinds of label constraints on the retrieved path. In this section we discuss
about the usefulness of SkIt by defining different classes of queries that SkIt can support.

The label constraints that we could consider are:

Positive label restrictions Given a set of edge-labels C ⊆ Σ, the path label set L(P ) ⊆ C
For example, in a social network, if C = {family, friend} then we are looking for connec-
tions consisting of only family or friend relations i.e. L(P ) can be {family} or {friend} or
{family, friend}. We do not allow for connections that have either acquaintance or shared
interest relationships.

Negative label restrictions Given a set of edge-labels C ⊆ Σ, the path label set L(P ) * C

Positive exhaustive label restrictions Given a set of edge-labels C ⊆ Σ, the path label set
L(P ) = C, i.e all labels must be covered by the path.

Soft label restrictions Given a set of edge-labels C ⊆ Σ, the path label set L(P ) should have
at most 1 label from C. There is no restriction on labels that are not specified.

Label order constraints Given a sequence of labels, the path should have labels in the same
order, but there could be other labels in the sequence. For instance, if the sequence given
is < l1, l2, l3 >, then a path with label sequence < l0, l1, l1, l4, l2, l3 > is allowed.

Regular path constraints Given a regular expression over labels as described in [2], the path
should satisfy the regular expression

Note that, in our experiments we have tested SkIt for Positive label restrictions and Negative
label restrictions. But clearly, all these restrictions can be incorporated within SkIt for finding
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18 Chapter 4. Query Processing

shortest paths, since edge-labels are stored in sequence in labeled-path-sketches. Moreover,
while constructing actual paths during on-line computation we have access to the neighbors via
edge-labels.

4.2 Constrained Tree-Sketch Algorithm

In original Tree-Sketch algorithm only s-node and t-node are provided as input, here we also
provide constraint set C as input with other inputs. In its first step, the algorithm loads all the
labeled-path-sketches(disk-resident) for the two given pair of vertices s and t(into main memory).
After loading the forward and backward labeled-path sketches, we can proceed to estimate the
LCSP by rejecting all sketches that contains paths which does not satisfy the specified edge-label
constraints, and similarly rejecting total distance estimations if the corresponding path violates
the constraints.

However, this simplistic approach may result in not finding any path between two nodes since
we are pruning out candidate paths. For instance, consider the backward path-sketch starting
from l3 to d in figure 4.1, whose edge-label set is {a1, a2}. If the user specified C = {a1, a3}
then rejecting the path-sketch entirely would result in not finding the LCSP between s and d,
although TreeSketch allows for it. On the other hand, retaining all the sketches which violate
the constraints also is not desirable as it adds needless exploration steps. We trade off these
two aspects by truncating the paths from sketches to a prefix (suffix for backward paths) that
satisfies the edge-label constraints. For instance, considering the same example, we will truncate
the sketch 〈l3, a2, v6, a1, t〉 to 〈v6, a1, t〉. Using TreeSketch, we can now find the LCSP between
the query vertices.

After obtaining edge-label constrained sketch tree, denoted as CTs and CTt, bidirectional BFS
from s and t is started. For every visited node the list of its neighbours is loaded from the
inverted indices. For every visited pair (x, y), x ∈ CTs, y ∈ CTt the algorithm thus can check
whether x and y are equal. If yes, we construct the path from s to t by concatenating the paths
from s to x and from y to t. Note that, neighbours up to 2-hop for visited nodes are loaded, thus
we obtain path concatenation up to 3-hops. Whereas, in earlier tree sketch algorithm it was
just 1-hop(immediate neighbors) look up. Note that, by further increasing the look ups we will
end up processing lot of nodes thus increasing the query processing time. We trade-off between
accuracy and query processing time by doing 2-hop look ups. With this, we are able to achieve
good accuracy within reasonable processing time as shown in chapter5.

The pseudo code for the Constrained Tree Sketch Algorithm is provided in Algorithm 1.
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(a) Tree sketch on edges rooted at s (b) Tree sketch on reversed edges rooted at d

(c) Constrained Tree sketch on edges rooted at s (d) Constrained Tree sketch on reversed edges rooted at d

Figure 4.1: Path truncation

Algorithm 1: Constrained Tree-Sketch Algorithm

Input: source node s ∈ V , target node t ∈ V , label constraint C ⊂ Σ
Result: Q, priority queue of paths from s to t respecting C
CTs ← tree of paths from s that respect C (built from sketch);1

CTt ← tree of paths to t that respect C (built from sketch);2

Q← ∅;3

µ←∞;4

NBFS ← ∅, NRBFS ← ∅;5

for all u ∈ BFS(CTs, s) and v ∈ BFS(CTt, t) do6

NBFS ← NBFS ∪ {u};7

pv→t ← path from v to t ∈ CTt;8

for all x ∈ NBFS do9

if v ∈ upto2HopSuccessors(x,C) then10

p← ps→x ◦ px→v ◦ pv→t;11

Q← Q ∪ {p};12

µ← min{µ, | p |};13

NRBFS ← NRBFS ∪ {v};14

ps→u ← path from s to u ∈ CTs;15

for all x ∈ NRBFS do16

if x ∈ upto2HopSuccessors(u,C) then17

p← ps→u ◦ pu→x ◦ px→t;18

Q← Q ∪ {p};19

µ← min{µ, | p |};20

if dist(s, u) + dist(v, d) ≥ µ then21

return ;22

19



Chapter 5

Experiments and Results

In this chapter we provide an experimental evaluation of SkIt. In order to empirically establish
the efficiency of SkIt, we have implemented it within the same framework that was used in
path-sketches [17] against which we compare the performance of our index, discussed in section
5.1. Then, we give an overview of the data sets used in section 5.2. In section 5.3 we describe
the generation of test instances used in the subsequent evaluation. Performance metrics for
evaluation are described in section 5.4, subsequently followed by results section 5.5. In addition
we have tested our framework on label-count-queries in section 5.6. We conclude with section
5.7 where we have done worst case analysis, if paths are ranked.

5.1 Implementation

We have implemented constrained satisfying Dijkstra’s algorithm i.e. Dijkstra’s over allowed
edges, constrained tree sketch algorithm and sketch construction within RDF3X [22]. In our
implementation, we store graphs in RDF-3X edgewise with each edge represented as a triple
〈s, label, t〉 . We do not restrict RDF-3X from building all the 12 indexes automatically, although
we do not use all of them in this work - in fact, we exploit only SPO and OPS ordered indexes.

5.1.1 Sketch Implementation

Implementing Dijkstra’s algorithm with in RDF-3X, involves opening a scan over SPO index to
determine, for each node visited during the execution of the algorithm, all the successor nodes.
For reverse Dijkstras algorithm, needed during computation of sketches, we simply open a scan
on the OPS index, and letting the algorithm run. For simplicity, we store the sketches also as
RDF triples in a separate database under RDF-3X with following format: 〈vi〉〈t〉〈lij : pij〉 for
forward sketch and 〈vi〉〈f〉〈lij : pij〉 for backward sketch, where, vi is the id of the source node,
lij is the landmark for node vi from the seed-set Sj and pij refers to the sequence of node-ids
and edge label ids alternatively, between the node vi and the landmark node lij .

5.1.2 Constrained Dijkstra’s Algorithm

For Constrained Dijkstras algorithm over RDF-3X it involves opening a scan over SPO index
and then doing a join of all the predicates with constraint set. Alternatively, we can use an
aggregated scan i.e. instantiating a scan over SP index for every node and label pair. But,
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the former is more efficient, hence we use it for obtaining the label satisfying successors of a
node. The priority-queue required during Dijkstras algorithm is maintained in memory using
an implementation available in GNU-C++ STL.

5.2 DataSet

We have used three data sets for testing the performance of SkIt, two of them(Orkut and SocLive)
are social networks and Yago is a knowledge repository. We synthetically labeled the edges on
these two social networks with edge-labels following exponential distribution with exponent 0.5.
Yago is a large entity-relationship network with every edge labeled. These data sets are described
in detail as follows:

Orkut: is a free on-line social network where users form friendship with each other. 1

SocLive: is a free on-line community which allows members to maintain journals, individual
and group blogs, and it allows people to declare which other members are their friends they
belong.2.
Yago: is a huge semantic knowledge base, derived from Wikipedia3, WordNet4 and GeoNames5.
Currently, yago has knowledge of more than 10 million entities and contains more than 120 mil-
lion facts about these entities.6 We have used a subset of this data set.

Properties of these data sets are listed in Table 5.1, where |V | is number of vertices, |E| is
number of edges, |Σ| is number of edge-labels in graph G, Ω(G) is avg degree of graph G, ∆(Gi)
is maximum in-degree of graph G and ∆(Go) is maximum out-degree of graph G.

DataSet |V | |E| |Σ| Ω(G) ∆(Gi) ∆(Go)

orkut directed 3,072,441 117,185,083 324 76.28 3415 33007
socLive directed 4,847,571 68,993,773 315 28.46 13906 20293
orkut undirected 3,072,441 234,370,164 324 152.56 33313 33313

socLive undirected 4,847,571 86,739,238 315 35.79 20335 20335
yago directed 14,395,591 30,717,443 96 4.26 3229 733896

Table 5.1: Dataset Properties

5.3 Query Generation

We have run our experiments for following two sets of queries constructed as follows:

1. Positive label restrictions For each data set, queries are generated in the following manner:

(a) 100 nodes are chosen at random such that their degree is more than the average
degree(This will lead to different path length queries).

(b) A single spanning tree is constructed from these nodes.

1http://snap.stanford.edu/data/com-Orkut.html
2http://snap.stanford.edu/data/soc-LiveJournal1.html
3http://en.wikipedia.org/wiki/MainPage
4http://wordnet.princeton.edu/
5http://www.geonames.org/
6http://www.mpi-inf.mpg.de/yago-naga/yago/
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(c) For each path length at-most 50 queries are generated with different set of source and
target.

(d) The above process is repeated 3 times leading to generation of 3 spanning trees.

We have reported the above details in table 5.2 where |T | is the tree size i.e. number
of nodes traversed, Th is the tree height i.e. maximum path length, Cmax is the max-
imum constraint size and construction time is in seconds. Note that, for undirected
data sets for each path length at-most 20 queries are generated.

2. Negative label restrictions

(a) Two nodes and constraint set is chosen uniformly at random.

(b) Size of Constraint set is varied from 1 to 3.

(c) Each set comprises of 100 queries.

DataSet |T | Th Cmax time(s)

orkut directed

3064900
3064250
3064829

8
8
8

8
8
8 864.698

socLive directed

4400347
4400347
4400002

12
13
8

12
13
8 971.039

orkut undirected

3072441
3072441
3072441

5
6
5

5
6
5 1148.889

socLive undirected

4843953
4843953
48438953

10
10
10

10
10
10 958.819

yago directed

219480
234402
221068

19
27
19

9
10
10 132.105

Table 5.2: Positive label restrictions query set construction statistics

5.4 Evaluation

For evaluation we have defined following three performance metrics:

1. Path Approximation Quality : Let q is an approximation of the shortest path p, we
define the approximation error of this path as

error(q) :=
|q| − |p|
|p|

=
|q| − dist(u, v)

dist(u, v)
∈ [0,∞] (5.1)

2. False negatives: The fraction of queries which fail to return any path that satisfies the
given constraint, although at least one such path exists.

3. Avg Running Time : We compare the performance of our SkIt-based LCSP estima-
tion technique against the performance of traditional Dijkstra’s algorithm and standard
TreeSketch algorithm. Note that for TreeSketch algorithm, we need to traverse through
the heap of paths until a path that satisfies the given constraints is found. Finally, we
also compare the performance against performance of constrained shortest path available
in Neo4J (http://www.neo4j.org) – an open-source, enterprise-grade, high-performance
graph management system.
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All the experiments are conducted on systems with following configuration,

• System-D: Processor: Intel(R) Core(TM) i3 CPU 550 @ 3.20GHz RAM: 4GB and OS:
Linux Mint 12

• System-S: Processor: Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz RAM: 64GB and OS:
OpenSUSE.

5.5 Results

In this section firstly we report pre-processing time and disk-space of SkIt. Then, we assess
approximation error and false negative ratio of SkIt, subsequently followed by average query
running time reported in subsection 5.5.3.

5.5.1 Index Construction Time and Size

The index size reported here (sketch index and inverted index), includes all the 12 indexes
automatically created by RDF3x, although we only use SPO index here. Thus, disk consumption
can further be reduced. These indices are created over System-S.

It can be observed from table 5.3 that the construction time for path-sketches and labeled-path-
sketches are in sync, hence we can compute labeled-path sketches without incurring any extra
computation cost. Note that, the time reported here is the total time to construct the indices
in forward direction and backward direction, both.

We can also observe that labeled-path-sketch index size for undirected data sets is less than
their directed versions. This is because of the fact that path length in case of undirected data
sets is smaller than their directed version.

Note that, the inverted index is created in separate round, thus we can further minimize the
total pre-processing time of SkIt.

DataSet path-sketch(s) labeled-path-sketch(s) inverted index(s) neo4j(s)

orkut directed 17323 17944 10706 8765
socLive directed 21647 24015 5553 5236
orkut undirected 30425 31266 15402 20902

socLive undirected 24234 25739 4884 6911
yago directed 11529 11000 12148 104

Table 5.3: Index construction time

DataSet path-sketch(gb) labeled-path-sketch(gb) inverted index(gb) neo4j(gb)

orkut directed 10.3 20.8 9.4 3.7
socLive directed 21.0 45.6 6.4 2.4
orkut undirected 9.8 16.5 8.1 7.1

socLive undirected 20.9 42.3 4.0 2.7
yago directed 13.4 14.7 3.2 1.6

Table 5.4: Index size
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Dataset query-type SkIt-1hop SkIt-2hop path-sketch

µ σ µ σ µ σ

orkut-directed
positive
negative

0.0073
0.1197

0.0503
0.2135

0.0045
0.0437

0.0331
0.1281

0.0112
0.1325

0.0605
0.2219

socLive-directed
positive
negative

0.00
0.0390

0.00
0.0731

0.00
0.0051

0.00
0.0295

0.0076
0.0392

0.0619
0.0732

orkut-undirected
positive
negative

0.0019
0.0679

0.0313
0.0225

0.00
0.0182

0.00
0.0016

0.0108
0.0679

0.0733
0.0225

socLive-undirected
positive
negative

0.00
0.0142

0.00
0.0484

0.00
0.0026

0.00
0.0203

0.0072
0.0145

0.0678
0.0535

yago positive 0.0108 0.0532 0.0106 0.0529 0.0111 0.0533

Table 5.5: Approximation error measure for positive and negative label restriction query set

Dataset query-type SkIt-1hop SkIt-2hop path-sketch

orkut-directed
positive
negative

0.163
0.147

0.1227
0.0568

0.088
0.136

socLive-directed
positive
negative

0.082
0.0084

0.056
0

0.024
0.0042

orkut-undirected
positive
negative

0.1589
0.00

0.0927
0.00

0.0728
0.00

socLive-undirected
positive
negative

0.0845
0.0066

0.0695
0.0033

0.0169
0

yago positive 0.0759 0.0629 0.0724

Table 5.6: False Negative Ratio for positive and negative label restriction query set

5.5.2 Approximation Quality

Average approximation error and false negative ratio are reported in table 5.5 and table 5.6,
respectively. In table 5.5 µ refers to average approximation error and σ refers to standard
deviation.

It can be observed that the average approximation error for SkIt-1hop and SkIt-2hop is always
less than that for TreeSketch. This is particularly noticeable in social networks (orkut and
socLive) where we see one order of improvement in approximation error of LCSP over TreeSketch.

Although, false negative ratio for SkIt is inferior to tree sketch, because in tree-sketch pruning
based on allowed/disallowed edge labels is done afterwards once all the paths are computed
whereas in SkIt pruning is done at initial stages (during constrained tree sketch construction),
which also leads to pruning of potential paths.

For Yago, Dijkstra’s failed to return any paths for multiple choices of negative label restrictions
queries we tried. This is so, because it is very less probable that there exists a path between
two nodes uniformly chosen at random as it has low average degree and is more of a tree like
graph, therefore we omit its results.

Thus, we can infer from table 5.5 and table 5.6 SkIt-2hop performs better than SkIt-1hop and
Tree-sketch in terms of path quality. False negative ratio of SkIt-2hop is also comparable to
Tree Sketch.
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(a)

(b)

Figure 5.1: Average running time for positive label restrictions

5.5.3 Query Processing Efficiency

Figure 5.1(a) and (b) shows average query execution time over System-D and System-S for
positive label restrictions and figure 5.2(a) and (b) shows average query execution time over
both the systems for negative label restrictions in logarithmic scale.

We can observe that, Neo4j being largely a in-memory graph database performs significantly
better on System-S as compared to System-D. Moreover, it ran out of memory in case of
negative queries for Yago on System-D. Nevertheless, SkIt-1hop outperforms it by almost an
order of magnitude over large graphs on both System-S as well as System-D.

The performance of SkIt in case of negative label restrictions is slightly inferior because of the
size of dictionary (created by RDF3x). Although, this can further be reduced.

The trade-off between path quality and execution time is also highlighted here i.e. execution
time for SkIt-2hop is more than that for SkIt-1hop by one order of magnitude. In other words,
the query execution time increases as the path quality improves.
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(a)

(b)

Figure 5.2: Average running time for negative label restrictions
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5.6 Label-with-Count Queries

In this type of query we also specify a count ’X’ with each edge label in the constraint set C.
This count implies that the label should not occur more than ’X’ times. Clearly, if X is greater
than diameter of the graph, then there is no chance of getting a path.

5.6.1 Implementation

For answering label-with-count-queries, slight modification is made in constrained tree sketch
algorithm(1). We now maintain two map structures to keep track of edge label information
one during constrained tree sketch construction and other one, during looking up of neighbours.
These, two map structures are then used for verification of count i.e. a label does not occur
more than its count during path construction (line 11 and 18 in Algorithm 1).

5.6.2 Query Generation

The trees generated in section 5.3 for obtaining the positive label restriction queries, are used
here to generate label-with-count queries. Paths with constraint set size less than its path length,
is our candidate set. This leads to query generation with edge-label count > 1 for at-least one
edge label. From this candidate set we have chosen paths for which all edge labels present in
the path has count > 1. Note that, these queries are of different path lengths and constraint set
size.

5.6.3 Results

Table 5.7 reports false negative ratio for this query type using SkIt, where #queries are the
number of queries executed, max|δ| is the path length and max|C| is the maximum constraint
set size. We can observe that false negative ratio has increased in comparison to positive label
restrictions and negative label restrictions over same data sets. Surprisingly, average approxima-
tion error for all the data sets is 0 here. Figure 5.3 reports average execution time on logarithmic
scale.

Dataset #queries max|δ| max|C| skit-1hop skit-2hop

orkut-directed 153 5 2 0.307 0.222
socLive-directed 220 8 4 0.309 0.263
orkut-undirected 150 4 2 0.413 0.373

socLive-undirected 218 7 3 0.353 0.312
yago-directed 496 12 4 0.316 0.262

Table 5.7: False Negative Ratio for label-with-count query set
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(a)

(b)

Figure 5.3: Execution time over label count queries on different systems
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5.7 Ranking Paths

In this section we have tried out the extension of SkIt and have compared the execution time of
ranked paths with above execution time i.e. without ranking.

5.7.1 Implementation

Similar modifications are made in constrained tree sketch algorithm1 as discussed in section
5.6.1 along with look up in weight function W : l → w which maps a label l to a positive real
weight w, for calculating the score of a path(score(p)) during its construction. Score of a path
p is defined as :

score(p) = Σwi

where wi = W (li) and li ∈ C. Note that, this is similar to worst case analysis for ranking of
paths as score for all paths are computed.

5.7.2 Results

We have tested the ranking modification on positive label restrictions. Since, this modification
also depends upon the constraint set size, hence we also need to come with a way so that ranked
paths can be answered efficiently for all types of queries. Figure 5.4 shows execution time for
our testing data sets with and without ranking using SkIt. It can be seen that with ranking the
execution time has increased but in most of the cases it is of same order as without ranking in
logarithmic scale.
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(a)

(b)

Figure 5.4: Execution time with and without ranking on different systems
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Chapter 6

Conclusion and Future Work

We introduced label constrained shortest path(LCSP) problem as an extension of shortest path
problem that allows a shortest path query to specify which edge labels are allowed or not allowed.
We then showed that we cannot use indexing approach devised for constraint reachability to
answer LCSP queries efficiently.
We then discussed about two other indexing strategies proposed for LCSP queries and showed
them to be in-optimal for answering LCSP on large graphs. We then came up with different
indexing strategy SkIt for effective and efficient estimation of edge-label constrained shortest
paths. Through experiments on large-scale graphs we demonstrate that SkIt outperforms its
competitors for both positive label restrictions and negative label restrictions.
In further extension of our work we have tested SkIt performance on label-count-queries and
ranking extension (i.e. if all computed paths are ranked). In continuation of this work, we plan
to support even richer set of label constraints, and also reduce the size of SkIt index.
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