
E
onomi
 In
entive-based S
hemes forImproving Data Availability inMobile-P2P Environments
A dissertation submitted for the degree ofDo
tor of PhilosophyNew Delhi, INDIA, 2015�2016

Submitted byNilesh PadhariyaDepartment of Computer S
ien
eIndraprastha Institute of Information Te
hnologyDelhi, INDIA

February 2015



Dedi
ation
I dedi
ate this dissertation tomy guru, H.D.H. P.P. Hariprasad Swamiji Maharaj,my mentors, P. Tyagvallabh Swamiji, and P. Sarvatit Swamiji, andmy ATMIYA family for their 
onstant support and un
onditional love.I love you all dearly.



Dissertation Certi�
ate
This is to 
ertify that the dissertation entitled �E
onomi
 In
entive-basedS
hemes for Improving Data Availability in Mobile-P2P Environments�submitted by Nilesh Padhariya to the Indraprastha Institute of InformationTe
hnology, Delhi (IIITD) for the award of the degree of Do
tor of Philosophy isa bona�de re
ord of resear
h work 
arried out by him under our supervision. The
ontents of this dissertation, in full or in parts, have not been submitted to anyother Institute or University for the award of any degree or diploma.
Guide: Dr. Anirban MondalSenior Resear
h S
ientistXerox Resear
h Centre, Bangalore, INDIA
Co-Guide: Prof. Sanjay Kumar MadriaProfessor, Department of Computer S
ien
eMissouri University of S
ien
e & Te
hnology - Rolla, USA
Dire
tor: Prof. Pankaj JaloteProfessor, Department of Computer S
ien
eIndraprastha Institute of Information Te
hnology - Delhi, INDIAFebruary 2015



iii
De
laration

I hereby de
lare that with e�e
t from the date on whi
h the dissertation isdeposited in the Library of the Indraprastha Institute of Information Te
h-nology - Delhi, I permit the Librarian of the Institute to allow the dissertationto be 
opied in whole or in part with referen
e to me on the understandingthat su
h authority applies to the provision of single 
opies made for studypurposes or for in
lusion within the sto
k of another library. IT IS A CON-DITION OF USE OF THIS DISSERTATION THAT ANYONEWHO CON-SULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITHTHE AUTHOR AND THAT NO QUOTATION FROM THE DISSERTA-TION AND NO INFORMATION DERIVED FROM IT MAY BE PUB-LISHED UNLESS THE SOURCE IS PROPERLY ACKNOWLEDGED.

Nilesh PadhariyaPhD S
holar, Department of Computer S
ien
eIndraprastha Institute of Information Te
hnology - Delhi, INDIAFebruary 2015



iv
Abstra
t

In a Mobile ad ho
 Peer-to-Peer (M-P2P) network, mobile peers (MPs) inter-a
t with ea
h other in a peer-to-peer (P2P) fashion. Proliferation of mobiledevi
es (e.g., laptops, PDAs, mobile phones) 
oupled with the ever-in
reasingpopularity of the P2P paradigm (e.g., KaZaa, Gnutella) strongly motivateM-P2P network appli
ations. However, 
hallenges su
h as free-riding, dataa

essibility and mobile resour
e 
onstraints (e.g., energy) need to be ad-dressed for realizing M-P2P appli
ations. In parti
ular, e
onomi
 in
entives
hemes be
ome a ne
essity to enti
e mobile peers to share their data, giventhe generally limited resour
es of mobile devi
es. Furthermore, in M-P2Pnetworks, data availability is typi
ally low due to rampant free-riding, fre-quent network partitioning and mobile resour
e 
onstraints. Hen
e, this dis-sertation fo
uses proposes e
onomi
 in
entive-based approa
hes for e�e
tivedata management in M-P2P networks.In this regard, this dissertation makes the following key resear
h 
ontribu-tions. First, we propose the e
onomi
 in
entive-based top-k query pro
essingsystem in M-P2P networks. The system assigns rewards/penalties (payo�s)to MPs for in
entivizing their parti
ipation and for enabling them to re-evaluate their data item s
ores for top-k query pro
essing. Furthermore,we extend the system to in
orporate the notion of a peer group-based e
o-nomi
 in
entive s
heme. Se
ond, we propose the system for improving dataavailability in M-P2P networks by in
entivizing broker MPs to provide value-added routing servi
e, whi
h in
ludes pro-a
tive sear
h for the query results



vby maintaining an index of the data items (and repli
as) stored at otherMPs (as opposed to just forwarding queries). Moreover, the system alsoin
entivizes relay peers to a
t as information brokers for improving dataavailability and e�
ient load sharing. Third, we propose the system for e�-
iently managing the vehi
ular tra�
 in road networks using e
onomy-basedreward/penalty framework with tra�
 
ongestion 
ontrol. In parti
ular, auser is rewarded for following system-assigned paths, while it is penalizedfor any deviations from the system-assigned paths. Finally, we present ane
onomi
 in
entive system for improving rare data availability by means ofli
ensing (with group-based) repli
ation in M-P2P networks.Our performan
e evaluation demonstrates signi�
ant improvements in thepro
essing of top-k queries in terms of query response times and a

ura
y atreasonable 
ommuni
ation tra�
 
ost, as 
ompared to existing s
hemes. Wealso determine the number of brokers, beyond whi
h the mobile peers arebetter o� without a broker-based ar
hite
ture i.e., they 
an dire
tly a

essdata from the data-providing peers. Furthermore, our performan
e studyfor E-VeT shows that it is indeed e�e
tive in managing vehi
ular tra�
 inroad networks by redu
ing the average time of arrival and fuel 
onsumption.Finally, our performan
e study indi
ates 
onsiderable improvements in queryresponse times and availability of rare data items in M-P2P networks.Keywords: Mobile-P2P networks, mobile 
omputing, data management,data repli
ation, top-k query pro
essing, e
onomi
 s
hemes and in
entivesWe are pleased to note that the 
ontributions of this dissertation work havebeen published at following reputed 
onferen
es and journals.
• Nilesh Padhariya, Anirban Mondal, Vikram Goyal, Roshan Shankarand Sanjay Kumar Madria. �E
oTop: An E
onomi
 Model for Dy-nami
 Pro
essing of Top-k Queries in Mobile-P2P Networks.� DatabaseSystems for Advan
ed Appli
ations, DASFAA(2) 2011:251-265
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1
Introdu
tion

In a Mobile ad ho
 Peer-to-Peer (M-P2P) network, mobile peers (MPs) inter-a
t with ea
h other in a peer-to-peer (P2P) fashion [SF04,MMK09℄. Prolif-eration of mobile devi
es (e.g., laptops, PDAs, mobile phones) 
oupled withthe ever-in
reasing popularity of the P2P paradigm (e.g., KaZaa [Kaz06℄,Gnutella [Gnu℄) strongly motivate M-P2P network appli
ations. Mobiledevi
es wirelessly 
ommuni
ating in a P2P fashion (e.g., Mi
rosoft's Zune[Zun06℄) fa
ilitate M-P2P appli
ations by enabling information sharing on-the-�y. Moreover, the proliferation of mobile devi
es with embedded GPSsensors 
oupled with the growth in the popularity of infotainment servi
esfor vehi
les have 
reated new avenues for improving vehi
ular tra�
 manage-ment in road networks. Thus, s
hemes for improving transportation systeme�
ien
y are be
oming in
reasingly popular [AWX+11,SWYX11℄.In M-P2P networks, an MP obtains the required information from the neigh-bouring MPs via short-range 
ommuni
ations su
h as Bluetooth, 802.11g.For example, Ali
e wants to �nd the top-k restaurants with �lun
h spe
ials�(or �manager's spe
ial hours�) within 1 km of her 
urrent lo
ation. Here,top-k 
an be determined based on the parameters (e.g., star rating, pri
eand distan
e from the point of query referen
e) sele
ted by the user. In a



Chapter 1. Introdu
tion 2similar vein, another appli
ation 
ould involve a parking lot, where MPs 
an
olle
t information about available parking slots and 
harges based on theirpreferen
es su
h as nearby �oor. The parking slot availability informationhas to be 
urrent and therefore the su
h information is temporal in nature.Similarly, an MP may want to �nd top-k stores selling Levis jeans in a shop-ping mall with 
riteria su
h as (low) pri
e during a spe
i�
 time duration. Ina similar vein, people want to �nd others with similar interests (e.g., tennis,musi
) at a party. Figure 1.1 illustrates some of these appli
ation s
enarios.

(a) Finding top-k restaurants with �lun
h spe-
ials� (b) Finding nearby 
ar parking slotsFigure 1.1: Appli
ation s
enarios for Mobile-P2P environmentsOn the other hand, in 
ases of the sudden events like an earthquake, users of-ten get dis
onne
ted from the respe
tive 
entralized base stations [NWT12℄.Hen
e, a user in that area 
an either ask nearby people for information 
on-
erning shelters or distribute su
h information to other MPs in its vi
inity.Su
h kNN queries 
an be pro
essed in a mobile environment in a P2P fashion,where 
ollaboration among the peers provides possibilities for them to inter-a
t in the absen
e of fun
tioning 
ommuni
ation infrastru
ture su
h as basestations. In a similar vein, M-P2P networks 
an also be used to do e�e
tivedistribution of rare data items, whi
h get sudden bursts in a

esses based onevents. For example, suppose a group of ar
haeologists is in the 
ourse of anexpedition in a remote Amazonian forest, where 
ommuni
ation infrastru
-tures (e.g., base stations) do not exist. When there is a sudden unexpe
ted



Chapter 1. Introdu
tion 3de
rease in temperature and gusty winds, they need to look for informationabout prote
tive 
lothing su
h as shops selling sweaters and wind-
heaters,photos of su
h 
lothing and so on.Additionally, suppose a group of adventure tourists unexpe
tedly en
ountersa 
ave during their journey. They would like to �nd information about whereto buy gas-masks and asso
iated safety equipment for added safety, video tu-torials on how to use this equipment and so on. Similarly, when a touristmoving in a forest noti
es a rare bird, she may wish to �nd additional in-formation about the bird and videos about its living habits. In a similarvein, due to the sudden and unexpe
ted onset of a heat wave, a group ofbotanists on an expedition in a forest may want to �nd information su
h asnon-drinking water sour
es and pi
tures/videos of the lo
ations of su
h watersour
es. In these appli
ation s
enarios, M-P2P intera
tions 
an fa
ilitate theMPs in �nding the required information.Observe that su
h ad ho
 queries are spatio-temporal in nature (e.g., park-ing slot availability information), hen
e they 
annot be answered withoutobtaining information from other MPs. In
identally, su
h P2P intera
tions,whi
h fa
ilitate spatio-temporal queries among MPs, are generally not freelysupported by existing wireless 
ommuni
ation infrastru
tures. Notably, thisresear
h will also 
ontribute towards CrowdDB [FKK+11℄, whi
h uses hu-man input via 
rowdsour
ing to pro
ess queries that 
annot be answered bydatabase systems or sear
h engines. The inherently ephemeral nature of M-P2P environments suggests that timeliness of data delivery is of paramountimportan
e in these appli
ations, thereby ne
essitating query deadlines. Forexample, an MP looking for top-k restaurants with �happy hours� wouldgenerally prefer to re
eive the answer within a spe
i�ed deadline.In
identally, Amazon.
om has developed Me
hani
al Turk [Ama05℄, whi
h isan online marketpla
e for mat
h-making between the requirements of busi-nesses and the skill sets of developers. Developers 
an sele
t from a largepool of tasks based on their skill sets. The Me
hani
al Turk system alsoprovides e
onomi
 in
entives. Observe that te
hnologies, su
h as WiFi and



1.1. Trends in mobile appli
ations 4Bluetooth networks, are nowadays adequately 
apable of providing a plat-form for in
entive-based mobile P2P 
ollaborations.Data availability in M-P2P networks is typi
ally lower than in �xed net-works due to frequent network partitioning arising from peer movement andalso due to mobile devi
es being autonomously swit
hed `o�'. Rampantfree-riding further redu
es data availability i.e., most peers do not provideany data [HA05, KSGM03a℄. (Nearly 90% of the peers in Gnutella werefree-riders [AH00℄.) Observe that in
reased MP parti
ipation in providingservi
e to the network would likely lead to better data availability, betterdata quality, higher available bandwidth and multiple paths to answer agiven query. In
identally, data availability is less than 20% even in a wiredenvironment [SGG01℄.Given the generally limited resour
es (e.g., bandwidth, energy, memory spa
e)of MPs and the fa
t that relaying messages requires energy, the relay MPsmay not always be willing to forward queries in the absen
e of any in
entives,let alone sear
h pro-a
tively for query results in order to ensure timelinessof data delivery. Thus, providing in
entives for relay MPs to pro-a
tivelysear
h for query results be
omes a ne
essity to improve data availability inM-P2P networks. Notably, many s
hemes su
h as in
entive-based s
hemes,repli
ation-based s
hemes and 
a
hing-based s
hemes 
an be used for improv-ing data availability. Hen
e, we will provide an overview of these s
hemes inthis dissertation.1.1 Trends in mobile appli
ationsMobile devi
es have nowadays be
ome handy 
omputing tools for e�e
tiveanalysis and rapid sharing of information on-the-�y. This se
tion examinesthe 
urrent business and te
hnologi
al trends a
ross some of the mobile ap-pli
ation areas.



1.1. Trends in mobile appli
ations 5Business trendsE
ommer
eEle
troni
 Commer
e is the sale and pro
urement of supplies and servi
esusing information systems te
hnology. There are three steps of E
ommer
e:(i) put marketing information on web (ii) allow online order taking (iii) 
on-stru
t ele
troni
 ex
hanges. Online shopping or online retailing are the ex-amples of E
ommer
e. Moreover, mobile e-
ommer
e is exa
tly the same ase-
ommer
e ex
ept that the a

ess me
hanism is via a wireless phone or ter-minal rather than the �xed telephone network. The resear
h work in [LW08℄shows how mobile e-
ommer
e 
an be potentially useful in this new era ofmobile te
hnology. Consider mobile-P2P dissemination of mer
hant's saleand inventory information, whi
h enables a 
ustomer with a smart-phoneto lo
ate a desired produ
t at the time of entry into the mall. The systemproposed in [LW08℄ motivates mer
hants to provide inventory/sale/
ouponsinformation ele
troni
ally to nearby potential 
ustomers.Medi
al health
areThe health
are environment 
omes with major 
onstraints and requirementssu
h as 
on�dentiality of the medi
al data, priva
y of the do
tor-patient rela-tionship and genuineness of the sour
e of medi
al information. Su
h vital is-sues must be satis�ed by the mobile environment [AMM03℄ in order to deploythe mobile appli
ations for medi
al health
are systems. Mobile appli
ationsrelated to biomedi
al information have been in
reasingly be
oming attra
-tive to the medi
al 
ommunity as the small-s
reen devi
es (e.g., PDAs andsmart-phones) permit the health
are pra
titioners to a

ess online biomedi-
al resour
es anywhere at any time. Thus, the re
ent appli
ation proposalson mobile devi
es have been explored in [AMM03,PSS06℄.Due to mobile resour
e 
onstraints su
h as the limited display s
reens, thevarious information to be displayed on the same s
reen also tends to be



1.1. Trends in mobile appli
ations 6limited. To over
ome this barrier, [PSS06℄ proposed the system 
alled multi-modal trans
oder. This te
hnique trans
odes full-text biomedi
al informa-tion resour
e, whi
h 
an be supported by various types of mobile devi
es.Furthermore, [PSS06℄ proposed a novel algorithm, whi
h uses visual tem-plate mat
hing and piglet dete
tion pro
ess to understand the stru
ture ofbiomedi
al resour
es. In this work, the usability study showed that the sys-tem's usability is improved by the simpli�
ation and summarization te
h-nique, and it is also useful to deliver the 
ompressed information to themobile user.Moreover, the usage of wireless te
hnologies play a signi�
ant role in telemedi
ine,whi
h is also known as mobile-health. The work proposed in [XTL+11℄ showsthat telemedi
ine is used to 
al
ulate, to 
ommuni
ate and to deliver high-quality medi
al 
are.In developing regions su
h as Afri
a, where the rural areas still may not bebene�ted by the basi
 
ivilized fa
ilities, espe
ially, the health 
are and med-i
ations. Due to inappropriate health
are fa
ilities, sometimes people maylose their life in the rural areas. One of the solutions 
ould be the wear-able sensors, whi
h 
an 
ontinuously monitors the patients and issues thewarnings to the do
tors or 
are takers by sending messages on their mobiledevi
es. [RAT12℄ represents the de
ision support system, whi
h 
olle
ts datafrom various wearable sensors and analyzed this data for the variety of dis-eases. Furthermore, this result will be stored and sent to the required personas an Short Message Servi
e (SMS). The proposed system in [RAP12℄ in-tegrates the wearable sensors with mobile devi
e and developed a platform,whi
h 
ontinuously monitors the patient. In 
ase of emergen
y, this systemis 
apable of sending SMS on the do
tor's mobile phone. This system 
olle
tsdata from the various wearable sensors in the mobile, analyze that data andsend it to the 
entralized server.



1.1. Trends in mobile appli
ations 7Publi
 servi
esMobile devi
es be
ame a part of the every user in the so
iety. Hen
e, mobileappli
ations, whi
h are related to publi
 servi
es, are rapidly being developedto provide fa
ilities to the so
iety. Many publi
 servi
es su
h as transporta-tion, weather et
. 
an be fa
ilitated by mobile appli
ations. For example, anextremely important publi
 servi
e is transportation. To fa
ilitate the usersin transportation appli
ation s
enarios, mobile devi
es are 
apable of pro-viding the following servi
es to the user: (i) navigation (ii) provide 
urrenttra�
 situation su
h as 
ongestion or a

ident (iii) suggest alternate path-ways for user's traveling (iv) explore the spots of interest during a given user'sitinerary. The works in [GK03,GK02℄ dis
uss a wide gamut of possibilitiesfor deploying su
h mobile-based servi
es for the bene�t of the users.[GK03℄ proposed the development of a travel guide, i.e., a mobile passengerguide, whi
h helps the passengers to pur
hase ele
troni
 ti
kets using mobileterminals via Internet. Moreover, the travel guide works as an ele
troni
ti
ket during the travel as well as guides the passengers via short messages.The system uses one personal database to work as an ele
troni
 ti
ket basedon the user requirements. Similarly, the work related to the passenger sup-port system had also been dis
ussed previously in [GK02℄. In this work,system allows user to make their travel plans and pur
hase ne
essary ti
ketsby a

essing the booking system via mobile 
omputing devi
es. Su
h a sys-tem 
an be really helpful for publi
 transport to provide easiness and qui
ka

ess to the end-users. In addition to this, for visually handi
apped pas-sengers, the proposed system has been implemented and tested in a railwaystation.In a similar vein, the resear
h work in [LW08℄ shows the numerous uses ofmobile-P2P databases. In parti
ular, the work fo
uses on transportationproblems. A

ording to the resear
h work of [LW08℄, Mobile P2P databasesoftware enables travelers to 
ooperate intelligently, whi
h improves safetyand mobility. When a vehi
le en
ounters an a

ident, a 
ongestion or a



1.1. Trends in mobile appli
ations 8dangerous road surfa
e, it will able to send �slow-speed message� to trail-ing vehi
les, and this helps other drivers to make de
isions su
h as �ndingalternative roads and also may help in avoiding pile-ups in some situations.Moreover, [LW08℄ des
ribed a 
ar-sharing appli
ation, whi
h 
an potentiallyimprove the e�
ien
y of transportation systems. Notably, a 
ar-sharing sys-tem 
an address issues su
h as environmental pollution, fuel 
onsumption,publi
 safety and 
ongestion. Su
h 
ar-sharing requires mat
hmaking andprovision of information that is simultaneously relevant in time, lo
ation andinterest.Integration of mobile P2P databases with navigational devi
es and PDA's
an be used to disseminate information about relevant resour
es, like 
ar-sharing partners, free parking slots and available taxi
abs. The 
ommer
ialpurpose of Mobile P2P databases has also been shown in [LW08℄ e.g. airportshave stores, kiosks and malls, where there is signi�
ant potential for informa-tion dissemination among Mobile-P2P users. Here, mer
hants 
an providetheir lo
ation information and help users to sear
h for produ
ts. Mobile-P2Pintera
tions 
an fa
ilitate in disseminating real-time information related to�ight 
hanges, delays, queue length, parking information, spe
ial se
urityalerts and pro
edures and baggage information, whi
h bene�ts both 
on-sumers and airport operators.Te
hnologi
al trendsNear Field Communi
ation (NFC)More re
ently, e-Transa
tion widely adopted to simplify the pro
ess of trans-a
tion a
ross various platforms su
h as e-ti
ket, e-
ommer
e, et
. Moreover,the virtual money is involved in every virtual transa
tion. For example, shop-ping with virtual money be
omes a 
ommon pra
ti
e using NFC, espe
ially,when we have smart phones.A novi
e prototype for Train Ti
ket Appli
ation using NFC is shown in



1.1. Trends in mobile appli
ations 9[NHW12℄. In this system, with the help of NFC enabled mobile devi
e,the passenger gets the information about the va
ant seats in the train andpassenger feels like he/she pur
hasing this ti
ket be
ause, a passenger 
an getthe s
anned 
opy of the e-ti
ket on the mobile devi
e, when he/she 
ompletesthe payment using the vou
her system. When 
ondu
tor approa
hes thepassenger in the train, the passenger sends ti
ket data to the 
ondu
tor andon
e the 
ondu
tor re
eives the data from passenger, the ti
ket data will bedestroyed from the passengers devi
e.Similarly, the work in [TZF12℄ demonstrates Thumb, a system to share infor-mation instantly on smart phones, espe
ially for resour
es with extreme shortlife time. Using Thumb, a third-party 
an share the information with others,while the users get spontaneously noti�
ation about that. For example: anypassenger wants to 
an
el the railway ti
ket just before one day of the traindeparture, and wants to sale ti
ket, then that user is able to advertise thisinformation over the internet.Data DisseminationData dissemination is a passive mode of 
ommuni
ation in whi
h the usagerate of information is mu
h higher than the rate of information produ
-tion [RR09℄ . In other words, it is an asymmetri
 
ommuni
ation, wheredownloading rate is mu
h higher than uploading rate. Data disseminationrelated appli
ations be
ome very 
ru
ial due to the rapid growth of informa-tion generation and their distribution over 
ommunities. The re
ent so
ialnetworking-based appli
ations be
ame a vital platform for the data dissemi-nation. For managing su
h a wide variety of information and retrieving thespe
i�
 information in real time in mobile environment, we need to havesome semanti
s to be asso
iated with the every pie
e of information. Thisalso helps to distribute the information a
ross the boxes of 
hoi
es. Theworks on semanti
s-based information management on resour
e-
onstrainedmobile environment have been proposed in [PCR+10,RHTA10,EHTA11℄.



1.2. Resear
h 
hallenges in M-P2P networks 10The work in [EHTA11℄ proposed OntoWiki framework, whi
h is the novelapproa
h for semanti
s-based information management through mobile se-manti
 
ollaboration. OntoWiki allows users to browse data in o�ine mode.This enables users to retrieve information even though they are in no-networkarea su
h as forest, villages et
. Su
h platform is very handy to 
olle
t se-manti
ally ri
h information like biodiversity expeditions to remote areas,where network 
onne
tivity is very low and dis
ontinued or sometime totallyunavailable.1.2 Resear
h 
hallenges in M-P2P networksTwo major 
hallenges asso
iated with data management in M-P2P networksare free-riding and data availability. Other 
hallenges in
lude mobil-ity and resour
e 
onstraints (e.g., energy, bandwidth, pro
essing power andmemory) of mobile devi
es. As a 
onsequen
e of peer mobility, the underly-ing physi
al ad ho
 network keeps 
hanging dynami
ally, thereby making it
hallenging to maintain a P2P overlay network for an optimal or reasonabletopology [BCFN03℄. Furthermore, peer mobility also 
auses frequent networkpartitioning, thereby leading to redu
ed data availability as well as de
reased
onne
tivity. Additionally, issues 
on
erning priva
y, se
urity and trust alsoarise in M-P2P environments. These issues are dis
ussed in [MK06℄.Free-ridingFree-riding is de�ned as �A fundamental tension between individual rational-ity and 
olle
tive welfare�. In P2P networks, majority of the users generally
hoose to do free-riding i.e., they want to 
onsume resour
es, but not 
on-tribute any resour
es of their own. For example, in Gnutella [AH00℄, 70%of the users share no data at all. Thus, free-riding is a rampant problem inP2P networks [RL03℄. It 
auses limited growth of data in the system, whi
h
auses redu
tion in users' interest in a

essing and providing servi
es in the



1.3. Contributions of the Dissertation 11P2P network. Consequently, over a period of time, it leads to system 
ol-lapse. Notably, the problem of free-riding is further exa
erbated in M-P2Penvironments due to mobile resour
e 
onstraints su
h as energy, bandwidthand memory.One solution to free-riding is to rely on altruism e.g., assume that all peersare generous and would 
ontribute resour
es unsel�shly. If so
ial generosityis su�
iently high, there is no need for intervention [FC05℄. However, in this
ase, users do not have any in
entive to perform su
h altruisti
 a
ts. Anothersolution 
ould be to provide in
entives to the users for en
ouraging them to
ontribute to the M-P2P network. Here, we are 
onsidering the realisti
assumption that users are sel�sh and respond to reward/punishment.Data availabilityData availability in M-P2P networks is typi
ally lower than in �xed net-works due to frequent network partitioning [HM06℄ arising from peer move-ment, mobile resour
e 
onstraints (e.g., bandwidth, energy, memory spa
e)and mobile devi
es being autonomously swit
hed `o�'. (In
identally, dataavailability is less than 20% even in a wired environment [SGG01℄.) Ram-pant free-riding further redu
es data availability sin
e a large per
entage ofMPs are typi
ally free-riders [HA05,KSGM03a,GBM01,LDHS05℄ i.e., theydo not provide any data. Thus, e
onomi
 in
entive s
hemes be
ome a ne
es-sity to enti
e resour
e-
onstrained MPs with in
entives to provide data foranswering queries.1.3 Contributions of the DissertationThe following are the 
ontributions of this dissertation.



1.3. Contributions of the Dissertation 12E-Top: Top-k Query Pro
essing in Mobile-P2P Networksusing E
onomi
 In
entive S
hemesA peer in M-P2P networks is used to have top-k queries. For example, some-one wants to �nd the top-k restaurants with �happy hours� (or �manager'sspe
ial hours�) within 1 km of her 
urrent lo
ation. Here, top-k is determinedbased on the parameters (e.g., star rating, pri
e and distan
e from the pointof query referen
e) sele
ted by the user. Similarly, another appli
ation 
ouldinvolve a parking lot, where MPs 
an 
olle
t information about availableparking slots and 
harges, and then they 
an inform the brokers. The park-ing slot availability information has to be 
urrent and therefore, the broker
an 
ompare su
h 
urrent information with its 
urrent list of parking slots.The broker 
an then provide the top-k available slots to the query-issuingMP in terms of pri
e or distan
e (from the MP's 
urrent lo
ation). Similarly,an MP may want to �nd the top-k stores selling Levis jeans in a shoppingmall with 
riteria su
h as (low) pri
e during a spe
i�
 time duration.Observe that su
h ad ho
 queries are temporal in nature (e.g., parking slotavailability information), hen
e they 
annot be answered by the broker with-out obtaining information from other MPs. Notably, this resear
h will also
ontribute towards CrowdDB [FKK+11℄, whi
h uses human input via 
rowd-sour
ing to pro
ess queries that 
annot be answered by database systems orsear
h engines. Additionally, su
h M-P2P intera
tions among peers are gen-erally not freely supported by existing wireless 
ommuni
ation infrastru
-tures. The inherently ephemeral nature of M-P2P environments suggeststhat timeliness of data delivery is of paramount importan
e in these appli-
ations, thereby ne
essitating query deadlines. For example, an MP lookingfor top-k restaurants with �happy hours� would generally prefer to re
eivethe answer within a spe
i�ed deadline.E-Top provides the e�
ient pro
essing of su
h top-k queries in M-P2P net-works using e
onomi
 in
entive s
hemes. E-Top issues e
onomi
 rewards tothe mobile peers, whi
h send relevant data items (i.e., those that 
ontribute



1.3. Contributions of the Dissertation 13to the top-k query result), and penalizes peers otherwise, thereby optimiz-ing the 
ommuni
ation tra�
. Peers use the payo�s (rewards/penalties) asa means of feedba
k to re-evaluate the s
ores of their items for re-rankingpurposes. In E-Top, brokers fa
ilitate top-k query pro
essing in lieu of a
ommission.The main 
ontributions of E-Top are three-fold:1. It proposes two e
onomi
 in
entive s
hemes, namely ETK and ETK+,in whi
h MPs a
t individually towards top-k query pro
essing. Theses
hemes assign payo�s to MPs for in
entivizing parti
ipation and forenabling them to re-evaluate their data item s
ores.2. It extends ETK and ETK+ to propose a peer group-based e
onomi
 in-
entive s
heme ETG, whi
h de�nes three payo� allo
ation approa
hes.3. It is indeed e�e
tive in improving the performan
e of top-k queries interms of query response times and a

ura
y at reasonable 
ommuni
a-tion tra�
 
ost, as demonstrated by our performan
e evaluation.E-Top also dis
ourages free-riding due to its e
onomi
 nature. ETK andETK+ di�er in that while ETK performs equal distribution of payo�s to therankers, ETK+ uses a weighted distribution. In ETG, ad ho
 groups of MPsare formed in the vi
inity of the query lo
ation. Ea
h group has a leader for
oordinating the top-k query pro
essing. In 
ontrast with ETK and ETK+,where individual MPs dire
tly send their top-k items to the broker, querypro
essing in ETG pro
eeds by means of group members sending their indi-vidual top-k items to the group leader. The group leader sele
ts (i.e., `�lters')the top-k items to be sent to the broker based on the relative frequen
ies ofthe items in the individual top-k lists. In our appli
ation s
enarios, someof the restaurant managers in the vi
inity of the query lo
ation 
an be thegroup leaders.In our performan
e evaluation, as a baseline referen
e, we adapt a non-e
onomi
 non-in
entive-based existing top-k query pro
essing s
heme for



1.3. Contributions of the Dissertation 14MANETs, proposed in [HHS+10℄, whi
h is designated as NETK (Non-E
onomi
 Top-K) s
heme. Furthermore, NETK does not in
orporate thenotion of item re-ranking as no feedba
k has been sent ba
k to the MPs, whoparti
ipated into top-k query pro
essing. NETK is the 
losest to our top-kquery pro
essing s
hemes sin
e it addresses dynami
 top-k query pro
ess-ing in mobile networks. None of the existing proposals on e
onomi
 issuesaddresses top-k query pro
essing in M-P2P networks.E-Broker: E
onomi
 In
entive-based Brokerage S
hemesfor Improving Data Availability in Mobile-P2P NetworksThis work proposes the E-Broker system for improving data availability inM-P2P networks by in
entivizing MPs to provide value-added routing servi
e.Here, the term �value-added routing servi
e� refers to the broker MPs en-abling pro-a
tive sear
h for the query results by maintaining an index of thedata items (and repli
as) stored at other MPs (as opposed to just forwardingqueries).The main 
ontributions of E-Broker are three-fold:1. It proposes the EIB (E
onomi
 In
entive-based Brokerage) s
heme,whi
h in
entivizes relay peers to a
t as information brokers for perform-ing value-added routing and repli
ation in M-P2P networks, therebye�e
tively improving data availability.2. It proposes the EIB+ (enhan
ed E
onomi
 In
entive-based Brokerage)s
heme, whi
h extends the EIB s
heme by in
orporating three di�erentbroker s
oring strategies for providing additional in
entives to brokerstowards providing better servi
e. Brokers with higher s
ores be
omepreferred brokers and they earn higher 
ommissions than 
ommon bro-kers. EIB+ also fa
ilitates load-sharing among the peers.3. It experimentally determines the number of brokers, beyond whi
h the



1.3. Contributions of the Dissertation 15mobile peers are better o� without a broker-based ar
hite
ture i.e.,they 
an dire
tly a

ess data from the data-providing peers.Similar to E-Top, E-Broker also dis
ourages free-riding in M-P2P networks.Both EIB and EIB+ use e
onomi
 in
entives in that every data item isasso
iated with a pri
e (in virtual 
urren
y). Data item pri
e depends uponseveral fa
tors su
h as a

ess frequen
y, data quality and estimated responsetime of a

ess. The query-issuer pays the pri
e of the queried item to thedata-provider, and a 
ommission to the broker and the relay MPs in thesu

essful query path.We have evaluated the performan
e of EIB and EIB+ w.r.t. the non-e
onomi
E-DCG+ repli
ation s
heme [HM06℄. Notably, E-DCG+ is the 
losest toour s
hemes sin
e it aims at improving data availability in MANETs. Asa baseline, we also do performan
e 
omparison w.r.t. a non-in
entive andnon-broker-based NIB (Non-In
entive without Brokerage) s
heme to showthe performan
e gain due to brokerage.E-VeT: E
onomi
 Reward/Penalty-based System for Ve-hi
ular Tra�
 ManagementThis work proposes the E-VeT system for e�
iently managing the vehi
ulartra�
 in road networks using e
onomy-based reward/penalty s
hemes. Inthis work, the 
ost of traversing a path in the road network 
orresponds tothe time required for the path traversal, unless otherwise spe
i�ed. Hen
e,we shall use the terms �path 
ost� and �path time-
ost� inter
hangeably.Observe that de�ning path 
ost in terms of time en
ompasses fa
tors su
has path distan
e, the speed limit relevant to the path and the path's tra�

ongestion.In E-VeT, base stations 
ollaboratively fa
ilitate dynami
 vehi
ular routeassignments for mitigating the tra�
 
ongestion, thus redu
ing the averagetime of arrivals and fuel 
onsumption. However, vehi
les may not follow the



1.3. Contributions of the Dissertation 16paths assigned by the base stations e.g., when they 
an �nd lesser-
ost paths.To in
entivize vehi
les towards following the system-assigned paths, E-VeTuses rewards/penalties (payo�s), whi
h are in terms of real 
urren
y.Hen
e, these payo�s 
an be used towards paying road taxes, 
ar registration,and li
ense/toll fees.This work assumes that all the vehi
les fall under the purview of the E-VeT reward/penalty framework, whi
h 
ould be implemented as part of agovernment-mandated program for fa
ilitating tra�
 management. Notethat the proposed s
heme is a government-mandated system, it is always op-erational, but only the pri
e 
hanges dynami
ally based on the 
ongestion.Thus users, will not know the pri
ing s
heme and 
ongestion informationwell ahead of time. Though the system suggests and o�ers options to users,they still have a 
hoi
e of paying the penalty and taking the higher-pri
edpaths; the obje
tive is not to for
e users for expli
it load-balan
ing. Sin
ewe have a reward/penalty system, it is using in
entives for load-balan
ing.It is also di�erent and better than randomization where users 
an get oneof the options, whi
h they have to follow, and they have no 
hoi
e to alterthe option they re
eived. Thus, in our s
heme, we preserve the notion thata user is the �nal entity to de
ide the path taken.This work 
an be seen as a further extension to the initial proposal for routingof the VS-s
heme for parking introdu
ed in [AWX+12℄. In the VS-s
heme,a 
entral authority (CA) makes an optimal assignment, and penalizes ve-hi
les severely for deviating from it. Furthermore, in the VS-s
heme, theCA guarantees that ea
h vehi
le v will pay a travel-
ost to slots that is nothigher than v's 
ost in equilibrium. Sin
e in an optimal assignment somevehi
les may travel longer than in equilibrium, the CA 
ompensates them indollars so that the total 
ost that v pays is not higher than v's travel-timein equilibrium. The CA also 
harges vehi
les that travel less in the opti-mum assignment than in the equilibrium assignment. This dollar-
harge isequivalent to the saving in travel-time.Our work here is mainly fo
used on routing in V2V di�erent from parking
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les in [AWX+12℄ in terms of poli
ies for route allo
ation of vehi
lesbased on revenues, modeling the pri
ing problem for revenue generation and�nding a suitable reward/penalty s
heme that adapts to 
hanging behaviorof drivers over period of time. In addition, the performan
e metri
s dire
tlyfo
us on the impa
t of di�erent revenue allo
ation s
hemes on the averagefuel saving, average time of arrival and the number of messages ex
hangedamong others.In summary, our proposed s
hemes di�er from existing proposals [Bra96,Mor10, Xu06, Yan12, Iss11℄ in mainly two ways. First, we introdu
e a re-ward/penalty framework for 
ontrolling the tra�
 
ongestion. Se
ond, users'good behavior (i.e., following the system advi
e) is 
onsidered in the 
onges-tion 
ontrol de
ision-making in the sense that the system remembers pastbehavior and rewards/penalty earned in the past. Thus, our s
heme is user-
entri
 and it inspires users to earn rewards so that they 
an get preferredassignment of paths when needed by redeeming rewards.The 
ontributions of E-VeT are three-fold:1. It proposes an R2A (Revenue-based Route Allo
ation) s
heme, whi
hrewards vehi
les for following system-assigned longer-time paths, and
harges a fee for following system-assigned shorter-time paths. Further-more, it penalizes (
harges mu
h higher fee) vehi
les for any deviationsfrom the system-assigned paths.2. It presents the R2A+ (extended R2A) s
heme by in
orporating the no-tion of revenue-s
ales for further in
entivizing vehi
les based on theirpast system usage.3. It dis
usses a route allo
ation algorithm, whi
h gives lesser-time pathsas a preferen
e to vehi
les that have earned higher revenue based onthe s
heme used i.e., either R2A or R2A+.Note that both R2A and R2A+ s
hemes are designed to ensure fairness inthe sense that vehi
les pay when they travel faster, and they earn 
urren
y



1.3. Contributions of the Dissertation 18when they travel slower. Both s
hemes penalize vehi
les, whi
h deviate fromsystem-assigned paths, thereby in
entivizing them to adhere to the system-assigned paths. Furthermore, when vehi
les follow the system-assigned paths,they are rewarded either in terms of time-savings (i.e., lower time-
ost routesbeing allo
ated) or in terms of real 
urren
y (i.e., payments for followinglonger time-
ost routes).R2A and R2A+ di�er in that while R2A assigns payo�s to vehi
les basedon every individual journey, R2A+ performs the payo� assignment based onthe 
onsisten
y of a given vehi
le in following the system-assigned pathsa
ross multiple journeys. To a
hieve this, R2A+ uses a set of pre-de�nedrevenue-s
ales and provides better payo�s to the vehi
les that are asso
iatedwith higher revenue-s
ales. This enti
es vehi
les to 
onsistently follow thesystem-assigned routes. Our performan
e study shows that the proposeds
hemes are indeed e�e
tive in managing vehi
ular tra�
 in road networksby redu
ing the average time of arrival and fuel 
onsumption.E-Rare: E
onomi
 In
entive S
hemes for Improving Avail-ability of Rare Data in Mobile-P2P NetworksE-Rare fo
uses on handling rare data items in an M-P2P environment. Raredata items are those, whi
h get sudden bursts in a

esses based on eventsas they are only hosted by only a few peers in 
omparison to the networksize. Thus, they may not be available within few hops of query-issuing peers.The sudden burst in a

esses to rare items generally o

urs within a giventime-frame (asso
iated with the event), before and after whi
h su
h itemsare rarely a

essed.Some appli
ation s
enarios are as follows. Suppose a group of 
ollege stu-dents in the 
ourse of an expedition in a remote forest, where 
ommuni
a-tion infrastru
tures (e.g., base stations) do not exist. When there is a sud-den unexpe
ted de
rease in temperature and gusty winds, they need to lookfor information about prote
tive 
lothing su
h as shops selling sweaters and
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heaters, photos of su
h 
lothing and so on. In a similar vein, suppose agroup of tourists unexpe
tedly en
ounters a 
ave during their journey. Theywould like to �nd information about where to buy gas-masks and asso
iatedsafety equipment for added safety, instru
tional tutorials on how to use thisequipment and so on. Similarly, when a motorist driving in a mountainousregion, sees a rare animal, she may wish to �nd additional information aboutliving habits. Additionally, due to the sudden and unexpe
ted onset of aheat wave, a group of botanists on an expedition in a forest may want to �ndinformation su
h as non-drinking water sour
es and pi
tures of the lo
ationsof su
h water sour
es. In these appli
ation s
enarios, M-P2P intera
tions 
anfa
ilitate the MPs in �nding the required information.Su
h M-P2P intera
tions for e�e
tive sharing of rare data are 
urrently notfreely supported by existing wireless 
ommuni
ation infrastru
tures. Observehow the sudden urgent demand of several MPs for information 
on
erningrare items (e.g., prote
tive 
lothing or gas-masks) arises due to the o

urren
eof events su
h as the sudden onset of harsh weather 
onditions or the usersunexpe
tedly en
ountering a 
ave.E-Rare is a novel e
onomi
 in
entive model for improving rare data avail-ability by means of li
ensing-based repli
ation in M-P2P networks. E-Rare
omprises two repli
ation s
hemes, namely ECR and ECR+, both of whi
huse its in
entive model for improving rare data availability. The key di�er-en
e between these s
hemes is that in ECR, the MPs a
t individually towardsrepli
ation, while for ECR+, the MPs perform repli
ation in groups. In boththese s
hemes, a given MP issues queries spe
ifying its desired data item, itslo
ation and query deadline. In E-Rare, ea
h data item is asso
iated withfour types of pri
es (in virtual 
urren
y), whi
h provide di�erent rights to thequery-issuer 
on
erning the usage of the item. E-Rare requires a query-issuerto pay one of these pri
es for its queried data item to the query-serving peer,thereby e�e
tively in
reasing data availability and 
ombating free-riders.The main 
ontributions of E-Rare are three-fold:



1.4. Organization of the Dissertation 201. It provides in
entives for repli
ation of rare data items by means of anovel li
ensing me
hanism, thereby improving rare data availability.2. It provides additional in
entives for MPs to 
ollaborate in groups,thereby further improving rare data availability.3. A detailed performan
e evaluation has been done to show the improve-ment in query response times and availability of rare data items inM-P2P networks.In
identally, virtual 
urren
y in
entives are suitable for P2P environmentsdue to the high transa
tion 
osts of real-
urren
y mi
ro-payments [TR04℄.The works in [DPGB03,ET04,ZCY03℄ dis
uss how to ensure se
ure paymentsusing a virtual 
urren
y. Notably, these se
ure payment s
hemes are 
om-plementary to our proposal, but they 
an be used in 
onjun
tion with ourproposal.We have performed a detailed performan
e evaluation of both ECR andECR+. As a baseline referen
e, we have also 
ompared against an existingnon-in
entive and non-e
onomi
 repli
ation E-DCG+ s
heme for MANETs,proposed in [HM06℄, whi
h is 
losure to our s
enario. We have used aver-age response times of queries, query su

ess rates, query hop-
ounts and thenumber of messages as performan
e metri
s. ECR+ outperforms ECR dueto its group-based in
entives (su
h as dis
ounts), whi
h fa
ilitate 
ollabo-rative repli
ation among MPs. ECR outperforms E-DCG+ essentially dueto its e
onomi
 li
ensing s
heme, whi
h in
entivizes MP parti
ipation in the
reation of multiple 
opies of rare items. Both ECR and ECR+ in
ur moremessages than E-DCG+ be
ause in 
ase of E-DCG+, a large per
entage ofunsu

essful queries result in de
reased amount of data transfer, albeit atthe 
ost of redu
ed query su

ess rates.1.4 Organization of the DissertationThe dissertation is organized as follows:



1.4. Organization of the Dissertation 21Chapter 2 provides a general introdu
tion and dis
usses about relatedwork in this �eld.Chapter 3 dis
usses our proposed system E-Top for top-k query pro
essingin Mobile-P2P Networks using e
onomi
 in
entive s
hemes, when operatingon resour
e 
onstrained mobile devi
es. E-Top in
orporates the e
onomi
in
entive-based s
hemes to perform the e�e
tive query pro
essing and toimprove the data availability by means of in
reasing peer parti
ipation inM-P2P networks, whi
h relies not just on the available peers but also on thequery's answer-rate as well as its answer-quality at the query-issuing peer.Chapter 4 provides a des
ription of our se
ond resear
h 
omponent E-Broker, whi
h looks at e�e
tive broker parti
ipation in M-P2P network to-wards serving better quality to the MPs by means of improving query response-time. The proposed brokerage s
hemes are based on various types of in
en-tives to the broker-MPs towards serving M-P2P networks. We justify in thiswork that in a mobile environment, the nearly optimal broker's parti
ipationwould e�e
tively improves data availability thereby resulting faster responseand better quality.Chapter 5 dis
usses our third resear
h 
omponent of this dissertation E-VeT, whi
h fo
uses on e�
ient vehi
ular tra�
 management in road net-works using e
onomy-based reward/penalty s
hemes. In E-VeT, our goal isto identify that how e�e
tively system 
an assign the paths to the vehi
lesto manage vehi
ular tra�
 by redu
ing the average time of arrival and fuel
onsumption.Chapter 6 dis
usses our forth resear
h 
omponent of this dissertation E-Rare, whi
h fo
uses on leveraging network heterogeneity of rare data avail-ability in M-P2P networks. In E-Rare, our goal is to identify that howe�e
tively a rare data is adequately repli
ated on mobile peers to improve



1.4. Organization of the Dissertation 22rare data availability while keeping its rarity (i.e., value of a data for a giventime) up.Chapter 7 
on
ludes this dissertation with a summary of our 
ontribu-tions. We have also provided the dire
tions for future work.We are pleased to note that the 
ontributions of this dissertation work havebeen published at following reputed 
onferen
es and journals.
• Nilesh Padhariya, Anirban Mondal, Vikram Goyal, Roshan Shankarand Sanjay Kumar Madria. �E
oTop: An E
onomi
 Model for Dy-nami
 Pro
essing of Top-k Queries in Mobile-P2P Networks.� DatabaseSystems for Advan
ed Appli
ations, DASFAA(2) 2011:251-265
• Nilesh Padhariya, Anirban Mondal, Sanjay Kumar Madria, and MasaruKitsuregawa. �E
onomi
 in
entive-based brokerage s
hemes for improv-ing data availability in mobile-P2P networks.� Computer Communi
a-tions, (2013) 36(8):861-874
• Nilesh Padhariya, Ouri Wolfson, Anirban Mondal, Varun Gandhi andSanjay Kumar Madria. �E-VeT: E
onomi
 Reward/Penalty-based Sys-tem for Vehi
ular Tra�
 Management.� Mobile Data Management,MDM(1) 2014: 99-102Moreover, the following papers are 
urrently under review in journals.
• Nilesh Padhariya, Anirban Mondal, Sanjay Kumar Madria and MasaruKitsuregawa. �E
onomi
 In
entive S
hemes for Improving Availabilityof Rare Data in Mobile-P2P Networks�
• Nilesh Padhariya, Anirban Mondal and Sanjay Kumar Madria. �Top-kQuery Pro
essing in Mobile-P2P Networks using E
onomi
 In
entiveS
hemes�



2
Related Work

This 
hapter provides an overview of existing works related to e
onomi
s
hemes for data management in M-P2P environments. Notably, the 
om-bination of issues su
h as node mobility, free-riding, network partitioningand resour
e 
onstraints (e.g., energy, memory spa
e) are more relevant toM-P2P environments, although some of these issues may also arise in otherenvironments. As a single instan
e, in stati
 P2P environments, the issueof node mobility does not arise and resour
e 
onstraints are not as severeas in M-P2P environments. The free-riding issue in traditional stati
 P2Penvironments may be handled by blo
king the free-riders. However, in M-P2P environments, in order to have 
onne
tivity in the network, we need toattra
t free-riders to provide servi
es.2.1 E
onomi
 in
entive s
hemesThis se
tion provides an overview of e
onomi
 in
entive s
hemes.



2.1. E
onomi
 in
entive s
hemes 242.1.1 E
onomi
 s
hemes for resour
e allo
ation in P2PnetworksE
onomi
 s
hemes have been dis
ussed for resour
e allo
ation in distributedsystems [FNY93, FYN88,KS89℄. The proposed model in [FNY93℄ managesdistributed data obje
ts by means of revenue-based resour
e allo
ation. Inthis e
onomi
 model, ea
h job/transa
tion pays to the pro
essor for per-forming data obje
t-related read/write operations, while the pro
essor usesrevenues to lease 
opies of data obje
ts to other pro
essors. Here, the pri
eof the data obje
ts are de
ided by themselves. Thus, the e
onomi
 modelfa
ilitates e�
ient management of data obje
ts in the system.The work in [FYN88℄ dis
usses mi
roe
onomi
s load-balan
ing in distributedsystems. In this e
onomi
 model, the pri
es of the resour
es in the system arede
ided based on their demands. The system assumes that the demand gen-erates the 
ompetition among the non-
ooperative devi
es in the distributedsystem. In parti
ular, ea
h job is assigned to a host using an au
tion me
h-anism i.e., the winning host serves the job. This e
onomi
 approa
h hasbeen shown to provide better performan
e due to its limited 
omplexity andintrinsi
 de
entralization.In a similar vein, [KS89℄ also examined the e�e
tive distribution of divisibleresour
es in a distributed system. For example, the �le allo
ation based on
ommuni
ation 
ost and its pro
essing time are optimized by dividing a �leinto several parts distributed fashion. Thus, a �le is pro
essed by exe
utingea
h of its individual parts on di�erent pro
essors. [Gro03℄ has des
ribed thee
onomi
 aspe
ts in a pure peer-to-peer (P2P) networks. They 
onsideredGNUnet �le-sharing, whi
h is a distributed framework that uses trust-basedme
hanisms for performing e
onomi
 resour
e allo
ation among equal peers,while minimizing free-riding. Thus, it de�ned a game of 
ooperative play-ers to maximize individual out
omes, while distinguishing between friendlyand mali
ious players. However, this work does not in
orporate any pri
ingmodel.



2.1. E
onomi
 in
entive s
hemes 25The proposals in [LI04,XLN06b,XLN06a℄ dis
uss e
onomi
 s
hemes for re-sour
e allo
ation in wireless ad ho
 networks. The goal of [LI04℄ is to per-form servi
e provisioning in a mobile ad ho
 network (MANET) environ-ment, hen
e it proposes a distributed algorithm for e�e
tive servi
e pro-visioning. Moreover, it uses the Vi
krey au
tion me
hanism for allo
atingservi
es among sel�sh peers in the MANET. The proposal [XLN06b℄ as-sumes that the peers would prefer to be sel�sh rather than 
ooperative inwireless ad ho
 networks. Hen
e, in
entive me
hanisms would inspire sel�shand greedy peers to parti
ipate and share their resour
es, thereby redu
-ing free-riding. This work presented the pri
e-pair me
hanism to allo
ateresour
es a
ross peers, while in
entivizing them for their servi
es to the net-work, thereby further in
reasing the extent of 
ooperative behavior in thesystem. By means of 
ooperation, the system is 
onverged to the desiredglobal optimal operating point, even though the peers are independent andthe system is de
entralized. Similarly, the proposal [XLN06a℄ provides thepri
e-based resour
e allo
ation framework for fair and optimal resour
e uti-lization among the peers. The pri
e of ea
h resour
e is 
omputed based onthe notion of `maximum 
liques' of that resour
e in the wireless ad ho
 net-work. They also showed that the proposed distributed algorithm 
onvergesto a global network optimum w.r.t. resour
e allo
ations.Observe that the s
hemes in [FYN88,KS89,FNY93,Gro03℄ do not address M-P2P issues su
h as node mobility, free-riding, frequent network partitioningand mobile resour
e 
onstraints. Furthermore, the s
hemes in [LI04,XLN06b,XLN06a℄ do not in
orporate repli
ation or data rarity issues.2.1.2 In
entive s
hemes for en
ouraging peer parti
ipa-tion in stati
 P2P networksIn
entive-based s
hemes for en
ouraging peer parti
ipation in stati
 P2Pnetworks involve formal game-theoreti
 approa
hes su
h as the proposalin [GBM01℄. The work in [GBM01℄ proposed an in
entive-based model for



2.1. E
onomi
 in
entive s
hemes 26P2P �le-sharing systems. They provided various payment s
hemes under agame-theoreti
 model in whi
h ea
h sel�sh user is trying to in
rease his re-wards. The work also analyzed the equillibria of users' strategies with respe
tto mi
ro-payment and quantized mi
ro-payment me
hanisms.The works in [HA05,RL03℄ en
ourage peer parti
ipation using utility fun
-tions. [HA05℄ aimed at en
ouraging resour
e sharing by providing in
entivesto the peers and they also address the issue of mali
ious peers. [HA05℄ de�nedutility fun
tions based on 
redit i.e., 
ontributed bytes - 
onsumed bytes, formeasuring users' behavior. However, they do not address data quality i.e., agiven user may share fake �les to in
rease his 
redit. [RL03℄ also uses utilityfun
tions to measure the user's value to the system. It des
ribed three dif-ferent utility fun
tions based on (a) the total number of �les shared (b) thetotal size of the data shared and (
) the popularity of the shared �les. Theseutility fun
tions 
onsider reward (i.e., user's sharing) and penalty (i.e., user's
onsumption).Furthermore, [KSGM03a℄ has also addressed free-riding in P2P networks andproposed a solution based on a peer parti
ipation metri
 
alled the Eigen-Trust s
ore [KSGM03b℄. The parameters in the EigenTrust metri
 are usedfor de�ning the in
entives that are to be awarded to the peers. EigenTrust en-sures that parti
ipatory peers obtain rewards, but less a
tive peers do not getex
luded from the system, thereby providing opportunity to the free-ridersto be a
tive parti
ipants in the network. Moreover, [LDHS05℄ 
onsiders theasymmetri
 angle of the P2P system, where the uploaded bytes have lessvalue then the downloaded bytes be
ause sel�sh and rational peers wouldprefer downloads as opposed to uploads. Hen
e, [LDHS05℄ provides morein
entives for the uploaded bytes w.r.t. the downloaded bytes.Observe that the approa
hes [HA05,RL03,KSGM03a℄ are too stati
 to be de-ployed in M-P2P networks be
ause they assume peers' availability and �xedtopology. Furthermore, they do not address few mobile resour
e 
onstraints(e.g., energy) and data rarity issues.



2.1. E
onomi
 in
entive s
hemes 27The works in [Azz10a,Azz10b℄ fo
us on addressing the problem of free-ridingin de
entralized 
ollaborative environments. In parti
ular, these works pro-pose a taxonomy for 
lassifying and tra
king free-riders in multimedia sys-tems based on trustworthiness. The proposal in [LGS12℄ addresses free-ridingin the popular eMule/eDonkey P2P �le-sharing network by evaluating andimproving the fairness poli
y, whi
h rewards 
ontributors. Notably, the worksin [LGS12,Azz10a,Azz10b,HA05,KSGM03a℄ do not address repli
ation andmobile resour
e 
onstraints.2.1.3 In
entive s
hemes for 
ombating free-riding in MANETsThe proposals in [BH01, BH03, ZCY03, CN04, CGKO03, SNCR03℄ addressfree-riding in MANETs. The work in [BH01℄ introdu
es a virtual 
urren
yto stimulate node 
ooperation for pa
ket forwarding servi
es. They providetwo di�erent models, namely the Pa
ket Purse Model (PPM) and the Pa
ketTrade Model (PTM), for de�ning the pri
e of the pa
ket forwarding servi
e.In PPM, nuglets (a form of virtual 
urren
y) are loaded into a pa
ket bythe sour
e, and intermediate nodes takes o� these nuglets from the givenpa
ket a

ording to their respe
tive pri
es for the forwarding servi
e. On theother hand, in PTM, ea
h node in the message path `buys' a pa
ket fromthe prede
essor node and `sells' it to the su

essor node, thereby implyingthat the destination node has to pay the pri
e for the pa
ket forwardingservi
e. Observe that PTM is vulnerable to network overload, sin
e sendersdo not have to pay. Thus, PPM is more promising. The work also proposedthe hybrid and extended PPM (with Fixed Per Hop Charges and Au
tions)approa
hes for pa
ket forwarding servi
e.Similarly, the works in [BH03,ZCY03℄ also use virtual 
urren
y to stimulatethe 
ooperation of mobile nodes in forwarding messages. In [BH03℄, virtual
urren
y is de�ned as a `nuglet 
ounter' on ea
h peer, whi
h is de
reasedby one in 
ase of peer has generated a pa
ket (i.e., peer wants to obtainservi
e from the network) and is in
reased by one in 
ase a peer forwards
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ket (i.e., the peer serves the network). In order to use the message-forwarding servi
e, the value of nuglet 
ounter on a peer must be positive,thereby fa
ilitating the avoidan
e of free-riding. The work also suggestedme
hanisms for prote
ting the nuglet 
ounter. [ZCY03℄ proposed Sprite, asimple 
heat-proof, 
redit-based me
hanism to provide message-forwardingservi
e among sel�sh nodes in a MANET. This work 
onsidered in
entivizingpeers for their 
ooperation as follows: a node keeps a re
eipt of its re
eiv-ing/forwarding message; later it 
lears with Credit Clearan
e Servi
e (CCS)provider by uploading re
eipts; and obtains 
urren
y for its servi
es. Thisme
hanism does not require any tamper-proof hardware at any node.The au
tion-based iPass [CN04℄ in
entive s
heme and the works in [CGKO03,SNCR03℄ also provide in
entives for relaying messages. iPass pays to ea
h�ow i.e., the message path from sour
e to destination with relay peers as theintermediate nodes, for the message-forwarding servi
e in a non-
ooperativeMANET environment. The resour
e allo
ation is performed by bidding,and a �ow is 
hosen by a generalized Vi
krey au
tion with reverse pri
ingme
hanism. It shows that truthful bidding of utility is a dominant strat-egy and in
entivization leads to higher so
ial welfare for the whole network.The work in [CGKO03℄ explores an in
entive-based model for a MANET.A mobile node 
an earn as mu
h as it is 
apable of transmitting messages,but its 
apa
ity is 
onstrained by its remaining energy, hen
e the systemwill be balan
ed. [SNCR03℄ 
onsiders a market-based approa
h, in whi
hea
h node independently 
harges pri
es for relaying the data pa
kets. Themethod e�e
tively 
onverges to the equilibria of the resulting market due toits iterative pri
e and rate allo
ation algorithm. In parti
ular, the propos-als in [CGKO03, SNCR03℄ 
on
entrate on 
ompensating forwarding 
ost interms of battery power, memory and CPU 
y
les.However, these works do not 
onsider M-P2P ar
hite
ture. Furthermore,they do not 
onsider data rarity issues, data item pri
es and in
entives fordata repli
ation i.e., they do not enti
e peers to host data. Also, they donot address the issue of 
reating pro-a
tive mobile peers for providing value-
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es.2.1.4 In
entive s
hemes for M-P2P networksThe work in [MMK07
℄ dis
ussed ABIDE, whi
h is an au
tion-based e
o-nomi
 model for M-P2P networks. In ABIDE, the relay mobile peers areen
ouraged to provide value-added routing servi
es in lieu of a 
ommis-sion. ABIDE also 
onsiders load-balan
ing issues. Furthermore, the workin [MYM10℄ proposed E
oBroker, whi
h is a novel e
onomi
 in
entive-basedbrokerage model for improving data availability via repli
ation for multiple-item queries in Mobile-P2P networks. In E
oBroker, data requestors needto pay the pri
e (in virtual 
urren
y) of their requested data items to data-providers. The e
onomi
 in
entive model of E
oBroker e�e
tively 
ombatsfree-riding by in
entivizing MPs to be
ome brokers and to host repli
ateddata, thereby improving data availability. Moreover, its brokerage modelfa
ilitates e�
ient pro
essing of queries involving multiple data items.The proposals in [XWR06,WXS04℄ dis
uss in
entive s
hemes for 
ombatingfree-riding in M-P2P networks. The work in [XWR06℄ provides in
entives tomobile peers for parti
ipation in the dissemination of reports about resour
esin M-P2P networks. Ea
h disseminated report 
ontains information 
on
ern-ing a spatial-temporal resour
e e.g., availability of a parking slot at a giventime and lo
ation. The work in [WXS04℄ 
onsiders opportunisti
 resour
einformation dissemination in transportation appli
ation s
enarios. A mo-bile peer transmits its resour
es to the mobile peers that it en
ounters, andobtains resour
es from them in ex
hange. The works in [WXS04, XWR06℄primarily address data dissemination with the aim of rea
hing as many peersas possible i.e., they fo
us on how every peer 
an get the data. However,they do not in
entivize relay peers to perform value-added routing and tohost data. Furthermore, they do not 
onsider li
ensing-based data repli
a-tion and data rarity issues.The work in [MMK09℄ proposes an e
onomi
 in
entive model for the e�
ient
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essing of 
onstraint queries in M-P2P networks, given that M-P2P usersmay issue queries with varying 
onstraints on query response time, data qual-ity of results and trustworthiness of the data sour
e. The fo
us in [MMK09℄is on how to index the 
onstraints in user queries by using the CR*-tree.Furthermore, the work in [MMK09℄ provides in
entives for peers to form
ollaborative peer groups for maximizing data availability and revenues bymutually allo
ating and deallo
ating data items using royalty-based revenue-sharing. Thus, the fo
us in [MMK09℄ is 
ompletely di�erent from the fo
usof E-Broker in that E-Broker fo
uses on brokerage s
hemes for performingvalue-added routing and repli
ation (and load-sharing) in M-P2P networks.2.1.5 E
onomi
 s
hemes for top-k query pro
essingThe proposal in [SIC08℄ addresses top-k queries and aggregate queries forprobabilisti
 databases with fo
us on data un
ertainty and semanti
s. Un-
ertainty imposes probability as a new ranking dimension that does not existin the traditional settings. This work has novel formulations based on tradi-tional top-k semanti
s, whi
h are 
ombined with real-world semanti
s. Theproposed framework supports query pro
essing and indexing by en
apsu-lating a state spa
e model and an e�
ient sear
h algorithm for 
omputingquery answers. The state spa
e model divides the sear
h spa
e into smallsub-spa
es, thereby minimizing the number of a

essed tuples and the sizeof the materialized sear
h spa
e.The work in [HC07℄ examines the optimization of top-k queries in middlewareby means of a 
ost-based optimization approa
h. The work in
orporatesvarious sear
h and optimization algorithms. In parti
ular, ea
h top-k requestis treated di�erently in the sense that their a

ess 
osts vary. In 
ontrastto relational queries, where �fo
used� sear
h is possible through relationalde�nitions, top-k queries are handled by using logi
al tasks as building blo
ksfor identifying a 
omprehensive and fo
used sear
h spa
e. The work hasde�ned several sear
h s
hemes over a spe
trum of possible algorithms to



2.1. E
onomi
 in
entive s
hemes 31identify an optimal algorithm for a given top-k query.The proposals in [LXL10,WXTL07℄ dis
uss top-k query pro
essing in wirelesssensor networks. In [LXL10℄, ea
h top-k query retrieves k number of dataobje
ts, where the top-k evaluation is done by a s
oring fun
tion on thequeried features from sensor data. For 
onserving the energy of the sensornodes, the work minimizes redundant data transmissions by means of both a
luster-tree routing stru
ture for lo
ally aggregating obje
ts as well as a 
ross-pruning te
hnique for �ltering purposes. The work in [WXTL07℄ exploitssemanti
s and fa
ilitates energy-e�
ien
y by installing a �lter at ea
h sensornode to avoid unne
essary updates.The work in [LCLC04℄ uses a probabilisti
 approa
h towards 
ost-e�e
tivelysele
ting sensor nodes for pro
essing 
ontinuous probabilisti
 queries in wire-less sensor networks by redu
ing sensor data aggregation. The tutorialin [ZYV08℄ provides a 
omprehensive overview of top-k query pro
essing inwireless sensor networks. The proposal in [HSHN09℄ dis
usses a message pro-
essing method for top-k queries in MANETs for redu
ing the 
ommuni
ationtra�
. The work in [JCCL10℄ dis
usses lo
ation-based top-k query pro
ess-ing for wireless broad
ast environments using two R-tree variants, namelythe broad
ast aggregate R-tree and bit-ve
tor R-tree. The work in [LLKL09℄presents a sear
h engine geared towards providing mobile users with top-kweb sear
h results. Notably, the proposals in [SIC08,HC07,LXL10,WXTL07,LCLC04,HSHN09,JCCL10,LLKL09℄ do not in
orporate M-P2P ar
hite
tureand e
onomi
 s
hemes for in
entivizing top-k query pro
essing.In
identally, P2P repli
ation suitable for mobile environments has been in-
orporated in systems su
h as ROAM [RRPK01℄, Clique [RNC03℄ and Ru-mor [GRR+98℄. However, these systems do not in
orporate e
onomi
 in
en-tive s
hemes and top-k queries.The work in [PMG+11℄ addresses the pro
essing of top-k queries in M-P2Pnetworks by using e
onomi
 in
entive s
hemes. In the proposed e
onomi
model (designated as E
oTop), whi
h is based on a super-peer ar
hite
ture,
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hemes 32brokers fa
ilitate top-k query pro
essing in lieu of a 
ommission. E
oTopissues e
onomi
 rewards to the mobile peers, whi
h send relevant data items(i.e., those that 
ontribute to the top-k query result), and penalizes peersfor sending irrelevant items, thereby optimizing the 
ommuni
ation tra�
.Peers use the rewards/penalties as a means of feedba
k to re-evaluate thes
ores of their respe
tive items for item re-ranking purposes. E
oTop alsoin
orporates 
ommissions for relay peers to in
entivize them in forwardingmessages qui
kly. A performan
e study demonstrates that E
oTop is indeede�e
tive in improving the performan
e of top-k queries, while minimizingthe 
ommuni
ation tra�
. Notably, this novel e
onomi
 in
entive modelalso dis
ourages free-riding in M-P2P networks.2.1.6 Payment s
hemesA small study [MdRK04℄, whi
h was 
ondu
ted on users' motivation andde
ision to share resour
es in P2P networks, revealed that 50% of the ques-tioned users would share more, if some materialisti
 in
entives (e.g., money)are dispensed by the appli
ation. Herein lies the motivation for 
oupon-basedsystems like adPASS [SH04℄. The works in [DPGB03,ET04,ZCY03℄ dis
usshow to ensure se
ure payments using a virtual 
urren
y. Another way pro-posed in [GA04℄ des
ribes Coupons, an in
entive s
heme that is inspired bythe eN
entive framework [RFJY03℄, whi
h allows mobile agents to spreaddigital advertisements with embedded 
oupons among mobile users in a P2Pmanner.Several non-repudiation [KMZ02,SS05℄ systems, whi
h 
an be in
orporatedto 
ontrol the de
eiving behaviour of peers, have been developed. In manyappli
ations su
h as 
ontent distribution, the pri
e 
an also be 
ontrolled bythe servi
e-providers [FST04℄.MoB [CABP05℄ is an open market 
ollaborative wide-area wireless data ser-vi
es ar
hite
ture, whi
h 
an be used by mobile users for opportunisti
allytrading servi
es with ea
h other. MoB also handles in
entive management,
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ounting servi
es.A bootstrap kind of me
hanism 
an also be used in many appli
ations [DHA03a℄.Symella is a Gnutella �le-sharing 
lient for Symbian smartphones. It expe
tsthat illegal a
ts o

ur, su
h as interpolation or destru
tion of the distribu-tion history to get in
entives. Hen
e, the distribution history atta
hed tothe e-
oupon [CN04℄ is en
iphered with a publi
-key 
ryptographi
 systemso that users 
annot peruse the distribution history. Moreover, a messagedigest (MD) of the distribution history is embedded by digital-watermarkingte
hnology to 
he
k the validity of the history.2.1.7 Trust-based s
hemesThe work in [QMK10℄ analyzes various existing de
entralized and distributedtrust management s
hemes. Based on this analysis, it proposes the M-trusts
heme for mobile-P2P networks. M-Trust is a robust and s
alable light-weight trust ratings aggregation s
heme. Notably, the M-trust s
heme also
onsiders issues su
h as system mobility and dynami
 network topology. Ina similar vein, the work in [RSB11℄ proposes a generalized distributed trustmanagement s
heme to estimate peer trust based on their en
ounter historyin di�erent environmental 
ontexts. Moreover, the work also dis
usses how toprioritize 
ontexts depending upon the level of asso
iation with them. Fur-thermore, the proposal in [SL03℄ presents the TrustMe proto
ol for managingtrust and anonymity in P2P environments. The work also demonstrates thatthe TrustMe proto
ol is reasonably se
ure against a wide variety of potentialatta
ks.The proposal in [AR10℄ examines the role of re
ommenders in P2P systemswith the obje
tive of managing trust. In parti
ular, it provides an in-depthtreatment of the feedba
k behavior of the re
ommenders as well as their rolein trust assessment for P2P systems. Non-repudiation systems [SS05℄ 
analso be in
orporated to 
ontrol the de
eiving behaviour of peers. The workin [BBS10℄ dis
usses an experimental model for trust and 
ooperation for
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tion in so
ial networks.The work in [VLdOC+10℄ proposes a human-based model for building a trustrelationship between nodes in an ad ho
 network. In parti
ular, it proposesthe Re
ommendation Ex
hange Proto
ol (REP), whi
h enables nodes to ex-
hange re
ommendations about their neighbors. Trust is based not only onprevious individual experien
es, but also on the re
ommendations of othernodes. Nodes maintain and ex
hange trust information about nodes withintheir respe
tive radio ranges.Notably, the trust-based s
hemes dis
ussed above 
an be used in 
onjun
tionwith our proposal as 
ountermeasures to the sel�sh and de
eiving behaviorsof the peers.2.2 Data Ca
hing in mobile environmentsTo improve the response time of data retrieval in mobile environments, Data
a
hing plays an important role. This se
tion provides an overview of data
a
hing s
hemes for mobile environments.2.2.1 Cooperative 
a
hingIn a mobile environment, the mobile 
lient 
an a

ess data items from the
a
he of its neighbouring 
lient. This 
on
ept is known as �
ooperative
a
hing�. Notably, 
ooperative 
a
hing 
an also be used in 
onjun
tion withthe P2P paradigm. [CLC04℄ proposes a 
ooperative 
a
hing s
heme, desig-nated as COCA, for mobile systems. COCA 
ategorizes the mobile 
lientsinto two 
ategories: Low A
tivity Mobile 
lients (LAM) and High A
tivityMobile Clients (HAM). Notably, mobile 
lients from both of these 
ategoriesshare their respe
tive 
a
hes. COCA redu
es the server workload be
ause theserver repli
ates data items on the LAMs, while the HAMs take advantageof these repli
as. Thus, COCA improves the overall system performan
e,
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es the number of requests as well as the a

ess miss ratio when themobile hosts are outside of the servi
e region.Wireless Sensor Networks support several appli
ations su
h as environment
ontrol, intelligent buildings, and target tra
king in battle�elds. Over thepast few years, Wireless Sensor networks have been growing in importan
e.To serve data in short laten
y and with minimal energy 
onsumption, theseappli
ations require optimization in 
ommuni
ation among the sensors. Hen
e,
ooperative data 
a
hing proto
ols has been proposed. The sele
tion of sen-sor nodes is at the heart of these proto
ols, and it plays an important rolein making the 
a
hing and request forwarding de
isions. The [DKTM11℄ in-trodu
es two new metri
s to aid in the sele
tion of su
h nodes. On the basisof these metri
s, the work proposed two new 
ooperative 
a
hing proto
ols.2.2.2 Te
hniques for maintaining 
a
he 
onsisten
yIn mobile database systems, if data is 
a
hed on a mobile host, it will redu
ethe query response time and also 
onserve the generally limited bandwidth.However, there is a need for 
a
he 
onsisten
y. A basi
 
a
he 
onsisten
ys
heme works as follows. The server broad
asts the invalidation report, whi
hidenti�es the updated data obje
ts so that the mobile hosts may remove theold data from their 
a
he. Due to this reporting, the re
onne
ting pro
essof a given mobile host may be slow as the mobile host requests the serverfor validating a 
a
he as it re
eives an invalidation report. [KL01℄ proposesa set of new 
a
he validation s
hemes, whi
h are 
apable of 
onserving thebandwidth for 
a
he validation as well as for query pro
essing.Ca
hing is also useful for redu
ing the server load as it fa
ilitates data a
-
ess at 
lients, thereby improving the overall performan
e of the system. Inmobile 
omputing environments, there are 
han
es of frequent dis
onne
-tions. In su
h situations, 
oheren
e between servers and 
lients be
omes ane
essity. [ZCY06℄ proposes a 
ategory of 
a
he invalidation strategy andmathemati
al model, and develops a high-performan
e 
a
hing te
hnique.
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hing in mobile environments 36Moreover, the work evaluates the performan
e for pra
ti
al wireless mobile
omputing s
enarios.Furthermore, the 
a
he invalidation methods are re
ord ID-based, hen
e theyare not adequate to manage the 
a
he 
onsisten
y of the mobile 
lients e�-
iently. [Chu08℄ proposes a 
a
he invalidation s
heme for 
ontinuous partialquery in mobile 
omputing environment, whi
h is predi
ate-based. Here,the 
a
he state of the mobile 
lient is the predi
ate. The server broad
aststhe 
a
he invalidation report (CIR) and the predi
ate to the 
lient for 
a
hemanagement. This method is useful for redu
ing the requirement of data for
a
he management. There are a number of methods to generate the CIR inthe server and to identify the invalid data in the 
lient.Additionally, in dynami
 environments, users may not always be able tostay in permanent 
onta
t with the network, but message delivery shouldbe guaranteed for all a
tive users of the network. [SPFT09℄ introdu
es two
a
hing poli
ies: basi
 
a
hing and leaf 
a
hing for providing guaranteedmessage delivery.2.2.3 Ca
he repla
ement strategiesWhile 
a
hing frequently a

essed data items on the mobile 
lients improvethe system performan
e, the 
a
he size is generally limited. Hen
e, e�e
-tive 
a
he repla
ement te
hniques be
ome a ne
essity to determine the set ofdata items that should be evi
ted from the 
a
he. [KMS07℄ proposes a 
a
herepla
ement poli
y 
alled the Weighted Predi
ted Region-based Ca
he Re-pla
ement Poli
y (WPRRP) for lo
ation-dependent data. WPRRP works onthe basis of 
lient's movement by sele
ting the predi
ted region to 
al
ulatethe weighted distan
e of a given item.In a mobile 
omputing environment, the mobile user uses 
a
he to a

essthe data easily, thereby enhan
ing the data availability as well as improv-ing the data a

ess time. Information is transferred from the server to thequery-issuer depending on its 
urrent lo
ation. This is known as Lo
ation
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es (LDISs). [KSM10℄ proposes a 
a
he repla
e-ment poli
y named Prioritized Predi
ted Region based Ca
he Repla
ementPoli
y (PPRRP), whi
h uses a 
ost fun
tion for the data evi
tion based onthe 
lient's movement pattern.[HXW+05℄ proposes a proa
tive 
a
hing model, whi
h 
a
hes the resultobje
ts along with the index that supports these obje
ts as the results. This ishelpful for obje
t reusability for all 
ommon types of queries. To optimize thequery response time, [HXW+05℄ also proposes an adaptive s
heme to 
a
hean index. In mobile environments, proa
tive 
a
hing a
hieves signi�
antperforman
e gains as 
ompared to page 
a
hing and semanti
 
a
hing.As the 
a
he size is limited on mobile devi
es, there are number of 
a
herepla
ement poli
ies, used to dis
over a proper subset of items for evi
tion.The Eu
lidean distan
e and Eu
lidean spa
e are important parameters forevi
tion in existing poli
ies. In spatial networks, position and movement ofthe obje
ts are 
onstraints and network distan
e is an important measure.By 
onsidering the network density, network distan
e and the probability ofa

ess, [JPNS08℄ proposes a 
a
he repla
ement poli
y whi
h uses Progressivein
remental network expansion (PINE) te
hnique to 
al
ulate the networkdistan
e.Moreover, [JYLK02℄ proposes a 
a
hing poli
y and broad
ast s
heme in whi
hthe geographi
al adja
en
y and 
hara
teristi
s of target area in Lo
ationDependent Queries (LDQ) are re�e
ted. By applying the moving distan
eof mobile host, [JYLK02℄ develop the 
a
hing poli
y suitable for urban area.The broad
ast s
heme uses the spa
e-�lling 
urve to 
luster data based onadja
en
y of data in LDQ. The expe
tation is: when exe
uting LDQ inlo
al 
a
he, the 
a
hing poli
y o�ers more a

urate answers and signi�
antlyimproves the workload of mobile hosts. Also, the broad
ast s
heme improvesthe battery life of the mobile host.Mobile environment is dynami
, in whi
h the mobile users are moving arounda number of servi
e areas. Notably, as the mobile user goes from one ser-
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e area to another, the new server takes responsibility of that user. Thispro
ess is known as hando�. In the pro
ess of hando�, the new server willnot get bene�t to a

ess the 
a
he. As a solution to this, [PC05℄ dis
oversnumerous 
a
he retrieval s
hemes to improve the 
a
he retrieval e�
ien
y.The use of `
oordinator bu�er' shows the improvement in the 
a
he retrieval.Moreover, Dynami
 and Adaptive 
a
he Retrieval s
heme (DAR) is devel-oped, whi
h 
an deal with the servi
e of hando� by utilizing proper 
a
hemethods a

ording to spe
i�
 
riteria.An adaptive per-user per-obje
t 
a
he 
onsisten
y management (APPCCM)s
heme is proposed in [LC11℄. The s
heme supports strong data 
onsisten
ysemanti
s through integrated 
a
he 
onsisten
y and mobility management inwireless mesh networks. Minimization of overall network 
ost is the mainobje
tive of APPCCM. In APPCCM, 
a
hing of data obje
ts is done dy-nami
ally, depending on mesh 
lient's mobility and data query/update 
har-a
teristi
s and network 
onditions.2.2.4 Semanti
 
a
hingThe bandwidth of the mobile devi
es is also a 
hallenge in developing largespatial database appli
ation on mobile environment. Here, the spatial datais used to pro
ess the query in mobile environments. [SZS05℄ attempted to
ombine multi resolution spatial data stru
ture and semanti
 
a
hing te
h-niques for e�
ient pro
essing of spatial queries. [SZS05℄ also proposed a newsemanti
 
a
hing model named Multi-resolution Semanti
 Ca
hing (MSC)by 
onsidering the 
hara
teristi
s of multi-resolution spatial data and multi-resolution spatial query (MSQ) in mobile environments. MSC improves theperforman
e in three ways: (a) a redu
tion in the amount and 
omplexity ofthe remainder queries; (b) the redundant transmission of spatial data alreadyresiding in a 
a
he is avoided; (
) a provision for satisfa
tory answers before100% query results have been transmitted to the 
lient side.Furthermore, the two features of semanti
 
a
he, namely less network traf-
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 and improved response time, make it e�
ient for mobile environments.The [LHC12℄ extends the traditional semanti
 
a
he management in threeways: (a) extension of quadtree-based index stru
tures to semanti
 
a
hes,(b) availability of a query pro
essing strategy and (
) dis
ussion on obje
t-oriented implementation of the semanti
 
a
he.2.3 Data Repli
ationData repli
ation means that the same data is stored at multiple nodes. Datarepli
ation is generally used for improving data availability, system reliabil-ity and performan
e. This se
tion provides an overview of data repli
ations
hemes.2.3.1 Data repli
ation in P2P networksRepli
ation s
hemes for stati
 P2P networks [BMSV03,DHA03b℄ and tradi-tional repli
ation strategies [KA00℄ for distributed systems do not 
onsiderpeer mobility issues. The proposal in [BMSV03℄ tries to over
ome the vari-ous failures that may potentially o

ur in P2P systems. The work suggestedan analyti
al method based on reasoning about the e�
ien
y of repli
ationwith redundan
y to handle failure toleran
e and its re
overy albeit at a smalls
ale. They also proposed a bulk repli
ation s
heme, in whi
h the groups of�les or �le systems are repli
ated a
ross the network for high data availability,hen
e the system has persistent storage failures and fast a

ess.The study in [DHA03b℄ addressed data 
onsisten
y in P2P systems, wherethe data has been repli
ated at several peers. For maintaining data 
onsis-ten
y, the update strategy needs to be 
apable of providing the same resultthroughout the network. The work has proposed a hybrid push/pull algo-rithm based on rumor spreading/gossiping me
hanism. The algorithm pro-vides an e�
ient and robust 
ommuni
ation s
heme for repli
ation with highprobability of 
onsisten
y in a distributed environment. Moreover, [KA00℄
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ation 40also addressed database repli
ation rather than �le repli
ation with data 
on-sisten
y as a key obje
tive. Several repli
ation te
hniques for addressing data
onsisten
y in a distributed environment have been dis
ussed in [DGMS85℄.The work in [MLK04℄ shows how data repli
ation impa
ts the performan
eof a stati
 P2P system, where the data dependability issue is 
riti
al. In par-ti
ular, the work in [MLK04℄ proposes a dynami
 data repli
ation strategyfor e�e
tive load balan
ing among the peers and dynami
 query redire
tionto redu
e the query response time. The data to be repli
ated is de
ided byan individual peer based on a

ess frequen
y i.e., a data with high a

essfrequen
y is 
onsidered as `hot' item and therefore a suitable 
andidate forrepli
ation. Moreover, the repli
as of data items with relatively low a

essfrequen
ies are periodi
ally deallo
ated for optimizing the disk spa
e of thepeers. The work also 
onsidered the distan
e as a repli
ation parameter. Agiven query is redire
ted based on the index available at ea
h peer. Here, theindex 
omprises the list of peer ids, whi
h host repli
as of a given data item.The performan
e shows that dynami
 data repli
ation s
heme indeed outper-forms the traditional repli
ation s
hemes due to its e�e
tive load-balan
ingme
hanism. Furthermore, the work in [MK05℄ dis
usses repli
ation s
hemesfor e�
ient data management in a wide area network (WAN) environment,where the major 
hallenge is node heterogeneity in terms of pro
essing 
apa
-ity and storage. The work also addresses issues su
h as bandwidth variations,de
entralized 
ontrol, in
omplete knowledge about the network, distributedownership and s
alability of WANs.The work in [SYHN10℄ 
onsiders the redu
tion of delays i.e., interruption timein repli
a downloading in P2P streaming environments, but it is fo
used ata lower level networking layer. In this work, load is distributed a
ross the
lients by storing partial (pie
es) of streaming data on them. Interruptiontime o

urs due to 
lient's dis
onne
tivity or its low bandwidth. Hen
e,the work proposed a method to redu
e this interruption time by 
onsideringthe importan
e of the pie
es of data based on their immedia
y and s
ar
ity.Peers re
eive more important pie
es faster, hen
e more repli
ation is done
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ation 41for the more important pie
es. In
reased repli
ation of a data pie
e redu
esits importan
e, hen
e eventually other data pie
es also get opportunities tobe repli
ated.2.3.2 Data repli
ation in MANETsA network, where 
ontent ex
hange or delivery is done by autonomous peers,it be
omes 
hallenging to 
onstru
t e�
ient distributed algorithms for 
on-tent repli
ation. This is due to the autonomy of the peers and their freedomto de
ide whi
h obje
ts they want to repli
ate. Additionally, 
hurn (i.e.,peers leaving the network autonomously) poses signi�
ant 
hallenges to dataavailability.The proposals in [HM06,HM05℄ dis
uss repli
ation in MANETs. E-DCG+[HM06℄ 
reates groups of mobile peers (MPs) that are bi
onne
ted 
ompo-nents in a MANET, and shares repli
as in larger groups of MPs to providehigh stability. An RWR (read-write ratio) value in the group of ea
h dataitem is 
al
ulated as a summation of RWR of those data items at ea
h MPin that group. In the order of the RWR values of the group, repli
as of itemsare allo
ated until memory spa
e of all MPs in the group be
omes full. Ea
hrepli
a is allo
ated at an MP, whose RWR value to the item is the highestamong MPs that have free memory spa
e to 
reate it.The work in [HM05℄ aims at 
lassifying di�erent repli
a 
onsisten
y levels ina MANET based on appli
ation requirements, and proposes proto
ols to re-alize them. In this work, ea
h repli
a is valid till its original owner updates it.Hen
e, applying stri
t 
onsisten
y updates may potentially degrade the sys-tem performan
e, given the inherently dynami
 nature of the environment.Thus, the work assumes that all appli
ations do not ne
essarily require su
hstri
t 
onsisten
y, and it de�nes 
onsisten
y based on group-level informa-tion 
onsisten
y. For example, in 
ase of a disaster management group, theinformation must be 
onsistent within the group, but not stri
tly 
onsistentw.r.t. to the other groups. Here, the lo
al 
onsisten
y maintenan
e within
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ation 42a given group is performed via quorums and it is based on lo
al 
onditionssu
h as lo
ation and time. Notably, the proposals in [HM06,HM05℄ do not
onsider any e
onomi
 model, M-P2P ar
hite
ture and data rarity issues.In
identally, P2P repli
ation suitable for mobile environments has been in-
orporated in systems su
h as ROAM [RRPK01℄, Clique [RNC03℄ and Ru-mor [GRR+98℄. ROAM, whi
h is a system designed based on the Wardmodel [RPR96℄, satis�es a repli
ation solution redesigned spe
i�
ally for mo-bile environments. ROAM further 
onsiders repli
ation fa
tors su
h as lo
alrepli
ation, applian
e 
ompatibility for repli
ation and 
onsistent updatesthroughout the network.Clique, a server-less �le system model, uses optimisti
 repli
ation algorithmsto store repli
as in users' native �le systems. It provides me
hanisms for en-suring 
onsistent updates (i..e., the repli
as are 
onsistent), periodi
 updatemanagement and 
on�i
t management. Moreover, it guarantees repli
a 
on-vergen
e, thereby ensuring data 
onsisten
y at the group level. In essen
e,updates are propagated to all nodes within the group to provide reliable androbust data management in the distributed environment.The Rumor �le system is also based on an optimisti
 repli
ation algorithm,where updates are propagated based on opportunisti
 
ost model among thesites repli
ating the �les. It is built at the appli
ation level of the users'mobile devi
es to provide higher portability, while limiting repli
ation 
osts.The �les are updated through a periodi
 re
on
iliation me
hanism, whi
hensures the maintenan
e of 
onsisten
y when 
ommuni
ation 
an be restored.However, these systems do not in
orporate e
onomi
 models and data rarityissues.Various data repli
ation te
hniques have been proposed for MANET databases.By 
onsidering the issues of MANET data repli
ation, [PGVA08℄ tries to at-tempt the 
lassi�
ation of existing MANET data repli
ation te
hniques, andproposes various 
riteria for sele
ting the appropriate repli
ation te
hniquefor a given appli
ation s
enario. The work also 
onsiders several data repli
a-
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ation 43tion issues relevant to MANET databases su
h as energy, mobility, real-timedata availability and frequent network partitioning, based on whi
h the repli-
ation s
hemes have been 
lassi�ed.Moreover, in a MANET, the mobile peers move freely and dis
onne
tions takepla
e frequently, thereby redu
ing the data a

essibility due to the dynam-i
ally 
hanging network topology. [HC06℄ proposes a group mobility modeland a repli
a allo
ation s
heme to address the problem of data a

essibilityby repli
ating data items and using the 
on
ept of group mobility, where agroup of mobile nodes move together.2.3.3 Data repli
ation in M-P2P networksThe work in [MMK06
℄ has proposed CLEAR, a 
ontext and lo
ation-basedapproa
h for repli
a allo
ation in M-P2P networks. It exploits user mobilitypatterns, and 
onsiders load and di�erent levels of repli
a 
onsisten
y.The works in [MMK06a, KKMM10℄ propose CADRE (Collaborative Allo-
ation and De-allo
ation of Repli
as with E�
ien
y), whi
h is a dynami
repli
ation s
heme for improving the typi
ally low data availability in ded-i
ated and 
ooperative mobile ad-ho
 peer-to-peer (M-P2P) networks. Inparti
ular, repli
a allo
ation and de-allo
ation are 
ollaboratively performedin tandem to fa
ilitate e�e
tive repli
ation. Su
h 
ollaboration is fa
ilitatedby a hybrid super-peer ar
hite
ture in whi
h some of the mobile hosts a
t asthe `gateway nodes' (GNs) in a given region. GNs fa
ilitate both sear
h andrepli
ation.The main 
ontributions of CADRE are as follows. First, it fa
ilitates theprevention of `thrashing' 
onditions due to its 
ollaborative repli
a allo
ationand de-allo
ation me
hanism. Se
ond, it 
onsiders the repli
ation of imagesat di�erent resolutions to optimize the usage of the generally limited memoryspa
e of the mobile hosts (MHs). Third, it addresses fair repli
a allo
ationa
ross the MHs. Fourth, it fa
ilitates the optimization of the limited energyresour
es of MHs during repli
ation.
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ation 44The proposals in [MMK06b,MK10℄ dis
uss E-ARL, whi
h is a novel E
o-nomi
 s
heme for Adaptive Revenue-Load-based dynami
 repli
ation of datain dedi
ated M-P2P networks with the aim of improving data availability.Thus, E-ARL 
onsiders a mobile 
ooperative environment, where the MPsare working towards the same goal, and the network performan
e is fa
ili-tated by the e
onomi
 s
heme. E-ARL essentially allo
ates repli
as based onits e
onomi
 s
heme. Ea
h data item has a pri
e in virtual 
urren
y. E-ARLrequires a query issuing peer to pay the pri
e of its queried data item to thequery-serving peer and a 
ommission to relay peers in the su

essful querypath.The main 
ontributions of E-ARL follow. First, it uses an e
onomi
 s
hemefor e�
iently managing M-P2P resour
es in a 
ontext-aware manner by fa
il-itating e�e
tive repli
a hosting and message relaying by peers. Se
ond, it 
ol-laboratively performs bid-based repli
a allo
ation to fa
ilitate better qualityof servi
e. Third, it in
orporates both revenue-balan
ing and load-balan
ingto improve peer parti
ipation and performan
e. Fourth, it 
onserves theenergy of low-energy MPs to fa
ilitate network 
onne
tivity.The work in [MMK07a℄ 
onsiders that M-P2P users may issue queries withvarying 
onstraints on query response time, data quality of results and trust-worthiness of the data sour
e. Thus, this work proposes ConQuer, whi
haddresses 
onstraint queries in e
onomy based M-P2P networks. ConQuerproposes a broker-based in
entive M-P2P model for handling user-de�ned
onstraint queries. It also provides in
entives for MPs to form 
ollaborativepeer groups for maximizing data availability and revenues by mutually al-lo
ating and deallo
ating data items using a royalty-based revenue-sharingmethod. Su
h reallo
ations fa
ilitate MPs in providing better data quality,thereby allowing them to further in
rease their revenues.The work in [MMK06b℄ presented the e
onomi
 model for e�
ient repli
amanagement in M-P2P networks, in whi
h mobile peer has been in
en-tivized to host repli
a. Here, mobile peers 
hoose whi
h data should berepli
ated based on its importan
e. In this manner, mobile peers earn rev-
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ular Network (VANET) Management 45enues from their hosted queried data items. Hen
e, it en
ourages peer par-ti
ipation to improve data availability and dis
ourages free-riding. Progres-sively, [MMK07a℄ proposed ConQuer: a group-based repli
ation method within
entivization in M-P2P networks. This work assume the super-peer ar-
hite
ture for M-P2P network, in whi
h a broker i.e., super-peer has beenin
entivized for serving 
onstrained query pro
essing by query-issuing peer.Moreover, 
ollaborative peer groups further improves data availability andrevenues by mutually allo
ating and deallo
ating data items based on royalty-based model. In a similar vein, a 
ollaborative repli
ation approa
h for M-P2P networks is also proposed by [KKMM10℄.The proposal in [MMK07b℄ dis
ussed an e
onomi
 model LEASE, in whi
hdata-providers lease data items to the free-riders in lieu of a lease payment.Hen
e, it provides free-riders the opportunity to earn revenue by hostingdata, thereby in
entivizing them towards data hosting. [MM08℄ also dis
ussedin
entive-based servi
es for a dynami
 data management in M-P2P networks.2.4 Vehi
ular Network (VANET) ManagementE
onomi
 models for resour
e allo
ation in distributed systems [KS89℄ impli
-itly assume that every node in the system would follow the system-assignedpoli
ies. In 
ontrast, our environment 
onsiders autonomous vehi
les thatmay not ne
essarily adhere to system-assigned routes in the absen
e of in-
entives. In
entives have been proposed for stimulating data sharing and
ombating free-riding in mobile-P2P networks [PMG+11,WXS04, XWR06℄as well as for en
ouraging nodes to forward messages in mobile ad ho
networks [BH03℄. However, these works do not in
orporate e
onomi
 re-wards/penalties for vehi
ular routing.The proposal in [Bra96℄ proposes the use of an in
entive-
ompatible pri
ingand routing s
heme, whi
h also 
ompensates users for sharing their vehi
ularmovement information. Moreover, the work in [Mor10℄ proposed a dynami
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ular Network (VANET) Management 46pri
ing model, whi
h is based on values of time (VOT). The work assumedthat the travel-time is a fun
tion of vehi
les' types e.g., VOT may di�er a
rosspubli
 transportation vehi
les and personal vehi
les. Furthermore, the workin [Xu06℄ proposes a dynami
 
ongestion pri
ing model, whi
h 
aptures users'personal 
hoi
es by means of a dis
rete 
hoi
e framework.A predi
tive model for dynami
 pri
ing in tra�
 management has been pro-posed in [Yan12℄. In parti
ular, it formulates a mathemati
al model foraddressing distan
e-based dynami
 
ongestion pri
ing. Based on the typesof measurements volume, speed and o

upan
y of vehi
les, three types oftoll 
olle
tions are proposed; pass-based, per use-based and distan
e-basedasso
iated with di�erent types of rate patterns.The feasibility of applying dynami
 
ongestion pri
ing to tra�
 managementhas been studied in [Iss11℄. The study fo
uses on spatial or temporal vari-ations in pri
ing of road-usage, thereby dis
ouraging overuse during rushhours by in
entivizing users to travel using alternate routes or at alternatetimes. Thus, tolls 
an be adjusted 
ontinually based on road 
onditions e.g.,pri
es in
rease when the tolled lane(s) are busy and de
rease when the tolledlane(s) are relatively less busy.The work in [RSKM09℄ proposes a P2P tra�
 information system for pur-poses of dynami
 route guidan
e. Cellular Internet a

ess is used for estab-lishing a P2P overlay over the Internet. However, it does not use e
onomi
payo�s to en
ourage vehi
les towards following system-assigned paths. Theemphasis in [BGJL06℄ is on routing messages in vehi
le-based disruption-tolerant networks, and this is orthogonal to our fo
us.As a �rst di�erentiating fa
tor from others, our s
heme provides users somerewards for following system suggested routes at di�erent times and assignspenalty for any deviations. Our se
ond di�erentiating 
ontribution is thatour s
heme 
onsiders users' history and in
orporates that to suggest di�erentpaths and pri
ing to di�erent users. This is similar to frequent �yer (traveller)s
hemes where users are given 
ertain privileges and rewards, whi
h they 
an
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ing 47use for availing better servi
e. Note that our system also introdu
es penaltyso that users are dis
ouraged from deviating system-assigned paths.2.5 Crowdsour
ingCrowdsour
ing refers to the pro
ess of outsour
ing a
tivities from a �rm toan online 
ommunity or 
rowd in the form of an `open 
all'. Any memberof the 
rowd 
an then 
omplete an assigned task and be paid for their ef-forts [Whi09℄. In this 
on
ept the 
ompany pays only for produ
ts or servi
esthat meet its prospe
ts; beyond the 
ost and bene�ts of the 
ompany. Char-a
terization of 
rowdsour
ing from management s
ien
e perspe
tive is givenin [S
h09℄.The task that requires human intelligen
e for the 
rowdsour
ing has be
omean a

eptable medium for 
reation of resour
es. For the purpose of systembuilding and evaluation, the information retrieval and related �elds regularlyuse it. In this 
ase there are 
han
es of fraudulent attempts by mali
iousworkers and it is also 
hallenging and time 
onsuming pro
ess to identifythese persons for both 
rowdsour
ing providers and requesters. The workin [EdV11℄ explains that how to redu
e su
h fraud attempts.The usage of mobile devi
es is going to in
rease day by day be
ause of theavailability of number of fa
ilities other than just a 
ommuni
ation devi
e.M
leark, AMT, txteagle, mCrowd and SMSAssassin are the various appli
a-tions and platforms developed to take the best advantage of the 
rowdsour
-ing. Moreover, few mobile 
ompanies are planning to provide 
rowdsour
ingenabled mobile devi
e to support su
h appli
ations.Moreover, [Eag09℄ presents a system to provide open-a

ess working plat-form to people, who 
an earn small amount by 
ompleting the tasks e.g.,translations, trans
riptions, surveys et
. Here, people are paid either in air-time or MPESA (mobile money) by the 
orporations. Su
h servi
es havebeen re
ently laun
hed in few 
ountries like Kenya. When Crowdsour
ing



2.6. Summary 48is extended to sensor-ri
h mobile devi
es like smart phones, it has potentialthat 
an be truly set free. The work in [YMH+09℄ proposes a new iPhone-based mobile 
rowdsour
ing platform 
alled mCrowd; whi
h fa
ilitates usersto work on sensor related 
rowdsour
ing tasks at �ngertips e.g., geolo
ationaware image 
olle
tion, image tagging, road tra�
 monitoring et
. throughthe ri
h sensor equipped with iPhone.We 
an relate or 
ombine the 
on
ept of 
rowdsour
ing with mobile for thee�e
tive usage of mobile devi
es and for the bene�
ial usage of the Crowd-sour
ing; it is not just enough we 
an also relate the 
rowdsour
ing withdatabase systems. Sometimes the queries pro
essing requires human inputas they 
annot be answered by ma
hines only. For ex: the queries likemat
hing, ranking or aggregating results based on fuzzy 
riteria. To pro
essthe queries, whi
h is su�
iently answered neither by database system nordoes sear
h engine require human input via 
rowdsour
ing whi
h is used byCrowdDB. The CrowdDB uses the SQL for two purposes: as a language forposing 
omplex queries and as a way to model data. There are some dif-feren
es between CrowdDB and traditional database system like CrowdDBwaits for the human inputs and performan
e and 
ost of the query depend ona number of new fa
tors. The [FKK+11℄ des
ribes the design of CrowdDB.2.6 SummaryIn this 
hapter, we have provided the detailed dis
ussion of various e
o-nomi
 s
hemes for e�e
tive resour
e allo
ation, en
ouraging peer parti
i-pation and 
ombating free-riding in stati
 P2P networks. Then, we havedis
ussed the e
onomi
 s
hemes using in
entivization strategies for mobilenetworks: MANETs and M-P2P networks. Interesting related work in mo-bile environment inspired us to 
arry our work in this dire
tion. Moreover,a survey of some existing in
entive-based e
onomi
 systems have been pre-sented to demonstrate the importan
e of su
h systems in today's te
hnolog-i
al world. Sin
e free-riding among the MPs is a major drawba
k of shared



2.6. Summary 49and distributed systems, we have dis
ussed both stati
 and dynami
 e
onomi
approa
hes. However, none of these works together addresses the issues su
has free-riding, data availability and node mobility 
on
erning the e�e
tivedata dissemination in mobile environment. We have also surveyed existingworks on e
onomi
 s
hemes for pure M-P2P networks and noted that noneof these works 
onsider issues 
on
erning in
entivization. Furthermore, weare glad to introdu
e the 
on
ept of top-k query pro
essing using e
onomi
in
entive approa
h in M-P2P networks.Additionally, we have surveyed ba
kground information 
on
erning data 
a
hingand data repli
ation in mobile networks. However, most of these works fo-
us on memory management on a peer, while our work is distinguished fromthese existing works sin
e our proposed te
hniques are aimed at improvingthe managing, 
ontrolling and distributing data a
ross the network, irrespe
-tive of the initial data pla
ement a
ross the nodes. In this regard, we havealso studied the re
ent data dissemination approa
h through 
rowdsour
ing,whi
h are aligned to our M-P2P s
enario. In future, we would like to fo
uson emerging 
on
ept of M-P2P with 
rowdsour
ing using e
onomi
 in
entiveand game theoreti
 approa
hes together.



3
E-Top: Top-k Query Pro
essingin Mobile-P2P Networks usingE
onomi
 In
entive S
hemes
3.1 OverviewIn a Mobile ad ho
 Peer-to-Peer (M-P2P) network, mobile peers (MPs) inter-a
t with ea
h other in a peer-to-peer (P2P) fashion. Proliferation of mobiledevi
es (e.g., laptops, PDAs, mobile phones) 
oupled with the ever-in
reasingpopularity of the P2P paradigm (e.g., Kazaa) strongly motivate M-P2P ap-pli
ations.Suppose Ali
e wants to �nd the top-k restaurants with �happy hours� (or�manager's spe
ial hours�) within 1 km of her 
urrent lo
ation. Top-k isdetermined based on the parameters (e.g., star rating, pri
e and distan
efrom the point of query referen
e) sele
ted by the user. A broker 
an fa-
ilitate su
h range-
onstrained top-k queries by soli
iting information fromthe MPs in its vi
inity, and it 
an then 
ompare this information with its
urrent top-k list of restaurants to generate the top-k result to be provided



3.1. Overview 51to the query-issuing MP. The broker 
ompiles its 
urrent top-k list by pe-riodi
ally 
olle
ting information from various sour
es su
h as the Web andso
ial networking sites. Notably, a broker is a trusted entity, whi
h managesthe peers in its vi
inity and provides value-added servi
es. As we shall seelater, brokers also distribute rewards/penalties a
ross the MPs. Moreover,brokers are those nodes that do not make wide-area movements.In a similar vein, another appli
ation 
ould involve a parking lot, where MPs
an 
olle
t information about available parking slots and 
harges, and thenthey 
an inform the brokers. The parking slot availability information has tobe 
urrent and therefore, the broker 
an 
ompare su
h 
urrent informationwith its 
urrent list of parking slots. The broker 
an then provide the top-kavailable slots to the query-issuing MP in terms of pri
e or distan
e (fromthe MP's 
urrent lo
ation). Similarly, an MP may want to �nd the top-kstores selling Levis jeans in a shopping mall with 
riteria su
h as (low) pri
eduring a spe
i�
 time duration.Observe that su
h ad ho
 queries are temporal in nature (e.g., parking slotavailability information), hen
e they 
annot be answered by the broker with-out obtaining information from other MPs. Notably, this resear
h will also
ontribute towards CrowdDB [FKK+11℄, whi
h uses human input via 
rowd-sour
ing to pro
ess queries that 
annot be answered by database systems orsear
h engines. Additionally, su
h M-P2P intera
tions among peers are gen-erally not freely supported by existing wireless 
ommuni
ation infrastru
-tures. The inherently ephemeral nature of M-P2P environments suggeststhat timeliness of data delivery is of paramount importan
e in these appli-
ations, thereby ne
essitating query deadlines. For example, an MP lookingfor top-k restaurants with �happy hours� would generally prefer to re
eivethe answer within a spe
i�ed deadline.In
identally, Amazon.
om has developed Me
hani
al Turk [Ama05℄, whi
h isan online marketpla
e for mat
h-making between the requirements of busi-nesses and the skill sets of developers. Developers 
an sele
t from a largepool of tasks based on their skill sets. Similar to our work, the Me
hani
al



3.1. Overview 52Turk system also provides e
onomi
 in
entives. Observe that te
hnologies,su
h as WiFi and Bluetooth networks, are nowadays adequately 
apable ofproviding a platform for in
entive-based mobile P2P 
ollaborations.Existing e
onomi
 s
hemes for distributed systems [Gro03,KS89℄ and stati
P2P networks [GBM01, KSGM03a, LDHS05℄ do not address top-k queriesand M-P2P issues su
h as frequent network partitioning and mobile re-sour
e 
onstraints. E
onomi
 in
entive s
hemes for mobile ad-ho
 networks(MANETs) [BH03℄ and M-P2P networks [WXS04,XWR06℄ do not addresstop-k query pro
essing. Furthermore, the top-k query pro
essing approa
hes[SIC08,HC07,JCCL10,HSHN09,LCLC04,LXL10,WXTL07℄ do not 
onsidere
onomi
 in
entive s
hemes and M-P2P ar
hite
ture.In
identally, data availability in M-P2P networks is typi
ally lower than in�xed networks due to frequent network partitioning [HM06℄ arising frompeer movement and/or peers autonomously swit
hing `o�' their mobile de-vi
es. Data availability is further exa
erbated due to rampant free-riding[GBM01,KSGM03a,LDHS05℄, whi
h is 
hara
teristi
 of P2P environments.Furthermore, MPs generally have limited resour
es (e.g., bandwidth, energy,memory spa
e). Sin
e sending/re
eiving messages expend the limited energyresour
es of MPs, minimizing the 
ommuni
ation tra�
 be
omes a ne
essityto address energy 
onstraints. Thus, e
onomi
 in
entive s
hemes be
ome ane
essity to enti
e resour
e-
onstrained MPs with in
entives to provide datafor answering queries.This work proposes the E-Top system for addressing e�
ient top-k querypro
essing in M-P2P networks. In E-Top, we have 
onsidered that a givenquery-issuer sends lo
ation-based range-
onstrained top-k queries to the M-P2P network. Brokers fa
ilitate top-k query pro
essing in lieu of a 
ommis-sion. E-Top requires a query-issuing MP to pay a pri
e (in virtual 
urren
y)for obtaining its queried top-k result. This pri
e is used for making pay-ments for in
entivizing rankers (i.e., peers that send data items to answerthe query), brokers and relay peers. Thus, an MP has to earn adequate 
ur-ren
y by providing servi
e (as a broker, ranker or relay peer) before it 
an



3.1. Overview 53issue its own top-k queries, thereby dis
ouraging free-riding.E-Top issues e
onomi
 rewards to the rankers, whi
h send relevant dataitems (i.e., those that 
ontribute to the top-k query result), and penalizespeers for sending irrelevant items. This in
entivizes MPs to send only thosedata items (to the broker), whi
h have a higher probability of being in thetop-k results, thereby optimizing the 
ommuni
ation tra�
. MPs use therewards/penalties as feedba
k to re-evaluate their items' s
ores. We shallhen
eforth use the term payo�s to refer to rewards/penalties.The main 
ontributions of E-Top are three-fold:1. It proposes two e
onomi
 in
entive s
hemes, namely ETK and ETK+,in whi
h MPs a
t individually towards top-k query pro
essing. Theses
hemes assign payo�s to MPs for in
entivizing parti
ipation and forenabling them to re-evaluate their data item s
ores.2. It extends ETK and ETK+ to propose a peer group-based e
onomi
 in-
entive s
heme ETG, whi
h de�nes three payo� allo
ation approa
hes.3. It is indeed e�e
tive in improving the performan
e of top-k queries interms of query response times and a

ura
y at reasonable 
ommuni
a-tion tra�
 
ost, as demonstrated by our performan
e evaluation.E-Top also dis
ourages free-riding due to its e
onomi
 nature. ETK andETK+ di�er in that while ETK performs equal distribution of payo�s to therankers, ETK+ uses a weighted distribution. In ETG, ad ho
 groups of MPsare formed in the vi
inity of the query lo
ation. Ea
h group has a leader for
oordinating the top-k query pro
essing. In 
ontrast with ETK and ETK+,where individual MPs dire
tly send their top-k items to the broker, querypro
essing in ETG pro
eeds by means of group members sending their indi-vidual top-k items to the group leader. The group leader sele
ts (i.e., `�lters')the top-k items to be sent to the broker based on the relative frequen
ies ofthe items in the individual top-k lists. In our appli
ation s
enarios, some
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inity of the query lo
ation 
an be thegroup leaders.For simpli
ity we have 
onsidered the uniformly distributed grid regions toshow 
losed-group system. The other suggested approa
h based on dynami
density-based grid 
an also be 
onsidered to form groups in M-P2P networks.In that 
ase, system may require more brokers to provide better servi
es tothe mobile peers, but at the 
ost of 
ommuni
ation overhead in terms ofenergy and bandwidth. Furthermore, we 
onsidered to 
hoose top-1 brokertowards serving top-k query into a given query path. There is no restri
tionover 
onsidering multiple brokers (i.e., top-2, top-3 et
.), but in that 
ase theinter-broker 
ommuni
ation further in
reases 
ommuni
ation tra�
, therebydegrading overall performan
e of the system. This is due to that the nearbybrokers periodi
ally ex
hange the information (su
h as global ranking list(TG), number of unique MPs that intera
ted with brokers, et
.) with ea
hother, to maintain 
onsisten
y into su
h dynami
 environment.In the three approa
hes deployed by ETG for payo� allo
ation among groupmembers for any given top-k query, group penalties are equally distributed,thus the s
hemes di�er in their allo
ation of group rewards. Group rewardsare allo
ated in the following three ways i.e., equally, based on the number ofrelevant items sent and based on the revenue earned from those items. Thegroup leader re
eives a per
entage of the group rewards as a 
ommission,thereby in
entivizing it to parti
ipate. Group-based 
ollaboration providesbetter in
entivization sin
e it is likely to lead to higher rewards and lowerpenalties due to the following reasons. First, MPs risk a lower amount ofindividual penalties due to the sharing of penalties among group members.Se
ond, MPs have a higher probability of obtaining rewards be
ause the`�ltering' performed by the group leader ensures that 
olle
tive top-k answersfrom group members are likely to be of higher quality (i.e., more relevant anda

urate) than individual answers.To the best of our knowledge, none of the existing top-k query pro
essings
hemes in M-P2P environment uses in
entives. Hen
e, as referen
e, we
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entive-based top-k pro
essing s
heme for MANETs.We designate this s
heme as NETK (Non-E
onomi
 Top-K), proposedin [HHS+10℄. Although NETK does not provide in
entives to the MPs. itis 
losest to our top-k query pro
essing s
heme. Notably, NETK does notin
orporate the notion of item re-ranking as no feedba
k has been sent ba
kto the MPs, who parti
ipated in the top-k query pro
essing.The results of our performan
e evaluation indi
ate that ETG outperformsboth ETK and ETK+ due to its group-based s
heme, whi
h better in
en-tivizes MP 
ollaboration in top-k query pro
essing due to e�e
tive sharingof rewards and penalties among group members. Moreover, ETK+ outper-forms ETK due to its weighted distribution (of rewards and penalties toranker MPs), whi
h provides better in
entives to ranker MPs than ETK'sequal distribution. ETK, ETK+ and ETG outperform NETK essentiallydue to the e�e
tiveness of e
onomi
 payo�s and item re-ranking.The results also indi
ate that at higher values of k, query response timesin
rease for all the s
hemes due to longer query paths. This is be
ause fewernearby rankers are able to provide enough relevant data items pertaining tothe top-k query. Our s
hemes exhibit good s
alability with in
reasing numberof MPs be
ause larger network implies the presen
e of more rankers. Ours
hemes exhibit improvement in performan
e as the 
ommuni
ation rangeof MPs in
reases. This is be
ause in
rease in 
ommuni
ation range has thee�e
t of bringing the MPs `nearer' to ea
h other, thereby improving dataa

essibility.As the per
entage of MP failures in
reases, our s
hemes degrade in perfor-man
e partly due to de
reased overall MP parti
ipation and partly be
auseof failure of MPs that host data relevant to the top-k queries. ETG performsbest when the group sizes are neither too small nor too large. This is be
ausemedium-sized groups are better able to leverage the bene�ts of group-based
ollaboration.The remainder of this 
hapter is organized as follows. Se
tion 3.2 details the
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hite
ture of E-Top. Se
tion 3.3 dis
usses the ETK and ETK+ e
onomi
in
entive s
hemes in E-Top. Se
tion 3.4 presents the peer group-based ETGe
onomi
 in
entive s
heme of E-Top. Se
tion 3.5 reports our performan
estudy. We summarize E-Top in Se
tion 3.6 with dire
tions for future work.3.2 Ar
hite
ture of E-TopThe ar
hite
ture of E-Top 
onsists of MPs that 
an assume one of the fourfollowing roles: query-issuer, broker, ranker and relay. Notably, these rolesare inter
hangeable e.g., a given MP 
an be a broker for a top-k query Q1,but a ranker for another top-k query Q2.
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QI

query-issuer brokers rankers
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Send confirmation message to 

selected broker
3

Broadcast top-k query
1

Broadcast top-k query
4

Send individual TR lists
5

Send computed top-k result
6

Send payment to broker
7

Send computed payoffs to 

rankers
8Figure 3.1: Illustrative example of query pro
essing in E-TopQuery-issuer QI issues queries of the form (k, L, τQ, ρ), where k is the num-ber of data items that are requested in the lo
ation-based range-
onstrainedtop-k query. L represents the query lo
ation, and is of the form of {(x, y),

rad}. Here, (x, y) represents the spatial 
oordinates asso
iated with a givenquery Q, while rad represents the radius. For example, QI may want to �ndrestaurants within 1 km of its 
urrent lo
ation L. τQ is the deadline time of
Q. ρ is the query pri
e that QI will pay to obtain the top-k query result1. AnMP de
ides the query pri
e based on his/her information. Moreover, brokers1Query results re
eived by QI after the deadline entail no payments.
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ally broad
ast pri
e ranges for data from di�erent domains su
h asrestaurants, travel and so on. MPs 
an also subs
ribe for su
h information,and brokers 
an inform them from time to time. Broker B a
ts as a media-tor, whi
h fa
ilitates e�
ient top-k query pro
essing in lieu of a 
ommission.As we shall see in Se
tion 3.3, B also performs e
onomi
 in
entive fun
tionsi.e., distribution of payo�s.Rankers are MPs, whi
h provide data items for answering the top-k query.Rankers are rewarded if their items 
ontribute to the top-k result, otherwisethey are penalized. Relay MPs forward messages in multi-hop M-P2P net-works in lieu of a small 
onstant 
ommission. Notably, payments to rankersare typi
ally higher than that of broker 
ommissions in order to better in
en-tivize MPs to provide data. This is be
ause MPs providing data generally
ontribute signi�
antly more to data availability than brokers. Furthermore,relay 
ommission is lower than that of broker 
ommission to better in
entivizebrokerage fun
tions as 
ompared to relay fun
tions.During the network 
on�guration phase in the beginning, the broker will bepre-de�ned, but 
an also be ele
ted based on the resour
es. We assume thatan MP with relatively more resour
es may want to be
ome a broker for agiven query Q, as it 
an provide better servi
es, while in 
ase of low resour
es,an MP should play a role of relay peer, as it requires very few resour
es forrelay servi
e. Moreover, an MP, whi
h has an answer to a given query Q,may be more interested to be a ranker for that query to earn rewards. Hen
e,our system does not assign spe
i�
 roles to the MPs, thereby providing themwith the �exibility to de
ide their respe
tive roles for a given query. However,the role assignment for a broker is done in a pre-de�ned manner.Notably, we divide the region of interest into square 
ells of equal area ina grid. Sin
e MPs may not be uniformly distributed a
ross the 
ells, thedensity 
an vary a
ross 
ells. Observe that the density d of a broker's 
ell isan important 
onsideration for E-Top be
ause a broker 
onne
ted with moreMPs (or groups in 
ase of ETG) is preferable over one 
onne
ted with lessMPs (or groups). In E-Top, a broker estimates d for its 
ell by examining the
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ture of E-Top 58average number of unique MPs, whi
h had 
onne
ted to it, during the past
N time periods. Observe that this is a moving average. (We divide timeinto equal intervals 
alled periods, the size of a period being appli
ation-dependent.) The results of our preliminary experiments showed that N = 5is a reasonable value for our appli
ation s
enarios. We have de�ned d asfollows:

d = 1
N

∑N
i=1 ( npi /

∑R
j=1 tpij ) (3.1)where npi is the number of unique MPs, whi
h had 
onne
ted to the brokerduring the ith time period, while tpij is the total number of MPs in the jthregion of interest and R is the number of regions that broker passed throughduring the ith time period. Whenever the brokers 
ome within 
ommuni-
ation range of ea
h other, they ex
hange information about tpij . Brokersperiodi
ally broad
ast the value of tpij in their respe
tive region so that allthe MPs are aware of the value of tpij . Sin
e npi < ∑R

j=1 tpij, therefore
0 6 d 6 1.3.2.1 Query pro
essing in E-TopFigure 3.1 illustrates query pro
essing in E-Top. Query-issuer QI broad
astsa top-k query Q, and waits forW time units to get replies from the potentialbrokers. W is 
omputed as below:

W = ( 1 − d ) × τQ (3.2)where d is the density of the query issuer's region (i.e., square 
ell), and it is
omputed using Equation 3.1. τQ is the query deadline time of Q. Notably,
QI estimates the value of npi in Equation 3.1 as the average number ofunique MPs, whi
h 
onne
ted to it during re
ent time periods. As Equation3.2 indi
ates, QI is willing to wait longer for replies from potential brokersif the density of its region is low.Ea
h broker replies to QI with information about its remaining energy En,
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e ρbid, 
urrent 
urren
y Curr, distan
e Dist from QI and density
d of its 
urrent lo
ation. QI 
omputes the average lo
ation density davgas 1

n

∑n
i=1 di, where di is the density for the ith broker, and n is the totalnumber of brokers that replied to QI. Now, as 
andidates, QI will only
onsider brokers, whose value of d ex
eeds davg be
ause brokers in higher-density lo
ations are likely to provide better servi
e due to their proximityto an in
reased number of potential rankers. Thus, for ea
h broker, whosedensity ex
eeds davg, QI 
omputes a s
ore η and sele
ts the broker with thehighest value of η for pro
essing Q. η is 
omputed below:

η = ( w1 ×En ) + ( w2 / ρbid ) + ( w3 / Curr ) + ( w4 / Dist )(3.3)where w1 to w4 are weight 
oe�
ients su
h that 0 < w1, w2, w3, w4 6 1 and
∑4

i=1wi = 1. Thus, E-Top prefers relatively high-energy brokers be
ausethey are less likely to run out of energy, while pro
essing the query. Lowervalues of bid pri
es are preferred by QI sin
e it wants to obtain the queryresult at lower 
ost. Brokers with less 
urren
y are given higher preferen
eto fa
ilitate revenue-balan
ing a
ross brokers. This prevents low-
urren
ybrokers from starvation, whi
h may result in de
reased number of brokers inthe network. QI prefers relatively nearby brokers to obtain the query resultin a timely manner.Now the broker broad
asts Q with time-to-live (TTL) of n hops. (Results ofour preliminary experiments showed that n = 6 is a reasonable value for ourappli
ation s
enarios.) The high value of TTL leads to the longer query path,hen
e it in
reases both the query laten
y and the 
ommuni
ation overhead.But very low value of TTL also has negative impa
ts su
h as de
reasing inpeer parti
ipation, thereby redu
ing the data a

ura
y and the su

ess rate.Hen
e, 
onsidering the impa
ts of very high or very low values of TTL, we
onsidered to keep the value of TTL reasonable, whi
h is dependent on theappli
ation s
enario and the density of the region. Here, low-density regionmay need high TTL and vi
e versa.
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h ranker R has an individual item ranking list TfR, ea
h data item ofwhi
h is asso
iated with an item rank r and a sele
tion probability µ. No-tably, the value of r is subje
tive be
ause it is autonomously assigned to anitem by a given ranker. The impli
ation is that the same item may be rankeddi�erently at di�erent rankers. As we shall see in Se
tion 3.3, µ fa
ilitatesthe adjustment of item sele
tion probability based on re
ent payo�s assignedto a given item. Using the values of µ and r, ea
h ranker R 
omputes a s
ore
γ and sele
ts items with relatively higher values of γ to send to the broker.
γ is 
omputed below:

∀i ∈ TfR : γi = ( w1 × (NTfR − ri)/NTfR ) + ( w2 × µi ) (3.4)where ri and µi are the rank and the sele
tion probability of item i respe
-tively. NTfR is the total number of items in TfR. Here, w1 and w2 are weight
oe�
ients su
h that 0 < w1, w2 6 1 and w1 + w2 = 1. E-Top stipulatesthat w2 > w1 to give higher weightage to the item sele
tion probability thanto the rank of the item. As we shall see in Se
tion 3.3, this is 
onsistentwith the overall obje
tive of E-Top i.e., linking item re-ranking with payo�s.Moreover, these weight 
oe�
ients are appli
ation-dependant i.e., a

ord-ing to appli
ation's requirement, weight 
oe�
ients are set to any valuesin-between 0 and 1. There is no restri
tion on whether to 
hoose w1 > w2or w2 > w1, but to prioritize the item's sele
tion probability, we have 
hosen
w2 > w1 for our proposed appli
ation s
enarios. In this work, based on ourexperimental results, we set w1 = 0.2 and w2 = 0.8 for all the MPs. Further-more, ea
h ranker is asso
iated with a risk pro�le δ, where 0 < δ 6 1. Onlyitems, whose respe
tive values of γ ex
eed δ, are 
onsolidated by the rankerin a list TR and sent to the broker. Thus, TR is a sorted item ranking list,whi
h is sent by an individual MP in response to a query. Hen
e, TR ⊆ TfR.Observe that as the value of δ in
reases, the risk of the ranker in in
urring apenalty de
reases.E-Top 
onsiders that ea
h broker has a global ranking list, whi
h we shall
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eforth designate as TG. Here, TG is a global standard (e.g., mi
helinguide) a
ross the system for 
onsidering guideline for the items' ranks. Thisapproa
h is adopted to in
orporate the global rank views (su
h as Internetor feedba
k-based) about the items along with the lo
al rankings. TG isperiodi
ally ex
hanged among nearby brokers. Upon re
eiving the individual
TR lists from possibly multiple rankers, the broker B 
ollates and 
omparesthem with TG. B parses TG in a top-down fashion as follows. If an item i in
TG o

urs in at least one of the individual TR lists, it is added to the top-kresult set TA along with the unique identi�ers of the rankers that sent i. (In
ase i does not o

ur in any of the individual TR lists, B simply traversesdownwards to the next item in TG.) B 
ontinues parsing TG in the abovemanner until the result set TA 
ontains k items. Then B sends TA to QI.Notably, if TA 
ontains less than k items, the result set is deemed to bein
omplete, and it is not sent to QI.Upon re
eiving TA, QI pays B, whi
h dedu
ts its own 
ommission beforedistributing the payo�s to rankers and 
ommissions to relay MPs. (We shalldis
uss ranker payo�s, and broker and relay 
ommissions in Se
tion 3.3.)Then ea
h ranker R re-evaluates the sele
tion probability µ of ea
h item inits own TR based on re
eived payo�s, and then re-
omputes the values of γfor these items.In this work, we do not address the formation of the global list TG be
ausethis is appli
ation-dependent. Moreover, we do not 
onsider updates to TGbe
ause it may exist for a long time. Furthermore, any update to TG mustbe propagated to all the relevant brokers, whi
h also in
reases the 
ommuni-
ation overhead.
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hemes in E-Top: ETK and ETK+ 623.3 E
onomi
 in
entive s
hemes in E-Top: ETKand ETK+This se
tion dis
usses the ETK and ETK+ e
onomi
 in
entive s
hemes usedby E-Top. We de�ne an item i to be relevant to a top-k query Q if ito

urs in the top-k query result set TA. We de�ne a su

essful ranker w.r.t.its (sent) data item i if i is relevant to Q, otherwise the ranker is deemedto be unsu

essful. Thus, a ranker may be su

essful w.r.t. item i, butunsu

essful w.r.t. another item j. Notably, in ETK and ETK+, a ranker
an only parti
ipate for query Q if it hosts at least k relevant items to Q.In
identally, a given ranker R has no way of knowing if its sent-result would�nally o

ur in TA. R may maintain histori
al data 
on
erning items thathave o

urred previously in TA in response to similar queries. However, if anew query 
omes to R, no su
h histori
al data would be available at R. Insu
h 
ases, R would send its individual top-k ranking list without 
onsideringthe histori
al data.In both ETK and ETK+, the total payment ρR to be distributed to thesu

essful rankers is 
omputed as follows:
ρR = ρ− ρB − ρRL (3.5)where ρ is the query pri
e paid by QI to the broker, ρB is the broker 
ommis-sion and ρRL is the total amount of relay 
ommission that the broker will payto the relay MPs in the respe
tive su

essful query paths. Notably, the valueof ρB is appli
ation-dependent. For both ETK and ETK+, we de�ned ρB as

10% of the query pri
e ρ. Although our s
hemes 
an be intuitively general-ized to work with other values of ρB, results of our preliminary experimentsshowed that our s
hemes perform best when ρB is in the range of 5% to 15%of ρ. This is also 
onsistent with our overall obje
tive of providing betterin
entives to rankers than to brokers. For both ETK and ETK+, we de�ne
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ommission ρRL as 1% of the query pri
e ρ, thereby in
entivizingbrokers more than relay peers.As we shall see shortly, the rewards to be assigned to the su

essful rankersare 
omputed based on the value of ρR. Similarly, the penalties to be assignedto the unsu

essful rankers are also 
omputed based on the value of ρR. Thebroker re
eives the penalty payments from the unsu

essful rankers, andsends the total amount of penalty payments ba
k to QI. Thus, it is possiblefor the e�e
tive payment made by QI to the broker to be less than ρ.Notably, as is 
ommon with 
urren
y-based approa
hes, there is a bootstrap-ping problem. That is, an MP must �rst earn 
urren
y by providing servi
es,but at the beginning, no MP 
an request for those servi
es be
ause no MPhas any 
urren
y yet. To address the bootstrapping problem, the system willprovide some initial 
urren
y to every MP at the beginning.3.3.1 ETKIn ETK, ρR is equally divided among all the relevant items. Then ea
hranker, whi
h su

essfully sent item i, re
eives a reward Pi that is equalto the total reward for item i divided by the total number fi of su

essfulrankers w.r.t. item i. Given that the top-k result set is TA, Pi is 
omputedas follows:
∀i ∈ TA : Pi = 1

fi

(

ρR
k

) (3.6)The reward REWRj assigned to a given ranker Rj is the total amount thatit obtains for ea
h of its relevant items i.e., those that o

ur in the TA ∩ TRj ,where TRj is the individual rank list of Rj. Given the set SRanker of rankers,the 
omputation of REWRj follows:
∀j ∈ SRanker : REWRj =

∑

i∈(TA∩TRj)

Pi (3.7)ETK de�nes penalties based on the notion of opportunity 
ost. This is be-
ause for all su

essful items, whi
h were not sent by ranker Rj, Rj would
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urren
y if it had sent those items. Hen
e, the penalty PENRjassigned to Rj equals∑Pi, where i represents items that o

ur in TA−TRj .The 
omputation of PENRj follows:
∀j ∈ SRanker : PENRj = ψ ×





∑

i∈(TA−TRj)

Pi



 (3.8)where ψ is the fa
tor that represents the trade-o� between 
ommuni
ationoverhead and peer parti
ipation. If the value of ψ is high, 
ommuni
ationoverhead would redu
e be
ause peers would be wary of sending data to thebroker due to the higher penalties assigned to unsu

essful rankers. However,this would also redu
e peer parti
ipation. On the other hand, if the valueof ψ is low, peer parti
ipation would in
rease albeit at the 
ost of in
reased
ommuni
ation overhead due to lower disin
entives for sending items thatdo not 
ontribute to the top-k result. In this work, we set the value of ψ to
1.3, whi
h implies that the penalties for sending unsu

essful items is 30%more than the reward for sending su

essful items. This 
reates disin
entivesfor sending out unsu

essful items, while keeping the peer parti
ipation ata reasonable level. We leave the determination of an optimal value for ψ tofuture work.The net payment NETRj re
eived by Rj is the di�eren
e between its totalreward and its total penalty. NETRj is 
omputed as follows:

∀j ∈ SRanker : NETRj = REWRj − PENRj (3.9)Now, based on the payo�s re
eived, Rj will re-evaluate the sele
tion prob-ability of all the items in its individual TRj . ETK performs rank-weightedin
rease/de
rease in µ for ea
h item, depending on whether the item is re-warded or penalized. For ea
h item i in TRj , the value of µij is 
omputed asfollows:
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∀j ∈ SRanker, ∀i ∈ TRj :

µij =















min( µij + αup

(

|TRj|−rij
|TRj|

)

, 1 ), if i is rewarded
max( µij − αdown

(

|TRj|−rij
|TRj|

)

, 0 ), if i is penalized (3.10)where rij is the rank of item i in TRj . Observe that, µij in
reases slightly forhigher-rank items that re
eived rewards but de
reases signi�
antly in 
aseof a penalty. Similarly, µij in
reases signi�
antly for lower-rank items thatre
eived rewards but de
reases relatively slightly in 
ase of a penalty. Here,
αup and αdown represent the weight 
oe�
ients for assigning rewards andpenalties respe
tively. ETK stipulates that 0 < αup, αdown 6 1 and αup <

αdown to ensure that penalties ex
eed rewards, thereby 
reating disin
entivesfor rankers in terms of sending out items that are not relevant. In this work,we set the values of αup and αdown to 0.1 and 0.3 respe
tively. We leave thedetermination of optimal values of αup and αdown to future work.3.3.2 ETK+In ETK+, ρR is divided among all the items in the top-k result TA basedon their respe
tive rank-weights i.e., ea
h item i with its asso
iated rank rihas weight wi = (k − ri), where highest to lowest rank 
ounts are from 0to (k − 1). Furthermore, total number W of weights of all items in TA is
omputed as W =
∑k

i=1wi = k (k + 1)/2. Similar to ETK, ea
h ranker,whi
h su

essfully sent item i, re
eives a reward Pi that is equal to the totalreward for item i divided by the total number fi of su

essful rankers w.r.t.item i. Thus, in ETK+, Pi is 
omputed as follows:
∀i ∈ TA : Pi =

1

fi

( wi
W

× ρR

) (3.11)Consequently, rewards and penalties assigned to ea
h ranker Rj are 
om-puted as in Equations 3.7 and 3.8 respe
tively, using the value of Pi fromEquation 3.11. Hen
e, the net payment re
eived by Rj is 
omputed by Equa-



3.3. E
onomi
 in
entive s
hemes in E-Top: ETK and ETK+ 66tion 3.9.Now, ea
h ranker Rj will re-evaluate the s
ore (e�e
tively the sele
tion prob-ability µ) of ea
h item i in its top-k rank list TRj on the basis of its re
eivedpayo�s. The e�e
tive 
hange in the sele
tion probability of an item dependsupon two fa
tors: (a) the notion of item sele
tion potential w.r.t. the riskpro�le (δ) (b) earning potential of the ranker Rj. Item sele
tion potentialin
reases as the di�eren
e between µ and δ in
reases. Average sele
tion po-tential for rewarded and penalized items for ea
h ranker Rj are 
omputed as
sj and s′j respe
tively. The 
omputations of sj and s′j are shown below:
∀j ∈ SRanker :

sj =
1

|TRj ∩ TA|





∑

i∈(TRj∩TA)

(µij − δj)



 (3.12)
s′j =

1

|TRj − TA|





∑

i∈(TRj−TA)

(µij − δj)



 (3.13)where TRj is the top-k rank list of Rj, TA is the top-k result of a query Q,
µij is the sele
tion probability of item i in TRj and δj is the risk pro�le of Rj.Earning potential ej of ea
h ranker Rj is a measure of its item sele
tione�
ien
y. ej = | (REWRj − PENRj)/(REWRj + PENRj) |. Based on thepayo� of ea
h item i in TRj , the new (re-evaluated) value of µij is 
omputedas follows:
∀j ∈ SRanker, ∀i ∈ TRj :

µij =











min( µij + αup
( sj+ej

2

)

, 1 ), if i is rewarded
max( µij − αdown

(

s′j+ej

2

)

, 0 ), if i is penalized (3.14)where αup and αdown are the weight 
oe�
ients dis
ussed in Equation 3.10.
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omputations in ETK and ETK+. In Figure 3.2a,observe how ea
h ranker R 
omputes the value of γ using Equation 3.4 with
w1 = 0.2 and w2 = 0.8. For ranker R1, the elements of TR1 are shaded in greyi.e., TR1 = {60, 51, 77} be
ause their respe
tive values of γ ex
eed 0.8 (δ1 =
0.8). Figure 3.2b depi
ts the payo� 
omputations with ψ = 1.3. Observe thatETK+ assigns higher penalties (than ETK) to rankers for sending irrelevantitems e.g., ETK+ assigned 97.50 to R3 as 
ompared to 78.00 in ETK. Figure3.2
 depi
ts the re-evaluation of the sele
tion probability µ using Equation3.14 with αup = 0.1 and αdown = 0.3.
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TfR1 (/1 = 0.8)

r id � �

0 77 0.87 0.90

1 44 0.69 0.72

2 51 0.95 0.90

3 47 0.47 0.49

4 26 0.37 0.38

5 60 0.98 0.84

6 73 0.88 0.73

TfR2 (/2 = 0.5)

r id � �

0 28 0.47 0.58

1 53 0.23 0.36

2 84 0.67 0.70

3 86 0.97 0.92

4 14 0.26 0.33

5 83 0.22 0.28

6 36 0.36 0.37

7 60 0.60 0.54

8 45 0.60 0.52

9 97 0.95 0.78

TfR3 (/3 = 0.3)

r id � �

0 16 0.10 0.28

1 6 0.28 0.40

2 42 0.25 0.36

3 95 0.45 0.50

4 51 0.63 0.62

5 60 0.37 0.40

6 29 0.20 0.24

7 84 0.10 0.14

8 87 0.71 0.61

9 72 0.75 0.62

TR1

60

51

77

TR2

86

97

84

TR3

72

87

51

TG

id

95

52

60

13

22

84

51

23

97

87

63

TA

60

84

51(a) Compilation of top-k result TA (k = 3)
Pj (ETK) Pj (ETK+)

TA !R / k R1 R2 R3 !R / k R1 R2 R3

60 30 30 - - 45 45 - -

84 30 - 30 - 30 - 30 -

51 30 15 - 15 15 7.5 - 7.5

REWRi 45 30 15 REWRi 52.5 30 7.5

Ranker TA-TRi PENRi (ETK) PENRi (ETK+)

R1 {84} 1.3 x 30 = 39.00 1.3 x 30 = 39.00

R2 {60, 51} 1.3 x (30+15) = 58.50 1.3 x (45+7.5) = 68.25

R3 {60, 84} 1.3 x (30+30) = 78.00 1.3 x (45+30) = 97.50(b) Computation of rewards and penalties
R1 (/1 = 0.8)

id � �ETK �ETK+

77 0.87 0.57 0.82

44 0.69 0.69 0.69

51 0.95 1.00 0.96

47 0.47 0.47 0.47

26 0.37 0.37 0.37

60 0.98 1.00 0.99

73 0.88 0.88 0.88

R2 (/2 = 0.5)

id � �ETK �ETK+

28 0.47 0.47 0.47

53 0.23 0.23 0.23

84 0.67 0.75 0.71

86 0.97 0.76 0.89

14 0.26 0.26 0.26

83 0.22 0.22 0.22

36 0.36 0.36 0.36

60 0.60 0.60 0.60

45 0.60 0.60 0.60

97 0.95 0.92 0.87

R3 (/3 = 0.3)

id � �ETK �ETK+

16 0.10 0.10 0.10

6 0.28 0.28 0.28

42 0.25 0.25 0.25

95 0.45 0.45 0.45

51 0.63 0.69 0.69

60 0.37 0.37 0.37

29 0.20 0.20 0.20

84 0.10 0.10 0.10

87 0.71 0.65 0.53

72 0.75 0.72 0.57(
) Updates in the sele
tion probabilitiesFigure 3.2: Illustrative example for ETK and ETK+
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heme inE-Top 693.4 ETG: A peer group-based e
onomi
 in
en-tive s
heme in E-TopThis se
tion dis
usses the group-based ETG s
heme.3.4.1 Peer groups in ETGWe de�ne a peer group as a set of MPs, whi
h 
ollaborate in answering agiven top-k query. Re
all that in our appli
ation s
enarios, a query-issuingMP QI may try to �nd top-k restaurants with �happy hours� nearby itself.MPs that are moving nearby QI form ad ho
 groups for answering this query.Thus, groups are formed based on region. The universe is initially dividedinto re
tangular 
ells of equal area, and all the MPs moving within a par-ti
ular 
ell 
onstitute a group. In 
ase there are not su�
ient members ina region at a given point of time, the region 
an be enlarged based on someminimum spatial density threshold. Conversely, group region 
an be shrunkbased on a maximum density threshold. This work does not spe
i�
ally fo-
us on how groups are formed, but existing works [GNVTS11℄ 
an be usedin 
onjun
tion with our work for group formation purposes. Notably, ETGstipulates that ea
h MP 
an belong to any one group at a given point oftime, thereby ensuring that any MP obtains its payo� from not more thanone group leader for a given top-k query.In ETG, ea
h group has a group leader, whi
h fa
ilitates top-k query pro-
essing within the group. A group leader should be an MP with relativelyhigh energy, bandwidth and pro
essing 
apa
ity. Its mobility is typi
allylimited and it stays within the region. In our appli
ation s
enarios, someof the restaurant managers in the vi
inity of the query lo
ation 
an be thegroup leaders. The group leader re
eives a per
entage of the group rewardsas a 
ommission, thereby in
entivizing it to parti
ipate. In this work, we setthe group leader's 
ommission to 5% of the group reward.



3.4. ETG: A peer group-based e
onomi
 in
entive s
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essing in ETG pro
eeds via group members sending their individ-ual list of top-k items to the group leader. The group leader sele
ts the top-kitems to be sent to the broker based on relative frequen
ies of items in theseindividual top-k lists by sorting the items in des
ending order of frequen
y.Then the group leader sends the k items with the highest frequen
ies to thebroker. Ties in item frequen
ies are resolved arbitrarily by the group leader.ETG uses either ETK or ETK+ for performing the following two e
onomi
fun
tions in the top-k query pro
essing. First, brokers assign payo�s to thegroups based on either ETK or ETK+. (These payo�s are allo
ated by thegroup leader among the group members, as we shall des
ribe shortly.) Se
-ond, upon re
eiving the payo�s, group members modify their item sele
tionprobabilities as in either ETK or ETK+. Thus, ETG works in 
onjun
tionwith either of these s
hemes. In our performan
e study, we have �rst shownthe performan
e of ETG in 
onjun
tion with both ETK and ETK+, andthen presented the remaining results 
orresponding to ETG in 
onjun
tionwith ETK+.Re
all that in ETK and ETK+, any given ranker 
an only parti
ipate for atop-k query Q if it hosts at least k items related to Q. In 
ase of ETG, this
riterion is relaxed be
ause even if a ranker does not host k items related to
Q, it 
an still parti
ipate in the top-k query pro
essing as long as the grouphosts at least k items related to Q. Thus, ETG in
reases the opportunitiesfor rankers to 
ontribute to the top-k query pro
essing, thereby providingin
reased opportunities for rankers to earn 
urren
y and also providing ad-ditional in
entives towards ranker 
ollaboration.Group-based 
ollaboration provides better in
entives for MPs to answer top-kqueries. When an MP M a
ts individually in answering top-k queries, it 
anin
ur signi�
ant penalties due to sending irrelevant items to the broker. Thismay dis
ourage M from answering queries. As we shall see shortly, when anMP parti
ipates in a group, both rewards as well as penalties are distributedamong the group members. In e�e
t, this en
ourages MPs to provide answersto top-k queries be
ause in 
ase its answer turns out to be irrelevant, it risks
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entive s
heme inE-Top 71a lower amount of individual penalties due to sharing of penalties amonggroup members. Group-based 
ollaboration also in
reases the probability ofobtaining rewards be
ause 
olle
tive top-k answers from the members of thegroup are likely to be of higher quality (i.e., more relevant and a

urate)than individual answers. As we shall see shortly, this is made possible by the`�ltering' performed by the group leader on the individual top-k lists sentby the group members. In essen
e, group-based 
ollaboration leads to bettere
onomy of s
ale and better results than MPs a
ting individually.3.4.2 Illustrative example of peer groups in ETGFigure 3.3 depi
ts an illustrative example of an instan
e of network topologyin ETG. Now we shall use Figure 3.3 to illustrate the 
on
ept of groups aswell as the steps involved in top-k query pro
essing under the ETG s
heme.In Figure 3.3, P12 and P15 are the query-issuers, P1 to P23 (ex
ept P12and P15) represent the rankers, and B1 to B3 indi
ate the brokers. Thegroups 
orresponding to the queries of P12 and P15 are {G1, G2, G3} and
{G4, G5} respe
tively. The group leaders of G1 to G5 are P3, P5, P16, P21and P22 respe
tively.

L1

L2

P2

P3

P6

P13 P14

P21

P15

P1

P17
P18

P20

B2P10
P11

P4
P5

P23

Query Locations: L1, L2

Group Leader
G1

G4

G5

Local Group

Remote Group

Query−issuing MP

Broker

P22

B1

B3

P9
P8P7

P12

G3

G2

P16

P19

���
���
���

���
���
���

Figure 3.3: Illustrative example of peer groups in ETGIn Figure 3.3, observe that multiple brokers exist. However, given a query
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Q, only one of them a
t as the broker for Q. Broker sele
tion for Q is basedon the value of η that is 
omputed from Equation 3.3, as dis
ussed earlier inSe
tion 3.2. For example, in 
ase of P12's query, the 
andidate brokers are
B1 and B2. For simpli
ity, suppose the energy, bid pri
e and 
urren
y of B1and B2 are equal. In this 
ase, B1 will be sele
ted as the broker be
ause it isnearer to the query-issuer P12. Similarly, in 
ase of P15's query, holding allother fa
tors 
onstant, B3 will be sele
ted as the broker be
ause it is nearer(than B2) to P15.Now let us examine the pro
essing of P12's query. P12 �rst sends out abroad
ast query to list 
andidate brokers in its vi
inity. Based on the re-spe
tive values of the broker s
ores η, suppose P12 sele
ts broker B1 as thebroker for pro
essing its query. Then B1 sends out the query to groups G1to G3, whi
h are nearby the query lo
ation. The group leaders (i.e., P3,
P5, P16) in these groups 
onsolidate the top-k results from their respe
tivegroups and send the results ba
k to the broker. Upon re
eiving the resultsfrom the group leaders, B1 
ompares with its global top-k list to generatethe �nal top-k list, whi
h it sends to the query-issuer P12. At this stage, B1also assigns payo�s to the groups. Notably, the broker's assignment of pay-o�s to the groups is done based on either ETK or ETK+. Then B1 sends thetop-k results to P12 and obtains payment from P12. Finally, B1 sends therespe
tive payments to the group leaders a

ording to its assigned payo�s.3.4.3 Allo
ation of payo�s among group members in ETGGiven a top-k query Q, the resulting payo� for the group has to be allo
atedamong the group members su
h that they are in
entivized towards group-based 
ollaboration.We de�ne a group member as a parti
ipant in query Q if at least one of thetop-k items that it sent to the group leader is sele
ted by the group leaderin the top-k list that the group leader propagates to the broker. On theother hand, we de�ne a group member as a 
ontributor to Q if at least one
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heme inE-Top 73of the top-k items that it sent to the group leader o

urs in the �nal top-klist that is sele
ted by the broker. Thus, the set of 
ontributors is a subsetof the set of parti
ipants for a given top-k query. Based on the notions of
ontributors and parti
ipants, we propose three s
hemes for payo� allo
ationamong group members. In all these proposed s
hemes, penalties are dividedamong all the parti
ipants for a query Q, while rewards are distributed onlyamong the 
ontributors. Thus, the three approa
hes di�er in the way inwhi
h group rewards are allo
ated.Let nP be the number of parti
ipants for Q. Let PENG represent the penaltyfor the group 
orresponding to Q. The penalty PENj for parti
ipant j is
omputed as follows:
PENj =

PENG

nP
(3.15)Notably, all our three proposed approa
hes for payo� allo
ation 
ompute thepenalty PENj in
urred by parti
ipant j by means of Equation 3.15 above.Observe how ETG in
entivizes MP parti
ipation in groups (as opposed toMPs a
ting individually) by redu
ing potential penalties for group membersin two ways. First, the `�ltering' of top-k items performed by the groupleader implies that even if a group member P had sent one or more items(to the group leader), whi
h do not o

ur in the �nal top-k result sele
ted bythe broker, P in
urs no penalty for su
h irrelevant items as long as the groupleader does not send them to the broker. In e�e
t, being part of a groupshields the MP from in
urring penalties to a 
ertain extent. Moreover, sin
ethe group leader re
eives top-k items from multiple group members, it has abroader (and more 
olle
tive) view of the likely top-k results than individualgroup members. This in
reases the likelihood of the group leader's `�ltering'pro
ess being more e�e
tive in predi
ting the �nal top-k results than if thetop-k predi
tions were done by individual MPs.Se
ond, the sharing of penalties a
ross parti
ipants redu
es the penalties in-
urred by those members, whi
h sent out irrelevant items, whi
h were sele
tedby the group leader and whi
h did not o

ur in the �nal top-k results. This
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entivize group members to frivolously send out irrelevant itemsto the group leader be
ause the items should have at least some 
han
e ofo

urring in the �nal top-k result for the group leader to have sele
ted them.In
identally, the equal sharing of penalties a
ross all parti
ipants may re-sult in in
reased penalties for some of the parti
ipants, espe
ially for the
ontributors. For example, even if a 
ontributor had not sent out any ir-relevant items, it still has to pay the penalty due to irrelevant items beingsent by some of the other parti
ipants. However, the 
ost of su
h possibleadditional penalties is o�set by the bene�t obtained by the 
ontributor(s)in terms of avoiding potential penalties due to the group leader's �lteringpro
ess. This explains the rationale for dividing penalties equally among allthe parti
ipants for a given query Q.The rationale for distributing rewards only among the 
ontributors is two-fold. First, it dis
ourages free-riding within the group sin
e a peer has to
ontribute to the �nal top-k query result in order to qualify for obtaininga share of the group reward. Observe that if the group reward were to bedistributed a
ross all the parti
ipants, it would a
t as a disin
entive for the
ontributors sin
e they would earn lower amounts of 
urren
y. Se
ond, itre
ognizes the 
ontribution of the 
ontributors to the group revenue, therebyin
entivizing peer 
ontributions to the group.Now we shall dis
uss the three approa
hes that ETG deploys for allo
ationof group rewards among 
ontributors for a given top-k query Q.Equal allo
ation of payo� (EQ)In EQ, ea
h 
ontributor obtains an equal share of the group reward REWGfor Q. Given that nC is the number of 
ontributors for Q, the reward REWjfor 
ontributor j is 
omputed as follows:
REWj =

REWG

nC
(3.16)
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k of the EQ approa
h is that the allo
ation ofgroup reward is not based on the 
ontribution of individual 
ontributorssin
e it does not 
onsider the number of items 
ontributed by ea
h of them.Item 
ontribution-based allo
ation of payo� (ICON)To address the drawba
k of EQ, we propose ICON. In ICON, ea
h 
ontributorobtains a share of the group reward REWG based on the number of items thatit 
ontributed to the �nal top-k query result. ICON 
omputes the reward
REWj for 
ontributor j as follows:

REWj =
|Cj|

∑nC

g=1 |Cg|
× REWG (3.17)where Cj is the set of items that MP j has 
ontributed to the �nal top-kresult, and nC represents the total number of 
ontributors 
orresponding to

Q.ICON su�ers from the drawba
k that the allo
ation of group rewards is notbased on the a
tual revenue earned from the item (i.e., the reward that isassigned to the item). For example, suppose 
ontributor P1 has 
ontributedthree items, while 
ontributor P2 has 
ontributed only one item. However,the revenue earned by the group from the one item sent by P2 
ould be higherthan that of the total revenue earned from the three items 
ontributed by
P1.Revenue 
ontribution-based allo
ation of payo� (RCON)To address ICON's drawba
k, we propose RCON. In RCON, ea
h 
ontributorobtains a share of the group reward REWG based on the revenue earnedfrom the items that it 
ontributed to the �nal top-k result. RCON 
omputesreward REWj for 
ontributor j as follows:

REWj =

∑

i∈Cj
λi

∑nC

g=1 (
∑

i∈Cg
λi )

× REWG (3.18)
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ontributed to the �nal top-kresult, λi represents the revenue earned for a given item i, and nC representsthe total number of 
ontributors for Q.Illustrative example of group reward allo
ation among 
ontributorsTable 3.1 depi
ts an illustrative example of allo
ation of rewards among 
on-tributors. Consider a top-3 query, for whi
h the result set 
omprises items
{1, 2, 3}. Suppose the relevant items sent by 
ontributors P1, P2 and P3are {1, 3}, {2, 3} and {1} respe
tively. As Table 3.1 indi
ates, the rewardsfor items {1, 2, 3} are {60, 20, 10} 
urren
y units respe
tively. Hen
e, thetotal group reward REWG is the sum of these individual item rewards i.e.,
90 
urren
y units. (For simpli
ity, we ignore the group leader's 
ommissionfor this example.)ItemID ItemReward Contri-butor RelevantItem Set Contributor j's Reward(i) (λi) (j) (Cj) (REWj)EQ ICON RCON

1 60 P1 {1, 3}
90/3 (2/5) × 90 60 + 10 (70/160) × 90

= 30 = 36 = 70 = 39.375

2 20 P2 {2, 3}
90/3 (2/5) × 90 20 + 10 (30/160) × 90

= 30 = 36 = 30 = 16.875

3 10 P3 {1}
90/3 (1/5) × 90

60
(60/160) × 90

= 30 = 18 = 33.750

∑
λi = ∑

|Cj | = 5 Nett = 160
REWj =

90Table 3.1: Illustrative example of group reward allo
ation among 
ontribu-tors in ETGFor EQ, the reward is distributed equally among the 
ontributors, hen
e P1,
P2 and P3 would ea
h obtain a reward of 30 
urren
y units. For ICON, thenumber of relevant items sent by {P1, P2, P3} are {2, 2, 1} respe
tively,Hen
e, the reward for P1 is (2/(2 + 2 + 1)) ∗ 90 i.e., 36 
urren
y units. In
ase of RCON, the rewards for P1's relevant (sent) items {1, 3} are {60, 10}
urren
y units respe
tively, thereby resulting in a total of 70. Similarly, the
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orresponding totals for P2 and P3 are 30 and 60 respe
tively. Thus, RCON
omputes the reward of P1 based on the weighted average of item revenuesearned. Hen
e, P1 obtains (70/(70 + 30 + 60)) ∗ 90 i.e., a reward of 39.375
urren
y units.Observe the di�eren
e in rewards obtained by P2 and P3 under ICON andRCON. In 
ase of ICON, P2 obtains double the reward of P3, even though
P3 
ontributed more revenue to the group. This highlights the drawba
kof ICON. Observe how RCON alleviates this drawba
k by assigning P3 ahigher amount of reward than P2.3.5 Performan
e Evaluation of E-TopThis se
tion reports our performan
e evaluation by means of simulation inOMNeT++ [Pon93℄. MPs move a

ording to the Random Waypoint Model[BMJ+98℄ within a region of area 1000 metres × 1000 metres. The RandomWaypoint Model is appropriate for our appli
ation s
enarios, whi
h generallyinvolve random movement of peers. For example, people looking for top-Parameter Default Value Variations

k 8 4, 12, 16, 20, 24Number of MPs (NMP ) 100 20, 40, 60, 80Per
entage of brokers ( PB ) 20% 10%, 30%, 40%, 50%Queries/time unit 10Communi
ation Range ( CR ) 120m 40m, 80m, 160m, 200mPer
entage of MP failures ( PF ) 20% 10%, 30%, 40%, 50%Group size ( quanti�ed by SG ) 30% 10%, 20%, 40%, 50%Bandwidth between MPs 28 Kbps to 100 KbpsInitial energy of an MP 90000 to 100000 energy unitsMemory spa
e of ea
h MP 8 MB to 10 MBSpeed of an MP 1 meter/s to 10 meters/sSize of a data item 50 Kb to 350KbTable 3.2: Parameters of our performan
e evaluation for E-Top
k restaurants generally move randomly i.e., they do not follow any spe
i�
mobility pattern. Our experiments use a total of 100MPs. Ea
h MP 
ontains
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20 to 25 data items. The default 
ommuni
ation range of all MPs is a
ir
le of 120 metre radius. Table 3.2 summarizes the parameters used inour performan
e evaluation.Query-issuers are sele
ted randomly from among all the MPs in the network.The number of su
h top-k queries issued in the network per time unit is
10, the query deadline τQ being varied randomly between 3 to 5 time units.Query pri
e ρ is 
hosen randomly in the range of 100 to 500 
urren
y units.Broker 
ommission ρB and relay 
ommission ρRL are respe
tively set to 10%and 1% of ρ. For ETG, group leader's 
ommission is set to 5% of the groupreward for a given query. Initial energy of an MP is sele
ted to be randomly inthe range of 90000 to 100000 energy units. Sending and re
eiving a messagerequire 1.5 and 1 energy units respe
tively.Re
all that ea
h ranker is asso
iated with a risk pro�le δ. The number ofMPs with the values of δ as 0.3 (high-risk), 0.5 (medium-risk) and 0.8 (low-risk) are 27, 43 and 30 respe
tively. For all our experiments, the e
onomi
parameters are set as follows: (a) the values of weight 
oe�
ients w1 to w4for 
omputing the broker s
ore η in Equation 3.3 are ea
h set to 0.25 (b)the values of weight 
oe�
ients w1 and w2 for 
omputing the item s
ore γ inEquation 3.4 are set to 0.2 and 0.8 respe
tively (
) the penalty fa
tor ψ (seeEquation 3.8) is set to 1.3 (d) the values of αup and αdown for item sele
tionprobability re-evaluation (see Equations 3.10 and 3.14) are set to 0.1 and 0.3respe
tively.Performan
e metri
s are average response time (ART), pre
ision rate (PREC),query 
ompleteness rate (QCR) and 
ommuni
ation tra�
 (MSG). We de�nea query as 
ompleted if the broker re
eives at least k items from individualrankers (or group leaders in 
ase of ETG) within 70% of the query deadlinetime τQ. Notably, a broker may fail to re
eive at least k items due to reasonssu
h as ranker unavailability and network partitioning. (Queries that are not
ompleted are deemed to be query failures.) We 
ompute ART only for the
ompleted queries. ART = 1

NC

∑NC

q=1(tf − t0), where t0 is the query-issuingtime, tf is the time of the query result rea
hing the query-issuer, and NC is
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ompleted queries. We 
ompute ART in simulation timeunits (t.u.).PREC is the average pre
ision rate over all the queries. Suppose TAq is thetop-k query result and TGq is the global top-k rank list of the respe
tivebroker for a query q. To obtain PREC for q, we measure the number ofitems in TAq whi
h also o

ur in TGq ; then we divide by the number ofitems in TGq . Notably, PREC is 
omputed only for 
ompleted queries. Thus,
PREC = 1

NC

∑NC

q=1

(

|TGq−TAq |
|TGq |

)

× 100.QCR is the ratio of total number NC of 
ompleted queries to the total number
NQ of queries. QCR = ( NC/NQ )×100. We de�ne MSG as the total numberof messages in
urred for query pro
essing during the 
ourse of the experiment.Thus, MSG =

∑NQ

q=1Mq, where Mq is the number of messages in
urred forthe qth query.To the best of our knowledge, none of the existing top-k query pro
essings
hemes in M-P2P environment uses in
entives. Hen
e, for purposes of mean-ingful 
omparison, we adapt an existing non-in
entive-based top-k pro
essings
heme for MANETs. We designate this s
heme asNETK (Non-E
onomi
Top-K), proposed in [HHS+10℄. Although NETK does not provide in
en-tives to the MPs. it is 
losest to our top-k query pro
essing s
heme.In NETK, ea
h MP that re
eives a query message sends ba
k a �xed number,
R, of its holding data items with the R highest s
ores. If ea
h MP �nds thatthe total number of data items re
eived from all its su

essor MPs and itsown data items with the R highest s
ores be
omes larger than k (i.e., top-
k data items), it only sends k data items with the highest s
ores amongthose data items to its prede
essor. Notably, NETK su�ers from the seriousdrawba
k of not being able to en
ourage peer parti
ipation in top-k querypro
essing sin
e it does not provide in
entives. To strengthen NETK, weadapted NETK to our s
enario with R = ⌈k/50⌉ (i.e., 50% of top-k values areallowed to send towards 
ontributing into top-k query) be
ause at this valueof R, NETK has above-average peer parti
ipation (based on the results of
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e Evaluation of E-Top 80our preliminary experimental observations), thereby making NETK a fairlye�
ient approa
h in itself. Furthermore, NETK does not in
orporate thenotion of item re-ranking as no feedba
k has been sent ba
k to the MPs, whoparti
ipated into top-k query pro
essing.3.5.1 E�e
t of peer groups with ETK and ETK+Re
all that ETG uses either ETK or ETK+ for performing some of thee
onomi
 fun
tions (e.g., assignment of payo�s from broker to group leader)during top-k query pro
essing. We designate these variations as ETG(K) andETG(K+) 
orresponding to ETK and ETK+ respe
tively. Figure 3.4 depi
tsthe results. ETG(K+) outperforms ETG(K) due to two reasons. First,ETK+'s rank-weighted payo� strategy provides better in
entivization thanthe uniform in
entivization provided by ETK. Se
ond, ETK+ provides moree�e
tive re-evaluation of the item sele
tion probability µ by tying µ to payo�sasso
iated with rankers' items. In 
ontrast, ETK does not dire
tly link µ topayo�s. However, ETG(K+) in
urs more MSG due to group 
ommuni
ationoverhead. For the remainder of this se
tion, we show the performan
e ofETG in 
onjun
tion with ETK+.3.5.2 E�e
t of variations in the per
entage of brokersWe performed an experiment to determine the per
entage PB of brokers inthe network. Figure 3.5 depi
ts the results. As PB is in
reased from 10% to
20%, ART de
reases and QCR in
reases for all the s
hemes. This is be
ausethe involvement of more brokers in
reases the probability that a given queryis pro
essed by at least one of the brokers. Notably, the sum total of thenumber of brokers and the number of rankers is �xed. Hen
e, when PB isin
reased beyond 30%, the number of rankers redu
es, thereby redu
ing QCRand in
reasing ART (due to more hop-
ounts required to rea
h the rankers).Interestingly, beyond PB = 40%, ETG performs slightly worse QCR than
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(d) MSGFigure 3.4: E�e
t of peer groups with ETK and ETK+both ETK and ETK+ due to a signi�
antly de
reased number of rankers,whi
h make group formation di�
ult.As PB in
reases, PREC in
reases due to the involvement of more brokersfor all the s
hemes. However, PREC exhibits a saturation e�e
t beyond
PB = 30% due to redu
ed number of rankers. As PB is in
reased till 30%,MSG in
reases for all the s
hemes due to the involvement of more brokers.However, beyond PB = 30%, MSG de
reases due to redu
ed number ofrankers. Based on the results, we set the per
entage of brokers to 20% so thatwe 
an obtain good performan
e of E-Top with reasonable 
ommuni
ation
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t of variations in the per
entage of brokerstra�
.3.5.3 Performan
e of ETK and ETK+We 
ondu
ted an experiment using the default values of the parameters inTable 3.2. Figure 3.6 depi
ts the results. As more queries are pro
essed,performan
e improves for ETK, ETK+ and ETG due to in
entives and ef-fe
tive item re-ranking. However, the performan
e eventually plateaus dueto network partitioning and unavailability of some of the rankers. ETK+
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ause it provides better in
entivization and more ef-fe
tive re-evaluation of the item sele
tion probability, as explained for theresults in Figure 3.4. ETG outperforms both ETK and ETK+ due to betterin
entives for group-based 
ollaboration and e�e
tive payo� sharing amonggroup members.
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(d) MSGFigure 3.6: Performan
e of ETK & ETK+NETK performs worse than that of ETK in terms of ART, QCR and PRECdue to less ranker parti
ipation (owing to the la
k of in
entives), whi
h may
ause inadequate items to generate the �nal top-k result. Sin
e the brokerdoes not always re
eive at least k items from rankers, NETK results in a
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ant number of in
omplete query results.MSG in
reases over time for all the s
hemes as more queries are being pro-
essed sin
e MSG is a 
umulative metri
. Interestingly, NETK in
urs lowerMSG than the other s
hemes due to lower levels of ranker parti
ipation inthe absen
e of item re-ranking. ETK+ in
urs lower MSG than ETK be
auseETK+ assigns higher amount of penalties (as 
ompared to ETK) to rankersthat send irrelevant items, hen
e fewer rankers reply to the broker in 
ase ofETK+. ETG in
urs higher MSG than both ETK and ETK+ due to periodi

ommuni
ation between group members for ex
hanging their own individualtop-k lists and for sharing payo�s.3.5.4 E�e
t of variations in kFigure 3.7 depi
ts the e�e
t of variations in k. As k in
reases, QCR de-
reases for all the s
hemes be
ause relatively fewer rankers would be 
apableof parti
ipating in the top-k query pro
essing. This is be
ause a ranker isallowed to send its top-k result only if it hosts at least k items pertainingto the query. ART in
reases due to longer query paths as nearby rankersare unable to provide enough relevant items. The performan
e gap (in termsof ART and QCR) between ETK, ETK+ and ETG keeps de
reasing within
rease in k due to de
reased ranker parti
ipation.As k in
reases, PREC in
reases for all the s
hemes due to in
rease in theprobability of the items (sent by the rankers) being relevant to the top-kresult. For example, if k = 4, an item will 
ontribute to the top-k if itmat
hes one of the four items in the broker's global top-k list TG. However,if k = 24, TG has 24 items, hen
e the ranker-sent item has a better 
han
eof a `mat
h' with any one of the items in TG. ETG and ETK+ exhibit
omparable PREC beyond k = 12 be
ause their in
entives result in the samerankers sending the top-k results at these higher values of k. PREC alsoeventually plateaus for all the s
hemes after k = 12 due to peer mobility,frequent network partitioning and unavailability of some of the rankers.
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NETK(d) MSGFigure 3.7: E�e
t of variations in kAs k in
reases, MSG in
reases for all the s
hemes due to longer query pathsarising from less ranker parti
ipation. However, MSG eventually plateaus at

k = 12 be
ause the in
reased number of hops required to rea
h the relevantrankers is o�set by the de
reased number of relevant rankers.3.5.5 E�e
t of variations in the number of MPsWe 
ondu
ted an experiment to examine the s
alability of our proposeds
hemes. Figure 3.8 depi
ts the results. As the number NMP of MPs in-
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reases, ART in
reases for all the s
hemes due to larger network size. As
NMP in
reases, QCR and PREC in
rease be
ause larger network impliesmore rankers. Observe that the performan
e of NETK is worse than thatof ETK, ETK+ and ETG due to lower levels of ranker parti
ipation in theabsen
e of item re-ranking, as explained for the results in Figure 3.6.
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(d) MSGFigure 3.8: E�e
t of variations in the number of MPsETG outperforms ETK and ETK+ due to more pronoun
ed e�e
t of peergroup 
ollaboration when NMP ex
eeds 40. However, below NMP = 40, ETGperforms slightly worse than ETK+ due to limited e�e
t of group 
ollabora-tion. MSG in
reases for all the s
hemes due to larger network size.
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t of variations in the 
ommuni
ation rangeThe results in Figure 3.9 depi
t the e�e
t of variations in the 
ommuni
ationrange CR of the MPs. In
rease in CR has the e�e
t of bringing the MPs
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(d) MSGFigure 3.9: E�e
t of variations in the 
ommuni
ation range`nearer' to ea
h other. Hen
e, performan
e improves for all the s
hemes dueto data items be
oming `nearer' and more a

essible to query-issuers. Thus,relatively fewer queries fail due to the maximum TTL 
riteria of 6 hops asmore MPs 
ome within range to answer queries. Observe that the rate ofde
rease in ART is not ne
essarily uniform be
ause of deviations arising from
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es at MPs. QCR and PREC exhibit a saturation e�e
tfor all the s
hemes beyond CR = 160 metres due to unavailability of some ofthe rankers.As CR in
reases, MSG in
reases for all the s
hemes be
ause the in
reasedrea
hability of the MPs in
reases 
ommuni
ation among them. With in
reasein CR, a lower number of messages are required to rea
h a given MP, therebyde
reasing MSG. However, more MPs be
ome involved in the pro
essing of agiven query, thereby in
reasing MSG. These two opposing e�e
ts somewhato�set ea
h other at higher values of CR, thereby explaining the reason whyMSG eventually plateaus. Interestingly, ETG in
urs lower MSG than ETKat CR = 40 metres. This o

urs be
ause at su
h low values of CR, the MPsare in e�e
t `far' from ea
h other, thereby redu
ing the e�e
tiveness of group
ollaboration. Consequently, a lower number of messages are required forgroup intera
tions.3.5.7 E�e
t of MP failuresMPs 
an fail due to reasons su
h as depletion of their limited energy resour
es.Figure 3.10 depi
ts the results of the e�e
t of MP failures. As the per
entage
PF of MP failures in
reases, MP parti
ipation de
reases, query paths be
omelonger and fewer potential rankers remain available, thereby degrading theperforman
e of all the s
hemes. Interestingly, at PF = 50%, ETK, ETK+and ETG exhibit 
omparable performan
e due to limited MP parti
ipationmaking the e�e
t of groups and item re-ranking less pronoun
ed. As theresults in Figure 3.10d indi
ate, MSG de
reases with in
rease in PF for allthe s
hemes due to redu
ed 
ommuni
ation overhead among a lower numberof available MPs. Interestingly, detailed examination of the experimental logsindi
ated that beyond PF = 35%, ETG in
urs lower MSG than ETK due todi�
ulties in group formation when relatively fewer MPs are available.
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(d) MSGFigure 3.10: E�e
t of MP failures3.5.8 E�e
t of di�erent payo� allo
ation approa
hes inETGWe 
ondu
ted an experiment to investigate the relative performan
e of ETGwith the di�erent payo� allo
ation approa
hes, namely EQ, ICON and RCON.Figure 3.11 depi
ts the results. As the number of queries in
reases, perfor-man
e improves for all the approa
hes partly due to better �ltering by thegroup leader and partly be
ause parti
ipants lower the item sele
tion prob-ability for penalized items. (Re
all that in this work, parti
ipants in ETG
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rease the item sele
tion probability in the same manner as in the ETK+s
heme.) In e�e
t, the �ltering o

urs iteratively to re�ne the top-k resultsa
ross an in
reased number of queries, thereby improving both QCR andPREC.
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(d) MSGFigure 3.11: E�e
t of di�erent payo� allo
ation approa
hes in ETGICON outperforms EQ be
ause it provides better in
entives to 
ontributors.Unlike EQ, it takes into a

ount the number of relevant items sent by 
ontrib-utors for distributing rewards. Moreover, RCON outperforms ICON sin
e itbetter in
entivizes 
ontributors by tying rewards to the revenue earned bythe items. QCR and PREC saturate for all the approa
hes after 8000 queries
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essed due to network partitioning and unavailability of someof the rankers. RCON in
urs more MSG than ICON, and ICON in
urs moreMSG than EQ be
ause better in
entives entail more parti
ipation towardstop-k query pro
essing.3.5.9 E�e
t of variations in the group sizeWe de�ne the size of a group as the number of MPs in it. We 
ondu
tedan experiment to investigate the e�e
t of variations in the group size. Forsimpli
ity, we divide the region of interest into square 
ells of equal area ina grid. MPs moving within any given 
ell 
onstitute a group, hen
e ea
h
ell 
orresponds to a group. Thus, we vary the group size by adjusting thearea of the 
ells. Hen
e, if we in
rease the area of ea
h 
ell, the group sizein
reases and vi
e versa. Notably, although the 
ells are of equal area, groupsize may vary a
ross 
ells be
ause MPs are not uniformly distributed a
rossthe region.We de�ne a parameter SG to quantify the side-length of an individual 
ellas a per
entage of the total side-length of the region. Re
all that our regionis 1000 metres × 1000 metres. Hen
e, when SG = 10%, ea
h 
ell has anarea of 100 metres × 100 metres, hen
e there will be 100 
ells i.e., groups.Similarly, when SG = 30%, ea
h 
ell has an area of 300 metres × 300 metres,hen
e there will be 11.11 ≃ 12 
ells. (Notably, the group 
orresponding tothe last 
ell is likely to have fewer MPs than the �rst eleven 
ells.) Observehow the number of 
ells (and 
onsequently, groups) de
reases drasti
ally within
rease in SG.Figure 3.12 depi
ts the e�e
t of variations in SG. At low values of SG, thenumber of groups is high, but ea
h group is relatively small in size due tofragmentation. Hen
e, it be
omes more di�
ult for the group leaders toobtain k relevant items for sending to the broker. Thus, group membersbehave more like individual rankers, thereby not fully realizing the bene�tsof group-based 
ollaboration. Hen
e, ETG exhibits improved performan
e
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(d) MSGFigure 3.12: E�e
t of variations in the group sizeas SG is in
reased from 10% to 30% due to in
rease in group size.On the other hand, at high values of SG, group size be
omes large, hen
erelatively fewer groups exist. However, when the group size is too large,performan
e degrades. In the extreme 
ase when the group en
ompassesthe whole region, the performan
e essentially redu
es to that of ETK andETK+ be
ause all the MPs a
t as part of one group. This explains whythe performan
e of ETG degrades and be
omes 
omparable to that of ETKand ETK+, at SG = 40% and beyond. Observe that ETG performs bestat SG = 30% when the group sizes are neither too small nor too large.



3.6. Summary 93Interestingly, MSG is highest for ETG at SG = 30% due to more groupintera
tions in pro
essing a larger number of su

essful queries.3.6 SummaryWe have proposed the E-Top system for e�
iently pro
essing top-k queriesin M-P2P networks. E-Top issues e
onomi
 rewards to the MPs, whi
h sendrelevant data items, and penalizes peers otherwise, thereby optimizing the
ommuni
ation tra�
. Peers use the payo�s as a means of feedba
k to re-evaluate the s
ores of their items for re-ranking purposes.E-Top uses three e
onomi
 in
entive s
hemes, namely ETK, ETK+ andETG. In ETK and ETK+, MPs a
t individually, the di�eren
e being thatETK performs equal distribution of payo�s to the rankers, while ETK+uses a weighted distribution. ETG extends ETK and ETK+ by 
onsideringMP 
ollaboration in groups. Our performan
e evaluation demonstrates thatE-Top is indeed e�e
tive in improving the performan
e of top-k queries interms of query response times and a

ura
y at reasonable 
ommuni
ationtra�
 
ost.The proposed s
hemes in E-Top require some parameters to be tuned manu-ally. In the near future, we plan to extend E-Top by devising an online auto-tuning method for these parameters to enhan
e the usability and novelty ofthe proposed s
hemes. Based on the appli
ation and the real implementa-tion, we 
an �ne-tune these parameters. Moreover, we plan to extend E-Topby in
orporating game-theoreti
 te
hniques.



4
E-Broker: E
onomi
In
entive-based BrokerageS
hemes for Improving DataAvailability in Mobile-P2PNetworks

4.1 OverviewIn a Mobile ad ho
 Peer-to-Peer (M-P2P) network, mobile peers (MPs) inter-a
t with ea
h other in a peer-to-peer (P2P) fashion [MMK09℄. Proliferationof mobile devi
es (e.g., laptops, PDAs, mobile phones) 
oupled with the ever-in
reasing popularity of the P2P paradigm (e.g., Kazaa, Gnutella) stronglymotivate M-P2P network appli
ations, whi
h fa
ilitate MPs in sharing infor-mation on-the-�y. For example, an appli
ation 
ould involve an MP lookingfor an available parking slot within 1 km of its 
urrent lo
ation. MPs in thevi
inity 
an 
olle
t information about available parking slots and 
harges,



4.1. Overview 95and then they 
an inform the brokers. The broker 
an then provide theavailable parking slots to the query-issuing MP in terms of pri
e or distan
e(from the user's 
urrent lo
ation). Note that the parking slot availabilityinformation has to be 
urrent. In
identally, although we 
onsider brokers,the nature of the networking environment is still ad ho
 in the sense that thepeers 
an move and they 
an 
hange their brokers. Hen
e, the presen
e ofbrokers does not make our environment 
ompletely stru
tured.In a similar vein, a user 
ould look for a restaurant with �happy hours� (or�manager's spe
ial hours�) within 1 km of her 
urrent lo
ation. A broker 
anfa
ilitate su
h queries by soli
iting information from the peers moving in thevi
inity of the query lo
ation. Similarly, an MP may want to �nd nearbyshops selling Levis jeans in a shopping mall with 
riteria su
h as (low) pri
eduring a spe
i�
 time duration. Observe that su
h ad ho
 queries are spatio-temporal in nature (e.g., parking slot availability information), hen
e they
annot be answered by the broker without obtaining information from otherMPs. In
identally, su
h P2P intera
tions, whi
h fa
ilitate spatio-temporalqueries among MPs, are generally not freely supported by existing wireless
ommuni
ation infrastru
tures. Notably, this resear
h will also 
ontributetowards CrowdDB [FKK+11℄, whi
h uses human input via 
rowdsour
ingto pro
ess queries that 
annot be answered by database systems or sear
hengines.Our target appli
ations mainly 
on
ern slow-moving obje
ts e.g., mobile usersin a shopping mall. Notably, our appli
ation s
enarios 
onsider toleran
e tolower data quality depending upon the requirements of the peers. We mea-sure data quality in terms of image resolution or MP3 audio quality. More-over, observe that the inherently ephemeral nature of M-P2P environmentsne
essitates query deadlines.Data availability in M-P2P networks is typi
ally lower than in �xed net-works due to frequent network partitioning arising from peer movement andalso due to mobile devi
es being autonomously swit
hed `o�'. Rampantfree-riding further redu
es data availability i.e., most peers do not provide



4.1. Overview 96any data [HA05,KSGM03a℄. (Nearly 90% of the peers in Gnutella were free-riders [AH00℄.) In
identally, data availability is less than 20% even in a wiredenvironment [SGG01℄. Given the generally limited resour
es (e.g., band-width, energy, memory spa
e) of MPs and the fa
t that relaying messagesrequires energy, the relay MPs may not always be willing to forward queriesin the absen
e of any in
entives, let alone sear
h pro-a
tively for query resultsin order to ensure timeliness of data delivery. Thus, providing in
entives forrelay MPs to pro-a
tively sear
h for query results be
omes a ne
essity toimprove data availability in M-P2P networks. Notably, many s
hemes su
has repli
ation-based s
hemes, reward-and-punish-based s
hemes and trust-based s
hemes 
an also be used for improving data availability, but the fo
usin this work is on in
entive-based s
hemes. Observe that in
reased MP par-ti
ipation in providing servi
e to the network would likely lead to betterdata availability, better data quality, higher available bandwidth and multi-ple paths to answer a given query.Existing s
hemes for improving data availability in mobile ad-ho
 networks(MANETs) [HM06℄ fo
us on repli
ation, but they do not use e
onomi
 in
en-tives to en
ourage peer parti
ipation. On the other hand, in
entive s
hemes[BH03,CN04,CGKO03,SNCR03℄ for MANETs primarily fo
us on providingin
entives to relay MPs to forward messages, but they do not address theissue of 
reating pro-a
tive MPs for providing value-added routing servi
es.M-P2P in
entive s
hemes [WXS04,XWR06℄ also do not in
entivize relay MPsto perform value-added routing and to host data.This work proposes the E-Broker system for improving data availability inM-P2P networks by in
entivizing MPs to provide value-added routing servi
e.Here, the term �value-added routing servi
e� refers to the broker MPs en-abling pro-a
tive sear
h for the query results by maintaining an index of thedata items (and repli
as) stored at other MPs (as opposed to just forwardingqueries). The main 
ontributions of E-Broker are three-fold:1. It proposes the EIB (E
onomi
 In
entive-based Brokerage) s
heme,
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h in
entivizes relay peers to a
t as information brokers for perform-ing value-added routing and repli
ation in M-P2P networks, therebye�e
tively improving data availability.2. It proposes the EIB+ (enhan
ed E
onomi
 In
entive-based Brokerage)s
heme, whi
h extends the EIB s
heme by in
orporating three di�erentbroker s
oring strategies for providing additional in
entives to brokerstowards providing better servi
e. Brokers with higher s
ores be
omepreferred brokers and they earn higher 
ommissions than 
ommon bro-kers. EIB+ also fa
ilitates load-sharing among the peers.3. It experimentally determines the number of brokers, beyond whi
h themobile peers are better o� without a broker-based ar
hite
ture i.e.,they 
an dire
tly a

ess data from the data-providing peers.E-Broker also dis
ourages free-riding in M-P2P networks. Both EIB andEIB+ use e
onomi
 in
entives in that every data item is asso
iated with apri
e (in virtual 
urren
y). Data item pri
e depends upon several fa
torssu
h as a

ess frequen
y, data quality and estimated response time of a

ess.The query-issuer pays the pri
e of the queried item to the data-provider, anda 
ommission to the broker and the relay MPs in the su

essful query path.Both EIB and EIB+ use a bid-based brokerage approa
h, in whi
h brokers
olle
t bids from data-providers and then 
reate a summary of re
ommenda-tions based on the query preferen
es spe
i�ed by the query-issuer MI . Basedon the bids and the appli
ation, MI sele
ts a single bid depending upon thepri
e that it wants to pay and its desired data quality. After a bid is a

epted,
MI obtains the requested data item dire
tly from the data-provider and paysthe 
ommission to the broker. Brokers also repli
ate frequently queried dataitems to earn revenues as well as to redu
e the tra�
.We have evaluated the performan
e of EIB and EIB+ w.r.t. the non-e
onomi
E-DCG+ repli
ation s
heme [HM06℄. Notably, E-DCG+ is the 
losest toour s
hemes sin
e it aims at improving data availability in MANETs. As
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entives in E-Broker 98a baseline, we also do performan
e 
omparison w.r.t. a non-in
entive andnon-broker-based NIB (Non-In
entive without Brokerage) s
heme to showthe performan
e gain due to brokerage. We experimentally determine thatEIB and EIB+ perform best when the per
entage of brokers is 20% of thetotal number of MPs. Moreover, EIB+ performs best when the per
ent-age of preferred brokers is 20% of the total number of brokers. Both EIB+and EIB outperform E-DCG+ and NIB due to e
onomi
 in
entives and bro-kerage. EIB+ performs better than EIB due to preferred brokerage andload-sharing. Furthermore, E-DCG+ outperforms NIB due to its superiorrepli
ation s
heme.Both EIB and EIB+ exhibit good s
alability with in
reasing number of MPsdue to in
reased opportunities for repli
ation. However, their performan
edegrades with in
reasing per
entage of MP failures essentially due to redu
edMP parti
ipation. With in
reasing workload skew, EIB+ shows better per-forman
e than the other s
hemes primarily due to its load-sharing me
ha-nism. A preliminary version of this work has appeared in [MMK07
℄.The remainder of this 
hapter is organized as follows. Se
tion 4.2 dis
usses ar-
hite
ture of E-Broker system. Se
tion 4.3 details the EIB brokerage s
heme,while Se
tion 4.4 dis
usses the enhan
ed brokerage s
heme EIB+. Se
tion 4.5reports our performan
e study. Finally, we summarize E-Broker in Se
-tion 4.6.4.2 E
onomi
 In
entives in E-BrokerThis se
tion dis
usses the e
onomi
 in
entives in E-Broker. These in
entivesare used by both the EIB and EIB+ brokerage s
hemes. We defer the dis-
ussion of the brokerage s
hemes to Se
tions 4.3 and 4.4. In
identally, ea
hMP maintains re
ent a

ess statisti
s of data items (and repli
as) hosted atitself for the purpose of 
omputing data item pri
es. We assume that there
ould be one original version of any given data item d and multiple repli
as
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entives in E-Broker 99of d hosted at di�erent MPs. Memory spa
e of MPs, bandwidth and dataitem sizes may vary.4.2.1 Querying-related in
entive issuesEa
h query is a request for a data item. Queries are of the form (Qid, DDQ,
ǫ, τS, τH , maxµ, BType, w1, w2, w3), where Qid is the unique identi�er ofthe query, while DDQ represents the desired data quality of the query-issuer
MI . To satisfy query deadlines, MI stops a

epting bids from brokers after
ǫ time units have elapsed sin
e the time of query issue. (The signi�
an
e of
ǫ will be
ome 
lear when we dis
uss our brokerage s
heme in Se
tion 4.3.)Here, τS and τH are MI 's spe
i�ed soft and hard deadlines for answering thequery. maxµ is the maximum pri
e that MI is willing to pay for the query.
BType is MI 's spe
i�ed broker type for the query and assumes two valuesi.e., 0 for a 
ommon broker and 1 for a preferred broker. As we shall see later,in 
ase of EIB+, BType 
an assume either value, but for EIB, BType alwaysequals 0 sin
e EIB does not 
onsider preferred brokers. Here, w1, w2 and
w3 are the query-issuer's spe
i�ed weight 
oe�
ients for the query su
h that
0 ≤ w1, w2, w3 ≤ 1 and w1 +w2 +w3 = 1. As we shall see in Se
tion 4, theseweight 
oe�
ients pertain to query response time, data quality and data itempri
e respe
tively, and they are used by the broker for 
omputing the rankings
ores for the data items in the query result set (See Equation 4.4).Given that a query Q for a data item d is issued at time t0, if Q is answeredwithin time (t0 + τS) (i.e., within the soft deadline), MI pays the pri
e µof d to the data-provider MS. However, if Q is answered within the timeinterval [t0 + τS, t0 + τS + τH ], MI pays a redu
ed pri
e for d to MS, therebypenalizing MS for delayed servi
e. Higher delay implies more redu
tion inpri
e. Finally, if Q is answered after the hard deadline τH , MI does not payany 
urren
y to MS. This is 
onsistent with the timeliness requirements ofM-P2P environments.Observe that there is no in
entive for a data-provider to answer a query af-
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e, data-providers estimate (based on past statisti
s
on
erning network history) whether their transmitted data item will rea
hthe query-issuer within the deadline. Based on their estimate, they de
idewhether to send the data. Notably, su
h estimation requires syn
hronized
lo
ks among the MPs. For example, if an MP re
eives a message with atimestamp, 
lo
k syn
hronization among the MPs would be
ome a ne
essary
ondition for the MP to 
al
ulate the delay. The existing 
lo
k syn
hroniza-tion approa
hes proposed in [SCHS07℄ 
an be used in 
onjun
tion with ourproposed approa
h. However, an MP 
annot absolutely know in advan
ewhether its answer will rea
h the query-issuer in a timely manner be
ause ofissues su
h as network 
ongestion, relay node failures and network partition-ing.In
identally, if an MP is not able to pay the pri
e of a

essing its requesteddata item, its query fails and it would not be able to a

ess its queried dataitem. This is in 
onsonan
e with our overall obje
tive of in
entivizing free-riders to provide repli
a hosting, brokerage and relay servi
es. If our s
hemeallowed MPs to a

ess data items without having to pay for the a

ess, thefree-riders would have little or no in
entive to provide servi
e.4.2.2 Pri
e of a data itemEa
h data item d has a pri
e µ (in virtual 
urren
y) that quantitativelyre�e
ts its relative importan
e to the M-P2P network. When an MP issues aquery for a data item d, it pays the pri
e of d to the MP serving its request.(A query request 
ould also be satis�ed by a repli
a.)The pri
e µ of d depends upon d's (re
ent) a

ess frequen
y, average queryresponse times (w.r.t. deadlines) for queries on d and data quality of d. AnMPMS 
omputes the pri
e of a data item (or repli
a) d stored at itself in twosteps: (a)MS �rst 
omputes the pri
e µrec of d based on a

esses to d duringthe most re
ent time period. (We divide time into equal intervals 
alledperiods, the size of a period being appli
ation-dependent.) (b) MS 
omputes
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entives in E-Broker 101the moving average pri
e µ of d based on the previous N time periods. Themoving average pri
e is ne
essary to take spurious spikes in a

esses to dinto a

ount to ensure that d's pri
e a
tually re�e
ts its importan
e. MS
omputes µrec of d as follows:
µrec =

´ t2
t1

´ δ

0
(η dt × (1/δ2)dδ × τ × DQ×

BAMS
× PAMS

) / JMS,tj

(4.1)where [t2 − t1] represents a given time period, and δ is the number of hopsbetween the query-issuer MI and the data-provider MS during the time ofquery issue. We assume that the query message maintains a 
ounter thatis in
remented with ea
h hop. Thus, MS 
an know the number of hopsbetween itself and MI at the time of query issue by examining the querymessage. Furthermore, we assume that the number of hops between MI and
MS does not 
hange signi�
antly between the time of query issue and thetime of query retrieval. Observe how µrec de
reases as δ in
reases due tolikely in
reased query response times.In Equation 4.1, η is the a

ess frequen
y of the given data item d duringthe most re
ent time period. τ re�e
ts the pri
e redu
tion (i.e., penalty) dueto delayed servi
e. Given that t0 is the time of query issue, and tq is thetime when the query results rea
hed the query issuing MP, τ is 
omputed asfollows.

τ =



























µ if t0 ≥ tq ≥ (t0 + τS)

µ× e−(tq−τS) if (t0 + τS) ≥ tq ≥ (t0 + τS + τH)

0 otherwise

(4.2)
where τS and τH are the soft and hard deadlines of a given query respe
tively.Notably, the data-provider MS estimates the time when the query resultswould rea
h the query-issuer MI based on the average network 
onditionsand histori
al information. Hen
e, in Equation 4.1, the data item pri
e is�rst estimated byMS using the value of τ based on the estimation of the time
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h MI . Payments are done periodi
ally,and information 
on
erning the a
tual times of query results rea
hing therespe
tive query-issuers is piggyba
ked onto the status messages that aresent periodi
ally by the peers to the brokers. Thus, the a
tual pri
e, whi
his paid by MI to MS, is based on the a
tual time when the query resultsrea
hed a given query-issuer.The term DQ in Equation 4.1 re�e
ts the quality of data provided by MSfor queries on d. DQ is essentially appli
ation-dependent. For example, dataquality 
ould be determined based on MP3 audio quality or image resolution.We 
ompute DQ as follows. Ea
h MP maintains a 
opy of the table TDQ,whi
h 
ontains the following entries: (x%, high), (y%, medium), (z%, low),where x, y, z are error-bounds, whose values are appli
ation-dependent andpre-spe
i�ed by the system at design time. Essentially, we 
onsider threedis
rete levels of DQ i.e., high, medium and low, and their values are 1, 0.5and 0.25 respe
tively.In Equation 4.1, BAMS
is the bandwidth allo
ated by MS for d's download.

BAMS
equals (∑Bi)/nd, where Bi is the bandwidth that MS allo
ated forthe ith download of d from itself during the most re
ent time period, while ndis the number of downloads of d fromMS. As BAMS

in
reases, µrec in
reasesbe
ause higher bandwidth implies redu
ed response times for queries on d.
PAMS

is the probability of availability of MS. When PAMS
is high, theimpli
ation is that other MPs 
an rely more on MS to provide d, hen
e µrecin
reases with in
rease in PAMS

. JMS ,tj is the job queue length atMS duringtime tj . µrec de
reases with in
rease in the job queue of MS be
ause when
MS is overloaded with too many requests, MS 's response time in answeringqueries on d 
an be expe
ted to in
rease due to longer waiting times ofqueries.After 
omputing µrec, MS 
omputes the moving average pri
e µ of d. We usethe Exponential Moving Average (EMA), whi
h is 
apable of rea
ting qui
klyto 
hanging a

ess patterns of data items sin
e it gives higher weights tore
ent a

ess patterns relative to older a

ess patterns. This is in 
onsonan
e
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ally 
hanging a

ess patterns that are 
hara
teristi
 of M-P2P networks. MS 
omputes the pri
e µ of d as follows:
µ = (µrec − EMAprev) × 2/(N + 1) + EMAprev (4.3)where EMAprev represents the EMA that was 
omputed for the previous timeperiod, and N represents the number of time periods over whi
h the movingaverage is 
omputed. Our preliminary experiments suggest that N = 5 is areasonably good value for our appli
ation s
enarios.4.2.3 Revenue of an MPThe revenue of an MP M is the di�eren
e between the amount of virtual
urren
y thatM earns andM spends. M earns virtual 
urren
y from a

essesto its own data items and repli
as that are hosted at itself, and through relayand broker 
ommissions. Conversely, M spends 
urren
y when it queries fordata items hosted at other MPs.We in
orporate 
ommissions to in
entivize relay MPs. Relay 
ommission is a
onstant k. We use the pri
e µmin of the 
heapest data item in the network asa guide to determining a suitable value of k. The value of k is sele
ted to belower than that of µmin to in
entivize data sharing more than relay fun
tions.Observe that the value of µmin 
ould 
hange over time be
ause new items
ould be introdu
ed into the network. However, based on the appli
ation, itis feasible to estimate the value of µmin. Thus, the value of k is essentiallyappli
ation-dependent. We defer the dis
ussion of broker 
ommissions toSe
tion 4.3.Notably, every MP joining the system is provided with a small initial amountof 
urren
y for bootstrapping the system. Observe that the MPs would soonexhaust this initial amount of 
urren
y by issuing queries, and by paying thedata item pri
es and relay 
ommissions. Hen
e, after that, they would haveto earn 
urren
y for issuing their own requests, and they 
an earn 
urren
y
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heme forM-P2P networks 104only by hosting items and relaying messages, thereby e�e
tively 
ombatingfree-riding. Observe how our e
onomy-based paradigm en
ourages MPs toin
rease their revenues, thereby ensuring that they obtain better servi
e.4.3 EIB: An E
onomi
 In
entive-based Broker-age s
heme for M-P2P networksThis se
tion dis
usses our proposed EIB s
heme.4.3.1 Role of the brokers in EIBEIB provides an in
entive to the relay MPs to a
t as brokers by pro-a
tivelysear
hing for the query results as opposed to just forwarding queries. Abroker obtains a 
ommission for ea
h query pro
essed su

essfully throughitself. Hen
e, ea
h MP is in
entivized to maintain an index of the data items(and repli
as) stored at other MPs. This index is built by ea
h MP on-the-�y in response to queries and data that it relays. Hen
e, indexes may di�era
ross MPs. Brokers also provide value-added servi
e in EIB by repli
atingfrequently queried data items at themselves.Notably, the mobile peers parti
ipating in the system have software installedin their mobile devi
es, and this software enables them to use the proposeds
hemes. On
e they use this software, they have to follow our ar
hite
turei.e., they have to go through the brokers. Thus, when using the software, asel�sh query-issuer 
annot 
onta
t the data provider dire
tly by bypassingthe brokers. In this regard, the rationale behind our ar
hite
ture (i.e., everyquery must pass through brokers) is that query-issuing peers would not wantto evaluate a large number of replies 
oming from prospe
tive data-providers.Moreover, su
h evaluation would drain their limited energy resour
es. Fur-thermore, query-issuing peers would want to have more options (e.g., pri
e,quality) about their requested data items, and the broker is in a position to
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h options.A data-provider may allow a broker to host a repli
a of some of its `hot'data items in lieu of a royalty payment. This is possible be
ause we useour proposed royalty-based revenue-sharing s
heme [MMK09℄ in 
onjun
tionwith EIB. Brokers have an in
entive for hosting repli
as of `hot' items be
ausethey 
an earn revenue when those repli
as are queried. Data-providers arein
entivized to repli
ate their `hot' items at brokers be
ause they 
an earnrevenue from a

esses to the repli
as without ne
essitating any expenditureof their limited energy resour
es for answering queries on those items. In thismanner, even if a data-provider is dis
onne
ted, it 
an still earn revenues.To perform repli
ation, every data-provider periodi
ally broad
asts a list ofitems that it wants to repli
ate. Brokers inter
ept this broad
ast and de
idewhether to repli
ate these items based on their estimate about the futurea

ess frequen
ies and pri
es of those items. (This estimate is made based onthe queries that pass through a broker.) Sin
e brokers have limited memoryspa
e for hosting repli
as, ea
h broker tries to sele
t only those items, whi
hwould maximize its revenue-earning potential. An item's revenue-earningpotential is the produ
t of its pri
e and its (estimated) a

ess frequen
y.Thus, EIB fa
ilitates brokers in repli
ating frequently queried items, therebyredu
ing the querying tra�
. In essen
e, EIB e�e
tively 
onverts relay MPsinto brokers.4.3.2 Illustrative example for the network topology inEIBThe ar
hite
ture of EIB 
onsists of query-issuers, relay MPs, brokers anddata-providers. Figure 4.1 depi
ts an illustrative example of the M-P2Pnetwork topology in EIB at a 
ertain point in time. In Figure 4.1, MI is thequery-issuer, R1 to R7 are the relay peers, D1 to D4 are the data-providers,and B1 to B5 are the brokers. Using Figure 4.1, we shall now make 
ertainkey observations. Observe that there 
an be multiple paths from a query-
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heme forM-P2P networks 106issuer to a given data-provider and these paths may pass through multiplebrokers. As a single instan
e, a query issued byMI for a data item hosted by
D4 
ould pro
eed through multiple paths su
h as {MI , B2, B3, B4, R4, D4}and {MI , B2, B3, B4, R5, D4}.

Relay MP: {R1 to R7}

Query−issuer: {M  }

R7

R5R6

R3
B5

D4

D3

B3
B4

D1

R1

B1

D2 B2

Broker: {B1 to B5}

I
Data−provider: {D1 To D4}

IM

R2

R4

Figure 4.1: Illustrative example of an instan
e of network topology in EIBOur s
heme stipulates that only one MP 
an a
t as the broker in a givenquery path. This be
omes a ne
essity to avoid 
on�i
ts among brokers.Hen
e, when multiple brokers exist in a given query path, the broker, whi
ho

urs �rst in the traversal starting from the query-issuer, would a
t as thebroker for the query and make the bid to the query-issuer, while the otherbrokers would simply a
t as relay MPs. For example, in the query path
{MI , B2, B3, B4, R4, D4}, B2 would a
t as the broker sin
e it o

urs �rstin the traversal starting from MI , while B3 and B4 would a
t as relay MPs.When an MP de
ides to a
t as the broker for a query, it appends a broker tagto the query message, thereby enabling other MPs in the same query pathto determine that a broker has already been sele
ted in that query path.Notably, even though EIB limits the number of brokers in a given querypath to only one, the existen
e of multiple query paths safeguards againstthe unavailability of some of the brokers.The number of relay MPs between a query-issuer and a data-provider maydi�er. For example, let us 
onsider a query Q issued by MI for a data item
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ase, the query path {MI , B2, B3, B4, R4, D4} hasthree relay MPs, namely B3, B4 and R4. On the other hand, the path {MI ,
D2, B1, R2, B3, R3, R4, D4} has �ve relay MPs, namely D2, R2, B3, R3and R4. Thus, the total 
ost of relay 
ommissions may vary a
ross querypaths sin
e EIB in
orporates a 
onstant relay 
ommission per relay MP, asdis
ussed in Se
tion 4.2.It is also possible for a given data-provider to be a one-hop neighbour ofa query-issuer e.g., MI and D2 are one-hop neighbours. However, our ar-
hite
ture di
tates that MI 
annot bypass the brokers for dire
tly obtainingits queried data from D2. Re
all that the mobile peers are able to use theproposed s
hemes by installing software in their mobile devi
es, and this soft-ware enfor
es that ea
h query must follow our ar
hite
ture by going throughthe brokers. Thus, the role of the brokers would still be relevant in su
h
ases. For example, some other data-provider su
h as D1 may be able toprovide better data quality and/or lower response time than D2 (e.g., dueto low bandwidth between D2 and MI). In essen
e, the brokers provide thequery-issuer with di�erent paths for a

essing its requested data item d orits repli
a. This allows the query-issuer to 
hoose the 
opy of d, whi
h bestsuits its requirements in terms of response time, data quality and pri
e. Fur-thermore, as dis
ussed earlier, there may be many prospe
tive data-providersreplying to a query, and the query-issuer would not want to evaluate a largenumber of replies sin
e performing su
h evaluation would drain its limitedenergy resour
es.4.3.3 Value-added routing by relay MPs in EIBAn MP MI issues a query Q using a broad
ast me
hanism1 and waits until ǫtime units have elapsed (sin
e the time of query issue) to 
olle
t the bids fromall the brokers. When any given MP re
eives the broad
ast query, it 
he
ks1After a period of time, if MI knows a broker that 
an serve the query, the broad
astwould not be ne
essary.
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ontain the identi�er of at least one MP thathosts the requested data item or if another broker (in the same query path)has already de
ided to a
t as the broker for that query2, it simply forwardsthe query. Otherwise, it determines (from its index) the MPs, whi
h 
ananswer the query, and a
ts as a broker by issuing a route-�nding query tolo
ate these MPs.On
e a given broker obtains the route to one or more MPs that 
an servethe query, it a
quires information about the pri
e and data quality of therequested data item at ea
h of these MPs. Thus, the broker summarizesinformation of the form (d, MPid, µ, DQ, Path) in a list Lbid, where d is thedata item being requested, MPid is the unique identi�er of the MP that hosts
d, DQ is the data quality of d and µ is the pri
e of d. Path is a linked listdata stru
ture 
ontaining the list of MPs, whi
h fall in the path between thebroker and the data-provider. In 
ase of multiple paths between the brokerand the data-provider, Path 
ould be a pointer to a set of linked lists (or atwo-dimensional array).Observe that if the broker were to in
lude in its bid (to the query-issuer)all the data items about whi
h it has a
quired information, 
ommuni
ationtra�
 would in
rease and the query-issuer would have to expend its limitedenergy resour
es to evaluate all the query results. On the other hand, if thebroker were to in
lude only one data item in its bid, the query-issuer wouldhave limited 
hoi
es (in terms of query results), whi
h 
ould potentially notsatisfy its query requirements in terms of response time, data quality andpri
e. Hen
e, the broker provides a value-added servi
e by in
luding in itsbid only some of the data items about whi
h it has a
quired information.The broker determines whi
h items it will in
lude in its bid by using theinformation in the list Lbid. For ea
h data item in the list Lbid, the broker2Re
all that only one MP 
an be the broker in a given query path.
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omputes a s
ore γ:
γ = (w1/RT ) + (w2 ×DQ) + (w3/µ) (4.4)where RT represents the query response time, whi
h is estimated by thebroker based on network statisti
s. RT is estimated by the data item sizedivided by the sum of the bandwidths at the intermediate hops between thequery-serving MP and the query-issuer. DQ and µ are the data quality andpri
e of the item respe
tively, and they are evaluated in the same manner asdis
ussed for Equation 4.1. In Equation 4.4, w1, w2 and w3 are the query-issuer's spe
i�ed weight 
oe�
ients for the query su
h that 0 ≤ w1, w2, w3 ≤ 1and w1 + w2 + w3 = 1. Thus, EIB takes the requirement of the query-issuerinto a

ount.The value of γ in
reases with de
reasing values of RT and µ be
ause thequery-issuer would want the results qui
kly and with lower pri
e. The valueof γ in
reases with in
rease in DQ be
ause higher data quality 
ommandshigher bid pri
e. The broker in
ludes in its bid (to the query-issuer) onlythose items, for whi
h the value of γ ex
eeds the threshold Thγ, where Thγ isthe average value of γ for all the items in Lbid. Hen
e, Thγ equals (ΣNi=1 γi/N),where γi is the value of γ for the ith item and N is the total number of itemsin Lbid. The values of RT andDQ for ea
h item in every bid are also providedby the broker to the query-issuer.Corresponding to ea
h data item in
luded in the broker's bid, the broker alsospe
i�es the total 
ost of relay 
ommissions and broker 
ommission to informthe query-issuer about the total 
ost of querying. Sin
e the broker knows thenumber of relay MPs in the query path, it 
an 
ompute the total 
ost of relay
ommission sin
e the amount of relay 
ommission per MP is a 
onstant, asdis
ussed earlier in Se
tion 4.2. The amount β of broker 
ommission for agiven data item d depends upon the data item pri
e. Given a data item d ofpri
e µ, a broker 
omputes β as (µ×α), where α is a per
entage of the dataitem pri
e, hen
e 0 ≤ α ≤ 1. The value of α depends upon the urgen
y of the
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ompute α as e−τS , where τS is the soft deadline of thequery. In
rease in τS implies de
rease in β due to less urgen
y. Observe thatdi�erent brokers may bid di�erent amounts of 
urren
y for the same dataitem (or its repli
a). In
identally, the broker's 
ommission is signi�
antlyhigher than that of the relay MPs' 
ommissions, whi
h in
entivizes relayMPs to a
t as brokers by indexing more data items.Upon re
eiving bids from possibly multiple brokers, the query-issuer au-tonomously evaluates ea
h item in ea
h of these bids. (Re
all that ea
hbroker may send multiple items in its bid to provide the query-issuer withmore options.) Then the query-issuer sele
ts the item, whi
h best suits itsrequirements in terms of the weight 
oe�
ients w1, w2 and w3 
orrespondingto (estimated) response time, data quality and pri
e respe
tively. In parti
-ular, EIB does not for
e a query-issuer to perform bid sele
tion based on anyspe
i�
 algorithm. This is be
ause we believe that query-issuers should beprovided the �exibility to 
hoose the item (in the bids) that best satis�estheir requirements.An example to illustrate a possible way in whi
h a query-issuer 
ould sele
tan item from multiple bids is as follows. Suppose w1 > w2 > w3. In this
ase, the query-issuer 
ould �rst sort the items in all the bids in as
endingorder of estimated response time into a list LSelect. Then from LSelect, it
ould sele
t only those items, whose estimated response time is lower thanthe average response time of all the items in LSelect. Then it 
ould sort theremaining items in LSelect in des
ending order of data quality, and sele
t onlythose items, whose data quality ex
eeds the average data quality of all the(remaining) items in LSelect. Finally, among the remaining items in LSelect,it 
ould sele
t the item with the lowest pri
e.Upon 
ompletion of the bid sele
tion, the query-issuer 
onta
ts the broker
orresponding to the su

essful bid, and requests it for the data item. Thesu

essful broker 
onta
ts the data-provider, whi
h sends the data item tothe query-issuer. Finally, upon re
eiving the query results, the query-issuerpays the 
ommission to the broker and the relay 
ommissions to the MPs in
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heme forM-P2P networks 111Algorithm 4.1 EIB: Algorithm for a query-issuerbeginInputs: (a) Q : Query (b) d : Queried data item(1) Broad
ast its query Q for a data item d(2) Re
eive all bids that arrive within ǫ time units of query issue(3) Examine ea
h item in every bid and autonomously sele
t the item,whi
h best suits query requirement(4) Sele
t the broker Sel 
orresponding to the su

essful bid(5) Send message to sele
ted broker Sel requesting sele
ted item andprovide Sel with identi�er of sele
ted data-provider MS(6) Obtain data item from MS(7) Pay the pri
e of the item to MS(8) Pay the broker 
ommission to the sele
ted broker Sel(9) Pay relay 
ommissions to relay MPs in su

essful query pathendAlgorithm 4.2 EIB: Algorithm for a broker and relay MPsbeginInputs: (a) Q : Query (b) d : Queried data item(1) Re
eive the broad
ast query Q for data item d from query-issuer MI(2) if broker_tag not atta
hed to Q/* EIB stipulates one broker per query path */(3) Che
k own index to list the identi�ers of all MPshosting d into a set SetMS(4) if SetMS
is empty(5) Forward Q to its one-hop neighbours(6) else(7) for ea
h MS M in SetMS(8) Issue a query to �nd the route(s) to M(9) List all the routes from itself to M into a set Setroute(10) if Setroute is empty(11) Forward Q to its one-hop neighbours(12) else(13) Sele
t the shortest route R from itself to M based onbandwidths at the intermediate hops(14) Obtain pri
e and data quality of d from M , and add d toa list Lbid(15) Sele
t from Lbid only those items, for whi
h the value of

γ ex
eeds Thγ and in
lude these items in the bid(16) For ea
h item in
luded in the bid, 
ollate all the pri
e, MS ,response time and data quality information and the bidvalue β/* The bid value β for a given data item is a per
entageof the data item pri
e. β is the broker 
ommission for asu

essful bid. */(17) Send the bid to MI(18) Wait for MI 's reply(19) if MI a

epts bid(20) Obtain identi�er of sele
ted MS from MI(21) Send a message to sele
ted MS to send the data item to MI(22) Re
eive broker 
ommission from MIendthe su

essful query path.Algorithm 4.1 is exe
uted by a query-issuer, while Algorithm 4.2 is exe
uted
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h 
an either be brokers or relay MPs.4.4 EIB+: An Enhan
ed E
onomi
 In
entive-based Brokerage S
heme for M-P2P net-worksThis se
tion dis
usses the EIB+ s
heme, whi
h extends the EIB s
heme byin
orporating three broker s
oring strategies for further in
entivizing brokerstowards providing better servi
e. EIB+ distinguishes two di�erent types ofbrokers, namely 
ommon brokers and preferred brokers. Brokers with highers
ores be
ome preferred brokers and they earn higher 
ommissions than 
om-mon brokers. Furthermore, only the preferred brokers are allowed to spawnsub-brokers for load-sharing purposes, thereby further in
entivizing brokerssin
e they 
an earn 
urren
y from royalty-based revenue-sharing [MMK09℄with the sub-brokers.Notably, in order to be
ome a preferred broker, a broker needs to serve aminimum threshold number of users. Thus, if a broker serves an adequatenumber of di�erent users, the rating s
ores from di�erent users average out,thereby implying that a broker 
annot be
ome a preferred broker by servingonly one peer well be
ause broker s
ores are based on averages. Even thoughwe understand that it is di�
ult to syn
hronize the ratings for di�erent bro-kers, peers 
an sele
t in their region their preferred brokers. Furthermore,observe that 
omplete syn
hronization of broker s
ore ratings a
ross di�erentusers is not pra
ti
ally feasible due to subje
tivity in human judgment.4.4.1 Illustrative example of network topology in EIB+Figure 4.2 depi
ts an illustrative example of the M-P2P network topology inEIB+ at a 
ertain point in time. MI is the query-issuer, D1 to D4 are thedata-providers, R1 to R4 are the relay peers, CB1 to CB3 are the 
ommon
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orresponding to the preferred broker PB1, while SB2 and SB3 are thesub-brokers 
orresponding to the preferred broker PB2. Observe that the
ommon brokers su
h as CB1 and CB2 do not have any sub-brokers. Con-sider a query Q issued by MI for a data item hosted by D4. For the querypath {MI , PB1, CB2, PB2, SB3, D4}, if Q needs to be pro
essed by a
ommon broker, CB2 would a
t as the broker, while PB1 and PB2 woulda
t as relay MPs. If Q needs to be pro
essed by a preferred broker, PB1would a
t as the broker.
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Relay MP: {R1 to R4}

Data−provider: {D1 to D4}

Query−issuer: {M  }

I
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SB2

CB1
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Figure 4.2: Illustrative example of an instan
e of network topology in EIB+The broker type (i.e., 
ommon or preferred) spe
i�ed in Q should mat
h withat least one broker in the given query path for it to be pro
essed in that querypath. This is in 
onsonan
e with adhering to the query-issuer's intentions.However, this does not ne
essarily result in query failures due to the possibleexisten
e of multiple brokers (whi
h mat
h the broker type spe
i�ed in Q)in di�erent query paths. Thus, if MI issues a query for an item in D4 withthe 
ondition that it should be pro
essed by a preferred broker, it will notbe pro
essed in the path {MI , D2, CB1, R2, CB2, R3, SB3, D4} sin
e thispath does not 
ontain any preferred broker. However, it would be pro
essed
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CB2, R3, SB3, D4}.4.4.2 Strategies for assigning s
ores to brokersWe propose three strategies for assigning performan
e-based s
ores to brokersin EIB+.4.4.2.1 Individual Ranking (IR) strategyIn IR, ea
h MP assigns a s
ore λ to ea
h broker, with whom it has intera
tedwithin a parti
ular time-period. Ea
h broker returns a bid to the query-issuer
MI , and the bid 
ontains the estimated query response time, data quality(of query result) and the total bid pri
e for pro
essing the query. (Totalbid pri
e refers to the sum of data item pri
e, broker 
ommission and relay
ommissions.) MI uses this bid information to 
ompute the value of λ forthe broker that made the bid. The value of λ is 
omputed for both su

essfuland unsu

essful bids.If a query is answered after the hard deadline τH , MI assigns λ = 0 for thatquery to the 
orresponding broker(s) to penalize broker performan
e be
ausequeries answered after the deadline are not useful to MI . Furthermore, sin
ea broker has no in
entive to bid a total pri
e, whi
h is higher than that of
MI 's maximum spe
i�ed pri
e, the question of the total bid pri
e ex
eedingthe maximum spe
i�ed pri
e does not arise. λ is 
omputed as follows:

λ = (w1 × λRT ) + (w2 × (1− λDQ)) + (w3 × λµ) (4.5)where λRT , λDQ and λµ quantify broker performan
e w.r.t. broker responsetime, data quality and total (bid) pri
e respe
tively, and they are 
omputedin Equations 4.6, 4.7 and 4.8 respe
tively. (Broker response time is the dif-feren
e between the time of query issue and the time at whi
h the broker'sresponse arrives at MI .) In Equation 4.5, w1, w2 and w3 are weight 
oe�-
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ients su
h that w1+w2+w3 = 1. The values of w1, w2 and w3 are de
ided by
MI for a given query depending upon its requirements. For example, if qui
kresponse time is 
riti
al toMI , it will assign a high value to w1. Observe howEIB+ provides autonomy to the MPs in assigning s
ores to brokers based ontheir individual querying requirements. λRT is 
omputed below:

λRT = ( τH − RT ) / τH (4.6)where τH and RT are the hard deadline and the broker response time of thequery respe
tively. Observe that the value of λRT in
reases as RT de
reases.Thus, the obje
tive of Equation 4.6 is to reward brokers for providing timelyservi
e. The amount of reward is based on the di�eren
e between the harddeadline of the query and the broker response time. The 
omputation of λDQfollows:
λDQ =











(DDQ−DQ)/DDQ if DQ < DDQ

1 otherwise

(4.7)where DDQ and DQ are MI 's spe
i�ed desired data quality and the a
tualdata quality for the query respe
tively. The obje
tive of Equation 4.7 is topenalize brokers, whi
h provide lower quality of data than that of MI 's de-sired data quality. The amount of penalty is based on the di�eren
e between
MI 's desired data quality and the a
tual data quality provided by the broker.The value of λDQ in
reases as queries are answered with lower data quality,hen
e we use the value of (1 − λDQ) in Equation 4.5 for the 
omputation of
λ. However, when DQ ≥ DDQ, we set λDQ = 1 to reward brokers, who haveperformed upto (or better than) MI 's expe
tations of data quality.The 
omputation of λµ follows:

λµ = ( maxµ − µ ) / maxµ (4.8)where maxµ and µ are the MI 's spe
i�ed maximum pri
e and the total pri
ebid by the broker for the query respe
tively. Observe that the value of λµ
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reases as the total bid pri
e de
reases. Thus, the obje
tive of Equation4.8 is to reward brokers, whi
h 
an serve the queries at lower total pri
e. Theamount of su
h reward is based on the di�eren
e between MI 's maximumspe
i�ed pri
e and the total bid pri
e of the given query. Thus, an MP willhave an estimate about the performan
e of the brokers that it has intera
tedwith. However, IR su�ers from the drawba
k that ea
h MP is likely to beable to intera
t with and assign s
ores to only a few brokers that are in itsvi
inity.4.4.2.2 Neighbour-based Gossiping (NGS) strategyTo address the drawba
k of IR in terms of being able to assign s
ores toonly a relatively few brokers, we propose the NGS strategy. In NGS, MPsgossip with their one-hop neighbours to share their respe
tive broker s
ores(obtained by using IR). Thus, ea
h MP will get to know the performan
eof brokers, with whom it may not have had any intera
tion. For example,suppose MP M1 has intera
ted with only brokers B1, B5 and B7, whileits one-hop neighbour M2 has intera
ted with brokers B1, B6, B7 and B8.Thus, M1 will obtain new information fromM2 about the performan
e of B6and B8, whileM2 will obtain information fromM1 about the performan
e of
B5. Gossiping fa
ilitates neighbouring MPs to re�ne their information aboutbroker s
ores. Sin
e MPs are likely to obtain new information, they have anin
entive to parti
ipate in gossiping.When a given MP M obtains broker s
ores from its one-hop neighbours, it
omputes its s
ore for ea
h broker Bi as follows. If M has not intera
tedwith Bi, it will simply 
ompute its s
ore for Bi as the average Avg of all thes
ores (for Bi) that it re
eives from its neighbours, who have intera
ted with
Bi. On the other hand, ifM has intera
ted with Bi, it will 
ompute its s
orefor Bi as the average of the s
ore that it assigned to Bi and Avg.
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all that in NGS, gossiping is limited only to one-hop neighbours.) Thus, K-NGS fa
ilitates MPs in assigning s
ores to morebrokers than NGS and also uses inputs about broker s
ores from more MPsthan NGS, thereby providing a broader and more re�ned pi
ture of relativebroker performan
e albeit at the 
ost of in
reased 
ommuni
ation overhead.Note that under the K-NGS strategy, a given MP M 
omputes its s
ore forea
h broker Bi in the same manner as dis
ussed for the NGS strategy.4.4.3 Load-sharing by means of sub-brokers in EIB+Preferred brokers in EIB+ are allowed to spawn sub-brokers for load-sharingpurposes. Now let us examine the 
on
ept of sub-brokers. When a preferredbroker PB be
omes overloaded with too many requests, it repli
ates its dataand index at MPs, whi
h are willing to host its data and index. We designatesu
h MPs as sub-brokers. Thus, preferred brokers dynami
ally 
reate sub-brokers based on load and network performan
e to e�e
tively 
onvert relayMPs into brokers. This fa
ilitates load-sharing among preferred brokers andsub-brokers, thereby making it likely to improve query response times due toless waiting times at the job queues of these MPs.The preferred broker is in
entivized to share its data and index with the sub-brokers be
ause it 
an earn 
urren
y from su
h sharing. This is be
ause weuse our proposed royalty-based revenue-sharing s
heme [MMK09℄ in 
onjun
-tion with EIB+. Thus, revenues of preferred brokers are further in
reaseddue to the presen
e of sub-brokers. Observe how EIB+ in
entivizes brokersto perform better in order to be
ome preferred brokers.A preferred broker PB sele
ts its sub-brokers based on three fa
tors, namelyremaining energy, bandwidth and 
urrent value of 
urren
y. PB prefersMPs with higher remaining energy as sub-brokers be
ause su
h MPs are
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ilitating them in earningmore 
urren
y and 
onsequently, also enabling PB to earn more 
urren
ybe
ause of the royalty-based revenue-sharing s
heme [MMK09℄. Moreover,
PB gives preferen
e to MPs with high bandwidth be
ause su
h MPs arelikely to serve queries relatively qui
kly, thereby enabling them to earn more
urren
y. (Re
all that data item pri
es depend upon timeliness of queryresponse.) Furthermore, PB prefers MPs with low 
urrent value of 
urren
yas sub-brokers be
ause su
h MPs have more in
entive to serve queries to earn
urren
y than MPs, whose 
urrent values of 
urren
y are high. Notably, thisalso fa
ilitates newly joined MPs (that have low 
urren
y) to seamlesslyintegrate themselves into the system by a
tively parti
ipating in the networkas sub-brokers.Notably, PB sele
ts its sub-brokers from among its one-hop neighbours inorder to minimize the 
ommuni
ation tra�
 in
urred for allo
ating repli
asat sub-brokers. To sele
t its sub-brokers, PB sends a message to its one-hopneighbour MPs requesting them to send their values of remaining energy,bandwidth and 
urren
y. Those MPs, whi
h are interested to be
ome sub-brokers of PB, reply to PB with the requested values. PB uses these valuesto 
ompute a s
ore S for ea
h MP as follows.

S = (w1 × En) + (w2 × BA) + (w3/Curr) (4.9)where En, BA and Curr are the values of remaining energy, bandwidth and
urren
y of the MP. In Equation 4.9, w1, w2 and w3 are weight 
oe�
ientssu
h that ( w1 + w2 + w3 = 1 ). The values of these weight 
oe�
ients areautonomously sele
ted by a given preferred broker, hen
e they may di�era
ross preferred brokers. MPs with relatively higher values of S are sele
tedby PB as its sub-brokers. We leave the determination of the optimal numberof sub-brokers per preferred broker to future work.
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e Evaluation of E-BrokerThis se
tion reports our performan
e evaluation by means of simulation inOMNeT++ [Pon93℄. MPs move a

ording to the Random Waypoint Model[BMJ+98℄ within a region of area 4 km × 4 km. We believe that the RandomWaypoint Model is appropriate for our appli
ation s
enarios.Parameter DefaultValue VariationsNumber of MPs (NMP ) 1000 200, 400, 600, 800% of brokers ( PB ) 20% 10%, 30%, 40%, 50%% of preferred brokers ( ψ ) 20% 10%, 30%, 40%, 50%Queries/time unit 10Communi
ation Range ( CR ) 120m 40m, 80m, 160m, 200mPer
entage of MP failures ( PF ) 20% 10%, 30%, 40%, 50%Workload skewness ( ZFW ) 0.5 0.1, 0.3, 0.7, 0.9Bandwidth between MPs 1 Mbps to 2 Mbps (Bluetooth)Initial energy of an MP 90000 to 100000 energy unitsMP servi
e 
apa
ity 1 to 5 unitsTime-to-expire of a data item 3 mins to 7 minsMemory spa
e of ea
h MP 120 MB to 150 MBSpeed of an MP 1 meter/s to 10 meters/sSize of a data item 0.5 MB to 10 MBTable 4.1: Parameters of our performan
e evaluation for E-BrokerTable 4.1 summarizes our performan
e study parameters. A total of 8000data items is uniformly distributed among 1000 MPs i.e., ea
h MP owns 8data items. For ea
h MP, the available memory spa
e for hosting repli
as isits remaining memory spa
e, after memory for storing its 8 data items hasbeen allo
ated. Query-issuers are sele
ted randomly from among all the MPs.Ea
h query is a request for a single data item. The number of su
h queriesissued in the network per time unit is 10, the query's hard deadline τH beingvaried randomly between 25 to 30 time units. The query's soft deadline τSis 90% of τH . Query pri
e is 
hosen randomly in the range of 100 to 500
urren
y units. Broker 
ommission and relay 
ommission are respe
tively setto 10% and 1% of the query pri
e. For query routing purposes, we use theAODV proto
ol until a query is inter
epted by a broker. Initial energy of
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ted randomly between 90000 to 100000 energy units. Sendingand re
eiving a message require 1.5 and 1 energy units respe
tively.In Table 4.1, TP stands for `repli
a allo
ation Time Period'. Periodi
ally,every TP se
onds, MPs broad
ast a list of items that they want to repli
ate.Similar to existing works [HM06℄, we assume that network topology doesnot 
hange signi�
antly during repli
a allo
ation sin
e it requires only a fewse
onds. The default 
ommuni
ation range of all MPs is a 
ir
le of 120 metreradius.For all our experiments, the weight 
oe�
ients are set as follows: (a) thevalues of w1, w2 and w3 for 
omputing γ in Equation 4.4 are set to 0.5,
0.25 and 0.25 respe
tively, (b) the values of w1, w2 and w3 for 
omputing λin Equation 4.5 are set to 0.5, 0.25 and 0.25 respe
tively, (
) the values of
w1, w2 and w3 for 
omputing S in Equation 4.9 are set to 0.4, 0.3 and 0.3respe
tively.Our performan
e metri
s are average response time (ART) of queries,data availability (DA), query hop-
ount (HC) and 
ommuni
ationtra�
 (MSG). ART = (1/NQ)

∑NQ

i=1(Tf −Ti), where Ti is the time of queryissue, Tf is time of the query result rea
hing the query-issuer, and NQ isthe total number of queries. ART in
ludes the download time, and is 
om-puted only for the su

essful queries. DA = (NS/NQ) × 100, where NS isthe number of queries that were answered su

essfully. Thus, DA measuresthe per
entage of su

essful queries. Queries may fail due to network par-titioning or due to energy-depletion or unavailability of MPs that host thequeried data items, or due to queries ex
eeding the TTL (`hops-to-live').Preliminary experiments suggested that TTL=8 is a reasonable value forour appli
ation s
enarios. Hen
e, we 
onsider TTL=8 for our proposed EIBand EIB+ s
hemes. We de�ne the query hop-
ount HC as the hop-
ountin
urred by the query in the su

essful query path. Thus, HC is measuredonly for su

essful queries. We de�ne MSG as the total number of messagesin
urred for query pro
essing during the 
ourse of the experiment. Thus,
MSG =

∑NQ

q=1Mq, where Mq is the number of messages in
urred for the qth
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ompare the performan
e of our proposed broker-based EIB and EIB+in
entive s
hemes with the non-in
entive E-DCG+ s
heme [HM06℄. Weadapted the E-DCG+ s
heme [HM06℄ to our s
enario. As dis
ussed inSe
tion 2, E-DCG+ is a non-in
entive and non-e
onomi
 repli
ation s
heme,and it does not provide in
entives for repli
a hosting. E-DCG+ is exe
utedat every repli
a allo
ation period. E-DCG+ is the 
losest to our s
heme sin
eit addresses repli
ation in mobile ad-ho
 networks. Furthermore, we believethat E-DCG+ is among the best approa
hes for meaningful performan
e
omparison with our proposed s
hemes be
ause it is the most re
ent approa
hand it has already been 
ompared to other non-in
entive s
hemes.As a baseline, we also do performan
e 
omparison w.r.t. a non-in
entive andnon-broker-based NIB (Non-In
entive without Brokerage) s
heme to showthe performan
e gain due to brokerage. Notably, querying in NIB is simplyAODV-based and broker 
ommissions do not arise. Furthermore, in 
aseof NIB, we set the TTL to be 12 i.e., 50% higher than the TTL for ourproposed EIB and EIB+ s
hemes. NIB does not provide any in
entive to apeer to forward messages. In NIB, a peer forwards a message in the multi-hopnetwork with a probability of 0.3.Re
all that EIB+ uses three di�erent strategies for assigning broker s
ores.Here, we present the performan
e of EIB+ in 
onjun
tion with the K-NGSstrategy. We have also performed an experiment to indi
ate the performan
eof EIB+ with ea
h of the three broker s
oring strategies.4.5.1 Determining the per
entage of brokersWe performed an experiment to determine the per
entage PB of brokers inthe network. Figure 4.3 depi
ts the results. As PB is in
reased from 10%to 20%, DA improves (albeit at the 
ost of higher MSG) for both EIB andEIB+ be
ause the involvement of more brokers in
reases the probability thata given query is pro
essed by at least one of them. However, as PB is in
reased
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e keeps degrading due to redu
tion in the numberof data-providers. This is be
ause the sum total of the number of brokersand the number of data-providers is �xed. Notably, EIB+ exhibits betterperforman
e than EIB due to the presen
e of preferred brokers.
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(d) MSGFigure 4.3: Determining the per
entage of brokersThe results in Figure 4.3 suggest that there is a trade-o� between the per-forman
e (in terms of ART, DA and HC) and the 
ommuni
ation tra�
.Based on our experimental results, we set the per
entage of brokers to 20%so that we 
an obtain good performan
e of EIB and EIB+ with reasonable
ommuni
ation tra�
. Observe that both EIB and EIB+ perform slightly



4.5. Performan
e Evaluation of E-Broker 123worse than NIB when PB = 50%. A 
loser look at the results in Figure 4.3suggests that performan
e gain of EIB over NIB o

urs only when PB is lessthan 48%. This is be
ause when PB ex
eeds 48%, the bene�ts from broker-age are o�set by the additional overhead of intera
tions among the relativelylarger number of brokers. Hen
e, when PB ex
eeds 48%, the peers are bettero� without a broker-based ar
hite
ture i.e., they 
an dire
tly obtain the datafrom the data-providers.4.5.2 Determining the per
entage of preferred brokersin EIB+We 
ondu
ted an experiment to determine the per
entage ψ of preferredbrokers. Here, ψ = ((NPref/NTotal) ∗ 100), where NPref is the number ofpreferred brokers, while NTotal is the total number of brokers. For example,if NTotal = 20 and ψ = 20%, the number of preferred and 
ommon brokerswould be 4 and 16 respe
tively. For this experiment, we also varied thenumber SB of sub-brokers 
orresponding to ea
h preferred broker. Figure 4.4depi
ts the results. We use the notations SB-0, SB-2 and SB-4 to representthe s
enarios for EIB+ 
orresponding to 0, 2 and 4 sub-brokers respe
tivelyper preferred broker.The results in Figure 4.4 indi
ate that as ψ is in
reased from 10% to 20%,the performan
e of EIB+ improves slightly in the 
ases of SB-0, SB-2 andSB-4 due to the in
entivizing e�e
t of preferred brokerage be
oming morepronoun
ed. However, as ψ is in
reased to 30% and beyond, the performan
eof EIB+ degrades. This o

urs be
ause at higher values of ψ, more brokersare allowed to be
ome preferred brokers, thereby impli
itly redu
ing the levelof servi
e required to be
ome a preferred broker. This redu
es the in
entivefor preferred brokerage.EIB+ performs better in the 
ase of SB-2 (albeit at the 
ost of higher MSG)as 
ompared to that of SB-0 due to load-sharing among the preferred brokersand their respe
tive sub-brokers. However, in 
ase of SB-4, EIB+ performs
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entage of preferred brokers in EIB+worse than for SB-2 be
ause the relatively high overhead of data allo
ationamong a larger number of sub-brokers redu
es the performan
e. The resultsin Figure 4.4 suggest that EIB+ performs best at reasonable 
ommuni
a-tion overhead when ψ = 20% (in 
ase of SB-2). Thus, we experimentallydetermine ψ to be 20% and SB to be two.
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e Evaluation of E-Broker 1254.5.3 Performan
e of EIB and EIB+Figure 4.5 depi
ts the results using the default values of the parameters inTable 4.1. The results in Figure 4.5a indi
ate that after the �rst 20000 queries
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(d) MSGFigure 4.5: Performan
e of EIB & EIB+have been pro
essed, EIB, EIB+ and E-DCG+ exhibit 
omparable perfor-man
e be
ause the e�e
t of repli
ation is not pronoun
ed at the initial stages.However, over time as more queries are pro
essed, performan
e improves interms of ART, DA and HC for all the s
hemes essentially due to the e�e
t ofrepli
ation be
oming more prominent. Both ART and HC eventually plateau
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e Evaluation of E-Broker 126due to reasons su
h as network partitioning, 
ompetition among repli
as formemory spa
e and unavailability of some of the MPs.The results in Figure 4.5d indi
ate that EIB and EIB+ in
ur higher MSGthan E-DCG+ and NIB primarily due to the additional 
ommuni
ation over-head introdu
ed by brokers (and sub-brokers in 
ase of EIB+). However, webelieve that the additional number of messages in
urred by EIB and EIB+is a small pri
e to pay for the performan
e bene�ts of these s
hemes. EIB+in
urs higher MSG than EIB be
ause it in
orporates gossiping among neigh-bouring MPs for 
omputing broker s
ores. E-DCG+ in
urs higher MSG thanNIB be
ause in E-DCG+, every MP needs to periodi
ally send messages toother MPs to 
onvey repli
ation-related information.EIB+ outperforms EIB be
ause it provides additional in
entives to brokersfor performing value-added routing by in
orporating the notion of preferredbrokers. Moreover, EIB+ also performs e�e
tive load-sharing between pre-ferred brokers and sub-brokers, thereby redu
ing query waiting times in thejob queues of the brokers. EIB performs better than E-DCG+ due to itse
onomi
 in
entives, whi
h en
ourage MP parti
ipation. In
reased MP par-ti
ipation implies more opportunities for repli
ation, more memory spa
e forhosting repli
as and multiple paths for lo
ating a data item/repli
a. Fur-thermore, unlike E-DCG+, EIB maintains indexes at the brokers (whi
hfa
ilitate value-added routing) and it repli
ates `hot' data items at the bro-kers. E-DCG+ exhibits better performan
e than NIB be
ause of its superiorrepli
ation me
hanism.4.5.4 E�e
t of variations in the number of MPsWe varied the total number NMP of MPs, keeping the number of queriesproportional to NMP . Figure 4.6 depi
ts the results. As NMP in
reases,ART and MSG in
rease for all the s
hemes due to in
rease in network size.However, the rate of in
rease in ART is lower for EIB and EIB+ than forE-DCG+ and NIB due to their better in
entivization of repli
ation by means
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onomi
 in
entives and brokerage. As NMP in
reases, DA in
reases forall the s
hemes due to in
reased opportunities for repli
ation. HC followsa pattern similar to that of ART, the slight deviations o

urring due tobandwidth di�eren
es. Observe that when NMP = 20, EIB+ exhibits slightlyworse DA than that of EIB be
ause the bene�ts provided by preferred brokersare not realized due to the existen
e of fewer preferred brokers.
 20

 40

 60

2 4 6 8 10

A
R

T
 (

t.
u
.)

NMP (10
2
)

EIB+
EIB

E-DCG+
NIB

(a) ART
 20

 40

 60

 80

2 4 6 8 10

D
A

 (
%

)

NMP (10
2
)

EIB+
EIB

E-DCG+
NIB

(b) DA
 2

 4

 6

 8

2 4 6 8 10

H
C

NMP (10
2
)

EIB+
EIB

E-DCG+
NIB

(
) HC
2

4

6

8

10

2 4 6 8 10

M
S

G
 (

1
0

6
)

NMP (10
2
)

EIB+
EIB

E-DCG+
NIB

(d) MSGFigure 4.6: E�e
t of variations in the number of MPs
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e Evaluation of E-Broker 1284.5.5 E�e
t of variations in the 
ommuni
ation rangeThe results in Figure 4.7 depi
t the e�e
t of variations in the 
ommuni
ationrange CR of the MPs. In
rease in CR has the e�e
t of bringing the MPs
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t of variations in the 
ommuni
ation range`nearer' to ea
h other. Hen
e, performan
e improves with in
rease in CR forall the s
hemes due to data items be
oming `nearer' and more a

essible toquery-issuers. However, performan
e gains o

ur only until CR=120 metres.Beyond CR=120 metres, ART and DA degrade for all the s
hemes be
ausethe MPs be
ome too `
lose' to ea
h other, hen
e a relatively larger number



4.5. Performan
e Evaluation of E-Broker 129of MPs and brokers be
ome involved in the pro
essing of any given query.This results in a relatively larger number of queries waiting in the job queuesof the data-providers, hen
e some of the query deadlines are missed. BeyondCR=120 metres, the performan
e gap between EIB and EIB+ keeps de
reas-ing be
ause the bene�ts of preferred brokerage be
ome less pronoun
ed whenthe MPs are already too `near' to ea
h other. In essen
e, all the s
hemes per-form best when CR=120 metres.As CR in
reases, MSG in
reases for all the s
hemes be
ause the in
reasedrea
hability 
auses more MPs to be
ome involved in the pro
essing of a givenquery. On the other hand, with in
rease in CR, a lower number of messagesare required to rea
h a given MP. These two opposing e�e
ts somewhat o�setea
h other at higher values of CR, thereby explaining the reason why MSGeventually plateaus for all the s
hemes.4.5.6 E�e
t of MP failuresMPs 
an fail due to reasons su
h as depletion of their limited energy resour
es.Figure 4.8 depi
ts the results of the e�e
t of MP failures. As the per
entage
PF of MP failures in
reases, MP parti
ipation de
reases, query paths be
omelonger and fewer data-hosting MPs remain available, thereby degrading theperforman
e of all the s
hemes. Interestingly, at PF = 50%, all the s
hemesexhibit 
omparable ART due to limited MP parti
ipation making the e�e
tof e
onomi
 in
entives and brokerage less pronoun
ed. As the results inFigure 4.8d indi
ate, MSG de
reases with in
rease in PF for all the s
hemesdue to redu
ed 
ommuni
ation overhead among a lower number of availableMPs. Interestingly, at PF = 50%, EIB in
urs lower MSG than E-DCG+due to s
ar
ity of brokers when the total number of available MPs be
omerelatively low. However, EIB+ still in
urs higher MSG than E-DCG+ dueto gossiping-related 
ommuni
ation overheads.
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t of MP failures4.5.7 E�e
t of di�erent strategies for assigning performan
e-based s
ores to brokers in EIB+We 
ondu
ted an experiment to investigate the relative performan
e of EIB+with the di�erent strategies, namely IR, NGS and K-NGS, for assigningperforman
e-based s
ores to brokers. Figure 4.9 depi
ts the results. K-NGS outperforms NGS be
ause its gossiping among k-hop neighbours betterin
entivizes preferred brokerage by in
orporating broker s
ores from a largernumber of MPs albeit at the 
ost of higher MSG. Similarly, NGS performs
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e its gossiping among one-hop neighbours provides betterin
entives for preferred brokerage than IR. The performan
e of all the threestrategies improve over time as more queries are pro
essed due to the reasonsdis
ussed for the results in Figure 4.5.
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t of di�erent strategies for assigning performan
e-baseds
ores to brokers in EIB+Figure 4.10 depi
ts the snapshots of broker s
ores at the time-points of 40000and 100000 queries respe
tively under IR, NGS and K-NGS. The X-axisrepresents the unique identi�ers of the brokers, while the Y-axis depi
ts thes
ore of ea
h broker. Periodi
ally, after every 20000 queries, the s
ores of
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orded. The s
ores are on a s
ale of 1 to 10, where a highers
ore indi
ates better performan
e. Ea
h MP assigns an initial s
ore of 5 toall the brokers at the start of every 20000-query time-period. (This periodi
resetting of s
ores is ne
essary to re�e
t 
urrent performan
e of brokers.)Fa
tors su
h as a broker's lo
ation, mobility pattern and 
urrent network
onditions result in variation of s
ores a
ross brokers.
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ores at the 40000-query time-period
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(b) Snapshot of the broker s
ores at the 100000-query time-periodFigure 4.10: Snapshots of broker s
ores at the time-points of 40000 and100000Now let us examine the results in Figure 4.10a. We will denote the brokerwith ID of i as Bi. Observe that there is no 
lear pattern regarding anyspe
i�
 s
oring strategy assigning higher or lower s
ores than the others. For
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e Evaluation of E-Broker 133example, K-NGS assigned the lowest s
ore to B4, but it assigned the highests
ore to B2. Observe that B8 is assigned a mu
h higher s
ore by IR than byNGS and K-NGS. Broker s
ores vary a
ross s
oring strategies be
ause they
onsider varying amounts of intera
tion with other MPs. These strategiesmay also assign 
omparable s
ores to any given broker e.g., B1 and B11 inthe results in Figure 4.10a. This o

urs when a broker's performan
e remains
omparable in providing servi
es to MPs at di�erent lo
ations. A broker'ss
ore may fall below 5 (e.g., B1 in Figure 4.10a) due to reasons su
h as
onne
tivity to limited resour
es in its mobility path and limited energy.Even though broker s
ores may vary a
ross s
oring strategies, the results inFigures 4.10a serve as a guide for evaluating broker performan
e, therebyfa
ilitating in distinguishing between 
ommon and preferred brokers. Forexample, in Figure 4.10a, B5, B12, B13 and B19 and in Figure 4.10b, B4,
B5, B10 and B13 would be the preferred brokers, while the other brokerswould be 
ommon brokers.4.5.8 E�e
t of variations in the workload skewFigure 4.11 depi
ts the results when the zipf fa
tor ZFW is varied. No-tably, among all the s
hemes, only EIB+ supports load-sharing, whi
h o
-
urs between preferred brokers and sub-brokers. As ZFW in
reases (i.e.,in
reasing skew in the workload), performan
e degrades for all the s
hemes.This o

urs due to in
reased waiting times at the job queues of overloadeddata-providers, thereby 
ausing some of the queries to miss the deadlines.Observe how EIB+'s load-sharing me
hanism fa
ilitates it in outperformingthe other s
hemes. However, the performan
e gap between EIB+ and thereferen
e s
hemes de
reases with de
reasing skew due to the e�e
t of load-sharing be
oming less pronoun
ed. As ZFW in
reases, the number of queryfailures in
rease (due to queries missing their deadlines), thereby redu
ingMSG. However, for EIB+, MSG in
reases beyond ZFW = 0.5 due to theintera
tions between the preferred brokers and their sub-brokers.
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(d) MSGFigure 4.11: E�e
t of variations in the workload skew4.6 SummaryIn M-P2P networks, data availability is typi
ally low due to rampant free-riding, frequent network partitioning and mobile resour
e 
onstraints. Wehave proposed the E-Broker system for improving data availability in M-P2P networks.E-Broker in
orporates two e
onomi
 in
entive-based brokerage s
hemes, namelyEIB and EIB+. EIB in
entivizes relay peers to a
t as information brokers for



4.6. Summary 135performing value-added routing and repli
ation in M-P2P networks, therebye�e
tively improving data availability. The EIB+ s
heme extends the EIBs
heme by in
orporating three di�erent broker s
oring strategies for providingadditional in
entives to brokers. EIB+ also fa
ilitates load-sharing amongthe peers.We have also evaluated the number of brokers, beyond whi
h the peers arebetter o� without a broker-based ar
hite
ture. Our performan
e study in-di
ates that the proposed s
hemes are indeed e�e
tive in improving queryresponse times, data availability and query hop-
ounts at reasonable 
om-muni
ation tra�
 
ost in M-P2P networks. In the future, we plan to extendthis work by using game-theoreti
 approa
hes for data item pri
ing.



5
E-VeT: E
onomi
Reward/Penalty-based Systemfor Vehi
ular Tra�
Management

5.1 OverviewThe proliferation of mobile devi
es with embedded GPS sensors 
oupled withthe growth in the popularity of infotainment servi
es for vehi
les have 
reatednew avenues for improving vehi
ular tra�
 management in road networks.Thus, s
hemes for improving transportation system e�
ien
y are be
omingin
reasingly popular [AWX+12,SWYX11℄.Given that vehi
les generally tend to autonomously sele
t shorter routes withlower tra�
 
ongestion, a relatively large number of vehi
les often 
hoose thesame `popular' (i.e., relatively shorter and 
ongestion-free) routes, thereby
ausing 
ongestion. Su
h tra�
 
ongestion typi
ally results in in
reased ve-hi
ular fuel 
onsumption and delayed arrival at destinations. Thus, 
oordi-



5.1. Overview 137nation among the routes allo
ated to di�erent vehi
les be
omes a ne
essityto redu
e tra�
 
ongestion. However, vehi
les trying to 
oordinate theirroutes among themselves in a vehi
le-to-vehi
le (V2V) manner in vehi
ularad ho
 networks (VANETs) would 
ause priva
y 
on
erns, 
ommuni
ationtra�
 
ongestion and sel�sh behaviors.In
entives have been proposed for stimulating 
ontent sharing in mobile-P2Pnetworks [PMG+11,WXS04,XWR06℄. However, these works do not addresstra�
 management and vehi
ular routing issues su
h as 
ongestion. More-over, a P2P tra�
 information system for dynami
 route guidan
e has beendis
ussed in [RSKM09℄. However, these works do not in
entivize vehi
les infollowing system-assigned tra�
 routes.This work proposes the E-VeT system for e�
iently managing the vehi
ulartra�
 in road networks using e
onomy-based reward/penalty s
hemes. Inthis work, the 
ost of traversing a path in the road network 
orresponds tothe time required for the path traversal, unless otherwise spe
i�ed. Hen
e,we shall use the terms �path 
ost� and �path time-
ost� inter
hangeably.Observe that de�ning path 
ost in terms of time en
ompasses fa
tors su
has path distan
e, the speed limit relevant to the path and the path's tra�

ongestion.In E-VeT, base stations 
ollaboratively fa
ilitate dynami
 vehi
ular routeassignments for mitigating the tra�
 
ongestion, thus redu
ing the averagetime of arrivals and fuel 
onsumption. However, vehi
les may not follow thepaths assigned by the base stations e.g., when they 
an �nd lesser-
ost paths.To in
entivize vehi
les towards following the system-assigned paths, E-VeTuses rewards/penalties (payo�s), whi
h are in terms of real 
urren
y.Hen
e, these payo�s 
an be used towards paying road taxes, 
ar registration,and li
ense/toll fees.This work assumes that all the vehi
les fall under the purview of the E-VeT reward/penalty framework, whi
h 
ould be implemented as part of agovernment-mandated program for fa
ilitating tra�
 management. Note



5.1. Overview 138that the proposed s
heme is a government-mandated system, it is always op-erational, but only the pri
e 
hanges dynami
ally based on the 
ongestion.Thus users, will not know the pri
ing s
heme and 
ongestion informationwell ahead of time. Though the system suggests and o�ers options to users,they still have a 
hoi
e of paying the penalty and taking the higher-pri
edpaths; the obje
tive is not to for
e users for expli
it load-balan
ing. Sin
ewe have a reward/penalty system, it is using in
entives for load-balan
ing.It is also di�erent and better than randomization where users 
an get oneof the options, whi
h they have to follow, and they have no 
hoi
e to alterthe option they re
eived. Thus, in our s
heme, we preserve the notion thata user is the �nal entity to de
ide the path taken.This work 
an be seen as a further extension to the initial proposal for routingof the VS-s
heme for parking introdu
ed in [AWX+12℄. In the VS-s
heme,a 
entral authority (CA) makes an optimal assignment, and penalizes ve-hi
les severely for deviating from it. Furthermore, in the VS-s
heme, theCA guarantees that ea
h vehi
le v will pay a travel-
ost to slots that is nothigher than v's 
ost in equilibrium. Sin
e in an optimal assignment somevehi
les may travel longer than in equilibrium, the CA 
ompensates them indollars so that the total 
ost that v pays is not higher than v's travel-timein equilibrium. The CA also 
harges vehi
les that travel less in the opti-mum assignment than in the equilibrium assignment. This dollar-
harge isequivalent to the saving in travel-time.Our work here is mainly fo
used on routing in V2V di�erent from parkingof vehi
les in [AWX+12℄ in terms of poli
ies for route allo
ation of vehi
lesbased on revenues, modeling the pri
ing problem for revenue generation and�nding a suitable reward/penalty s
heme that adapts to 
hanging behaviorof drivers over period of time. In addition, the performan
e metri
s dire
tlyfo
us on the impa
t of di�erent revenue allo
ation s
hemes on the averagefuel saving, average time of arrival and the number of messages ex
hangedamong others.In summary, our proposed s
hemes di�er from existing proposals [Bra96,



5.1. Overview 139Mor10, Xu06, Yan12, Iss11℄ in mainly two ways. First, we introdu
e a re-ward/penalty framework for 
ontrolling the tra�
 
ongestion. Se
ond, users'good behavior (i.e., following the system advi
e) is 
onsidered in the 
onges-tion 
ontrol de
ision-making in the sense that the system remembers pastbehavior and rewards/penalty earned in the past. Thus, our s
heme is user-
entri
 and it inspires users to earn rewards so that they 
an get preferredassignment of paths when needed by redeeming rewards.The 
ontributions of E-VeT are three-fold:1. It proposes an R2A (Revenue-based Route Allo
ation) s
heme, whi
hrewards vehi
les for following system-assigned longer-time paths, and
harges a fee for following system-assigned shorter-time paths. Further-more, it penalizes (
harges mu
h higher fee) vehi
les for any deviationsfrom the system-assigned paths.2. It presents the R2A+ (extended R2A) s
heme by in
orporating the no-tion of revenue-s
ales for further in
entivizing vehi
les based on theirpast system usage.3. It dis
usses a route allo
ation algorithm, whi
h gives lesser-time pathsas a preferen
e to vehi
les that have earned higher revenue based onthe s
heme used i.e., either R2A or R2A+.Note that both R2A and R2A+ s
hemes are designed to ensure fairness inthe sense that vehi
les pay when they travel faster, and they earn 
urren
ywhen they travel slower. Both s
hemes penalize vehi
les, whi
h deviate fromsystem-assigned paths, thereby in
entivizing them to adhere to the system-assigned paths. Furthermore, when vehi
les follow the system-assigned paths,they are rewarded either in terms of time-savings (i.e., lower time-
ost routesbeing allo
ated) or in terms of real 
urren
y (i.e., payments for followinglonger time-
ost routes).R2A and R2A+ di�er in that while R2A assigns payo�s to vehi
les basedon every individual journey, R2A+ performs the payo� assignment based



5.2. Ar
hite
ture of E-VeT 140on the 
onsisten
y of a given vehi
le in following the system-assigned pathsa
ross multiple journeys. To a
hieve this, R2A+ uses a set of pre-de�nedrevenue-s
ales and provides better payo�s to the vehi
les that are asso
iatedwith higher revenue-s
ales. This enti
es vehi
les to 
onsistently follow thesystem-assigned routes. Our performan
e study shows that the proposeds
hemes are indeed e�e
tive in managing vehi
ular tra�
 in road networksby redu
ing the average time of arrival and fuel 
onsumption.The remainder of this 
hapter is organized as follows. Se
tion 5.2 presentsthe ar
hite
ture of E-VeT, while Se
tion 5.3 dis
usses the proposed R2Aand R2A+ e
onomi
 reward/penalty-based s
hemes and the route allo
ationalgorithm. Se
tion 5.4 provides the proof of 
orre
tness. Se
tion 5.5 reportsthe performan
e study. Finally, we 
on
lude in Se
tion 5.6.5.2 Ar
hite
ture of E-VeTThis se
tion dis
usses the ar
hite
ture of E-VeT. The ar
hite
ture of E-VeT
onsists of the road network, 
he
kpoints, base stations and vehi
les. E-VeTenvisages the road network as an overlay graph, where ea
h vertex representsa 
he
kpoint, and ea
h edge represents a route 
onne
ting these 
he
kpoints.Here, a 
he
kpoint is a landmark su
h as a major road interse
tion, a hospitalor a well-known tourist spot. Thus, the journey of ea
h vehi
le 
omprises atraversal of a set of su
h 
he
kpoints, and we designate the route betweentwo 
he
kpoints as a path. We de�ne the sour
e and destination of agiven vehi
le's journey as the 
he
kpoints that are nearest to the startingpoint and the desired end-point of the journey respe
tively. A base stationis a powerful, reliable and stati
 node. For simpli
ity, we assume that ea
h
he
kpoint is asso
iated with a single base station and vi
e versa.When a given vehi
le V approa
hes a 
he
kpoint C, it sends informationabout its destination to the base station B 
orresponding to C. Upon re
eiv-ing this information from multiple vehi
les in its vi
inity, B exe
utes a route
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ation algorithm (dis
ussed later in Se
tion 5.3) and assigns a path toea
h vehi
le for travelling to the next 
he
kpoint. We shall hen
eforth referto the path assigned to a given vehi
le by a base station as the system-assigned path. Notably, the route allo
ation algorithm is exe
uted by the
orresponding base station at every 
he
kpoint (that falls along a given ve-hi
le's route) until it is routed to its destination 
he
kpoint.In E-Vet, base stations assign rewards/penalties (i.e., payo�s) to the vehi
les.As we shall see in Se
tion 5.3, E-VeT performs route allo
ation by providingpreferen
e to vehi
les, whi
h have earned more payo�s, thereby in
entivizingvehi
les to follow system-assigned paths. Payo� allo
ation to the vehi
lesis performed on a 
he
kpoint-to-
he
kpoint basis. Suppose vehi
le V tra-verses the path from 
he
kpoint C1 to 
he
kpoint C2. Let us refer to thebase stations 
orresponding to C1 and C2 as B1 and B2 respe
tively. Here,
B2 performs the payo� allo
ation to V , after 
ommuni
ating with the basestation B at the 
he
kpoint that was previously traversed by V . If V hadfollowed the system-assigned path, B=B1, otherwise B 
ould be any of theneighboring base stations of B2.Observe how base stations 
ollaborate with ea
h other to fa
ilitate revenue-based dynami
 vehi
ular routing for redu
ing tra�
 
ongestion. Su
h 
ol-laboration be
omes a ne
essity for 
oordinating smooth tra�
 �ow amongvehi
les, whi
h do not dire
tly intera
t with ea
h other to preserve theirpriva
y. In
identally, traversal of a path between two given 
he
kpoints isasso
iated with a 
ost, whi
h we shall dis
uss now.5.2.1 Computation of path 
ostRe
all that in E-VeT, the path 
ost 
orresponds to the time required fortraversing the path. The 
ost tj of traversing path j is 
omputed by a givenbase station in two steps (a) Compute the path 
ost trecj for the 
urrenttime-period (b) Compute tj as the exponential moving average of the path
osts over the most re
ent time-periods to a

ount for �u
tuations in path
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hite
ture of E-VeT 142usage. trecj depends upon fa
tors su
h as path distan
e, speed limit of thepath and path 
ongestion. Thus, path 
ost 
an 
hange temporally dependingupon path 
ongestion. Sin
e path 
ongestion is related to path �ow, let us�rst 
ompute the path �ow Fj,t for path j as follows:
Fj,t = NLj,t/NEj,t (5.1)where NEj,t and NLj,t are respe
tively the number of vehi
les that enteredor left path j during time-period t. We assume that NEj,t and NLj,t are bothnon-zero i.e., there are always vehi
les on the road. Let us hen
eforth referto the path �ow as �ow. Consistent with real-world s
enarios, we 
onsiderthat bi-dire
tional �ow values may di�er e.g., the �ow value from a given
he
kpoint X to a 
he
kpoint Y may di�er from that of the �ow value fromY to X. However, su
h di�eren
es in �ow values do not impa
t our proposeds
hemes.

trecj is 
omputed as follows:
trecj =











(Dj/Smax ) if Fj,t = 1

(Dj/Smax ) / Fj,t otherwise (5.2)where Dj and Smax are the distan
e and speed limit of path j respe
tively.Observe that the term (Dj/Smax) in Equation 5.2 
on
erns the 
ongestion-free path 
ost (i.e., Fj.t=1). Moreover, trecj in
reases with de
rease in Fj,tbe
ause more 
ongested paths typi
ally entail higher path 
osts.Using the value of trecj , the 
omputation of tj a

ording to the exponentialmoving average (EMA) formula follows:
tj = ( (trecj −EMAprev) × 2/(T + 1) ) + EMAprev (5.3)where EMAprev is the EMA that was 
omputed for the previous time-periodand T is the number of time-periods 
onsidered in the moving average 
ompu-tation. Results of our preliminary experiments suggest that T=5 is suitable
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hite
ture of E-VeT 143for tra�
 management appli
ation s
enarios. Notably, EMA gives higherweights to re
ent time-periods, hen
e it is appropriate for dynami
ally 
hang-ing path 
osts that may o

ur in tra�
 management appli
ation s
enarios.5.2.2 Illustrative example for road network topology inE-VeTFigure 5.1 depi
ts an illustrative example of the road network topology inE-VeT at a 
ertain point in time. In Figure 5.1, the 
he
kpoints C1 to C6are 
onne
ted by weighted paths P1 to P8, whose respe
tive path 
osts areshown in parentheses. Here, path 
osts are indi
ated in 
ase of 
ongestion-free
P
3(2)

P1(2)

P
8
(2

)

P7(2
)

P5(3)
P6(9)

P
4
(1

)

P2(8)

Least−cost route

Path j with cost pPj(p)

C1 to C6 : Checkpoints

Destination checkpoint

Source checkpoint

{V4,V5}

Destination for

{V1,V2,V3}

Destination for

V1 to V5 : Vehicles

C4

{V1 to V5}

C6

C3

C1
C5

C2

Figure 5.1: Example for E-VeT road network topologypaths. Observe that path 
osts are essentially dynami
 in that they in
reaseas path 
ongestion in
reases. For simpli
ity, all the vehi
les V1 to V5 areasso
iated with the same sour
e 
he
kpoint C1. The destination 
he
kpointsfor {V1, V2, V3} and {V4, V5} are C5 and C6 respe
tively. For simpli
ity,this example assumes that bi-dire
tional path 
osts are equal.
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ation in E-VeT 144Assume that ea
h vehi
le prefers to take the least-
ost path to its respe
tivedestination. Observe that all the vehi
les V1 to V5 would have to traverseC4 on their way to their respe
tive destinations. From C1 to C4, three pathsare possible, namely {P1, P4}, {P2} and {P3, P5} with path 
osts of 3 (i.e.,2+1), 8 and 5 (i.e., 2+3) respe
tively. Thus, all the vehi
les would want totake the least-
ost path {P1, P4} to C4. However, all �ve vehi
les takingpath P1 would in
rease tra�
 
ongestion there, thus e�e
tively in
reasingthe path 
ost.For redu
ing path 
ongestion, 
oordination among vehi
ular routes be
omesa ne
essity for ensuring smooth tra�
 �ow. As we shall see in the nextse
tion, su
h 
oordination in E-VeT is performed by the base stations, whi
hin
entivize vehi
les towards following system-assigned paths.5.3 Revenue-based route allo
ation in E-VeTThis se
tion dis
usses our proposed R2A and R2A+ e
onomi
 reward/penalty-based s
hemes. Based on the s
heme used (i.e., either R2A or R2A+), E-VeTassigns payo�s to the vehi
les. These payo�s are used as inputs for E-VeT'sin
entive-based route allo
ation algorithm, whi
h is also presented in thisse
tion.5.3.1 The R2A s
hemeRe
all that we de�ne path 
osts in terms of time. For 
omputing rewards andpenalties in R2A, we de�ne the notions of lower-
ost paths and higher-
ostpaths as follows. Consider the existen
e of multiple possible paths betweentwo given 
he
kpoints. Ea
h path, whose 
ost is below the median path-
ostof all these paths, is de�ned to be in the set of lower-
ost paths. Conversely,ea
h path, whose 
ost equals or ex
eeds the median path-
ost of all the pathsbetween the two given 
he
kpoints, is de�ned to be in the set of higher-
ost paths. R2A rewards vehi
les, whi
h follow system-assigned higher-
ost
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ation in E-VeT 145paths, and 
harges a fee for following system-assigned lower-
ost paths. Fur-thermore, it penalizes vehi
les for any deviations from the system-assignedpaths, thereby in
entivizing them to adhere to the system-assigned paths.Thus, vehi
les pay (in the form of fees) when they travel faster, while theyget paid (in terms of rewards) when they travel slower, thereby a
hievingfairness.Given that a path is the route between two given 
he
kpoints, a given vehi
le
V has to traverse multiple paths during its journey from its sour
e to itsdestination. Thus, its revenue from a given journey equals the di�eren
ebetween the rewards and the fees/penalties over all these paths. During agiven journey, suppose V follows (a) r1 system-assigned higher-
ost paths (b)
r2 system-assigned lower-
ost paths and (
) r3 paths that are not assignedby the system. Then V 's revenue REV from the given journey is 
omputedas follows:

REV =

r1
∑

l=1

REWl −

(

r2
∑

m=1

Feem +

r3
∑

n=1

LYn

) (5.4)where REWl is the reward for the lth system-assigned higher-
ost path fol-lowed by V . Feem is the fee that is 
harged for the mth system-assignedlower-
ost path followed by V , while LYn is the penalty for the nth non-system-assigned path followed by V . Thus, given that the revenue of V fromits pth journey is REVp, its total revenue equals∑P
p=1REVp, where P is thetotal number of journeys performed by V .Now let us see how the rewards and penalties are 
omputed for V for a givenpath. The reward depends upon the 
ost di�eren
e between the system-assigned path and the 
orresponding median-
ost path. Thus, the base sta-tion 
omputes the reward REWR2A earned by V for a given path as follows:

REWR2A = ( tj − tmedian )× λ (5.5)where tj is the path 
ost of the path j that the system assigned to V , and
tmedian is the median-
ost path between the two 
he
kpoints asso
iated with



5.3. Revenue-based route allo
ation in E-VeT 146path j. λ is a parameter for 
onverting time-
ost to dollar-
ost. Notably,the value of λ is a 
onstant, whi
h is �xed by the system. Observe that
REWR2A in
reases with in
rease in the di�eren
e between tj and tmedianbe
ause higher rewards should be provided to vehi
les for in
entivizing themto follow relatively higher-
ost system-assigned paths.In Equation 5.5, both tj and tmedian are 
omputed using Equations 5.2 and5.3. Thus, both tj and tmedian are system-estimated time-
osts based on
urrent 
onditions of 
ongestion as opposed to being a
tual times. Observethat if a
tual times had been used, vehi
le users would have an in
entive tospend signi�
antly large amounts of time on the system-assigned path forobtaining in
reased amount of rewards. Furthermore, observe that if thereis only one path between two 
he
kpoints, the reward would be zero be
auseboth the median-
ost path and the system-assigned path would be the samein this 
ase.To better understand the 
omputations of tj and tmedian, let us refer to Fig-ure 5.1. For simpli
ity, assume that in Figure 5.1, all paths are 
ongestion-free. Suppose a vehi
le needs to �nd a path j between the two 
he
kpointsC1 and C4. Here, the median-
ost path is {P3, P5} with path 
ost of 5,hen
e tmedian=5. If the system assigned the path P2 to V , tj=8 be
ause thepath 
ost of P2 equals 8. On the other hand, if the system had assigned thepath {P1, P4} to V , tj would have been 3.The fee FeeR2A is 
harged to V for following a given system-assigned lower-
ost path j. It depends upon the di�eren
e between the 
ost of taking themedian path and the 
ost of taking path j. Notably, we 
onsider the 
ostof the median path to e�e
tively handle s
enarios involving outliers. Thus,given that tj is the 
ost of the system-assigned lower-
ost path j and tmedianis the 
ost of taking the median path between the two 
he
kpoints 
orre-sponding to j, FeeR2A is 
omputed as follows:

FeeR2A = ( tmedian − tj )× λ (5.6)
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ation in E-VeT 147Both tj and tmedian are 
omputed using Equations 5.2 and 5.3. Referringto Figure 5.1, 
onsider the paths between C1 and C4. Suppose the systemhas assigned the path {P1, P4} to V , hen
e tj=3. Here, tmedian=5 be
auseit 
orresponds to the 
ost of taking the path with the median 
ost {P3,P5} between C1 and C4. Notably, the signi�
an
e of λ in Equation 5.6 isessentially the same as in Equation 5.5.A penalty is in
urred by V when it deviates from the system-assigned path.E-Vet assigns di�erent values of LY depending upon whether the opted pathis in the set of lower-
ost paths or in the set of higher-
ost paths. When theopted path is in the set of higher-
ost paths, the system shall levy no penalty,hen
e LY=0. Conversely, when the opted path is in the set of lower-
ostpaths, the system shall levy a penalty proportional to the di�eren
e between
tmedian and tj′ , where tmedian is the median-
ost path and tj′ is the 
ost ofthe opted path, as shown in Equation 5.4.

LY R2A =











(tmedian − tj′)× λ if tj′ < tmedian

0 otherwise (5.7)where tmedian is the median-
ost path, and tj′ is the path 
ost of the path j′taken by the user. Here, λ is the dollar-
ost for penalty, and it is system-de�ned.Observe that R2A assigns payo�s without taking into a

ount the past systemusage of a given vehi
le in following the system-assigned paths a
ross itsmultiple journeys. Thus, it su�ers from the drawba
k of not being 
apable ofin
entivizing 
onsistent behavior by the vehi
les in adhering to the system-assigned paths.5.3.2 Illustrative example for R2AFigure 5.2 depi
ts an illustrative example for the 
omputation of rewards andpenalties in R2A for a given vehi
le V . The values of the reward REWR2A
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Cnext tj

λ 10.00
tmedian 0.97C1 1.15C2 1.07C3 1.03C4 0.90C5 0.34C6 0.17(a) Path 
osts to next 
he
kpoints

REWR2A FeeR2A LYR2A REVR2A0 0 0.00 0.001.00 0 0.00 1.000 0 0.00 0.000 0 0.70 -0.700 0 6.30 -6.300 0 8.00 -8.00(b) System-assigned path C2
REWR2A FeeR2A LYR2A REVR2A0 0 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0.70 0.00 -0.700 0 6.30 -6.300 0 8.00 -8.00(
) System-assigned path C4Figure 5.2: Illustrative example for the 
omputation of rewards/penalties inR2Aand the penalties FeeR2A and LY R2A are 
omputed using Equations 5.5, 5.6and 5.7. Suppose Ccurr is the 
he
kpoint at whi
h V is 
urrently lo
ated,while C1 to C6 are the possible next-
he
kpoints for its journey towards itsdestination, as indi
ated in the 
olumn Cnext of Figure 5.2a. The se
ond
olumn tj in the same �gure refers to the 
ost of traversing the path from

Ccurr to Cnext.Observe that C6 is the 
he
kpoint that is asso
iated with the minimum-
ostpath from Ccurr to any of the next-
he
k-points. Figure 5.2a also indi
atesthe values of λ and tmedian that will be used for 
omputing the rewards andpenalties. For simpli
ity, in this example, we show the 
omputation of LYR2A(see Equation 5.7) using only the 
urrent time-period instead of averagingthe values over the past T time-periods.Figures 5.2b and 5.2
 depi
t the rewards and penalties when the system-assigned next-
he
kpoints for V are C2 and C4 respe
tively. In Figure 5.2,observe that V earns rewards only when it follows the system-assigned pathto C2, whi
h is in the set of higher-
ost paths, hen
e its revenue REVR2A is
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ation in E-VeT 149positive only in this 
ase. The reward for V in this 
ase is 
omputed usingEquation 5.5. Thus, REWR2A=((1.07− 0.97)× 10) i.e., 1.00. Furthermore,observe that in Figure 5.2, the value of FeeR2A is 0 for all the 
ases be
ausethe system-assigned path to C2 is in the set of higher-
ost paths, therebymaking the penalty FeeR2A inappli
able.Observe that here the appli
able penalty for deviating from the system-assigned path and opting for a lower-
ost path are 
omputed using Equa-tion 5.7. For example, the value of LYR2A when the next-
he
kpoint is C1 iszero be
ause C1 is asso
iated with a higher-
ost path, whereas the value of
LYR2A is -6.30 in the 
ase of C5, where C5 is asso
iated with the lower-
ostpath. The values of REVR2A are 
omputed using Equation 5.4, whi
h arealso indi
ated in Figure 5.2.5.3.3 The R2A+ s
hemeThe R2A+ s
heme extends the R2A s
heme by in
orporating the notion ofrevenue-s
ales for taking into a

ount a given vehi
le's 
onsisten
y in ad-hering to the system-assigned paths a
ross multiple journeys. R2A+ de�nes
M revenue-s
ales, ea
h of whi
h is asso
iated with a range of revenues. Thenit asso
iates a given vehi
le with a revenue-s
ale based on the vehi
le's rev-enue. SupposeM=4, where revenue-s
ales {1, 2, 3, 4} 
orrespond to revenueranges {0-1000, 1001-2000, 2001-3000, 3001-4000} respe
tively. Here, thevehi
le with revenue of 2500 units is asso
iated with revenue-s
ale 3.R2A+ uses these revenue-s
ales for distributing the payo�s. Vehi
les, whi
hare asso
iated with higher revenue-s
ales, earn better payo�s. This providesan additional in
entive to the vehi
les to 
onsistently follow the system-assigned paths so that they 
an earn adequate 
urren
y to qualify for higherrevenue-s
ales, at whi
h their payo�s would improve. GivenM revenue-s
aleswith a given vehi
le being asso
iated with revenue-s
ale m, R2A+ 
omputes
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ation in E-VeT 150the payo�s as follows:
REWR2A+ = (m/M ) × REWR2A

FeeR2A+ = (m/M ) × REWR2A

LY R2A+ = (m/M ) × LY R2A

(5.8)where REWR2A, FeeR2A and LYR2A are 
omputed using Equations 5.5, 5.6and 5.7 respe
tively. Similar to R2A, R2A+ 
omputes a given vehi
le's rev-enue using Equation 5.4.5.3.4 Route allo
ation algorithmA given base station performs the route allo
ation to all the vehi
les that aremoving towards its 
orresponding 
he
kpoint. When a vehi
le approa
hes a
he
kpoint, it 
ommuni
ates to the 
orresponding base station the followinginformation: its destination, its previous 
he
kpoint, the 
he
kpoint assignedto it at the previous 
he
kpoint and its revenue. Notably, this 
ommuni
ationis done by the tamper-resistant software module in the vehi
le to the basestation, thereby ensuring that a vehi
le 
annot provide false information tothe base station 
on
erning its system-assigned 
he
kpoint.Upon re
eiving the information from all the vehi
les during a system-de�nedtime-period, the base station 
omputes the payo�s of the vehi
les based on ei-ther R2A or R2A+. Moreover, it uses the route allo
ation algorithm to assignpaths to the vehi
les. Then it performs the following a
tions for ea
h vehi-
le: (a) updates their revenues based on whether they followed the system-assigned paths, (b) sets its value as the last visited base station, and (
) setsthe 
ost of the assigned path in the vehi
le's system.Notably, the route allo
ation algorithm uses a path �ow threshold, whi
hwe designate as PFth. The impli
ation of PFth is that the route allo
ationalgorithm would assign vehi
les to a given path only upto the value of PFth,thereby not allowing a path to go beyond a given level of tra�
 
ongestion.On
e the threshold PFth is rea
hed for a given path (when path �ow keeps
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reasing due to tra�
 
ongestion), the path is 
onsidered to be full, hen
ethe algorithm would not assign any more vehi
les to that path for that timeinterval.The value of the PFth threshold 
an be de
ided based on the a

eptable timeof travel between two 
he
kpoints C1 and C2 during di�erent time intervals.Re
all that �ow in a given path P is the ratio of the number of vehi
les exiting
P to the number of vehi
les entering P during a given time interval. Thus,for example, the �ow threshold 
an be set to 0.6 and 0.8 during peak hoursand non-peak hours respe
tively for maintaining smooth tra�
 �ow. Thea

eptable threshold 
an be determined based on the distan
e between thetwo given 
he
kpoints and the average possible speed (i.e., (maximum speedlimit + minimum speed limit) / 2), whi
h 
an provide the ideal time of travelbetween the two 
he
kpoints. This 
an then be 
al
ulated for peak hoursand o�-peak hours based on the threshold sele
ted and the time determinedshould be within the a

eptable limit set by the travel authority for smooth�ow of tra�
 at di�erent times.Algorithm 5.1 dis
usses how a base station identi�es the top-k preferred
he
kpoints for a given vehi
le, given the overlay graph G(V, E) of the roadnetwork, and the respe
tive destination of ea
h vehi
le as input. First, itdetermines the least-
ost k paths to the destination of the vehi
le based onthe path 
ost using the approa
h in [Epp98℄. Then, for ea
h of these least-
ost
k paths, it identi�es the next 
he
kpoint that the vehi
le needs to traversefor following that path to its destination, and stores these 
he
kpoints in alist PL. Now, for ea
h 
he
kpoint in PL, it 
omputes the path 
ost. Finally,it sorts the 
he
kpoints in PL in as
ending order of the path 
osts. Thus,the sorted PL list essentially re�e
ts the preferen
e of the vehi
le towards itsroute assignment in terms of path 
ost minimization.Algorithm 5.2 presents the e
onomy-based route allo
ation algorithm in E-VeT using the preferen
e list for ea
h vehi
le, as generated by the Algo-rithm 5.1. In
identally, vehi
les with relatively higher revenues are likely tobe those that have either adhered more frequently to their system-assigned
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tness of E-VeT 152Algorithm 5.1 Greedy algorithm for identifying the preferen
e list of next-
he
kpoints for a given vehi
lebeginInput: (a) G(V,E): Overlay graph of the road network(b) dest: Destination of the vehi
leOutput: PL: Sorted list of top-k preferred next-
he
kpoints for the vehi
le(1) Determine least-
ost k paths to dest based on path 
ost(2) for ea
h least-
ost k path(3) Identify 
orresponding next-
he
kpoint and add it to list PL(4) for ea
h 
he
kpoint in PL(5) Compute the path 
ost(6) Sort the 
he
kpoints in PL in as
ending order of the path 
ostsendAlgorithm 5.2 Algorithm for route allo
ation in E-VeTbeginInput: (a) Destination, previous 
he
kpoint and the 
he
kpoint assignedby the previous 
he
kpoint's base station for ea
h vehi
le i(b) Preferen
e list PLi for ea
h vehi
le i(
) Revenue of ea
h vehi
leOutput: Assignment of next-
he
kpoint to ea
h vehi
le(1) Sort the vehi
les in des
ending order of revenue into a list LV(2) for ea
h vehi
le i in LV(3) for ea
h 
he
kpoint Cj in PLi/* The path from the base station to 
he
kpoint j is designated as path j(4) if (path �ow>PFth)(5) Assign vehi
le i to path j(6) Re
ompute the path �ow(7) breakendpaths or taken longer-time paths more often. Thus, observe how the routeallo
ation Algorithm 5.2 in
entivizes vehi
les with higher revenues by pro-viding them with preferen
e in route allo
ation. Furthermore, from Line 4of Algorithm 5.2, noti
e how the algorithm assigns vehi
les to a given pathdepending upon the PFth threshold 
riterion.5.4 Proof of 
orre
tness of E-VeTThe proof aims to show that the me
hanism is designed in a way that thedominant strategy for all the vehi
les is to follow the system assigned path.De�nition. For a given vehi
le V , we de�ne two possible de
isions, namely(a) follow the system-assigned path and (b) not follow the system-assigned
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orre
tness of E-VeT 153path. We denote the former and latter as f and f̄ respe
tively. Let us denotethe 
orresponding payo�s for the former and the latter 
ases as Pf and Pf̄respe
tively.To prove the 
orre
tness of the me
hanism, we shall prove that Pf>Pf̄ i.e.,(Pf �Pf̄ > 0) for all possible 
ases. (We shall also derive the minimum valueof penalty that should be levied to hold the above 
ondition.)Proof: The following two 
ases arise:Case 1: The system-assigned path j is among the higher-
ost paths.( tj >
tmedian )In this 
ase, observe that the fee FeeR2A is not appli
able. Hen
e, Pf =

REWR2A − λtj , where REWR2A is 
omputed using Equation 5.5 and tj rep-resents the path 
ost as 
omputed using Equations 5.2 and 5.3. Moreover,when V follows a non-system-assigned path j′, Pf̄ = −LY R2A − λtj′, where
LY R2A is 
omputed using Equation 5.7, and tj′ is the 
ost of path j′, whi
his 
omputed using Equations 5.2 and 5.3.Now, let us �nd the minimal value LY R2A of penalty for whi
h Pf > Pf̄ :(Equating it to get minimal value)

Pf > Pf̄ =⇒ (tj − tmedian)λ− λtj > −LY R2A − λtj′

=⇒ λ(tj′ − tmedian) > −LY R2A

=⇒ LY R2A > λ(tmedian − tj′)The penalty algebrai
ally be
omes negative when the vehi
le deviates fromthe system by opting for a path higher than the median 
ost path. In su
ha s
enario, the system levies no penalty on the vehi
le keeping LY to be zero.Case 2: The system-assigned path j is among the lower-
ost paths. ( tj <
tmedian)In this 
ase, observe that the fee FeeR2A be
omes appli
able and REWR2A isnot appli
able. Hen
e, Pf = −FeeR2A−λtj , where FeeR2A is 
omputed usingEquation 5.6 and tj represents the path 
ost as 
omputed using Equations 5.2
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e Study 154and 5.3. Moreover, when V follows a non-system-assigned path j′, Pf̄ =

−LY R2A− λtj′, where LY R2A is 
omputed using Equation 5.7, and tj′ is the
ost of path j′, whi
h is 
omputed using Equations 5.2 and 5.3.Now, let us �nd the minimal value LY R2A of penalty for whi
h Pf > Pf̄ :(Equating it to get minimal value)
Pf > Pf̄ =⇒ −(tmedian − tj)λ− λtj > −LY R2A − λtj′

=⇒ λ(tj′ − tmedian) > −LY R2A

=⇒ LY R2A > λ(tmedian − tj′ )The penalty algebrai
ally be
omes negative when the vehi
le deviates fromthe system by opting for a path higher than the median 
ost path. In su
h as
enario, the system levies no penalty on the vehi
le keeping LY to be zero.�5.5 Performan
e StudyThis se
tion reports the performan
e evaluation of our proposed R2A andR2A+ s
hemes by means of simulation. We 
onsider a universe of 30 km by30 km, whi
h is divided into 10 regions of equal area. Table 5.1 summarizesthe parameters used in the performan
e study.We 
onsider a total of 200 
he
kpoints. The number of 
he
kpoints in ea
hregion is determined using a Zipf distribution with a zipf fa
tor ZFC of 0.5(i.e., high skew) over 10 bu
kets, where ea
h bu
ket 
orresponds to one ofthe 10 regions. Then for ea
h region, the required number of 
he
kpoints israndomly sele
ted from the points within that region. Moreover, we 
onsidera total of 25000 vehi
les, whi
h are homogeneous in terms of gas mileageand speed. The number of journeys for ea
h vehi
le during the 
ourse ofour experiment is randomly 
hosen to be between 2 and 6. Furthermore, thesour
e 
he
kpoint for a given vehi
le for ea
h journey is 
hosen randomlyfrom the 200 
he
kpoints.For sele
ting the destination 
he
kpoint for a given journey for a vehi
le, wemake the observation that in real-world s
enarios, destinations for journeys
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e Study 155Parameter Default VariationsNumber of journeys (NJ ) (104) 10 2, 4, 6, 8Number of vehi
les (NV ) (103) 25 5, 10, 15, 20Number of 
he
kpoints (NC) 200 40, 80, 120, 160Skew in 
he
kpoint distribution (ZFC) 0.5 0.1, 0.3, 0.7, 0.9Skew in destination (ZFD) 0.5 0.1, 0.3, 0.7, 0.9Per
entage of users who are notrevenue-
ons
ious (PU ) 40 20, 60, 80, 100Table 5.1: Parameters of the performan
e studyare typi
ally skewed a
ross regions. In other words, some of the `popular'regions would 
ontain destinations for a disproportionately large number ofjourneys, while other regions would 
ontain destinations for only a relativelysmaller number of journeys. Thus, given the total of 100000 journeys (per-formed by di�erent vehi
les) in our experiments, we �rst sele
t the destinationregion for ea
h journey using a Zipf distribution with zipf fa
tor ZFD=0.5(i.e., high skew) over 10 bu
kets 
orresponding to the 10 regions. Then givena destination region, we randomly sele
t any one of the 
he
kpoints 
ontainedin that region as the destination for a given journey.Performan
e metri
s are average fuel savings (AFS), average time sav-ings (ATS), su

ess rate (SR) and 
ommuni
ation 
ost in terms of thetotal number of messages (MSG). AFS and ATS are both 
omputedbased on the di�eren
es in fuel 
onsumption and journey time respe
tivelybetween the minimum-
ost route and the system-assigned route. AFS is
omputed as follows:
AFS =

1

NJ

NJ
∑

i=1

(FCminPi
− FCSAi

) (5.9)where FCminPi
and FCSAi

are the fuel 
onsumption 
orresponding to theminimum-
ost route and the system-assigned route respe
tively for the ithjourney. Observe that AFS is 
omputed as the average value of fuel savingsa
ross the total number NJ of journeys.
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e Study 156Similarly, ATS is 
omputed as follows:
ATS =

1

NJ

NJ
∑

i=1

(TCminPi
− TCSAi

) (5.10)where TCminPi
and TCSAi

are the time 
onsumption for the minimum-
ostroute and the system-assigned route respe
tively for the ith journey. ATS is
omputed as the average value of time savings a
ross NJ journeys.The su

ess rate SR depends upon the number of journeys that 
ompletedwithin x% of the time required when following the minimum-
ost route. Here,required time when using the minimum-
ost route is estimated by the route's
ost divided by vehi
le speed. Our experiments use x=20%. For example,suppose the time required when using the minimum-
ost route for a givenjourney is 20 minutes. Then, only the journeys, whi
h were 
ompleted within24 (i.e., 20×1.2) minutes are deemed to be su

essful. Thus, SR is 
omputedas the ratio between the number of su

essful journeys and the total numberof journeys.Finally, MSG=∑NJ

i=1MSGi, where MSGi is the number of messages for the
ith journey. Thus, MSG is a 
umulative metri
 over the total of NJ journeys.Notably, the intera
tion between a vehi
le and the base station at any given
he
kpoint in
urs two messages. The �rst message is from the approa
hingvehi
le to the base station, while the se
ond message is sent by the basestation to the vehi
le for informing it about the system-assigned path.Re
all that in Se
tion 5.3.1, we de�ned the notion of a lower-
ost path be-tween two given 
he
kpoints as a path, whose 
ost is below the median path-
ost of all the paths 
onne
ting the two 
he
kpoints. As referen
e, we usea s
heme in whi
h only the lower-
ost routes 
arry a fee (akin to toll-roadfees), while other paths do not entail any fees. The fee for the lower-
ostpaths is 
omputed using Equation 5.6. We shall hen
eforth designate thiss
heme as the Congestion-Pri
ing (CP) s
heme. CP does not provide anyrewards to vehi
les for taking longer time-
ost routes. Moreover, in CP, thebase stations do not 
oordinate vehi
ular tra�
 routing, hen
e they do not
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e Study 157provide any e
onomi
 in
entives to the vehi
les towards following the system.Furthermore, CP does not ne
essitate any intera
tions between base stationsand vehi
les. In essen
e, CP 
harges fees to vehi
les when they travel faster,but it does not reward vehi
les when they travel slower, and CP does notin
orporate the reward/penalty me
hanism of E-Vet.Notably, in 
ase of R2A, R2A+ and CP, the impli
it assumption is that everyvehi
le is trying to maximize its revenue. However, in pra
ti
e, there 
ouldbe a per
entage of vehi
le users, who do not 
are about maximizing theirrevenue i.e., these users are not revenue-
ons
ious. Hen
e, we also examinethe performan
e when 40% of the users are not revenue-
ons
ious, whilethe other 60% are trying to maximize their revenue. In the experimentalresults, we designate the performan
e of R2A, R2A+ and CP under the above
ondition as R2A+
U , R2AU and CPU respe
tively.5.5.1 Performan
e of E-VeTWe 
ondu
ted an experiment using the default values of the parameters inTable 5.1. Figure 5.3 depi
ts the results. As the number NJ of journeysin
reases, performan
e in terms of AFS (measured in fuel units (f.u.)),ATS (measured in time units (t.u.)) and SR improves for both R2A andR2A+ due to their e�e
tive e
onomi
 reward/penalty-based route allo
ation,whi
h redu
es tra�
 
ongestion, thereby resulting in both fuel and timesavings as well as higher su

ess rates. Both R2A and R2A+ outperformCP essentially due to their e
onomi
 reward/penalty-based route allo
ationapproa
h. In 
ontrast, in 
ase of CP, the vehi
les a
ting sel�shly in tryingto follow the least-
ost routes to their respe
tive destinations 
ause tra�

ongestion. This further in
reases both fuel 
onsumption and average timeof journey.R2A+ performs better than R2A be
ause it provides additional in
entives forthe vehi
les to 
onsistently follow the system-assigned paths a
ross multiplejourneys. Moreover, R2A outperforms R2AU , and R2A+ outperforms R2A+

U .
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(d) MSGFigure 5.3: Performan
e of E-VeTThis is be
ause in 
ase of R2AU and R2A+
U , 40% of users are not revenue-
ons
ious, thereby redu
ing the e�e
tiveness of these s
hemes. Furthermore,R2A+

U outperforms R2A (in terms of AFS, ATS, SR) upto a 
ertain number ofjourneys primarily be
ause R2A+
U better in
entivizes vehi
les in 
onsistentlyfollowing the system-assigned paths. However, as the number of journeysex
eeds 80,000, R2A performs better than R2A+

U . This o

urs be
ause as thenumber of journeys in
reases beyond a 
ertain point, the impli
ation is that alarger absolute number of users are not revenue-
ons
ious, thereby redu
ingthe e�e
tiveness of R2A+
U .



5.5. Performan
e Study 159Observe that MSG equals zero for CP in all 
ases be
ause in CP, the vehi
lesdo not need to intera
t with the base stations. On the other hand, MSGin
reases over the number of journeys in our proposed s
hemes sin
e it is a
umulative metri
. MSG is 
omparable in 
ase of R2A, R2A+, R2AU andR2A+
U as these s
hemes involve similar intera
tions between the vehi
les andthe base stations at the 
orresponding 
he
kpoints. These intera
tions o

urthrough the software in ea
h vehi
le, regardless of whether the users arerevenue-
ons
ious.5.5.2 E�e
t of varying the number of vehi
lesWe 
ondu
ted an experiment to examine the s
alability of E-VeT w.r.t. thenumber of vehi
les. Figure 5.4 depi
ts the results of varying the number NVof vehi
les. As NV in
reases, performan
e in terms of AFS, ATS and SRdegrades for both R2A and R2A+ due to in
reased tra�
 
ongestion arisingfrom a larger number of vehi
les. Observe that the performan
e degradationis only slight essentially due to the e�e
tive in
entive-based route allo
ationperformed by both R2A and R2A+. As NV in
reases, MSG in
reases for bothR2A and R2A+ be
ause the number of intera
tions between the base stationsand the vehi
les in
reases, given the in
rease in the number of vehi
les. Fur-thermore, the explanation for the relative performan
e of R2A+

U and R2A isessentially the same as in 
ase of Figure 5.3.5.5.3 E�e
t of varying the number of 
he
kpointsWe 
ondu
ted an experiment to investigate the e�e
t of varying the number
NC of 
he
kpoints. Figure 5.5 depi
ts the results. As NC in
reases, theroute assignments are performed at a relatively larger number of 
he
kpoints,thereby implying more opportunities for �ne-tuning the route assignments.Hen
e, performan
e (in terms of AFS, ATS and SR) improves for all ourproposed s
hemes. This performan
e gain 
omes at the 
ost of higher MSGbe
ause vehi
les and base stations ex
hange messages at a larger number of



5.5. Performan
e Study 160
 2

 4

 6

 7

 5  10  15  20  25

A
F

S
 (

f
.u

.)

NV (10
3
)

R
2
A

+

R
2
A

CP

R
2
A

+
U

R
2
AU

CPU

(a) AFS
 4

 8

 12

 16

 5  10  15  20  25

A
T

S
 (

t.
u
.)

NV (10
3
)

R
2
A

+

R
2
A

CP

R
2
A

+
U

R
2
AU

CPU

(b) ATS
 25

 50

 75

 100

 5  10  15  20  25

S
R

 (
%

)

NV (10
3
)

R
2
A

+

R
2
A

CP

R
2
A

+
U

R
2
AU

CPU

(
) SR
 4

 8

 12

 16

 5  10  15  20  25

M
S

G
 (

1
0

4
)

NV (10
3
)

R
2
A

+

R
2
A

CP

R
2
A

+
U

R
2
AU

CPU

(d) MSGFigure 5.4: E�e
t of variations in the number of vehi
les
he
kpoints. However, we believe that the in
rease in MSG is a small pri
eto pay for the performan
e gain in redu
ing the overall tra�
 
ongestion.Furthermore, the results indi
ate that R2A performs better than R2A+
U . Thiso

urs be
ause 40% of the users are not revenue-
ons
ious in 
ase of R2A+

U ,whi
h redu
es its e�e
tiveness in redu
ing tra�
 
ongestion.
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(d) MSGFigure 5.5: E�e
t of variations in the number of 
he
kpoints5.5.4 E�e
t of variations in skew in 
he
kpoint distri-butionRe
all that ZFC is the zipf fa
tor, whi
h quanti�es the skew in the distri-bution of 
he
kpoints a
ross the 10 regions 
onsidered in our experiments.Figure 5.6 depi
ts the results of varying ZFC . As ZFC in
reases, the im-pli
ation is that a disproportionately large number of 
he
kpoints o

ur inonly a few of the regions, while other regions 
ontain only a relatively smallnumbers. Hen
e, in most of the regions, there are fewer opportunities for
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(d) MSGFigure 5.6: E�e
t of variations in skew in the distribution of 
he
kpoints�ne-tuning the route assignments. Thus, given that vehi
ular journeys 
uta
ross di�erent regions, the performan
e (in terms of AFS, ATS and SR) ofour proposed s
hemes degrades as the 
he
kpoint distribution be
omes moreskewed. However, MSG remains 
omparable for our proposed s
hemes be-
ause it depends upon the number of 
he
kpoints, regardless of the skew inthe distribution of 
he
kpoints.



5.5. Performan
e Study 1635.5.5 E�e
t of variations in the per
entage of users whoare not revenue-
ons
iousRe
all that the R2AU , R2A+
U and CPU s
hemes were de�ned to take intoa

ount that a 
ertain per
entage of the users are not revenue-
ons
ious i.e.,they do not 
are about maximizing their revenue. Let us designate this per-
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t of variations in the per
entage of users who are not revenue-
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ious
entage as PU . In Figure 5.7 as PU in
reases, the performan
e of our proposeds
hemes degrade be
ause an in
reasing number of users be
ome indi�erent



5.6. Summary 164to the revenue-maximization obje
tive, whi
h is used by our s
hemes to in-
entivize vehi
les to follow the system-assigned paths, thereby redu
ing theoverall e�e
tiveness of our s
hemes. Interestingly, when PU=100% the perfor-man
e of our proposed s
hemes be
omes 
omparable to that of CP be
auseat that point, 100% of the users are not revenue-
ons
ious, thereby implyingthat the users are not in
entivized by our proposed s
hemes. However, MSGremains 
omparable a
ross variations in PU be
ause the intera
tions betweenthe vehi
les and the base stations o

ur through the software in ea
h vehi
le,regardless of whether the users are revenue-
ons
ious.5.6 SummaryWe have proposed the E-VeT system for e�
iently managing vehi
ular tra�
in road networks using e
onomy-based reward/penalty s
hemes. E-VeT aimsat redu
ing tra�
 
ongestion by enabling base stations to 
ollaborativelyfa
ilitate dynami
 vehi
ular route assignment. Our proposed R2A s
hemerewards vehi
les for following system-assigned longer-time paths, and 
hargesa fee for following system-assigned shorter-time paths. R2A+ extends R2Aby in
orporating the notion of revenue-s
ales for additionally 
onsidering agiven vehi
le's past history in following system-assigned paths a
ross multiplejourneys. Thus, in E-VeT, vehi
les earn revenues based on either the R2As
heme or the R2A+ s
heme. The route allo
ation algorithm used by E-VeTprovides preferen
e to vehi
les earning higher revenues by assigning them toshorter-time paths, thereby in
entivizing them to follow the system-assignedpaths. Our performan
e study shows that the proposed s
hemes are indeed
apable of e�e
tive tra�
 management in road networks by redu
ing theaverage time of arrival and fuel 
onsumption.In the near future, we will validate the results of spatio-temporal variationsof vehi
ular tra�
 in VANETs [BK09℄ within our framework of e
onomi
reward/penalty s
hemes.



6
E-Rare: E
onomi
 In
entiveS
hemes for ImprovingAvailability of Rare Data inMobile-P2P Networks

6.1 OverviewIn a Mobile ad ho
 Peer-to-Peer (M-P2P) network, mobile peers (MPs) inter-a
t with ea
h other in a peer-to-peer (P2P) fashion. Proliferation of mobiledevi
es (e.g., laptops, PDAs, mobile phones) 
oupled with the ever-in
reasingpopularity of the P2P paradigm (e.g., KaZaa) strongly motivate M-P2P ap-pli
ations. Mobile devi
es wirelessly 
ommuni
ating in a P2P fashion (asMi
rosoft's Zune [Zun06℄) fa
ilitate M-P2P appli
ations by sharing informa-tion on-the-�y.This work fo
usses on handling rare data items in an M-P2P environment.Rare data items are those, whi
h get sudden bursts in a

esses based onevents as they are only hosted by only a few peers in 
omparison to the



6.1. Overview 166network size. Thus, they may not be available within few hops of query-issuing peers. The sudden burst in a

esses to rare items generally o

urswithin a given time-frame (asso
iated with the event), before and after whi
hsu
h items are rarely a

essed.Some appli
ation s
enarios are as follows. Suppose a group of 
ollege stu-dents in the 
ourse of an expedition in a remote forest, where 
ommuni
ationinfrastru
tures (e.g., base stations) do not exist. When there is a sudden de-
rease in temperature and gusty winds, they need to look for informationabout shops selling sweaters and wind-
heaters in a nearby town, photos ofsu
h 
lothing and so on. In a similar vein, suppose a group of adventuretourists unexpe
tedly en
ounters a 
ave during their journey. They wouldlike to �nd information about where to buy gas-masks and asso
iated safetyequipment along with instru
tional tutorials on how to use this equipmentand so on. Similarly, when a motorist driving in a mountainous region, sees arare animal, she may wish to �nd additional information about living habits.Additionally, due to the sudden onset of a heat wave, a group of botanists onan expedition in a forest may want to �nd information su
h as non-drinkingwater sour
es and pi
tures of the lo
ations of su
h water sour
es. In theseappli
ation s
enarios, M-P2P intera
tions 
an fa
ilitate the MPs in �ndingthe required information.Su
h M-P2P intera
tions for e�e
tive sharing of rare data are 
urrently notfreely supported by existing wireless 
ommuni
ation infrastru
tures. Observehow the sudden urgent demand of several MPs for information 
on
erningrare items (e.g., prote
tive 
lothing or gas-masks) arises due to the o

urren
eof events su
h as the sudden onset of harsh weather 
onditions or the usersunexpe
tedly en
ountering a 
ave.In this work, we assume an environment, where all the MPs 
ollaborate oninformation sharing and are trusted. Notably, any distributed trust manage-ment s
hemes [QMK10,RSB11, SL03℄ 
an be used in 
onjun
tion with ourproposed work for managing trust. Furthermore, we assume that there is no
onne
tion between the seller of the rare items and the MPs who own/host



6.1. Overview 167information about them. Thus, these MPs are not agents of any sellers ofthe rare items. They provide the information that they have 
olle
ted fromtheir own use or based on their general interest in some types of rare items.Thus, the s
ope of our proposed model is restri
ted to information ex
hangeabout rare items among the MPs within the M-P2P network (su
h as in
rowdsour
ing) as opposed to the buying/selling of the a
tual rare items.Similar to the works in [HM06,XP03℄, our target appli
ations mainly 
on-
ern slow-moving obje
ts e.g., adventure tourists in a forest. Our appli
a-tion s
enarios assume data a

esses to o

ur within soft real-time deadlinesand as su
h, we do not address s
enarios where real-time a

ess is required.Additionally, given our assumption 
on
erning slow-moving obje
ts, a query-issuing MP may still be wandering in the region for say, the next 2-3 minutes.In our work, a user spe
i�es a TTL (hen
e a soft real-time) for her query,and if the answer is not found within the TTL, the query fails.Data availability in M-P2P networks is typi
ally lower than in �xed networksdue to frequent network partitioning arising from peer movement, mobileresour
e 
onstraints (e.g., bandwidth, energy, memory spa
e) and mobiledevi
es being autonomously swit
hed `o�'. (In
identally, data availabilityis less than 20% even in a wired environment [SGG01℄.) Rampant free-riding further redu
es data availability sin
e a large per
entage of MPs aretypi
ally free-riders [HA05, KSGM03a℄ i.e., they do not provide any data.Availability of rare data is further exa
erbated sin
e they are generally storedat relatively few MPs, whi
h may be several hops away from query-issuers.Thus, e
onomi
 models be
ome a ne
essity to 
ombat free-riding and toin
entivize MPs to host repli
as for improving rare data availability in M-P2P networks.Existing repli
ation s
hemes for improving data availability in mobile adho
 networks (MANETs) [HM06,KMSA08℄ do not 
onsider e
onomi
 in
en-tives for data hosting, li
ensing me
hanisms, M-P2P ar
hite
ture and dataitem rarity issues. In
entive s
hemes for MANETs [BH03,CN04,CGKO03,SNCR03℄ primarily fo
us on en
ouraging message forwarding, but they do



6.1. Overview 168not address repli
ation. M-P2P in
entive s
hemes [WXS04,XWR06℄ do notaddress the repli
ation of rare data items.This work proposes E-Rare, a novel e
onomi
 in
entive model for improvingrare data availability by means of li
ensing-based repli
ation in M-P2P net-works. E-Rare 
omprises two repli
ation s
hemes, namely ECR and ECR+,both of whi
h use its in
entive model for improving rare data availability.The key di�eren
e between these s
hemes is that in ECR, the MPs a
t indi-vidually towards repli
ation, while for ECR+, the MPs perform repli
ationin groups. In both these s
hemes, a given MP issues queries spe
ifying itsdesired data item, its lo
ation and query deadline.In E-Rare, ea
h data item d is asso
iated with four types of pri
es, whi
hprovide di�erent rights to the query-issuing MP MI 
on
erning the usageof d. The �rst two pri
e types entitle MI to obtain information about dat di�erent levels of detail (e.g., information about a few shops selling gas-masks versus 
omplete 
atalogues of more shops selling gas-masks), but theydo not provide MI the right (or li
ense) to enable downloads of d from itself.In 
ontrast, the third and fourth pri
e types 
on
ern li
ensing for partialand full use downloads, and are aimed towards enabling and in
entivizingrepli
ation by means of data li
ensing. Notably, all four pri
e types dependupon fa
tors su
h as item rarity s
ore and timeliness of query response. InECR, the item rarity s
ore depends upon the variability in the a

ess 
ountsof d during re
ent periods of time. Here, we assume that time is dividedinto equal intervals, ea
h of whi
h is designated as a time-period. Notably,our proposed approa
h requires syn
hronized 
lo
ks among the MPs, andthe existing 
lo
k syn
hronization approa
hes proposed in [CW04,SCHS07℄
an be used. In ECR+, the item rarity s
ore additionally depends upon thenumber of MPs whi
h host d.E-Rare requires a query-issuing MP MI to pay any one of these four pri
esfor its requested data item to the MPMS serving its request, depending uponthe pri
e type asso
iated with its query. Furthermore, it requires MI to paya 
onstant 
ommission to ea
h relay MP in the su

essful query path from
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h it eventually downloads the data, thereby enti
ing them to forwardqueries qui
kly. Note that even though the MI has to pay a 
onstant relay
ommission to ea
h relay MP, it does not ne
essarily imply that a shortestpath should be applied be
ause the total payment made by the MI in
ludesboth the item pri
e and the relay 
ommissions. For example, using the short-est path would result in theMI paying a lower amount for relay 
ommissions,but it 
ould end up paying a higher total 
ost be
ause the item pri
e maybe higher at the mobile peer (in that path) from whi
h MI would need toeventually download the item.Observe how E-Rare e�e
tively 
ombats free-riding be
ause free-riders wouldhave to earn 
urren
y for issuing their own requests, and they 
an earn 
ur-ren
y only by means of hosting items and relaying messages. Notably, giventhat E-Rare asso
iates rare data items with pri
es, it is possible for anMI toavoid a

essing the items be
ause of their pri
es or if the MI has not earnedadequate revenue by hosting items or by relaying messages. Furthermore, inE-Rare, item pri
es in
rease with rarity, thereby providing free-riders withhigher in
entive [GA04, RFJY03, SH04℄ to host rare items for maximizingtheir revenues. By enti
ing free-riders to pool in their energy and bandwidthresour
es to host rare items, E-Rare improves rare data availability due torepli
ation.In ECR+, a peer group is de�ned as a set of MPs working together su
has an adventure tour expedition group. MPs provide dis
ounts only to theMPs within their group, thereby in
entivizing MP parti
ipation in the group.These dis
ounts are appli
able to all the four pri
e types dis
ussed earlier.Notably, group members need not ne
essarily be one-hop neighbors i.e., theymay be s
attered a
ross the network due to peer movements.The main 
ontributions of E-Rare are three-fold:1. It provides in
entives for repli
ation of rare data items by means of anovel li
ensing me
hanism, thereby improving rare data availability.2. It provides additional in
entives for MPs to 
ollaborate in groups,



6.1. Overview 170thereby further improving rare data availability.3. A detailed performan
e evaluation has been done to show the improve-ment in query response times and availability of rare data items inM-P2P networks.In
identally, virtual 
urren
y in
entives are suitable for P2P environmentsdue to the high transa
tion 
osts of real-
urren
y mi
ro-payments [TR04℄.The works in [DPGB03,ET04,ZCY03℄ dis
uss how to ensure se
ure paymentsusing a virtual 
urren
y. Notably, these se
ure payment s
hemes are 
om-plementary to our proposal, but they 
an be used in 
onjun
tion with ourproposal.We have performed a detailed performan
e evaluation of both ECR andECR+. As a baseline referen
e, we have also 
ompared against an existingnon-in
entive and non-e
onomi
 repli
ation E-DCG+ s
heme for MANETs,proposed in [HM06℄, whi
h is 
losure to our s
enario. We have used aver-age response times of queries, query su

ess rates, query hop-
ounts and thenumber of messages as performan
e metri
s. ECR+ outperforms ECR dueto its group-based in
entives (su
h as dis
ounts), whi
h fa
ilitate 
ollabo-rative repli
ation among MPs. ECR outperforms E-DCG+ essentially dueto its e
onomi
 li
ensing s
heme, whi
h in
entivizes MP parti
ipation in the
reation of multiple 
opies of rare items. Both ECR and ECR+ in
ur moremessages than E-DCG+ be
ause in 
ase of E-DCG+, a large per
entage ofunsu

essful queries result in de
reased amount of data transfer, albeit atthe 
ost of redu
ed query su

ess rates.The results also indi
ate that both ECR and ECR+ exhibit good s
alabilitywith in
reasing number of MPs due to in
reased opportunities for repli
ation.Moreover, ECR+'s performan
e improves with in
reasing group size due toin
reased repli
ation opportunities. However, beyond a 
ertain point, furtherin
rease in group size does not signi�
antly improve performan
e due to sat-uration. Both ECR and ECR+ perform best when the 
ommuni
ation rangeis neither too high nor too low. This is be
ause when the 
ommuni
ation
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ture of E-Rare 171range is large (i.e., in e�e
t, the MPs are `nearer' to ea
h other), the e�e
tof gains in query response times is o�set by the overheads of higher numberof in
oming queries at MPs that host data items and in
reased relay prop-agation laten
ies. Conversely, when the 
ommuni
ation range is too small,query response times in
rease be
ause more hops are required for answeringqueries.ECR+ performs best when the dis
ount is neither too high nor too low. Thisis be
ause when the dis
ount is too high, MPs hosting rare items have redu
edin
entives to join the group due to redu
tion in their earnings from li
ensepri
es. On the other hand, when the dis
ount is too low, MPs trying to obtainli
enses for repli
ating rare items have redu
ed in
entive to parti
ipate inthe group. The results also demonstrate that both ECR and ECR+ performbest when repli
ation is performed neither too early nor too late. Finally, theperforman
e of both ECR and ECR+ degrades with in
reasing per
entageof MP failures due to redu
ed opportunities for repli
ation.The remainder of this 
hapter is organized as follows. Se
tion 6.2 detailsthe e
onomi
 in
entive model of E-Rare for rare data items. Se
tion 6.3dis
usses the ECR and ECR+ repli
ation s
hemes. Se
tion 3.5 reports ourperforman
e evaluation. Finally, we summarize E-Rare in Se
tion 6.5 withdire
tions for future work.6.2 Ar
hite
ture of E-RareThis se
tion dis
usses our proposed e
onomi
 in
entive model E-Rare forimproving the availability of rare data items in M-P2P networks.In E-Rare, a given query-issuing MP MI issues a query Q of the form
(d, L, τQ), where d is the queried data item. Data item d is des
ribed as a
ombination of keywords. We assume that ea
h devi
e in M-P2P networkhas the 
apability to mat
h keywords to data items stored in their devi
es Lrepresents the query lo
ation, and is of the form {(x, y), rad}. Here, (x, y)



6.2. Ar
hite
ture of E-Rare 172represents the spatial 
oordinates asso
iated with a given query Q, while radrepresents the radius. For example, MI may query for an item d within 1km of its 
urrent lo
ation L. τQ is the deadline time of Q. The ephemeral-ity of M-P2P environments ne
essitates timely responses, and 
onsequentlyquery deadlines. Notably, the query-issuer does not spe
ify an expli
it raritys
ore for its queried item be
ause rarity s
ores of any given item 
an 
hangedynami
ally depending upon a

esses, and these s
ores vary a
ross the MPs.Hen
e, the query-issuer does not ne
essarily know the rarity s
ores of dataitems that are hosted at other MPs. In essen
e, we want the rarity s
ores tobe kept transparent from the query-issuers.This work assumes that the only way that a MP 
an obtain a data item isby pur
hasing it. Thus, a given MP 
annot obtain a data item while relayingit for other MPs. This assumption is justi�able in pra
ti
e be
ause ea
hdata item is prote
ted through 
opyright prote
tion, en
ryption and se
urityme
hanisms [DCRS14℄. Several existing 
ontent authoring te
hniques 
an beused for li
ense prote
tion and restri
ted distribution [Jok03℄.6.2.1 Computation of the rarity s
ore λdNow let us dis
uss how the rarity s
ore λd of a data item d is 
omputed inE-Rare. λd depends upon the variability in the a

ess 
ount of d during thepast N periods of time. Observe that the value of λd should in
rease withthe variability in a

ess 
ount of d over the last N periods in 
onsonan
ewith our de�nition of rarity, whi
h in
orporates sudden bursts in a

esses forrare items. For example, information about gas-masks and asso
iated safetyequipment is heavily a

essed only during a spe
i�
 time-frame asso
iatedwith a rare event, while at other times, su
h information may not be a

essedat all. The 
omputation of λd follows:
λd = [ { ( ηc − ( 1

N

∑N
i=1 ηi ) ) / max ( ηc ,

1
N

∑N
i=1 ηi ) } + 1 ] / 2 (6.1)



6.2. Ar
hite
ture of E-Rare 173where N is the number of time-periods over whi
h λd is 
omputed. Here,
ηc refers to the a

ess 
ount of data item d for the 
urrent period, while ηirepresents the a

ess 
ount of d for the ith time-period. Our preliminaryexperiments revealed that N = 5 is suitable for our appli
ation s
enarios.Notably, the term ( 1

N

∑N
i=1 ηi ) represents the average a

ess 
ount of d dur-ing the last N time-periods. Thus, when the 
urrent period's a

ess 
ountex
eeds the past average a

ess 
ount, the term { ( ηc − ( 1

N

∑N
i=1 ηi ) ) /

max ( ηc ,
1
N

∑N
i=1 ηi ) } lies between 0 and 1. On the other hand, when the
urrent a

ess 
ount falls below the past average a

ess 
ount, this term liesbetween -1 and 0. Hen
e, in Equation 6.1, we add 1 to this term and divideby 2, thereby making the value of λd between 0 and 1. Observe that the valueof λd may di�er among the MPs for the same data item sin
e it is asso
iatedwith sudden bursts at ea
h MP.Based on the value of λd, a given data item is 
lassi�ed into one of the follow-ing three 
lasses: rare, medium-rare and non-rare. Ea
h 
lass is asso
iatedwith a range of λd. For rare items, 0.7 ≤ λd ≤ 1; for medium-rare items, 0.5

≤ λd < 0.7; and for non-rare items, 0 < λd < 0.5. These rare data 
lassesare determined based on our experimental results. The ranges for ea
h 
lassare pre-spe
i�ed system 
onstants that are known to all the MPs.6.2.2 Types of item pri
es in E-RareEa
h query Q for any given item d is asso
iated with any one of four typesof pri
es, whi
h provide di�erent rights to the query-issuing MP MI 
on-
erning the usage of d. We designate these pri
es as partial_use_pri
e Pd,Q,full_use_pri
e Fd,Q, partial_use_li
ense_pri
e PULd,Q and full_use_li
ense_pri
e
FULd,Q. MI pays one of these four pri
es to the query-serving MP MS, de-pending upon the type of pri
e asso
iated with its query.Paying the partial_use_pri
e Pd,Q entitlesMI to obtain some basi
 or partialinformation about its queried data item d, while paying full_use_pri
e Fd,Qentitles MI to obtain more detailed information about d. For example, in



6.2. Ar
hite
ture of E-Rare 174
ase of our appli
ation s
enario 
on
erning a sudden spike in the demandfor gas-masks and asso
iated safety equipment, paying Pd,Q would entitle
MI only to information about a few shops selling su
h equipment and theirrespe
tive pri
es at these shops. However, paying Fd,Q provides MI withmore detailed information su
h as 
omplete 
atalogues of more shops sellingthese items, 
onta
t addresses and telephone numbers of these shops, how toorder these items (e.g., by phone) and instru
tional materials demonstratinghow to use these items. Notably, the payments of Pd,Q or Fd,Q pertain to
MI 's sole use of d i.e., MI does not obtain the right to host d at itself fordownloads by other MPs. Thus, MI 
annot earn 
urren
y by hosting d.For obtaining the right to earn 
urren
y by hosting d and allowing down-loads of d at itself, MI needs to pay either of the two li
ense pri
es for d.In E-Rare, an MP may pur
hase two types of li
enses, whi
h we designateas partial use li
ense (PUL) and full use li
ense (FUL) respe
tively. Whenan MP M pur
hases a single PUL for a data item d from d's original owner,it obtains the right to provide d to any one query-issuing MP, whi
h issuesa partial_use_pri
e query for d. Thus, pur
hasing nP PULs for d enables
MI to earn 
urren
y from nP downloads of d pertaining to partial_use_pri
equeries. Similarly, pur
hasing nF FULs for d enables MI to earn 
urren
yfrom nF downloads of d pertaining to full_use_pri
e queries. Observe thatbeing 
ollaborative and trusted, MPs in possession of an item would not ex-
eed the number of pre-spe
i�ed downloads. Furthermore, we assume thatea
h data item is prote
ted through 
opyright prote
tion and li
ense se
urityme
hanism. Several existing 
ontent authoring te
hniques 
an be used forli
ense prote
tion and restri
ted distribution. They 
an be en
rypted usingtraditional publi
-private key en
ryption te
hnqiues [DCRS14℄. Notably, ob-serve that in E-Rare, when an MP pays a one-time li
ense pri
e to get a givenitem, it is not allowed to ful�ll as many queries as it wants, although allowingan MP to do so would improve data availability. The rationale behind this isto prote
t the original owner's bene�t i.e., to in
entivize the original ownerto 
reate and maintain information about rare items.
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hite
ture of E-Rare 175Observe how the data li
ensing me
hanism of E-Rare provides an e
onomi
means of in
entivizing data repli
ation be
ause the data owners 
an earn
urren
y from the li
ense pri
es. We assume that the initial number of li-
enses is �xed by the owner of data items, and that de
ides the number ofli
ensees. We also assume that there are enough peers interested to ask forli
enses of a given item from li
ensor. In general, the number of li
ensees 
anbe updated by the owner on the regular feedba
k re
eived from other peerswithin the group (in 
ase of ECR+) based on the query response time, andtheir availability. Furthermore, if the owner of an item d repli
ates d with-out 
harging a li
ense pri
e, 
ompetition with the MPs hosting repli
as of dwould be likely to redu
e its earnings from hosting d. The li
ensing me
ha-nism also improves rare data availability by guarding against the possibilityof unavailability of the rare item owner.For the sake of 
onvenien
e, Table 6.1 summarizes the notations used in E-Rare. Notably, ea
h data item d is asso
iated with a s
ore λd, whi
h quanti�esits rarity, and therefore in�uen
es item pri
es. The remainder of this se
tiondis
usses the 
omputation of the four pri
e types and the 
omputation ofMP revenues in E-Rare.Symbol Signi�
an
e
d A data item
λd Rarity s
ore of d
MI Query-issuing MP
MS Query-serving MP
Pd,Q The partial_use_pri
e of d
Fd,Q The full_use_pri
e of d

PULd,Q The partial_use_li
ense_pri
e of d
FULd,Q The full_use_li
ense_pri
e of dTable 6.1: Summary of notations in E-Rare

Computation of the partial_use_pri
e Pd,QThe partial_use_pri
e Pd,Q of a data item d for a given query Q dependson the rarity s
ore λd of d and the response time of the query Q w.r.t. the



6.2. Ar
hite
ture of E-Rare 176query deadline. Notably, Pd,Q should in
rease with in
rease in λd be
auserare items should 
ommand higher pri
es. Furthermore, for rewarding fasterservi
e, Pd,Q should be higher for queries answered 
onsiderably earlier thanthe query deadline than for queries answered very 
lose to the deadline. Thus,given that τQ and RQ represent the query deadline and the query responsetime respe
tively, Pd,Q should in
rease with in
rease in the ratio (τQ / RQ).
Pd,Q is 
omputed as follows:

Pd,Q =











( λd × eτQ/RQ ) if RQ ≤ τQ

0 otherwise

(6.2)When making the pur
hase, the buyer is provided with a list of pri
ing op-tions e.g., if 3 minutes delay, $10; if 7 minutes delay, $2 et
. Thus, the buyerhas some expe
tation about the total pri
e whi
h he will be paying for thepur
hase. Observe that for queries answered after the deadline, Pd,Q is set tozero be
ause the query results may no longer be useful to the query-issuer.Observe how Pd,Q de
reases with de
reasing the rarity s
ore λd. Furthermore,for the very �rst query on d, we assume RQ=τQ for bootstrapping purposes.Hen
e, in this spe
ial 
ase, Pd,Q=λd × e.Computation of the full_use_pri
e Fd,QIntuitively, we 
an understand that the full_use_pri
e Fd,Q of a data item dfor a given query Q should always ex
eed its partial_use_pri
e Pd,Q be
auseit provides more information to the query-issuer. We 
ompute Fd,Q as follows:
Fd,Q = Pd,Q ×Υ (6.3)In Equation 6.3, the value of Pd,Q is 
omputed from Equation 6.2. Here, Υalways ex
eeds 1 to ensure that Fd,Q always ex
eeds Pd,Q. The value of Υdepends on the di�eren
e between the value proposition to the user providedby partial and full a

ess to the information, and hen
e, it is appli
ation-
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ture of E-Rare 177dependent. In this work, based on the results of our preliminary experiments,we set Υ = 1.3.Computation of li
ense_pri
es PULd,Q and FULd,QThe li
ense pri
es, PULd,Q and FULd,Q, for a single PUL and FUL respe
-tively are 
omputed as follows:
PULd,Q = µPd,Q

+ ( µPd,Q
+ µFd,Q

) / µPd,Q
(6.4)

FULd,Q = µFd,Q
+ ( µPd,Q

+ µFd,Q
) / µPd,Q

(6.5)In Equations 6.4 and 6.5, µPd,Q
and µFd,Q

are the average values of Pd,Q and
Fd,Q respe
tively at the original owner of d sin
e both Pd,Q and Fd,Q varya
ross queries. Thus, the owner of d 
omputes µPd,Q

and µFd,Q
by averagingthe individual values of Pd,Q a
ross all the queries (for d) that it answered
orresponding to the partial_use_pri
e and the full_use_pri
e respe
tivelyduring re
ent time-periods.Intuitively, PULd,Q should ex
eed µPd,Q

be
ause it enables the query-issuerto earn 
urren
y from hosting item d. In Equation 6.4, observe that PULd,Qalways ex
eeds µPd,Q
be
ause the se
ond term is always a positive numberthat is greater than 1. This is be
ause µFd,Q

> µPd,Q
, as dis
ussed earlier.Similarly, in Equation 6.5, FULd,Q always ex
eeds µFd,Q
.For the sake of 
onvenien
e, we have summarized the four pri
e types inE-Rare in Table 6.2.Partial (Information) Full (Information)Use Pd,Q =

{

(λd × eτQ/RQ) if RQ ≤ τQ

0 otherwise

Fd,Q = Pd,Q ×ΥLi
ense PULd,Q =
µPd,Q

+ ( µPd,Q
+ µFd,Q

)/µPd,Q

FULd,Q =
µFd,Q

+ ( µPd,Q
+ µFd,Q

)/µPd,QTable 6.2: Summary of item pri
e types in E-Rare
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ture of E-Rare 1786.2.3 Revenue of an MPRevenue of an MP M is the di�eren
e between the amount of virtual 
ur-ren
y that it earns and the amount that it spends. M earns 
urren
y froma

esses to data items that it hosts and by relaying messages. M spends 
ur-ren
y by a

essing items hosted at other MPs, and by paying 
ommissionsto the relay MPs 
orresponding to its queries. Given that E-Rare has fourtypes of item pri
es, the revenue of M is the sum of the net earnings of anMP 
orresponding to ea
h of these four pri
e types and the net earnings dueto message relay 
ommissions.In E-Rare, message relay 
ommission is a 
onstant K, whi
h is a small per-
entage of the average partial_use_pri
e µPd,Q
. This is in 
onsonan
e withE-Rare's obje
tive of providing greater in
entives to MPs for hosting itemsthan for relaying messages. In this work, we set K to be 5% of the averagevalue of Pd,Q. Note that the value of Pd,Q varies a
ross queries, however thepri
es of items in the appli
ation 
an be used as a guideline to estimate anapproximate average value of Pd,Q. In this work, relay MPs have to relay asthis is a part of the proto
ol i.e., they do not de
ide whether they want torelay the data.SupposeM hosts p data items. For queries served byM , let the a

ess 
ountsof the ith item 
orresponding to the partial_use_pri
e, full_use_pri
e, par-tial_use_li
ense_pri
e and full_use_li
ense_pri
e be nsPi

, nsFi
, nsPULiand nsFULi

respe
tively. Moreover, let the 
orresponding pri
es for thesea

esses be Pi, Fi, PULi and FULi respe
tively. Furthermore, suppose Mrelays m messages. Thus, the total earnings EM ofM is 
omputed as follows:
EM =

∑p
i=1 [ ( nsPi

× Pi ) + ( nsFi
× Fi ) +

( nsPULi
× PULi ) + ( nsFULi

× FULi ) ]

+ (m×K )

(6.6)In the above equation, the �rst and se
ond terms represent M 's earnings
orresponding to partial_use_pri
e and full_use_pri
e respe
tively, while
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hemes for E-Rare 179the third and fourth terms relate to M 's earnings from li
ensing. Note that
M 
an earn li
ense pri
es (
orresponding to PUL and FUL) only for the itemsthat it owns. The �fth term representsM 's earnings from relay 
ommissions.Let the number of queries issued su

essfully1 byM 
orresponding to the par-tial_use_pri
e, full_use_pri
e, partial_use_li
ense_pri
e (PUL) and full_use_li
ense_pri
e(FUL) be nqP , nqF , nqPUL and nqFUL respe
tively. Moreover, let the ithitem's pri
e paid byM to obtain the query result 
orresponding to its desiredpri
e type be Pi, Fi, PULi and FULi respe
tively. Furthermore, suppose
M paid relay 
ommissions for n messages in the 
ourse of issuing di�erentqueries. Thus, the total spending SM of M is 
omputed as follows:

SM = [
∑nqP

i=1 Pi ] + [
∑nqF

i=1 Fi ] +

[
∑nqPUL

i=1 PULi ] + [
∑nqFUL

i=1 FULi ] + ( n×K )
(6.7)In Equation 6.7, the �rst and se
ond terms represent M 's spending on thequeries that it issued 
orresponding to partial_use_pri
e and full_use_pri
erespe
tively. The third and fourth terms relate to M 's spending due topur
hases of li
enses (i.e., PUL and FUL). The �fth term represents M 'sspending due to relay 
ommissions.Hen
e, using Equations 6.6 and 6.7, the revenue ω of M is 
omputed below:

ω = EM − SM (6.8)6.3 E
onomy-based Repli
ation s
hemes for E-RareThis se
tion dis
usses two e
onomy-based repli
ation s
hemes, namely ECRand ECR+, for improving rare data availability. They are based on thein
entive-model dis
ussed in the previous se
tion.1A su

essful query is one for whi
h M re
eives the query results before the deadline.For unsu

essful queries, M does not spend any 
urren
y.
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hemes for E-Rare 1806.3.1 ECR: Individual-based repli
ation s
hemeIn ECR, ea
h MP M autonomously de
ides the items to host at itself on aperiodi
 basis. These items 
ould be either the items that M owns or theitems for whi
h it sees high demand (as in 
ase of rare items) based on themessages that it relays. M tries to obtain su
h high-demand items from itsneighbors. Thus, this method helps in 
ombating free-riders by attra
tingthem to host items and earn in
entives. Initially, when the system starts, foruniformity, redu
ed repli
ation-related overhead and later for performan
e
omparison purposes, we initialize the repli
ation period, whi
h is the samefor all the MPs. Thus, the repli
ation period is independent of data items.Algorithm 6.1 ECR: Algorithm for an MP Mbegin/* MEM is an M 's memory spa
e *//* TH is a rarity s
ore threshold for M *//* λi is a rarity s
ore for data item i */(1) Re
eive broad
asted list BR of the data items from M 's neighbours(2) Merge BR with M 's own list of available data items in AR(3) Sort AR in des
ending order of data items' rarity s
ores(4) for ea
h item i in AR(5) if MEM > 0 and λi > TH(6) Store i in MEM(7) MEM = MEM - sizeof[i℄(8) Add i to pur
hased list PR(9) else(10) break(11) for ea
h item i in PR(12) Pay partial/full use pri
e of i to its sender-MPendFor determining whi
h data items to host at itself, M autonomously sets ararity threshold s
ore THR. (Thus, THR 
an vary a
ross MPs.) M 
omputes
THR as an average rarity s
ore of the rare items that it 
urrently hosts. Mpro
eeds to �ll up its available memory spa
e by �rst sorting its own itemsin des
ending order of their rarity s
ores and hosting only those items, whoserarity s
ores ex
eed THR. Then, ifM has available memory spa
e,M 
reatesa list of items, for whi
h it has seen high demand (based on its inter
eptedrelay messages). M sends a message to its neighbors to enquire whether
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iated item rarity s
ores. Uponre
eiving replies from its neighbors, M tries to repli
ate at itself only thoseitems, whose rarity s
ores ex
eed THR, by paying either of the li
ense pri
etypes to the 
orresponding neighbor(s). M 's remaining memory spa
e (ifany) is then progressively �lled up one-by-one with its own items based ondes
ending order of their rarity s
ores.Dis
ussion on ECRNote that resour
e 
onstraints in
lude memory spa
e and energy of the mo-bile devi
es, and ECR uses an in
entive-based repli
ation me
hanism, wherepeers earn 
urren
y from items that are downloaded from them. This fa
ili-tates e�
ient allo
ation of limited available memory spa
e for repli
as amongthe MPs be
ause the peers are in
entivized to host items (or repli
as) thatare more likely to maximize their revenues.Furthermore, our proposed model requires a query-issuing peer to pay a
onstant 
ommission to ea
h relay MP in the su

essful query path fromwhi
h it eventually downloads the data, thereby enti
ing them to forwardqueries qui
kly. Sin
e sending and re
eiving messages tax the limited energyresour
es of the mobile peers, this addresses the energy 
onstraint by ensuringthat the peers preserve their energy by forwarding the important messagesthat are asso
iated with a higher possibility of downloads.As su
h, we do not handle node mobility expli
itly. However, in our simu-lations, we model node-mobility in terms of the Random Waypoint (RWP)Model appropriate for our appli
ation s
enarios su
h as adventure tourists(or ar
haeologists) moving randomly.Note that the deletion of items (or repli
as) at a peer is autonomous. A peerdoes not ne
essarily have to delete items, whose a

ess 
ount falls below a
ertain threshold. For example, if the item is rare and thus higher-pri
ed, apeer may still de
ide to 
ontinue hosting it in the expe
tation of earning highamount of revenues when the rare item gets a

essed due to the o

urren
e
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hemes for E-Rare 182of some rare event. Observe that the hosting of rare items is important tothe network as a whole for maintaining the data availability when a suddenburst of queries 
omes in for the rare items.6.3.2 ECR+: Group-based repli
ation s
hemeNow we shall dis
uss ECR+, whi
h extends the ECR s
heme by in
orporatingthe notion of peer groups for improving the availability of rare data items inE-Rare.We de�ne a peer group as a set of MPs working together su
h as an adven-ture tour expedition group. Notably, group members need not ne
essarilybe one-hop neighbors i.e., they may be s
attered a
ross the network due topeer mobility. For the sake of 
onvenien
e, we shall hen
eforth refer to a peergroup as a group. As we shall see shortly, MPs provide dis
ounts only toother MPs within their group to in
entivize MP parti
ipation in the group.As su
h, group formation s
hemes are outside of the s
ope of this work. No-tably, existing group formation s
hemes su
h as MobilisGroups [LSS11℄ andTeam-Formation [AMP98, HL05℄ s
hemes 
an be used in 
onjun
tion withour proposal.Group members periodi
ally broad
ast their list of items to members withintheir group. We assume that these broad
ast messages are re
eived by all theMPs within the group. Ea
h MP M 's broad
ast message 
onstitutes a list,whi
h 
ontains entries of the form {MP_id, data_id, λd, pri
e, a

_
ount},where MP_id is the unique identi�er of M , data_id is the identi�er of thedata item d that it hosts, λd is the rarity s
ore of d, pri
e is the pri
e of d,and a

_
ount is the average a

ess 
ount of d at M over the last N time-periods. Notably, as we shall see shortly, MP_id and data_id fa
ilitatesMPs in determining the number of group members that host a given item
d. Furthermore, the rarity s
ore guides the MPs in repli
ating rare items.Additionally, the pri
e and a

ess 
ount information for ea
h item fa
ilitatesrepli
ation by guiding the MPs in evaluating the revenue-earning potential
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h item.Given that nodes in a group are s
attered a
ross the network, messagesbetween group members will often pass through non-group members too.Thus, when the message pa
kets hop through the network, the intermediatenon-group nodes 
an also see the data items and the asso
iated hosts fromthe pa
kets. This fa
ilitates the dis
overy of members of the groups (andthe rare items that they host) by peers, whi
h are outside of these groups.However, we do not assume that ea
h peer has, at any point of time, 
ompleteinformation about all the data items when they send out queries.In
identally, the periodi
 message ex
hanges among the MPs to share infor-mation about the items that they host do not matter in the 
al
ulation ofrevenue. These messages are sent periodi
ally as status messages, as requiredby our proposed ECR+ s
heme for keeping the peers informed about the in-formation hosted at other peers. Sin
e every peer in
urs this 
ost of sendingthese messages and every peer sends a 
omparable number of su
h messages,it basi
ally neutralizes (i.e., 
an
els out) and it does not have any relativee�e
t in the 
al
ulation of peer revenues.Computation of the rarity s
ore λd in ECR+For 
omputing the rarity s
ore λd of a data item d in ECR+, we extendEquation 6.1 by additionally 
onsidering the number ξ of MPs (group mem-bers) that host d. A given MP is able to 
ompute the value of ξ be
auseit knows how many other MPs host d within its group due to the periodi
broad
ast messages, in whi
h ea
h MP in
ludes the list of data items that ithosts2. This is in 
ontrast with the 
ase of ECR, where a given MP 
annot
ompute the value of ξ due to the la
k of su
h broad
ast messages. Thus,2 Re
all our assumption that the broad
ast messages are re
eived by all the MPs withinthe group.
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omputes λd based on more information than ECR. However, sin
e itis also possible for members outside the group to host d, ξ is essentially anapproximate quanti�
ation of how many MPs host d. Thus, our 
omputationof ξ represents an inevitable 
ompromise for de�ning rarity in the absen
e of
omplete information in de
entralized settings. In ECR+, ea
h MP 
omputesthe rarity s
ore λd for ea
h data item d (that it hosts) as follows:
λd = [ { ( ηc − ( 1

N

∑N
i=1 ηi ) ) / (max ( ηc ,

1
N

∑N
i=1 ηi ) × ξ ) } + 1 ] / 2(6.9)where N is the number of time-periods over whi
h λd is 
omputed. Here,

ηc refers to the a

ess 
ount of data item d for the 
urrent period, while ηirepresents the a

ess 
ount of d for the ith time-period. Similar to the 
aseof ECR, the value of λd may di�er among the MPs for the same data itemsin
e it is asso
iated with sudden bursts at ea
h MP. Thus, the value of λdfor a given item may di�er a
ross group members in ECR+. Furthermore,as in Equation 6.1, observe that the range of λd in Equation 6.9 is between0 and 1.6.3.3 Illustrative example of peer groups in E-RareFigure 6.1 depi
ts an illustrative example of an instan
e of network topologyin ECR+. Now we shall use Figure 6.1 to illustrate how groups fa
ilitatethe improvement of rare data availability. In Figure 6.1, the groups {P1,P4, P8, P10, P11, P15, P18}, {P2, P6, P12, P14}, {P3, P9, P13, P20} and{P5, P7, P16, P17, P19} are shown in di�erent 
olors. Observe that groupmembers need not be one-hop neighbours e.g., P1 and P10 are not one-hopneighbours.Suppose peer P18 sees high a

ess 
ount for an item d, whi
h it does notown or host. Additionally, suppose d is owned and hosted by one of its groupmembers, say P1. For simpli
ity, assume that no repli
a of d exists at any
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Figure 6.1: Peer groups in E-Rareother peer in the M-P2P network3. In this s
enario, queries on d initiatednearby P18 may fail due to ex
eeding the TTL (in terms of the maximumnumber of hops allowed for a query) be
ause of the distan
e from P1, whi
hhosts the queried item d. Furthermore, queries may also ex
eed the querydeadline time due to in
urring high query response times. Observe that thisis likely to de
rease M-P2P data availability.Now suppose P18 li
enses d from P1 and hosts d at itself. (Notably, P18knows that d is owned by P1 be
ause group members periodi
ally ex
hangemessages to share information about the items that they own and/or host.)Thus, subsequent queries on d, whi
h are initiated nearby P18, 
an either belo
ally served by P18 if response time is an issue or served by P1 if pri
e isan issue. Notably, P1 has an in
entive to li
ense d to P18 be
ause it 
an earn
urren
y from the li
ense pri
e. Furthermore, P18 has an in
entive to li
ense
d from P1 be
ause it 
an earn 
urren
y by serving queries on d, whi
h itobtains at a dis
ounted pri
e. Herein lies the motivation for li
ensing amonggroup members.3For rare items, relatively few repli
as exist in the network.
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ounts for group members in ECR+For e�e
tive in
entivization within a group, ECR+ in
orporates the notionof dis
ounts, whi
h pertains to all the four pri
e types that were previouslydis
ussed in Se
tion 6.2. MPs provide dis
ounts only to other MPs withintheir group, hen
e the notion of dis
ounts a
ts as an in
entive towards MPparti
ipation in a group. A group member that sees relatively high a

ess
ount for a data item d, whi
h is not hosted at itself, 
an obtain li
enses for
d at a dis
ounted pri
e from any of its group members owning d. Given thatgroup members may be s
attered a
ross the network, su
h li
ensing amonggroup members brings the data 
loser to the sour
e of the queries, therebyresulting in faster query response times, improved rare data availability andredu
ed query-related 
ommuni
ation overhead.In ECR+, the in
entive for MPs to join a group is quanti�ed by the dis
ount
δ. If the value of δ is too high, MPs hosting rare items would be relu
tantto join the group. This is be
ause their revenue-earning potential would de-
rease due to redu
ed earnings be
ause of relatively high dis
ounts. However,MPs querying for the rare items would be in
entivized to join the group be-
ause they 
an obtain their desired items at lower pri
es due to dis
ounts.On the other hand, if the value of δ is too low, MPs hosting rare items wouldhave better in
entive to join the group be
ause of in
reased revenue-earningpotential from li
ense pri
es. However, MPs querying for the rare itemswould have lower in
entive to join the group due to lower dis
ounts. Observethat when δ = 0, the e�e
t of dis
ounts is nulli�ed.In e�e
t, when the value of δ is too high or too low, rare data availabilityis not maximized due to redu
tion in the in
entivization e�e
t of groups.Hen
e, we shall experimentally determine suitable values of δ for maximizingrare data availability in Se
tion 3.5.Re
all that δ applies to all the four item pri
e types. We designate the dis-
ounted partial_use_pri
e Pd,Q, full_use_pri
e Fd,Q, partial_use_li
ense_pri
e
PULd,Q and full_use_li
ense_pri
e FULd,Q as DPd,Q, DFd,Q, DPULd,Q
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tively. Hen
e, to in
orporate the e�e
t of dis
ounts, weextend Equations 6.2, 6.3, 6.4 and 6.5 (see Se
tion 6.2) as follows:
DPd,Q = Pd,Q × (1− δ) (6.10)
DFd,Q = Fd,Q × (1− δ) (6.11)

DPULd,Q = PULd,Q × (1− δ) (6.12)
DFULd,Q = FULd,Q × (1− δ) (6.13)where 0 6 δ < 1.6.3.5 Group-based data li
ensing in ECR+In ECR+, group-based data li
ensing 
an be fa
ilitated in two ways. MPswith adequate resour
es (e.g., energy, bandwidth, memory spa
e) 
an requestfor rare items from group members so that they 
an earn 
urren
y by hostingand serving queries on those items. This type of li
ensing provides in
entivesto free-riders towards hosting repli
as of rare items. This is be
ause free-riders need to earn 
urren
y, without whi
h they would not be able to issueany requests of their own.In 
ontrast, MPs owning rare items 
an also o�-load their items to groupmembers in the network for li
ensing purposes. An MP may use this me
h-anism for li
ensing when its resour
es, su
h as energy or bandwidth, are notadequate to serve queries on its owned items. Moreover, an MP may usethis when it is about to leave the network. In this manner, an MP 
an earn
urren
y from its items by means of li
ensing even if it be
omes o�ine. Thistype of li
ensing also provides in
entives to MPs towards repli
ating theiritems.Interestingly, both these me
hanism of li
ensing fa
ilitate repli
ation of raredata from owners to free-riders, thereby improving rare data availability. Inthe absen
e of a li
ensing me
hanism, rare items would be
ome ina

essible
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e their owners run out of energy (or leave the network), thereby redu
ingrare data availability.Algorithm 6.2 ECR+: Algorithm for Li
ensor_MP Mbegin/* φ is an item's revenue-earning potential */(1) Sort all its items in des
ending order of φ(2) Compute the average value φavg of all its items(3) Sele
t items for whi
h φ ex
eeds φavg into a list Lic/* Lic is the set of items for li
ensing */(4) for ea
h item i in Lic(5) De
ide A[i]PUL and A[i]FUL for i/* A[i]PUL and A[i]FUL are number of availablePUL and FUL li
enses of i*/(6) Broad
ast the list Lic upto its n-hop neighbours(7) for ea
h item i in Lic(8) Wait for replies from potential li
ensees(9) Re
eive replies from potential li
ensees(10) for ea
h potential li
ensee j(11) Cal
ulate the value of Ω for j(12) Sort the li
ensees in des
ending order of Ω into a list PL(13) for ea
h li
ensee j in PL(14) if ( A[i]PUL = 0 ) break(15) if ( A[i]PUL −N [j]PUL > 0 )(16) Send N [j]PUL li
enses of i to j(17) A[i]PUL = A[i]PUL −N [j]PUL(18) else(19) Send A[i]PUL li
enses of i to j(20) A[i]PUL = 0(21) for ea
h li
ensee j in PL(22) if ( A[i]FUL = 0 ) break(23) if ( A[i]FUL −N [j]FUL > 0 )(24) Send N [j]FUL li
enses of i to j(25) A[i]FUL = A[i]FUL −N [j]FUL(26) else(27) Send A[i]FUL li
enses of i to j(28) A[i]FUL = 0endFigure 6.2 depi
ts the algorithm for a li
ensor MP M . In Lines 1-3, observehow M sele
ts the items with higher revenue-earning potential φ for li
ens-ing. This is be
ause su
h items better in
entivize potential li
ensees towardsitem hosting be
ause they 
an earn higher amount of revenue by hostingthese items. Here, φ is 
omputed as the produ
t of item a

ess 
ount anditem pri
e4. Note that rare items will have higher revenue-earning poten-4Sin
e E-Rare 
onsiders four types of item pri
es, the respe
tive produ
ts of a

ess
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hemes for E-Rare 189Algorithm 6.3 ECR+: Algorithm for Li
ensee_MP MEbegin(1) Re
eive broad
ast message from potential li
ensor M/* Broad
ast message 
ontains the item set Lic for li
ensing */(2) Sort all items in Lic in des
ending order of φ/* φ is an item's revenue-earning potential */(3) for ea
h item i in Lic/* Spc is the peer's available memory spa
e */(4) while Spc > 0/* sizei is the size of i */(5) if ( sizei ≤ Spc )(6) Add i to a set Acq(7) Spc = Spc - sizei(8) for ea
h item i in Acq(9) De
ide NPUL and NFUL for i/* NPUL and NFUL are required number ofPUL and FUL li
enses of i */(10) for ea
h item i in Acq(11) Send bid to M with details of energy, hop-distan
e,
NPUL and NFUL to M(12) Wait for reply from M(13) if (bid is su

essful)(14) Obtain item i from M (with 
orresponding li
ensing rights)(15) Send payment to Mendtial be
ause their pri
es are higher than that of non-rare items. Moreover,rare items have high a

ess 
ounts during periods of sudden burst. Re
allthat we 
onsider a 
ooperative environment where all the mobile peers aretrusted entities. In su
h 
ooperative and trusted environments, peers wouldbe truthful about revealing their a

ess 
ounts on every data item.As indi
ated in Lines 4-5, M autonomously de
ides the number of PULand FUL li
enses that are to be made available for ea
h item. This work
onsiders peer autonomy in determining the values of APUL and AFUL, hen
eMPs are allowed to autonomously de
ide the number of li
enses that theywant to make available. In Line 6, the broad
ast message also 
ontains thevalues of APUL, AFUL and the (dis
ounted) pri
es for ea
h item in Lic. Thisinformation fa
ilitates potential li
ensees in determining whether to obtainli
ense(s) for a given item.
ounts and ea
h pri
e type are summed up to obtain the value of φ.
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hemes for E-Rare 190As Lines 10-12 indi
ate, ECR+ prefers potential li
ensees with higher valueof Ω. Here, Ω quanti�es the quality-of-servi
e potential of li
ensees (that bidfor hosting the items). Thus, MPs with higher values of Ω would be likelyto provide better servi
e in terms of improving rare data availability. Ω is
omputed as below:
Ω = [w1 × energy ] + [w2 × nhop ] (6.14)where energy and nhop are the potential li
ensee's energy level and its dis-tan
e from M (in terms of hop-
ounts). As energy in
reases, Ω in
reasesbe
ause higher-energy MPs are more likely to provide better data availabil-ity. Ω also in
reases with in
rease in nhop be
ause li
ensing a given item to anMP, whi
h is lo
ated at a farther distan
e from M , is likely to better spreadthe item a
ross the region, thereby improving data availability. Furthermore,

M prefers to li
ense its items to MPs that are farther way to redu
e 
ompe-tition. In other words, ifM li
enses its items to nearby MPs, the a

esses forthose items would get divided between M and those MPs, thereby resultingin redu
ed revenues for M due to 
ompetition. In Equation 6.14, w1 and w2are weight 
oe�
ients su
h that w1, w2 > 0 and w1 + w2 = 1. In this work,for simpli
ity, we set w1 = w2 = 0.5.As Lines 13-28 indi
ate, M distributes PUL and FUL li
enses for ea
h itemto potential li
ensees, starting from those with higher values of Ω until itsnumber of available PUL and FUL li
enses be
omes zero.Figure 6.3 depi
ts the algorithm for a li
ensee MP ME . In Lines 1-2, uponre
eiving the broad
ast message from li
ensor M , ME sorts the items in thebroad
ast message in des
ending order of their revenue-earning potential φ.As Lines 2-7 suggest, ME prefers items with higher revenue-earning potential
φ be
ause it 
an earn more revenue by hosting su
h items per unit of itsmemory spa
e sin
e its memory spa
e is limited. Thus as Lines 3-7 indi
ate,
ME greedily simulates the �lling up of its memory spa
e by items with highervalue of φ.
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hemes for E-Rare 191As Lines 8-9 suggest, ME autonomously de
ides the number of PUL andFUL li
enses that it wants to a
quire for ea
h item. This work 
onsiderspeer autonomy in determining the values of NPUL and NFUL, hen
e MPsare allowed to autonomously de
ide the number of li
enses that they wantto a
quire. Furthermore, in 
ase ME does not have adequate 
urren
y tomake the payment, it is allowed to make the payment after it has earned
urren
y by hosting these items. Observe that allowing deferred payments
an be justi�ed by the fa
t that potential li
ensors and li
ensees are membersof the same group. Hen
e, if a li
ensee fails to make the payment within areasonable time-frame, it would risk getting removed from the group. Thispoli
y of allowing deferred payments allows free-riders, whi
h may initiallynot have enough 
urren
y to a
quire li
enses for items, to seamlessly integrateinto parti
ipating in the network.In Lines 10-15, ME sends its bid to the 
orresponding li
ensor M for ea
h ofits desired items along with details of its energy, distan
e (hop-
ounts) from
M , NPUL and NFUL to M . For those items, 
on
erning whi
h ME 's bid issu

essful, ME obtains the items with 
orresponding li
ensing rights fromMand pays the (dis
ounted) li
ense pri
es of these items to M . In 
ase MEdoes not have adequate 
urren
y to pay M , it informs M about a deadlinetime by whi
h it would make its payment.6.3.6 Illustrative example of li
ensing in ECR+Figure 6.2 depi
ts an illustrative example of li
ensing in ECR+. From Figure6.2a, observe how the items are sorted in order of revenue-earning potential
φ and only the items above the average value of φ are sele
ted to be li
ensedby li
ensor MP M . Figure 6.2b depi
ts the li
ense set Lic 
omprising items{36, 92, 53} along with the number of available PUL and FUL li
enses forea
h item in Lic. Figure 6.2
 indi
ates the number of PUL and FUL li
ensesdemanded by ea
h of the MPs 
orresponding to ea
h item. For simpli
ity,suppose the list of potential li
ensees in des
ending order of Ω is as follows:
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Figure 6.2: Illustrative example of li
ensing in E-Rare{P1, P2, P3}.Figure 6.2d shows the number of supplied li
enses to ea
h MP. Observe thatP1 does not demand any PUL li
enses for item 36, hen
e M iterates to theMP with the next highest value of Ω i.e., the MP P2. Sin
e P2 demands15 PUL li
enses for item 36 and M has 15 available PUL li
enses for thisitem, M sends all 15 li
enses to P2. Now sin
e M has no more available PULli
enses for item 36, the MP P3 with the next highest value of Ω re
eives noPUL li
enses, although it demanded 15 PUL li
enses.For item 92, the total number of available PUL li
enses is 20, and P1 demands15 PUL li
enses. Thus, M gives 15 PUL li
enses to P1. Now observe thatP2's demand is for 8 PUL li
enses, while the 
urrent number of availablePUL li
enses is now only 5 (be
ause the other 15 li
enses have already beenassigned to P1). Hen
e, P2 a
quires only 5 PUL li
enses for item 92, althoughit originally demanded 8 PUL li
enses for this item. Furthermore, sin
e thereare now no more remaining available PUL li
enses for item 92, P3 is not able
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quire any li
enses for this item. Notably, although we explained thisillustrative example using PUL li
enses, the explanation for FUL li
enses isessentially similar.Notably, our proposed algorithms in ECR+ do not have a notion of optimumsele
tion be
ause we are basi
ally using heuristi
s. We have provided possiblealgorithms for a
hieving our purpose, but as su
h, we do not make any 
laims
on
erning optimality.6.4 Performan
e Evaluation of E-RareThis se
tion reports the performan
e of our in
entive-based repli
ation s
hemesby means of simulation using OMNET++ [Pon93℄. We assume that MPsmove a

ording to the Random Waypoint Model [BMJ+98℄ within a region ofarea 1000 metres × 1000 metres. The Random Waypoint Model is appropri-ate for our appli
ation s
enarios, whi
h generally involve random movementof users su
h as adventure tourists looking for information about gas-masksand asso
iated safety equipment in an unfamiliar forest. Our experimentsuse a total of 150 MPs. The default 
ommuni
ation range of all MPs is a
ir
le of 120 metre radius. Table 6.3 summarizes the parameters used in ourperforman
e evaluation.Re
all that E-Rare 
onsiders three 
lasses of items (i.e., rare, medium-rareand non-rare) based on item rarity s
ore λd, and ea
h item 
lass is asso
iatedwith a range of rarity s
ores. For rare items, 0.7 ≤ λd ≤ 1; for medium-rareitems, 0.5 ≤ λd < 0.7; and for non-rare items, 0 < λd < 0.5. The numberof items in ea
h of these 
lasses is determined using a Zipf distribution withzipf fa
tor ZFD over three bu
kets, ea
h bu
ket 
orresponding to one of therarity 
lasses. Notably, we set the default value of ZFD to 0.7 (i.e., highskew) to ensure that the majority of the items in the network are rare inthat they will be assigned relatively high rarity s
ores. Thus, for ea
h item
d, we randomly assign its value of λd based on the lower and upper bounds
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e Evaluation of E-Rare 194Parameter Default value VariationsNo. of MPs ( NMP ) 150 30, 60, 90, 120Zipf fa
tor for distribution of rare data ( ZFD ) 0.7 0.1, 0.3, 0.5, 0.9Zipf fa
tor for distribution of queries a
ross rarity
lasses ( ZFQ ) 0.7 0.1, 0.3, 0.5, 0.9Zipf fa
tor for distribution of MPs a
ross interestgroups ( ZFG ) 0.5 0.1, 0.3, 0.7, 0.9Communi
ation Range ( CR ) 120 m 40 m, 80 m, 160 m, 200 mDis
ount (D ) 30% 10%, 20%, 40%, 50%A

ess 
ount threshold for determining timing ofinitiating repli
ation ( fTH ) 0.5 0.1, 0.3, 0.7, 0.9Per
entage of MP failures ( PF ) 20% 10%, 30%, 40%, 50%Queries/se
ond 10Bandwidth between MPs 28 Kbps to 100KbpsSize of a data item 250 Kb to 1.75MbMemory spa
e of ea
h MP 5 MB to 25 MBSpeed of an MP 1 metre/s to 10metres/sSize of message headers 220 bytesTable 6.3: Parameters of our performan
e evaluation for E-Rareof its item 
lass.Rare items are assigned to 1-2 MPs, medium-rare items are assigned to 3-4MPs, and non-rare items are assigned to 5-6 MPs. Thus, given a data item d,we �rst examine its 
lass to determine the number of MPs to whi
h d shouldbe assigned. For example, if an item is medium-rare, it will get assigned to NMPs (Here, N is either 5 or 6, as determined by a random number generator.)Now a set of N MPs will be randomly sele
ted from among those MPs thathave adequate memory spa
e for repli
ation, and d will be assigned to theseMPs. Observe that sin
e item sizes vary, the available memory spa
e forrepli
ation will vary a
ross MPs over time.Ea
h query is a request for a single data item. 10 queries per se
ond areissued in the network. Items to be queried are randomly sele
ted from allthe items in the entire network. The query-issuing MP is sele
ted randomlyfrom among all the MPs in the network, the 
onstraint being that an MP
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annot issue a query for an item already hosted at itself. The number ofqueries dire
ted to ea
h 
lass of items (i.e., rare, medium-rare and non-rare)is determined by a Zipf distribution with a zipf fa
tor ZFQ. We set thedefault value of ZFQ to 0.7 to ensure that a relatively high per
entage ofqueries are dire
ted towards rare items. This is 
onsistent with our ap-pli
ation s
enarios, whi
h involve sudden bursts in a

esses to rare items.Furthermore, re
all that queries in E-Rare are asso
iated with one of thefollowing pri
es, namely partial_use_pri
e Pd,Q, full_use_pri
e Fd,Q, par-tial_use_li
ense_pri
e PULd,Q and full_use_li
ense_pri
e FULd,Q. Theper
entage of queries 
orresponding to Pd,Q, Fd,Q, PULd,Q and FULd,Q are30%, 30%, 20% and 20% respe
tively. Thus, ea
h query is randomly asso
i-ated with one of the pri
e types.For our proposed peer group-based e
onomi
 s
heme ECR+, we use 10 groupsfor our experiments. We determine the number of MPs in ea
h group byusing a Zipf distribution with a zipf fa
tor ZFG over 10 bu
kets. Thus, thenumber of MPs vary a
ross groups. Hen
e, in our experiments, we havevaried the value of ZFG to study the impa
t of variations in group sizes onthe performan
e of ECR+. The MPs are randomly assigned to the groups.Furthermore, an MP is assigned to only one peer group to ensure that allgroups are mutually disjoint.The timing of initiation of repli
ation 
an have signi�
ant impa
t on the per-forman
e of our proposed approa
hes. If repli
ation is initiated early basedon a relatively small number of queries for an item, it may result in relativelynon-rare items getting repli
ated. Consequently, data availability would de-grade be
ause the rare items would not have a 
han
e to get repli
ated dueto memory spa
e 
onstraints at the MPs. On the other hand, if repli
ationis initiated late after looking at a relatively large number of queries for anitem, data availability may su�er be
ause the delay in initiating repli
ation
ould make the overall impa
t of repli
ation mu
h less pronoun
ed. This isbe
ause a signi�
ant number of query failures 
ould already have o

urredbefore repli
ation had been initiated. Hen
e, we introdu
e the a

ess 
ount



6.4. Performan
e Evaluation of E-Rare 196threshold fTH , whi
h quanti�es the time when repli
ation is initiated.We de�ne fTH as follows: fTH = Rq/Tq, where Rq is the number of issuedqueries after whi
h repli
ation had been initiated and Tq is the total numberof queries. The total number of issued queries in our experiments is 10,000.If repli
ation had been initiated after the �rst 1000 queries had been issuedin the system, the value of fTH would be (1000/10000) = 0.1.Our performan
e metri
s are average response time (ART) of a query,query su

ess rate (SR), hop-
ount (HC) of a query and 
ommuni-
ation 
ost in terms of total number of messages (MSG). ART equals
( (1/NQ)

∑NQ

i=1(Tf − Ti) ), where Ti is the query issuing time, Tf is the timeof the query result rea
hing the query issuing MP, and NQ is the total numberof queries. ART in
ludes data download time, and is 
omputed only for su
-
essful queries. Notably, unsu

essful queries die after TTL (`hops-to-live')of 6 hops. (Preliminary experiments suggested that TTL = 6 is a reasonablevalue for our appli
ation s
enarios.) Sin
e a relatively high per
entage ofqueries are dire
ted towards rare items (whi
h are hosted at relatively fewMPs), queries 
an fail due to the TTL 
riterion. Queries 
an also fail due toMPs running out of energy or due to network partitioning.The query su

ess rate SR equals ( (NS/NQ) × 100 ). We de�ne the queryhop-
ount HC as the average hop-
ount in
urred by the query in the su
-
essful query path. Thus, HC equals ( (1/NQ)
∑NQ

i=1HCi ) and is measuredonly for su

essful queries. MSG equals (∑NQ

i=1MSGi ), where MSGi is thetotal number of messages during the 
ourse of the experiment.In
identally, none of the existing proposals for M-P2P networks address e
o-nomi
 in
entives towards repli
ation of rare data items. We 
ompared ourproposed in
entive-based E-Rare s
hemes with an existing non-in
entive E-DCG+ s
heme for MANETs, proposed in [HM06℄, to our s
enario. E-DCG+is a non-in
entive and non-e
onomi
 repli
ation s
heme, and it does not pro-vide in
entives for repli
a hosting. E-DCG+ is exe
uted at every repli
a allo-
ation period. E-DCG+ is the 
losest to our s
heme sin
e it addresses repli-
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ation in mobile ad-ho
 networks. Furthermore, we believe that E-DCG+ isamong the best approa
hes for meaningful performan
e 
omparison with ourproposed s
hemes be
ause it is the most re
ent approa
h and it has alreadybeen 
ompared to other non-in
entive s
hemes. Moreover, E-DCG+ does notin
orporate the notion of li
ensing me
hanism to distribute rare data itemsin mobile environment.We have implemented E-DCG+ in E-Rare as follows. E-DCG+ performs theperiodi
 broad
ast to perform repli
ation. MP obtains the data items listwith their respe
tive rarity s
ores. Based on rarity s
ores of data items andMP's available memory spa
e, ea
h MP hosts data items in their de
endingorder of rarity s
ores till memory spa
e be
omes full. Here, MP does notobtain any in
entives to host repli
as, hen
e E-DCG+ provides freedom toMPs, whether they want to host new data items or to revise hosted dataitems. For the sake of experiments, we have set the MP's de
ision probabilityto host the data items to 0.7 with relo
ation period of 200 se
onds.Notably, in 
ase of ECR+, group members ex
hange messages periodi
allyevery 200 se
onds to inform ea
h other 
on
erning the items that they host.For all the approa
hes, querying pro
eeds by means of broad
ast using AODVproto
ol.6.4.1 Performan
e of E-RareFigure 6.3 depi
ts the results of our experiments using default values of theparameters in Table 6.3. For all the approa
hes, ART and HC in
rease overtime, while SR de
reases over time. This o

urs be
ause as more queriesare answered, the energy of MPs keeps on de
reasing, thereby resulting inan in
reasing number of MPs running out of energy. This results in longerquery paths to data items, or data items be
oming ina

essible. Furthermore,a relatively high per
entage of queries are dire
ted towards rare items (dueto the zipf fa
tor ZFQ being set to 0.7), and ea
h of these rare items areinitially hosted only by 1-2 MPs. This 
auses the MPs hosting the rare items
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(d) MSGFigure 6.3: Performan
e of E-Rare: Data availability and 
ommuni
ationoverheadto be
ome overloaded, thereby resulting in in
reased query waiting times intheir job queues, and this further 
ontributes to in
rease in ART.ECR outperforms E-DCG+ in terms of ART, SR and HC essentially dueto its e
onomi
 li
ensing s
heme, whi
h in
entivizes MP parti
ipation in the
reation of multiple 
opies of rare items. In
reased MP parti
ipation alsoimplies more opportunities for repli
ation, more memory spa
e for hostingrepli
as and multiple paths for lo
ating a data item/repli
a. In 
ontrast, sin
eE-DCG+ 
onsiders neither any e
onomi
 s
heme nor any li
ensing me
ha-
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ilitate repli
ation. Thus, rare items be
ome ina

essiblewhen their host MPs run out of energy, thereby explaining the reason for SRbeing signi�
antly lower for E-DCG+ as 
ompared to that of ECR.ECR+ outperforms ECR due to its group-based in
entives (su
h as dis-
ounts), whi
h fa
ilitate 
ollaborative repli
ation among MPs. Su
h 
ol-laborative repli
ation enables better spreading of the 
opies of frequentlyrequested rare items throughout the network, thereby improving the proba-bility of obtaining queried rare items within relatively fewer hops. Interest-ingly, the results in Figure 6.3
 suggest that although HC follows a patternsimilar to ART, some deviations o

ur. These deviations o

ur essentiallydue to bandwidth di�eren
es at MPs.As the results in Figure 6.3d indi
ate, MSG in
reases over time for all theapproa
hes due to more queries being answered. (Re
all that MSG is thetotal number of messages during the 
ourse of the experiment.) Observethat after the �rst 6000 queries have been pro
essed, MSG does not keepin
reasing linearly for ECR and ECR+. This is be
ause depletion of theenergy of some of the MPs implies that in e�e
t, queries get forwarded to aredu
ed number of MPs. Moreover, ECR+ exhibits higher MSG than ECRdue to additional messages for group intera
tions.E-DCG+ in
urs least MSGdue to a large per
entage of unsu

essful queries (as suggested by the resultsin Figure 6.3b), whi
h result in de
reased amount of data transfer, albeit atthe 
ost of redu
ed SR.6.4.2 E�e
t of variations in the number of MPsTo test E-Rare's s
alability, we varied the total number NMP of MPs, keepingthe number of queries proportional to NMP . Figure 6.4 depi
ts the results.As NMP in
reases, ART in
reases for all three approa
hes due to in
rease innetwork size. As NMP in
reases, SR in
reases for both ECR and ECR+ dueto in
reased number of 
opies of rare data items be
ause of more repli
ationopportunities provided by a larger number of MPs. With in
reasing value of
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t of variations in the number of MPs
NMP , HC follows similar pattern as that of ART for all the three approa
hesessentially due to in
rease in network size. The pattern of HC deviatesslightly from that of ART due to bandwidth di�eren
es at MPs. For allthe three approa
hes, MSG in
reases with in
reasing value of NMP be
auselarger network sizes in
ur higher number of messages.ECR+ performs better than ECR due to the reasons explained for Figure 6.3.Furthermore, observe that as NMP in
reases, the performan
e gap betweenECR+ and ECR in terms of SR also in
reases. This o

urs be
ause as
NMP in
reases, group sizes also in
rease, thereby making the e�e
t of group-
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ollaborative repli
ation performed by ECR+ more pronoun
ed. Theeventual plateau in SR for ECR+ o

urs be
ause SR is upperlimited bythe number of 
opies of rare data items in a group due to memory spa
e
onstraints of group members.6.4.3 E�e
t of variations in the data distribution a
rossrare item 
lassesFigure 6.5 shows the results of the e�e
t of variations in the data distributiona
ross rare item 
lasses. Re
all that ZFD is a zipf fa
tor for the Zipf distribu-tion of data items in three di�erent data 
lasses i.e., non-rare, medium-rareand rare. Higher values of ZFD imply that there are more rare items in thedata distribution. ZFD does not a�e
t E-DCG+ sin
e it does not 
onsiderrarity issues. Hen
e, E-DCG+ exhibits 
omparable performan
e a
ross allthe results in Figure 6.5. ART follows a pattern similar to HC for ea
h ofthe three approa
hes.Observe that as ZFD in
reases, ART in
reases for both ECR and ECR+be
ause of the in
rease in the number of rare items. Sin
e rare items areavailable at relatively lower number of MPs, queries in
ur more hops, therebyresulting in in
reased ART.As the results in Figures 6.5a and 6.5
 indi
ate, ECR+ performs slightlyworse than ECR in terms of ART and HC for values of ZFD that are lowerthan 0.3. This o

urs be
ause lowly skewed data distributions do not ne-
essitate repli
ation. However, as the value of ZFD in
reases beyond 0.3,ECR+ exhibits improved ART and HC as 
ompared to ECR be
ause thee�e
t of ECR+'s group-based repli
ation be
omes more pronoun
ed. Thus,in 
ase of ECR+, more MPs are able to repli
ate more number of rare dataitems. This also results in better SR for ECR+ be
ause it 
an satisfy morequeries. ECR+ exhibits higher MSG than ECR due to the additional mes-sages arising for group intera
tion as well as from in
reased tra�
 owing tomore su

essful queries.
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t of variations in the data distribution a
ross rarity 
lasses6.4.4 E�e
t of variations in the query distribution a
rossrare item 
lassesRe
all that ZFQ is used to determine how the queries are distributed overthe di�erent 
lasses of data items (in terms of rarity) i.e., rare, medium-rareand non-rare. Higher values of ZFQ imply that more number of queries aredire
ted to rare data items. The results in Figure 6.6 depi
t the e�e
t ofvariations in ZFQ.The results in Figure 6.6 indi
ate that as ZFQ in
reases, ART and HC both
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(d) MSGFigure 6.6: E�e
t of variations in the query distribution for rare itemsde
rease for ECR and ECR+ be
ause of the more pronoun
ed e�e
t of raredata repli
ation in response to query workloads with higher skew. However,beyond ZFQ = 0.7, a saturation e�e
t o

urs be
ause of the number ofrare item repli
as be
oming stable beyond this value. This o

urs primarilydue to 
ompetition among the MPs for limited available memory spa
e forstoring repli
as. Moreover, ECR+ exhibits lower ART and HC than thatof ECR be
ause of group-based in
entives and dis
ounts. E-DCG+ exhibits
omparable performan
e for di�erent values of ZFQ sin
e it does not 
onsiderrarity issues. As ZFQ in
reases, SR in
reases for both ECR and ECR+
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ation in response to more highly skewed workloads. Thisresults in more rare data item requests being satis�ed. Furthermore, ECR+outperforms ECR in terms of SR due to group-based in
entives. ECR+in
urs more messages than ECR due to the reasons explained for Figure6.3d.6.4.5 E�e
t of variations in group sizesWe 
onsider 10 di�erent groups. The number of MPs may vary a
ross groups.We 
ondu
ted an experiment to examine variations in the group sizes (interms of the number of MPs in di�erent groups). Re
all that ZFG is thezipf fa
tor, whi
h determines the number of MPs assigned to ea
h of the 10groups. When ZFG = 0.1, ea
h group has a 
omparable number of MPs. Athigher values of ZFG, some groups 
ontain a disproportionately large numberof MPs, while other groups 
ontain relatively few MPs. Figure 6.7 depi
tsthe results of variations in ZFG.As ZFG in
reases, ART, HC and SR improve for ECR+ due to some of thegroups be
oming larger, thereby 
reating more opportunities for repli
ationwithin the group. However, this performan
e improvement o

urs only upto
ZFG = 0.5. At values of ZFG beyond 0.5, the in
rease in group size doesnot 
reate any additional opportunities for repli
ation. Moreover, at thesehigher values of ZFG, some of the groups be
ome too small in size, therebyhindering repli
ation. This explains why the performan
e of ECR+ degradesbeyond ZFG = 0.5. Overall, the results indi
ate that ECR+ performs best(in terms of ART, SR and HC) when ZFG = 0.5.MSG is 
omparable a
ross di�erent of values of ZFG be
ause the in
reasein the sizes of some of the groups is o�set by the de
reased sizes of othergroups, thereby implying 
omparable overall 
ommuni
ation 
ost. Observethat ZFG has no e�e
t on the performan
e of ECR and E-DCG+ sin
e theseapproa
hes do not 
onsider groups.
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t of variations in the interest group sizes6.4.6 E�e
t of variations in the 
ommuni
ation rangeThe results in Figure 6.8 depi
t the e�e
t of variations in the 
ommuni
a-tion range CR of MPs. Overall, in
rease in CR has the e�e
t of bringingthe MPs `nearer' to ea
h other. As CR in
reases, both ART and HC de-
rease for all the approa
hes due to the redu
tion in the number of hopsbetween MPs. Interestingly, the results in Figure 6.8
 suggest that althoughART roughly follows a pattern similar to HC, some deviations o

ur. Thesedeviations o

ur be
ause at higher values of CR, an MP needs to pro
ess
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t of variations in the 
ommuni
ation rangemore in
oming queries, thereby resulting in higher waiting times for queriesat the job queues of MPs. Consequently, the relay propagation laten
y alsoin
reases slightly with an in
rease in CR. Furthermore, deviations o

ur dueto bandwidth di�eren
es at MPs. Beyond CR = 160 metres, ART plateausfor ECR+ be
ause the gains in ART are o�set by the overheads of highernumber of in
oming queries at MPs that host data items and in
reased relaypropagation laten
ies.As CR in
reases, SR in
reases for all the approa
hes upto a 
ertain pointand then saturates. The in
rease in SR o

urs essentially due to MPs being
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t with in
rease in CR, thereby making data items more a
-
essible to query-issuing MPs. A relatively lower number of queries fail dueto the maximum TTL 
riteria of 6 hops be
ause more MPs 
ome within therange to answer a given query. However, beyond a 
ertain point (e.g., CR =120 for ECR+), any additional in
rease in CR does not 
ontribute to signi�-
ant improvement in SR be
ause there is an upperlimit on the repli
ation ofrare items due to memory spa
e 
onstraints of the MPs.As CR in
reases, MSG in
reases for all the approa
hes be
ause the in
reasedrea
hability of the MPs in
reases 
ommuni
ation among them. With in
reas-ing value of CR, there are two opposing e�e
ts for MSG. First, in
rease in CRimplies a lower number of messages to rea
h a given MP. Se
ond, in
rease inCR also implies that more MPs be
ome involved in the pro
essing of a givenquery, thereby in
reasing the 
ommuni
ation overhead. These two opposinge�e
ts somewhat o�set ea
h other at higher values of CR, thereby explainingthe reason why MSG eventually plateaus.6.4.7 E�e
t of variations in the dis
ount δThe results in Figure 6.9 depi
t the e�e
t of variations in the dis
ount δ in
ase of ECR+. Observe that δ has no e�e
t on the performan
e of ECR andE-DCG+ sin
e these approa
hes do not 
onsider dis
ounts. As δ in
reases,the performan
e of ECR+ also improves in terms of ART, SR and HC. This isbe
ause the e�e
t of group-based in
entives be
omes more pronoun
ed within
rease in dis
ounts. Higher dis
ounts better in
entivize MPs querying forthe rare items as they 
an obtain their desired items at lower pri
es due todis
ounts, thereby in
reasing the level of parti
ipation and 
ollaboration inthe group. However, at values of δ beyond 30%, ECR+'s performan
e startsdegrading slightly. This is be
ause MPs hosting rare items be
ome relu
tantto join the group when the value of δ is high. Their revenue-earning potentialwould de
rease due to redu
ed earnings be
ause of relatively high dis
ounts.In essen
e, our experimental results show that ECR+ performs best when
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t of variations in the dis
ount δthe value of δ is 
lose to 30%.6.4.8 E�e
t of variations in the a

ess 
ount threshold
fTHThe aim of this experiment is to examine the e�e
t of varying the initiationtime of repli
ation on the performan
e of ECR and ECR+. We quantifythe time when repli
ation is initiated by a parameter fTH , whi
h re�e
ts thea

ess 
ount threshold. The total number of issued queries in our experiments
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t of variations in the a

ess 
ount threshold fTHis 10,000. When fTH equals 0.1, it means that repli
ation was initiated afterthe �rst 1000 issued queries. Similarly, when fTH equals 0.7, it implies thatrepli
ation was initiated after the �rst 7000 issued queries.The results in Figure 6.10 indi
ate that ECR+ and ECR both perform bestin terms of ART, SR and HC at fTH = 0.5. However, as the value of fTHkeeps deviating away from 0.5 the performan
e of ECR and ECR+ bothdegrade. This is be
ause at low values of fTH (e.g., fTH = 0.1) relativelynon-rare items get repli
ated early on, thereby not providing the opportunityfor the repli
ation of rare items due to memory spa
e 
onstraints at the
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e Evaluation of E-Rare 210MPs. Moreover, at high values of fTH (e.g., fTH = 0.7), the impa
t ofrepli
ation on rare data availability be
omes mu
h less pronoun
ed be
ausea signi�
ant number of query failures already o

urred before repli
ation hadbeen initiated.As fTH in
reases, it implies that repli
ation is initiated at a later point oftime, thereby resulting in a lower number of repli
ation-related messages.Hen
e, as the results in Figure 6.10d indi
ate, MSG de
reases slightly forboth ECR and ECR+ with in
rease in fTH .6.4.9 E�e
t of MP failuresWe 
ondu
ted an experiment to investigate the e�e
t of MP failures5 on theperforman
e of E-Rare. Figure 6.11 depi
ts the results. As the per
entage
PF of MP failures in
reases, the performan
e of all the approa
hes degradein terms of ART, SR and HC. This is be
ause a higher per
entage of MPfailures implies a de
rease in overall parti
ipation in the network, therebyalso de
reasing the opportunities for repli
ation of rare data items. As moreMPs fail, query paths be
ome longer, thereby in
reasing both ART and HC.Furthermore, SR de
reases due to the failure of MPs that host rare dataitems.From Figures 6.11a, 6.11b and 6.11
, observe that the performan
e gap be-tween ECR and ECR+ keeps de
reasing with in
rease in PF . Moreover,beyond PF = 40%, both ECR and ECR+ exhibit 
omparable performan
e.This o

urs due to the e�e
t of groups be
oming less pronoun
ed when thereare relatively fewer available MPs in the network. For all the three ap-proa
hes, MSG de
reases with in
rease in PF due to redu
ed 
ommuni
ationoverhead arising from the de
rease in the number of available MPs. More-over, ECR+ exhibits higher MSG than ECR due to the reasons explainedfor Figure 6.3d.5MPs 
an fail due to reasons su
h as depletion of their limited energy resour
es.
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t of MP failures6.4.10 E�e
t of sudden bursts on a single data itemWe 
ondu
ted an experiment to demonstrate the e�e
t of sudden bursts fora single data item. Figure 6.12 depi
ts the results.We quantify the sudden burst for an item d in terms of a parameter, whi
h wedesignate as PSB. The value of PSB for an item d is de�ned as ((Qd/Qtotal)×

100), where Qd is the number of queries dire
ted to d and Qtotal is the totalnumber of queries during a given time-period. Thus, when PSB = 15% foritem d, it means that 15% of the total number of queries during a given time-
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t of sudden bursts on a single data itemperiod is being dire
ted at d. For this experiment, we 
onsider �ve equaltime-periods, the value of Qtotal being 2000 for ea
h of these time-periods.For example, when PSB = 15% and Qtotal = 2000, Qd = 300. We set thevalues of PSB for d these �ve time-periods as {15%, 45%, 45%, 45%, 45%}respe
tively. Thus, the number of queries for d during the �ve time-periodswere {300, 900, 900, 900, 900}.In Figure 6.12, TP indi
ates the time-points. Time-period 1 o

urs between
TP = 0 and TP = 1. Time-period 2 o

urs between TP = 1 and TP = 2,and so on. The results in Figure 6.12 show that for both ECR and ECR+,
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e degraded during the se
ond time-period (i.e., between TP = 1and TP = 2) in terms of ART, SR and HC. This is be
ause at the end ofthe �rst time-period, repli
as had been allo
ated 
orresponding to the 300queries (for d), whi
h had been issued during time-period 1. However, duringtime-period 2, the sudden burst of 900 queries (i.e., a threefold in
rease in thenumber of queries) overwhelmed this initial allo
ation of repli
as. However,at the end of time-period 2, both ECR and ECR+ allo
ate more repli
asto deal e�e
tively with the sudden burst in a

esses to d. Hen
e, beyondtime-period 2, the e�e
t of repli
ation by both ECR and ECR+ be
omesmore prominent, due to whi
h performan
e keeps gradually improving forboth these s
hemes.Notably, the results also indi
ate that the performan
e of both ECR andECR+ exhibits a saturation e�e
t during time-periods 4 and 5. This o

ursprimarily due to 
ompetition among repli
as for the limited available memoryspa
e. For E-DCG+, the performan
e severely degrades during the se
ondtime-period due to the absen
e of repli
ation when the sudden burst of queries
ome in for d. Beyond TP = 2, ART and HC both exhibit a saturation e�e
tfor E-DCG+ primarily be
ause many queries get dropped, due to whi
h SRde
reases for E-DCG+.MSG in
reases over time for all the approa
hes be
ause it is 
umulative. ForECR and ECR+, MSG in
reases over time also due to in
reased 
ommuni
a-tion for li
ensing and repli
ation of rare data items in response to the suddenburst. Moreover, ECR+ exhibits higher MSG than ECR due to the reasonsexplained for Figure 6.3d. Observe that MSG is lower for E-DCG+ than forECR and ECR+ primarily be
ause E-DCG+ does not perform repli
ationand many queries get dropped (i.e., query failures o

ur) in 
ase of E-DCG+.



6.5. Summary 2146.5 SummaryIn M-P2P networks, data availability is typi
ally low due to rampant free-riding, frequent network partitioning and mobile resour
e 
onstraints. Wehave proposed E-Rare, a novel e
onomi
 in
entive model for improving theavailability of rare data by means of li
ensing-based repli
ation in M-P2Pnetworks.E-Rare 
omprises two repli
ation s
hemes, namely ECR and ECR+, both ofwhi
h use its in
entive model for improving rare data availability. In ECR,the MPs a
t individually towards repli
ation, while for ECR+, the MPs per-form repli
ation in groups. Our performan
e evaluation demonstrates thatthe peer-group-based strategy of ECR+ outperforms the individual-basedstrategy used by ECR in terms of query response times and availability ofrare data items in M-P2P networks. In the near future, we plan to use game-theoreti
 approa
hes for rare data item pri
ing and 
ompare the performan
eof E-Rare for di�erent e
onomi
 models.



7
Summary

This dissertation examines the problem M-P2P 
hallenges free-riding and dataa

essibility for realizing M-P2P appli
ations. Furthermore, we analyse andintegrate the various e
onomi
 in
entive-based s
hemes to 
ombat free-ridingand to in
rease peer parti
ipation, thereby leading to the in
reased dataavailability for redu
tion of response time in M-P2P networks.The exponential growth of the mobile networks and the intera
tions of mobilepeers, inspired resear
hers and developers to analyse and built the mobile ap-pli
ations based on peer-to-peer 
ommuni
ations, whi
h enormously redu
esthe Internet tra�
, while providing faster and better 
ommuni
ation plat-form. This strongly motivate M-P2P network appli
ations. Mobile devi
eswirelessly 
ommuni
ating in a P2P fashion fa
ilitate M-P2P appli
ations byenabling information sharing on-the-�y. Moreover, the proliferation of mo-bile devi
es with embedded GPS sensors 
oupled with the growth in thepopularity of infotainment servi
es for vehi
les have 
reated new avenues forimproving vehi
ular tra�
 management in road networks.First, we have proposed E-Top for improving e�
ient top-k query pro
essingin M-P2P networks, be
ause peers in M-P2P networks are used to havetop-k queries. For example, someone wants to �nd the top-k restaurants



Chapter 7. Summary 216with �happy hours� (or �manager's spe
ial hours�) within 1 km of her 
urrentlo
ation. Here, top-k is determined based on the parameters (e.g., star rating,pri
e and distan
e from the point of query referen
e) sele
ted by the user.Similarly, another appli
ation 
ould involve a parking lot, where MPs 
an
olle
t information about available parking slots and 
harges, and then they
an inform the brokers. The parking slot availability information has tobe 
urrent and therefore, the broker 
an 
ompare su
h 
urrent informationwith its 
urrent list of parking slots. The broker 
an then provide the top-kavailable slots to the query-issuing MP in terms of pri
e or distan
e (fromthe MP's 
urrent lo
ation). Similarly, an MP may want to �nd the top-kstores selling Levis jeans in a shopping mall with 
riteria su
h as (low) pri
eduring a spe
i�
 time duration.Se
ond, we have proposed E-Broker to in
entivize brokers for providing value-added routing servi
e in M-P2P networks to in
rease data availability, therebyimproving query response time. Here, the term �value-added routing servi
e�refers to the broker MPs enabling pro-a
tive sear
h for the query results bymaintaining an index of the data items (and repli
as) stored at other MPs(as opposed to just forwarding queries).Third, E-VeT provides e�
ient vehi
ular tra�
 management in road net-works using e
onomy-based reward/penal s
hemes. This work aims to iden-tify that how e�e
tively system 
an assign the paths to the vehi
les to managevehi
ular tra�
 by redu
ing the average time of arrival and fuel 
onsumption.Forth, E-Rare fo
usses on handling rare data items in an M-P2P environ-ment. Here, Rare data items are those, whi
h get sudden bursts in a

essesbased on events as they are only hosted by only a few peers in 
omparison tothe network size. Thus, they may not be available within few hops of query-issuing peers. The sudden burst in a

esses to rare items generally o

urswithin a given time-frame (asso
iated with the event), before and after whi
hsu
h items are rarely a

essed. For example, during 
ourse of a remote for-est expedition, sudden unexpe
ted de
rease in temperature and gusty windsrise the need to look for the information related to shops selling sweaters
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heaters. Su
h M-P2P intera
tions for e�e
tive sharing of raredata are 
urrently not freely supported by existing wireless 
ommuni
ationinfrastru
tures.In this dissertation, E-Top proposed peer-based ETK and ETK+; and group-based ETG e
onomi
 s
hemes to perform e�
ient top-k query pro
essing inM-P2P networks. In addition, E-Broker has presented the basi
 and ad-van
ed in
entivized e
onomi
 s
hemes EIB and EIB+ respe
tively for bro-kers' value-added routing and repli
ation servi
es in M-P2P networks. Fur-thermore, we have proposed individual and peer-group in
entive-based repli-
ation s
hemes ECR and ECR+ respe
tively in E-Rare system for improvingrare data availability by means of li
ensing-based repli
ation in M-P2P net-works. Finally, E-VeT provides the proposed e
onomi
 reward/penalty-basedroute allo
ation s
hemes R2A and R2A+ to assign payo�s to the vehi
les fore�e
tive tra�
 management in vehi
ular networks.We have implemented our all above proposed s
hemes and 
ondu
ted ex-tensive performan
e studies on OMNeT++ [Pon93℄ based simulator usingsample and real datasets. The results of our experiments demonstrate theoverall e�e
tiveness of our proposed s
hemes for E-Top, E-Broker, E-VeTand E-Rare systems.To this end, we believe that our 
ontributions have su

essfully addressedsome of the issues 
on
erning the e�
ient data management in M-P2P net-works. We hope that ongoing resear
h work in this �eld will not only 
ontinueto in
rease the availability of data, but also improve the overall performan
eof M-P2P appli
ations. In near future, we plan to use game-theoreti
 ap-proa
hes for data item pri
ing along with the advan
ed e
onomi
 in
entive-s
hemes for all our proposed models.
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