
Enabling Sender-initiated Distributed
Applications and Checkpointing in

Content Centric Networks

Nitinder Mohan

Computer Science and Engineering

Indraprastha Institute of Information Technology

Submitted in partial fulfillment of the requirements
for the Degree of Master of Technology
with specialization in Mobile Computing

IIIT Delhi July 2015

Thesis Committee

1. Dr. Pushpendra Singh Thesis Advisor

2. Dr. Vinay Ribeiro External Examiner

3. Dr. Vikram Goyal Internal Examiner

Date of Defense: 25 June, 2015

Signature of Post-Graduate Committee (PGC) Chair:

Keywords: Content Centric Networks; Sender-initiated communication; Checkpoint; CCN
Application Checkpoint.

Dedicated to my elder sister, Gagandeep, who lost her life at a tender age of 15.
You will always be missed.

Abstract

Content Centric Network is a proposed future networking paradigm where data is the central
entity for communication and the correspondence model follows two-step approach for
data delivery. With increasing research in this domain, several new applications have been
developed for CCN. However, the receiver-driven communication paradigm is unfavorable for
several existing TCP/IP based distributed systems and would require extensive re-designing
to support the proposed CCN architecture.

Checkpoint-restart is a widely used fault-recovery mechanism which saves the state
of distributed system on a disk prior to a failure such that the system can restart from it.
However, no prior work has been done till date to support checkpointing of distributed
applications in CCN which is an absolute necessity if CCN is to be deployed on real-world
infrastructure.

In this report, we present CCN Application Checkpoint (CCNAC) Tool, a plugin for
checkpointing tool DMTCP, which enables checkpointing applications in CCN. We design
and implement checkpointing algorithms to ensure consistent checkpoint-restart. We also
propose a novel, efficient, application-layer based algorithm for sender-initiated communi-
cations based on proposed "pro-active naming" scheme in CCN. We design and evaluate
test applications for our system on CCN testbed. Our proposed system is able to provide
sender-initiated distributed computation with a nominal overhead of 28% and is able to
checkpoint-restart both existing as well as proposed CCN distributed applications without
much of communication overhead.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Nitinder Mohan
July 2015

Certificate

This is to certify that the thesis titled "Enabling Sender-initiated Distributed Applications
and Checkpointing in Content Centric Networks" submitted by Nitinder Mohan for the
partial fulfillment of the requirements for the degree of Master of Technology in Computer
Science & Engineering is a record of the bonafide work carried out by him under my guidance
and supervision in the Mobile and Ubiquitous Computing group at Indraprastha Institute of
Information Technology, Delhi. This work has not been submitted anywhere else for the
reward of any other degree.

Dr. Pushpendra Singh
Indraprastha Institute of Information Technology (IIIT)
New Delhi

Acknowledgements

I would like to express my special appreciation and gratitude to my advisor Associate Pro-
fessor Dr. Pushpendra Singh who has been a outstanding mentor for me. From him I learnt
a persistent, open, and exploratory aptitude toward both research and life. His advice on
both research as well as on my career has been priceless. I could not have imagined having a
better advisor and mentor for my Master’s research.

Besides my advisor, I would like to thank the esteemed committee members, Dr. Vinay
Ribeiro and Dr. Vikram Goyal for agreeing to evaluate my work and thesis.

Special thanks are due to to my parents and my younger brother for their support and
encouragement throughout my study. Last but not least I would like to thank all my friends
for being with me at each step when I need their support. This thesis would never be
successful without their love and support.

Table of Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Research Aim . 3
1.2 Research Applications . 3

1.2.1 Sender-driven Applications . 3
1.2.2 Checkpointing Applications . 3

1.3 Organization . 4

2 Related Work and Research Contribution 5
2.1 Related Work . 5

2.1.1 Push-based communication . 5
2.1.2 Checkpointing . 6

2.2 Research Contributions . 7

3 Background 9
3.1 Content Centric Networking . 9

3.1.1 CCN Packet Types . 10
3.1.2 Hierarchical Names . 11
3.1.3 Receiver-driven Communication 12

3.2 Checkpointing . 14
3.2.1 Types of Checkpoints . 14
3.2.2 Checkpoint Algorithms . 15

3.3 Distributed Multi-Threaded Check-Pointing 16
3.3.1 Architecture . 16
3.3.2 Checkpointing Algorithm . 17
3.3.3 Restart Algorithm . 17

Table of Contents

3.3.4 Checkpoint Consistency . 18

4 Distributed Applications in CCN’s 21
4.1 Communication Structure . 22
4.2 Packet Structure . 24

4.2.1 Request-to-Send (RTS) . 25
4.2.2 Interest Packet . 26
4.2.3 Data Packet . 27

5 Checkpointing in Content Centric Networks 29
5.1 Algorithms of Checkpointing in CCN . 29

5.1.1 Independent Checkpointing . 29
5.1.2 CCN Checkpoint Consistency Rules 30

5.2 CCN Application Checkpoint (CCNAC) tool 32
5.2.1 Prerequisites . 32
5.2.2 Architecture . 34
5.2.3 Packet Structures . 36
5.2.4 CCNAC Checkpoint Consistency Algorithm 38

6 Evaluation and Analysis 45
6.1 Implementation . 45
6.2 Results . 46

6.2.1 Evaluating Sender-driven Architecture 46
6.2.2 CCNAC vs. DMTCP . 47

7 Discussions and Future Work 51
7.1 Discussions . 51

7.1.1 Checkpointing using CCNCheck 51
7.1.2 Sender-driven communication in CCN 52

7.2 Limitations and Future Work . 52
7.3 Conclusion . 53

References 55

Appendix A CCN Application Checkpoint (CCNAC) System Walkthrough 59

xiv

List of Figures

3.1 Thin waist of network stack in CCN as proposed by Jacobson et. al. [21] . . 10

3.2 CCN Packet Types . 10

3.3 Name Tree Hierarchy . 12

3.4 CCN-based Router Structure . 13

3.5 Inconsistent Checkpoint . 14

3.6 Consistent Checkpoint . 15

3.7 DMTCP Architecture . 17

4.1 Congestion while sending outstanding interests 22

4.2 Designed Communication Architecture 23

4.3 Screenshot of CCN Fibonacci calculator using proposed algorithm on Process 1 24

4.4 Screenshot of CCN Fibonacci calculator using proposed algorithm on Process 2 24

4.5 Request-To-Send Interest Packet Naming Structure 25

5.1 Possible Checkpoint Scenarios in CCN . 30

5.2 CCNAC Data Structures . 33

5.3 CCNAC Architecture . 34

5.4 Coordinator Connect Interest . 36

5.5 Checkpoint Interest . 36

5.6 Flush Interest . 37

5.7 Restart Interest . 38

5.8 Screenshot of restart from checkpoint . 38

5.9 CCNAC Consumer-side Algorithm . 40

5.10 CCNAC Producer-side Algorithm . 42

6.1 Overview of System Structure . 46

6.2 Comparison of time taken in CCN push-based and TCP application 47

6.3 Comparison of time taken at various checkpoint stages 48

xv

List of Figures

6.4 Comparison of checkpoint image size of CCN-based and TCP-based appli-
cations . 49

6.5 Variation of checkpointing stage with increasing number of participating nodes 49

A.1 Initializing CCN Daemon . 59
A.2 Initializing CCNAC Coordinator . 60
A.3 Application Checkpointing by Coordinator 60
A.4 Listing the saved checkpoint image . 60
A.5 Restarting the application from the saved checkpoint 61

xvi

List of Tables

5.1 Consistency of checkpoints in Fig 5.1 . 30

6.1 Increase in Time at various stages (in multiples) 48

xvii

List of Algorithms

1 DMTCP Checkpointing Algorithm . 18
2 DMTCP Restart Algorithm . 18
3 Sender-driven Communication Algorithm 23
4 Consumer Table Algorithm . 33
5 Consumer-side Checkpoint Algorithm . 39
6 Producer-side Checkpoint Algorithm . 41

xix

Chapter 1

Introduction

Peer-to-Peer distributed applications have become increasingly popular to solve high compu-
tation tasks over a network. A typical peer-to-peer application partitions tasks or workloads
amongst equipotent participants/nodes. These applications are particularly useful when
performing a task without a central server to coordinate between nodes. Such applications
find there uses in various areas such as content delivery, multimedia, high computation
cloud-based or cluster-based tasks etc.

However, such p2p applications are vulnerable to several faults at run time. A fault/ error
in a system is deviation from the expected behavior of the system: a malfunction. Faults
may be due to a variety of factors, including data corruption, hanging process, misleading
return values, operator (user) error, and network problems [25]. Generally, a process needs
to restart from the start after a failure to resume its consistent state. However, restart from
start would be unfavorable for long running, high priority distributed process. To resume
the process execution from the last known consistent computation, several failure recovery
techniques are used such as checkpointing to backup disks, error correcting codes, packet re-
transmission, write-ahead logging etc. [2]. The most widely used failure recovery technique
is checkpoint-restart.

Checkpoint-restart is an important mechanism to save the state of one or more running
processes to a disk and later restore it after a failure. In addition to the traditional use case of
fault tolerance in long-running jobs, other applications of checkpoint-restart include process
migration, debugging, and save/restore of workspace. A long history of solutions have been
proposed over the years to support checkpointing for distributed applications in TCP/IP
networks [29, 31].

At a high-level, checkpointing a process can be viewed as writing all of process memory,
including shared libraries, text and data, to a checkpoint image. Accordingly, restarting
involves recreating the process memory by reading the checkpoint image from the disk. This

1

Introduction

works for simple programs, but for complex programs, one also needs to save and restore
information about threads, open files, etc. In more sophisticated applications, it involves
saving the network state (in-flight data, etc.), and information about the external environment
such as the terminal, the standard input/output/error, and so on [7].

The website checkpointing.org also lists several checkpoint-restart systems. There
are three primary approaches to checkpointing: virtual machine snapshotting, application-
level checkpointing, and transparent checkpointing. Several software packages have been
been developed which can provide checkpoint-restart capability to distributed systems and
desktop applications using these approaches. These packages are both kernel-level or user-
level in nature [19, 32]. One such example of an open source, research-based, user-level
checkpointing software is Distributed Multi-Threaded Checkpointing (DMTCP) [6].

Content Centric Networking (CCN) [21] is a proposed future Internet architecture that
uses data names instead of host addresses for data delivery. The new architecture incorporates
principles that have made the IP protocol suite widely adopted and globally scaled (e.g.,
the hourglass design and end-to-end principle), but changes the fundamental layer of the
architecture to one better suited to modern networks and emerging communication patterns
centrally dependent on data.

However, CCN follows a two-step, receiver-driven communication approach. This is
an optimized approach for content-based applications such as sharing of content based
resources, media streaming like VLC [1] etc. but fails in computation sharing sharing
distributed applications. Most of these applications use a sender-initiated communication
approach on TCP/IP networks and would not work well with receiver-driven architecture
provided by CCN. Moreover, as we aim to deploy CCN over existing IP networks, porting
of existing distributed applications over CCN would require developers to re-design their
applications to suit the constraints imposed by CCN.

Also the existing checkpointing algorithms and tools fail to work due to the two-step
communication model imposed by CCN 1. However, as distributed applications on CCN are
becoming more complex with time [18, 30, 35], a need for checkpointing these applications
is necessary.

Keeping the above-mentioned motivations in mind, we present following contributions in
this paper: (1) Provide a novel and efficient algorithms to sender-initiated communications
in CCN. (2) Propose a concept of pro-active names which uses naming hierarchy of CCN
packets to perform control actions at at a node. (3) Propose consistent checkpoint-restart
algorithms for distributed applications on CCN Application Checkpoint (CCNAC) tool.

1existing checkpoint algorithms cater to single step, sender-driven TCP/IP model and fail to checkpoint
two-step Interest-Data model of CCN. This was verified by us by checkpointing CCN-based application on
DMTCP.

2

checkpointing.org

1.1 Research Aim

(4) Develop CCNAC, a plugin for DMTCP software which is capable of checkpointing
applications on CCN. (5) Evaluated the performance of designed algorithms on both existing
and proposed CCN distributed applications.

1.1 Research Aim

The research aim of the work presented in this report is the following:

1. Propose a novel and efficient approach to enable sender-initiated communication in
CCN and implement it.

2. Understand various constraints involved while checkpointing applications in CCN and
design CCN-optimized algorithms for checkpointing, if necessary.

1.2 Research Applications

The research work presented in this report has several applications. Few of them have been
discussed.

1.2.1 Sender-driven Applications

Several applications involve sender-driven communications.

1. Distributed cloud-based applications.

2. Distributed cluster-based computation applications.

3. Publish-Subscribe networks for dissemination of data.

1.2.2 Checkpointing Applications

Several applications in CCN can use the checkpointing capability.

1. Distributed multiplayer games as developed by Qu et al. [30] and Wang et al. [35].

2. Online movie or video streaming applications

3. Remote Desktop using CCN

3

Introduction

1.3 Organization

The remainder of the report has been organized as follows:
The related work to our research has been presented in Chapter 2. The chapter also

contains various research contributions made by us through our research.
Chapter 3 presents the background related to Content Centric Networks, Checkpointing

and its tools necessary to understand our contribution. This chapter explains the basics of
routing in CCN and properties for consistent checkpoints which provides the motivation for
our research.

Chapter 4 explains our proposal for sender-initiated approach of communication in detail.
This is followed by design of hierarchical pro-active naming important to our approach.

Chapter 5 describes the various reasons for incompatibility of existing checkpointing
algorithms in CCN. It further proposes CCNAC which incorporated new algorithms and rules
to ensure consistent checkpoints in the system on top of existing TCP checkpointing using
DMTCP. We also describe the format of the auxiliary data structures needed to checkpoint.
Furthermore, the naming structure of checkpoint request and flush interests sent at time of
checkpointing has also been explained,

Chapter 6 shows the implementation and the evaluation of the proposed technique to
existing works. We also provide some in-depth analysis of the results and their possible
implications in this chapter.

Finally, chapter 7 discusses about the limitations of the research in certain scenarios and
paves a path for possible future work in our proposal.

4

Chapter 2

Related Work and Research
Contribution

2.1 Related Work

Several similar works have been presented on the proposed research topic in this thesis.
The work present in this report has several applications belonging to domains of publisher-
subscriber systems, distributed systems, fault tolerance and checkpointing. In this section, we
present some closely related works and present novel research contribution in context to ex-
isting works. We categorize the related work in two major areas: Push-based communication
and Checkpointing

2.1.1 Push-based communication

Content Centric Networks follows a pull-based approach of communication as depicted
in [21]. This puts a constraint on developers to model their applications complying with
the presented architecture. Several distributed applications in a content centric network
paradigm have been developed which provides a pull-based peer-to-peer communication
[18, 20, 35, 37]. Jacobson et al. [20] presents a Voice-over IP application in a content-based
paradigm. The authors utilize the active naming capability of CCN to actively request for
content not yet produced by the producer and by recursively sending new Interest for every
satisfied one to maintain the number of outstanding interests in the pipeline. Similarly, Zhu
and Afanasyev [37] developed a distributed chat-based application working on a similar
principle of satisfying outstanding synchronization interest with a data on state change.
Gusev [18] have developed a real time audio-visual communication over NDN where users
can discover each other from within the application and begin conferencing. The authors

5

Related Work and Research Contribution

have employed the use of different user namespaces to provide session initiation capabilities.
Wang et al. [35] and Qu et al. [30] have also demonstrated peer-to-peer multiplayer games in
CCN using a similar concept.

The existing distributed applications in IP networks follow a push-based approach [34].
A lot of research has been done in implementing push-based communication approach in
Content Centric Networks. Bodapati et al. [9], Carzaniga et al. [12], Chen et al. [14, 15]
have tried to implement push-based communication model in CCN’s and use them as
publish/subscribe architecture. The paper by Carzaniga et al. [12] and Chen et al. [14]
developed a sender-initiated publish-subscribe scheme by employing new packet types to
register address of subscriber. The authors, in their paper, also discuss the reasons why
sending a non-cached interest to a node to initiate CCN communication is not favorable
for a pub-sub network in CCN. The authors feel that as the scheme involves three-way
communication rather than the usual two-way in CCN, it will impose high overhead in the
system. We refute these claims made by the authors and show that three-way communication
imposes a very nominal overhead but provides an optimal sender-driven communication in
CCN which it currently lacks. Moreover, our design abstracts the sender-driven functionality
on application layer 1 and does not require changes to CCN architectures, such as using new
packet types other than Interest and Data.

2.1.2 Checkpointing

Checkpointing and rollback-recovery are well known techniques that allow processes to
make progress in spite of failures [33]. Several algorithms have been designed and developed
to take consistent checkpoint in a distributed network [11, 22, 24, 26]. Over the time,
coordinated checkpointing algorithms have emerged as the most commonly used type of
algorithms to produce consistent checkpoints with lowest system overhead [10, 16].

Using the above-mentioned checkpoint algorithms, several checkpointing packages 2

have been developed which can checkpoint single machine or distributed systems in TCP/IP
network based applications [23, 32]. DMTCP, developed by Ansel et al. [6], is a user-level,
transparent checkpoint-restart tool which can checkpoint distributed multi-threaded as well as
desktop applications. Moreover, DMTCP allows developers to add functionality to through
the use of plugins which other checkpoint packages fail to provide. We thus base all our
implementation on DMTCP.

1This is an advantage as applications of different nature can exploit this technique according to their required
purpose

2These checkpointing packages are both kernel-level and user-level in nature

6

2.2 Research Contributions

To the best of our knowledge, their is no prior work/package which aims to checkpoint
applications in Content Centric Networks. Our work, in subsequent sections, proposes to fill
the gap.

2.2 Research Contributions

In context to the closely related works, this report makes the following research contributions:

1. Designing an efficient sender-initiated application-layer based algorithm for distributed
systems in CCN;

2. Implementing the designed algorithms in CCNx and exporting them as C++ library
functions to be used by developers.

3. Studying the various failure conditions of exiting algorithms for checkpointing in CCN.

4. Designing and implementing novel checkpointing algorithms for CCN-based applica-
tions as an overlay on existing algorithms and software.

5. Evaluating the performance of above-mentioned system compared to earlier works in
this area.

7

Chapter 3

Background

3.1 Content Centric Networking

The current TCP/IP networks were built to solve age old problem of resource sharing which
was prevalent in 70s. The communication model that resulted is a conversation between two
machines, one wishing to use resource and other providing access to it. The IP packet thus
contains two identifiers, one to specify the source address and other to specify the destination.
In a TCP/IP network, all nodes are connected by such two-way TCP conversations.

However, as the time progressed, the size of data to be transferred between nodes have
increased to scale of exabytes (1016bytes)[3]. This proves that the users of the network
have become more interested to share data rather than resources amongst machines. To
better accommodate the emerging pattern of internet based on content than location, lot of
significant work has been done by researchers in this direction [5, 17, 27, 36] . The most
formal approach to content-oriented communication was provided by Jacobson et al. [21]
which was named Content Centric Networks (CCN).

CCN intends to provide a substantial degree of flexibility for users and end-systems to
obtain information without regard to their location or source. The significant difference
between IP and CCN is that the thin waist of TCP stack1, as in today’s IP architecture is the
centerpiece of CCN (see figure 3.1). This marks a significant difference between operations
of data delivery between IP and CCN. In ways of working, the sender and receiver nodes
in current IP networks is replaced by Consumer and Producer. A Producer is a node which
produces a data and Consumer is the node requesting that data from the producer. In this
section, we will briefly cover basic concepts of CCN upon which rest of our work rests.

1Note that the transport layer of IP network is second layer in CCN stack. Thus, all the transport level
functionality of IP networks is handled at lower levels in CCNs

9

Background

Fig. 3.1 Thin waist of network stack in CCN as proposed by Jacobson et. al. [21]

Fig. 3.2 CCN Packet Types

3.1.1 CCN Packet Types

There are two basic packet types in CCN, namely Interest and Data. The structure of both
packets has been depicted in figure 3.2. The packet types have been explained in details
below:

1. Interest Packet: The Interest packet is sent when a consumer requests for a data
packet. It is composed of the following fields:

• Name: This field indicates the name of the desired data produced by the producer
and requested by the consumer.

• Selectors: Provides the order preference and scope which specifies the preferences
and other restrictions if more than one Data packets can satisfy the Interest.

10

3.1 Content Centric Networking

• Nonce: A random nonce value which is used to prevent Interest looping in a
network.

2. Data Packet: The data packet is produced by the producer and contains the data in
which the consumer has an "interest". The data packet is made up of the following
fields:

• Name: A Data packet can be used to satisfy the Interest as long as the name of
the data packet is a prefix of that of the incoming Interest packet. Naming in
CCN has been discussed in details in later sections of this chapter.

• Content: The actual content requested.

• Signed Info: This field contains additional information such as publisher’s key
name, timestamp etc.

• Signature: This field contains publisher’s signature. Unlike IP networks, CCN
encrypts the data rather than network path/ links.

3.1.2 Hierarchical Names

Every chunk of data in CCN is named using hierarchical naming structures termed compo-
nents. Names in CCN are human readable in nature, that is, they are specified in group of
understandable language formats. The hierarchical structure of a name should start with an
organization name, followed by a tree-like structure scoping. For example, a possible data
name to satisfy a CV in a CCN is /iiitd.ac.in/MUC/nitinder_cv.pdf, where / divides
the CCN naming components. The name above can be shown as a tree depicted in figure 3.3.

Such a hierarchy is useful in allowing applications to represent relations between data
pieces. It also enables name-based routing to scale in a network. This is because such
a naming hierarchy facilitated "scoping", that is, some name may only be meaningful
to a specific network domain and are not meant to leak to other domains. For example,
/iiitd/computerscience prefix indicates that the interest for the names under it should
only be broadcasted in the computer science department of IIITD and should not be forwarded
beyond that boundary. On the other hand, there may be some names which are globally
unique in nature and can be specified by any application in the network. The name depicted
in figure 3.3 is a good example of such a globally unique name.

11

Background

Fig. 3.3 Name Tree Hierarchy

3.1.3 Receiver-driven Communication

CCN follows a receiver driven or pull-based communication paradigm. To receive a data
packet, the consumer must send an Interest with the desired data name in the network. This
packet reaches the in-between routers 2 on a particular face 3 which the router keeps note of.
A CCN router consists of following three components:

1. Forwarding Information Base (FIB): FIB is used to forward Interest packets towards
potential producers of matching Data. The FIB is populated by a name-based routing
protocol. The next router in line routes this packet to the next appropriate face until it
reaches the desired node. The FIB follows a learning routing protocol which enables it
to learn which faces satisfies which organization component.

2. Content Store (CS): This is same as buffer memory present inside the router. All
answered data packets routed through a router are stored in the Content Buffer for
later use. Whenever a new interest for a data arrives at a face, the router checks
Content Store for taht particular data. If the data is found locally, the router replies to

2The only difference between a CCN and an IP router is that a CCN router is cache-enabled and can store
the in-network data for future use.

3The interface is termed as a face in CCN as packets are forwarded on network interfaces but also exchanged
between applications running atop of CCN.

12

3.1 Content Centric Networking

Fig. 3.4 CCN-based Router Structure

the interest; thus saving communication cost of re-routing the same interest back to
producer.

3. Pending Interest Table (PIT): The interests that are yet to be satisfied are stored in
PIT of router. When multiple Interests for same data are issued by different/same
consumer(s), the router only forwards the first (and one) Interest towards producer
and marks that Interest in PIT. When the Data arrives back at the router, it looks up the
PIT, finds the matching entry and forwards the Data to all interfaces listed. An entry at
PIT can be removed only if the router receives the Data packet or PIT entry reaches its
time limit.

Due to the intelligent data plane routing of CCN, it naturally supports multicast data de-
livery. Moreover, the per-packet state allows routers to monitor packet delivery performance
of different interfaces. Due to such a design, Content Centric Networks are also Disruption
Tolerant Networks (DTN) in nature.

13

Background

3.2 Checkpointing

Checkpointing is an an important process which stores the consistent state of a process
on a stable storage, from which the process can resume its computation after a failure.
Checkpointing enables distributed applications to make progress despite of transient failures.
The failures under consideration are hardware errors and transaction aborts, i.e., those that
are unlikely to recur after a process restarts. Several checkpointing-recovery techniques have
been extensively designed in the literature [11, 22, 26].

3.2.1 Types of Checkpoints

In a distributed system, the states of processes are dependent on one another due to inter-
process communication. Due to this inter-process communication, the checkpoint take can
be consistent or inconsistent in nature. The notion of the global state of the system was
formalized by Chandy and Lamport [13] . The global state of the system after a checkpoint
is considered consistent only if it satisfies following conditions:

1. No such message exists in the system which has been received by a process without
being sent by another process.

2. No such message exists in the system which has been sent by a process but has not
been received by the recipient process.

If a checkpoint doesn’t satisfy the conditions above, it is considered as inconsistent in
nature.

Fig. 3.5 Inconsistent Checkpoint

14

3.2 Checkpointing

Figure 3.5 shows an inconsistent checkpoint scenario taken between communicating
processes P1, P2 and P3. As seen from the figure, process P2 takes a checkpoint before
sending message m2 and process P3 takes a checkpoint after receiving message m2. This
defies rule 1a of consistent checkpoint scenario. Similarly, process P1 takes a checkpoint
after sending message m1 and process P2 takes its checkpoint after receiving message m1. In
this case, the checkpoint taken fails to comply with the rule 1b.

If the checkpoint taken is inconsistent in nature, the rollback recovery after a failure on
process pi would require all the dependent processes on that process to rollback. As the
checkpoint is indeterministic in nature, a rollback-recovery would lead to domino effect
where all the dependent processes will keep rolling back and would restart its execution from
initial computation state.

The problem of domino effect can be solved by taking a consistent checkpoint. For
example, the inconsistent checkpoint scenario depicted in figure 3.5 can be transformed to a
consistent checkpoint depicted in figure 3.6.

Fig. 3.6 Consistent Checkpoint

3.2.2 Checkpoint Algorithms

There are two different types of checkpoint algorithms:

1. Independent Checkpointing Algorithm:
The independent approach saves its individual checkpoints periodically regardless of
the dependencies with other processes. When a process recovers from a failure, a
consistent set of checkpoints are selected for process affected by failure by exchanging
dependency information [8] .

15

Background

2. Coordinated Checkpointing Algorithm:
The processes under coordinated approach coordinate their checkpointing actions such
that each process saves only its most recent checkpoint, and the set of checkpoints in
the system is guaranteed to be consistent. When a failure occurs, the system restarts
from the most recent checkpoint.

A rollback-recovery from independent checkpoints results in domino effect which is
the biggest disadvantage for this algorithm. As, this problem is absent in coordinated
checkpointing, it is the most widely used checkpoint algorithm [11, 22].

3.3 Distributed Multi-Threaded Check-Pointing

Distributed Multi-Threaded Checkpoint (DMTCP) is a research-based, transparent, user-
level checkpoint-restart package for distributed applications. DMTCP is able to checkpoint
fork, exec, ssh, TCP/IP sockets, UNIX domain sockets, shared open file descriptors etc.
DMTCP supports traditional cluster-based high performance distributed applications along
with typical desktop applications.

DMTCP follows a coordinated checkpointing algorithm to ensure a global consistent
state at each checkpoint. In coordinated checkpointing algorithm, all the processes and
threads cluster-wide are simultaneously suspended during checkpointing. Network data on
transmission link and in kernel buffers is flushed into the recipient process’s memory and
saved in its checkpoint image. After a checkpoint or restart, this network data is sent back to
the original sender and re-transmitted prior to resuming user threads.

3.3.1 Architecture

A computation running under DMTCP consists of a centralized coordinator process and
several user processes. These user processes can be local or distributed in nature. The com-
munication between these user processes is through sockets, shared-memory etc. Moreover,
every process communicates with the coordinator through a checkpoint thread. This thread is
responsible for saving9 checkpoint images when requested by coordinator. Similarly during
restart, it initiates the restart phase at each process and restarts the entire process along with
its threads from the image. The thread is dormant during normal execution of the process
and is only active during checkpoint/restart procedures.

The architecture of DMTCP is depicted in Figure 3.7.

16

3.3 Distributed Multi-Threaded Check-Pointing

Fig. 3.7 DMTCP Architecture

3.3.2 Checkpointing Algorithm

On receiving the checkpoint request from the coordinator, the checkpoint signal is sent
to all the user threads in the process by the checkpoint thread. This quiesces the user
threads by forcing them to block inside a signal handler previously installed by DMTCP. The
checkpoint image is created by writing all of user-space memory to a checkpoint image file.
Each process has its own checkpoint image stored locally. Prior to creating the checkpoint
image, the checkpoint thread also copies into the user-space memory, any kernel state that is
required to restart the process such as the state of associated with network sockets, files, and
pseudo-terminals.

DMTCP checkpoint algorithm is blocking in nature as it uses marker messages to flush
data packets present in the sockets. The algorithm executes in stages where a barrier to next
stage is released only if all the communicating nodes under coordinator have completed that
stage. The algorithm used by DMTCP to checkpoint user processes is provided in Algorithm
1.

3.3.3 Restart Algorithm

After taking a successful checkpoint, the DMTCP groups all restart images from a single
node under a sing dmtcp_restart process. Once all the images are connected back to
the coordinator, the coordinator begins the process of restarting the application from the

17

Background

Algorithm 1 DMTCP Checkpointing Algorithm
1: Wait for checkpoint process to start
2: Suspend all user threads

Release Barrier: Suspended
3: Leader Election for each shared file descriptor between nodes

Release Barrier: Election completed
4: Drain TCP sockets using flush packets

Release Barrier: Drained
5: Save user-space memory to a checkpoint file

Release Barrier: Checkpointed
6: Refill sockets with data

Release Barrier: Refilled
7: Resume user threads
8: Go to 1

checkpoint. The algorithm used by DMTCP to restart an application from a checkpoint has
been depicted in Algorithm 2

Algorithm 2 DMTCP Restart Algorithm
1: Reopen file descriptors
2: Reconnect sockets across the network
3: Fork user processes to same number prior to checkpoint
4: Rearrange file descriptors for each user process
5: Restore local process memory and thread

Release Barrier: Resume from Barrier 5 of Checkpoint Algorithm
6: Refill sockets with data

Release Barrier: Refilled
7: Resume user threads
8: Go to 1

3.3.4 Checkpoint Consistency

To initiate a checkpoint, the coordinator broadcasts a quiesce message to each process in the
computation. On receiving the message, the check-point manager thread in each process
quiesces the user threads, sends an acknowledgment to the coordinator, and waits for the
drain message. After receiving acknowledgments from all processes, the coordinator lifts

18

3.3 Distributed Multi-Threaded Check-Pointing

the global barrier and broadcasts the drain message. On receiving the drain message, the
checkpoint manager thread sends a special cookie, that is marker message through the “send”
end of each socket. Next, it reads data from the “receive” end of each socket until the special
cookie is received. Since user threads in all the processes have already been quiesced, there
can be no more in-flight data. The received in-flight data has now been copied into user-space
memory, and will be included in the checkpoint image.

On restart, the peer processes refill the network buffers, by pushing the data back into the
network through the “send” end of each restored socket connection. The checkpoint manager
thread then sends a message to the coordinator to indicate the end of the refill phase and
waits for the resume message. Once the coordinator has received messages indicating end of
refill phase from all involved processes, it lifts the global barrier and broadcasts the resume
message. On receiving the resume message, the checkpoint manager un-quiesces the user
threads and they resume executing user code.

19

Chapter 4

Distributed Applications in CCN’s

As Content Centric Networks are designed as Receiver-driven or Pull-based in nature, the
distributed applications in CCN needs to cater to such communication paradigm to function
[20, 35, 37]. Moreover, as the content is produced by producer at runtime, the consumers do
not know about the exact name of the content to request.

To tackle the above mentioned problem, the CCN’s employ active names to request for
data produced at run-time. The consumers of such data send interests with the name of data
yet to be produced. When this Interest packet reaches the producer, the producer guesses the
data required by consumer using the name of the incoming interests, generates the data with
the same name and satisfies the interest. This approach has been used by several applications
in CCN [20, 37] which are able to send/receive data to/from remote nodes.

Even though this approach allows distributed processes to communicate with each other
at runtime, it is still receiver-driven in nature. The existing paradigm which is extensively
followed by distributed applications in TCP/IP based distributed applications is Sender-
driven or push-based in nature. In Sender-driven applications the producer produces the data
and sends it to desired consumer directly. Due to this mismatch between communication
paradigms of IP and CCNs, a transformation of such application to new paradigm is required
which would induce workload on developers of such applications. One major problem of
using existing approach of active names is that it would require flooding the entire network
of distributed processes with outstanding Interest packets. This would lead to high network
contention1. Such a scenario has been depicted in figure 4.1 where In depicts the Interest
packet generated by Pn to request different data using active names and Dn denotes the data
packet generated by Pn.

1If there are ‘n’ different processes for an application, it would require sending O(nn) outstanding interests
in the network.

21

Distributed Applications in CCN’s

Fig. 4.1 Congestion while sending outstanding interests

We have thus come up with a novel approach to provide push-based communication
paradigm for such distributed applications in CCN. Our solution enables producer to send the
produced data to desired consumer at runtime using Interests and Data packets of CCN. One
major advantage of using our approach is that no changes need to be done in the application
source code apart from changing the Send() and Receive() TCP/IP socket functions to those
of CCNs. We provide an API to developers using C++ libraries which can be directly
imported in the application.

4.1 Communication Structure

The general communication pattern for applications in CCN is two-tier, that is, the consumer
sends an Interest packet to which the Data packet containing the content requested is sent
back. We extend this communication pattern to three-tier to transform the pull-based to
push-based approach. Moreover, we use the unique hierarchical naming of CCN packets to
perform a unique action. Our approach is guided by following pre-assumptions:

• Every node knows about names of other nodes running the same distributed application
in the network.

22

4.1 Communication Structure

Fig. 4.2 Designed Communication Architecture

• Every node is defined by a unique name which is pre-appended by the application
name the process is running.

To run a sender-driven distributed application in CCN we use an approach very similar to
solving hidden terminal problem in IEEE 802.11 networks. We use an RTS Interest packet
which acts as a notification to destination about an incoming data. The approach works in
steps specified in algorithm below:

Algorithm 3 Sender-driven Communication Algorithm
1: Producer produces the intended data
2: Producer sends Request-to-Send (RTS) notification Interest packet to desired Con-

sumer
3: Consumer extracts the name of data from RTS and sends the interest for the data

produced
4: Producer receives the Interest packet and satisfies it with data
5: Consumer receiver data sent by Producer
6: Go to 1

Figure 4.2 shows the designed sender-driven communication. More details have been
discussed in later sections.

23

Distributed Applications in CCN’s

Fig. 4.3 Screenshot of CCN Fibonacci calculator using proposed algorithm on Process 1

Fig. 4.4 Screenshot of CCN Fibonacci calculator using proposed algorithm on Process 2

4.2 Packet Structure

The designed communication approach utilizes the naming capability of CCN packets to
uniquely identify the packet type and function. Several applications in CCN utilizes Interest
packets with active names to request for data packets not yet been produced by producer.

24

4.2 Packet Structure

Fig. 4.5 Request-To-Send Interest Packet Naming Structure

Using this approach, we design pro-active names which uses the name of the Interest to
specify the function performed by the process. The packets with pro-active names is similar
to the control message in TCP networks. The Interest packets with pro-active naming is
assumed not to be cached in the router and thus ensure end-to-end delivery. In this section,
we are going to discuss the packet structures using pro-active name concept for packets
utilized in our approach.

4.2.1 Request-to-Send (RTS)

Request-to-Send or an RTS packet is key to push-based communication approach in CCN’s.
An RTS packet notifies the consumer about a pending data to be sent and also the name of
the data which has been produced. Whenever the consumer receives an Interest packet, it
checks the packet name for keyword RTS. If the keyword is found in the name, the Consumer
extracts name of the data post-pended after RTS keyword and sends a regular Interest packet
with extracted data name.Various aspects about the RTS packet have been discussed below:

RTS Structure

The RTS Interest packet is same as any Interest packet in Content Centric Networks. The only
difference between an RTS and an Interest packet in CCN network is that the RTS packet is
not cached in any in-network routers in their Pending Interest Table’s. This essentially means
that producer is not expecting a reply for this Interest packet and this packet will only serve
as a notification to Consumer node. In CCNx emulator 2, this can be achieved by setting the
Interest_Lifetime value as 0.

RTS Naming

An RTS packet name sent from producer node to consumer node is made up of four compo-
nents:

2Read CCNx Technical documentation [4]

25

Distributed Applications in CCN’s

1. Consumer Name: This denotes the destination node name to which RTS is to be sent.
The destination naming follows the same naming convention as that of regular CCN
packets. For example, in the example shown in figure 4.5, the RTS is being sent to
pushpendra which follows no name scoping and is registered in the network as a
singular node without any organization name. If pushpendra were to be part of an
organization, say iiitd.ac.in/MUC, then the consumer name of the RT packet would
be denoted as iiitd.ac.in/MUC/pushpendra.

2. RTS Keyword: The consumer name is followed by a RTS keyword which distinguishes
the RTS packet from general Interest packets in CCN. On receiving this packet, the
consumer node checks the URI name of the packet for RTS keyword. The name
components after RTS keyword is used to form the Interest to be sent back to Producer.

3. Producer Name: The ProducerName is used to identify the producer which has sent
the RTS Interest. As CCN is designed to send/receive data and routing is done through
PIT entries at in-network routers, CCN provides no mechanism of knowing the name
of source node of Interest packet. In our approach, the Consumer needs to determine
the node which has sent the RTS such that the Interest packet for the data can be routed
back to that same node. Due to this, the Producer source name is made part of the RTS
Interest.

4. Content Name: The final component of the RTS interest is the content name produced
by the producer which it needs to push to the consumer.

4.2.2 Interest Packet

After the receipt of RTS packet, regular CCN communication follows between Consumer
and Producer. The Interest packet sent is regular Interest packet which is sent back from
Consumer to Producer after the Consumer receives the RTS packet sent by the Producer.

Interest Structure

The Interest packet sent is same as regular Interest in a CCN. Detailed structure of Interest
packet and its components have been discussed in Section 3.1.1.

Interest Naming

The Interest packet sent back to Producer by Consumer has sole purpose of requesting
for Data packet from Producer.The name of the Interest packet would be the components

26

4.2 Packet Structure

following the RTS keyword in RTS Interest packet. For example, if Consumer receives a RTS
Interest packet with name depicted in figure 4.5. In this case, the name of the Interest packet
would be:

Nitinder/nitinder_cv.pdf

The Interest packet would be routed to producer Nitinder and request for data it specified
in RTS Interest packet. In this case, the data packet requested is nitinder_cv.pdf

4.2.3 Data Packet

The data packet is sent by the producer after it receives the Interest from Consumer. General
rules of Data packet are applicable. More information on Data packets and its structure is
available in Section 3.1.1.

27

Chapter 5

Checkpointing in Content Centric
Networks

The checkpointing in TCP/IP networks and algorithms used to checkpoint applications in
these networks have been discussed in details in Section 3.2 and Section 3.3. However, a
process in CCN is different from a process in regular TCP/IP networks. This is so because
processes in regular TCP/IP networks follow one-step communication, that is, the sender
node directly sends the data to the receiver node in a single step. However, processes in CCN
follow two-step communication, that is, for every data packet to be sent in the network, an
Interest packet needs to be relayed to the producer.

As the existing checkpointing algorithms have been developed keeping in mind regular
sender-driven communication [11, 22, 26], these cannot be used for receiver-driven CCN
architecture. Even if we use our designed approach, discussed in Chapter 4, to transform
communication architecture of CCNs from receiver-driven to sender-driven, the communica-
tion becomes three-step in nature (RTS->Interest->Data). Ultimately, to solve this problem a
new algorithm needs to be designed which would work for processes in CCNs.

5.1 Algorithms of Checkpointing in CCN

5.1.1 Independent Checkpointing

We will first discuss the possibility of taking Independent Checkpoint in a typical CCN
communication. A typical CCN communication is a single-step communication which
consists of an Interest packet sent by Consumer to which Producer replies with a Data packet.
A checkpoint can be taken by consumer and producer without any consensus. This can lead
to nine distinct checkpoint instances which is depicted in figure 5.1.

29

Checkpointing in Content Centric Networks

Fig. 5.1 Possible Checkpoint Scenarios in CCN

Case
Group

(a) (b) (c)

1. Consistent Inconsistent Inconsistent
2. Consistent Inconsistent Inconsistent
3. Inconsistent Inconsistent Consistent

Table 5.1 Consistency of checkpoints in Fig 5.1

Many of these checkpoint instances are inconsistent in nature. This information has
been provided in table 5.1 given below.

The detailed explanations of these scenarios have been depicted in next section.

5.1.2 CCN Checkpoint Consistency Rules

Figure 5.1 shows several independent checkpointing scenarios present in CCN. However,
many of these checkpoints lead to an inconsistent checkpoint-restart for applications. We
will now formulate consistency rules for checkpointing in CCN by extensively looking for
failure conditions for scenarios described in figure 5.1.

1. Data Consistency Rules:
According to existing checkpoint-restart algorithm discussed in section 5.1.2, a consis-

30

5.1 Algorithms of Checkpointing in CCN

tent checkpoint must ensure capturing both "send" and "receive" events for each and
every data packet sent in the network. As in CCN’s, a Data packet is the central entity
of the communication, the derived checkpoint consistency rules for Data can be as
follows.

(a) If a checkpoint saves the "receive" event of a Data, it must also contain the "send"
event of that Data.

(b) If a checkpoint saves the "send" event of Data, it must also save the "receive"
event of that Data.

In case 2(c) shown in figure 5.1, the consumer takes its checkpoint after receiving the
Data packet whereas the producer takes its checkpoint before sending that Data. As
this scenario does not agree with the rules stated above, the resulting checkpoint is
inconsistent. Case 1(c), 3(a) and 3(b) also fail to comply with the Data consistency
rules mentioned above.

2. Interest Consistency Rules:
In CCN, an Interest packet is issued to request Data from the producer and does not
carry any content. However, consider a scenario where the "send" event of the Interest
at the consumer is not a part of the checkpoint image. Restarting from this checkpoint
would anyways force the consumer to resend the Interest to the producer regardless
whether the "receive" event at producer is part of checkpoint or not. On the other hand,
if the checkpoint contains the "send" event and not the "receive" event, the application
would result in a deadlock after a restart. This is because the consumer is waiting
for the Data to arrive whereas the producer is waiting for an Interest for the Data.
Formally, CCN’s Interest consistency rules states that:

(a) If a checkpoint contains the "send" event of an Interest, it must also store the
"receive" event for that Interest.

(b) If a checkpoint does not contain the "send" event of an Interest, it may/may not
store the "receive" event of that Interest.

Case 1(b) shown in figure 5.1 fails to satisfy the rule (a) resulting which the checkpoint
is inconsistent. It should be noted that case 2(a) satisfies condition (b) due to which
the checkpoint taken in this scenario is consistent.tency

3. Pending Interest Table (PIT) Consistency rule:

31

Checkpointing in Content Centric Networks

Case 2(b) depicted in figure 5.1 is an interesting case to note as even though it satisfies
both Data and Interest consistency rules mentioned above, yet the checkpoint taken is
inconsistent.

The inconsistency of this checkpoint is due to the routing protocol followed in CCN. As
discussed in Section 3.1.3, routing in CCN is dependent on the PIT entry of in-network
routers that serve as the breadcrumbs for delivery of Data packets. Considering case
2(b), the PIT entry for the requested Data is deleted after it is received by the consumer
(and after taking the checkpoint). The application will result in a deadlock state if it
restarts after Data "receive" event. This is because the consumer is waiting for the
Data to arrive whereas producer cannot route the Data due to missing PIT entries. The
CCN’s PIT consistency rule avoids this scenario.

(a) If a consumer has receipt for sending Interest for Data, it should also have the
receipt of receiving the requested Data from producer.

A checkpoint in CCN must satisfy all the rules mentioned above to ensure a consistent
state on application restart. After considering all the rules, only case 1(a), 2(a) and 3(c) result
in a consistent checkpoint in CCN.

5.2 CCN Application Checkpoint (CCNAC) tool

From section 5.1.1, we establish that independent checkpointing algorithm cannot be used
for taking consistent checkpoints in CCN. We thus develop CCNAC, which is a plugin
for DMTCP [6] to checkpoint applications in Content Centric Networks. In subsequent
subsection, we will provide detailed information regarding working of CCNAC.

5.2.1 Prerequisites

CCNAC checkpoints processes/applications communicating in Content Centric Networks.
However, we assume the following points for running processes under CCNAC. Formally, a
distributed system running on CCNAC works on following model:

1. Every node knows about other nodes running the same distributed application.

2. Every node is defined by a unique name which is pre-appended by the application
name the process is running.

32

5.2 CCN Application Checkpoint (CCNAC) tool

Fig. 5.2 CCNAC Data Structures

3. Each process can be defined by a CCN URI which is unique in the subset of that
particular application. Moreover, each process knows the CCN name as well as the
TCP address of the processes at the start of the application.

Moreover, CCNAC requires some extra data-structures to be a part of these applications
for them to function properly.

1. Consumer Table

As illustrated in figure 5.2, a Consumer Table is an array-like data structure present at
consumer-side of the application. The Consumer Table contains the names of those
pending applications which have been sent by the consumer but for which data packets
have not been received. A simple algorithm to fill Consumer Table entries has been
provided below.

Algorithm 4 Consumer Table Algorithm
1: Interest Sent: Add Interest Name to Consumer Table
2: Data Received: Remove Interest Name from Consumer Table

The consumer Table is used by CCNAC to clear the communication channel during
checkpointing. The details have been explained in later sections.

2. Producer Table

33

Checkpointing in Content Centric Networks

Fig. 5.3 CCNAC Architecture

A Producer Table is a producer-side, array-like table in which each table entry has a
pointer which points to a binary field present in Valid Interest table. The table entry
contains name of the interest received by producer. The binary value associated to an
interest name denotes whether the Interest has been satisfied (this is, the data packet
requested for that Interest has been sent) or not. An Interest has been fulfilled if Valid
Interest entry is 1 and is unsatisfied is Valid Interest entry is 0.

When a producer receives an Interest packet yet to be satisfied, it adds the packet to
Producer Table and marks the associated Valid Interest entry as 0. When the producer
answers this Interest, it changes the Valid Interest value to 1.

The Producer Table can also be updated by a FLUSH packet which is sent during
checkpointing of applications in CCNAC. More on that will be given in details in later
sections.

The Producer Table entries are used to validate while checkpointing that all the Interest
received by the producer has been answered such that the checkpoint taken is consistent
in nature.

5.2.2 Architecture

CCNAC is a plugin of DMTCP software (discussed in section 3.3) which enables checkpoint-
ing in Content Centric Networks. CCNAC follows a coordinated checkpointing algorithm by

34

5.2 CCN Application Checkpoint (CCNAC) tool

performing blocking of packets on all communication channels. The architecture has been
represented in figure 5.3. CCNAC is composed of following components:

1. Coordinator:
CCNAC plugin controls existing DMTCP coordinator to coordinate between processes
in a Content Centric Network. As CCN works on low-level TCP and UDP connections,
CCNAC enables DMTCP coordinator to understand and detect CCN Interest and Data
packets. On starting the coordinator, CCNAC provides a CCN URI to the coordinator
which is unique amongst the group of distributed processes. CCNAC coordinator URI
is composed of following parts:

OrganizationName/ApplicationName/Coordinator

For example, if CCNAC is initialized to checkpoint group of processes doing Fibonacci
computation deployed in IIITD, MUC department, CCNAC would provide it CCN
URI as:

IIITD/MUC/Fibonacci/Coordinator

The CCN URI can be automatically generated by CCAC on coordinator initialization
or can be explicitly provided by the user. However, this unique URI should be known
to all processes willing to register with the coordinator to checkpoint. Checkpoint
procedure can be initiated by the coordinator on an explicit request from the user
through its interactive interface or on expiration of a predefined checkpoint interval.
It should be noted that the coordinator is a single point of failure since the entire
computation relies on it.

2. User Processes:
User Processes are general processes communicating in a CCN environment. These
processes can either be distributed/centralized in nature. A user process under CCNAC
will have a Checkpoint_thread executing which remains dormant unless it receives
a checkpoint request from the coordinator. The checkpoint_thread is responsible for
quiescing other threads active in the process and take a local checkpoint. Other than
the checkpoint thread, a user process may contain a consumer thread, which is for
sending Interest packets to other processes; a producer thread, which is responsible for
registering incoming Interest packets and replying to them with appropriate data pack-
ets; and some other user threads which may be used to compute certain computation
tasks at the process. Figure 5.3 shows two such user processes.

35

Checkpointing in Content Centric Networks

Fig. 5.4 Coordinator Connect Interest

Fig. 5.5 Checkpoint Interest

5.2.3 Packet Structures

To take consistent checkpoint using CCNAC, we use Interest packets similar to RTS Interest
used for enable push-based communication in CCN (Refer to Section). These Interest
messages use pro-active names to initiate several actions taken by the process. Similar to
RTS Interest message, these Interest messages are not stored in PIT entries of in-network
routers and so they are not satisfied by receiving process.

1. Coordinator Connect:

A checkpoint will be consistent in nature only if all the nodes of the application
take a consistent checkpoint. In DMTCP, the nodes register with coordinator by
providing their TCP address. As CCNAC is an overlay on existing DMTCP software,
a coordinator connect Interest message is sent by all processes which are participating
in the application to the coordinator. The naming structure of coordinator connect
Interest is shown in figure 5.4.

The coordinator connect Interest name is post appended with the application CCN
name registering with the coordinator. The coordinator stores the name of appli-
cation in its local cache. These names are later used by the coordinator to send
checkpoint requests. For example, if the coordinator in a Fibonacci based applica-
tion is named Fibonacci/Coordinator and the application trying to connect to it is
Fibonacci/ProcessA, then the connect Interest name would look like:

Fibonacci/Coordinator/Connect/Fibonacci/ProcessA

2. Checkpoint:

36

5.2 CCN Application Checkpoint (CCNAC) tool

Fig. 5.6 Flush Interest

A Checkpoint Interest message is sent by the coordinator to all the processes registered
with it for checkpointing. The checkpoint interest is an overlay over earlier used
CHK_msg used by DMTCP coordinator in TCP/IP networks. The checkpoint manager
thread at each user process sends the checkpoint signal to all the user threads in the
process. This quiesces the user threads by forcing them to block inside a signal handler
previously installed by DMTCP.

The naming format of the Checkpoint Interest is representated in figure 5.5. For
example, if the process name is Fibonacci/ProcessA, then the checkpoint Interest
message sent by coordinator to process would have name as:

Fibonacci/ProcessA/Checkpoint

3. Flush:

To take consistent checkpoints, DMTCP employs a "flush" packet which clears all
socket channels at the time of checkpoint. However, as shown in section [cite ccn
checkpoint section], checkpointing an application in CCN requires satisfying all
consistency rules involving receipt of Interest and Data packets, a TCP flush packet
cannot be initialized at any time. Moreover, as CCN packets follows out-of-order
delivery, the Interest and Data packets need to be synchronized before initiating
checkpointing. A Flush Interest message is sent by a user process to all its dependent
processes at the time of checkpoint to notify them of the unsatisfied Interest packets.
The checkpoint thread at a user process does not initiate checkpoint until the Interest
mentioned in Flush packet has not been satisfied.

The format of the Flush Interest has been delineated in figure 5.6. For example, if
ProcessB is yet to satisfy ProcessA interest segment23, the Flush Interest sent would
be:

Fibonacci/ProcessB/Flush/segment23

Also, if there are no unsatisfied interests at the time of checkpoint, the process sends a
Flush/NULL packet to dependent processes. The detailed algorithm has been discussed
in later sections.

37

Checkpointing in Content Centric Networks

Fig. 5.7 Restart Interest

Fig. 5.8 Screenshot of restart from checkpoint

4. Restart:

The Restart Interest message is sent by the user process to coordinator to restart from
the checkpoint taken. DMTCP group all restart images from a single node under a
single dmtcp_restart process. After receiving the Interest message, the process registers
the name of the checkpoint taken with its checkpoint_manger thread which recreates
all file descriptors. It then uses a discovery service to discover the new addresses for
processes migrated to new hosts and restores network connections. It then forks a child
process for each checkpoint image.

Format of the Restart Interest is depicted in figure 5.7. For example, if the user process
ProcessA wants to restart from its recent checkpoint, the Restart message sent would
be:

Fibonacci/Coodinator/Restart/Fibonacci/ProcessA

5.2.4 CCNAC Checkpoint Consistency Algorithm

DMTCP employs a strategy of “coordinated snapshots” using a global barrier. It follows
a "blocking-type" coordinated checkpoint algorithm to ensure consistent checkpoints. As
depicted in section [ccn rules], consistent checkpointing in CCN needs to ensure receipts of
Interest and Data packets. It is to be noted from figure ??, that Case 2(a), however produces
a consistent checkpoint, can be ignored during checkpoint process due to computation

38

5.2 CCN Application Checkpoint (CCNAC) tool

overhead. Therefore, only case 1(a) and 3(c) creates a consistent checkpoint in CCN-based
applications.

CCNAC employs algorithms that ensure that any case should be reduced to Case 1(a)
and 3(c) at checkpoint. As a user process communicating in a CCN environment may fulfill
the roles of both producer and consumer, enforcement of algorithms for both these roles are
necessary. The algorithms have been explained in details below:

Consumer-Side Algorithm

CCNAC employs a consumer-side algorithm which is implemented by each process which
has sent an Interest message to other processes. The algorithm 5 formalizes the steps in the
algorithm. The algorithm flow has been described in the in figure 5.9.

Algorithm 5 Consumer-side Checkpoint Algorithm
1: Wait for checkpoint process to start
2: if ConsumerTable ̸= NULL then
3: for i ∈ index do
4: Send Consumer/Flush/ConsumerTable[i]
5: end for
6: Wait for Data
7: for i ∈ index do
8: if Data ==ConsumerTable[i] then
9: ConsumerTable[i]← NULL

10: end if
11: end for
12: else
13: Send Consumer/Flush/NULL
14: end if
15: Process checkpoint stages in Algorithm 1

When a user process receives a checkpoint request from the coordinator, it first checks it
Consumer Table for Interest message entries. A consumer table will have an Interest message
name if the process has sent an Interest for a Data but it has not yet been satisfied. As taking
a checkpoint at this stage would make it inconsistent, the process sends a flush message to
the intended process for each entry in Consumer Table. When the data for the Interest arrives
at the process, it deletes the respective Consumer Table entry and initiates further DMTCP
checkpoint stages.

39

Checkpointing in Content Centric Networks

Fig. 5.9 CCNAC Consumer-side Algorithm

40

5.2 CCN Application Checkpoint (CCNAC) tool

On the other hand, if Consumer Table is empty at the time of arrival of checkpoint request,
the process sends a NULL flush packet to each dependent process and continues with further
checkpoint stages. The algorithm terminates only when Consumer Table is free of any entries.
It is important to note that Consumer table and its entries are not a part of the checkpoint and
will be reinitialized at each process on restart.

Producer-Side Algorithm

CCNAC producer-side algorithm is implemented at each process which has sent a data to
other processes in the network. The algorithm 6 formalizes the steps in the algorithm. The
algorithm flow has been depicted in figure 5.10.

Algorithm 6 Producer-side Checkpoint Algorithm
1: Wait for checkpoint process to start
2: if IncomingFlush ̸= FLUSH/NULL then
3: Name← Name f rom(IncomingFlush)
4: if Name ∈ ProducerTable[index] then
5: if ValidInterest[index] == 1 then
6: Go to 1
7: else
8: Wait for IncomingInterest
9: if IncomingInterest == Name then

10: Send Reply
11: ValidInterest[index]← 1
12: Go to 1
13: end if
14: end if
15: else
16: ProducerTable[index]← Name
17: ValidInterest[index]← 0
18: Go to 8
19: end if
20: else
21: Process checkpoint stages in Algorithm 1
22: end if

On receiving the checkpoint request from the coordinator, the process waits for a flush
message from all the processes it is dependent upon in the network. If the incoming flush

41

Checkpointing in Content Centric Networks

Fig. 5.10 CCNAC Producer-side Algorithm
42

5.2 CCN Application Checkpoint (CCNAC) tool

message has an Interest name post appended to it, the process checks it Producer Table for
that Interest entry. The Producer Table contains the name of Interest packet and the associated
Valid field denotes whether the Interest has been satisfies by the process. If the Interest name
is present in the table and is also valid, the process has satisfied this Interest before receiving
the flush message. On the other hand, if the entry is invalid, the process is yet to receive the
Interest message and it thus waits for the Interest packet to arrive. On arrival of the packet,
the process satisfies the packet and marks the entry valid in the Producer Table.

If process has satisfied all the interest packets sent by other processes, it waits for NULL
flush message from all processes involved. The algorithm terminates once all NULL flush
messages have been received by the process. It is important to note that Producer table and
its entries are not a part of the checkpoint image and are reinitialized on checkpoint restart.

43

Chapter 6

Evaluation and Analysis

6.1 Implementation

To evaluate the correctness of our approach, we implemented sender-driven communication
approach and CCNAC plugin for DMTCP. The sender-driven communication functions were
developed in C++ and were exported as libraries which can be used in any C/C++ CCN
application. CCNAC plugin was developed on DMTCP v2.3.1 [6] and has been checked for
compatibility with earlier versions DMTCP v2.3 and DMTCP v2.2.1. We used CCNx v0.8.2
[21] which is a software emulator developed by Palo Alto Research Center (PARC). The key
component of CCNx is the ccnd daemon, which supports packet forwarding and caching.

The designed software was implemented on a testbed of 6 computers powered by Intel
i5 - 2400 processors clocked at 3.10 GHz. All the computers have 4 GB of RAM storage
and are interconnected with each other using 1 Gbps Ethernet LAN connection. We virtually
implement two CCN routers to make connections between end-nodes (see figure 6.1). The
software is implemented on Ubuntu 12.04 LTS operating system. We use Wireshark v1.8
[28] with CCN plugin installed to dissect packets in the network.

We have also designed and implemented applications to run tests on designed test bed.
One is a distributed C++ application in which the participating nodes compute the consecutive
numbers of fibonacci sequence in an iterative manner, that is, node 1 calculates a fibonacci
number, sends the result to any other node which using this data calculates the next number
in series. The application randomly selects the node to which the calculated data is to be
sent and uses the proposed sender-driven technique to push the data to that node. We also
develop a TCP/IP counterpart of this application to study the trade-off between CCN and
TCP push-based schemes.

45

Evaluation and Analysis

Fig. 6.1 Overview of System Structure

We use CCNAC plugin to checkpoint the above-mentioned application in CCN. However,
to showcase the capability of CCNAC’s checkpointing of existing CCN applications, we use
a CCN enabled VLC player which can stream videos on a Content Centric Network.

6.2 Results

6.2.1 Evaluating Sender-driven Architecture

We evaluate the performance of our proposed sender-receiver application with conventional
CCN client server application. The overhead of our technique has been shown in figure 6.2.

It can be seen from the result that a sender-driven communication technique accounts for
~28% of overhead when compared to receiver-driven architecture of CCN. An interesting
point to note is that even though Request-To-Send is an Interest type packet, yet it takes ~1.5
times the time taken to reply to general Interest packet. On a careful study, we found out that
the extra time is due to the local computation at the node to recognize a RTS Interest packet
and form an Interest packet as a reply. We feel that such minimal overhead is justified for
a three-way communication and will not affect the performance the system when used for
extended periods.

As we were unable to find an implementation of sender-driven distributed applications us-
ing new packet types (as discussed in [14]) on CCNx, we could not compare the performance
between CCNAC and new packet type applications.

46

6.2 Results

CCN Client Server Proposed CCN Sender Receiver

T
im

e
 T

a
k
e

n
 (

in
 m

s
)

0

1

2

3

4

5

6

7

8

9

10

11

12
RTS Interest

Interest

Data

Fig. 6.2 Comparison of time taken in CCN push-based and TCP application

6.2.2 CCNAC vs. DMTCP

We now evaluate the performance of CCNAC plugin in CCN environment with standard
DMTCP software in a TCP environment. We use several evaluation metrics to compare them.
These have been discusses in details below:

Checkpoint Stages

We evaluate the overhead incurred on three major DMTCP stages, namely connecting end
nodes to central coordinator, checkpoint request by the coordinator to end nodes and restart
of end nodes from a checkpoint image. We checkpoint TCP counting application to evaluate
DMTCP and CCN Fibonacci application to evaluate CCNCheck’s performance. All the six
nodes in the network are part of the checkpoint process for the experimentation. It is worth
noting that we are only evaluating network communication time in all these stages and this
value does not include memory read/write time while checkpointing. The results are depicted
in figure 6.3.

It can be seen from figure 6.3 that CCNAC performs fairly equally when connecting to
coordinator in a CCN environment but introduces a lot of overhead in checkpointing and
checkpoint restart stages. Table 6.1 shows the increase in multiples of time in various stages
between CCNAC and DMTCP.

The coordinator connect phase performs almost equally in both CCN and TCP environ-
ment and thus does not introduce much delay in the system. However, the checkpoint stage in
CCN takes ~7 times the time in TCP environment. The elevation in time in checkpoint stage
can be accounted to the computation time of consumer-side and producer-side algorithm

47

Evaluation and Analysis

DMTCP CCNAC

T
im

e
 (

in
 s

e
c
)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Coordinator Connect

Checkpoint

Checkpoint Restart

Fig. 6.3 Comparison of time taken at various checkpoint stages

Time Increase in Time
Coordinator Connect 1.308

Checkpoint 7.24
Checkpoint Restart 18.66

Table 6.1 Increase in Time at various stages (in multiples)

which is due to the implementation of these algorithms in CCNAC. Currently, the execution
of these algorithms lead to a lot of memory cycles, thus, leading to increased execution time.
Flushing of CCN interests by sending flush interest packets at the time of checkpoint also
plays a significant part in increased checkpoint time.

The checkpoint restart stage in CCNAC incurs the maximum overhead when compared
to its TCP counterpart (~18 times). On a thorough analysis, we found that this overhead
is accounted due to recreating the "consumer table" and "producer table" at restart (the
computation takes ~2 seconds).

Checkpoint Size

We checkpoint fibonacci and VLC applications in TCP and VLC environments and compare
the size of checkpoint image for both the applications. The results for the same has been
depicted in figure 6.4.

The checkpoint image size in CCNAC exceeds that taken by DMTCP. In case of fibonacci
application, we see an increase of 8.05% and in VLC media streaming, we see an increase of

48

6.2 Results

Fibonacci Counter VLC Media Streaming

C
h
e
c
k
p
o
in

t
S

iz
e
 (

in
 M

B
)

0

5

10

15

20

25

30

35

40

45

50

55

DMTCP-TCP

CCNAC-CCN

Fig. 6.4 Comparison of checkpoint image size of CCN-based and TCP-based applications

5.01%. The checkpoint image in CCNAC stores the CCN URI name of all the computing
nodes with the image. We feel that this database accounts for the increased size. We feel
that this increased size overhead is quite nominal and thus does not induce much system
overhead.

Impact of flush packets on checkpoint time

Number of participating nodes

0 1 2 3 4 5 6

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
s
)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

CCNAC

DMTCP

Fig. 6.5 Variation of checkpointing stage with increasing number of participating nodes

49

Evaluation and Analysis

To evaluate the correlation between checkpoint time and the number of flush packets sent
during checkpoint, we vary the number of nodes involved in the checkpointing process. The
more the number of nodes ∝ flush interests sent at checkpoint. We then plot the results on a
graph which has been shown in figure 6.5.

It can be observed from the graph that the checkpoint time increases somewhat linearly
for nodes > 4. For nodes ≤ 4, CCNAC checkpoint stage time is somewhat equivalent to
DMTCP checkpoint time. It can also be seen from the plot that unlike CCNAC, DMTCP
takes almost constant time even on increasing the number of participating nodes. This result
provides an evidence and justification of multitudes of increased time accounted during
checkpointing stage in CCNAC.

50

Chapter 7

Discussions and Future Work

7.1 Discussions

7.1.1 Checkpointing using CCNCheck

Increased Checkpoint Time

In figure 6.5 of chapter 6, we observe that the time for taking a consistent checkpoint linearly
increases for nodes ≥ 4. This imposes several restrictions for real-world deployment of
CCNCheck.

1. Frequent checkpointing may be unfavorable

The checkpointing process in CCN has an additional overhead when compared to that
in TCP networks. Moreover, as checkpointing halts the execution of the application
until it is complete, frequent checkpointing may not let the application progress.

2. Checkpointing large clusters may lead to adverse results

As the time taken to checkpoint in linearly dependent on the size of the cluster, check-
pointing distributed CCN applications on very large clusters may lead to suspension of
the application.

Increased Restart Time

The checkpoint-restart for CCNCheck is ~18 times that of DMTCP. This increase can be
accounted due to the computation time and memory overhead of re-initializing the consumer
and producer tables at each node. Even though such a cost may seem like a huge overhead,
we feel that this increased time would not affect the performance of the system. This is

51

Discussions and Future Work

because the checkpoint-restart for an application would occur only after the application has
undergone a fault and needs to be restarted. We feel that such a scenario would not be a
frequent occurrence for a general distributed application.

7.1.2 Sender-driven communication in CCN

The proposed sender-driven communication in CCN’s imposes only 28% overhead to con-
ventional receiver-driven communication but reduces the number of packets in the network
to send the data1 when compared to previous research. We feel that this overhead is nominal
enough to deploy CCN’s in a push-based environment. Also, the C++ library functions
is similar to ones used by TCP/IP network developers which removes the learning curve
required to understand routing of packets in CCN.

7.2 Limitations and Future Work

The work presented in this report has several limitations. Possible future works are necessary
to overcome these.

1. High Checkpoint time: CCNCheck checkpoint time is about 7 times that of traditional
DMTCP as seen in table 6.1. This is because the current implementation of CCN
checkpoint algorithm is not optimized and wastes several CPU cycles on execution.
One major future work would involve an efficient implementation of these algorithms.

2. Scalability: Due to resource constraints, we were only able to deploy CCNCheck and
sender-initiated application to a testbed of six different nodes which we feel might
be limited to comment on scalability of the approach. We feel that CCNCheck may
perform differently (better/worse) when deployed in a distributed cluster of large size.

3. Test applications: We tested the performance of CCNCheck through a simple sender-
initiated fibonacci counter application and a CCN VLC media stream. One can
possibly do a stress testing of CCNCheck by checkpointing a large-scaled 2 distributed
application such as a CCN-based distributed game as proposed by Qu et al. [30] and
Wang et al. [35].

1from O(n2) to O(n)
2consisting of tens to hundreds of threads per instance

52

7.3 Conclusion

7.3 Conclusion

Applications in content centric networks follows a receiver-driven communication where a
data is sent to a node only when requested. However, this poses a problem for developers to
port their existing applications from TCP/IP networks to CCN as TCP-based applications
follow a sender-initiated approach. We present an efficient, application-layer based sender-
driven communication in CCN. Our design does not change the existing CCN architecture
such as adding new packet types. We implemented our design in CCNx v0.8.2 and have
exported it as C++ libraries for developers to use while porting their applications. We have
also presented CCNCheck, a plugin for open-source checkpointing software DMTCP, which
enables checkpointing of applications in CCN. CCNCheck works on consumer and producer
side algorithms which ensures that the resulting checkpoints are always consistent in nature.

We implemented a sample application working on our proposed sender-initiated approach
and compare it to existing CCN client server application. We find that our technique
imposes only 28% overhead to existing receiver-driven approach which we feel is nominal.
For evaluating performance of CCNCheck, we checkpointed our designed application and
existing CCN VLC media player stream on the testbed. We found a minor increase of
~7% in checkpoint size when compared to its TCP counterpart. However, CCNCheck
takes a considerable more time to take a checkpoint and restart from it when compared to
DMTCP. We feel that this increased time is due to the implementation of designed CCN
checkpoint algorithms. However, we claim that ours is the first working implementation of
checkpointing distributed applications in CCN and subsequent revisions of CCNCheck will
focus on efficient implementation of algorithms to reduce checkpoint time.

53

References

[1] CCN VLC Player Plugin. URL https://github.com/ProjectCCNx/ccnx/tree/master/apps/
vlc.

[2] Failure recovery techniques in distributed systems. online lecture. URL http://www.cs.
fsu.edu/~xyuan/cop5611/lecture13.html.

[3] Mobile Traffic to Hit 18 Exabytes Per Month by 2018. Online ar-
ticle, February 2014. URL http://www.datamation.com/networks/
mobile-traffic-to-hit-18-exabytes-per-month-by-2018.html.

[4] CCNx Technical Documentation, March 2015. URL http://www.ietf.org/id/
draft-mosko-icnrg-ccnxsemantics-01.txt.

[5] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Börje
Ohlman. A survey of information-centric networking. Communications Magazine,
IEEE, 50(7):26–36, 2012.

[6] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent checkpointing
for cluster computations and the desktop. In 23rd IEEE International Parallel and
Distributed Processing Symposium, Rome, Italy, May 2009.

[7] Kapil Arya. User-Space Process Virtualization in the Context of Checkpoint-Restart
and Virtual Machines. PhD thesis, Northeastern University Boston, 2014.

[8] Bharat Bhargava and S-R Lian. Independent checkpointing and concurrent rollback for
recovery in distributed systems-an optimistic approach. In Reliable Distributed Systems,
1988. Proceedings., Seventh Symposium on, pages 3–12. IEEE, 1988.

[9] Nischay Bodapati, Kaiwen Zhang, and Hans-Arno Jacobsen. Psoccn: publish/subscribe
support in content-centric networking. In Proceedings of the Posters & Demos Session,
pages 15–16. ACM, 2014.

[10] Guohong Cao and Mukesh Singhal. On coordinated checkpointing in distributed
systems. Parallel and Distributed Systems, IEEE Transactions on, 9(12):1213–1225,
1998.

[11] Guohong Cao and Mukesh Singhal. Mutable checkpoints: a new checkpointing ap-
proach for mobile computing systems. Parallel and Distributed Systems, IEEE Trans-
actions on, 12(2):157–172, 2001.

55

https://github.com/ProjectCCNx/ccnx/tree/master/apps/vlc
https://github.com/ProjectCCNx/ccnx/tree/master/apps/vlc
http://www.cs.fsu.edu/~xyuan/cop5611/lecture13.html
http://www.cs.fsu.edu/~xyuan/cop5611/lecture13.html
http://www.datamation.com/networks/mobile-traffic-to-hit-18-exabytes-per-month-by-2018.html
http://www.datamation.com/networks/mobile-traffic-to-hit-18-exabytes-per-month-by-2018.html
http://www.ietf.org/id/draft-mosko-icnrg-ccnxsemantics-01.txt
http://www.ietf.org/id/draft-mosko-icnrg-ccnxsemantics-01.txt

References

[12] Antonio Carzaniga, Michele Papalini, and Alexander L Wolf. Content-based pub-
lish/subscribe networking and information-centric networking. In Proceedings of the
ACM SIGCOMM workshop on Information-centric networking, pages 56–61. ACM,
2011.

[13] K Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Transactions on Computer Systems (TOCS), 3(1):63–75,
1985.

[14] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xiaoming Fu, and KK Ramakrishnan.
Copss: An efficient content oriented publish/subscribe system. In Architectures for Net-
working and Communications Systems (ANCS), 2011 Seventh ACM/IEEE Symposium
on, pages 99–110. IEEE, 2011.

[15] Jiachen Chen, Lei Jiao, Mayutan Arumaithurai, Xiaoming Fu, and KK Ramakrishnan.
Ps-ccn: Achieving an efficient publish/subscribe capability for content-centric networks.
Technical report, Technical Report No. IFI-TB-2011-04, Institute of Computer Science,
University of Goettingen, 2011.

[16] Elmootazbellah Nabil Elnozahy, David B Johnson, and Willy Zwaenepoel. The perfor-
mance of consistent checkpointing. In Reliable Distributed Systems, 1992. Proceedings.,
11th Symposium on, pages 39–47. IEEE, 1992.

[17] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Raghavan, and James
Wilcox. Information-centric networking: seeing the forest for the trees. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, page 1. ACM, 2011.

[18] Peter Gusev. NDN RTC - Audio Visual Conferencing Tool for NDN.

[19] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for linux clus-
ters. In Journal of Physics: Conference Series, volume 46, page 494. IOP Publishing,
2006.

[20] Van Jacobson, Diana K Smetters, Nicholas H Briggs, Michael F Plass, Paul Stewart,
James D Thornton, and Rebecca L Braynard. Voccn: voice-over content-centric
networks. In Proceedings of the 2009 workshop on Re-architecting the internet, pages
1–6. ACM, 2009.

[21] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. Networking named content. In Proceedings of the
5th international conference on Emerging networking experiments and technologies,
pages 1–12. ACM, 2009.

[22] Astrid Kiehn, Pranav Raj, and Pushpendra Singh. A causal checkpointing algorithm
for mobile computing environments. In Distributed Computing and Networking, pages
134–148. Springer, 2014.

[23] Byoung-Jip Kim. Comparison of the existing checkpoint systems. Technical report,
Technical report, IBM Watson, 2005.

56

References

[24] Junguk L Kim and Taesoon Park. An efficient protocol for checkpointing recovery
in distributed systems. Parallel and Distributed Systems, IEEE Transactions on, 4(8):
955–960, 1993.

[25] George Kola, Tevfik Kosar, and Miron Livny. Faults in large distributed systems and
what we can do about them. In Euro-Par 2005 Parallel Processing, pages 442–453.
Springer, 2005.

[26] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed
systems. Software Engineering, IEEE Transactions on, (1):23–31, 1987.

[27] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun
Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond) network architecture.
In ACM SIGCOMM Computer Communication Review, volume 37, pages 181–192.
ACM, 2007.

[28] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal network
protocol analyzer toolkit. Syngress, 2006.

[29] James S Plank. An overview of checkpointing in uniprocessor and distributed systems,
focusing on implementation and performance. Technical report, Technical Report
UT-CS-97-372, Department of Computer Science, University of Tennessee, 1997.

[30] Zening Qu et al. Egal car: a peer-to-peer car racing game synchronized over named
data networking. Technical report, NDN, Technical Report NDN-0010, 2012.

[31] Eric Roman. A survey of checkpoint/restart implementations. In Lawrence Berkeley
National Laboratory, Tech. Citeseer, 2002.

[32] Joseph F Ruscio, Michael A Heffner, and Srinidhi Varadarajan. Dejavu: Transparent
user-level checkpointing, migration, and recovery for distributed systems. In Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages
1–10. IEEE, 2007.

[33] Laura S Sabel and Keith Marzullo. Simulating fail-stop in asynchronous distributed
systems. In Reliable Distributed Systems, 1994. Proceedings., 13th Symposium on,
pages 138–147. IEEE, 1994.

[34] Don Towsley, Jim Kurose, and Sridhar Pingali. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols. Selected Areas in Communications, IEEE
Journal on, 15(3):398–406, 1997.

[35] Zhehao Wang, Zening Qu, and Jeff Burke. Demo overview-matryoshka: design of
ndn multiplayer online game. In Proceedings of the 1st international conference on
Information-centric networking, pages 209–210. ACM, 2014.

[36] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton, Diana K
Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Papadopoulos, et al.
Named data networking (ndn) project. Relatório Técnico NDN-0001, Xerox Palo Alto
Research Center-PARC, 2010.

[37] Zhenkai Zhu and Alexander Afanasyev. Let’s chronosync: Decentralized dataset state
synchronization in named data networking. In ICNP, pages 1–10, 2013.

57

Appendix A

CCN Application Checkpoint (CCNAC)
System Walkthrough

In this appendix, we discuss the walkthrough of CCNAC checkpointing the distributed
fibonacci application over sample test bed. The walkthrough is meant to prove the step-by-
step procedure of checkpointing an application on CCNAC.

1. Initializing the CCN Daemon to run CCN based application and CCNx over all the
terminals. The daemon is initialized by running ccndstart command

Fig. A.1 Initializing CCN Daemon

59

CCN Application Checkpoint (CCNAC) System Walkthrough

2. Initialize the CCNAC coordinator. CCNAC manages the DMTCP coordinator and
empowers it to understand CCN communication channels.

Fig. A.2 Initializing CCNAC Coordinator

3. The checkpointing of the application registered with the coordinator by explicitly
giving the command c at the coordinator

Fig. A.3 Application Checkpointing by Coordinator

4. After the checkpoint process is complete, the checkpoint image will be saved at the
defined path. The image will contain the postfix of .dmtcp

Fig. A.4 Listing the saved checkpoint image

5. The image can be used to restart the process from the last saved computation after a
transient failure.

60

Fig. A.5 Restarting the application from the saved checkpoint

The application restarts from the saved checkpoint. As CCNAC is a plugin over
DMTCP, it supports all applications which are natively supported by DMTCP.

61

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Aim
	1.2 Research Applications
	1.2.1 Sender-driven Applications
	1.2.2 Checkpointing Applications

	1.3 Organization

	2 Related Work and Research Contribution
	2.1 Related Work
	2.1.1 Push-based communication
	2.1.2 Checkpointing

	2.2 Research Contributions

	3 Background
	3.1 Content Centric Networking
	3.1.1 CCN Packet Types
	3.1.2 Hierarchical Names
	3.1.3 Receiver-driven Communication

	3.2 Checkpointing
	3.2.1 Types of Checkpoints
	3.2.2 Checkpoint Algorithms

	3.3 Distributed Multi-Threaded Check-Pointing
	3.3.1 Architecture
	3.3.2 Checkpointing Algorithm
	3.3.3 Restart Algorithm
	3.3.4 Checkpoint Consistency

	4 Distributed Applications in CCN's
	4.1 Communication Structure
	4.2 Packet Structure
	4.2.1 Request-to-Send (RTS)
	4.2.2 Interest Packet
	4.2.3 Data Packet

	5 Checkpointing in Content Centric Networks
	5.1 Algorithms of Checkpointing in CCN
	5.1.1 Independent Checkpointing
	5.1.2 CCN Checkpoint Consistency Rules

	5.2 CCN Application Checkpoint (CCNAC) tool
	5.2.1 Prerequisites
	5.2.2 Architecture
	5.2.3 Packet Structures
	5.2.4 CCNAC Checkpoint Consistency Algorithm

	6 Evaluation and Analysis
	6.1 Implementation
	6.2 Results
	6.2.1 Evaluating Sender-driven Architecture
	6.2.2 CCNAC vs. DMTCP

	7 Discussions and Future Work
	7.1 Discussions
	7.1.1 Checkpointing using CCNCheck
	7.1.2 Sender-driven communication in CCN

	7.2 Limitations and Future Work
	7.3 Conclusion

	References
	Appendix A CCN Application Checkpoint (CCNAC) System Walkthrough

